WorldWideScience

Sample records for oncogenic pik3ca mutations

  1. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas

    International Nuclear Information System (INIS)

    Murat, C.B.; Braga, P.B.S.; Fortes, M.A.H.Z.; Bronstein, M.D.; Corrêa-Giannella, M.L.C.; Giorgi, R.R.

    2012-01-01

    The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland

  2. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Murat, C.B.; Braga, P.B.S.; Fortes, M.A.H.Z. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Bronstein, M.D. [Unidade de Neuroendocrinologia, Serviço de Endocrinologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Corrêa-Giannella, M.L.C.; Giorgi, R.R. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-07-13

    The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland.

  3. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers.

    Directory of Open Access Journals (Sweden)

    Filip Janku

    Full Text Available Oncogenic mutations of PIK3CA, RAS (KRAS, NRAS, and BRAF have been identified in various malignancies, and activate the PI3K/AKT/mTOR and RAS/RAF/MEK pathways, respectively. Both pathways are critical drivers of tumorigenesis.Tumor tissues from 504 patients with diverse cancers referred to the Clinical Center for Targeted Therapy at MD Anderson Cancer Center starting in October 2008 were analyzed for PIK3CA, RAS (KRAS, NRAS, and BRAF mutations using polymerase chain reaction-based DNA sequencing.PIK3CA mutations were found in 54 (11% of 504 patients tested; KRAS in 69 (19% of 367; NRAS in 19 (8% of 225; and BRAF in 31 (9% of 361 patients. PIK3CA mutations were most frequent in squamous cervical (5/14, 36%, uterine (7/28, 25%, breast (6/29, 21%, and colorectal cancers (18/105, 17%; KRAS in pancreatic (5/9, 56%, colorectal (49/97, 51%, and uterine cancers (3/20, 15%; NRAS in melanoma (12/40, 30%, and uterine cancer (2/11, 18%; BRAF in melanoma (23/52, 44%, and colorectal cancer (5/88, 6%. Regardless of histology, KRAS mutations were found in 38% of patients with PIK3CA mutations compared to 16% of patients with wild-type (wtPIK3CA (p = 0.001. In total, RAS (KRAS, NRAS or BRAF mutations were found in 47% of patients with PIK3CA mutations vs. 24% of patients wtPIK3CA (p = 0.001. PIK3CA mutations were found in 28% of patients with KRAS mutations compared to 10% with wtKRAS (p = 0.001 and in 20% of patients with RAS (KRAS, NRAS or BRAF mutations compared to 8% with wtRAS (KRAS, NRAS or wtBRAF (p = 0.001.PIK3CA, RAS (KRAS, NRAS, and BRAF mutations are frequent in diverse tumors. In a wide variety of tumors, PIK3CA mutations coexist with RAS (KRAS, NRAS and BRAF mutations.

  4. FGFR3, PIK3CA and RAS mutations in benign lichenoid keratosis.

    Science.gov (United States)

    Groesser, L; Herschberger, E; Landthaler, M; Hafner, C

    2012-04-01

    Benign lichenoid keratoses (BLKs) are solitary skin lesions which have been proposed to represent a regressive form of pre-existent epidermal tumours such as solar lentigo or seborrhoeic keratosis. However, the genetic basis of BLK is unknown. FGFR3, PIK3CA and RAS mutations have been shown to be involved in the pathogenesis of seborrhoeic keratosis and solar lentigo. We thus investigated whether these mutations are also present in BLK. After manual microdissection and DNA isolation, 52 BLKs were screened for FGFR3, PIK3CA and RAS hotspot mutations using SNaPshot(®) multiplex assays. We identified 6/52 (12%) FGFR3 mutations, 10/52 (19%) PIK3CA mutations, 6/52 (12%) HRAS mutations and 2/52 (4%) KRAS mutations. FGFR3 and RAS mutations were mutually exclusive. One BLK showed a simultaneous PIK3CA and HRAS mutation. In nine BLKs with a mutation, nonlesional control tissue from the epidermal margin and the dermal lymphocytic infiltrate were wild-type, indicating that these mutations are somatic. To demonstrate that these findings are specific, 10 samples of lichen planus were analysed without evidence for FGFR3, PIK3CA or RAS mutations. Our results indicate that FGFR3, PIK3CA and RAS mutations are present in approximately 50% of BLKs. These findings support the concept on the molecular genetic level that at least a proportion of BLKs represents regressive variants resulting from former benign epidermal tumours such as seborrhoeic keratosis and solar lentigo. © 2011 The Authors. BJD © 2011 British Association of Dermatologists 2011.

  5. PIK3CA Mutation in Colorectal Cancer: Relationship with Genetic and Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    2008-06-01

    Full Text Available Somatic PIK3CA mutations are often present in colorectal cancer. Mutant PIK3CA activates AKT signaling, which up-regulates fatty acid synthase (FASN. Microsatellite instability (MSI and CpG island methylator phenotype (CIMP are important molecular classifiers in colorectal cancer. However, the relationship between PIK3CA mutation, MSI and CIMP remains uncertain. Using Pyrosequencing technology, we detected PIK3CA mutations in 91 (15% of 590 population-based colorectal cancers. To determine CIMP status, we quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A (p16, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight. PIK3CA mutation was significantly associated with mucinous tumors [P = .0002; odds ratio (OR = 2.44], KRAS mutation (P < .0001; OR = 2.68, CIMP-high (P = .03; OR = 2.08, phospho–ribosomal protein S6 expression (P = .002; OR = 2.19, and FASN expression (P = .02; OR = 1.85 and inversely with p53 expression (P = .01; OR = 0.54 and β-catenin (CTNNB1 alteration (P = .004; OR = 0.43. In addition, PIK3CA G-to-A mutations were associated with MGMT loss (P = .001; OR = 3.24 but not with MGMT promoter methylation. In conclusion, PIK3CA mutation is significantly associated with other key molecular events in colorectal cancer, and MGMT loss likely contributes to the development of PIK3CA G>A mutation. In addition, Pyrosequencing is useful in detecting PIK3CA mutation in archival paraffin tumor tissue. PIK3CA mutational data further emphasize heterogeneity of colorectal cancer at the molecular level.

  6. Mutations in PIK3CA are infrequent in neuroblastoma

    International Nuclear Information System (INIS)

    Dam, Vincent; Morgan, Brian T; Mazanek, Pavel; Hogarty, Michael D

    2006-01-01

    Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain 'hot spots' where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. These data suggest that activating

  7. BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: Primary or secondary genetic events in colorectal carcinogenesis?

    Directory of Open Access Journals (Sweden)

    Schmitt Fernando

    2008-09-01

    Full Text Available Abstract Background BRAF, KRAS and PIK3CA mutations are frequently found in sporadic colorectal cancer (CRC. In contrast to KRAS and PIK3CA mutations, BRAF mutations are associated with tumours harbouring CpG Island methylation phenotype (CIMP, MLH1 methylation and microsatellite instability (MSI. We aimed at determine the frequency of KRAS, BRAF and PIK3CA mutations in the process of colorectal tumourigenesis using a series of colorectal polyps and carcinomas. In the series of polyps CIMP, MLH1 methylation and MSI were also studied. Methods Mutation analyses were performed by PCR/sequencing. Bisulfite treated DNA was used to study CIMP and MLH1 methylation. MSI was detected by pentaplex PCR and Genescan analysis of quasimonomorphic mononucleotide repeats. Chi Square test and Fisher's Exact test were used to perform association studies. Results KRAS, PIK3CA or BRAF occur in 71% of polyps and were mutually exclusive. KRAS mutations occur in 35% of polyps. PIK3CA was found in one of the polyps. V600E BRAF mutations occur in 29% of cases, all of them classified as serrated adenoma. CIMP phenotype occurred in 25% of the polyps and all were mutated for BRAF. MLH1 methylation was not detected and all the polyps were microsatellite stable. The comparison between the frequency of oncogenic mutations in polyps and CRC (MSI and MSS lead us to demonstrate that KRAS and PIK3CA are likely to precede both types of CRC. BRAF mutations are likely to precede MSI carcinomas since the frequency found in serrated polyps is similar to what is found in MSI CRC (P = 0.9112, but statistically different from what is found in microsatellite stable (MSS tumours (P = 0.0191. Conclusion Our results show that BRAF, KRAS and PIK3CA mutations occur prior to malignant transformation demonstrating that these oncogenic alterations are primary genetic events in colorectal carcinogenesis. Further, we show that BRAF mutations occur in association with CIMP phenotype in colorectal

  8. BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: Primary or secondary genetic events in colorectal carcinogenesis?

    International Nuclear Information System (INIS)

    Velho, Sérgia; Moutinho, Cátia; Cirnes, Luís; Albuquerque, Cristina; Hamelin, Richard; Schmitt, Fernando; Carneiro, Fátima; Oliveira, Carla; Seruca, Raquel

    2008-01-01

    BRAF, KRAS and PIK3CA mutations are frequently found in sporadic colorectal cancer (CRC). In contrast to KRAS and PIK3CA mutations, BRAF mutations are associated with tumours harbouring CpG Island methylation phenotype (CIMP), MLH1 methylation and microsatellite instability (MSI). We aimed at determine the frequency of KRAS, BRAF and PIK3CA mutations in the process of colorectal tumourigenesis using a series of colorectal polyps and carcinomas. In the series of polyps CIMP, MLH1 methylation and MSI were also studied. Mutation analyses were performed by PCR/sequencing. Bisulfite treated DNA was used to study CIMP and MLH1 methylation. MSI was detected by pentaplex PCR and Genescan analysis of quasimonomorphic mononucleotide repeats. Chi Square test and Fisher's Exact test were used to perform association studies. KRAS, PIK3CA or BRAF occur in 71% of polyps and were mutually exclusive. KRAS mutations occur in 35% of polyps. PIK3CA was found in one of the polyps. V600E BRAF mutations occur in 29% of cases, all of them classified as serrated adenoma. CIMP phenotype occurred in 25% of the polyps and all were mutated for BRAF. MLH1 methylation was not detected and all the polyps were microsatellite stable. The comparison between the frequency of oncogenic mutations in polyps and CRC (MSI and MSS) lead us to demonstrate that KRAS and PIK3CA are likely to precede both types of CRC. BRAF mutations are likely to precede MSI carcinomas since the frequency found in serrated polyps is similar to what is found in MSI CRC (P = 0.9112), but statistically different from what is found in microsatellite stable (MSS) tumours (P = 0.0191). Our results show that BRAF, KRAS and PIK3CA mutations occur prior to malignant transformation demonstrating that these oncogenic alterations are primary genetic events in colorectal carcinogenesis. Further, we show that BRAF mutations occur in association with CIMP phenotype in colorectal serrated polyps and verified that colorectal serrated

  9. PIK3CA activating mutation in colorectal carcinoma: associations with molecular features and survival.

    Directory of Open Access Journals (Sweden)

    Christophe Rosty

    Full Text Available Mutations in PIK3CA are present in 10 to 15% of colorectal carcinomas. We aimed to examine how PIK3CA mutations relate to other molecular alterations in colorectal carcinoma, to pathologic phenotype and survival. PIK3CA mutation testing was carried out using direct sequencing on 757 incident tumors from the Melbourne Collaborative Cohort Study. The status of O-6-methylguanine-DNA methyltransferase (MGMT was assessed using both immunohistochemistry and methyLight techniques. Microsatellite instability, CpG island phenotype (CIMP, KRAS and BRAF V600E mutation status, and pathology review features were derived from previous reports. PIK3CA mutation was observed in 105 of 757 (14% of carcinomas, characterized by location in the proximal colon (54% vs. 34%; P<0.001 and an increased frequency of KRAS mutation (48% vs. 25%; P<0.001. High-levels of CIMP were more frequently found in PIK3CA-mutated tumors compared with PIK3CA wild-type tumors (22% vs. 11%; P = 0.004. There was no difference in the prevalence of BRAF V600E mutation between these two tumor groups. PIK3CA-mutated tumors were associated with loss of MGMT expression (35% vs. 20%; P = 0.001 and the presence of tumor mucinous differentiation (54% vs. 32%; P<0.001. In patients with wild-type BRAF tumors, PIK3CA mutation was associated with poor survival (HR 1.51 95% CI 1.04-2.19, P = 0.03. In summary, PIK3CA-mutated colorectal carcinomas are more likely to develop in the proximal colon, to demonstrate high levels of CIMP, KRAS mutation and loss of MGMT expression. PIK3CA mutation also contributes to significantly decreased survival for patients with wild-type BRAF tumors.

  10. Gene of the month: PIK3CA.

    Science.gov (United States)

    Lai, K; Killingsworth, M C; Lee, C S

    2015-04-01

    PIK3CA encodes the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K) which through its role in the PI3K/Akt pathway is important for the regulation of important cellular functions such as proliferation, metabolism and protein synthesis, angiogenesis and apoptosis. Mutations in PIK3CA are known to be involved in a wide range of human cancers and mutant PIK3CA is thought to act as an oncogene. The specific PIK3CA inhibitor, NVP-BYL719, has displayed promising results in cancer therapy and is currently under clinical trials. Furthermore, PI3K regulates autophagy, a cellular process that recycles proteins and organelles through lysosomal degradation and has recently been recognised as an attractive therapeutic target due to its pro- and anti-cancer properties. Several studies have attempted to investigate the effects of combining the inhibition of both PI3K and autophagy in cancer therapy, and an in vivo model has demonstrated that the combined use of a concomitant PI3K and autophagy inhibitor induced apoptosis in glioma cells. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Cossu-Rocca

    Full Text Available Triple Negative Breast Cancer (TNBC accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data.PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC.Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  12. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  13. An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Stemke-Hale, Katherine; Gonzalez-Angulo, Ana Maria; Lluch, Ana; Neve, Richard M.; Kuo, Wen-Lin; Davies, Michael; Carey, Mark; Hu, Zhi; Guan, Yinghui; Sahin, Aysegul; Symmans, W. Fraser; Pusztai, Lajos; Nolden, Laura K.; Horlings, Hugo; Berns, Katrien; Hung, Mien-Chie; van de Vijver, Marc J.; Valero, Vicente; Gray, Joe W.; Bernards, Rene; Mills, Gordon B.; Hennessy, Bryan T.

    2008-05-06

    Phosphatidylinositol-3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT and PTEN mutations, and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in-vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor positive (33.8%) and HER2-positive (24.6%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers with PTEN protein levels also being significantly lower in hormone receptor-positive cancers. Unlike AKT1 mutations, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant impact on outcome in 166 hormone receptor-positive breast cancer patients after adjuvant tamoxifen. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and indeed inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines, and PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss but not PIK3CA mutations rendered cells sensitive to growth inhibition by the PI3K inhibitor LY294002. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.

  14. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner.

    Directory of Open Access Journals (Sweden)

    Divya Bhagirath

    Full Text Available Breast cancer is characterized into different molecular subtypes, and each subtype is characterized by differential gene expression that are associated with distinct survival outcomes in patients. PIK3CA mutations are commonly associated with most breast cancer subtypes. More recently PIK3CA mutations have been shown to induce tumor heterogeneity and are associated with activation of EGFR-signaling and reduced relapse free survival in basal subtype of breast cancer. Thus, understanding what determines PIK3CA induced heterogeneity and oncogenesis, is an important area of investigation. In this study, we assessed the effect of mutant PIK3CA together with mutant Ras plus mutant p53 on oncogenic behavior of two distinct stem/progenitor breast cell lines, designated as K5+/K19- and K5+/K19+. Constructs were ectopically overexpressed in K5+/K19- and K5+/K19+ stem/progenitor cells, followed by various in-vitro and in-vivo analyses. Oncogene combination m-Ras/m-p53/m-PIK3CA efficiently transformed both K5+/K19- and K5+/K19+ cell lines in-vitro, as assessed by anchorage-independent soft agar colony formation assay. Significantly, while this oncogene combination induced a complete epithelial-to-mesenchymal transition (EMT in K5+/K19- cell line, mostly epithelial phenotype with minor EMT component was seen in K5+/K19+ cell line. However, both K5+/K19- and K5+/K19+ transformed cells exhibited increased invasion and migration abilities. Analyses of CD44 and CD24 expression showed both cell lines had tumor-initiating CD44+/CD24low cell population, however transformed K5+/K19- cells had more proportion of these cells. Significantly, both cell types exhibited in-vivo tumorigenesis, and maintained their EMT and epithelial nature in-vivo in mice tumors. Notably, while both cell types exhibited increase in tumor-initiating cell population, differential EMT phenotype was observed in these cell lines. These results suggest that EMT is a cell type dependent

  15. Phosphatidyl inositol-3 kinase (PIK3CA) E545K mutation confers cisplatin resistance and a migratory phenotype in cervical cancer cells

    Science.gov (United States)

    Arjumand, Wani; Merry, Cole D.; Wang, Chen; Saba, Elias; McIntyre, John B.; Fang, Shujuan; Kornaga, Elizabeth; Ghatage, Prafull; Doll, Corinne M.; Lees, Susan P.

    2016-01-01

    The phosphatidylinositol-3 kinase (PI3K)/Akt/mTOR signaling pathway is activated in many human cancers. Previously, we reported that patients with early stage cervical cancer whose tumours harbour PIK3CA exon 9 or 20 mutations have worse overall survival in response to treatment with radiation and cisplatin than patients with wild-type PIK3CA. The purpose of this study was to determine whether PIK3CA-E545K mutation renders cervical cancer cells more resistant to cisplatin and/or radiation, and whether PI3K inhibition reverses the phenotype. We found that CaSki cells that are heterozygous for the PIK3CA-E545K mutation are more resistant to cisplatin or cisplatin plus radiation than either HeLa or SiHa cells that express only wild-type PIK3CA. Similarly, HeLa cells engineered to stably express PIK3CA-E545K were more resistant to cisplatin or cisplatin plus radiation than cells expressing only wild-type PIK3CA or with PIK3CA depleted. Cells expressing the PIK3CA-E545K mutation also had constitutive PI3K pathway activation and increased cellular migration and each of these phenotypes was reversed by treatment with the PI3K inhibitor GDC-0941/Pictilisib. Our results suggests that cervical cancer patients whose tumours are positive for the PIK3CA-E545K mutation may benefit from PI3K inhibitor therapy in concert with standard cisplatin and radiation therapy. PMID:27489350

  16. Investigating the structure and dynamics of the PIK3CA wild-type and H1047R oncogenic mutant.

    Directory of Open Access Journals (Sweden)

    Paraskevi Gkeka

    2014-10-01

    Full Text Available The PIK3CA gene is one of the most frequently mutated oncogenes in human cancers. It encodes p110α, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3Kα, which activates signaling cascades leading to cell proliferation, survival, and cell growth. The most frequent mutation in PIK3CA is H1047R, which results in enzymatic overactivation. Understanding how the H1047R mutation causes the enhanced activity of the protein in atomic detail is central to developing mutant-specific therapeutics for cancer. To this end, Surface Plasmon Resonance (SPR experiments and Molecular Dynamics (MD simulations were carried out for both wild-type (WT and H1047R mutant proteins. An expanded positive charge distribution on the membrane binding regions of the mutant with respect to the WT protein is observed through MD simulations, which justifies the increased ability of the mutated protein variant to bind to membranes rich in anionic lipids in our SPR experiments. Our results further support an auto-inhibitory role of the C-terminal tail in the WT protein, which is abolished in the mutant protein due to loss of crucial intermolecular interactions. Moreover, Functional Mode Analysis reveals that the H1047R mutation alters the twisting motion of the N-lobe of the kinase domain with respect to the C-lobe and shifts the position of the conserved P-loop residues in the vicinity of the active site. These findings demonstrate the dynamical and structural differences of the two proteins in atomic detail and propose a mechanism of overactivation for the mutant protein. The results may be further utilized for the design of mutant-specific PI3Kα inhibitors that exploit the altered mutant conformation.

  17. Oncogene mutational profile in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZC

    2014-03-01

    Full Text Available Zi-Chen Zhang,1,* Sha Fu,1,* Fang Wang,1 Hai-Yun Wang,1 Yi-Xin Zeng,2 Jian-Yong Shao11Department of Molecular Diagnostics, 2Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Nasopharyngeal carcinoma (NPC is a common tumor in Southern China, but the oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The relationships between mutational status and clinical data were assessed with a χ2 or Fisher's exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank test. In 123 patients, 21 (17.1% NPC tumors were positive for mutations in eight oncogenes: six patients had PIK3CA mutations (4.9%, five NRAS mutations (4.1%, four KIT mutations (3.3%, two PDGFRA mutations (1.6%, two ABL mutations (1.6%, and one with simultaneous mutations in HRAS, EGFR, and BRAF (1%. Patients with mutations were more likely to relapse or develop metastasis than those with wild-type alleles (P=0.019. No differences or correlations were found in other clinical characteristics or in patient survival. No mutations were detected in oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, PDGFRA, and ABL, which are associated with patient relapse and metastasis. Keywords: NPC, oncogene, mutation

  18. Significance of PIK3CA Mutations in Patients with Early Breast Cancer Treated with Adjuvant Chemotherapy: A Hellenic Cooperative Oncology Group (HeCOG Study.

    Directory of Open Access Journals (Sweden)

    George Papaxoinis

    Full Text Available The PI3K-AKT pathway is frequently activated in breast cancer. PIK3CA mutations are most frequently found in the helical (exon 9 and kinase (exon 20 domains of this protein. The aim of the present study was to examine the role of different types of PIK3CA mutations in combination with molecular biomarkers related to PI3K-AKT signaling in patients with early breast cancer.Tumor tissue samples from 1008 early breast cancer patients treated with adjuvant chemotherapy in two similar randomized trials of HeCOG were examined. Tumors were subtyped with immunohistochemistry (IHC and FISH for ER, PgR, Ki67, HER2 and androgen receptor (AR. PIK3CA mutations were analyzed by Sanger sequencing (exon 20 and qPCR (exon 9 (Sanger/qPCR mutations. In 610 cases, next generation sequencing (NGS PIK3CA mutation data were also available. PIK3CA mutations and PTEN protein expression (IHC were analyzed in luminal tumors (ER and/or PgR positive, molecular apocrine carcinomas (MAC; ER/PgR negative / AR positive and hormone receptor (ER/PgR/AR negative tumors.PIK3CA mutations were detected in 235/1008 tumors (23% with Sanger/qPCR and in 149/610 tumors (24% with NGS. Concordance between the two methods was good with a Kappa coefficient of 0.76 (95% CI 0.69-0.82. Lobular histology, low tumor grade and luminal A tumors were associated with helical domain mutations (PIK3CAhel, while luminal B with kinase domain mutations (PIK3CAkin. The overall incidence of PIK3CA mutations was higher in luminal as compared to MAC and hormone receptor negative tumors (p = 0.004. Disease-free and overall survival did not significantly differ with respect to PIK3CA mutation presence and type. However, a statistically significant interaction between PIK3CA mutation status and PTEN low protein expression with regard to prognosis was identified.The present study did not show any prognostic significance of specific PIK3CA mutations in a large group of predominantly lymph-node positive breast cancer

  19. Somatic mutations in PIK3CA and activation of AKT in intraductal tubulopapillary neoplasms of the pancreas.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Kuboki, Yuko; Hatori, Takashi; Yamamoto, Masakazu; Shiratori, Keiko; Kawamura, Shunji; Kobayashi, Makio; Shimizu, Michio; Ban, Shinichi; Koyama, Isamu; Higashi, Morihiro; Shin, Nobuhiro; Ishida, Kazuyuki; Morikawa, Takanori; Motoi, Fuyuhiko; Unno, Michiaki; Kanno, Atsushi; Satoh, Kennichi; Shimosegawa, Tooru; Orikasa, Hideki; Watanabe, Tomoo; Nishimura, Kazuhiko; Harada, Youji; Furukawa, Toru

    2011-12-01

    Intraductal tubulopapillary neoplasm (ITPN) is a recently recognized rare variant of intraductal neoplasms of the pancreas. Molecular aberrations underlying the neoplasm remain unknown. We investigated somatic mutations in PIK3CA, PTEN, AKT1, KRAS, and BRAF. We also investigated aberrant expressions of phosphorylated AKT, phosphatase and tensin homolog (PTEN), tumor protein 53 (TP53), SMAD4, and CTNNB1 in 11 cases of ITPNs and compared these data with those of 50 cases of intraductal papillary mucinous neoplasm (IPMN), another distinct variant of pancreatic intraductal neoplasms. Mutations in PIK3CA were found in 3 of 11 ITPNs but not in IPMNs (P = 0.005; Fisher exact test). In contrast, mutations in KRAS were found in none of the ITPNs but were found in 26 of the 50 IPMNs (P = 0.001; Fisher exact test). PIK3CA mutations were associated with strong expression of phosphorylated AKT (P AKT was apparent in most ITPNs but only in a few IPMNs (P SMAD4, and CTNNB1 were not statistically different between these neoplasms. Mutations in PIK3CA and the expression of phosphorylated AKT were not associated with age, sex, tissue invasion, and patients' prognosis in ITPNs. These results indicate that activation of the phosphatidylinositol 3-kinase pathway may play a crucial role in ITPNs but not in IPMNs. In contrast, the mutation in KRAS seems to play a major role in IPMNs but not in ITPNs. The activated phosphatidylinositol 3-kinase pathway may be a potential target for molecular diagnosis and therapy of ITPNs.

  20. Aspirin exerts high anti-cancer activity in PIK3CA-mutant colon cancer cells.

    Science.gov (United States)

    Gu, Mancang; Nishihara, Reiko; Chen, Yang; Li, Wanwan; Shi, Yan; Masugi, Yohei; Hamada, Tsuyoshi; Kosumi, Keisuke; Liu, Li; da Silva, Annacarolina; Nowak, Jonathan A; Twombly, Tyler; Du, Chunxia; Koh, Hideo; Li, Wenbin; Meyerhardt, Jeffrey A; Wolpin, Brian M; Giannakis, Marios; Aguirre, Andrew J; Bass, Adam J; Drew, David A; Chan, Andrew T; Fuchs, Charles S; Qian, Zhi Rong; Ogino, Shuji

    2017-10-20

    Evidence suggests that nonsteroidal anti-inflammatory drug aspirin (acetylsalicylic acid) may improve patient survival in PIK3CA -mutant colorectal carcinoma, but not in PIK3CA -wild-type carcinoma. However, whether aspirin directly influences the viability of PIK3CA -mutant colon cancer cells is poorly understood. We conducted in vitro experiments to test our hypothesis that the anti-proliferative activity of aspirin might be stronger for PIK3CA -mutant colon cancer cells than for PIK3CA -wild-type colon cancer cells. We measured the anti-proliferative effect of aspirin at physiologic concentrations in seven PIK3CA -mutant and six PIK3CA -wild-type human colon cancer cell lines. After exposure to aspirin, the apoptotic index and cell cycle phase of colon cancer cells were assessed. In addition, the effect of aspirin was examined in parental SW48 cells and SW48 cell clones with individual knock-in PIK3CA mutations of either c.3140A>G (p.H1047R) or c.1633G>A (p.E545K). Aspirin induced greater dose-dependent loss of cell viability in PIK3CA -mutant cells than in PIK3CA -wild-type cells after treatment for 48 and 72 hours. Aspirin treatment also led to higher proportions of apoptotic cells and G0/G1 phase arrest in PIK3CA -mutant cells than in PIK3CA -wild-type cells. Aspirin treatment of isogenic SW48 cells carrying a PIK3CA mutation, either c.3140A>G (p.H1047R) or c.1633G>A (p. E545K), resulted in a more significant loss of cell viability compared to wild-type controls. Our findings indicate that aspirin causes cell cycle arrest, induces apoptosis, and leads to loss of cell viability more profoundly in PIK3CA -mutated colon cancer cells than in PIK3CA -wild-type colon cancer cells. These findings support the use of aspirin to treat patients with PIK3CA -mutant colon cancer.

  1. Alterations in PTEN and PIK3CA in colorectal cancers in the EPIC Norfolk study: associations with clinicopathological and dietary factors

    International Nuclear Information System (INIS)

    Naguib, Adam; Arends, Mark J; Cooke, James C; Happerfield, Lisa; Kerr, Lucy; Gay, Laura J; Luben, Robert N; Ball, Richard Y; Mitrou, Panagiota N; McTaggart, Alison

    2011-01-01

    The PTEN tumour suppressor gene and PIK3CA proto-oncogene encode proteins which contribute to regulation and propagation of signal transduction through the PI3K/AKT signalling pathway. This study investigates the prevalence of loss of PTEN expression and mutations in both PTEN and PIK3CA in colorectal cancers (CRC) and their associations with tumour clinicopathological features, lifestyle factors and dietary consumptions. 186 adenocarcinomas and 16 adenomas from the EPIC Norfolk study were tested for PTEN and PIK3CA mutations by DNA sequencing and PTEN expression changes by immunohistochemistry. Dietary and lifestyle data were collected prospectively using seven day food diaries and lifestyle questionnaires. Mutations in exons 7 and 8 of PTEN were observed in 2.2% of CRC and PTEN loss of expression was identified in 34.9% CRC. Negative PTEN expression was associated with lower blood low-density lipoprotein concentrations (p = 0.05). PIK3CA mutations were observed in 7% of cancers and were more frequent in CRCs in females (p = 0.04). Analysis of dietary intakes demonstrated no link between PTEN expression status and any specific dietary factor. PTEN expression negative, proximal CRC were of more advanced Dukes' stage (p = 0.02) and poor differentiation (p < 0.01). Testing of the prevalence of PIK3CA mutations and loss of PTEN expression demonstrated that these two events were independent (p = 0.55). These data demonstrated the frequent occurrence (34.9%) of PTEN loss of expression in colorectal cancers, for which gene mutations do not appear to be the main cause. Furthermore, dietary factors are not associated with loss of PTEN expression. PTEN expression negative CRC were not homogenous, as proximal cancers were associated with a more advanced Dukes' stage and poor differentiation, whereas distal cancers were associated with earlier Dukes' stage

  2. Physiological Levels of Pik3ca H1047R Mutation in the Mouse Mammary Gland Results in Ductal Hyperplasia and Formation of ERα-Positive Tumors

    Science.gov (United States)

    Tikoo, Anjali; Roh, Vincent; Montgomery, Karen G.; Ivetac, Ivan; Waring, Paul; Pelzer, Rebecca; Hare, Lauren; Shackleton, Mark; Humbert, Patrick; Phillips, Wayne A.

    2012-01-01

    PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3caH1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin−; CD29lo; CD24+; CD61+) cell population. The Pik3caH1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3caH1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3caH1047R mutation in mammary tumorigenesis both in vivo and in vitro. PMID:22666336

  3. Physiological levels of Pik3ca(H1047R mutation in the mouse mammary gland results in ductal hyperplasia and formation of ERα-positive tumors.

    Directory of Open Access Journals (Sweden)

    Anjali Tikoo

    Full Text Available PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3ca(H1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin(-; CD29(lo; CD24(+; CD61(+ cell population. The Pik3ca(H1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months. This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3ca(H1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3ca(H1047R mutation in mammary tumorigenesis both in vivo and in vitro.

  4. Dual HER2\\PIK3CA targeting overcomes single-agent acquired resistance in HER2 amplified uterine serous carcinoma cell lines in vitro and in vivo

    Science.gov (United States)

    Lopez, Salvatore; Cocco, Emiliano; Black, Jonathan; Bellone, Stefania; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Schwab, Carlton L.; English, Diana P.; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E.; Terranova, Corrado; Angioli, Roberto; Santin, Alessandro D.

    2015-01-01

    HER2/neu gene amplification and PIK3CA driver mutations are common in uterine serous carcinoma (USC), and may represent ideal therapeutic targets against this aggressive variant of endometrial cancer. We examined the sensitivity to neratinib, taselisib and the combination of the two compounds in in vitro and in vivo experiments using PIK3CA mutated and PIK3CA-wild type HER2/neu amplified USC cell lines. Cell viability and cell cycle distribution were assessed using flow-cytometry assays. Downstream signaling was assessed by immunoblotting. Preclinical efficacy of single versus dual inhibition was evaluated in vivo using two USC-xenografts. We found both single agent neratinib and taselisib to be active but only transiently effective in controlling the in vivo growth of USC xenografts harboring HER2/neu gene amplification with or without oncogenic PIK3CA mutations. In contrast, the combination of the two inhibitors caused a stronger and long lasting growth inhibition in both USC xenografts when compared to single agent therapy. Combined targeting of HER2 and PIK3CA was associated with a significant and dose-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and a dose-dependent decline in the phosphorylation of S6. Importantly, dual inhibition therapy initiated after tumor progression in single agent-treated mice was still remarkably effective at inducing tumor regression in both large PIK3CA or pan-ErbB inhibitor-resistant USC xenografts. Dual HER2/PIK3CA blockade may represent a novel therapeutic option for USC patients harboring tumors with HER2/neu gene amplification and mutated or wild type PIK3CA resistant to chemotherapy. PMID:26333383

  5. Dual HER2/PIK3CA Targeting Overcomes Single-Agent Acquired Resistance in HER2-Amplified Uterine Serous Carcinoma Cell Lines In Vitro and In Vivo.

    Science.gov (United States)

    Lopez, Salvatore; Cocco, Emiliano; Black, Jonathan; Bellone, Stefania; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Schwab, Carlton L; English, Diana P; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Terranova, Corrado; Angioli, Roberto; Santin, Alessandro D

    2015-11-01

    HER2/neu gene amplification and PIK3CA driver mutations are common in uterine serous carcinoma (USC) and may represent ideal therapeutic targets against this aggressive variant of endometrial cancer. We examined the sensitivity to neratinib, taselisib, and the combination of the two compounds in in vitro and in vivo experiments using PIK3CA-mutated and PIK3CA wild-type HER2/neu-amplified USC cell lines. Cell viability and cell-cycle distribution were assessed using flow-cytometry assays. Downstream signaling was assessed by immunoblotting. Preclinical efficacy of single versus dual inhibition was evaluated in vivo using two USC xenografts. We found both single-agent neratinib and taselisib to be active but only transiently effective in controlling the in vivo growth of USC xenografts harboring HER2/neu gene amplification with or without oncogenic PIK3CA mutations. In contrast, the combination of the two inhibitors caused a stronger and long-lasting growth inhibition in both USC xenografts when compared with single-agent therapy. Combined targeting of HER2 and PIK3CA was associated with a significant and dose-dependent increase in the percentage of cells in the G0-G1 phase of the cell cycle and a dose-dependent decline in the phosphorylation of S6. Importantly, dual inhibition therapy initiated after tumor progression in single-agent-treated mice was still remarkably effective at inducing tumor regression in both large PIK3CA and pan-ErbB inhibitor-resistant USC xenografts. Dual HER2/PIK3CA blockade may represent a novel therapeutic option for USC patients harboring tumors with HER2/neu gene amplification and mutated or wild-type PIK3CA resistant to chemotherapy. ©2015 American Association for Cancer Research.

  6. Assessing PIK3CA and PTEN in Early-Phase Trials with PI3K/AKT/mTOR Inhibitors

    Directory of Open Access Journals (Sweden)

    Filip Janku

    2014-01-01

    Full Text Available Despite a wealth of preclinical studies, it is unclear whether PIK3CA or phosphatase and tensin homolog (PTEN gene aberrations are actionable in the clinical setting. Of 1,656 patients with advanced, refractory cancers tested for PIK3CA or PTEN abnormalities, PIK3CA mutations were found in 9% (146/1,589, and PTEN loss and/or mutation was found in 13% (149/1,157. In multicovariable analysis, treatment with a phosphatidylinositol 3-kinase (PI3K/AKT/mammalian target of rapamycin (mTOR inhibitor was the only independent factor predicting response to therapy in individuals harboring a PIK3CA or PTEN aberration. The rate of stable disease ≥6 months/partial response reached 45% in a subgroup of individuals with H1047R PIK3CA mutations. Aberrations in the PI3K/AKT/mTOR pathway are common and potentially actionable in patients with diverse advanced cancers. This work provides further important clinical validation for continued and accelerated use of biomarker-driven trials incorporating rational drug combinations.

  7. Breast Cancer Heterogeneity Examined by High-Sensitivity Quantification of PIK3CA, KRAS, HRAS, and BRAF Mutations in Normal Breast and Ductal Carcinomas

    Directory of Open Access Journals (Sweden)

    Meagan B. Myers

    2016-04-01

    Full Text Available Mutant cancer subpopulations have the potential to derail durable patient responses to molecularly targeted cancer therapeutics, yet the prevalence and size of such subpopulations are largely unexplored. We employed the sensitive and quantitative Allele-specific Competitive Blocker PCR approach to characterize mutant cancer subpopulations in ductal carcinomas (DCs, examining five specific hotspot point mutations (PIK3CA H1047R, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E. As an approach to aid interpretation of the DC results, the mutations were also quantified in normal breast tissue. Overall, the mutations were prevalent in normal breast and DCs, with 9/9 DCs having measureable levels of at least three of the five mutations. HRAS G12D was significantly increased in DCs as compared to normal breast. The most frequent point mutation reported in DC by DNA sequencing, PIK3CA H1047R, was detected in all normal breast tissue and DC samples and was present at remarkably high levels (mutant fractions of 1.1 × 10−3 to 4.6 × 10−2 in 4/10 normal breast samples. In normal breast tissue samples, PIK3CA mutation levels were positively correlated with age. However, the PIK3CA H1047R mutant fraction distributions for normal breast tissues and DCs were similar. The results suggest PIK3CA H1047R mutant cells have a selective advantage in breast, contribute to breast cancer susceptibility, and drive tumor progression during breast carcinogenesis, even when present as only a subpopulation of tumor cells.

  8. PIK3CA, HRAS and PTEN in human papillomavirus positive oropharyngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Chiosea, Simion I; Nikiforova, Marina N; Grandis, Jennifer R; Lui, Vivian W Y; Diergaarde, Brenda; Maxwell, Jessica H; Ferris, Robert L; Kim, Seungwon W; Luvison, Alyssa; Miller, Megan

    2013-01-01

    Recent genomic evidence suggests frequent phosphatidylinositide 3-kinase (PI3K) pathway activation in human papillomavirus (HPV) positive oropharyngeal squamous cell carcinoma. Mutations/amplification of the gene encoding p110α catalytic subunit of phosphoinositide 3-kinase (PIK3CA), loss of phosphatase and tensin homolog (PTEN) and HRAS mutations are known to activate PI3K pathway. PIK3CA mutations were identified by Sanger sequencing in 23 of 75 (31%) HPV-positive oropharyngeal carcinomas, including exon 9 (p.E545K [n = 10] and p.E542K [n = 5]) or exon 20 (p.H1047Y, n = 2) mutations. Five rare and one novel (p.R537Q) PIK3CA mutations were identified. HRAS mutation (p.Q61L) was detected in 1 of 62 tested cases. PIK3CA amplification by fluorescence in situ hybridization (FISH) was identified in 4 cases (4/21, 20%), while PTEN loss was seen in 7 (7/21, 33%) cases (chromosome 10 monosomy [n = 4], homozygous deletion [n = 3]). Overall, genetic alterations that likely lead to PI3K pathway activation were identified in 34 of 75 cases (45%) and did not correlate with disease specific survival. These findings offer a molecular rationale for therapeutic targeting of PI3K pathway in patients with HPV-positive oropharyngeal carcinoma

  9. PIK3CA expression in diffuse large B cell lymphoma tissue and the effect of its knockdown in vitro

    Directory of Open Access Journals (Sweden)

    Cui W

    2017-04-01

    Full Text Available Wenli Cui,1–4,* Shutao Zheng,5,6,* Zebing Liu,1–3 Weige Wang,1–3 Ying Cai,1–3 Rui Bi,1–3 Bing Cao,1–3 Xiaoyan Zhou1–3 1Department of Pathology, Shanghai Cancer Center, Fudan University, 2Department of Oncology, Shanghai Medical College, Fudan University, 3Institute of Pathology, Fudan University, Shanghai, 4Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, 5Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, 6State Key Lab Incubation Base of Xinjiang Major Diseases Research, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China *These authors contributed equally to this work Abstract: PIK3CA has been extensively investigated from its molecular mechanism perspective and epidemiological association with its mutations in different types of cancers. However, little has been reported regarding the clinicopathological significance of PIK3CA expression in diffuse large B cell lymphoma (DLBCL. In the present study, we investigated the clinicopathological significance of PIK3CA in DLBCL by performing immunohistochemical evaluation of PIK3CA in tissue microarrays consisting of 199 cases of DLBCL. Kaplan–Meier survival analysis was performed to analyze the association between PIK3CA expression and overall prognosis. To further investigate the role of PIK3CA mediated in the proliferation, cell cycle and apoptosis of DLBCL cells, Cell Counting Kit-8 (CCK-8 and flow cytometry assays were carried out in DLBCL cell lines after successful, stable knockdown of PIK3CA using lentiviral short hairpin RNA inference. Our results indicated that although PIK3CA was shown to be extensively expressed in DLBCL, no significant association was observed between PIK3CA expression and clinical outcome or between PIK3CA expression and other clinicopathological parameters, except between performance state (PS

  10. Expression of activated PIK3CA in ovarian surface epithelium results in hyperplasia but not tumor formation.

    Directory of Open Access Journals (Sweden)

    Shun Liang

    Full Text Available The Phosphatidylinositol 3'-kinase is a key regulator in various cancer-associated signal transduction pathways. Genetic alterations of its catalytic subunit alpha, PIK3CA, have been identified in ovarian cancer. Our in vivo data suggests that PIK3CA activation is one of the early genetic events in ovarian cancer. However, its role in malignant transformation of ovarian surface epithelium (OSE is largely unclear.Using the Müllerian inhibiting substance type II receptor (MISIIR promoter, we generated transgenic mice that expressed activated PIK3CA in the Müllerian epithelium. Overexpression of PIK3CA in OSE induced remarkable hyperplasia, but was not able to malignantly transform OSE in vivo. The consistent result was also observed in primary cultured OSEs. Although enforced expression of PIK3CA could not induce OSE anchorage-independent growth, it significantly increased anchorage-independent growth of OSE transformed by mutant K-ras.While PIK3CA activation may not be able to initiate OSE transformation, we conclude that activation of PIK3CA may be an important molecular event contributing to the maintenance of OSE transformation initiated by oncogenes such as K-ras.

  11. Tumor PIK3CA genotype and prognosis in early-stage breast cancer

    DEFF Research Database (Denmark)

    Zardavas, Dimitrios; Te Marvelde, Luc; Milne, Roger L.

    2018-01-01

    % in the ER-negative/HER2-negative, HER2-positive, and ER-positive/HER2-negative subtypes, respectively. In univariable analysis, PIK3CA mutations were associated with better IDFS (HR, 0.77; 95% CI, 0.71 to 0.84; P, .001), with evidence for a stronger effect in the first years of follow-up (0 to 5 years: HR...... points. Conclusion In this large pooled analysis, PIK3CA mutations were significantly associated with a better IDFS, DDFS, and OS, but had a lesser prognostic effect after adjustment for other prognostic factors....

  12. Highly sensitive detection of the PIK3CAH1047R mutation in colorectal cancer using a novel PCR-RFLP method

    International Nuclear Information System (INIS)

    Li, Wan-Ming; Hu, Ting-Ting; Zhou, Lin-Lin; Feng, Yi-Ming; Wang, Yun-Yi; Fang, Jin

    2016-01-01

    The PIK3CA H1047R mutation is considered to be a potential predictive biomarker for EGFR-targeted therapies. In this study, we developed a novel PCR-PFLP approach to detect the PIK3CA H1047R mutation in high effectiveness. A 126-bp fragment of PIK3CA exon-20 was amplified by PCR, digested with FspI restriction endonuclease and separated by 3 % agarose gel electrophoresis for the PCR-RFLP analysis. The mutant sequence of the PIK3CA H1047R was spiked into the corresponding wild-type sequence in decreasing ratios for sensitivity analysis. Eight-six cases of formalin-fixed paraffin-embedded colorectal cancer (CRC) specimens were subjected to PCR-RFLP to evaluate the applicability of the method. The PCR-RFLP method had a capability to detect as litter as 0.4 % of mutation, and revealed 16.3 % of the PIK3CA H1047R mutation in 86 CRC tissues, which was significantly higher than that discovered by DNA sequencing (9.3 %). A positive association between the PIK3CA H1047R mutation and the patients’ age was first found, except for the negative relationship with the degree of tumor differentiation. In addition, the highly sensitive detection of a combinatorial mutation of PIK3CA, KRAS and BRAF was achieved using individual PCR-RFLP methods. We developed a sensitive, simple and rapid approach to detect the low-abundance PIK3CA H1047R mutation in real CRC specimens, providing an effective tool for guiding cancer targeted therapy

  13. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution

    NARCIS (Netherlands)

    Mirzaa, Ghayda; Timms, Andrew E.; Conti, Valerio; Boyle, Evan August; Girisha, Katta M.; Martin, Beth; Kircher, Martin; Olds, Carissa; Juusola, Jane; Collins, Sarah; Park, Kaylee; Carter, Melissa; Glass, Ian; Krägeloh-Mann, Inge; Chitayat, David; Parikh, Aditi Shah; Bradshaw, Rachael; Torti, Erin; Braddock, Stephen; Burke, Leah; Ghedia, Sondhya; Stephan, Mark; Stewart, Fiona; Prasad, Chitra; Napier, Melanie; Saitta, Sulagna; Straussberg, Rachel; Gabbett, Michael; O'Connor, Bridget C.; Keegan, Catherine E.; Yin, Lim Jiin; Lai, Angeline Hwei Meeng; Martin, Nicole; McKinnon, Margaret; Addor, Marie-Claude; Boccuto, Luigi; Schwartz, Charles E.; Lanoel, Agustina; Conway, Robert L.; Devriendt, Koenraad; Tatton-Brown, Katrina; Pierpont, Mary Ella; Painter, Michael; Worgan, Lisa; Reggin, James; Hennekam, Raoul; Tsuchiya, Karen; Pritchard, Colin C.; Aracena, Mariana; Gripp, Karen W.; Cordisco, Maria; Esch, Hilde Van; Garavelli, Livia; Curry, Cynthia; Goriely, Anne; Kayserilli, Hulya; Shendure, Jay; Graham, John; Guerrini, Renzo; Dobyns, William B.

    2016-01-01

    Mosaicism is increasingly recognized as a cause of developmental disorders with the advent of next-generation sequencing (NGS). Mosaic mutations of PIK3CA have been associated with the widest spectrum of phenotypes associated with overgrowth and vascular malformations. We performed targeted NGS

  14. CLOVES syndrome: review of a PIK3CA-related overgrowth spectrum (PROS).

    Science.gov (United States)

    Martinez-Lopez, A; Blasco-Morente, G; Perez-Lopez, I; Herrera-Garcia, J D; Luque-Valenzuela, M; Sanchez-Cano, D; Lopez-Gutierrez, J C; Ruiz-Villaverde, R; Tercedor-Sanchez, J

    2017-01-01

    Overgrowth syndromes are characterized by global or localized disproportionate growth associated with other anomalies, including vascular malformations and neurological and/or visceral disorders. CLOVES (Congenital Lipomatous asymmetric Overgrowth of the trunk with lymphatic, capillary, venous, and combined-type Vascular malformations, Epidermal naevi, Scoliosis/Skeletal and spinal anomalies) is an overgrowth syndrome caused by mosaic activating mutation in gene PIK3CA, which gives rise to abnormal PI3K-AKT-mTOR pathway activation. These mutations are responsible for the clinical manifestations of the syndrome, which include low- and high-flow vascular malformations, thoracic lipomatous hyperplasia, asymmetric growth, and visceral and neurological disorders. These common anomalies are illustrated with figures from two personal cases. Identification of the clinical and genetic characteristics of CLOVES syndrome is crucial for the differential diagnosis with other overgrowth syndromes, such as Proteus or Klippel-Trenaunay (K-T) syndromes, and for the therapeutic management of the different anomalies. In this context, a new entity comprising different syndromes with phenotypic mutations in PIK3CA has been proposed, designated PIK3CA-related overgrowth spectrum (PROS), with the aim of facilitating clinical management and establishing appropriate genetic study criteria. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Genome Analysis of Latin American Cervical Cancer: Frequent Activation of the PIK3CA Pathway.

    Science.gov (United States)

    Lou, Hong; Villagran, Guillermo; Boland, Joseph F; Im, Kate M; Polo, Sarita; Zhou, Weiyin; Odey, Ushie; Juárez-Torres, Eligia; Medina-Martínez, Ingrid; Roman-Basaure, Edgar; Mitchell, Jason; Roberson, David; Sawitzke, Julie; Garland, Lisa; Rodríguez-Herrera, Maria; Wells, David; Troyer, Jennifer; Pinto, Francisco Castillo; Bass, Sara; Zhang, Xijun; Castillo, Miriam; Gold, Bert; Morales, Hesler; Yeager, Meredith; Berumen, Jaime; Alvirez, Enrique; Gharzouzi, Eduardo; Dean, Michael

    2015-12-01

    Cervical cancer is one of the most common causes of cancer mortality for women living in poverty, causing more than 28,000 deaths annually in Latin America and 266,000 worldwide. To better understand the molecular basis of the disease, we ascertained blood and tumor samples from Guatemala and Venezuela and performed genomic characterization. We performed human papillomavirus (HPV) typing and identified somatically mutated genes using exome and ultra-deep targeted sequencing with confirmation in samples from Mexico. Copy number changes were also assessed in the exome sequence. Cervical cancer cases in Guatemala and Venezuela have an average age of diagnosis of 50 years and 5.6 children. Analysis of 675 tumors revealed activation of PIK3CA and other PI3K/AKT pathway genes in 31% of squamous carcinomas and 24% of adeno- and adenosquamous tumors, predominantly at two sites (E542K, E545K) in the helical domain of the PIK3CA gene. This distribution of PIK3CA mutations is distinct from most other cancer types and does not result in the in vitro phosphorylation of AKT. Somatic mutations were more frequent in squamous carcinomas diagnosed after the age of 50 years. Frequent gain of chromosome 3q was found, and low PIK3CA mutation fractions in many tumors suggest that PI3K mutation can be a late event in tumor progression. PI3K pathway mutation is important to cervical carcinogenesis in Latin America. Therapeutic agents that directly target PI3K could play a role in the therapy of this common malignancy. ©2015 American Association for Cancer Research.

  16. PRKCI negatively regulates autophagy via PIK3CA/AKT–MTOR signaling

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Liujing; Li, Ge; Xia, Dan; Hongdu, Beiqi; Xu, Chentong; Lin, Xin [Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Beijing (China); Peking University Center for Human Disease Genomics, Peking University, Beijing (China); Chen, Yingyu, E-mail: yingyu_chen@bjmu.edu.cn [Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Beijing (China); Peking University Center for Human Disease Genomics, Peking University, Beijing (China)

    2016-02-05

    The atypical protein kinase C isoform PRKC iota (PRKCI) plays a key role in cell proliferation, differentiation, and carcinogenesis, and it has been shown to be a human oncogene. Here, we show that PRKCI overexpression in U2OS cells impaired functional autophagy in normal or cell stress conditions, as characterized by decreased levels of light chain 3B-II protein (LC3B-II) and weakened degradation of endogenous and exogenous autophagic substrates. Conversely, PRKCI knockdown by small interference RNA resulted in opposite effects. Additionally, we identified two novel PRKCI mutants, PRKCI{sup L485M} and PRKCI{sup P560R}, which induced autophagy and exhibited dominant negative effects. Further studies indicated that PRKCI knockdown–mediated autophagy was associated with the inactivation of phosphatidylinositol 3-kinase alpha/AKT–mammalian target of rapamycin (PIK3CA/AKT–MTOR) signaling. These data underscore the importance of PRKCI in the regulation of autophagy. Moreover, the finding may be useful in treating PRKCI-overexpressing carcinomas that are characterized by increased levels of autophagy. - Highlights: • The atypical protein kinase C iota isoform (PRKCI) is a human oncogene. • PRKCI overexpression impairs functional autophagy in U2OS cells. • It reduces LC3B-II levels and weakens SQSTM1 and polyQ80 aggregate degradation. • PRKCI knockdown has the opposite effect. • The effect of PRKCI knockdown is related to PIK3CA/AKT–MTOR signaling inactivation.

  17. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern

    Science.gov (United States)

    Al-Shamsi, Humaid O.; Jones, Jeremy; Fahmawi, Yazan; Dahbour, Ibrahim; Tabash, Aziz; Abdel-Wahab, Reham; Abousamra, Ahmed O. S.; Shaw, Kenna R.; Xiao, Lianchun; Hassan, Manal M.; Kipp, Benjamin R.; Kopetz, Scott; Soliman, Amr S.; McWilliams, Robert R.; Wolff, Robert A.

    2016-01-01

    Background The frequency rates of mutations such as KRAS, NRAS, BRAF, and PIK3CA in colorectal cancer (CRC) differ among populations. The aim of this study was to assess mutation frequencies in the Arab population and determine their correlations with certain clinicopathological features. Methods Arab patients from the Arab Gulf region and a population of age- and sex-matched Western patients with CRC whose tumors were evaluated with next-generation sequencing (NGS) were identified and retrospectively reviewed. The mutation rates of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC were recorded, along with clinicopathological features. Other somatic mutation and their rates were also identified. Fisher’s exact test was used to determine the association between mutation status and clinical features. Results A total of 198 cases were identified; 99 Arab patients and 99 Western patients. Fifty-two point seven percent of Arab patients had stage IV disease at initial presentation, 74.2% had left-sided tumors. Eighty-nine point two percent had tubular adenocarcinoma and 10.8% had mucinous adenocarcinoma. The prevalence rates of KRAS, NRAS, BRAF, PIK3CA, TP53, APC, SMAD, FBXW7 mutations in Arab population were 44.4%, 4%, 4%, 13.1%, 52.5%, 27.3%, 2% and 3% respectively. Compared to 48.4%, 4%, 4%, 12.1%, 47.5%, 24.2%, 11.1% and 0% respectively in matched Western population. Associations between these mutations and patient clinicopathological features were not statistically significant. Conclusions This is the first study to report comprehensive hotspot mutations using NGS in Arab patients with CRC. The frequency of KRAS, NRAS, BRAF, TP53, APC and PIK3CA mutations were similar to reported frequencies in Western population except SMAD4 that had a lower frequency and higher frequency of FBXW7 mutation. PMID:28078112

  18. Associations between primary tumor RAS, BRAF and PIK3CA mutation status and metastatic site in patients with chemo-resistant metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Troels Dreier; Palshof, Jesper Andreas; Larsen, Finn Ole

    2018-01-01

    investigated the association between RAS (KRAS or NRAS), BRAF, PIK3CA mutations and metastatic pattern in patients with metastatic (m) CRC. MATERIAL AND METHODS: This study reviewed Danish biobank and database of patients with mCRC who received cetuximab and irinotecan, independent of RAS mutation status...

  19. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution

    OpenAIRE

    Mirzaa, Ghayda; Timms, Andrew E.; Conti, Valerio; Boyle, Evan August; Girisha, Katta M.; Martin, Beth; Kircher, Martin; Olds, Carissa; Juusola, Jane; Collins, Sarah; Park, Kaylee; Carter, Melissa; Glass, Ian; Kr?geloh-Mann, Inge; Chitayat, David

    2016-01-01

    Mosaicism is increasingly recognized as a cause of developmental disorders with the advent of next-generation sequencing (NGS). Mosaic mutations of PIK3CA have been associated with the widest spectrum of phenotypes associated with overgrowth and vascular malformations. We performed targeted NGS using 2 independent deep-coverage methods that utilize molecular inversion probes and amplicon sequencing in a cohort of 241 samples from 181 individuals with brain and/or body overgrowth. We identifie...

  20. The sensitivity and efficacy method of PIK3CA exon 9 E545A as a high diagnostic accuracy in breast cancer

    Directory of Open Access Journals (Sweden)

    Desriani

    2018-06-01

    Full Text Available The phosphatidylinositol 3-kinases (PIK3s are lipid kinases. Mutation in the exon 9 and exon 20 determined as a predictive factor in anti-HER-2 therapy. In some countries, such as Singapore, China, and Peru, PIK3CA exon 9 E545A was reported to produce the highest rate of mutation. In this research, we developed and optimized PIK3CA exon 9 E545A detection methods with intercalating dye SYBR Green I based on the Tm Shift approach by using prepared recombinant plasmid pGEMT-easy PIK3CA exon 9 and PIK3CA exon 9 E545A. Recombinant plasmid was used due to the limited number of samples. Methods: Recombinant plasmid was prepared based on manufactured procedures, and this process was then followed by Tm prediction with Poland software, Tm Shift SYBR Green I development, and its characterization (reproducibility, repeatability, sensitivity, qPCR efficiency, and qPCR amplification, respectively. Result: A method for PIK3CA E545A detection based on TM shift SYBR Green I has been successfully developed. The melting temperature for PIK3CA exon 9 was 78.1 ± 0.1 °C, while that for PIK3CA exon E545A was 80.20 °C. The Tm of mutant was the same as that predicted using Polland Software. The reproducibility of the methods was high, with the coefficient values for inter and intra assays were below 10% with a high sensitivity at 1%, while R2 0.99 and PCR efficiency was 97.75%. Conclusion: The results presented here demonstrate that the PIK3CA exon 9 E545A detection method has a good sensitivity and efficacy assay, which proves that the method has a high diagnostic accuracy in breast cancer. Keywords: SYBR Green I, PIK3CA E545A, Breast cancer, Real time PCR, Recombinant plasmid

  1. Highly frequent promoter methylation and PIK3CA amplification in non-small cell lung cancer (NSCLC)

    International Nuclear Information System (INIS)

    Ji, Meiju; Guan, Haixia; Gao, Cuixia; Shi, Bingyin; Hou, Peng

    2011-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Genetic and epigenetic alterations have been identified frequently in lung cancer, such as promoter methylation, gene mutations and genomic amplification. However, the interaction between genetic and epigenetic events and their significance in lung tumorigenesis remains poorly understood. We determined the promoter methylation of 6 genes and PIK3CA amplification using quantitative methylation-specific PCR (Q-MSP) and real-time quantitative PCR, respectively, and explore the association of promoter methylation with PIK3CA amplification in a large cohort of clinically well-characterized non-small cell lung cancer (NSCLC). Highly frequent promoter methylation was observed in NSCLC. With 100% diagnostic specificity, excellent sensitivity, ranging from 45.8 to 84.1%, was found for each of the 6 genes. The promoter methylation was associated with histologic type. Methylation of CALCA, CDH1, DAPK1, and EVX2 was more common in squamous cell carcinomas (SCC) compared to adenocarcinomas (ADC). Conversely, there was a trend toward a higher frequency of RASSF1A methylation in ADC than SCC. In addition, PIK3CA amplification was frequently found in NSCLC, and was associated with certain clinicopathologic features, such as smoking history, histologic type and pleural indentation. Importantly, aberrant promoter methylation of certain genes was significantly associated with PIK3CA amplification. Our data showed highly frequent promoter methylation and PIK3CA amplification in Chinese NSCLC population, and first demonstrated the associations of gene methylation with PIK3CA amplification, suggesting that these epigenetic events may be a consequence of overactivation of PI3K/Akt pathway

  2. Relative quantification of PIK3CA gene expression level in fine-needle aspiration biopsy thyroid specimens collected from patients with papillary thyroid carcinoma and non-toxic goitre by real-time RT-PCR

    Directory of Open Access Journals (Sweden)

    Wojciechowska-Durczyńska Katarzyna

    2010-08-01

    Full Text Available Abstract Background Recent studies have shown that the phosphatidylinositol 3-kinase (PI3K signaling pathway is important regulator of many cellular events, including apoptosis, proliferation and motility. PI3K pathway alterations (PIK3CA gene mutations and/or amplification have been observed in various human tumours. In the majority of diagnosed cases, mutations are localized in one of the three "hot spots" in the gene, responsible for coding catalytic subunit α of class I PI3K (PIK3CA. Mutations and amplification of PIK3CA gene are characteristic for thyroid cancer, as well. Methods The aim of our study was to examine a gene expression level of PIK3CA in fine-needle aspiration biopsy (FNAB thyroid specimens in two types of thyroid lesions, papillary thyroid carcinoma (PTC and non-toxic goitre (NTG. Following conventional cytological examination, 42 thyroid FNAB specimens, received from patients with PTC (n = 20 and NTG (n = 22, were quantitatively evaluated regarding PIK3CA expression level by real-time PCR in the ABI PRISM® 7500 Sequence Detection System. Results Significantly higher expression level (RQ of PIK3CA in PTC group has been noted in comparison with NTG group (p Conclusion These observations may suggest role of PIK3CA alterations in PTC carcinogenesis.

  3. MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA

    International Nuclear Information System (INIS)

    Lang, Qingbo; Ling, Changquan

    2012-01-01

    Highlights: ► PIK3CA is a novel target of miR-124 in HepG2 cells. ► MiR-124 suppresses cell proliferation by downregulating PIK3CA expression. ► MiR-124 regulates the PI3K/Akt pathway in HepG2 cells. ► MiR-124 overexpression inhibits the tumorigenesis in nude mice. -- Abstract: MicroRNAs (miRNAs) have crucial roles in the development and progression of human cancers, including hepatocellular carcinoma (HCC). Recent studies have shown that microRNA-124 (miR-124) was downregulated in HCC; however, the underlying mechanisms by which miR-124 suppresses tumorigenesis in HCC are largely unknown. In this study, we report that phosphoinositide 3-kinase catalytic subunit alpha (PIK3CA) is a novel target of miR-124 in HepG2 cells. Overexpression of miR-124 resulted in decreased expression of PIK3CA at both mRNA and protein levels. We found that miR-124 overexpression markedly suppressed cell proliferation by inducing G1-phase cell-cycle arrest in vitro. Consistent with the restoring miR-124 expression, PIK3CA knockdown suppressed cell proliferation, whereas overexpression of PIK3CA abolished the suppressive effect of miR-124. Mechanistic studies showed that miR-124-mediated reduction of PIK3CA resulted in suppression of PI3K/Akt pathway. The expressions of Akt and mTOR, key components of the PI3K/Akt pathway, were all downregulated. Moreover, we found overexpressed miR-124 effectively repressed tumor growth in xenograft animal experiments. Taken together, our results demonstrate that miR-124 functions as a growth-suppressive miRNA and plays an important role in inhibiting the tumorigenesis through targeting PIK3CA.

  4. MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Qingbo [Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Ling, Changquan, E-mail: lingchangquan@hotmail.com [Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer PIK3CA is a novel target of miR-124 in HepG2 cells. Black-Right-Pointing-Pointer MiR-124 suppresses cell proliferation by downregulating PIK3CA expression. Black-Right-Pointing-Pointer MiR-124 regulates the PI3K/Akt pathway in HepG2 cells. Black-Right-Pointing-Pointer MiR-124 overexpression inhibits the tumorigenesis in nude mice. -- Abstract: MicroRNAs (miRNAs) have crucial roles in the development and progression of human cancers, including hepatocellular carcinoma (HCC). Recent studies have shown that microRNA-124 (miR-124) was downregulated in HCC; however, the underlying mechanisms by which miR-124 suppresses tumorigenesis in HCC are largely unknown. In this study, we report that phosphoinositide 3-kinase catalytic subunit alpha (PIK3CA) is a novel target of miR-124 in HepG2 cells. Overexpression of miR-124 resulted in decreased expression of PIK3CA at both mRNA and protein levels. We found that miR-124 overexpression markedly suppressed cell proliferation by inducing G1-phase cell-cycle arrest in vitro. Consistent with the restoring miR-124 expression, PIK3CA knockdown suppressed cell proliferation, whereas overexpression of PIK3CA abolished the suppressive effect of miR-124. Mechanistic studies showed that miR-124-mediated reduction of PIK3CA resulted in suppression of PI3K/Akt pathway. The expressions of Akt and mTOR, key components of the PI3K/Akt pathway, were all downregulated. Moreover, we found overexpressed miR-124 effectively repressed tumor growth in xenograft animal experiments. Taken together, our results demonstrate that miR-124 functions as a growth-suppressive miRNA and plays an important role in inhibiting the tumorigenesis through targeting PIK3CA.

  5. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yihui [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Tang, Qingchao [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China); Li, Mingqi; Jiang, Shixiong [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Wang, Xishan, E-mail: wxshan12081@163.com [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China)

    2014-02-07

    Highlights: • miR-375 is downregulated in colorectal cancer cell lines and tissues. • miR-375 inhibits colorectal cancer cell growth by targeting PIK3CA. • miR-375 inhibits colorectal cancer cell growth in xenograft nude mice model. - Abstract: Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normal human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway.

  6. Antitumor Efficacy of the Dual PI3K/mTOR Inhibitor PF-04691502 in a Human Xenograft Tumor Model Derived from Colorectal Cancer Stem Cells Harboring a PIK3CA Mutation.

    Directory of Open Access Journals (Sweden)

    Douglas D Fang

    Full Text Available PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide mutations can help predict the antitumor activity of phosphatidylinositol-3-kinase (PI3K/mammalian target of rapamycin (mTOR pathway inhibitors in both preclinical and clinical settings. In light of the recent discovery of tumor-initiating cancer stem cells (CSCs in various tumor types, we developed an in vitro CSC model from xenograft tumors established in mice from a colorectal cancer patient tumor in which the CD133+/EpCAM+ population represented tumor-initiating cells. CD133+/EpCAM+ CSCs were enriched under stem cell culture conditions and formed 3-dimensional tumor spheroids. Tumor spheroid cells exhibited CSC properties, including the capability for differentiation and self-renewal, higher tumorigenic potential and chemo-resistance. Genetic analysis using an OncoCarta™ panel revealed a PIK3CA (H1047R mutation in these cells. Using a dual PI3K/mTOR inhibitor, PF-04691502, we then showed that blockage of the PI3K/mTOR pathway inhibited the in vitro proliferation of CSCs and in vivo xenograft tumor growth with manageable toxicity. Tumor growth inhibition in mice was accompanied by a significant reduction of phosphorylated Akt (pAKT (S473, a well-established surrogate biomarker of PI3K/mTOR signaling pathway inhibition. Collectively, our data suggest that PF-04691502 exhibits potent anticancer activity in colorectal cancer by targeting both PIK3CA (H1047R mutant CSCs and their derivatives. These results may assist in the clinical development of PF-04691502 for the treatment of a subpopulation of colorectal cancer patients with poor outcomes.

  7. Impact of KRAS, BRAF, PIK3CA mutations, PTEN, AREG, EREG expression and skin rash in ≥ 2 line cetuximab-based therapy of colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Zacharenia Saridaki

    2011-01-01

    Full Text Available To investigate the predictive significance of KRAS, BRAF, PIK3CA mutational status, AREG- EREG mRNA expression, PTEN protein expression and skin rash in metastatic colorectal cancer (mCRC patients treated with cetuximab containing salvage chemotherapy.Primary tumors from 112 mCRC patients were analyzed. The worst skin toxicity during treatment was recorded.KRAS, BRAF and PIK3CA mutations were present in 37 (33%, 8 (7.2% and 11 (9.8% cases, respectively, PTEN was lost in 21 (19.8% cases, AREG and EREG were overexpressed in 48 (45% and 51 (49% cases. In the whole study population, time to tumor progression (TTP and overall survival (OS was significantly lower in patients with KRAS (p = 0.001 and p = 0.026, respectively or BRAF (p = 0.001 and p<0.0001, respectively mutant tumors, downregulation of AREG (p = 0.018 and p = 0.013, respectively or EREG (p = 0.002 and p = 0.004, respectively and grade 0-1 skin rash (p<0.0001 and p<0.0001, respectively. In KRAS wt patients TTP and OS was significantly lower in patients with BRAF (p = 0.0001 and p<0.0001, respectively mutant tumors, downregulation of AREG (p = 0.021 and p = 0.004, respectively or EREG (p = 0.0001 and p<0.0001, respectively and grade 0-1 skin rash (p<0.0001 and p<0.0001, respectively. TTP was significantly lower in patients with PIK3CA mutations (p = 0.01 or lost PTEN (p = 0.002. Multivariate analysis revealed KRAS (Hazard Ratio [HR] 4.3, p<0.0001, BRAF mutation (HR: 5.1, p<0.0001, EREG low expression (HR: 1.6, p = 0.021 and absence of severe/moderate skin rash (HR: 4.0, p<0.0001 as independent prognostic factors for decreased TTP. Similarly, KRAS (HR 2.9, p = 0.01, BRAF mutation (HR: 3.0, p = 0.001, EREG low expression (HR: 1.7, p = 0.021, absence of severe/moderate skin rash (HR: 3.7, p<0.0001 and the presence of undifferantited tumours (HR: 2.2, p = 0.001 were revealed as independent prognostic factors for decreased OS.These results underscore that KRAS-BRAF mutations and EREG

  8. KRASness and PIK3CAness in patients with advanced colorectal cancer: outcome after treatment with early-phase trials with targeted pathway inhibitors.

    Directory of Open Access Journals (Sweden)

    Ignacio Garrido-Laguna

    Full Text Available To evaluate clinicopathologic and molecular features of patients with metastatic colorectal cancer (mCRC and their outcomes in early-phase trials using pathway-targeting agents.We analyzed characteristics of 238 patients with mCRC referred to the phase 1 trials unit at MD Anderson Cancer Center. KRAS, PIK3CA and BRAF status were tested using PCR-based DNA sequencing.Fifty-one percent of patients harbored KRAS mutations; 15% had PIK3CA mutations. In the multivariate regression model for clinical characteristics KRAS mutations were associated with an increased incidence of lung and bone metastases and decreased incidence of adrenal metastases; PIK3CA mutations were marginally correlated with mucinous tumors (p = 0.05. In the univariate analysis, KRAS and PIK3CA mutations were strongly associated. Advanced Duke's stage (p<0.0001 and KRAS mutations (p = 0.01 were the only significant independent predictors of poor survival (Cox proportional hazards model. Patients with PIK3CA mutations had a trend toward shorter progression-free survival when treated with anti-EGFR therapies (p = 0.07. Eighteen of 78 assessable patients (23% treated with PI3K/Akt/mTOR axis inhibitors achieved stable disease [SD] ≥6 months or complete response/partial response (CR/PR, only one of whom were in the subgroup (N = 15 with PIK3CA mutations, perhaps because 10 of these 15 patients (67% had coexisting KRAS mutations. No SD ≥6 months/CR/PR was observed in the 10 patients treated with mitogen-activating protein kinase (MAPK pathway targeting drugs.KRAS and PIK3CA mutations frequently coexist in patients with colorectal cancer, and are associated with clinical characteristics and outcome. Overcoming resistance may require targeting both pathways.

  9. Predictive value of K-ras and PIK3CA in non-small cell lung cancer patients treated with EGFR-TKIs: a systemic review and meta-analysis

    International Nuclear Information System (INIS)

    Chen, Jie-Ying; Cheng, Ya-Nan; Han, Lei; Wei, Feng; Yu, Wen-Wen; Zhang, Xin-Wei; Cao, Shui; Yu, Jin-Pu

    2015-01-01

    A meta-analysis was performed to augment the insufficient data on the impact of mutative EGFR downstream phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on the clinical efficiency of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment of non-small cell lung cancer (NSCLC) patients. Network databases were explored in April, 2015. Papers that investigated the clinical outcomes of NSCLC patients treated with EGFR-TKIs according to the status of K-ras and/or PIK3CA gene mutation were included. A quantitative meta-analysis was conducted using standard statistical methods. Odds ratios (ORs) for objective response rate (ORR) and hazard ratios (HRs) for progression-free survival (PFS) and overall survival (OS) were calculated. Mutation in K-ras significantly predicted poor ORR [OR =0.22; 95% confidence interval (CI), 0.13-0.35], shorter PFS (HR =1.56; 95% CI, 1.27-1.92), and shorter OS (HR =1.59; 95% CI, 1.33-1.91) in NSCLC patients treated with EGFR-TKIs. Mutant PIK3CA significantly predicted shorter OS (HR =1.83; 95% CI, 1.05-3.20), showed poor ORR (OR =0.70; 95% CI, 0.22-2.18), and shorter PFS (HR =1.79; 95% CI, 0.91-3.53) in NSCLC patients treated with EGFR-TKIs. K-ras mutation adversely affected the clinical response and survival of NSCLC patients treated with EGFR-TKIs. PIK3CA mutation showed similar trends. In addition to EGFR, adding K-ras and PIK3CA as routine gene biomarkers in clinical genetic analysis is valuable to optimize the effectiveness of EGFR-TKI regimens and identify optimal patients who will benefit from EGFR-TKI treatment

  10. Clonal composition of human ovarian cancer based on copy number analysis reveals a reciprocal relation with oncogenic mutation status.

    Science.gov (United States)

    Sakai, Kazuko; Ukita, Masayo; Schmidt, Jeanette; Wu, Longyang; De Velasco, Marco A; Roter, Alan; Jevons, Luis; Nishio, Kazuto; Mandai, Masaki

    2017-10-01

    Intratumoral heterogeneity of cancer cells remains largely unexplored. Here we investigated the composition of ovarian cancer and its biological relevance. A whole-genome single nucleotide polymorphism array was applied to detect the clonal composition of 24 formalin-fixed, paraffin-embedded samples of human ovarian cancer. Genome-wide segmentation data consisting of the log2 ratio (log2R) and B allele frequency (BAF) were used to calculate an estimate of the clonal composition number (CC number) for each tumor. Somatic mutation profiles of cancer-related genes were also determined for the same 24 samples by next-generation sequencing. The CC number was estimated successfully for 23 of the 24 cancer samples. The mean ± SD value for the CC number was 1.7 ± 1.1 (range of 0-4). A somatic mutation in at least one gene was identified in 22 of the 24 ovarian cancer samples, with the mutations including those in the oncogenes KRAS (29.2%), PIK3CA (12.5%), BRAF (8.3%), FGFR2 (4.2%), and JAK2 (4.2%) as well as those in the tumor suppressor genes TP53 (54.2%), FBXW7 (8.3%), PTEN (4.2%), and RB1 (4.2%). Tumors with one or more oncogenic mutations had a significantly lower CC number than did those without such a mutation (1.0 ± 0.8 versus 2.3 ± 0.9, P = 0.0027), suggesting that cancers with driver oncogene mutations are less heterogeneous than those with other mutations. Our results thus reveal a reciprocal relation between oncogenic mutation status and clonal composition in ovarian cancer using the established method for the estimation of the CC number. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Oligonucleotide PIK3CA/Chromosome 3 Dual in Situ Hybridization Automated Assay with Improved Signals, One-Hour Hybridization, and No Use of Blocking DNA.

    Science.gov (United States)

    Zhang, Wenjun; Hubbard, Antony; Baca-Parkinson, Leslie; Stanislaw, Stacey; Vladich, Frank; Robida, Mark D; Grille, James G; Maxwell, Daniel; Tsao, Tsu-Shuen; Carroll, William; Gardner, Tracie; Clements, June; Singh, Shalini; Tang, Lei

    2015-09-01

    The PIK3CA gene at chromosome 3q26.32 was found to be amplified in up to 45% of patients with squamous cell carcinoma of the lung. The strong correlation between PIK3CA amplification and increased phosphatidylinositol 3-kinase (PI3K) pathway activities suggested that PIK3CA gene copy number is a potential predictive biomarker for PI3K inhibitors. Currently, all microscopic assessments of PIK3CA and chromosome 3 (CHR3) copy numbers use fluorescence in situ hybridization. PIK3CA probes are derived from bacterial artificial chromosomes whereas CHR3 probes are derived mainly from the plasmid pHS05. These manual fluorescence in situ hybridization assays mandate 12- to 18-hour hybridization and use of blocking DNA from human sources. Moreover, fluorescence in situ hybridization studies provide limited morphologic assessment and suffer from signal decay. We developed an oligonucleotide-based bright-field in situ hybridization assay that overcomes these shortcomings. This assay requires only a 1-hour hybridization with no need for blocking DNA followed by indirect chromogenic detection. Oligonucleotide probes produced discrete and uniform CHR3 stains superior to those from the pHS05 plasmid. This assay achieved successful staining in 100% of the 195 lung squamous cell carcinoma resections and in 94% of the 33 fine-needle aspirates. This robust automated bright-field dual in situ hybridization assay for the simultaneous detection of PIK3CA and CHR3 centromere provides a potential clinical diagnostic method to assess PIK3CA gene abnormality in lung tumors. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  12. Impact of KRAS, BRAF and PI3KCA mutations in rectal carcinomas treated with neoadjuvant radiochemotherapy and surgery

    International Nuclear Information System (INIS)

    Derbel, Olfa; La Fouchardière, Christelle de; Wang, Qing; Desseigne, Françoise; Rivoire, Michel; Meeus, Pierre; Peyrat, Patrice; Stella, Mattia; Martel-Lafay, Isabelle; Lemaistre, Anne-Isabelle

    2013-01-01

    Conventional treatment for locally advanced rectal cancer usually combines neoadjuvant radiochemotherapy and surgery. Until recently, there have been limited predictive factors (clinical or biological) for rectal tumor response to conventional treatment. KRAS, BRAF and PIK3CA mutations are commonly found in colon cancers. In this study, we aimed to determine the mutation frequencies of KRAS, BRAF and PIK3CA and to establish whether such mutations may be used as prognostic and/or predictive factors in rectal cancer patients. We retrospectively reviewed the clinical and biological data of 98 consecutive operated patients between May 2006 and September 2009. We focused in patients who received surgery in our center after radiochemotherapy and in which tumor samples were available. In the 98 patients with a rectal cancer, the median follow-up time was 28.3 months (4–74). Eight out of ninety-eight patients experienced a local recurrence (8%) and 17/98 developed distant metastasis (17%). KRAS, BRAF and PIK3CA were identified respectively in 23 (23.5%), 2 (2%) and 4 (4%) patients. As described in previous studies, mutations in KRAS and BRAF were mutually exclusive. No patient with local recurrence exhibited KRAS or PIK3CA mutation and one harbored BRAF mutation (12.5%). Of the seventeen patients with distant metastasis (17%), 5 were presenting KRAS mutation (29%), one BRAF (5%) and one PIK3CA mutation (5%). No relationship was seen between PIK3CA, KRAS or BRAF mutation and local or distant recurrences. The frequencies of KRAS, BRAF and PIK3CA mutations in our study were lower than the average frequencies reported in colorectal cancers and no significant correlation was found between local/distant recurrences and KRAS, BRAF or PIK3CA mutations. Future studies with greater number of patients, longer follow-up time and greater power to predict associations are necessary to fully understand this relationship

  13. Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study.

    Science.gov (United States)

    Mirzaa, Ghayda M; Conti, Valerio; Timms, Andrew E; Smyser, Christopher D; Ahmed, Sarah; Carter, Melissa; Barnett, Sarah; Hufnagel, Robert B; Goldstein, Amy; Narumi-Kishimoto, Yoko; Olds, Carissa; Collins, Sarah; Johnston, Kathreen; Deleuze, Jean-François; Nitschké, Patrick; Friend, Kathryn; Harris, Catharine; Goetsch, Allison; Martin, Beth; Boyle, Evan August; Parrini, Elena; Mei, Davide; Tattini, Lorenzo; Slavotinek, Anne; Blair, Ed; Barnett, Christopher; Shendure, Jay; Chelly, Jamel; Dobyns, William B; Guerrini, Renzo

    2015-12-01

    Bilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment, and epilepsy. The causes of BPP are heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic causes of BPP and characterise their frequency in this population. Children (aged ≤18 years) with polymicrogyria were enrolled into our research programme from July, 1980, to October, 2015, at two centres (Florence, Italy, and Seattle, WA, USA). We obtained samples (blood and saliva) throughout this period at both centres and did whole-exome sequencing on DNA from eight trios (two parents and one affected child) with BPP in 2014. After the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 by two methods in a cohort of 118 children with BPP. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal to large head size. Second, we did amplicon sequencing of the recurrent PIK3R2 mutation (Gly373Arg) in 80 children with various types of polymicrogyria including BPP. One additional patient had clinical whole-exome sequencing done independently, and was included in this study because of the phenotypic similarity to our cohort. We identified a mosaic mutation (Gly373Arg) in a regulatory subunit of the PI3K-AKT-mTOR pathway, PIK3R2, in two children with BPP. Of the 38 patients with BPP and normal to large head size who underwent targeted next-generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient had the recurrent PIK3R2 mutation identified by clinical whole-exome sequencing. Seven of these 20 patients had BPP alone, and 13 had BPP in association with features of the

  14. PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation

    OpenAIRE

    Anderson, Grace R.; Wardell, Suzanne E.; Cakir, Merve; Crawford, Lorin; Leeds, Jim C.; Nussbaum, Daniel P.; Shankar, Pallavi S.; Soderquist, Ryan S.; Stein, Elizabeth M.; Tingley, Jennifer P.; Winter, Peter S.; Zieser-Misenheimer, Elizabeth K.; Alley, Holly M.; Yllanes, Alexander; Haney, Victoria

    2016-01-01

    Therapies that efficiently induce apoptosis are likely to be required for durable clinical responses in patients with solid tumors. Using a pharmacological screening approach, we discovered that the combined inhibition of BCL-XL and the mTOR/4E-BP axis results in selective and synergistic induction of apoptosis in cellular and animal models of PIK3CA mutant breast cancers, including triple negative tumors. Mechanistically, inhibition of mTOR/4E-BP suppresses MCL-1 protein translation only in ...

  15. Characterization of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next generation sequencing study

    Science.gov (United States)

    Mirzaa, Ghayda; Conti, Valerio; Timms, Andrew E.; Smyser, Christopher D.; Ahmed, Sarah; Carter, Melissa; Barnett, Sarah; Hufnagel, Robert B.; Goldstein, Amy; Narumi-Kishimoto, Yoko; Olds, Carissa; Collins, Sarah; Johnston, Kathreen; Deleuze, Jean-François; Nitschké, Patrick; Friend, Kathryn; Harris, Catharine; Goetsch, Allison; Martin, Beth; Boyle, Evan August; Parrini, Elena; Mei, Davide; Tattini, Lorenzo; Slavotinek, Anne; Blair, Ed; Barnett, Christopher; Shendure, Jay; Chelly, Jamel; Dobyns, William B.; Guerrini, Renzo

    2015-01-01

    SUMMARY Background Bilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment and epilepsy. BPP is etiologically heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic etiologies of BPP and delineate their frequency in this patient population. Methods We performed child-parent (trio)-based whole exome sequencing (WES) on eight children with BPP. Following the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 in a cohort of 118 children with BPP who were ascertained from 1980 until 2015 using two methods. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal-large head size. Second, we performed amplicon sequencing of the recurrent PIK3R2 mutation (p.Gly373Arg) on 80 children with various types of polymicrogyria including BPP. One additional patient underwent clinical WES independently, and was included in this study given the phenotypic similarity to our cohort. All patients included in this study were children (BPP. Of the 38 patients with BPP and normal-large head size who underwent targeted next generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient was found to have the recurrent PIK3R2 mutation by clinical WES. Seven patients had BPP alone, and 13 had BPP in association with features of the megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH). Nineteen patients had the same mutation (Gly373Arg), and one had a nearby missense mutation (p.Lys376Glu). Across the entire cohort, mutations were constitutional in 12 and mosaic in eight patients. Among mosaic patients, we observed substantial

  16. Decoupling of the PI3K Pathway via Mutation Necessitates Combinatorial Treatment in HER2+ Breast Cancer.

    Directory of Open Access Journals (Sweden)

    James E Korkola

    Full Text Available We report here on experimental and theoretical efforts to determine how best to combine drugs that inhibit HER2 and AKT in HER2(+ breast cancers. We accomplished this by measuring cellular and molecular responses to lapatinib and the AKT inhibitors (AKTi GSK690693 and GSK2141795 in a panel of 22 HER2(+ breast cancer cell lines carrying wild type or mutant PIK3CA. We observed that combinations of lapatinib plus AKTi were synergistic in HER2(+/PIK3CA(mut cell lines but not in HER2(+/PIK3CA(wt cell lines. We measured changes in phospho-protein levels in 15 cell lines after treatment with lapatinib, AKTi or lapatinib + AKTi to shed light on the underlying signaling dynamics. This revealed that p-S6RP levels were less well attenuated by lapatinib in HER2(+/PIK3CA(mut cells compared to HER2(+/PIK3CAwt cells and that lapatinib + AKTi reduced p-S6RP levels to those achieved in HER2(+/PIK3CA(wt cells with lapatinib alone. We also found that that compensatory up-regulation of p-HER3 and p-HER2 is blunted in PIK3CA(mut cells following lapatinib + AKTi treatment. Responses of HER2(+ SKBR3 cells transfected with lentiviruses carrying control or PIK3CA(mut sequences were similar to those observed in HER2(+/PIK3CA(mut cell lines but not in HER2(+/PIK3CA(wt cell lines. We used a nonlinear ordinary differential equation model to support the idea that PIK3CA mutations act as downstream activators of AKT that blunt lapatinib inhibition of downstream AKT signaling and that the effects of PIK3CA mutations can be countered by combining lapatinib with an AKTi. This combination does not confer substantial benefit beyond lapatinib in HER2+/PIK3CA(wt cells.

  17. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    Science.gov (United States)

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts

  18. PIK3CA mutations, PTEN, and pHER2 expression and impact on outcome in HER2-positive early-stage breast cancer patients treated with adjuvant chemotherapy and trastuzumab

    DEFF Research Database (Denmark)

    Jensen, J D; Knoop, Ann; Laenkholm, A V

    2012-01-01

    -stage breast cancer patients treated with adjuvant chemotherapy and trastuzumab. PATIENTS AND METHODS: Two hundred and forty HER2-positive early-stage breast cancer patients receiving adjuvant treatment (cyclophosphamide 600 mg/m(2), epirubicin 60 mg/m(2), and fluorouracil 600 mg/m(2)) before administration...... of 1 year trastuzumab were assessable. PTEN and pHER2 expression were assessed by immunohistochemistry. PIK3CA mutations (exons 9 and 20) were determined by pyrosequencing. RESULTS: Five-year overall survival (OS) and invasive disease-free survival were 87.8% and 81.0%, respectively. Twenty-six percent...... activity had a significantly poorer survival despite adequate treatment with adjuvant chemotherapy and trastuzumab....

  19. Frequency of Somatic TP53 Mutations in Combination with Known Pathogenic Mutations in Colon Adenocarcinoma, Non–Small Cell Lung Carcinoma, and Gliomas as Identified by Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Zahra Shajani-Yi

    2018-03-01

    Full Text Available The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer. It encodes p53, a DNA-binding transcription factor that regulates multiple genes involved in DNA repair, metabolism, cell cycle arrest, apoptosis, and senescence. TP53 is associated with human cancer by mutations that lead to a loss of wild-type p53 function as well as mutations that confer alternate oncogenic functions that enable them to promote invasion, metastasis, proliferation, and cell survival. Identifying the discrete TP53 mutations in tumor cells may help direct therapies that are more effective. In this study, we identified the frequency of individual TP53 mutations in patients with colon adenocarcinoma (48%, non–small cell lung carcinoma (NSCLC (36%, and glioma/glioblastoma (28% at our institution using next-generation sequencing. We also identified the occurrence of somatic mutations in numerous actionable genes including BRAF, EGFR, KRAS, IDH1, and PIK3CA that occurred concurrently with these TP53 mutations. Of the 480 tumors examined that contained one or more mutations in the TP53 gene, 219 were colon adenocarcinomas, 215 were NSCLCs, and 46 were gliomas/glioblastomas. Among the patients positive for TP53 mutations diagnosed with colon adenocarcinoma, 50% also showed at least one mutation in pathogenic genes of which 14% were BRAF, 33% were KRAS, and 3% were NRAS. Forty-seven percent of NSCLC patients harboring TP53 mutations also had a mutation in at least one actionable pathogenic variant with the following frequencies: BRAF: 4%, EGFR: 10%, KRAS: 28%, and PIK3CA: 4%. Fifty-two percent of patients diagnosed with glioma/glioblastoma with a positive TP53 mutation had at least one concurrent mutation in a known pathogenic gene of which 9% were CDKN2A, 41% were IDH1, and 11% were PIK3CA.

  20. The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Jatin Roper

    Full Text Available To examine the in vitro and in vivo efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type colorectal cancer (CRC.PIK3CA mutant and wild-type human CRC cell lines were treated in vitro with NVP-BEZ235, and the resulting effects on proliferation, apoptosis, and signaling were assessed. Colonic tumors from a genetically engineered mouse (GEM model for sporadic wild-type PIK3CA CRC were treated in vivo with NVP-BEZ235. The resulting effects on macroscopic tumor growth/regression, proliferation, apoptosis, angiogenesis, and signaling were examined.In vitro treatment of CRC cell lines with NVP-BEZ235 resulted in transient PI3K blockade, sustained decreases in mTORC1/mTORC2 signaling, and a corresponding decrease in cell viability (median IC(50 = 9.0-14.3 nM. Similar effects were seen in paired isogenic CRC cell lines that differed only in the presence or absence of an activating PIK3CA mutant allele. In vivo treatment of colonic tumor-bearing mice with NVP-BEZ235 resulted in transient PI3K inhibition and sustained blockade of mTORC1/mTORC2 signaling. Longitudinal tumor surveillance by optical colonoscopy demonstrated a 97% increase in tumor size in control mice (p = 0.01 vs. a 43% decrease (p = 0.008 in treated mice. Ex vivo analysis of the NVP-BEZ235-treated tumors demonstrated a 56% decrease in proliferation (p = 0.003, no effects on apoptosis, and a 75% reduction in angiogenesis (p = 0.013.These studies provide the preclinical rationale for studies examining the efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type CRC.

  1. IDH2 Mutations Define a Unique Subtype of Breast Cancer with Altered Nuclear Polarity

    Science.gov (United States)

    Chiang, Sarah; Weigelt, Britta; Wen, Huei-Chi; Pareja, Fresia; Raghavendra, Ashwini; Martelotto, Luciano G.; Burke, Kathleen A.; Basili, Thais; Li, Anqi; Geyer, Felipe C.; Piscuoglio, Salvatore; Ng, Charlotte K.Y.; Jungbluth, Achim A.; Balss, Jörg; Pusch, Stefan; Baker, Gabrielle M.; Cole, Kimberly S.; von Deimling, Andreas; Batten, Julie M.; Marotti, Jonathan D.; Soh, Hwei-Choo; McCalip, Benjamin L.; Serrano, Jonathan; Lim, Raymond S.; Siziopikou, Kalliopi P.; Lu, Song; Liu, Xiaolong; Hammour, Tarek; Brogi, Edi; Snuderl, Matija; Iafrate, A. John; Reis-Filho, Jorge S.; Schnitt, Stuart J.

    2017-01-01

    Solid papillary carcinoma with reverse polarity (SPCRP) is a rare breast cancer subtype with an obscure etiology. In this study, we sought to describe its unique histopathologic features and to identify the genetic alterations that underpin SPCRP using massively parallel whole-exome and targeted sequencing. The morphologic and immunohistochemical features of SPCRP support the invasive nature of this subtype. Ten of 13 (77%) SPCRPs harbored hotspot mutations at R172 of the isocitrate dehydrogenase IDH2, of which 8 of 10 displayed concurrent pathogenic mutations affecting PIK3CA or PIK3R1. One of the IDH2 wild-type SPCRPs harbored a TET2 Q548* truncating mutation coupled with a PIK3CA H1047R mutation. Functional studies demonstrated that IDH2 and PIK3CA hotspot mutations are likely drivers of SPCRP, resulting in its reversed nuclear polarization phenotype. Our results offer a molecular definition of SPCRP as a distinct breast cancer subtype. Concurrent IDH2 and PIK3CA mutations may help diagnose SPCRP and possibly direct effective treatment. PMID:27913435

  2. Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer

    DEFF Research Database (Denmark)

    Ekstrand, Anna Isinger; Jönsson, Mats; Lindblom, Annika

    2010-01-01

    The phosphatidylinositol 3-kinases-AKT-mammalian target of rapamycin pathway (PI3K/AKT/mTOR) is central in colorectal tumors. Data on its role in hereditary cancers are, however, scarce and we therefore characterized mutations in PIK3CA and KRAS, and expression of PIK3CA, phosphorylated AKT......, and PTEN in colorectal cancers linked to hereditary nonpolyposis colorectal cancer (HNPCC). Sequencing was used to identify mutations in PIK3CA, a real-time PCR-based method to identify KRAS mutations, and immunohistochemical staining was used to evaluate the expression of PIK3CA, phosphorylated AKT...... and PTEN in 58 HNPCC-associated colorectal cancers. Derangements of at least one of the PI3K/AKT/mTOR components analyzed were found in 51/58 (88%) tumors. Mutations in PIK3CA and KRAS were identified in 14 and 31% of the tumors respectively. Overexpression of PIK3CA and phosphorylated AKT occurred in 59...

  3. Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: A worldwide ring trial study on quantitative cytological molecular reference specimens.

    Science.gov (United States)

    Malapelle, Umberto; Mayo-de-Las-Casas, Clara; Molina-Vila, Miguel A; Rosell, Rafael; Savic, Spasenija; Bihl, Michel; Bubendorf, Lukas; Salto-Tellez, Manuel; de Biase, Dario; Tallini, Giovanni; Hwang, David H; Sholl, Lynette M; Luthra, Rajyalakshmi; Weynand, Birgit; Vander Borght, Sara; Missiaglia, Edoardo; Bongiovanni, Massimo; Stieber, Daniel; Vielh, Philippe; Schmitt, Fernando; Rappa, Alessandra; Barberis, Massimo; Pepe, Francesco; Pisapia, Pasquale; Serra, Nicola; Vigliar, Elena; Bellevicine, Claudio; Fassan, Matteo; Rugge, Massimo; de Andrea, Carlos E; Lozano, Maria D; Basolo, Fulvio; Fontanini, Gabriella; Nikiforov, Yuri E; Kamel-Reid, Suzanne; da Cunha Santos, Gilda; Nikiforova, Marina N; Roy-Chowdhuri, Sinchita; Troncone, Giancarlo

    2017-08-01

    Molecular testing of cytological lung cancer specimens includes, beyond epidermal growth factor receptor (EGFR), emerging predictive/prognostic genomic biomarkers such as Kirsten rat sarcoma viral oncogene homolog (KRAS), neuroblastoma RAS viral [v-ras] oncogene homolog (NRAS), B-Raf proto-oncogene, serine/threonine kinase (BRAF), and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA). Next-generation sequencing (NGS) and other multigene mutational assays are suitable for cytological specimens, including smears. However, the current literature reflects single-institution studies rather than multicenter experiences. Quantitative cytological molecular reference slides were produced with cell lines designed to harbor concurrent mutations in the EGFR, KRAS, NRAS, BRAF, and PIK3CA genes at various allelic ratios, including low allele frequencies (AFs; 1%). This interlaboratory ring trial study included 14 institutions across the world that performed multigene mutational assays, from tissue extraction to data analysis, on these reference slides, with each laboratory using its own mutation analysis platform and methodology. All laboratories using NGS (n = 11) successfully detected the study's set of mutations with minimal variations in the means and standard errors of variant fractions at dilution points of 10% (P = .171) and 5% (P = .063) despite the use of different sequencing platforms (Illumina, Ion Torrent/Proton, and Roche). However, when mutations at a low AF of 1% were analyzed, the concordance of the NGS results was low, and this reflected the use of different thresholds for variant calling among the institutions. In contrast, laboratories using matrix-assisted laser desorption/ionization-time of flight (n = 2) showed lower concordance in terms of mutation detection and mutant AF quantification. Quantitative molecular reference slides are a useful tool for monitoring the performance of different multigene mutational

  4. Targeting the PI3K signaling pathway in KRAS mutant colon cancer

    International Nuclear Information System (INIS)

    Hong, Suntaek; Kim, SoYoung; Kim, Hye Youn; Kang, Myunghee; Jang, Ho Hee; Lee, Won-Suk

    2015-01-01

    Metastatic colorectal cancer (CRC) patients with v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are resistant to monoclonal antibody that targets the epidermal growth factor receptor such as cetuximab. BKM120 targets phosphatidylinositide-3-kinase (PIK3CA), but it is unknown whether BKM120 can reverse cetuximab resistance in KRAS mutant CRC. Human CRC cell lines with KRAS mutations (DLD-1, HCT116, and LoVo) were used to test the effect of cetuximab, BKM120, and cetuximab plus BKM120 on cell proliferation in vitro and in vivo. BKM120 reduced cell proliferation in a concentration-dependent manner in the LoVo (PI3KCA wild type) as well as the HCT116 and DLD1 cells (that carry a PI3KCA mutation). BKM120 only inhibited ERK phosphorylation in LoVo cells (PIK3CA wild type), but not in DLD1 or HCT116 cells at a concentration of 1 μmol/L. Treatment with cetuximab and BKM120 significantly reduced the growth of xenograft tumors originating from KRAS mutant cells compared with cetuximab alone (P = 0.034). BKM120 may overcome cetuximab resistance in colon cancer cells with KRAS mutation

  5. Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer.

    Science.gov (United States)

    Le, Xiuning; Antony, Rajee; Razavi, Pedram; Treacy, Daniel J; Luo, Flora; Ghandi, Mahmoud; Castel, Pau; Scaltriti, Maurizio; Baselga, Jose; Garraway, Levi A

    2016-10-01

    PIK3CA (which encodes the PI3K alpha isoform) is the most frequently mutated oncogene in breast cancer. Small-molecule PI3K inhibitors have shown promise in clinical trials; however, intrinsic and acquired resistance limits their utility. We used a systematic gain-of-function approach to identify genes whose upregulation confers resistance to the PI3K inhibitor BYL719 in breast cancer cells. Among the validated resistance genes, Proviral Insertion site in Murine leukemia virus (PIM) kinases conferred resistance by maintaining downstream PI3K effector activation in an AKT-independent manner. Concurrent pharmacologic inhibition of PIM and PI3K overcame this resistance mechanism. We also observed increased PIM expression and activity in a subset of breast cancer biopsies with clinical resistance to PI3K inhibitors. PIM1 overexpression was mutually exclusive with PIK3CA mutation in treatment-naïve breast cancers, suggesting downstream functional redundancy. Together, these results offer new insights into resistance to PI3K inhibitors and support clinical studies of combined PIM/PI3K inhibition in a subset of PIK3CA-mutant cancers. PIM kinase overexpression confers resistance to small-molecule PI3K inhibitors. Combined inhibition of PIM and PI3K may therefore be warranted in a subset of breast cancers. Cancer Discov; 6(10); 1134-47. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1069. ©2016 American Association for Cancer Research.

  6. Phosphoinositide Kinase-3 Status Associated With Presence or Absence of Human Papillomavirus in Head and Neck Squamous Cell Carcinomas

    International Nuclear Information System (INIS)

    Yarbrough, Wendell G.; Whigham, Amy; Brown, Brandee; Roach, Michael; Slebos, Robbert

    2007-01-01

    Purpose: To investigate phosphoinositide kinase-3 (PI3K) activation in relation to human papillomavirus (HPV) status in head and neck squamous cell carcinoma (HNSCC). Methods and Materials: Gene expression microarray data were analyzed to determine differentially expressed genes between HPV(+) and HPV(-) HNSCC. PIK3CA gene expression was confirmed by quantitative reverse transcriptase-polymerase chain reaction in seven HPV(+) and seven HPV(-) primary HNSCCs. PIK3CA mutation status in three HPV(+) and nine HPV(-) cell lines was determined by polymerase chain reaction amplification of hot spot exons (1, 9, 20) followed by direct sequencing. Results: PIK3CA was overexpressed in HPV(+)-associated HNSCC compared with the expression in HPV(-) HNSCC. Activation of PIK3CA by mutation was found in 1 of the 12 tested HNSCC cell lines. Conclusion: Activation of PI3K by mutation of PIK3CA is rare in HNSCC cell lines and was not found in three HPV(+) cell lines. One mechanism by which HPV-associated HNSCC might activate PI3K is increased expression of PIK3CA

  7. EGFR related mutational status and association to clinical outcome of third-line cetuximab-irinotecan in metastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Frifeldt Sanne K

    2011-03-01

    Full Text Available Abstract Background As supplement to KRAS mutational analysis, BRAF and PIK3CA mutations as well as expression of PTEN may account for additional non-responders to anti-EGFR-MoAbs treatment. The aim of the present study was to investigate the utility as biomarkers of these mutations in a uniform cohort of patients with metastatic colorectal cancer treated with third-line cetuximab/irinotecan. Methods One-hundred-and-seven patients were prospectively included in the study. Mutational analyses of KRAS, BRAF and PIK3CA were performed on DNA from confirmed malignant tissue using commercially available kits. Loss of PTEN and EGFR was assessed by immunohistochemistry. Results DNA was available in 94 patients. The frequency of KRAS, BRAF and PIK3CA mutations were 44%, 3% and 14%, respectively. All were non-responders. EGF receptor status by IHC and loss of PTEN failed to show any clinical importance. KRAS and BRAF were mutually exclusive. Supplementing KRAS analysis with BRAF and PIK3CA indentified additional 11% of non-responders. Patient with any mutation had a high risk of early progression, whereas triple-negative status implied a response rate (RR of 41% (p Conclusion Triple-negative status implied a clear benefit from treatment, and we suggest that patient selection for third-line combination therapy with cetuximab/irinotecan could be based on triple mutational testing.

  8. Whole genomes redefine the mutational landscape of pancreatic cancer.

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K; Kassahn, Karin S; Bailey, Peter; Johns, Amber L; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C J; Robertson, Alan J; Fadlullah, Muhammad Z H; Bruxner, Tim J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Lee, Hong C; Jones, Marc D; Nagrial, Adnan M; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Steinmann, Angela M; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Pettitt, Jessica A; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; Graham, Janet S; Niclou, Simone P; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A; Gill, Anthony J; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Pearson, John V; Biankin, Andrew V; Grimmond, Sean M

    2015-02-26

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.

  9. Whole genomes redefine the mutational landscape of pancreatic cancer

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J.; Fink, J. Lynn; Holmes, Oliver; Kazakoff, Stephen H.; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J.; Lee, Hong C.; Jones, Marc D.; Nagrial, Adnan M.; Humphris, Jeremy; Chantrill, Lorraine A.; Chin, Venessa; Steinmann, Angela M.; Mawson, Amanda; Humphrey, Emily S.; Colvin, Emily K.; Chou, Angela; Scarlett, Christopher J.; Pinho, Andreia V.; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S.; Kench, James G.; Pettitt, Jessica A.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B.; Graham, Janet S.; Niclou, Simone P.; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A.; Gill, Anthony J.; Eshleman, James R.; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A.; Pearson, John V.; Biankin, Andrew V.; Grimmond, Sean M.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded. PMID:25719666

  10. Activation of the PI3K/AKT pathway in Merkel cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Christian Hafner

    Full Text Available Merkel cell carcinoma (MCC is a highly aggressive skin cancer with an increasing incidence. The understanding of the molecular carcinogenesis of MCC is limited. Here, we scrutinized the PI3K/AKT pathway, one of the major pathways activated in human cancer, in MCC. Immunohistochemical analysis of 41 tumor tissues and 9 MCC cell lines revealed high levels of AKT phosphorylation at threonine 308 in 88% of samples. Notably, the AKT phosphorylation was not correlated with the presence or absence of the Merkel cell polyoma virus (MCV. Accordingly, knock-down of the large and small T antigen by shRNA in MCV positive MCC cells did not affect phosphorylation of AKT. We also analyzed 46 MCC samples for activating PIK3CA and AKT1 mutations. Oncogenic PIK3CA mutations were found in 2/46 (4% MCCs whereas mutations in exon 4 of AKT1 were absent. MCC cell lines demonstrated a high sensitivity towards the PI3K inhibitor LY-294002. This finding together with our observation that the PI3K/AKT pathway is activated in the majority of human MCCs identifies PI3K/AKT as a potential new therapeutic target for MCC patients.

  11. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Notably, avirulent Xcv infection rapidly induced CaChitIV expression in pepper leaves. Bimolecular fluorescence complementation and co-immunoprecipitation revealed that CaPIK1 interacts with CaChitIV in planta, and that the CaPIK1–CaChitIV complex is localized mainly in the cytoplasm and plasma membrane. CaChitIV is also localized in the endoplasmic reticulum. Transient co-expression of CaChitIV with CaPIK1 enhanced CaPIK1-triggered cell death response and reactive oxygen species (ROS) and nitric oxide (NO) bursts. Co-silencing of both CaChitIV and CaPIK1 in pepper plants conferred enhanced susceptibility to Xcv infection, which was accompanied by a reduced induction of cell death response, ROS and NO bursts, and defence response genes. Ectopic expression of CaPIK1 in Arabidopsis enhanced basal resistance to Hyaloperonospora arabidopsidis infection. Together, the results suggest that CaChitIV positively regulates CaPIK1-triggered cell death and defence responses through its interaction with CaPIK1. PMID:25694549

  12. The Prognostic Influence of BRAF Mutation and other Molecular, Clinical and Laboratory Parameters in Stage IV Colorectal Cancer.

    Science.gov (United States)

    Karadima, Maria L; Saetta, Angelica A; Chatziandreou, Ilenia; Lazaris, Andreas C; Patsouris, Efstratios; Tsavaris, Nikolaos

    2016-10-01

    Our aim was to evaluate the predictive and prognostic influence of BRAF mutation and other molecular, clinical and laboratory parameters in stage IV colorectal cancer (CRC). 60 patients were included in this retrospective analysis, and 17 variables were examined for their relation with treatment response and survival. KRAS mutation was identified in 40.3 % of cases, BRAF and PIK3CA in 8.8 % and 10.5 % respectively. 29.8 % of patients responded to treatment. Median survival time was 14.3 months. Weight loss, fever, abdominal metastases, blood transfusion, hypoalbuminaimia, BRAF and PIK3CA mutations, CRP and DNA Index were associated with survival. In multivariate analysis, male patients had 3.8 times higher probability of response, increased DNA Index was inversely correlated with response and one unit raise of DNA Index augmented 6 times the probability of death. Our findings potentiate the prognostic role of BRAF, PIK3CA mutations and ploidy in advanced CRC.

  13. A pathway-centric survey of somatic mutations in Chinese patients with colorectal carcinomas.

    Directory of Open Access Journals (Sweden)

    Chao Ling

    Full Text Available Previous genetic studies on colorectal carcinomas (CRC have identified multiple somatic mutations in four candidate pathways (TGF-β, Wnt, P53 and RTK-RAS pathways on populations of European ancestry. However, it is under-studied whether other populations harbor different sets of hot-spot somatic mutations in these pathways and other oncogenes. In this study, to evaluate the mutational spectrum of novel somatic mutations, we assessed 41 pairs of tumor-stroma tissues from Chinese patients with CRC, including 29 colon carcinomas and 12 rectal carcinomas. We designed Illumina Custom Amplicon panel to target 43 genes, including genes in the four candidate pathways, as well as several known oncogenes for other cancers. Candidate mutations were validated by Sanger sequencing, and we further used SIFT and PolyPhen-2 to assess potentially functional mutations. We discovered 3 new somatic mutations in gene APC, TCF7L2, and PIK3CA that had never been reported in the COSMIC or NCI-60 databases. Additionally, we confirmed 6 known somatic mutations in gene SMAD4, APC, FBXW7, BRAF and PTEN in Chinese CRC patients. While most were previously reported in CRC, one mutation in PTEN was reported only in malignant endometrium cancer. Our study confirmed the existence of known somatic mutations in the four candidate pathways for CRC in Chinese patients. We also discovered a number of novel somatic mutations in these pathways, which may have implications for the pathogenesis of CRC.

  14. Hot spot mutations in Finnish non-small cell lung cancers.

    Science.gov (United States)

    Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Rönty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuuttila, Aija; Knuutila, Sakari

    2016-09-01

    Non-small cell lung cancer (NSCLC) is a common cancer with a poor prognosis. The aim of this study was to screen Finnish NSCLC tumor samples for common cancer-related mutations by targeted next generation sequencing and to determine their concurrences and associations with clinical features. Sequencing libraries were prepared from DNA isolated from formalin-fixed, paraffin-embedded tumor material of 425 patients using the AmpliSeq Colon and Lung panel covering mutational hot spot regions of 22 cancer genes. Sequencing was performed with the Ion Torrent Personal Genome Machine (PGM). Data analysis of the hot spot mutations revealed mutations in 77% of the patients, with 7% having 3 or more mutations reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Two of the most frequently mutated genes were TP53 (46%) and KRAS (25%). KRAS codon 12 mutations were the most recurrently occurring mutations. EGFR mutations were significantly associated with adenocarcinoma, female gender and never/light-smoking history; CTNNB1 mutations with light ex-smokers, PIK3CA and TP53 mutations with squamous cell carcinoma, and KRAS with adenocarcinoma. TP53 mutations were most prevalent in current smokers and ERBB2, ERBB4, PIK3CA, NRAS, NOTCH1, FBWX7, PTEN and STK11 mutations occurred exclusively in a group of ever-smokers, however the association was not statistically significant. No mutation was found that associated with asbestos exposure. Finnish NSCLC patients have a similar mutation profile as other Western patients, however with a higher frequency of BRAF mutations but a lower frequency of STK11 and ERBB2 mutations. Moreover, TP53 mutations occurred frequently with other gene mutations, most commonly with KRAS, MET, EGFR and PIK3CA mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Mutational Analysis of Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Erstad, Derek J. [Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States); Cusack, James C. Jr., E-mail: jcusack@mgh.harvard.edu [Division of Surgical Oncology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States)

    2014-10-17

    Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine malignancy that is associated with a poor prognosis. The pathogenesis of MCC is not well understood, and despite a recent plethora of mutational analyses, we have yet to find a set of signature mutations implicated in the majority of cases. Mutations, including TP53, Retinoblastoma and PIK3CA, have been documented in subsets of patients. Other mechanisms are also likely at play, including infection with the Merkel cell polyomavirus in a subset of patients, dysregulated immune surveillance, epigenetic alterations, aberrant protein expression, posttranslational modifications and microRNAs. In this review, we summarize what is known about MCC genetic mutations and chromosomal abnormalities, and their clinical significance. We also examine aberrant protein function and microRNA expression, and discuss the therapeutic and prognostic implications of these findings. Multiple clinical trials designed to selectively target overexpressed oncogenes in MCC are currently underway, though most are still in early phases. As we accumulate more molecular data on MCC, we will be better able to understand its pathogenic mechanisms, develop libraries of targeted therapies, and define molecular prognostic signatures to enhance our clinicopathologic knowledge.

  16. Mutational Analysis of Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Erstad, Derek J.; Cusack, James C. Jr.

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine malignancy that is associated with a poor prognosis. The pathogenesis of MCC is not well understood, and despite a recent plethora of mutational analyses, we have yet to find a set of signature mutations implicated in the majority of cases. Mutations, including TP53, Retinoblastoma and PIK3CA, have been documented in subsets of patients. Other mechanisms are also likely at play, including infection with the Merkel cell polyomavirus in a subset of patients, dysregulated immune surveillance, epigenetic alterations, aberrant protein expression, posttranslational modifications and microRNAs. In this review, we summarize what is known about MCC genetic mutations and chromosomal abnormalities, and their clinical significance. We also examine aberrant protein function and microRNA expression, and discuss the therapeutic and prognostic implications of these findings. Multiple clinical trials designed to selectively target overexpressed oncogenes in MCC are currently underway, though most are still in early phases. As we accumulate more molecular data on MCC, we will be better able to understand its pathogenic mechanisms, develop libraries of targeted therapies, and define molecular prognostic signatures to enhance our clinicopathologic knowledge

  17. Multiple metabolic alterations exist in mutant PI3K cancers, but only glucose is essential as a nutrient source.

    Directory of Open Access Journals (Sweden)

    Rebecca Foster

    Full Text Available Targeting tumour metabolism is becoming a major new area of pharmaceutical endeavour. Consequently, a systematic search to define whether there are specific energy source dependencies in tumours, and how these might be dictated by upstream driving genetic mutations, is required. The PI3K-AKT-mTOR signalling pathway has a seminal role in regulating diverse cellular processes including cell proliferation and survival, but has also been associated with metabolic dysregulation. In this study, we sought to define how mutations within PI3KCA may affect the metabolic dependency of a cancer cell, using precisely engineered isogenic cell lines. Studies revealed gene expression signatures in PIK3CA mutant cells indicative of a consistent up-regulation of glycolysis. Interestingly, the genes up- and down-regulated varied between isogenic models suggesting that the primary node of regulation is not the same between models. Additional gene expression changes were also observed, suggesting that metabolic pathways other than glycolysis, such as glutaminolysis, were also affected. Nutrient dependency studies revealed that growth of PIK3CA mutant cells is highly dependent on glucose, whereas glutamine dependency is independent of PIK3CA status. In addition, the glucose dependency exhibited by PIK3CA mutant cells could not be overridden by supplementation with other nutrients. This specific dependence on glucose for growth was further illustrated by studies evaluating the effects of targeted disruption of the glycolytic pathway using siRNA and was also found to be present across a wider panel of cancer cell lines harbouring endogenous PIK3CA mutations. In conclusion, we have found that PIK3CA mutations lead to a shift towards a highly glycolytic phenotype, and that despite suggestions that cancer cells are adept at utilising alternative nutrient sources, PIK3CA mutant cells are not able to compensate for glucose withdrawal. Understanding the metabolic

  18. High-incidence of PTEN mutations in Chinese patients with primary small cell carcinoma of the esophagus

    International Nuclear Information System (INIS)

    Zhang, Zhimin; Wang, Ge; Xiao, Hualiang; Xie, Fei; Zhang, Hui; Chen, Chuan; Xiao, He; Yang, Zhenzhou; Wang, Dong; Li, Zengpeng

    2014-01-01

    Primary small cell carcinoma of the esophagus (PSCCE) is a rare and aggressive tumor with poor prognosis. The aim of this study was to investigate the existence of EGFR, KRAS, PIK3CA and PTEN mutations in PSCCE. Clinical–pathological data and paraffin-embedded specimens were collected from 38 patients. Exons 18 to 21 of EGFR, KRAS and PIK3CA status were analyzed by real-time PCR based on ARMS and Scorpion technology in all patients, and the PTEN gene was also screened using real-time PCR and high-resolution melting curve analysis (HRMA). Only 1 (2.63%) out of 38 patients had EGFR mutations in L858R missense, and KRAS and PIK3CA were not found in the mutational spot in all patients. However, PTEN mutations presented in 14 (36.84%) out of 38 patients, including exon 5 coding for PTEN missense mutation (n =4, 10.53%), exon 6 (n =7, 18.42%), concurrent exon 5 and exon 6 (n =2, 5.26%), and exon 8 (n =1, 2.63%). Concurrent mutations of these genes were not detected in all samples. No statistically significant associations were found between the clinicopathological features and the mutation status of PTEN. The incidence of PTEN mutations in Chinese patients with PSCCE was higher than that of previous reports in other histological subtypes of esophageal cancer

  19. MDM2 Amplification and PI3KCA Mutation in a Case of Sclerosing Rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Ken Kikuchi

    2013-01-01

    Full Text Available A rare sclerosing variant of rhabdomyosarcoma characterized by prominent hyalinization and pseudovascular pattern has recently been described as a subtype biologically distinct from embryonal, alveolar, and pleomorphic forms. We present cytogenetic and molecular findings as well as experimental studies of an unusual case of sclerosing rhabdomyosarcoma. The primary lesion arose within the plantar subcutaneous tissue of the left foot of an otherwise healthy 23-year-old male who eventually developed pulmonary nodules despite systemic chemotherapy. Two genetic abnormalities identified in surgical and/or autopsy samples of the tumor were introduced into 10T1/2 murine fibroblasts to determine whether these genetic changes cooperatively facilitated transformation and growth. Cytogenetic analysis revealed a complex abnormal hyperdiploid clone, and MDM2 gene amplification was confirmed by fluorescence in situ hybridization. Cancer gene mutation screening using a combination of multiplexed PCR and mass spectroscopy revealed a PIK3CA exon 20 H1047R mutation in the primary tumor, lung metastasis, and liver metastasis. However, this mutation was not cooperative with MDM2 overexpression in experimental assays for transformation or growth. Nevertheless, MDM2 and PIK3CA are genes worthy of further investigation in patients with sclerosing rhabdomyosarcoma and might be considered in the enrollment of these patients into clinical trials of targeted therapeutics.

  20. High-throughput genotyping in metastatic esophageal squamous cell carcinoma identifies phosphoinositide-3-kinase and BRAF mutations.

    Directory of Open Access Journals (Sweden)

    Chi Hoon Maeng

    Full Text Available Given the high incidence of metastatic esophageal squamous cell carcinoma, especially in Asia, we screened for the presence of somatic mutations using OncoMap platform with the aim of defining subsets of patients who may be potential candidate for targeted therapy.We analyzed 87 tissue specimens obtained from 80 patients who were pathologically confirmed with esophageal squamous cell carcinoma and received 5-fluoropyrimidine/platinum-based chemotherapy. OncoMap 4.0, a mass-spectrometry based assay, was used to interrogate 471 oncogenic mutations in 41 commonly mutated genes. Tumor specimens were prepared from primary cancer sites in 70 patients and from metastatic sites in 17 patients. In order to test the concordance between primary and metastatic sites from the patient for mutations, we analyzed 7 paired (primary-metastatic specimens. All specimens were formalin-fixed paraffin embedded tissues and tumor content was >70%.In total, we have detected 20 hotspot mutations out of 80 patients screened. The most frequent mutation was PIK3CA mutation (four E545K, five H1047R and one H1047L (N = 10, 11.5% followed by MLH1 V384D (N = 7, 8.0%, TP53 (R306, R175H and R273C (N = 3, 3.5%, BRAF V600E (N = 1, 1.2%, CTNNB1 D32N (N = 1, 1.2%, and EGFR P733L (N = 1, 1.2%. Distributions of somatic mutations were not different according to anatomic sites of esophageal cancer (cervical/upper, mid, lower. In addition, there was no difference in frequency of mutations between primary-metastasis paired samples.Our study led to the detection of potentially druggable mutations in esophageal SCC which may guide novel therapies in small subsets of esophageal cancer patients.

  1. Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer

    DEFF Research Database (Denmark)

    Ekstrand, Anna Isinger; Jönsson, Mats; Lindblom, Annika

    2010-01-01

    The phosphatidylinositol 3-kinases-AKT-mammalian target of rapamycin pathway (PI3K/AKT/mTOR) is central in colorectal tumors. Data on its role in hereditary cancers are, however, scarce and we therefore characterized mutations in PIK3CA and KRAS, and expression of PIK3CA, phosphorylated AKT...... and PTEN in 58 HNPCC-associated colorectal cancers. Derangements of at least one of the PI3K/AKT/mTOR components analyzed were found in 51/58 (88%) tumors. Mutations in PIK3CA and KRAS were identified in 14 and 31% of the tumors respectively. Overexpression of PIK3CA and phosphorylated AKT occurred in 59...... and 75% and were strongly associated (P = 0.005). Reduced/lost PTEN expression was found in 63% of the tumors. Though HNPCC-associated colorectal cancers show simple genetic profiles with few chromosomal alterations, we demonstrate frequent and repeated targeting of the PI3K/AKT/mTOR pathway, which...

  2. POLE somatic mutations in advanced colorectal cancer.

    Science.gov (United States)

    Guerra, Joana; Pinto, Carla; Pinto, Diana; Pinheiro, Manuela; Silva, Romina; Peixoto, Ana; Rocha, Patrícia; Veiga, Isabel; Santos, Catarina; Santos, Rui; Cabreira, Verónica; Lopes, Paula; Henrique, Rui; Teixeira, Manuel R

    2017-12-01

    Despite all the knowledge already gathered, the picture of somatic genetic changes in colorectal tumorigenesis is far from complete. Recently, germline and somatic mutations in the exonuclease domain of polymerase epsilon, catalytic subunit (POLE) gene have been reported in a small subset of microsatellite-stable and hypermutated colorectal carcinomas (CRCs), affecting the proofreading activity of the enzyme and leading to misincorporation of bases during DNA replication. To evaluate the role of POLE mutations in colorectal carcinogenesis, namely in advanced CRC, we searched for somatic mutations by Sanger sequencing in tumor DNA samples from 307 cases. Microsatellite instability and mutation analyses of a panel of oncogenes were performed in the tumors harboring POLE mutations. Three heterozygous mutations were found in two tumors, the c.857C>G, p.Pro286Arg, the c.901G>A, p.Asp301Asn, and the c.1376C>T, p.Ser459Phe. Of the POLE-mutated CRCs, one tumor was microsatellite-stable and the other had low microsatellite instability, whereas KRAS and PIK3CA mutations were found in one tumor each. We conclude that POLE somatic mutations exist but are rare in advanced CRC, with further larger studies being necessary to evaluate its biological and clinical implications. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib

    International Nuclear Information System (INIS)

    Wang, Leiping; Hu, Xichun; Zhang, Qunling; Zhang, Jian; Sun, Si; Guo, Haiyi; Jia, Zhen; Wang, Biyun; Shao, Zhimin; Wang, Zhonghua

    2011-01-01

    Human epidermal growth factor receptor 2 (HER2) is the most crucial ErbB receptor tyrosine kinase (RTK) family member in HER2-positive (refered to HER2-overexpressing) breast cancer which are dependent on or 'addictive' to the Phosphatidylinositol-3-kinase (PI3K) pathway. HER2-related target drugs trastuzumab and lapatinib have been the foundation of treatment of HER2--positive breast cancer. This study was designed to explore the relationship between PI3K pathway activation and the sensitivity to lapatinib in HER2--positive metastatic breast cancer patients pretreated with anthracyclins, taxanes and trastuzumab. Sixty-seven HER2-positive metastatic breast cancer patients were recruited into a global lapatinib Expanded Access Program and 57 patients have primary tumor specimens available for determination of PI3K pathway status. PTEN status was determined by immunohistochemical staining and PIK3CA mutations were detected via PCR sequencing. All patients were treated with lapatinib 1250 mg/day continuously and capecitabine 1000 mg/m 2 twice daily on a 2-week-on and 1-week-off schedule until disease progression, death, withdrawal of informed consent, or intolerable toxicity. PIK3CA mutations and PTEN loss were detected in 12.3% (7/57) and 31.6% (18/57) of the patients, respectively. Twenty-two patients with PI3K pathway activation (defined as PIK3CA mutation and/or PTEN expression loss) had a lower clinical benefit rate (36.4% versus 68.6%, P = 0.017) and a lower overall response rate (9.1% versus 31.4%, P = 0.05), when compared with the 35 patients with no activation. A retrospective analysis of first trastuzumab-containing regimen treatment data showed that PI3K pathway activation correlated with a shorter median progression-free survival (4.5 versus 9.0 months, P = 0.013). PIK3CA mutations occur more frequently in elder patients for HER2-positive breast cancer. PIK3CA mutations and PTEN loss are not mutually exclusive. PI3K pathway activation resulting

  4. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  5. Somatic mutations in breast and serous ovarian cancer young patients: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Giselly Encinas

    2015-10-01

    Full Text Available Summary Objective: our aim was to evaluate whether somatic mutations in five genes were associated with an early age at presentation of breast cancer (BC or serous ovarian cancer (SOC. Methods: COSMIC database was searched for the five most frequent somatic mutations in BC and SOC. A systematic review of PubMed was performed. Young age for BC and SOC patients was set at ≤35 and ≤40 years, respectively. Age groups were also classified in <30years and every 10 years thereafter. Results: twenty six (1,980 patients, 111 younger and 16 studies (598, 41 younger, were analyzed for BC and SOC, respectively. In BC, PIK3CA wild type tumor was associated with early onset, not confirmed in binary regression with estrogen receptor (ER status. In HER2-negative tumors, there was increased frequency of PIK3CA somatic mutation in older age groups; in ER-positive tumors, there was a trend towards an increased frequency of PIK3CA somatic mutation in older age groups. TP53 somatic mutation was described in 20% of tumors from both younger and older patients; PTEN, CDH1 and GATA3 somatic mutation was investigated only in 16 patients and PTEN mutation was detected in one of them. In SOC, TP53 somatic mutation was rather common, detected in more than 50% of tumors, however, more frequently in older patients. Conclusion: frequency of somatic mutations in specific genes was not associated with early-onset breast cancer. Although very common in patients with serous ovarian cancer diagnosed at all ages, TP53 mutation was more frequently detected in older women.

  6. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations

    Directory of Open Access Journals (Sweden)

    Jingrui Jiang

    2018-04-01

    Full Text Available Oncogenic epidermal growth factor receptors (EGFRs can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC. The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors, and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  7. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive

    Directory of Open Access Journals (Sweden)

    Yu S

    2017-09-01

    Full Text Available Su Yu,1,2 Yang Zhang,1 Yunjian Pan,1 Chao Cheng,1,3 Yihua Sun,1,3 Haiquan Chen1–4 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; 2Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China; 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; 4Institutes of Biomedical Sciences, Fudan University, Shanghai, China Purpose: To identify novel oncogenic mutations in non-small cell lung cancer patient specimens that lack mutations in known targetable genes (“pan-negative” patients.Methods: Comprehensive mutational analyses were performed on 1,356 lung adenocarcinoma specimens. In this cohort of patients, common lung cancer oncogenic driver mutations were detected in the epidermal growth factor receptor (EGFR kinase domain, the human epidermal growth factor receptor 2 kinase domain, as well as the KRAS, BRAF, ALK, ROS1 and RET genes. A sub-cohort of pan-negative patient specimens was assayed for mutations in the EGFR extracellular domain (ECD. Additionally, EGFR mutant NIH-3T3 stable cell lines were constructed and assessed for protein content, anchorage-independent growth, and tumor formation in xenograft models to identify oncogenic mutations. BaF3 lymphocytes were also used to test sensitivities of the mutations to tyrosine kinase inhibitors.Results: In pan-negative lung adenocarcinoma cases, a novel oncogenic EGFR ECD mutation was identified (M277E. EGFR M277E mutations encoded oncoproteins that transformed NIH-3T3 cells to grow in the absence of exogenous epidermal growth factor. Transformation was further evidenced by anchorage-independent growth and tumor formation in immunocompromised xenograft mouse models. Finally, as seen in the canonical EGFR L858R mutation, the M277E mutation conferred sensitivity to both erlotinib and cetuximab in BaF3 cell lines and to erlotinib in xenograft models.Conclusion: Here, a new EGFR driver mutation, M277E

  8. Association between mutations of critical pathway genes and survival outcomes according to the tumor location in colorectal cancer.

    Science.gov (United States)

    Lee, Dae-Won; Han, Sae-Won; Cha, Yongjun; Bae, Jeong Mo; Kim, Hwang-Phill; Lyu, Jaemyun; Han, Hyojun; Kim, Hyoki; Jang, Hoon; Bang, Duhee; Huh, Iksoo; Park, Taesung; Won, Jae-Kyung; Jeong, Seung-Yong; Park, Kyu Joo; Kang, Gyeong Hoon; Kim, Tae-You

    2017-09-15

    Colorectal cancer (CRC) develops through the alteration of several critical pathways. This study was aimed at evaluating the influence of critical pathways on survival outcomes for patients with CRC. Targeted next-generation sequencing of 40 genes included in the 5 critical pathways of CRC (WNT, P53, RTK-RAS, phosphatidylinositol-4,5-bisphosphate 3-kinase [PI3K], and transforming growth factor β [TGF-β]) was performed for 516 patients with stage III or high-risk stage II CRC treated with surgery followed by adjuvant fluoropyrimidine and oxaliplatin chemotherapy. The associations between critical pathway mutations and relapse-free survival (RFS) and overall survival were analyzed. The associations were further analyzed according to the tumor location. The mutation rates for the WNT, P53, RTK-RAS, PI3K, and TGF-β pathways were 84.5%, 69.0%, 60.7%, 30.0%, and 28.9%, respectively. A mutation in the PI3K pathway was associated with longer RFS (adjusted hazard ratio [HR], 0.59; 95% confidence interval [CI], 0.36-0.99), whereas a mutation in the RTK-RAS pathway was associated with shorter RFS (adjusted HR, 1.60; 95% CI, 1.01-2.52). Proximal tumors showed a higher mutation rate than distal tumors, and the mutation profile was different according to the tumor location. The mutation rates of Kirsten rat sarcoma viral oncogene homolog (KRAS), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA), and B-Raf proto-oncogene serine/threonine kinase (BRAF) were higher in proximal tumors, and the mutation rates of adenomatous polyposis coli (APC), tumor protein 53 (TP53), and neuroblastoma RAS viral oncogene homolog (NRAS) were higher in distal tumors. The better RFS with the PI3K pathway mutation was significant only for proximal tumors, and the worse RFS with the RTK-RAS pathway mutation was significant only for distal tumors. A PI3K pathway mutation was associated with better RFS for CRC patients treated with adjuvant chemotherapy, and an RTK

  9. Comparison of Akt/mTOR/4E-BP1 pathway signal activation and mutations of PIK3CA in Merkel cell polyomavirus-positive and Merkel cell polyomavirus-negative carcinomas.

    Science.gov (United States)

    Iwasaki, Takeshi; Matsushita, Michiko; Nonaka, Daisuke; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Nagata, Keiko; Nakajima, Hideki; Sano, Shigetoshi; Hayashi, Kazuhiko

    2015-02-01

    Merkel cell polyomavirus (MCPyV) integrates monoclonally into the genomes of approximately 80% of Merkel cell carcinomas (MCCs), affecting their clinicopathological features. The molecular mechanisms underlying MCC development after MCPyV infection remain unclear. We investigated the association of MCPyV infection with activation of the Akt/mammalian target of rapamycin (mTOR)/4E-binding protein 1 (4E-BP1) signaling pathway in MCCs to elucidate the role of these signal transductions and to identify molecular targets for treatment. We analyzed the molecular and pathological characteristics of 41 MCPyV-positive and 27 MCPyV-negative MCCs. Expression of mTOR, TSC1, and TSC2 messenger RNA was significantly higher in MCPyV-negative MCCs, and Akt (T308) phosphorylation also was significantly higher (92% vs 66%; P = .019), whereas 4E-BP1 (S65 and T70) phosphorylation was common in both MCC types (92%-100%). The expression rates of most other tested signals were high (60%-100%) and not significantly correlated with MCPyV large T antigen expression. PIK3CA mutations were observed more frequently in MCPyV-positive MCCs (6/36 [17%] vs 2/20 [10%]). These results suggest that protein expression (activation) of most Akt/mTOR/4E-BP1 pathway signals was not significantly different in MCPyV-positive and MCPyV-negative MCCs, although these 2 types may differ in tumorigenesis, and MCPyV-negative MCCs showed significantly more frequent p-Akt (T308) activation. Therefore, certain Akt/mTOR/4E-BP1 pathway signals could be novel therapeutic targets for MCC regardless of MCPyV infection status. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Characterization of a novel oncogenic K-ras mutation in colon cancer

    International Nuclear Information System (INIS)

    Akagi, Kiwamu; Uchibori, Ryosuke; Yamaguchi, Kensei; Kurosawa, Keiko; Tanaka, Yoichiro; Kozu, Tomoko

    2007-01-01

    Activating mutations of RAS are frequently observed in subsets of human cancers, indicating that RAS activation is involved in tumorigenesis. Here, we identified and characterized a novel G to T transversion mutation of the K-ras gene at the third position of codon 19 (TTG) which substituted phenylalanine for leucine in 3 primary colon carcinomas. Biological and biochemical activity was examined using transformed NIH3T3 cells expressing mutant or wild-type K-ras. Transformants harboring the K-ras mutation at codon 19 showed proliferative capacity under serum-starved conditions, less contact inhibition, anchorage-independent growth, tumorigenicity in nude mice and elevation of active Ras-GTP levels. These results indicated that this novel mutation possesses high oncogenic activity

  11. Mutations of the KRAS oncogene in endometrial hyperplasia and carcinoma.

    Directory of Open Access Journals (Sweden)

    Wiesława Niklińska

    2009-05-01

    Full Text Available The aim of this study was to examine the prevalence and clinicopathological significance of KRAS point mutation in endometrial hyperplasia and carcinoma. We analysed KRAS in 11 cases of complex atypical hyperplasia and in 49 endometrial carcinomas using polymerase chain reaction associated with restriction fragment length polymorphism (PCR-RFPL. Point mutations at codon 12 of KRAS oncogene were identified in 7 of 49 (14,3% tumor specimens and in 2 of 11 (18,2% hyperplasias. No correlation was found between KRAS gene mutation and age at onset, histology, grade of differentiation and clinical stage. We conclude that KRAS mutation is a relatively common event in endometrial carcinogenesis, but with no prognostic value.

  12. Molecular Subgroup Analysis of Clinical Outcomes in a Phase 3 Study of Gemcitabine and Oxaliplatin with or without Erlotinib in Advanced Biliary Tract Cancer

    Directory of Open Access Journals (Sweden)

    Seung Tae Kim

    2015-02-01

    Full Text Available BACKGROUND: We previously reported that the addition of erlotinib to gemcitabine and oxaliplatin (GEMOX resulted in greater antitumor activity and might be a treatment option for patients with biliary tract cancers (BTCs. Molecular subgroup analysis of treatment outcomes in patients who had specimens available for analysis was undertaken. METHODS: Epidermal growth factor receptor (EGFR, KRAS, and PIK3CA mutations were evaluated using peptide nucleic acid–locked nucleic acid polymerase chain reaction clamp reactions. Survival and response rates (RRs were analyzed according to the mutational status. Sixty-four patients (48.1% were available for mutational analysis in the chemotherapy alone group and 61 (45.1% in the chemotherapy plus erlotinib group. RESULTS: 1.6% (2/116 harbored an EGFR mutation (2 patients; exon 20, 9.6% (12/121 harbored a KRAS mutation (12 patients; exon 2, and 9.6% (12/118 harbored a PIK3CA mutation (10 patients, exon 9 and 2 patients, exon 20. The addition of erlotinib to GEMOX in patients with KRAS wild-type disease (n = 109 resulted in significant improvements in overall response compared with GEMOX alone (30.2% vs 12.5%, P = .024. In 95 patients with both wild-type KRAS and PIK3CA, there was evidence of a benefit associated with the addition of erlotinib to GEMOX with respect to RR as compared with GEMOX alone (P = .04. CONCLUSION: This study demonstrates that KRAS mutational status might be considered a predictive biomarker for the response to erlotinib in BTCs. Additionally, the mutation status of PIK3CA may be a determinant for adding erlotinib to chemotherapy in KRAS wild-type BTCs.

  13. A Novel Mutation in Isoform 3 of the Plasma Membrane Ca2+ Pump Impairs Cellular Ca2+ Homeostasis in a Patient with Cerebellar Ataxia and Laminin Subunit 1α Mutations.

    Science.gov (United States)

    Calì, Tito; Lopreiato, Raffaele; Shimony, Joshua; Vineyard, Marisa; Frizzarin, Martina; Zanni, Ginevra; Zanotti, Giuseppe; Brini, Marisa; Shinawi, Marwan; Carafoli, Ernesto

    2015-06-26

    The particular importance of Ca(2+) signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca(2+) ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca(2+). A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca(2+) ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca(2+) transients generated by cell stimulation and impairs its Ca(2+) extrusion function under conditions of low resting cytosolic Ca(2+) as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca(2+)-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca(2+) homeostasis and the previous finding that PMCAs act as digenic modulators in Ca(2+)-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. A Novel Mutation in Isoform 3 of the Plasma Membrane Ca2+ Pump Impairs Cellular Ca2+ Homeostasis in a Patient with Cerebellar Ataxia and Laminin Subunit 1α Mutations*

    Science.gov (United States)

    Calì, Tito; Lopreiato, Raffaele; Shimony, Joshua; Vineyard, Marisa; Frizzarin, Martina; Zanni, Ginevra; Zanotti, Giuseppe; Brini, Marisa; Shinawi, Marwan; Carafoli, Ernesto

    2015-01-01

    The particular importance of Ca2+ signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca2+ ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca2+. A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca2+ ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca2+ transients generated by cell stimulation and impairs its Ca2+ extrusion function under conditions of low resting cytosolic Ca2+ as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca2+-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca2+ homeostasis and the previous finding that PMCAs act as digenic modulators in Ca2+-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype. PMID:25953895

  15. Screening for circulating RAS/RAF mutations by multiplex digital PCR

    DEFF Research Database (Denmark)

    Andersen, Rikke Fredslund; Jakobsen, Anders

    2016-01-01

    by technical challenges primarily due to the low levels of ctDNA in patients with localized disease and in patients responding to therapy. The approach presented here is a multiplex digital PCR method of screening for 31 mutations in the KRAS, NRAS, BRAF, and PIK3CA genes in the plasma. The upper level...

  16. Preoperative chemoradiation with capecitabine, irinotecan and cetuximab in rectal cancer: significance of pre-treatment and post-resection RAS mutations.

    Science.gov (United States)

    Gollins, Simon; West, Nick; Sebag-Montefiore, David; Myint, Arthur Sun; Saunders, Mark; Susnerwala, Shabbir; Quirke, Phil; Essapen, Sharadah; Samuel, Leslie; Sizer, Bruce; Worlding, Jane; Southward, Katie; Hemmings, Gemma; Tinkler-Hundal, Emma; Taylor, Morag; Bottomley, Daniel; Chambers, Philip; Lawrie, Emma; Lopes, Andre; Beare, Sandy

    2017-10-24

    The influence of EGFR pathway mutations on cetuximab-containing rectal cancer preoperative chemoradiation (CRT) is uncertain. In a prospective phase II trial (EXCITE), patients with magnetic resonance imaging (MRI)-defined non-metastatic rectal adenocarinoma threatening/involving the surgical resection plane received pelvic radiotherapy with concurrent capecitabine, irinotecan and cetuximab. Resection was recommended 8 weeks later. The primary endpoint was histopathologically clear (R0) resection margin. Pre-planned retrospective DNA pyrosequencing (PS) and next generation sequencing (NGS) of KRAS, NRAS, PIK3CA and BRAF was performed on the pre-treatment biopsy and resected specimen. Eighty-two patients were recruited and 76 underwent surgery, with R0 resection in 67 (82%, 90%CI: 73-88%) (four patients with clinical complete response declined surgery). Twenty-four patients (30%) had an excellent clinical or pathological response (ECPR). Using NGS 24 (46%) of 52 matched biopsies/resections were discrepant: ten patients (19%) gained 13 new resection mutations compared to biopsy (12 KRAS, one PIK3CA) and 18 (35%) lost 22 mutations (15 KRAS, 7 PIK3CA). Tumours only ever testing RAS wild-type had significantly greater ECPR than tumours with either biopsy or resection RAS mutations (14/29 [48%] vs 10/51 [20%], P=0.008), with a trend towards increased overall survival (HR 0.23, 95% CI 0.05-1.03, P=0.055). This regimen was feasible and the primary study endpoint was met. For the first time using pre-operative rectal CRT, emergence of clinically important new resection mutations is described, likely reflecting intratumoural heterogeneity manifesting either as treatment-driven selective clonal expansion or a geographical biopsy sampling miss.

  17. Impact of somatic PI3K pathway and ERBB family mutations on pathological complete response (pCR) in HER2-positive breast cancer patients who received neoadjuvant HER2-targeted therapies.

    LENUS (Irish Health Repository)

    Toomey, Sinead

    2017-07-27

    The Cancer Genome Atlas analysis revealed that somatic EGFR, receptor tyrosine-protein kinase erbB-2 (ERBB2), Erb-B2 receptor tyrosine kinase 3 (ERBB3) and Erb-B2 receptor tyrosine kinase 4 (ERBB4) gene mutations (ERBB family mutations) occur alone or co-occur with somatic mutations in the gene encoding the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (PIK3CA) in 19% of human epidermal growth factor receptor 2 (HER2)-positive breast cancers. Because ERBB family mutations can activate the PI3K\\/AKT pathway and likely have similar canonical signalling effects to PI3K pathway mutations, we investigated their combined impact on response to neoadjuvant HER2-targeted therapies.

  18. Next generation sequencing of Cytokeratin 20-negative Merkel cell carcinoma reveals ultraviolet-signature mutations and recurrent TP53 and RB1 inactivation.

    Science.gov (United States)

    Harms, Paul W; Collie, Angela M B; Hovelson, Daniel H; Cani, Andi K; Verhaegen, Monique E; Patel, Rajiv M; Fullen, Douglas R; Omata, Kei; Dlugosz, Andrzej A; Tomlins, Scott A; Billings, Steven D

    2016-03-01

    Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin 20 (CK20) is expressed in ~95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small-cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (10 Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high-confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping genetic changes

  19. Next Generation Sequencing of Cytokeratin 20-Negative Merkel Cell Carcinoma Reveals Ultraviolet Signature Mutations and Recurrent TP53 and RB1 Inactivation

    Science.gov (United States)

    Harms, Paul W.; Collie, Angela M. B.; Hovelson, Daniel H.; Cani, Andi K.; Verhaegen, Monique E.; Patel, Rajiv M.; Fullen, Douglas R.; Omata, Kei; Dlugosz, Andrzej A.; Tomlins, Scott A.; Billings, Steven D.

    2016-01-01

    Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin-20 (CK20) is expressed in approximately 95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (ten Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%)) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping

  20. FGFR3, HRAS, KRAS, NRAS AND PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy

    NARCIS (Netherlands)

    L.C. Kompier (Lucie); I. Lurkin (Irene); M.M.N. van der Aa (Madelon); B.W.G. van Rhijn (Bas); Th.H. van der Kwast (Theo); E.C. Zwarthoff (Ellen)

    2010-01-01

    textabstractBackground: Fifty percent of patients with muscle-invasive bladder cancer (MI-BC) die from their disease and current chemotherapy treatment only marginally increases survival. Novel therapies targeting receptor tyrosine kinases or activated oncogenes may improve outcome. Hence, it is

  1. Molecular characterization of apocrine salivary duct carcinoma.

    Science.gov (United States)

    Chiosea, Simion I; Williams, Lindsay; Griffith, Christopher C; Thompson, Lester D R; Weinreb, Ilan; Bauman, Julie E; Luvison, Alyssa; Roy, Somak; Seethala, Raja R; Nikiforova, Marina N

    2015-06-01

    Contemporary classification and treatment of salivary duct carcinoma (SDC) require its thorough molecular characterization. Thirty apocrine SDCs were analyzed by the Ion Ampliseq Cancer HotSpot panel v2 for mutations in 50 cancer-related genes. Mutational findings were corroborated by immunohistochemistry (eg, TP53, BRAF, β-catenin, estrogen, and androgen receptors) or Sanger sequencing/SNaPshot polymerase chain reaction. ERBB2 (HER2), PTEN, FGFR1, CDKN2A/P16, CMET, EGFR, MDM2, and PIK3CA copy number changes were studied by fluorescence in situ hybridization. TP53 mutations (15/27, 56%), PTEN loss (11/29, 38%, including 2 cases with PTEN mutation), PIK3CA hotspot mutations (10/30, 33%), HRAS hotspot mutations (10/29; 34%), and ERBB2 amplification (9/29, 31%, including 1 case with mutation) represented the 5 most common abnormalities. There was no correlation between genetic changes and clinicopathologic parameters. There was substantial overlap between genetic changes: 8 of 9 cases with ERBB2 amplification also harbored a PIK3CA, HRAS, and TP53 mutation and/or PTEN loss. Six of 10 cases with PIK3CA mutation also had an HRAS mutation. These findings provide a molecular rationale for dual targeting of mitogen-activated protein kinase and phosphoinositide 3-kinase pathways in SDC. FGFR1 amplification (3/29, 10%) represents a new potential target. On the basis of studies of breast carcinomas, the efficacy of anti-ERBB2 therapy will likely be decreased in SDC with ERBB2 amplification co-occurring with PIK3CA mutation or PTEN loss. Therefore, isolated ERBB2 testing is insufficient for theranostic stratification of apocrine SDC. On the basis of the prevalence and type of genetic changes, apocrine SDC appears to resemble one subtype of breast carcinoma-"luminal androgen receptor positive/molecular apocrine."

  2. Aberrant status and clinicopathologic characteristic associations of 11 target genes in 1,321 Chinese patients with lung adenocarcinoma.

    Science.gov (United States)

    Zhao, Mengnan; Zhan, Cheng; Li, Ming; Yang, Xiaodong; Yang, Xinyu; Zhang, Yong; Lin, Miao; Xia, Yifeng; Feng, Mingxiang; Wang, Qun

    2018-01-01

    The aberrant status of target genes and their associations with clinicopathologic characteristics are still unclear in primary lung adenocarcinoma. The common mutations and translocations of nine target genes were evaluated in 1,247 specimens of surgically-resected primary lung adenocarcinoma. Immunohistochemistry was used to analyze the expressions of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) in 731 specimens. The frequency of the aberrations and their associations with clinicopathologic characteristics were analyzed. Overall, 952 (76.3%) of 1,247 patients harbored at least one target mutation or translocation: epidermal growth factor receptor ( EGFR ) (729, 58.5%), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog ( KRAS ) (83, 6.7%), human epidermal growth factor receptor 2 ( HER2 ) (82, 6.6%), anaplastic lymphoma kinase ( ALK) (23, 1.8%), phosphoinositide-3-kinase catalytic alpha polypeptide ( PIK3CA ) (20, 1.6%), Ret proto-oncogene RET (15, 1.2%), ROS proto-oncogene 1 receptor tyrosine kinase ( ROS1 ) (12, 1.0%), B-raf proto-oncogene ( BRAF ) (9, 0.7%), neuroblastoma RAS viral (v-ras) oncogene homolog ( NRAS ) (3, 0.2%). Fourteen (1.9%) of 731 patients were PD-1 positive and 95 (13.0%) were PD-L1 positive in tumor cells. In men and smokers, there were more frequent KRAS mutations (both Ppatients, while HER2 (Ppatients with EGFR mutations (all Ppatients with primary lung adenocarcinoma harbored target gene aberrations. The frequency of each alteration differed in patients depending on clinicopathologic characteristics.

  3. Predictive role of multiple gene alterations in response to cetuximab in metastatic colorectal cancer: A single center study

    Directory of Open Access Journals (Sweden)

    Ulivi Paola

    2012-05-01

    Full Text Available Abstract Background KRAS mutations negatively affect outcome after treatment with cetuximab in metastatic colorectal cancer (mCRC patients. As only 20% of KRAS wild type (WT patients respond to cetuximab it is possible that other mutations, constitutively activating the EGFR pathway, are present in the non-responding KRAS WT patients. We retrospectively analyzed objective tumor response rate, (ORR progression-free (PFS and overall survival (OS with respect to the mutational status of KRAS, BRAF, PIK3CA and PTEN expression in mCRC patients treated with a cetuximab-based regimen. Methods 67 mCRC patients were enrolled onto the study. DNA was extracted from paraffin-embedded sections derived from primary or metastatic lesions. Exon 2 of KRAS and exon 15 of BRAF were analyzed by direct sequencing, PIK3CA was evaluated by pyrosequencing and PTEN expression by immunohistochemistry. Results BRAF and PIK3CA mutations were independently associated with worse PFS (p = 0.006 and p = 0.028, respectively and OS (p = 0.008 and p = 0.029, respectively. No differences in clinical outcome were found between patients who were positive or negative for PTEN expression. Conversely, patients negative for KRAS, BRAF and PIK3CA mutations were characterized by significantly better ORR, PFS and OS than patients with at least one of these mutations. Conclusions BRAF and PIK3CA mutations would seem to be independent predictors of anti-EGFR therapy effectiveness and could be taken into consideration during treatment decision making.

  4. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  5. Synergistic effects of targeted PI3K signaling inhibition and chemotherapy in liposarcoma.

    Directory of Open Access Journals (Sweden)

    Shang Guo

    Full Text Available While liposarcoma is the second most common soft tissue malignant tumor, the molecular pathogenesis in this malignancy is poorly understood. Our goal was therefore to expand the understanding of molecular mechanisms that drive liposarcoma and identify therapeutically-susceptible genetic alterations. We studied a cohort of high-grade liposarcomas and benign lipomas across multiple disease sites, as well as two liposarcoma cell lines, using multiplexed mutational analysis. Nucleic acids extracted from diagnostic patient tissue were simultaneously interrogated for 150 common mutations across 15 essential cancer genes using a clinically-validated platform for cancer genotyping. Western blot analysis was implemented to detect activation of downstream pathways. Liposarcoma cell lines were used to determine the effects of PI3K targeted drug treatment with or without chemotherapy. We identified mutations in the PIK3CA gene in 4 of 18 human liposarcoma patients (22%. No PIK3CA mutations were identified in benign lipomas. Western blot analysis confirmed downstream activation of AKT in both PIK3CA mutant and non-mutant liposarcoma samples. PI-103, a dual PI3K/mTOR inhibitor, effectively inhibited the activation of the PI3K/AKT in liposarcoma cell lines and induced apoptosis. Importantly, combination with PI-103 treatment strongly synergized the growth-inhibitory effects of the chemotherapy drugs doxorubicin and cisplatin in liposarcoma cells. Taken together, these findings suggest that activation of the PI3K/AKT pathway is an important cancer mechanism in liposarcoma. Targeting the PI3K/AKT/pathway with small molecule inhibitors in combination with chemotherapy could be exploited as a novel strategy in the treatment of liposarcoma.

  6. Profiling cancer gene mutations in clinical formalin-fixed, paraffin-embedded colorectal tumor specimens using targeted next-generation sequencing.

    Science.gov (United States)

    Zhang, Liangxuan; Chen, Liangjing; Sah, Sachin; Latham, Gary J; Patel, Rajesh; Song, Qinghua; Koeppen, Hartmut; Tam, Rachel; Schleifman, Erica; Mashhedi, Haider; Chalasani, Sreedevi; Fu, Ling; Sumiyoshi, Teiko; Raja, Rajiv; Forrest, William; Hampton, Garret M; Lackner, Mark R; Hegde, Priti; Jia, Shidong

    2014-04-01

    The success of precision oncology relies on accurate and sensitive molecular profiling. The Ion AmpliSeq Cancer Panel, a targeted enrichment method for next-generation sequencing (NGS) using the Ion Torrent platform, provides a fast, easy, and cost-effective sequencing workflow for detecting genomic "hotspot" regions that are frequently mutated in human cancer genes. Most recently, the U.K. has launched the AmpliSeq sequencing test in its National Health Service. This study aimed to evaluate the clinical application of the AmpliSeq methodology. We used 10 ng of genomic DNA from formalin-fixed, paraffin-embedded human colorectal cancer (CRC) tumor specimens to sequence 46 cancer genes using the AmpliSeq platform. In a validation study, we developed an orthogonal NGS-based resequencing approach (SimpliSeq) to assess the AmpliSeq variant calls. Validated mutational analyses revealed that AmpliSeq was effective in profiling gene mutations, and that the method correctly pinpointed "true-positive" gene mutations with variant frequency >5% and demonstrated high-level molecular heterogeneity in CRC. However, AmpliSeq enrichment and NGS also produced several recurrent "false-positive" calls in clinically druggable oncogenes such as PIK3CA. AmpliSeq provided highly sensitive and quantitative mutation detection for most of the genes on its cancer panel using limited DNA quantities from formalin-fixed, paraffin-embedded samples. For those genes with recurrent "false-positive" variant calls, caution should be used in data interpretation, and orthogonal verification of mutations is recommended for clinical decision making.

  7. A novel fully automated molecular diagnostic system (AMDS for colorectal cancer mutation detection.

    Directory of Open Access Journals (Sweden)

    Shiro Kitano

    Full Text Available BACKGROUND: KRAS, BRAF and PIK3CA mutations are frequently observed in colorectal cancer (CRC. In particular, KRAS mutations are strong predictors for clinical outcomes of EGFR-targeted treatments such as cetuximab and panitumumab in metastatic colorectal cancer (mCRC. For mutation analysis, the current methods are time-consuming, and not readily available to all oncologists and pathologists. We have developed a novel, simple, sensitive and fully automated molecular diagnostic system (AMDS for point of care testing (POCT. Here we report the results of a comparison study between AMDS and direct sequencing (DS in the detection of KRAS, BRAF and PI3KCA somatic mutations. METHODOLOGY/PRINCIPAL FINDING: DNA was extracted from a slice of either frozen (n = 89 or formalin-fixed and paraffin-embedded (FFPE CRC tissue (n = 70, and then used for mutation analysis by AMDS and DS. All mutations (n = 41 among frozen and 27 among FFPE samples detected by DS were also successfully (100% detected by the AMDS. However, 8 frozen and 6 FFPE samples detected as wild-type in the DS analysis were shown as mutants in the AMDS analysis. By cloning-sequencing assays, these discordant samples were confirmed as true mutants. One sample had simultaneous "hot spot" mutations of KRAS and PIK3CA, and cloning assay comfirmed that E542K and E545K were not on the same allele. Genotyping call rates for DS were 100.0% (89/89 and 74.3% (52/70 in frozen and FFPE samples, respectively, for the first attempt; whereas that of AMDS was 100.0% for both sample sets. For automated DNA extraction and mutation detection by AMDS, frozen tissues (n = 41 were successfully detected all mutations within 70 minutes. CONCLUSIONS/SIGNIFICANCE: AMDS has superior sensitivity and accuracy over DS, and is much easier to execute than conventional labor intensive manual mutation analysis. AMDS has great potential for POCT equipment for mutation analysis.

  8. Risk scaling factors from inactivation to chromosome aberrations, mutations and oncogenic transformations in mammalian cells

    International Nuclear Information System (INIS)

    Alkaharam, A.S.; Watt, D.E.

    1997-01-01

    Analyses of bio-effect mechanisms of damage to mammalian cells in terms of the quality parameter 'mean free path for primary ionisation', for heavy charged particles, strongly suggests that there is a common mechanism for the biological endpoints of chromosome aberrations, mutations and oncogenic transformation. The lethal lesions are identified as unrepaired double-strand breaks in the intracellular DNA. As data for the various endpoints studied can be represented in a unified scheme, for any radiation type, it follows that radiation risk factors can be determined on the basis of simple ratios to the inactivation cross sections. There are intrinsic physical reasons why neutrons can never reach the saturation level of heavier particles for equal fluences. The probabilities of risk with respect to inactivation, for chromosome dicentrics, mutation of the HPRT gene and of oncogenic transformation are respectively 0.24, 5.8 x 10 -5 , and 4.1 x 10 -3 . (author)

  9. Activating mutation in MET oncogene in familial colorectal cancer

    Directory of Open Access Journals (Sweden)

    Schildkraut Joellen M

    2011-10-01

    Full Text Available Abstract Background In developed countries, the lifetime risk of developing colorectal cancer (CRC is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies. Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will

  10. A germline RET proto-oncogene mutation in multiple members of an ...

    African Journals Online (AJOL)

    Background: Multiple endocrine neoplasia type 2A (MEN2A) is a rare cancer associated-syndrome, inherited in an autosomal dominant fashion and caused by germline mutation in RET proto-oncogene. Clinical diagnosis depends on the manifestation of two or more certain endocrine tumors in an individual, such as ...

  11. Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer

    International Nuclear Information System (INIS)

    Sánchez-Muñoz, Alfonso; Gallego, Elena; Luque, Vanessa de; Pérez-Rivas, Luís G; Vicioso, Luís; Ribelles, Nuria; Lozano, José; Alba, Emilio

    2010-01-01

    Mutational analysis of the KRAS gene has recently been established as a complementary in vitro diagnostic tool for the identification of patients with colorectal cancer who will not benefit from anti-epidermal growth factor receptor (EGFR) therapies. Assessment of the mutation status of KRAS might also be of potential relevance in other EGFR-overexpressing tumors, such as those occurring in breast cancer. Although KRAS is mutated in only a minor fraction of breast tumors (5%), about 60% of the basal-like subtype express EGFR and, therefore could be targeted by EGFR inhibitors. We aimed to study the mutation frequency of KRAS in that subtype of breast tumors to provide a molecular basis for the evaluation of anti-EGFR therapies. Total, genomic DNA was obtained from a group of 35 formalin-fixed paraffin-embedded, triple-negative breast tumor samples. Among these, 77.1% (27/35) were defined as basal-like by immunostaining specific for the established surrogate markers cytokeratin (CK) 5/6 and/or EGFR. KRAS mutational status was determined in the purified DNA samples by Real Time (RT)-PCR using primers specific for the detection of wild-type KRAS or the following seven oncogenic somatic mutations: Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp. We found no evidence of KRAS oncogenic mutations in all analyzed tumors. This study indicates that KRAS mutations are very infrequent in triple-negative breast tumors and that EGFR inhibitors may be of potential benefit in the treatment of basal-like breast tumors, which overexpress EGFR in about 60% of all cases

  12. The Oncogenic Roles of DICER1 RNase IIIb Domain Mutations in Ovarian Sertoli-Leydig Cell Tumors

    Directory of Open Access Journals (Sweden)

    Yemin Wang

    2015-08-01

    Full Text Available DICER1, an endoribonuclease required for microRNA (miRNA biogenesis, is essential for embryogenesis and the development of many organs including ovaries. We have recently identified somatic hotspot mutations in RNase IIIb domain of DICER1 in half of ovarian Sertoli-Leydig cell tumors, a rare class of sex-cord stromal cell tumors in young women. These hotspot mutations lost IIIb cleavage activity of DICER1 in vitro and failed to produce 5p-derived miRNAs in mouse Dicer1-null ES cells. However, the oncogenic potential of these hotspot DICER1 mutations has not been studied. Here, we further revealed that the global expression of 5p-derived miRNAs was dramatically reduced in ovarian Sertoli-Leydig cell tumors carrying DICER1 hotspot mutations compared with those without DICER1 hotspot mutation. The miRNA production defect was associated with the deregulation of genes controlling cell proliferation and the cell fate. Using an immortalized human granulosa cell line, SVOG3e, we determined that the D1709N-DICER1 hotspot mutation failed to produce 5p-derived miRNAs, deregulated the expression of several genes that control gonadal differentiation and cell proliferation, and promoted cell growth. Re-expression of let-7 significantly inhibited the growth of D1709N-DICER1 SVOG3e cells, accompanied by the suppression of key regulators of cell cycle control and ovarian gonad differentiation. Taken together, our data revealed that DICER1 hotspot mutations cause systemic loss of 5p-miRNAs that can both drive pseudodifferentiation of testicular elements and cause oncogenic transformation in the ovary.

  13. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations | Office of Cancer Genomics

    Science.gov (United States)

    Large-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers.

  14. Prospective Biomarker Analysis of the Randomized CHER-LOB Study Evaluating the Dual Anti-HER2 Treatment With Trastuzumab and Lapatinib Plus Chemotherapy as Neoadjuvant Therapy for HER2-Positive Breast Cancer.

    Science.gov (United States)

    Guarneri, Valentina; Dieci, Maria Vittoria; Frassoldati, Antonio; Maiorana, Antonino; Ficarra, Guido; Bettelli, Stefania; Tagliafico, Enrico; Bicciato, Silvio; Generali, Daniele Giulio; Cagossi, Katia; Bisagni, Giancarlo; Sarti, Samanta; Musolino, Antonino; Ellis, Catherine; Crescenzo, Rocco; Conte, PierFranco

    2015-09-01

    The CHER-LOB randomized phase II study showed that the combination of lapatinib and trastuzumab plus chemotherapy increases the pathologic complete remission (pCR) rate compared with chemotherapy plus either trastuzumab or lapatinib. A biomarker program was prospectively planned to identify potential predictors of sensitivity to different treatments and to evaluate treatment effect on tumor biomarkers. Overall, 121 breast cancer patients positive for human epidermal growth factor 2 (HER2) were randomly assigned to neoadjuvant chemotherapy plus trastuzumab, lapatinib, or both trastuzumab and lapatinib. Pre- and post-treatment samples were centrally evaluated for HER2, p95-HER2, phosphorylated AKT (pAKT), phosphatase and tensin homolog, Ki67, apoptosis, and PIK3CA mutations. Fresh-frozen tissue samples were collected for genomic analyses. A mutation in PIK3CA exon 20 or 9 was documented in 20% of cases. Overall, the pCR rates were similar in PIK3CA wild-type and PIK3CA-mutated patients (33.3% vs. 22.7%; p = .323). For patients receiving trastuzumab plus lapatinib, the probability of pCR was higher in PIK3CA wild-type tumors (48.4% vs. 12.5%; p = .06). Ki67, pAKT, and apoptosis measured on the residual disease were significantly reduced from baseline. The degree of Ki67 inhibition was significantly higher in patients receiving the dual anti-HER2 blockade. The integrated analysis of gene expression and copy number data demonstrated that a 50-gene signature specifically predicted the lapatinib-induced pCR. PIK3CA mutations seem to identify patients who are less likely to benefit from dual anti-HER2 inhibition. p95-HER2 and markers of phosphoinositide 3-kinase pathway deregulation are not confirmed as markers of different sensitivity to trastuzumab or lapatinib. HER2 is currently the only validated marker to select breast cancer patients for anti-HER2 treatment; however, it is becoming evident that HER2-positive breast cancer is a heterogeneous disease. In addition, more

  15. Targeted capture massively parallel sequencing analysis of LCIS and invasive lobular cancer: Repertoire of somatic genetic alterations and clonal relationships.

    Science.gov (United States)

    Sakr, Rita A; Schizas, Michail; Carniello, Jose V Scarpa; Ng, Charlotte K Y; Piscuoglio, Salvatore; Giri, Dilip; Andrade, Victor P; De Brot, Marina; Lim, Raymond S; Towers, Russell; Weigelt, Britta; Reis-Filho, Jorge S; King, Tari A

    2016-02-01

    Lobular carcinoma in situ (LCIS) has been proposed as a non-obligate precursor of invasive lobular carcinoma (ILC). Here we sought to define the repertoire of somatic genetic alterations in pure LCIS and in synchronous LCIS and ILC using targeted massively parallel sequencing. DNA samples extracted from microdissected LCIS, ILC and matched normal breast tissue or peripheral blood from 30 patients were subjected to massively parallel sequencing targeting all exons of 273 genes, including the genes most frequently mutated in breast cancer and DNA repair-related genes. Single nucleotide variants and insertions and deletions were identified using state-of-the-art bioinformatics approaches. The constellation of somatic mutations found in LCIS (n = 34) and ILC (n = 21) were similar, with the most frequently mutated genes being CDH1 (56% and 66%, respectively), PIK3CA (41% and 52%, respectively) and CBFB (12% and 19%, respectively). Among 19 LCIS and ILC synchronous pairs, 14 (74%) had at least one identical mutation in common, including identical PIK3CA and CDH1 mutations. Paired analysis of independent foci of LCIS from 3 breasts revealed at least one common mutation in each of the 3 pairs (CDH1, PIK3CA, CBFB and PKHD1L1). LCIS and ILC have a similar repertoire of somatic mutations, with PIK3CA and CDH1 being the most frequently mutated genes. The presence of identical mutations between LCIS-LCIS and LCIS-ILC pairs demonstrates that LCIS is a clonal neoplastic lesion, and provides additional evidence that at least some LCIS are non-obligate precursors of ILC. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. First-Line Cetuximab Monotherapy in KRAS/NRAS/BRAF Mutation-Negative Colorectal Cancer Patients.

    Science.gov (United States)

    Moiseyenko, Vladimir M; Moiseyenko, Fedor V; Yanus, Grigoriy A; Kuligina, Ekatherina Sh; Sokolenko, Anna P; Bizin, Ilya V; Kudriavtsev, Alexey A; Aleksakhina, Svetlana N; Volkov, Nikita M; Chubenko, Vyacheslav A; Kozyreva, Kseniya S; Kramchaninov, Mikhail M; Zhuravlev, Alexandr S; Shelekhova, Kseniya V; Pashkov, Denis V; Ivantsov, Alexandr O; Venina, Aigul R; Sokolova, Tatyana N; Preobrazhenskaya, Elena V; Mitiushkina, Natalia V; Togo, Alexandr V; Iyevleva, Aglaya G; Imyanitov, Evgeny N

    2018-06-01

    Colorectal carcinomas (CRCs) are sensitive to treatment by anti-epidermal growth factor receptor (EGFR) antibodies only if they do not carry activating mutations in down-stream EGFR targets (KRAS/NRAS/BRAF). Most clinical trials for chemo-naive CRC patients involved combination of targeted agents and chemotherapy, while single-agent cetuximab or panitumumab studies included either heavily pretreated patients or subjects who were not selected on the basis of molecular tests. We hypothesized that anti-EGFR therapy would have significant efficacy in chemo-naive patients with KRAS/NRAS/BRAF mutation-negative CRC. Nineteen patients were prospectively included in the study. Two (11%) patients experienced partial response (PR) and 11 (58%) subjects showed stable disease (SD). Median time to progression approached 6.1 months (range 1.6-15.0 months). Cetuximab efficacy did not correlate with RNA expression of EGFR and insulin-like growth factor 2 (IGF2). Only one tumor carried PIK3CA mutation, and this CRC responded to cetuximab. Exome analysis of patients with progressive disease (PD) revealed 1 CRC with high-level microsatellite instability and 1 instance of HER2 oncogene amplification; 3 of 4 remaining patients with PD had allergic reactions to cetuximab, while none of the subjects with PR or SD had this complication. Comparison with 19 retrospective KRAS/NRAS/BRAF mutation-negative patients receiving first-line fluoropyrimidines revealed no advantages or disadvantages of cetuximab therapy. Cetuximab demonstrates only modest efficacy when given as a first-line monotherapy to KRAS/NRAS/BRAF mutation-negative CRC patients. It is of question, why meticulous patient selection, which was undertaken in the current study, did not result in the improvement of outcomes of single-agent cetuximab treatment.

  17. Oncogenic mutations in melanomas and benign melanocytic nevi of the female genital tract.

    Science.gov (United States)

    Tseng, Diane; Kim, Julie; Warrick, Andrea; Nelson, Dylan; Pukay, Marina; Beadling, Carol; Heinrich, Michael; Selim, Maria Angelica; Corless, Christopher L; Nelson, Kelly

    2014-08-01

    The genetic heterogeneity of melanomas and melanocytic nevi of the female genital tract is poorly understood. We aim to characterize the frequency of mutations of the following genes: BRAF, NRAS, KIT, GNA11, and GNAQ in female genital tract melanomas. We also characterize the frequency of BRAF mutations in female genital tract melanomas compared with melanocytic nevi. Mutational screening was performed on the following female genital tract melanocytic neoplasms: 25 melanomas, 7 benign melanocytic nevi, and 4 atypical melanocytic nevi. Of the 25 female genital tract melanoma specimens queried, KIT mutations were detected in 4 (16.0%), NRAS mutations in 4 (16.0%), and BRAF mutations in 2 (8.0%) samples. Two of the tumors with KIT mutations harbored double mutations in the same exon. No GNAQ or GNA11 mutations were identified among 11 melanomas screened. BRAF V600E mutations were detected in 7 of 7 benign melanocytic genital nevi (100%) and 3 of 4 atypical genital nevi (75%). Our study is limited by the small sample size of this rare subset of melanomas. KIT, NRAS, and BRAF mutations are found in a subset of female genital tract melanomas. Screening for oncogenic mutations is important for developing and applying clinical therapies for melanomas of the female genital tract. Copyright © 2014 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  18. P53 suppresses expression of the 14-3-3gamma oncogene

    Directory of Open Access Journals (Sweden)

    Qi Wenqing

    2011-08-01

    Full Text Available Abstract Background 14-3-3 proteins are a family of highly conserved proteins that are involved in a wide range of cellular processes. Recent evidence indicates that some of these proteins have oncogenic activity and that they may promote tumorigenesis. We previously showed that one of the 14-3-3 family members, 14-3-3gamma, is over expressed in human lung cancers and that it can induce transformation of rodent cells in vitro. Methods qRTPCR and Western blot analysis were performed to examine 14-3-3gamma expression in non-small cell lung cancers (NSCLC. Gene copy number was analyzed by qPCR. P53 mutations were detected by direct sequencing and also by western blot. CHIP and yeast one hybrid assays were used to detect p53 binding to 14-3-3gamma promoter. Results Quantitative rtPCR results showed that the expression level of 14-3-3gamma was elevated in the majority of NSCLC that we examined which was also consistent with protein expression. Further analysis of the expression pattern of 14-3-3gamma in lung tumors showed a correlation with p53 mutations suggesting that p53 might suppress 14-3-3 gamma expression. Analysis of the gamma promoter sequence revealed the presence of a p53 consensus binding motif and in vitro assays demonstrated that wild-type p53 bound to this motif when activated by ionizing radiation. Deletion of the p53 binding motif eliminated p53's ability to suppress 14-3-3gamma expression. Conclusion Increased expression of 14-3-3gamma in lung cancer coincides with loss of functional p53. Hence, we propose that 14-3-3gamma's oncogenic activities cooperate with loss of p53 to promote lung tumorigenesis.

  19. CD147 reinforces [Ca2+]i oscillations and promotes oncogenic progression in hepatocellular carcinoma.

    Science.gov (United States)

    Tang, Juan; Guo, Yun-Shan; Yu, Xiao-Ling; Huang, Wan; Zheng, Ming; Zhou, Ying-Hui; Nan, Gang; Wang, Jian-Chao; Yang, Hai-Jiao; Yu, Jing-Min; Jiang, Jian-Li; Chen, Zhi-Nan

    2015-10-27

    Oscillations in intracellular Ca2+ concentrations ([Ca2+]i) mediate various cellular function. Although it is known that [Ca2+]i oscillations are susceptible to dysregulation in tumors, the tumor-specific regulators of [Ca2+]i oscillations are poorly characterized. We discovered that CD147 promotes hepatocellular carcinoma (HCC) metastasis and proliferation by enhancing the amplitude and frequency of [Ca2+]i oscillations in HCC cells. CD147 activates two distinct signaling pathways to regulate [Ca2+]i oscillations. By activating FAK-Src-IP3R1 signaling pathway, CD147 promotes Ca2+ release from endoplasmic reticulum (ER) and enhances the amplitude of [Ca2+]i oscillations. Furthermore, CD147 accelerates ER Ca2+refilling and enhances the frequency of [Ca2+]i oscillations through activating CaMKP-PAK1-PP2A-PLB-SERCA signaling pathway. Besides, CD147-promoted ER Ca2+ release and refilling are tightly regulated by changing [Ca2+]i. CD147 may activate IP3R1 channel under low [Ca2+]i conditions and CD147 may activate SERCA pump under high [Ca2+]i conditions. CD147 deletion suppresses HCC tumorigenesis and increases the survival rate of liver-specific CD147 knockout mice by regulating [Ca2+]i oscillations in vivo. Together, these results reveal that CD147 functions as a critical regulator of ER-dependent [Ca2+]i oscillations to promote oncogenic progression in HCC.

  20. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells.

    Science.gov (United States)

    Pasquier, Benoit

    2015-04-03

    Autophagy plays an important role in cancer and it has been suggested that it functions not only as a tumor suppressor pathway to prevent tumor initiation, but also as a prosurvival pathway that helps tumor cells endure metabolic stress and resist death triggered by chemotherapeutic agents. We recently described the discovery of inhibitors of PIK3C3/Vps34 (phosphatidylinositol 3-kinase, catalytic subunit type 3), the lipid kinase component of the class III phosphatidylinositol 3-kinase (PtdIns3K). This PtdIns3K isoform has attracted significant attention in recent years because of its role in autophagy. Following chemical optimization we identified SAR405, a low molecular mass kinase inhibitor of PIK3C3, highly potent and selective with regard to other lipid and protein kinases. We demonstrated that inhibiting the catalytic activity of PIK3C3 disrupts vesicle trafficking from late endosomes to lysosomes. SAR405 treatment also inhibits autophagy induced either by starvation or by MTOR (mechanistic target of rapamycin) inhibition. Finally our results show that combining SAR405 with everolimus, the FDA-approved MTOR inhibitor, results in a significant synergy on the reduction of cell proliferation using renal tumor cells. This result indicates a potential therapeutic application for PIK3C3 inhibitors in cancer.

  1. A novel deleterious PTEN mutation in a patient with early-onset bilateral breast cancer

    International Nuclear Information System (INIS)

    Pradella, Laura Maria; Gasparre, Giuseppe; Turchetti, Daniela; Evangelisti, Cecilia; Ligorio, Claudia; Ceccarelli, Claudio; Neri, Iria; Zuntini, Roberta; Amato, Laura Benedetta; Ferrari, Simona; Martelli, Alberto Maria

    2014-01-01

    An early age at Breast Cancer (BC) onset may be a hallmark of inherited predisposition, but BRCA1/2 mutations are only found in a minority of younger BC patients. Among the others, a fraction may carry mutations in rarer BC genes, such as TP53, STK11, CDH1 and PTEN. As the identification of women harboring such mutations allows for targeted risk-management, the knowledge of associated manifestations and an accurate clinical and family history evaluation are warranted. We describe the case of a woman who developed an infiltrating ductal carcinoma of the right breast at the age of 32, a contralateral BC at age 36 and another BC of the right breast at 40. When she was 39 years-old, during a dermatological examination, mucocutaneous features suggestive of Cowden Syndrome, a disorder associated to germ-line PTEN mutations, were noticed. PTEN genetic testing revealed the novel c.71A > T (p.Asp24Val) mutation, whose deleterious effect, suggested by conservation data and in silico tools, was definitely demonstrated by the incapacity of mutant PTEN to inhibit Akt phosphorylation when used to complement PTEN-null cells. In BC tissue, despite the absence of LOH or somatic mutations of PTEN, Akt phosphorylation was markedly increased in comparison to normal tissue, thus implying additional somatic events into the deregulation of the PI3K/Akt/mTOR pathway and, presumably, into carcinogenesis. Hence, known oncogenic mutations in PIK3CA (exons 10 and 21) and AKT1 (exon 2) were screened in tumor DNA with negative results, which suggests that the responsible somatic event(s) is a different, uncommon one. This case stresses the importance of clinical/genetic assessment of early-onset BC patients in order to identify mutation carriers, who are at high risk of new events, so requiring tailored management. Moreover, it revealed a novel PTEN mutation with pathogenic effect, pointing out, however, the need for further efforts to elucidate the molecular steps of PTEN

  2. Novel gene PUS3 c.A212G mutation in Ukrainian family with intellectual disability

    Directory of Open Access Journals (Sweden)

    Gulkovskyi R. V.

    2015-04-01

    Full Text Available Aim. To evaluate a possible role of a novel c.A212G substitution in the PUS3 gene at intellectual disability (ID. Methods. The observed group consisted of the ID Ukrainian family members (parents and two affected children and the control group – of 300 healthy individuals from general population of Ukraine. Sanger sequencing of the PUS3 gene exon 1 was performed for the family members. Polymorphic variants of c.A212G were analyzed using ARMS PCR. The homology models of wild type and p.Y71C mutant catalytic domains of human Pus3 were generated using the crystal structure of the human Pus1 catalytic domain (PDB ID: 4NZ6 as a template. Results. It was shown that the father of the affected siblings was the c.A212G substitution heterozygous carrier whereas the mother was a wild type allele homozygote, and the exom sequencing result was confirmed – the affected children are 212G homozygotes. We supposed de novo mutation in the maternal germ line. A low frequency of 212G allele (0.0017 was shown in the population of Ukraine. Homology modelling of the wild type and p.Y71C mutant catalytic domain of human Pus3 revealed that substitution p.Y71C is located in close proximity to its active site. Conclusions. The absence of hypoproteinemia in our patients, homozygous for the 212C allele allows us to assume that the mutation c.A212G PUS3 is rather neutral and cannot be the major cause of ID. However, considering a low frequency of the 212G allele in the population and close localization of p.Y71C substitution to the active site of hPus3 we cannot exclude that the c.A212G mutation in PUS3 may be a modifier for some pathologies including syndromic ID.

  3. Mutational analysis of cutaneous squamous cell carcinomas and verrucal keratosis in patients taking BRAF inhibitors.

    Science.gov (United States)

    Anforth, Rachael; Tembe, Varsha; Blumetti, Tatiana; Fernandez-Peñas, Pablo

    2012-09-01

    B-RAF inhibitors (BRAFi) have been shown to improve rates of overall and progression-free survival in patients with stage IV metastatic melanoma positive for the BRAF V600E mutation. However, the main drawback is the development of verrucal keratosis (hyperkeratotic papules with verruca-like characteristics with benign histological findings) and cutaneous squamous cell carcinomas (cuSCC). We have found upstream mutations in RAS as well as PIK3CA in both verrucal keratosis and cuSCC. This suggests that verrucal keratosis is an early clinical presentation of cuSCC in patients on BRAFi. © 2012 John Wiley & Sons A/S.

  4. Combined targeting of BRAF and CRAF or BRAF and PI3K effector pathways is required for efficacy in NRAS mutant tumors.

    Directory of Open Access Journals (Sweden)

    Bijay S Jaiswal

    Full Text Available BACKGROUND: Oncogenic RAS is a highly validated cancer target. Attempts at targeting RAS directly have so far not succeeded in the clinic. Understanding downstream RAS-effectors that mediate oncogenesis in a RAS mutant setting will help tailor treatments that use RAS-effector inhibitors either alone or in combination to target RAS-driven tumors. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have investigated the sufficiency of targeting RAS-effectors, RAF, MEK and PI3-Kinase either alone or in combination in RAS mutant lines, using an inducible shRNA in vivo mouse model system. We find that in colon cancer cells harboring a KRAS(G13D mutant allele, knocking down KRAS alone or the RAFs in combination or the RAF effectors, MEK1 and MEK2, together is effective in delaying tumor growth in vivo. In melanoma cells harboring an NRAS(Q61L or NRAS(Q61K mutant allele, we find that targeting NRAS alone or both BRAF and CRAF in combination or both BRAF and PIK3CA together showed efficacy. CONCLUSION/SIGNIFICANCE: Our data indicates that targeting oncogenic NRAS-driven melanomas require decrease in both pERK and pAKT downstream of RAS-effectors for efficacy. This can be achieved by either targeting both BRAF and CRAF or BRAF and PIK3CA simultaneously in NRAS mutant tumor cells.

  5. Active PI3K pathway causes an invasive phenotype which can be reversed or promoted by blocking the pathway at divergent nodes.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Wallin

    Full Text Available The PTEN/PI3K pathway is commonly mutated in cancer and therefore represents an attractive target for therapeutic intervention. To investigate the primary phenotypes mediated by increased pathway signaling in a clean, patient-relevant context, an activating PIK3CA mutation (H1047R was knocked-in to an endogenous allele of the MCF10A non-tumorigenic human breast epithelial cell line. Introduction of an endogenously mutated PIK3CA allele resulted in a marked epithelial-mesenchymal transition (EMT and invasive phenotype, compared to isogenic wild-type cells. The invasive phenotype was linked to enhanced PIP(3 production via a S6K-IRS positive feedback mechanism. Moreover, potent and selective inhibitors of PI3K were highly effective in reversing this phenotype, which is optimally revealed in 3-dimensional cell culture. In contrast, inhibition of Akt or mTOR exacerbated the invasive phenotype. Our results suggest that invasion is a core phenotype mediated by increased PTEN/PI3K pathway activity and that therapeutic agents targeting different nodes of the PI3K pathway may have dramatic differences in their ability to reverse or promote cancer metastasis.

  6. Mutational status of synchronous and metachronous tumor samples in patients with metastatic non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Quéré, Gilles; Descourt, Renaud; Robinet, Gilles; Autret, Sandrine; Raguenes, Odile; Fercot, Brigitte; Alemany, Pierre; Uguen, Arnaud; Férec, Claude; Quintin-Roué, Isabelle; Le Gac, Gérald

    2016-01-01

    Despite reported discordance between the mutational status of primary lung cancers and their metastases, metastatic sites are rarely biopsied and targeted therapy is guided by genetic biomarkers detected in the primary tumor. This situation is mostly explained by the apparent stability of EGFR-activating mutations. Given the dramatic increase in the range of candidate drugs and high rates of drug resistance, rebiopsy or liquid biopsy may become widespread. The purpose of this study was to test genetic biomarkers used in clinical practice (EGFR, ALK) and candidate biomarkers identified by the French National Cancer Institute (KRAS, BRAF, PIK3CA, HER2) in patients with metastatic non-small-cell lung cancer for whom two tumor samples were available. A retrospective study identified 88 tumor samples collected synchronously or metachronously, from the same or two different sites, in 44 patients. Mutation analysis used SNaPshot (EGFR, KRAS, BRAF missense mutations), pyrosequencing (EGFR and PIK3CA missense mutations), sizing assays (EGFR and HER2 indels) and IHC and/or FISH (ALK rearrangements). About half the patients (52 %) harbored at least one mutation. Five patients had an activating mutation of EGFR in both the primary tumor and the metastasis. The T790M resistance mutation was detected in metastases in 3 patients with acquired resistance to EGFR tyrosine kinase inhibitors. FISH showed discordance in ALK status between a small biopsy sample and the surgical specimen. KRAS mutations were observed in 36 % of samples, six patients (14 %) having discordant genotypes; all discordances concerned sampling from different sites. Two patients (5 %) showed PI3KCA mutations. One metastasis harbored both PI3KCA and KRAS mutations, while the synchronously sampled primary tumor was mutation free. No mutations were detected in BRAF and HER2. This study highlighted noteworthy intra-individual discordance in KRAS mutational status, whereas EGFR status was stable. Intratumoral

  7. The Effect of Coexistence of a Pair of Mutated Oncogenes on the Survival Rate of Invasive Breast Carcinoma Patients

    Science.gov (United States)

    Nair, D. R.

    2017-12-01

    The purpose of this project was to determine the effect of two mutated oncogenes on the survival rate from invasive breast carcinoma when in comparison to the mutation of a single oncogene on the survival rate. An oncogene is defined as a gene, that when mutated, can lead to cancer. The two oncogenes used in this project were human epidermal growth factor receptor 2 (HER2) and c-myc (MYC). HER2 and MYC are both oncogenes that contribute to the formation of cancer. HER2 proteins are receptors on breast cells, and when the HER2 gene is mutated, there is an overexpression of HER2 protein on the breast cell. This makes the breast cells proliferate uncontrollably. MYC is a gene that codes for a transcription factor that plays a role in cell cycle progression. The overexpression of MYC also leads to the proliferation of cells. I hypothesized that if there is a mutation in both the MYC and HER2 genes, then the survival rate of invasive breast carcinoma patients will be lower compared to patients with the mutations of only MYC or HER2. To test this hypothesis, we conducted individual gene searches in CBioPortal for HER2 in the datasets from the studies titled TCGA Nature 2012, TCGA Cell 2015, and TCGA Provisional. We conducted individual gene searches in CBioPortal for MYC in the same datasets. The survival rate data was then exported and analyzed for patients with mutations of either HER2 or MYC and with mutations of both genes. To determine the cases that had both HER2 and MYC mutations, we found the overlapping cases in both HER2 and MYC groups for all three datasets. We calculated the median of the survival data for cases where either HER2 or MYC was mutated and cases where both MYC and HER2 were mutated. From the first dataset, the median of MYC data was 95.53, HER2 data was 95.83, and both HER2 and MYC data was 91.24. In the second dataset, the median of MYC data was 92.17 , HER2 data was 93.5, and both HER2 and MYC data was 87.95 . In the third dataset, the median

  8. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  9. Current status of the PIK Reactor

    International Nuclear Information System (INIS)

    Konoplev, K.A.

    1999-01-01

    At the end of 1998 the heads of the Russian Academy of Science, the Ministry of Science and Technology and the Ministry of Atomic Energy (the bodies involved in the research work with neutrons) declared the PIK-project as one of the objects of the first priority. They set a task to put it into operation in the next 3-4 years and to organize on its base an international center of neutron research. Realization of this task will depend on the real financing. In the last months there was a remarkable impulse in the construction work. In the frame of ISTC Project 321-96 Petersburg Nuclear Physics Institute and Research Institute of Technology developed functional training simulator (FTSC) for Reactor PIK. The utilization of FTSC for reactor PIK design examination began. (author)

  10. The structural pathway of interleukin 1 (IL-1 initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer.

    Directory of Open Access Journals (Sweden)

    Saliha Ece Acuner Ozbabacan

    2014-02-01

    Full Text Available Interleukin-1 (IL-1 is a large cytokine family closely related to innate immunity and inflammation. IL-1 proteins are key players in signaling pathways such as apoptosis, TLR, MAPK, NLR and NF-κB. The IL-1 pathway is also associated with cancer, and chronic inflammation increases the risk of tumor development via oncogenic mutations. Here we illustrate that the structures of interfaces between proteins in this pathway bearing the mutations may reveal how. Proteins are frequently regulated via their interactions, which can turn them ON or OFF. We show that oncogenic mutations are significantly at or adjoining interface regions, and can abolish (or enhance the protein-protein interaction, making the protein constitutively active (or inactive, if it is a repressor. We combine known structures of protein-protein complexes and those that we have predicted for the IL-1 pathway, and integrate them with literature information. In the reconstructed pathway there are 104 interactions between proteins whose three dimensional structures are experimentally identified; only 15 have experimentally-determined structures of the interacting complexes. By predicting the protein-protein complexes throughout the pathway via the PRISM algorithm, the structural coverage increases from 15% to 71%. In silico mutagenesis and comparison of the predicted binding energies reveal the mechanisms of how oncogenic and single nucleotide polymorphism (SNP mutations can abrogate the interactions or increase the binding affinity of the mutant to the native partner. Computational mapping of mutations on the interface of the predicted complexes may constitute a powerful strategy to explain the mechanisms of activation/inhibition. It can also help explain how an oncogenic mutation or SNP works.

  11. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer.

    Science.gov (United States)

    Rothé, F; Laes, J-F; Lambrechts, D; Smeets, D; Vincent, D; Maetens, M; Fumagalli, D; Michiels, S; Drisis, S; Moerman, C; Detiffe, J-P; Larsimont, D; Awada, A; Piccart, M; Sotiriou, C; Ignatiadis, M

    2014-10-01

    Molecular screening programs use next-generation sequencing (NGS) of cancer gene panels to analyze metastatic biopsies. We interrogated whether plasma could be used as an alternative to metastatic biopsies. The Ion AmpliSeq™ Cancer Hotspot Panel v2 (Ion Torrent), covering 2800 COSMIC mutations from 50 cancer genes was used to analyze 69 tumor (primary/metastases) and 31 plasma samples from 17 metastatic breast cancer patients. The targeted coverage for tumor DNA was ×1000 and for plasma cell-free DNA ×25 000. Whole blood normal DNA was used to exclude germline variants. The Illumina technology was used to confirm observed mutations. Evaluable NGS results were obtained for 60 tumor and 31 plasma samples from 17 patients. When tumor samples were analyzed, 12 of 17 (71%, 95% confidence interval (CI) 44% to 90%) patients had ≥1 mutation (median 1 mutation per patient, range 0-2 mutations) in either p53, PIK3CA, PTEN, AKT1 or IDH2 gene. When plasma samples were analyzed, 12 of 17 (71%, 95% CI: 44-90%) patients had ≥1 mutation (median 1 mutation per patient, range 0-2 mutations) in either p53, PIK3CA, PTEN, AKT1, IDH2 and SMAD4. All mutations were confirmed. When we focused on tumor and plasma samples collected at the same time-point, we observed that, in four patients, no mutation was identified in either tumor or plasma; in nine patients, the same mutations was identified in tumor and plasma; in two patients, a mutation was identified in tumor but not in plasma; in two patients, a mutation was identified in plasma but not in tumor. Thus, in 13 of 17 (76%, 95% CI 50% to 93%) patients, tumor and plasma provided concordant results whereas in 4 of 17 (24%, 95% CI 7% to 50%) patients, the results were discordant, providing complementary information. Plasma can be prospectively tested as an alternative to metastatic biopsies in molecular screening programs. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology

  12. The Wnt/β-catenin pathway is deregulated in cemento-ossifying fibromas.

    Science.gov (United States)

    Pereira, Thaís Dos Santos Fontes; Diniz, Marina Gonçalves; França, Josiane Alves; Moreira, Rennan Garcias; Menezes, Grazielle Helena Ferreira de; Sousa, Sílvia Ferreira de; Castro, Wagner Henriques de; Gomes, Carolina Cavaliéri; Gomez, Ricardo Santiago

    2018-02-01

    The molecular pathogenesis of cemento ossifying fibroma (COF) is unclear. The purpose of this study was to investigate mutations in 50 oncogenes and tumor suppressor genes, including APC and CTNNB1, in which mutations in COF have been previously reported. In addition, we assessed the transcriptional levels of the Wnt/β-catenin pathway genes in COF. We used a quantitative polymerase chain reaction array to evaluate the transcriptional levels of 44 Wnt/β-catenin pathway genes in 6 COF samples, in comparison with 6 samples of healthy jaws. By using next-generation sequencing (NGS) in 7 COF samples, we investigated approximately 2800 mutations in 50 genes. The expression assay revealed 12 differentially expressed Wnt/β-catenin pathway genes in COF, including the upregulation of CTNNB1, TCF7, NKD1, and WNT5 A, and downregulation of CTNNBIP1, FRZB, FZD6, RHOU, SFRP4, WNT10 A, WNT3 A, and WNT4, suggesting activation of the Wnt/β-catenin signaling pathway. NGS revealed 5 single nucleotide variants: TP53 (rs1042522), PIK3 CA (rs2230461), MET (rs33917957), KIT (rs3822214), and APC (rs33974176), but none of them was pathogenic. Although NGS detected no oncogenic mutation, deregulation of key Wnt/β-catenin signaling pathway genes appears to be relevant to the molecular pathogenesis of COF. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A rapid, sensitive, reproducible and cost-effective method for mutation profiling of colon cancer and metastatic lymph nodes

    International Nuclear Information System (INIS)

    Fumagalli, Debora; Gavin, Patrick G; Taniyama, Yusuke; Kim, Seung-Il; Choi, Hyun-Joo; Paik, Soonmyung; Pogue-Geile, Katherine L

    2010-01-01

    An increasing number of studies show that genetic markers can aid in refining prognostic information and predicting the benefit from systemic therapy. Our goal was to develop a high throughput, cost-effective and simple methodology for the detection of clinically relevant hot spot mutations in colon cancer. The Maldi-Tof mass spectrometry platform and OncoCarta panel from Sequenom were used to profile 239 colon cancers and 39 metastatic lymph nodes from NSABP clinical trial C-07 utilizing routinely processed FFPET (formalin-fixed paraffin-embedded tissue). Among the 238 common hot-spot cancer mutations in 19 genes interrogated by the OncoCarta panel, mutations were detected in 7 different genes at 26 different nucleotide positions in our colon cancer samples. Twenty-four assays that detected mutations in more than 1% of the samples were reconfigured into a new multiplexed panel, termed here as ColoCarta. Mutation profiling was repeated on 32 mutant samples using ColoCarta and the results were identical to results with OncoCarta, demonstrating that this methodology was reproducible. Further evidence demonstrating the validity of the data was the fact that the mutation frequencies of the most common colon cancer mutations were similar to the COSMIC (Catalog of Somatic Mutations in Cancer) database. The frequencies were 43.5% for KRAS, 20.1% for PIK3CA, and 12.1% for BRAF. In addition, infrequent mutations in NRAS, AKT1, ABL1, and MET were detected. Mutation profiling of metastatic lymph nodes and their corresponding primary tumors showed that they were 89.7% concordant. All mutations found in the lymph nodes were also found in the corresponding primary tumors, but in 4 cases a mutation was present in the primary tumor only. This study describes a high throughput technology that can be used to interrogate DNAs isolated from routinely processed FFPET and identifies the specific mutations that are common to colon cancer. The development of this technology and the Colo

  14. A Network-Based Model of Oncogenic Collaboration for Prediction of Drug Sensitivity

    Directory of Open Access Journals (Sweden)

    Ted G Laderas

    2015-12-01

    Full Text Available Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform cells, resulting in systemic dysregulation that enables proliferation, among other cancer hallmarks. High throughput omics techniques are used in precision medicine, allowing identification of these mutations with the goal of identifying treatments that target them. However, the multiplicity of oncogenes required for transformation, known as oncogenic collaboration, makes assigning effective treatments difficult. Motivated by this observation, we propose a new type of oncogenic collaboration where mutations in genes that interact with an oncogene may contribute to its dysregulation, a new genomic feature that we term surrogate oncogenes. By mapping mutations to a protein/protein interaction network, we can determine significance of the observed distribution using permutation-based methods. For a panel of 38 breast cancer cell lines, we identified significant surrogate oncogenes in oncogenes such as BRCA1 and ESR1. In addition, using Random Forest Classifiers, we show that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that surrogate oncogenes are predictive of survival in patients. The surrogate oncogene framework incorporates unique or rare mutations on an individual level. Our model has the potential for integrating patient-unique mutations in predicting drug-sensitivity, suggesting a potential new direction in precision medicine, as well as a new approach for drug development. Additionally, we show the prevalence of significant surrogate oncogenes in multiple cancers within the Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic feature for guiding pancancer analyses and assigning therapies across many tissue types.

  15. The Genetic Landscape of Breast Carcinomas with Neuroendocrine Differentiation

    Science.gov (United States)

    Marchiò, Caterina; Geyer, Felipe C; Ng, Charlotte KY; Piscuoglio, Salvatore; De Filippo, Maria R; Cupo, Marco; Schultheis, Anne M; Lim, Raymond S; Burke, Kathleen A; Guerini-Rocco, Elena; Papotti, Mauro; Norton, Larry; Sapino, Anna; Weigelt, Britta; Reis-Filho, Jorge S

    2016-01-01

    Neuroendocrine breast carcinomas (NBCs) account for 2–5% of all invasive breast cancers and are histologically similar to neuroendocrine tumours from other sites. They typically express oestrogen receptor (ER), are HER2-negative and of luminal 'intrinsic' subtype. Here we sought to define the mutational profile of NBCs, and to investigate whether NBCs and common forms of luminal (ER+/HER2-) breast cancer display distinct repertoires of somatic mutations. Eighteen ER+/HER2- NBCs, defined as harbouring >50% of tumour cells expressing chromogranin A and/or synaptophysin, and matched normal tissue were microdissected and subjected to massively parallel sequencing targeting all exons of 254 genes most frequently mutated in breast cancer and/or related to DNA repair. Their mutational repertoire was compared to that of ER+/HER2- (n=240), PAM50-defined luminal breast cancers (n=209 luminal A; n=111 luminal B) and invasive lobular carcinomas (n=127) from The Cancer Genome Atlas. NBCs were found to harbour a median of 4.5 (range 1-11) somatic mutations, similar to that of luminal B breast cancers (median=3, range 0-17) but significantly higher than that of luminal A breast cancers (median=3, range 0-18, p=0.02). The most frequently mutated genes were GATA3, FOXA1, TBX3, ARID1A (3/18, 17%), and PIK3CA, AKT1, CDH1 (2/18, 11%). NBCs less frequently harboured PIK3CA mutations than common forms of ER+/HER2, luminal A and invasive lobular carcinomas (pcancers. No TP53 somatic mutations were detected in NBCs. Compared to common forms of luminal breast cancers, NBCs display a distinctive repertoire of somatic mutations featuring lower frequency of TP53 and PIK3CA mutations, and enrichment for FOXA1, TBX3 mutations, and akin to neuroendocrine tumours from other sites, ARID1A mutations. PMID:27925203

  16. Reactor PIK construction

    International Nuclear Information System (INIS)

    Konoplev, Kir

    2003-01-01

    The construction work at the 100 MW researches reactor PIK in year 2002 was in progress. The main activity was concentrated on mechanical, ventilation and electrical equipment. Some systems and subsystems are under adjustment. Hydraulic driving gear for beam shutters are finished in installation, rinsing, and adjusting. Regulating rods test assembling was done. On the critical assembly the first reactor fueling was tested to evaluate the starting neutron source intensity and a sufficiency of existing control and instrument board. Mainline of the PIK facility design and neutron parameters are presented. (author)

  17. Mutational Context and Diverse Clonal Development in Early and Late Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Iver Nordentoft

    2014-06-01

    Full Text Available Bladder cancer (or urothelial cell carcinoma [UCC] is characterized by field disease (malignant alterations in surrounding mucosa and frequent recurrences. Whole-genome, exome, and transcriptome sequencing of 38 tumors, including four metachronous tumor pairs and 20 superficial tumors, identified an APOBEC mutational signature in one-third. This was biased toward the sense strand, correlated with mean expression level, and clustered near breakpoints. A > G mutations were up to eight times more frequent on the sense strand (p < 0.002 in [ACG]AT contexts. The patient-specific APOBEC signature was negatively correlated to repair-gene expression and was not related to clinicopathological parameters. Mutations in gene families and single genes were related to tumor stage, and expression of chromatin modifiers correlated with survival. Evolutionary and subclonal analyses of early/late tumor pairs showed a unitary origin, and discrete tumor clones contained mutated cancer genes. The ancestral clones contained Pik3ca/Kdm6a mutations and may reflect the field-disease mutations shared among later tumors.

  18. Fibroblast Growth Factor Receptor 3 (FGFR3–Analyses of the S249C Mutation and Protein Expression in Primary Cervical Carcinomas

    Directory of Open Access Journals (Sweden)

    Haiyan Dai

    2001-01-01

    Full Text Available Fibroblast growth factor receptor 3 (FGFR3 seems to play an inhibitory role in bone development, as activating mutations in the gene underlie disorders such as achondroplasia and thanatophoric dysplasia. Findings from multiple myeloma (MM indicate that FGFR3 also can act as an oncogene, and mutation of codon 249 in the fibroblast growth factor receptor 3 (FGFR3 gene was recently detected in 3/12 primary cervical carcinomas. We have analysed 91 cervical carcinomas for this specific S249C mutation using amplification created restriction site methodology (ACRS, and detected no mutations. Immunohistochemistry was performed on 73 of the tumours. Reduced protein staining was seen in 43 (58.8% samples. Six of the tumours (8.2% revealed increased protein staining compared with normal cervical tissue. These patients had a better prognosis than those with reduced or normal levels, although not statistically significant. This report weakens the hypothesis of FGFR3 as an oncogene of importance in cervical carcinomas.

  19. Progression inference for somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Leif E. Peterson

    2017-04-01

    Full Text Available Computational methods were employed to determine progression inference of genomic alterations in commonly occurring cancers. Using cross-sectional TCGA data, we computed evolutionary trajectories involving selectivity relationships among pairs of gene-specific genomic alterations such as somatic mutations, deletions, amplifications, downregulation, and upregulation among the top 20 driver genes associated with each cancer. Results indicate that the majority of hierarchies involved TP53, PIK3CA, ERBB2, APC, KRAS, EGFR, IDH1, VHL, etc. Research into the order and accumulation of genomic alterations among cancer driver genes will ever-increase as the costs of nextgen sequencing subside, and personalized/precision medicine incorporates whole-genome scans into the diagnosis and treatment of cancer. Keywords: Oncology, Cancer research, Genetics, Computational biology

  20. Exploratory biomarker analysis for treatment response in KRAS wild type metastatic colorectal cancer patients who received cetuximab plus irinotecan

    International Nuclear Information System (INIS)

    Kim, Seung Tae; Ahn, Tae Jin; Lee, Eunjin; Do, In-Gu; Lee, Su Jin; Park, Se Hoon; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Kang, Won Ki; Kim, Suk Hyeong; Lee, Jeeyun; Kim, Hee Cheol

    2015-01-01

    More than half of the patients selected based on KRAS mutation status fail to respond to the treatment with cetuximab in metastatic colorectal cancer (mCRC). We designed a study to identify additional biomarkers that could act as indicators for cetuximab treatment in mCRC. We investigated 58 tumor samples from wild type KRAS CRC patients treated with cetuximab plus irinotecan (CI). We conducted the genotyping for mutations in either BRAF or PIK3CA and profiled comprehensively the expression of 522 kinase genes. BRAF mutation was detected in 5.1 % (3/58) of patients. All 50 patients showed wild type PIK3CA. Gene expression patterns that categorized patients with or without the disease control to CI were compared by supervised classification analysis. PSKH1, TLK2 and PHKG2 were overexpressed significantly in patients with the disease control to IC. The higher expression value of PSKH1 (r = 0.462, p < 0.001) and TLK2 (r = 0.361, p = 0.005) had the significant correlation to prolonged PFS. The result of this work demonstrated that expression nature of kinase genes such as PSKH1, TLK2 and PHKG2 may be informative to predict the efficacy of CI in wild type KRAS CRC. Mutations in either BRAF or PIK3CA were rare subsets in wild type KRAS CRC

  1. Molecular alterations and clinical prognostic factors for cholangiocarcinoma in Thai population

    Directory of Open Access Journals (Sweden)

    Trachu N

    2017-10-01

    Full Text Available N Trachu,1,2 E Sirachainan,3 N Larbcharoensub,4 W Rattanadech,3 S Detarkom,3 N Monnamo,1 K Kamprerasart,4 D MunTham,5 C Sukasem,6,7 T Reungwetwattana3 1Research Center, Faculty of Medicine Ramathibodi Hospital, 2Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, 3Division of Medical Oncology, Department of Medicine, 4Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 5Section for Mathematic, Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, 6Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, 7Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand Abstract: This study explores genomic alterations in cholangiocarcinoma (CCC tissues in Thai patients. We identified and reviewed the records of patients who had been diagnosed with CCC and for whom sufficient tumor samples for DNA and RNA extraction were available in our database. The specimens were explored for EGFR, KRAS, BRAF, and PIK3CA mutations and ROS1 translocation in 81 samples. Immunohistochemistry staining for HER2, ALK, and Ki-67 expression was tested in 74 samples. Prevalence of EGFR, KRAS, and PIK3CA mutations in this study was 21%, 12%, and 16%, respectively. No BRAF V600 mutation or ROS1 translocation was found. Patients with T790M mutation had a significantly longer overall survival (18.84 months than those with the other types of EGFR mutations (4.08  months; hazard ratio [HR]: 0.26, P=0.038 and also had a significantly lower median Ki-67 (22.5% vs 80%, P=0.025. Furthermore, patients with PIK3CA mutations had a significantly longer median progression-free survival (15.87 vs 7.01 months; HR: 0.46, P=0.043. Strongly positive HER2 expression was found in only 1 patient, whereas ALK expression was not found. The presence of EGFR

  2. Comprehensive molecular characterization of gastric adenocarcinoma

    Science.gov (United States)

    Bass, Adam J.; Thorsson, Vesteinn; Shmulevich, Ilya; Reynolds, Sheila M.; Miller, Michael; Bernard, Brady; Hinoue, Toshinori; Laird, Peter W.; Curtis, Christina; Shen, Hui; Weisenberger, Daniel J.; Schultz, Nikolaus; Shen, Ronglai; Weinhold, Nils; Kelsen, David P.; Bowlby, Reanne; Chu, Andy; Kasaian, Katayoon; Mungall, Andrew J.; Robertson, A. Gordon; Sipahimalani, Payal; Cherniack, Andrew; Getz, Gad; Liu, Yingchun; Noble, Michael S.; Pedamallu, Chandra; Sougnez, Carrie; Taylor-Weiner, Amaro; Akbani, Rehan; Lee, Ju-Seog; Liu, Wenbin; Mills, Gordon B.; Yang, Da; Zhang, Wei; Pantazi, Angeliki; Parfenov, Michael; Gulley, Margaret; Piazuelo, M. Blanca; Schneider, Barbara G.; Kim, Jihun; Boussioutas, Alex; Sheth, Margi; Demchok, John A.; Rabkin, Charles S.; Willis, Joseph E.; Ng, Sam; Garman, Katherine; Beer, David G.; Pennathur, Arjun; Raphael, Benjamin J.; Wu, Hsin-Ta; Odze, Robert; Kim, Hark K.; Bowen, Jay; Leraas, Kristen M.; Lichtenberg, Tara M.; Weaver, Stephanie; McLellan, Michael; Wiznerowicz, Maciej; Sakai, Ryo; Getz, Gad; Sougnez, Carrie; Lawrence, Michael S.; Cibulskis, Kristian; Lichtenstein, Lee; Fisher, Sheila; Gabriel, Stacey B.; Lander, Eric S.; Ding, Li; Niu, Beifang; Ally, Adrian; Balasundaram, Miruna; Birol, Inanc; Bowlby, Reanne; Brooks, Denise; Butterfield, Yaron S. N.; Carlsen, Rebecca; Chu, Andy; Chu, Justin; Chuah, Eric; Chun, Hye-Jung E.; Clarke, Amanda; Dhalla, Noreen; Guin, Ranabir; Holt, Robert A.; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Li, Haiyan A.; Lim, Emilia; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen L.; Nip, Ka Ming; Robertson, A. Gordon; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Beroukhim, Rameen; Carter, Scott L.; Cherniack, Andrew D.; Cho, Juok; Cibulskis, Kristian; DiCara, Daniel; Frazer, Scott; Fisher, Sheila; Gabriel, Stacey B.; Gehlenborg, Nils; Heiman, David I.; Jung, Joonil; Kim, Jaegil; Lander, Eric S.; Lawrence, Michael S.; Lichtenstein, Lee; Lin, Pei; Meyerson, Matthew; Ojesina, Akinyemi I.; Pedamallu, Chandra Sekhar; Saksena, Gordon; Schumacher, Steven E.; Sougnez, Carrie; Stojanov, Petar; Tabak, Barbara; Taylor-Weiner, Amaro; Voet, Doug; Rosenberg, Mara; Zack, Travis I.; Zhang, Hailei; Zou, Lihua; Protopopov, Alexei; Santoso, Netty; Parfenov, Michael; Lee, Semin; Zhang, Jianhua; Mahadeshwar, Harshad S.; Tang, Jiabin; Ren, Xiaojia; Seth, Sahil; Yang, Lixing; Xu, Andrew W.; Song, Xingzhi; Pantazi, Angeliki; Xi, Ruibin; Bristow, Christopher A.; Hadjipanayis, Angela; Seidman, Jonathan; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Akbani, Rehan; Ling, Shiyun; Liu, Wenbin; Rao, Arvind; Weinstein, John N.; Kim, Sang-Bae; Lee, Ju-Seog; Lu, Yiling; Mills, Gordon; Laird, Peter W.; Hinoue, Toshinori; Weisenberger, Daniel J.; Bootwalla, Moiz S.; Lai, Phillip H.; Shen, Hui; Triche, Timothy; Van Den Berg, David J.; Baylin, Stephen B.; Herman, James G.; Getz, Gad; Chin, Lynda; Liu, Yingchun; Murray, Bradley A.; Noble, Michael S.; Askoy, B. Arman; Ciriello, Giovanni; Dresdner, Gideon; Gao, Jianjiong; Gross, Benjamin; Jacobsen, Anders; Lee, William; Ramirez, Ricardo; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Sinha, Rileen; Sumer, S. Onur; Sun, Yichao; Weinhold, Nils; Thorsson, Vésteinn; Bernard, Brady; Iype, Lisa; Kramer, Roger W.; Kreisberg, Richard; Miller, Michael; Reynolds, Sheila M.; Rovira, Hector; Tasman, Natalie; Shmulevich, Ilya; Ng, Santa Cruz Sam; Haussler, David; Stuart, Josh M.; Akbani, Rehan; Ling, Shiyun; Liu, Wenbin; Rao, Arvind; Weinstein, John N.; Verhaak, Roeland G.W.; Mills, Gordon B.; Leiserson, Mark D. M.; Raphael, Benjamin J.; Wu, Hsin-Ta; Taylor, Barry S.; Black, Aaron D.; Bowen, Jay; Carney, Julie Ann; Gastier-Foster, Julie M.; Helsel, Carmen; Leraas, Kristen M.; Lichtenberg, Tara M.; McAllister, Cynthia; Ramirez, Nilsa C.; Tabler, Teresa R.; Wise, Lisa; Zmuda, Erik; Penny, Robert; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Curely, Erin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Shelton, Troy; Shelton, Candace; Sherman, Mark; Benz, Christopher; Lee, Jae-Hyuk; Fedosenko, Konstantin; Manikhas, Georgy; Potapova, Olga; Voronina, Olga; Belyaev, Smitry; Dolzhansky, Oleg; Rathmell, W. Kimryn; Brzezinski, Jakub; Ibbs, Matthew; Korski, Konstanty; Kycler, Witold; ŁaŸniak, Radoslaw; Leporowska, Ewa; Mackiewicz, Andrzej; Murawa, Dawid; Murawa, Pawel; Spychała, Arkadiusz; Suchorska, Wiktoria M.; Tatka, Honorata; Teresiak, Marek; Wiznerowicz, Maciej; Abdel-Misih, Raafat; Bennett, Joseph; Brown, Jennifer; Iacocca, Mary; Rabeno, Brenda; Kwon, Sun-Young; Penny, Robert; Gardner, Johanna; Kemkes, Ariane; Mallery, David; Morris, Scott; Shelton, Troy; Shelton, Candace; Curley, Erin; Alexopoulou, Iakovina; Engel, Jay; Bartlett, John; Albert, Monique; Park, Do-Youn; Dhir, Rajiv; Luketich, James; Landreneau, Rodney; Janjigian, Yelena Y.; Kelsen, David P.; Cho, Eunjung; Ladanyi, Marc; Tang, Laura; McCall, Shannon J.; Park, Young S.; Cheong, Jae-Ho; Ajani, Jaffer; Camargo, M. Constanza; Alonso, Shelley; Ayala, Brenda; Jensen, Mark A.; Pihl, Todd; Raman, Rohini; Walton, Jessica; Wan, Yunhu; Demchok, John A.; Eley, Greg; Mills Shaw, Kenna R.; Sheth, Margi; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Davidsen, Tanja; Hutter, Carolyn M.; Sofia, Heidi J.; Burton, Robert; Chudamani, Sudha; Liu, Jia

    2014-01-01

    Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein–Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also knownasPD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies. PMID:25079317

  3. The ataxia related G1107D mutation of the plasma membrane Ca2+ ATPase isoform 3 affects its interplay with calmodulin and the autoinhibition process.

    Science.gov (United States)

    Calì, Tito; Frizzarin, Martina; Luoni, Laura; Zonta, Francesco; Pantano, Sergio; Cruz, Carlos; Bonza, Maria Cristina; Bertipaglia, Ilenia; Ruzzene, Maria; De Michelis, Maria Ida; Damiano, Nunzio; Marin, Oriano; Zanni, Ginevra; Zanotti, Giuseppe; Brini, Marisa; Lopreiato, Raffaele; Carafoli, Ernesto

    2017-01-01

    The plasma membrane Ca 2+ ATPases (PMCA pumps) have a long, cytosolic C-terminal regulatory region where a calmodulin-binding domain (CaM-BD) is located. Under basal conditions (low Ca 2+ ), the C-terminal tail of the pump interacts with autoinhibitory sites proximal to the active center of the enzyme. In activating conditions (i.e., high Ca 2+ ), Ca 2+ -bound CaM displaces the C-terminal tail from the autoinhibitory sites, restoring activity. We have recently identified a G1107D replacement within the CaM-BD of isoform 3 of the PMCA pump in a family affected by X-linked congenital cerebellar ataxia. Here, we investigate the effects of the G1107D replacement on the interplay of the mutated CaM-BD with both CaM and the pump core, by combining computational, biochemical and functional approaches. We provide evidence that the affinity of the isolated mutated CaM-BD for CaM is significantly reduced with respect to the wild type (wt) counterpart, and that the ability of CaM to activate the pump in vitro is thus decreased. Multiscale simulations support the conclusions on the detrimental effect of the mutation, indicating reduced stability of the CaM binding. We further show that the G1107D replacement impairs the autoinhibition mechanism of the PMCA3 pump as well, as the introduction of a negative charge perturbs the contacts between the CaM-BD and the pump core. Thus, the mutation affects both the ability of the pump to optimally transport Ca 2+ in the activated state, and the autoinhibition mechanism in its resting state. Copyright © 2016. Published by Elsevier B.V.

  4. KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer.

    Science.gov (United States)

    Zhang, H; Ma, R-R; Wang, X-J; Su, Z-X; Chen, X; Shi, D-B; Guo, X-Y; Liu, H-T; Gao, P

    2017-10-05

    Tumor metastasis is the main reason of cancer-related death for gastric cancer (GC) patients and gene expression microarray data indicate that kinesin family member 26B (KIF26B) is one of the most upregulated genes in metastatic GC samples. Specifically, KIF26B expression was upregulated in a stepwise manner from non-tumorous gastric mucosa, primary GC tissues without metastasis, via primary GC tissues with metastasis, to secondary lymph node metastatic (LNM) foci. Increased expression of KIF26B was correlated with tumor size, positive LNM or distant metastases and poor prognosis. KIF26B, negatively regulated by miR-372, promoted GC cell proliferation and metastasis in vitro and in vivo. Mechanistic investigations confirmed that the main target of KIF26B was the vascular endothelial growth factor (VEGF) signaling pathway, particularly by inhibition or overexpression of VEGFA, PXN, FAK, PIK3CA, BCL2 and CREB1. Thus, KIF26B, a novel oncogene regulated by miR-372, promotes proliferation and metastasis through the VEGF pathway in GC.

  5. Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer.

    Science.gov (United States)

    Grellety, Thomas; Gros, Audrey; Pedeutour, Florence; Merlio, Jean-Philippe; Duranton-Tanneur, Valerie; Italiano, Antoine; Soubeyran, Isabelle

    2016-10-01

    Sequencing of genes encoding mitogen-activated protein kinase (MAPK) pathway proteins in colorectal cancer (CRC) has established as dogma that of the genes in a pathway only a single one is ever mutated. We searched for cases with a mutation in more than one MAPK pathway gene (co-mutations). Tumor tissue samples of all patients presenting with CRC, and referred between 01/01/2008 and 01/06/2015 to three French cancer centers for determination of mutation status of RAS/RAF+/-PIK3CA, were retrospectively screened for co-mutations using Sanger sequencing or next-generation sequencing. We found that of 1791 colorectal patients with mutations in the MAPK pathway, 20 had a co-mutation, 8 of KRAS/NRAS, and some even with a third mutation. More than half of the mutations were in codons 12 and 13. We also found 3 cases with a co-mutation of NRAS/BRAF and 9 with a co-mutation of KRAS/BRAF. In 2 patients with a co-mutation of KRAS/NRAS, the co-mutation existed in the primary as well as in a metastasis, which suggests that co-mutations occur early during carcinogenesis and are maintained when a tumor disseminates. We conclude that co-mutations exist in the MAPK genes but with low frequency and as yet with unknown outcome implications.

  6. microRNA 126 inhibits the transition of endothelial progenitor cells to mesenchymal cells via the PIK3R2-PI3K/Akt signalling pathway.

    Science.gov (United States)

    Zhang, Junfeng; Zhang, Zongqi; Zhang, David Y; Zhu, Jianbing; Zhang, Tiantian; Wang, Changqian

    2013-01-01

    Endothelial progenitor cells (EPCs) are capable of proliferating and differentiating into mature endothelial cells, and they have been considered as potential candidates for coronary heart disease therapy. However, the transition of EPCs to mesenchymal cells is not fully understood. This study aimed to explore the role of microRNA 126 (miR-126) in the endothelial-to-mesenchymal transition (EndMT) induced by transforming growth factor beta 1 (TGFβ1). EndMT of rat bone marrow-derived EPCs was induced by TGFβ1 (5 ng/mL) for 7 days. miR-126 expression was depressed in the process of EPC EndMT. The luciferase reporter assay showed that the PI3K regulatory subunit p85 beta (PIK3R2) was a direct target of miR-126 in EPCs. Overexpression of miR-126 by a lentiviral vector (lenti-miR-126) was found to downregulate the mRNA expression of mesenchymal cell markers (α-SMA, sm22-a, and myocardin) and to maintain the mRNA expression of progenitor cell markers (CD34, CD133). In the cellular process of EndMT, there was an increase in the protein expression of PIK3R2 and the nuclear transcription factors FoxO3 and Smad4; PI3K and phosphor-Akt expression decreased, a change that was reversed markedly by overexpression of miR-126. Furthermore, knockdown of PIK3R2 gene expression level showed reversed morphological changes of the EPCs treated with TGFβ1, thereby giving the evidence that PIK3R2 is the target gene of miR-126 during EndMT process. These results show that miR-126 targets PIK3R2 to inhibit EPC EndMT and that this process involves regulation of the PI3K/Akt signalling pathway. miR-126 has the potential to be used as a biomarker for the early diagnosis of intimal hyperplasia in cardiovascular disease and can even be a therapeutic tool for treating cardiovascular diseases mediated by the EndMT process.

  7. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site*

    Science.gov (United States)

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-01-01

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300

  8. Mutation analysis of the RET proto-oncogene in Dutch families with MEN 2A, MEN 2B and FMTC : Two novel mutations and one de novo mutation for MEN 2A

    NARCIS (Netherlands)

    Landsvater, RM; Jansen, RPM; Hofstra, RMW; Buys, CHCM; Lips, CJM; vanAmstel, HKP

    Hereditary C-cell carcinoma is encountered in multiple endocrine neoplasia type 2A (MEN 2A), MEN 2B, and familial medullary thyroid carcinoma (FMTC). Mutations of the RET proto-oncogene are associated with all three diseases. To obtain an insight into the molecular heterogeneity of MEN 2 syndromes

  9. microRNA 126 inhibits the transition of endothelial progenitor cells to mesenchymal cells via the PIK3R2-PI3K/Akt signalling pathway.

    Directory of Open Access Journals (Sweden)

    Junfeng Zhang

    Full Text Available AIMS: Endothelial progenitor cells (EPCs are capable of proliferating and differentiating into mature endothelial cells, and they have been considered as potential candidates for coronary heart disease therapy. However, the transition of EPCs to mesenchymal cells is not fully understood. This study aimed to explore the role of microRNA 126 (miR-126 in the endothelial-to-mesenchymal transition (EndMT induced by transforming growth factor beta 1 (TGFβ1. METHODS AND RESULTS: EndMT of rat bone marrow-derived EPCs was induced by TGFβ1 (5 ng/mL for 7 days. miR-126 expression was depressed in the process of EPC EndMT. The luciferase reporter assay showed that the PI3K regulatory subunit p85 beta (PIK3R2 was a direct target of miR-126 in EPCs. Overexpression of miR-126 by a lentiviral vector (lenti-miR-126 was found to downregulate the mRNA expression of mesenchymal cell markers (α-SMA, sm22-a, and myocardin and to maintain the mRNA expression of progenitor cell markers (CD34, CD133. In the cellular process of EndMT, there was an increase in the protein expression of PIK3R2 and the nuclear transcription factors FoxO3 and Smad4; PI3K and phosphor-Akt expression decreased, a change that was reversed markedly by overexpression of miR-126. Furthermore, knockdown of PIK3R2 gene expression level showed reversed morphological changes of the EPCs treated with TGFβ1, thereby giving the evidence that PIK3R2 is the target gene of miR-126 during EndMT process. CONCLUSIONS: These results show that miR-126 targets PIK3R2 to inhibit EPC EndMT and that this process involves regulation of the PI3K/Akt signalling pathway. miR-126 has the potential to be used as a biomarker for the early diagnosis of intimal hyperplasia in cardiovascular disease and can even be a therapeutic tool for treating cardiovascular diseases mediated by the EndMT process.

  10. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site.

    Science.gov (United States)

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-11-27

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4B(WT)-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4B(WT)-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Endometrial cancer and somatic G>T KRAS transversion in patients with constitutional MUTYH biallelic mutations.

    Science.gov (United States)

    Tricarico, Rossella; Bet, Paola; Ciambotti, Benedetta; Di Gregorio, Carmela; Gatteschi, Beatrice; Gismondi, Viviana; Toschi, Benedetta; Tonelli, Francesco; Varesco, Liliana; Genuardi, Maurizio

    2009-02-18

    MUTYH-associated polyposis (MAP) is an autosomal recessive condition predisposing to colorectal cancer, caused by constitutional biallelic mutations in the base excision repair (BER) gene MUTYH. Colorectal tumours from MAP patients display an excess of somatic G>T mutations in the APC and KRAS genes due to defective BER function. To date, few extracolonic manifestations have been observed in MAP patients, and the clinical spectrum of this condition is not yet fully established. Recently, one patient with a diagnosis of endometrial cancer and biallelic MUTYH mutations has been described. We here report on two additional unrelated MAP patients with biallelic MUTYH germline mutations who developed endometrioid endometrial carcinoma. The endometrial tumours were evaluated for PTEN, PIK3CA, KRAS, BRAF and CTNNB1 mutations. A G>T transversion at codon 12 of the KRAS gene was observed in one tumour. A single 1bp frameshift deletion of PTEN was observed in the same sample. Overall, these findings suggest that endometrial carcinoma is a phenotypic manifestations of MAP and that inefficient repair of oxidative damage can be involved in its pathogenesis.

  12. Tyrosine 842 in the activation loop is required for full transformation by the oncogenic mutant FLT3-ITD.

    Science.gov (United States)

    Kazi, Julhash U; Chougule, Rohit A; Li, Tianfeng; Su, Xianwei; Moharram, Sausan A; Rupar, Kaja; Marhäll, Alissa; Gazi, Mohiuddin; Sun, Jianmin; Zhao, Hui; Rönnstrand, Lars

    2017-07-01

    The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.

  13. Concordance of mutation detection in circulating tumor DNA in early clinical trials using different blood collection protocols

    DEFF Research Database (Denmark)

    Ahlborn, Lise B.; Madsen, Mette; Jonson, Lars

    2017-01-01

    in a clinical setting. Here we investigate the concordance between standard blood collection for molecular analysis using immediate separation of plasma, compared to the use of collection tubes allowing for delayed processing. Methods: In this study, we measured the fractional abundance of tumor specific...... patients with advanced solid cancers enrolled in early clinical trials. Results: Concordance in the fractional abundance of mutations in ctDNA isolated from blood collected in either K3EDTA or BCT tubes from patients with different solid cancers was observed. Conclusions: This study indicates that BCT...... mutations (BRAF p.V600E and PIK3CA p.H1047R) in ctDNA isolated from blood samples collected in either cell-stabilizing Cell-Free DNA BCT tubes (delayed processing within 72 hours) or standard K3EDTA tubes (immediate processing within 15 minutes). Twenty-five blood sample pairs (EDTA/BCT) were collected from...

  14. Ran is a potential therapeutic target for cancer cells with molecular changes associated with activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways

    Science.gov (United States)

    Yuen, Hiu-Fung; Chan, Ka-Kui; Grills, Claire; Murray, James T.; Platt-Higgins, Angela; Eldin, Osama Sharaf; O’Byrne, Ken; Janne, Pasi; Fennell, Dean A.; Johnston, Patrick G.; Rudland, Philip S.; El-Tanani, Mohamed

    2011-01-01

    Purpose Cancer cells have been shown to be more susceptible to Ran knockdown compared to normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK and PI3K/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry (PI and Annexin V staining) and MTT assay in cancer cells grown under different conditions after knockdown of Ran.. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. KRas mutated, c-Met amplified and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of KRas or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. PMID:22090358

  15. Trastuzumab anti-tumor efficacy in patient-derived esophageal squamous cell carcinoma xenograft (PDECX mouse models

    Directory of Open Access Journals (Sweden)

    Wu Xianhua

    2012-08-01

    Full Text Available Abstract Background Trastuzumab is currently approved for the clinical treatment of breast and gastric cancer patients with HER-2 positive tumors, but not yet for the treatment of esophageal carcinoma patients, whose tumors typically show 5 ~ 35% HER-2 gene amplification and 0 ~ 56% HER-2 protein expression. This study aimed to investigate the therapeutic efficacy of Trastuzumab in patient-derived esophageal squamous cell carcinoma xenograft (PDECX mouse models. Methods PDECX models were established by implanting patient esophageal squamous cell carcinoma (ESCC tissues into immunodeficient (SCID/nude mice. HER-2 gene copy number (GCN and protein expression were determined in xenograft tissues and corresponding patient EC samples by FISH and IHC analysis. Trastuzumab anti-tumor efficacy was evaluated within these PDECX models (n = 8 animals/group. Furthermore, hotspot mutations of EGFR, K-ras, B-raf and PIK3CA genes were screened for in the PDECX models and their corresponding patient’s ESCC tissues. Similarity between the PDECX models and their corresponding patient’s ESCC tissue was confirmed by histology, morphology, HER-2 GCN and mutation. Results None of the PDECX models (or their corresponding patient’s ESCC tissues harbored HER-2 gene amplification. IHC staining showed HER-2 positivity (IHC 2+ in 2 PDECX models and negativity in 3 PDECX models. Significant tumor regression was observed in the Trastuzumab-treated EC044 HER-2 positive model (IHC 2+. A second HER-2 positive (IHC 2+ model, EC039, harbored a known PIK3CA mutation and showed strong activation of the AKT signaling pathway and was insensitive to Trastuzumab treatment, but could be resensitised using a combination of Trastuzumab and AKT inhibitor AZD5363. In summary, we established 5 PDECX mouse models and demonstrated tumor regression in response to Trastuzumab treatment in a HER-2 IHC 2+ model, but resistance in a HER-2 IHC 2+/PIK3CA mutated model. Conclusions

  16. Structure of human POFUT1, its requirement in ligand-independent oncogenic Notch signaling, and functional effects of Dowling-Degos mutations

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Brian J.; Zimmerman, Brandon; Egan, Emily D.; Lofgren, Michael; Xu, Xiang; Hesser, Anthony; Blacklow, Stephen C.

    2017-03-17

    Protein O-fucosyltransferase-1 (POFUT1), which transfers fucose residues to acceptor sites on serine and threonine residues of epidermal growth factor-like repeats of recipient proteins, is essential for Notch signal transduction in mammals. Here, we examine the consequences of POFUT1 loss on the oncogenic signaling associated with certain leukemia-associated mutations of human Notch1, report the structures of human POFUT1 in free and GDP-fucose bound states, and assess the effects of Dowling-Degos mutations on human POFUT1 function. CRISPR-mediated knockout of POFUT1 in U2OS cells suppresses both normal Notch1 signaling, and the ligand-independent signaling associated with leukemogenic mutations of Notch1. Normal and oncogenic signaling are rescued by wild-type POFUT1 but rescue is impaired by an active-site R240A mutation. The overall structure of the human enzyme closely resembles that of the Caenorhabditis elegans protein, with an overall backbone RMSD of 0.93 Å, despite primary sequence identity of only 39% in the mature protein. GDP-fucose binding to the human enzyme induces limited backbone conformational movement, though the side chains of R43 and D244 reorient to make direct contact with the fucose moiety in the complex. The reported Dowling-Degos mutations of POFUT1, except for M262T, fail to rescue Notch1 signaling efficiently in the CRISPR-engineered POFUT1-/- background. Together, these studies identify POFUT1 as a potential target for cancers driven by Notch1 mutations and provide a structural roadmap for its inhibition.

  17. FLT3 mutations in canine acute lymphocytic leukemia

    International Nuclear Information System (INIS)

    Suter, Steven E; Small, George W; Seiser, Eric L; Thomas, Rachael; Breen, Matthew; Richards, Kristy L

    2011-01-01

    FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated protein in a variety of human acute leukemias. Mutations leading to constitutively active FLT3, including internal tandem duplications of the juxtamembrane domain (ITD), result in continuous cellular proliferation, resistance to apoptotic cell death, and a poorer prognosis. A better understanding of the molecular consequences of FLT3 activation would allow improved therapeutic strategies in these patients. Canine lymphoproliferative diseases, including lymphoma and acute leukemias, share evolutionarily conserved chromosomal aberrations and exhibit conserved mutations within key oncogenes when compared to their human counterparts. A small percentage of canine acute lymphocytic leukemias (ALL) also exhibit FLT3 ITD mutations. We molecularly characterized FLT3 mutations in two dogs and one cell line, by DNA sequencing, gene expression analysis via quantitative real-time PCR, and sensitivity to the FLT3 inhibitor lestaurtinib via in vitro proliferation assays. FLT 3 and downstream mediators of FLT3 activation were assessed by Western blotting. The canine B-cell leukemia cell line, GL-1, and neoplastic cells from 2/7 dogs diagnosed cytologically with ALL were found to have FLT3 ITD mutations and FLT3 mRNA up-regulation. Lestaurtinib, a small molecule FLT3 inhibitor, significantly inhibited the growth of GL-1 cells, while not affecting the growth of two other canine lymphoid cell lines without the FLT3 mutation. Finally, western blots were used to confirm the conserved downstream mediators of FLT3 activating mutations. These results show that ALL and FLT3 biology is conserved between canine and human patients, supporting the notion that canine ALL, in conjunction with the GL-1 cell line, will be useful in the development of a relevant large animal model to aid in the study of human FLT3 mutant leukemias

  18. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Fiorella Guadagni

    2012-01-01

    Full Text Available The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine at codon 57. In addition, we found in the same patient’s sample a silent polymorphism at codon 11 (Ala11Ala of exon 1. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 729–733

  19. Prognostic and predictive value of p-Akt, EGFR, and p-mTOR in early breast cancer

    International Nuclear Information System (INIS)

    Lazaridis, Georgios; Lambaki, Sofia; Karayannopoulou, Georgia; Eleftheraki, Anastasia G.; Papaspirou, Irene; Bobos, Mattheos; Efstratiou, Ioannis; Pentheroudakis, George; Zamboglou, Nikolaos; Fountzilas, George; Aristotle Univ. of Thessaloniki School of Medicine, Thessaloniki

    2014-01-01

    There are scarce data available on the prognostic/predictive value of p-Akt and p-mTOR protein expression in patients with high-risk early breast cancer. Formalin-fixed paraffin-embedded (FFPE) tumor tissue samples from 997 patients participating in two adjuvant phase III trials were assessed for EGFR, PTEN, p-Akt, p-mTOR protein expression, and PIK3CA mutational status. These markers were evaluated for associations with each other and with selected patient and tumor characteristics, immunohistochemical subtypes, disease-free survival (DFS), and overall survival (OS). p-mTOR protein expression was negatively associated with EGFR and positively associated with PTEN, with p-Akt473, and with the presence of PIK3CA mutations. EGFR expression was positively associated with p-Akt473, p-Akt308, and PIK3CA wild-type tumors. Finally, p-Akt308 was positively associated with p-Akt473 expression. In univariate analysis, EGFR (p = 0.016) and the coexpression of EGFR and p-mTOR (p = 0.015) were associated with poor OS. Among patients with p-Akt308-negative or low-expressing tumors, those treated with hormonal therapy were associated with decreased risk for both relapse and death (p = 0.013 and p [de

  20. p55PIK regulates alpha-fetoprotein expression through the NF-κB signaling pathway.

    Science.gov (United States)

    Ye, Guoguo; Sun, Ge; Cheng, Zhikui; Zhang, Lei; Hu, Kanghong; Xia, Xianmin; Zhou, Yin

    2017-12-15

    Alpha-fetoprotein (AFP) is regarded as a diagnostic and prognostic biomarker and a potential therapeutic target for hepatocellular carcinoma (HCC). However, the regulation of AFP expression in HCC remains poorly understood. This study aimed to investigate the mechanism by which AFP expression is regulated by p55PIK, an isoform of PI3K. Human HCC cell lines (HepG2 and Huh-7) were treated with p55PIK specific competitive inhibitor or shRNA, or p55PIK overexpression vector, in the absence or presence of NF-κB inhibitor PDTC. AFP expression was detected by quantitative real-time PCR and Western blotting. NF-κB responsive elements in AFP enhancer region were characterized by luciferase reporter assay. p55PIK significantly stimulated the expression of AFP by activating NF-κB signaling pathway in HCC cells. Furthermore, two NF-κB binding sites in AFP enhancer region were identified to be primarily responsible for p55PIK mediated upregulation of AFP expression. p55PIK/NF-κB signaling plays an important role in the upregulation of AFP expression in HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Integrated genomic and immunophenotypic classification of pancreatic cancer reveals three distinct subtypes with prognostic/predictive significance.

    Science.gov (United States)

    Wartenberg, Martin; Cibin, Silvia; Zlobec, Inti; Vassella, Erik; Eppenberger-Castori, Serenella M M; Terracciano, Luigi; Eichmann, Micha; Worni, Mathias; Gloor, Beat; Perren, Aurel; Karamitopoulou, Eva

    2018-04-16

    Current clinical classification of pancreatic ductal adenocarcinoma (PDAC) is unable to predict prognosis or response to chemo- or immunotherapy and does not take into account the host reaction to PDAC-cells. Our aim is to classify PDAC according to host- and tumor-related factors into clinically/biologically relevant subtypes by integrating molecular and microenvironmental findings. A well-characterized PDAC-cohort (n=110) underwent next-generation sequencing with a hotspot cancer panel, while Next-generation Tissue-Microarrays were immunostained for CD3, CD4, CD8, CD20, PD-L1, p63, hyaluronan-mediated motility receptor (RHAMM) and DNA mismatch-repair proteins. Previous data on FOXP3 were integrated. Immune-cell counts and protein expression were correlated with tumor-derived driver mutations, clinicopathologic features (TNM 8. 2017), survival and epithelial-mesenchymal-transition (EMT)-like tumor budding.  Results: Three PDAC-subtypes were identified: the "immune-escape" (54%), poor in T- and B-cells and enriched in FOXP3+Tregs, with high-grade budding, frequent CDKN2A- , SMAD4- and PIK3CA-mutations and poor outcome; the "immune-rich" (35%), rich in T- and B-cells and poorer in FOXP3+Tregs, with infrequent budding, lower CDKN2A- and PIK3CA-mutation rate and better outcome and a subpopulation with tertiary lymphoid tissue (TLT), mutations in DNA damage response genes (STK11, ATM) and the best outcome; and the "immune-exhausted" (11%) with immunogenic microenvironment and two subpopulations: one with PD-L1-expression and high PIK3CA-mutation rate and a microsatellite-unstable subpopulation with high prevalence of JAK3-mutations. The combination of low budding, low stromal FOXP3-counts, presence of TLTs and absence of CDKN2A-mutations confers significant survival advantage in PDAC-patients. Immune host responses correlate with tumor characteristics leading to morphologically recognizable PDAC-subtypes with prognostic/predictive significance. Copyright ©2018

  2. HER2 activating mutations are targets for colorectal cancer treatment.

    Science.gov (United States)

    Kavuri, Shyam M; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M; Migliardi, Giorgia; Searleman, Adam C; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A; Bertotti, Andrea; Bose, Ron

    2015-08-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer. ©2015 American Association for Cancer Research.

  3. Oncogene activation and surface markers in mouse lymphomas induced by radiation and nitrosomethylurea

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, I.; Villasante, A.; Diamond, L.; Berman, J.W.; Newcomb, E.W.; Steinberg, J.J.; Lake, R.; Pellicer, A.

    1986-01-01

    Thymic lymphomas have been induced by ..gamma..-radiation and treatment with the chemical nitrosomethylurea in different mice strains. As indicated by the NIH 3T3 focus forming assay, a significant percentage of the tumors contain activated oncogenes of the ras family (K or N). Cloning and sequencing has enabled us to identify single base mutations as the only significant alteration present in the activated oncogenes. These alterations result in the substitution of amino-acid 12 or 61 of the p21 product of the ras genes. With the use of synthetic oligonucleotides it has been found that the tumors do not all contain the same mutation and in one case so far the normal allele is absent.

  4. Promoter Variant of PIK3C3 Is Associated with Autoimmunity against Ro and Sm Epitopes in African-American Lupus Patients

    Directory of Open Access Journals (Sweden)

    Silvia N. Kariuki

    2010-01-01

    Full Text Available The PIK3C3 locus was implicated in case-case genome-wide association study of systemic lupus erythematosus (SLE which we had performed to detect genes associated with autoantibodies and serum interferon-alpha (IFN-α. Herein, we examine a PIK3C3 promoter variant (rs3813065/-442 C/T in an independent multiancestral cohort of 478 SLE cases and 522 controls. rs3813065 C was strongly associated with the simultaneous presence of both anti-Ro and anti-Sm antibodies in African-American patients [OR=2.24 (1.34–3.73, P=2.0×10−3]. This autoantibody profile was associated with higher serum IFN-α (P=7.6×10−6. In the HapMap Yoruba population, rs3813065 was associated with differential expression of ERAP2 (P=2.0×10−5, which encodes an enzyme involved in MHC class I peptide processing. Thus, rs3813065 C is associated with a particular autoantibody profile and altered expression of an MHC peptide processing enzyme, suggesting that this variant modulates serologic autoimmunity in African-American SLE patients.

  5. ORAI1 mutations abolishing store-operated Ca2+ entry cause anhidrotic ectodermal dysplasia with immunodeficiency.

    Science.gov (United States)

    Lian, Jayson; Cuk, Mario; Kahlfuss, Sascha; Kozhaya, Lina; Vaeth, Martin; Rieux-Laucat, Frédéric; Picard, Capucine; Benson, Melina J; Jakovcevic, Antonia; Bilic, Karmen; Martinac, Iva; Stathopulos, Peter; Kacskovics, Imre; Vraetz, Thomas; Speckmann, Carsten; Ehl, Stephan; Issekutz, Thomas; Unutmaz, Derya; Feske, Stefan

    2017-11-16

    Store-operated Ca 2+ entry (SOCE) through Ca 2+ release-activated Ca 2+ channels is an essential signaling pathway in many cell types. Ca 2+ release-activated Ca 2+ channels are formed by ORAI1, ORAI2, and ORAI3 proteins and activated by stromal interaction molecule (STIM) 1 and STIM2. Mutations in the ORAI1 and STIM1 genes that abolish SOCE cause a combined immunodeficiency (CID) syndrome that is accompanied by autoimmunity and nonimmunologic symptoms. We performed molecular and immunologic analysis of patients with CID, anhidrosis, and ectodermal dysplasia of unknown etiology. We performed DNA sequencing of the ORAI1 gene, modeling of mutations on ORAI1 crystal structure, analysis of ORAI1 mRNA and protein expression, SOCE measurements, immunologic analysis of peripheral blood lymphocyte populations by using flow cytometry, and histologic and ultrastructural analysis of patient tissues. We identified 3 novel autosomal recessive mutations in ORAI1 in unrelated kindreds with CID, autoimmunity, ectodermal dysplasia with anhidrosis, and muscular dysplasia. The patients were homozygous for p.V181SfsX8, p.L194P, and p.G98R mutations in the ORAI1 gene that suppressed ORAI1 protein expression and SOCE in the patients' lymphocytes and fibroblasts. In addition to impaired T-cell cytokine production, ORAI1 mutations were associated with strongly reduced numbers of invariant natural killer T and regulatory T (Treg) cells and altered composition of γδ T-cell and natural killer cell subsets. ORAI1 null mutations are associated with reduced numbers of invariant natural killer T and Treg cells that likely contribute to the patients' immunodeficiency and autoimmunity. ORAI1-deficient patients have dental enamel defects and anhidrosis, representing a new form of anhidrotic ectodermal dysplasia with immunodeficiency that is distinct from previously reported patients with anhidrotic ectodermal dysplasia with immunodeficiency caused by mutations in the nuclear factor κB signaling

  6. Mutational analysis and clinical correlation of metastatic colorectal cancer.

    Science.gov (United States)

    Russo, Andrea L; Borger, Darrell R; Szymonifka, Jackie; Ryan, David P; Wo, Jennifer Y; Blaszkowsky, Lawrence S; Kwak, Eunice L; Allen, Jill N; Wadlow, Raymond C; Zhu, Andrew X; Murphy, Janet E; Faris, Jason E; Dias-Santagata, Dora; Haigis, Kevin M; Ellisen, Leif W; Iafrate, Anthony J; Hong, Theodore S

    2014-05-15

    Early identification of mutations may guide patients with metastatic colorectal cancer toward targeted therapies that may be life prolonging. The authors assessed tumor genotype correlations with clinical characteristics to determine whether mutational profiling can account for clinical similarities, differences, and outcomes. Under Institutional Review Board approval, 222 patients with metastatic colon adenocarcinoma (n = 158) and rectal adenocarcinoma (n = 64) who underwent clinical tumor genotyping were reviewed. Multiplexed tumor genotyping screened for >150 mutations across 15 commonly mutated cancer genes. The chi-square test was used to assess genotype frequency by tumor site and additional clinical characteristics. Cox multivariate analysis was used to assess the impact of genotype on overall survival. Broad-based tumor genotyping revealed clinical and anatomic differences that could be linked to gene mutations. NRAS mutations were associated with rectal cancer versus colon cancer (12.5% vs 0.6%; P colon cancer (13% vs 3%; P = .024) and older age (15.8% vs 4.6%; P = .006). TP53 mutations were associated with rectal cancer (30% vs 18%; P = .048), younger age (14% vs 28.7%; P = .007), and men (26.4% vs 14%; P = .03). Lung metastases were associated with PIK3CA mutations (23% vs 8.7%; P = .004). Only mutations in BRAF were independently associated with decreased overall survival (hazard ratio, 2.4; 95% confidence interval, 1.09-5.27; P = .029). The current study suggests that underlying molecular profiles can differ between colon and rectal cancers. Further investigation is warranted to assess whether the differences identified are important in determining the optimal treatment course for these patients. © 2014 American Cancer Society.

  7. Integrated tumor and germline whole-exome sequencing identifies mutations in MAPK and PI3K pathway genes in an adolescent with rosette-forming glioneuronal tumor of the fourth ventricle

    Science.gov (United States)

    Lin, Frank Y.; Bergstrom, Katie; Person, Richard; Bavle, Abhishek; Ballester, Leomar Y.; Scollon, Sarah; Raesz-Martinez, Robin; Jea, Andrew; Birchansky, Sherri; Wheeler, David A.; Berg, Stacey L.; Chintagumpala, Murali M.; Adesina, Adekunle M.; Eng, Christine; Roy, Angshumoy; Plon, Sharon E.; Parsons, D. Williams

    2016-01-01

    The integration of genome-scale studies such as whole-exome sequencing (WES) into the clinical care of children with cancer has the potential to provide insight into the genetic basis of an individual's cancer with implications for clinical management. This report describes the results of clinical tumor and germline WES for a patient with a rare tumor diagnosis, rosette-forming glioneuronal tumor of the fourth ventricle (RGNT). Three pathogenic gene alterations with implications for clinical care were identified: somatic activating hotspot mutations in FGFR1 (p.N546K) and PIK3CA (p.H1047R) and a germline pathogenic variant in PTPN11 (p.N308S) diagnostic for Noonan syndrome. The molecular landscape of RGNT is not well-described, but these data are consistent with prior observations regarding the importance of the interconnected MAPK and PI3K/AKT/mTOR signaling pathways in this rare tumor. The co-occurrence of FGFR1, PIK3CA, and PTPN11 alterations provides further evidence for consideration of RGNT as a distinct molecular entity from pediatric low-grade gliomas and suggests potential therapeutic strategies for this patient in the event of tumor recurrence as novel agents targeting these pathways enter pediatric clinical trials. Although RGNT has not been definitively linked with cancer predisposition syndromes, two prior cases have been reported in patients with RASopathies (Noonan syndrome and neurofibromatosis type 1 [NF1]), providing an additional link between these tumors and the mitogen-activated protein kinase (MAPK) signaling pathway. In summary, this case provides an example of the potential for genome-scale sequencing technologies to provide insight into the biology of rare tumors and yield both tumor and germline results of potential relevance to patient care. PMID:27626068

  8. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities

    International Nuclear Information System (INIS)

    Press, Joshua Z; Smith, Margaret; Spellman, Paul T; Wang, Yuker; Miller, Dianne M; Horsman, Doug; Faham, Malek; Gilks, C Blake; Gray, Joe; Huntsman, David G; De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Ridge, Yolanda; Kaurah, Pardeep; Kalloger, Steve E; Blood, Katherine A

    2008-01-01

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumours were high-grade serous or undifferentiated type. None of the endometrioid (n = 5), clear cell (n = 4), or low grade serous (n = 2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumours with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways

  9. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Gilks, C. Blake; Press, Joshua Z.; De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Ridge, Yolanda; Kaurah, Pardeep; Kalloger, Steve E.; Blood, Katherine A.; Smith, Margaret; Spellman, Paul T.; Wang, Yuker; Miller, Dianne M.; Horsman, Doug; Faham, Malek; Gilks, C. Blake; Gray, Joe; Huntsman, David G.

    2008-05-02

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumors were high-grade serous or undifferentiated type. None of the endometrioid (n=5), clear cell (n=4), or low grade serous (n=2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumors with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.

  10. Ovarian carcinomas with genetic and epigenetic BRCA1 loss havedistinct molecular abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Press, Joshua Z.; De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Ridge, Yolanda; Kaurah, Pardeep; Kalloger, Steve E.; Blood, Katherine A.; Smith, Margaret; Spellman, Paul T.; Wang, Yuker; Miller, Dianne M.; Horsman, Doug; Faham, Malek; Gilks, C. Blake; Gray,Joe; Huntsman, David G.

    2007-07-23

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumors were high-grade serous or undifferentiated type. None of the endometrioid (n = 5), clear cell (n = 4), or low grade serous (n = 2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumors with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.

  11. mTORC1 is a critical mediator of oncogenic Semaphorin3A signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Daisuke; Kawahara, Kohichi; Maeda, Takehiko, E-mail: maeda@nupals.ac.jp

    2016-08-05

    Aberration of signaling pathways by genetic mutations or alterations in the surrounding tissue environments can result in tumor development or metastasis. However, signaling molecules responsible for these processes have not been completely elucidated. Here, we used mouse Lewis lung carcinoma cells (LLC) to explore the mechanism by which the oncogenic activity of Semaphorin3A (Sema3A) signaling is regulated. Sema3A knockdown by shRNA did not affect apoptosis, but decreased cell proliferation in LLCs; both the mammalian target of rapamycin complex 1 (mTORC1) level and glycolytic activity were also decreased. In addition, Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation by oligomycin, but conferred resistance to decreased cell viability induced by glucose starvation. Furthermore, recombinant SEMA3A rescued the attenuation of cell proliferation and glycolytic activity in LLCs after Sema3A knockdown, whereas mTORC1 inhibition by rapamycin completely counteracted this effect. These results demonstrate that Sema3A signaling exerts its oncogenic effect by promoting an mTORC1-mediated metabolic shift from oxidative phosphorylation to aerobic glycolysis. -- Highlights: •Sema3A knockdown decreased proliferation of Lewis lung carcinoma cells (LLCs). •Sema3A knockdown decreased mTORC1 levels and glycolytic activity in LLCs. •Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation. •Sema3A promotes shift from oxidative phosphorylation to aerobic glycolysis via mTORC1.

  12. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Zhang, L-H; Yin, A-A; Cheng, J-X; Huang, H-Y; Li, X-M; Zhang, Y-Q; Han, N; Zhang, X

    2015-01-29

    The tripartite motif protein TRIM24 (tripartite motif-containing 24) has been found to play distinct roles in tumor development and progression, according to different tumor contexts. However, it remains elusive whether TRIM24 plays a role in malignant gliomas that are the most common and deadly primary brain tumors in adults. We report here that TRIM24 expression is positively correlated with glioma malignancy and is negatively associated with prognosis of patients with newly diagnosed glioblastoma, which is the most malignant form of gliomas but displays highly heterogeneous clinical outcome. The multivariate Cox regression analysis demonstrates the independent predictive value of TRIM24 expression level for overall and progression-free survival. Knockdown of TRIM24 suppresses cell proliferation, cell cycle progression, clone formation and in vivo tumor development, whereas overexpression of TRIM24 promotes cell growth. Chromatin immunoprecipitation, real-time reverse transcription-PCR and mutation analyses demonstrate that TRIM24 binds to the PIK3CA promoter via its PHD-Bromo domain to activate the transcription of PIK3CA gene, thus enhancing phosphatidylinositide 3-kinase (PI3K)/Akt signaling. The pan-PI3K inhibitor LY294002 and small interfering RNA targeting PIK3CA both abrogate the growth-promoting effect of TRIM24. Moreover, TRIM24 regulates the expression of DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) through PI3K/Akt/nuclear factor-κB signaling transduction and enhances resistance to temozolomide, the standard chemotherapeutic agent for glioblastoma. Finally, glioblastoma patients with low TRIM24 expression benefit from chemotherapy, whereas those with high TRIM24 expression do not have such benefit. Our results suggest that TRIM24 might serve as a potential prognostic marker and therapeutic target for the management of malignant gliomas.

  13. Exome sequencing of oral squamous cell carcinoma in users of Arabian snuff reveals novel candidates for driver genes.

    Science.gov (United States)

    Al-Hebshi, Nezar Noor; Li, Shiyong; Nasher, Akram Thabet; El-Setouhy, Maged; Alsanosi, Rashad; Blancato, Jan; Loffredo, Christopher

    2016-07-15

    The study sought to identify genetic aberrations driving oral squamous cell carcinoma (OSCC) development among users of shammah, an Arabian preparation of smokeless tobacco. Twenty archival OSCC samples, 15 of which with a history of shammah exposure, were whole-exome sequenced at an average depth of 127×. Somatic mutations were identified using a novel, matched controls-independent filtration algorithm. CODEX and Exomedepth coupled with a novel, Database of Genomic Variant-based filter were employed to call somatic gene-copy number variations. Significantly mutated genes were identified with Oncodrive FM and the Youn and Simon's method. Candidate driver genes were nominated based on Gene Set Enrichment Analysis. The observed mutational spectrum was similar to that reported by the TCGA project. In addition to confirming known genes of OSCC (TP53, CDKNA2, CASP8, PIK3CA, HRAS, FAT1, TP63, CCND1 and FADD) the analysis identified several candidate novel driver events including mutations of NOTCH3, CSMD3, CRB1, CLTCL1, OSMR and TRPM2, amplification of the proto-oncogenes FOSL1, RELA, TRAF6, MDM2, FRS2 and BAG1, and deletion of the recently described tumor suppressor SMARCC1. Analysis also revealed significantly altered pathways not previously implicated in OSCC including Oncostatin-M signalling pathway, AP-1 and C-MYB transcription networks and endocytosis. There was a trend for higher number of mutations, amplifications and driver events in samples with history of shammah exposure particularly those that tested EBV positive, suggesting an interaction between tobacco exposure and EBV. The work provides further evidence for the genetic heterogeneity of oral cancer and suggests shammah-associated OSCC is characterized by extensive amplification of oncogenes. © 2016 UICC.

  14. Distinct molecular features of different macroscopic subtypes of colorectal neoplasms.

    Directory of Open Access Journals (Sweden)

    Kenichi Konda

    Full Text Available Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs.We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI] and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers alterations in 158 CRNs including 56 polypoid neoplasms (PNs, 25 granular type laterally spreading tumors (LST-Gs, 48 non-granular type LSTs (LST-NGs, 19 depressed neoplasms (DNs and 10 small flat-elevated neoplasms (S-FNs on the basis of macroscopic appearance.S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs (P<0.001. By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively (P<0.007. We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively (P<0.005. Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05. PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41.We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal tumorigenesis.

  15. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Directory of Open Access Journals (Sweden)

    Simon Leuchs

    Full Text Available Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs and live pigs carrying a latent TP53(R167H mutant allele, orthologous to oncogenic human mutant TP53(R175H and mouse Trp53(R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.

  16. Absence of mutations in the coding sequence of the potential tumor suppressor 3pK in metastatic melanoma

    Directory of Open Access Journals (Sweden)

    Houben Roland

    2005-12-01

    Full Text Available Abstract Background Activation of Ras or Raf contributes to tumorigenesis of melanoma. However, constitutive Raf activation is also a characteristic of the majority of benign melanocytic nevi and high intensity signaling of either Ras or Raf was found to induce growth inhibition and senescence rather than transformation. Since the chromosome 3p kinase (3pK is a target of the Ras/Raf/Mek/Erk signaling pathway which antagonizes the function of the oncogene and anti-differentiation factor Bmi-1, 3pK may function as a tumor suppressor in tumors with constitutive Ras/Raf activation. Consequently, we tested whether inactivating 3pK mutations are present in melanoma. Methods 30 metastatic melanoma samples, which were positive for activating mutations of either BRaf or NRas, were analyzed for possible mutations in the 3pk gene. The 10 coding exons and their flanking intron sequences were amplified by PCR and direct sequencing of the PCR products was performed. Results This analysis revealed that besides the presence of some single nucleotide polymorphisms in the 3pk gene, we could not detect any possible loss of function mutation in any of these 30 metastatic melanoma samples selected for the presence of activating mutations within the Ras/Raf/Mek/Erk signaling pathway. Conclusion Hence, in melanoma with constitutively active Ras/Raf inactivating mutations within the 3pk gene do not contribute to the oncogenic phenotype of this highly malignant tumor.

  17. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    International Nuclear Information System (INIS)

    Lee, Kiwon; Liu, Yin; Mo, Jun Qin; Zhang, Jinsong; Dong, Zhongyun; Lu, Shan

    2008-01-01

    Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα)-mediated signaling axis. Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis. We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation. Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression

  18. Inhibitors of EGFR and PI3K/Akt/mtor pathways for the treatment of head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Palomares, E. M.

    2015-07-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and although new therapeutic approaches have been recently evaluated, improvement in overall patient survival is still poor. For this reason, new effective and selective clinical treatments are urgently needed. Genomic analysis allowing the identification of differences between normal and tumor cells provides new therapeutic options identifying novel targets or drugs that have shown efficacy in other tumor types. In this sense, EGFR amplification and/or overexpression are frequent events in HNSCC; in fact, the only targeted therapy approved to treat HNSCC is the anti-EFGR antibody Cetuximab. Based on cell line drug screening studies we identified Bosutinib (SKI-606), a Src/Abl inhibitor, as a candidate drug to treat HNSCC. Using a panel of HNSCC cell lines we found that the treatment with Bosutinib was able to reduce cell proliferation and to induce apoptosis at higher doses. We verified that the drug rapidly inhibited EGFR phosphorylation, and sensitivity to Bosutinib correlated with the activation of EGFR in tumor-derived cell lines. Moreover, Bosutinib showed a synergistic effect on cell viability with the PI3K? inhibitor BYL719 only in those cell lines with mutations in PIK3CA. These results suggest that Bosutinib could be a new effective drug in the treatment of HNSCC cancer, especially in tumors with high activity of EGFR, and its combination with BYL719 could especially benefit those patients bearing activating mutations of PIK3CA. (Author)

  19. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    Science.gov (United States)

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  20. Detection of somatic mutations by high-resolution DNA melting (HRM analysis in multiple cancers.

    Directory of Open Access Journals (Sweden)

    Jesus Gonzalez-Bosquet

    Full Text Available Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each. HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  1. Oncogenic role of fibroblast growth factor receptor 3 in tumorigenesis of urinary bladder cancer.

    Science.gov (United States)

    Pandith, Arshad A; Shah, Zafar A; Siddiqi, Mushtaq A

    2013-05-01

    Bladder cancer is the second most common genitourinary tumor and constitutes a very heterogeneous disease. Molecular and pathologic studies suggest that low-grade noninvasive and high-grade invasive urothelial cell carcinoma (UCC) arise via distinct pathways. Low-grade noninvasive UCC represent the majority of tumors at presentation. A high proportion of patients with low-grade UCC develop recurrences but usually with no progression to invasive disease. At presentation, a majority of the bladder tumors (70%-80%) are low-grade noninvasive (pTa). Several genetic changes may occur in bladder cancer, but activating mutations in the fibroblast growth factor receptor 3 (FGFR3) genes are the most common and most specific genetic abnormality in bladder cancer. Interestingly, these mutations are associated with bladder tumors of low stage and grade, which makes the FGFR3 mutation the first marker that can be used for diagnosis of noninvasive bladder tumors. Since the first report of FGFR3 involvement in bladder tumors, numerous studies have been conducted to understand its function and thereby confirm the oncogenic role of this receptor particularly in noninvasive groups. Efforts are on to exploit this receptor as a therapeutic target, which holds much promise in the treatment of bladder cancer, particularly low-grade noninvasive tumors. Further studies need to explore the potential use of FGFR3 mutations in bladder cancer diagnosis, prognosis, and in surveillance of patients with bladder cancer. This review focuses on the role of FGFR3 in bladder tumors in the backdrop of various studies published. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Oncogenic Activation of Fibroblast Growth Factor Receptor-3 and RAS Genes as Non-Overlapping Mutual Exclusive Events in Urinary Bladder Cancer.

    Science.gov (United States)

    Pandith, Arshad A; Hussain, Aashaq; Khan, Mosin S; Shah, Zafar A; Wani, M Saleem; Siddiqi, Mushtaq A

    2016-01-01

    Urinary bladder cancer is a common malignancy in the West and ranks as the 7th most common cancer in our region of Kashmir, India. FGFR3 mutations are frequent in superficial urothelial carcinoma (UC) differing from the RAS gene mutational pattern. The aim of this study was to analyze the frequency and association of FGFR3 and RAS gene mutations in UC cases. Paired tumor and adjacent normal tissue specimens of 65 consecutive UC patients were examined. DNA preparations were evaluated for the occurrence of FGFR3 and RAS gene mutations by PCR-SCCP and DNA sequencing. Somatic point mutations of FGFR3 were identified in 32.3% (21 of 65). The pattern and distribution were significantly associated with low grade/stage (<0.05). The overall mutations in exon 1 and 2 in all the forms of RAS genes aggregated to 21.5% and showed no association with any clinic-pathological parameters. In total, 53.8% (35 of 65) of the tumors studied had mutations in either a RAS or FGFR3 gene, but these were totally mutually exclusive in and none of the samples showed both the mutational events in mutually exclusive RAS and FGFR3. We conclude that RAS and FGFR3 mutations in UC are mutually exclusive and non-overlapping events which reflect activation of oncogenic pathways through different elements.

  3. Molecular Markers Increase Precision of the European Association of Urology Non-Muscle-Invasive Bladder Cancer Progression Risk Groups

    DEFF Research Database (Denmark)

    van Kessel, Kim E M; van der Keur, Kirstin A; Dyrskjøt, Lars

    2018-01-01

    prospectively included 1,239 patients in follow-up for NMIBC in six European countries. Fresh-frozen tumor samples were analyzed for GATA2, TBX2, TBX3, and ZIC4 methylation and FGFR3, TERT, PIK3CA, and RAS mutation status. Cox regression analyses identified markers that were significantly associated...

  4. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2.

    Science.gov (United States)

    Zuo, Tao; Liu, Runhua; Zhang, Huiming; Chang, Xing; Liu, Yan; Wang, Lizhong; Zheng, Pan; Liu, Yang

    2007-12-01

    S-phase kinase-associated protein 2 (SKP2) is a component of the E3 ubiquitin ligase SKP1-Cul1-Fbox complex. Overexpression of SKP2 results in cell cycle dysregulation and carcinogenesis; however, the genetic lesions that cause this upregulation are poorly understood. We recently demonstrated that forkhead box P3 (FOXP3) is an X-linked breast cancer suppressor and an important repressor of the oncogene ERBB2/HER2. Since FOXP3 suppresses tumor growth regardless of whether the tumors overexpress ERBB2/HER2, additional FOXP3 targets may be involved in its tumor suppressor activity. Here, we show that mammary carcinomas from mice heterozygous for a Foxp3 mutation exhibited increased Skp2 expression. Ectopic expression of FOXP3 in mouse mammary cancer cells repressed SKP2 expression with a corresponding increase in p27 and polyploidy. Conversely, siRNA silencing of the FOXP3 gene in human mammary epithelial cells increased SKP2 expression. We also show that Foxp3 directly interacted with and repressed the Skp2 promoter. Moreover, the analysis of over 200 primary breast cancer samples revealed an inverse correlation between FOXP3 and SKP2 levels. Finally, we demonstrated that downregulation of SKP2 was critical for FOXP3-mediated growth inhibition in breast cancer cells that do not overexpress ERBB2/HER2. Our data provide genetic, biochemical, and functional evidence that FOXP3 is a novel transcriptional repressor for the oncogene SKP2.

  5. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    Science.gov (United States)

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  6. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing

    Science.gov (United States)

    Jin, Ying; Shao, Yang; Shi, Xun; Lou, Guangyuan; Zhang, Yiping; Wu, Xue; Tong, Xiaoling; Yu, Xinmin

    2016-01-01

    Patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive epithelial growth factor receptor (EGFR) mutations invariably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Identification of actionable genetic alterations conferring drug-resistance can be helpful for guiding the subsequent treatment decision. One of the major resistant mechanisms is secondary EGFR-T790M mutation. Other mechanisms, such as HER2 and MET amplifications, and PIK3CA mutations, were also reported. However, the mechanisms in the remaining patients are still unknown. In this study, we performed mutational profiling in a cohort of 83 NSCLC patients with TKI-sensitizing EGFR mutations at diagnosis and acquired resistance to three different first-generation EGFR TKIs using targeted next generation sequencing (NGS) of 416 cancer-related genes. In total, we identified 322 genetic alterations with a median of 3 mutations per patient. 61% of patients still exhibit TKI-sensitizing EGFR mutations, and 36% of patients acquired EGFR-T790M. Besides other known resistance mechanisms, we identified TET2 mutations in 12% of patients. Interestingly, we also observed SOX2 amplification in EGFR-T790M negative patients, which are restricted to Icotinib treatment resistance, a drug widely used in Chinese NSCLC patients. Our study uncovered mutational profiles of NSCLC patients with first-generation EGFR TKIs resistance with potential therapeutic implications. PMID:27528220

  7. Present status of PIK gadolinium control

    International Nuclear Information System (INIS)

    Petrov, Yu.V.; Garusov, E.A.; Shustov, V.A.

    1994-01-01

    A liquid control element (LCE) containing a water solution of gadolinium nitrate Gd(NO 3 ) 3 was originally planned for use at the PIK reactor for partial compensation of poisoning and fuel burnup [1-3]. However, a further analysis has shown that quick forcing-out, boiling up or flowing-out of the absorbing solution (though of low probability) can lead to the dangerous prompt overcriticality of the reactor. The results of the analysis are presented as well as the upper limit of the reactivity, quick insertion of which still is safe for the reactor (J.P.N.)

  8. Development of RNA-FISH Assay for Detection of Oncogenic FGFR3-TACC3 Fusion Genes in FFPE Samples.

    Directory of Open Access Journals (Sweden)

    Masahiro Kurobe

    Full Text Available Oncogenic FGFR3-TACC3 fusions and FGFR3 mutations are target candidates for small molecule inhibitors in bladder cancer (BC. Because FGFR3 and TACC3 genes are located very closely on chromosome 4p16.3, detection of the fusion by DNA-FISH (fluorescent in situ hybridization is not a feasible option. In this study, we developed a novel RNA-FISH assay using branched DNA probe to detect FGFR3-TACC3 fusions in formaldehyde-fixed paraffin-embedded (FFPE human BC samples.The RNA-FISH assay was developed and validated using a mouse xenograft model with human BC cell lines. Next, we assessed the consistency of the RNA-FISH assay using 104 human BC samples. In this study, primary BC tissues were stored as frozen and FFPE tissues. FGFR3-TACC3 fusions were independently detected in FFPE sections by the RNA-FISH assay and in frozen tissues by RT-PCR. We also analyzed the presence of FGFR3 mutations by targeted sequencing of genomic DNA extracted from deparaffinized FFPE sections.FGFR3-TACC3 fusion transcripts were identified by RNA-FISH and RT-PCR in mouse xenograft FFPE tissues using the human BC cell lines RT112 and RT4. These cell lines have been reported to be fusion-positive. Signals for FGFR3-TACC3 fusions by RNA-FISH were positive in 2/60 (3% of non-muscle-invasive BC (NMIBC and 2/44 (5% muscle-invasive BC (MIBC patients. The results of RT-PCR of all 104 patients were identical to those of RNA-FISH. FGFR3 mutations were detected in 27/60 (45% NMIBC and 8/44 (18% MIBC patients. Except for one NMIBC patient, FGFR3 mutation and FGFR3-TACC3 fusion were mutually exclusive.We developed an RNA-FISH assay for detection of the FGFR3-TACC3 fusion in FFPE samples of human BC tissues. Screening for not only FGFR3 mutations, but also for FGFR3-TACC3 fusion transcripts has the potential to identify additional patients that can be treated with FGFR inhibitors.

  9. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    Science.gov (United States)

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  10. Changes in the dynamics of the cardiac troponin C molecule explain the effects of Ca2+-sensitizing mutations.

    Science.gov (United States)

    Stevens, Charles M; Rayani, Kaveh; Singh, Gurpreet; Lotfalisalmasi, Bairam; Tieleman, D Peter; Tibbits, Glen F

    2017-07-14

    Cardiac troponin C (cTnC) is the regulatory protein that initiates cardiac contraction in response to Ca 2+ TnC binding Ca 2+ initiates a cascade of protein-protein interactions that begins with the opening of the N-terminal domain of cTnC, followed by cTnC binding the troponin I switch peptide (TnI SW ). We have evaluated, through isothermal titration calorimetry and molecular-dynamics simulation, the effect of several clinically relevant mutations (A8V, L29Q, A31S, L48Q, Q50R, and C84Y) on the Ca 2+ affinity, structural dynamics, and calculated interaction strengths between cTnC and each of Ca 2+ and TnI SW Surprisingly the Ca 2+ affinity measured by isothermal titration calorimetry was only significantly affected by half of these mutations including L48Q, which had a 10-fold higher affinity than WT, and the Q50R and C84Y mutants, each of which had affinities 3-fold higher than wild type. This suggests that Ca 2+ affinity of the N-terminal domain of cTnC in isolation is insufficient to explain the pathogenicity of these mutations. Molecular-dynamics simulation was used to evaluate the effects of these mutations on Ca 2+ binding, structural dynamics, and TnI interaction independently. Many of the mutations had a pronounced effect on the balance between the open and closed conformations of the TnC molecule, which provides an indirect mechanism for their pathogenic properties. Our data demonstrate that the structural dynamics of the cTnC molecule are key in determining myofilament Ca 2+ sensitivity. Our data further suggest that modulation of the structural dynamics is the underlying molecular mechanism for many disease mutations that are far from the regulatory Ca 2+ -binding site of cTnC. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Novel Secondary Somatic Mutations in Ewing's Sarcoma and Desmoplastic Small Round Cell Tumors

    Science.gov (United States)

    Janku, Filip; Ludwig, Joseph A.; Naing, Aung; Benjamin, Robert S.; Brown, Robert E.; Anderson, Pete; Kurzrock, Razelle

    2014-01-01

    Background Ewing's sarcoma (ES) and desmoplastic small round cell tumors (DSRCT) are small round blue cell tumors driven by an N-terminal containing EWS translocation. Very few somatic mutations have been reported in ES, and none have been identified in DSRCT. The aim of this study is to explore potential actionable mutations in ES and DSRCT. Methodology Twenty eight patients with ES or DSRCT had tumor tissue available that could be analyzed by one of the following methods: 1) Next-generation exome sequencing platform; 2) Multiplex PCR/Mass Spectroscopy; 3) Polymerase chain reaction (PCR)-based single- gene mutation screening; 4) Sanger sequencing; 5) Morphoproteomics. Principal Findings Novel somatic mutations were identified in four out of 18 patients with advanced ES and two of 10 patients with advanced DSRCT (six out of 28 (21.4%));KRAS (n = 1), PTPRD (n = 1), GRB10 (n = 2), MET (n = 2) and PIK3CA (n = 1). One patient with both PTPRD and GRB10 mutations and one with a GRB10 mutation achieved a complete remission (CR) on an Insulin like growth factor 1 receptor (IGF1R) inhibitor based treatment. One patient, who achieved a partial remission (PR) with IGF1R inhibitor treatment, but later developed resistance, demonstrated a KRAS mutation in the post-treatment resistant tumor, but not in the pre-treatment tumor suggesting that the RAF/RAS/MEK pathway was activated with progression. Conclusions We have reported several different mutations in advanced ES and DSRCT that have direct implications for molecularly-directed targeted therapy. Our technology agnostic approach provides an initial mutational roadmap used in the path towards individualized combination therapy. PMID:25119929

  12. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses

    Science.gov (United States)

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  13. KRAS Mutation Status and Clinical Outcome of Preoperative Chemoradiation With Cetuximab in Locally Advanced Rectal Cancer: A Pooled Analysis of 2 Phase II Trials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Young; Shim, Eun Kyung [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Yeo, Hyun Yang [Division of Translational and Clinical Research I, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Baek, Ji Yeon [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Hong, Yong Sang [Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Dae Yong [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Division of Translational and Clinical Research I, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Kim, Tae Won [Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Jee Hyun [Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Im, Seock-Ah [Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jung, Kyung Hae [Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Chang, Hee Jin, E-mail: heejincmd@yahoo.com [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Division of Translational and Clinical Research I, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of)

    2013-01-01

    Purpose: Cetuximab-containing chemotherapy is known to be effective for KRAS wild-type metastatic colorectal cancer; however, it is not clear whether cetuximab-based preoperative chemoradiation confers an additional benefit compared with chemoradiation without cetuximab in patients with locally advanced rectal cancer. Methods and Materials: We analyzed EGFR, KRAS, BRAF, and PIK3CA mutation status with direct sequencing and epidermal growth factor receptor (EGFR) and Phosphatase and tensin homolog (PTEN) expression status with immunohistochemistry in tumor samples of 82 patients with locally advanced rectal cancer who were enrolled in the IRIX trial (preoperative chemoradiation with irinotecan and capecitabine; n=44) or the ERBIRIX trial (preoperative chemoradiation with irinotecan and capecitabine plus cetuximab; n=38). Both trials were similarly designed except for the administration of cetuximab; radiation therapy was administered at a dose of 50.4 Gy/28 fractions and irinotecan and capecitabine were given at doses of 40 mg/m{sup 2} weekly and 1650 mg/m{sup 2}/day, respectively, for 5 days per week. In the ERBIRIX trial, cetuximab was additionally given with a loading dose of 400 mg/m{sup 2} on 1 week before radiation, and 250 mg/m{sup 2} weekly thereafter. Results: Baseline characteristics before chemoradiation were similar between the 2 trial cohorts. A KRAS mutation in codon 12, 13, and 61 was noted in 15 (34%) patients in the IRIX cohort and 5 (13%) in the ERBIRIX cohort (P=.028). Among 62 KRAS wild-type cancer patients, major pathologic response rate, disease-free survival and pathologic stage did not differ significantly between the 2 cohorts. No mutations were detected in BRAF exon 11 and 15, PIK3CA exon 9 and 20, or EGFR exon 18-24 in any of the 82 patients, and PTEN and EGFR expression were not predictive of clinical outcome. Conclusions: In patients with KRAS wild-type locally advanced rectal cancer, the addition of cetuximab to the chemoradiation with

  14. KRAS Mutation Status and Clinical Outcome of Preoperative Chemoradiation With Cetuximab in Locally Advanced Rectal Cancer: A Pooled Analysis of 2 Phase II Trials

    International Nuclear Information System (INIS)

    Kim, Sun Young; Shim, Eun Kyung; Yeo, Hyun Yang; Baek, Ji Yeon; Hong, Yong Sang; Kim, Dae Yong; Kim, Tae Won; Kim, Jee Hyun; Im, Seock-Ah; Jung, Kyung Hae; Chang, Hee Jin

    2013-01-01

    Purpose: Cetuximab-containing chemotherapy is known to be effective for KRAS wild-type metastatic colorectal cancer; however, it is not clear whether cetuximab-based preoperative chemoradiation confers an additional benefit compared with chemoradiation without cetuximab in patients with locally advanced rectal cancer. Methods and Materials: We analyzed EGFR, KRAS, BRAF, and PIK3CA mutation status with direct sequencing and epidermal growth factor receptor (EGFR) and Phosphatase and tensin homolog (PTEN) expression status with immunohistochemistry in tumor samples of 82 patients with locally advanced rectal cancer who were enrolled in the IRIX trial (preoperative chemoradiation with irinotecan and capecitabine; n=44) or the ERBIRIX trial (preoperative chemoradiation with irinotecan and capecitabine plus cetuximab; n=38). Both trials were similarly designed except for the administration of cetuximab; radiation therapy was administered at a dose of 50.4 Gy/28 fractions and irinotecan and capecitabine were given at doses of 40 mg/m 2 weekly and 1650 mg/m 2 /day, respectively, for 5 days per week. In the ERBIRIX trial, cetuximab was additionally given with a loading dose of 400 mg/m 2 on 1 week before radiation, and 250 mg/m 2 weekly thereafter. Results: Baseline characteristics before chemoradiation were similar between the 2 trial cohorts. A KRAS mutation in codon 12, 13, and 61 was noted in 15 (34%) patients in the IRIX cohort and 5 (13%) in the ERBIRIX cohort (P=.028). Among 62 KRAS wild-type cancer patients, major pathologic response rate, disease-free survival and pathologic stage did not differ significantly between the 2 cohorts. No mutations were detected in BRAF exon 11 and 15, PIK3CA exon 9 and 20, or EGFR exon 18-24 in any of the 82 patients, and PTEN and EGFR expression were not predictive of clinical outcome. Conclusions: In patients with KRAS wild-type locally advanced rectal cancer, the addition of cetuximab to the chemoradiation with irinotecan plus

  15. Induction of non-apoptotic programmed cell death by oncogenic RAS in human epithelial cells and its suppression by MYC overexpression.

    Science.gov (United States)

    Dendo, Kasumi; Yugawa, Takashi; Nakahara, Tomomi; Ohno, Shin-Ichi; Goshima, Naoki; Arakawa, Hirofumi; Kiyono, Tohru

    2018-02-09

    Oncogenic mutations of RAS genes, found in about 30% of human cancers, are considered to play important roles in cancer development. However, oncogenic RAS can also induce senescence in mouse and human normal fibroblasts. In some cell lines, oncogenic RAS has been reported to induce non-apoptotic programed cell death (PCD). Here, we investigated effects of oncogenic RAS expression in several types of normal human epithelial cells. Oncogenic RAS but not wild-type RAS stimulated macropinocytosis with accumulation of large-phase lucent vacuoles in the cytoplasm, subsequently leading to cell death which was indistinguishable from a recently proposed new type of PCD, methuosis. A RAC1 inhibitor suppressed accumulation of macropinosomes and overexpression of MYC attenuated oncogenic RAS-induced such accumulation, cell cycle arrest and cell death. MYC suppression or rapamycin treatment in some cancer cell lines harbouring oncogenic mutations in RAS genes induced cell death with accumulation of macropinosomes. These results suggest that this type of non-apoptotic PCD is a tumour-suppressing mechanism acting against oncogenic RAS mutations in normal human epithelial cells, which can be overcome by MYC overexpression, raising the possibility that its induction might be a novel approach to treatment of RAS-mutated human cancers. © The Author(s) 2017. Published by Oxford University Press.

  16. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Science.gov (United States)

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  17. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Directory of Open Access Journals (Sweden)

    Stéphanie Cornen

    Full Text Available Breast cancers (BCs of the luminal B subtype are estrogen receptor-positive (ER+, highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs, DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15 and UTRN (6q24, were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  18. Characterization of ERAS, a putative novel human oncogene, in skin and breast

    Energy Technology Data Exchange (ETDEWEB)

    Peña Avalos, B.L. de la

    2014-07-01

    Most human tumors have mutations in genes of the RAS small GTPase protein family. RAS works as a molecular switch for signaling pathways that modulate many aspects of cell behavior, including proliferation, differentiation, motility and death. Oncogenic mutations in RAS prevent GTP hydrolysis, locking RAS in a permanently active state, being the most common mutations in HRAS, KRAS and NRAS. The human RAS family consists of at least 36 different genes, many of which have been scarcely studied. One of these relatively unknown genes is ERAS (ES cell-expressed RAS), which is a constitutively active RAS protein, localized in chromosome X and expressed only in embryonic cells, being undetectable in adult tissues. New high throughput technologies have made it possible to screen complete cancer genomes for identification of mutations associated to cancer. Using the Sleeping Beauty (SB) transposon system, ERAS was identified as a putative novel oncogene in non-melanoma skin and breast cancers. The major aim of this project is to determine the general characteristics of ERAS as a putative novel human oncogene in skin and breast cells. Forced expression of ERAS results in drastic changes in cell shape, proliferation and motility. When ERAS is overexpressed in skin and breast human cells it is mainly localized in the cytoplasmic membrane. ERAS activates the phosphatidylinositol-3-OH kinase (PI3K) pathway but not the mitogen-activated protein kinase (MAPK) pathway. ERAS-expressing cells suffer spontaneous morphologic and phenotypic EMT-like changes, including cytoskeleton reorganization, vimentin and N-cadherin up-regulation and down-regulation of E-cadherin, which can be associated with increased malignancy, and invasive and metastatic potential. Our results suggest that inappropriate expression of ERAS lead to transformation of human cells. (Author)

  19. Oncogenic Notch signaling in T-cell and B-cell lymphoproliferative disorders.

    Science.gov (United States)

    Chiang, Mark Y; Radojcic, Vedran; Maillard, Ivan

    2016-07-01

    This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.

  20. Neuronal migration and its disorders affecting the CA3 region

    Directory of Open Access Journals (Sweden)

    Richard eBelvindrah

    2014-03-01

    Full Text Available In this review, we focus on CA3 neuronal migration disorders in the rodent. We begin by introducing the main steps of hippocampal development, and we summarize characteristic hippocampal malformations in human. We then describe various mouse mutants showing structural hippocampal defects. Notably, genes identified in human cortical neuronal migration disorders consistently give rise to a CA3 phenotype when mutated in the mouse. We successively describe their molecular, physiological and behavioral phenotypes that together contribute to a better understanding of CA3-dependent functions. We finally discuss potential factors underlying the CA3 vulnerability revealed by these mouse mutants and that may also contribute to other human neurological and psychiatric disorders.

  1. Genomic alterations in neuroendocrine cancers of the ovary.

    Science.gov (United States)

    Yaghmour, George; Prouet, Philippe; Wiedower, Eric; Jamy, Omer Hassan; Feldman, Rebecca; Chandler, Jason C; Pandey, Manjari; Martin, Mike G

    2016-08-26

    As we have previously reported, small cell carcinoma of the ovary (SCCO) is a rare, aggressive form of ovarian cancer associated with poor outcomes. In an effort to identify new treatment options, we utilized comprehensive genomic profiling to assess the potential for novel therapies in SCCO. Patients with SCCO, SCCO-HT (hypercalcemic type), neuroendocrine tumors of the ovary (NET-O), and small cell carcinoma of the lung (SCLC) profiled by Caris Life Sciences between 2007-2015 were identified. Tumors were assessed with up to 21 IHC stains, in situ hybridization of cMET, EGFR, HER2 and PIK3CA, and next-generation sequencing (NGS) as well as Sanger sequencing of selected genes. Forty-six patients with SCCO (10 SCCO, 18 SCCO-HT, 18 NET-O) were identified as well as 58 patients with SCLC for comparison. Patients with SCCO and SCCO-HT were younger (median 42 years [range 12-75] and 26 years [range 8-40], respectively) than patients with NET-O 62 [range 13-76] or SCLC 66 [range 36-86]. SCCO patients were more likely to be metastatic (70 %) than SCCO-HT (50 %) or NET-O (33 %) patients, but at a similar rate to SCLC patients (65 %). PD1 expression varied across tumor type with SCCO (100 %), SCCO-HT (60 %), NET-O (33 %) vs SCLC (42 %). PDL1 expression also varied with SCCO (50 %), SCCO-HT (20 %), NET-O (33 %) and SCLC (0 %). No amplifications were identified in cMET, EGFR, or HER2 and only 1 was found in PIK3CA (NET-O). Actionable mutations were rare with 1 patient with SCCO having a BRCA2 mutation and 1 patient with NET-O having a PIK3CA mutation. No other actionable mutations were identified. No recurrent actionable mutations or rearrangements were identified using this platform in SCCO. IHC patterns may help guide the use of chemotherapy in these rare tumors.

  2. HERC 1 ubiquitin ligase mutation affects neocortical, CA3 hippocampal and spinal cord projection neurons. An ultrastructural study

    Directory of Open Access Journals (Sweden)

    Rocío eRuiz

    2016-04-01

    Full Text Available The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and, hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.

  3. Genetics Home Reference: ovarian cancer

    Science.gov (United States)

    ... is most often associated with mutations in the MLH1 or MSH2 gene and accounts for between 10 ... AKT1 BARD1 BRCA1 BRCA2 BRIP1 CDH1 CHEK2 CTNNB1 MLH1 MRE11 MSH2 MSH6 NBN OPCML PALB2 PIK3CA PMS2 ...

  4. Role of Class III phosphoinositide 3-kinase in the brain development: possible involvement in specific learning disorders.

    Science.gov (United States)

    Inaguma, Yutaka; Matsumoto, Ayumi; Noda, Mariko; Tabata, Hidenori; Maeda, Akihiko; Goto, Masahide; Usui, Daisuke; Jimbo, Eriko F; Kikkawa, Kiyoshi; Ohtsuki, Mamitaro; Momoi, Mariko Y; Osaka, Hitoshi; Yamagata, Takanori; Nagata, Koh-Ichi

    2016-10-01

    subject since a deletion mutation in PIK3C3 was detected in a patient with specific learning disorders (SLD). © 2016 International Society for Neurochemistry.

  5. Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Stones, Clare; Joseph, Wayne R; Leung, Euphemia; Finlay, Graeme J; Shelling, Andrew N; Phillips, Wayne A; Shepherd, Peter R; Baguley, Bruce C

    2012-01-01

    The phosphatidylinositol-3-kinase (PI3K-PKB), mitogen activated protein kinase (MEK-ERK) and the mammalian target of rapamycin (mTOR- p70S6K), are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status. Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation. Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways. Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation

  6. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors

    DEFF Research Database (Denmark)

    Goriely, Anne; Hansen, Ruth M S; Taylor, Indira B

    2009-01-01

    Genes mutated in congenital malformation syndromes are frequently implicated in oncogenesis, but the causative germline and somatic mutations occur in separate cells at different times of an organism's life. Here we unify these processes to a single cellular event for mutations arising in male germ...... cells that show a paternal age effect. Screening of 30 spermatocytic seminomas for oncogenic mutations in 17 genes identified 2 mutations in FGFR3 (both 1948A>G, encoding K650E, which causes thanatophoric dysplasia in the germline) and 5 mutations in HRAS. Massively parallel sequencing of sperm DNA...... a common 'selfish' pathway supporting proliferation in the testis, leading to diverse phenotypes in the next generation including fetal lethality, congenital syndromes and cancer predisposition....

  7. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    Science.gov (United States)

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  8. Selective BRAFV600E inhibitor PLX4720, requires TRAIL assistance to overcome oncogenic PIK3CA resistance

    Czech Academy of Sciences Publication Activity Database

    Oikonomou, E.; Koc, Michal; Šourková, Vladimíra; Anděra, Ladislav; Pintzas, A.

    2011-01-01

    Roč. 6, č. 6 (2011), e21632 E-ISSN 1932-6203 Grant - others:EK(XE) LSHC-CT-2006-037278 Institutional research plan: CEZ:AV0Z50520514 Keywords : 17-AAG * apoptosis * colorectal cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.092, year: 2011

  9. Selective BRAFV600E inhibitor PLX4720, requires TRAIL assistance to overcome oncogenic PIK3CA resistance

    Czech Academy of Sciences Publication Activity Database

    Oikonomou, E.; Koc, Michal; Šourková, Vladimíra; Anděra, Ladislav; Pintzas, A.

    2011-01-01

    Roč. 6, č. 6 (2011), e21632 E-ISSN 1932-6203 Grant - others:EK(XE) LSHC-CT-2006-037278 Institutional research plan: CEZ:AV0Z50520514 Keywords : 17- AAG * apoptosis * colorectal cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.092, year: 2011

  10. [Oncogenic action of ionizing radiation

    International Nuclear Information System (INIS)

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs

  11. PIK reactor construction status

    International Nuclear Information System (INIS)

    Konoplev, K.A.; Smolsky, S.L.

    2001-01-01

    The 100MW reactor PIK for fundamental researches has a thermal neutron flux of more than 10 15 n/cm 2 sec. This presentation outlines the construction state as of 2001, its prospects and completion tactics in the conditions of unstable finance. Construction of the reactor started in 1976. In 1986 construction of the building was completed and significant part of the installation work fulfilled. Construction of cooling systems was finished, the control panel assembled, and adjustment of the pump and gate valve control circuits started. After Chernobyl catastrophe, the USSR nuclear reactor safety requirements were revised. The PIK design did not meet these requirements and underwent considerable revision. The reconstruction design resulted in double the initial cost. Creation of the containment was the bulkiest part of the reconstruction. It brought about the need to disassemble the roofing of the building, dismantle all the equipment of the two upper floors, and lay up the equipment of the lower floors. As of 2001, construction in accordance with the revised design is at the stage of assemblage of the most important units, i.e. reactor itself, cooling system, heavy water system, and a number of auxiliary systems, such as depleted fuel storage, emergency cooling system etc. (orig.)

  12. Mice with an Oncogenic HRAS Mutation are Resistant to High-Fat Diet-Induced Obesity and Exhibit Impaired Hepatic Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Daiju Oba

    2018-01-01

    Full Text Available Costello syndrome is a “RASopathy” that is characterized by growth retardation, dysmorphic facial appearance, hypertrophic cardiomyopathy and tumor predisposition. >80% of patients with Costello syndrome harbor a heterozygous germline G12S mutation in HRAS. Altered metabolic regulation has been suspected because patients with Costello syndrome exhibit hypoketotic hypoglycemia and increased resting energy expenditure, and their growth is severely retarded. To examine the mechanisms of energy reprogramming by HRAS activation in vivo, we generated knock-in mice expressing a heterozygous Hras G12S mutation (HrasG12S/+ mice as a mouse model of Costello syndrome. On a high-fat diet, HrasG12S/+ mice developed a lean phenotype with microvesicular hepatic steatosis, resulting in early death compared with wild-type mice. Under starvation conditions, hypoketosis and elevated blood levels of long-chain fatty acylcarnitines were observed, suggesting impaired mitochondrial fatty acid oxidation. Our findings suggest that the oncogenic Hras mutation modulates energy homeostasis in vivo.

  13. Targeted next generation sequencing of parotid gland cancer uncovers genetic heterogeneity.

    Science.gov (United States)

    Grünewald, Inga; Vollbrecht, Claudia; Meinrath, Jeannine; Meyer, Moritz F; Heukamp, Lukas C; Drebber, Uta; Quaas, Alexander; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Hartmann, Wolfgang; Büttner, Reinhard; Odenthal, Margarete; Stenner, Markus

    2015-07-20

    Salivary gland cancer represents a heterogeneous group of malignant tumors. Due to their low incidence and the existence of multiple morphologically defined subtypes, these tumors are still poorly understood with regard to their molecular pathogenesis and therapeutically relevant genetic alterations.Performing a systematic and comprehensive study covering 13 subtypes of salivary gland cancer, next generation sequencing was done on 84 tissue samples of parotid gland cancer using multiplex PCR for enrichment of cancer related gene loci covering hotspots of 46 cancer genes.Mutations were identified in 22 different genes. The most frequent alterations affected TP53, followed by RAS genes, PIK3CA, SMAD4 and members of the ERB family. HRAS mutations accounted for more than 90% of RAS mutations, occurring especially in epithelial-myoepithelial carcinomas and salivary duct carcinomas. Additional mutations in PIK3CA also affected particularly epithelial-myoepithelial carcinomas and salivary duct carcinomas, occurring simultaneously with HRAS mutations in almost all cases, pointing to an unknown and therapeutically relevant molecular constellation. Interestingly, 14% of tumors revealed mutations in surface growth factor receptor genes including ALK, HER2, ERBB4, FGFR, cMET and RET, which might prove to be targetable by new therapeutic agents. 6% of tumors revealed mutations in SMAD4.In summary, our data provide novel insight into the fundamental molecular heterogeneity of salivary gland cancer, relevant in terms of tumor classification and the establishment of targeted therapeutic concepts.

  14. Mutated CaV2.1 channels dysregulate CASK/P2X3 signaling in mouse trigeminal sensory neurons of R192Q Cacna1a knock-in mice.

    Science.gov (United States)

    Gnanasekaran, Aswini; Bele, Tanja; Hullugundi, Swathi; Simonetti, Manuela; Ferrari, Michael D; van den Maagdenberg, Arn M J M; Nistri, Andrea; Fabbretti, Elsa

    2013-12-02

    ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine.

  15. Genomic Characterization of Primary Invasive Lobular Breast Cancer.

    Science.gov (United States)

    Desmedt, Christine; Zoppoli, Gabriele; Gundem, Gunes; Pruneri, Giancarlo; Larsimont, Denis; Fornili, Marco; Fumagalli, Debora; Brown, David; Rothé, Françoise; Vincent, Delphine; Kheddoumi, Naima; Rouas, Ghizlane; Majjaj, Samira; Brohée, Sylvain; Van Loo, Peter; Maisonneuve, Patrick; Salgado, Roberto; Van Brussel, Thomas; Lambrechts, Diether; Bose, Ron; Metzger, Otto; Galant, Christine; Bertucci, François; Piccart-Gebhart, Martine; Viale, Giuseppe; Biganzoli, Elia; Campbell, Peter J; Sotiriou, Christos

    2016-06-01

    Invasive lobular breast cancer (ILBC) is the second most common histologic subtype after invasive ductal breast cancer (IDBC). Despite clinical and pathologic differences, ILBC is still treated as IDBC. We aimed to identify genomic alterations in ILBC with potential clinical implications. From an initial 630 ILBC primary tumors, we interrogated oncogenic substitutions and insertions and deletions of 360 cancer genes and genome-wide copy number aberrations in 413 and 170 ILBC samples, respectively, and correlated those findings with clinicopathologic and outcome features. Besides the high mutation frequency of CDH1 in 65% of tumors, alterations in one of the three key genes of the phosphatidylinositol 3-kinase pathway, PIK3CA, PTEN, and AKT1, were present in more than one-half of the cases. HER2 and HER3 were mutated in 5.1% and 3.6% of the tumors, with most of these mutations having a proven role in activating the human epidermal growth factor receptor/ERBB pathway. Mutations in FOXA1 and ESR1 copy number gains were detected in 9% and 25% of the samples. All these alterations were more frequent in ILBC than in IDBC. The histologic diversity of ILBC was associated with specific alterations, such as enrichment for HER2 mutations in the mixed, nonclassic, and ESR1 gains in the solid subtype. Survival analyses revealed that chromosome 1q and 11p gains showed independent prognostic value in ILBC and that HER2 and AKT1 mutations were associated with increased risk of early relapse. This study demonstrates that we can now begin to individualize the treatment of ILBC, with HER2, HER3, and AKT1 mutations representing high-prevalence therapeutic targets and FOXA1 mutations and ESR1 gains deserving urgent dedicated clinical investigation, especially in the context of endocrine treatment. © 2016 by American Society of Clinical Oncology.

  16. Role of p38 MAPK in enhanced human cancer cells killing by the combination of aspirin and ABT-737

    Science.gov (United States)

    Zhang, Chong; Shi, Jing; Mao, Shi-ying; Xu, Ya-si; Zhang, Dan; Feng, Lin-yi; Zhang, Bo; Yan, You-you; Wang, Si-cong; Pan, Jian-ping; Yang, You-ping; Lin, Neng-ming

    2015-01-01

    Regular use of aspirin after diagnosis is associated with longer survival among patients with mutated-PIK3CA colorectal cancer, but not among patients with wild-type PIK3CA cancer. In this study, we showed that clinically achievable concentrations of aspirin and ABT-737 in combination could induce a synergistic growth arrest in several human PIK3CA wild-type cancer cells. In addition, our results also demonstrated that long-term combination treatment with aspirin and ABT-737 could synergistically induce apoptosis both in A549 and H1299 cells. In the meanwhile, short-term aspirin plus ABT-737 combination treatment induced a greater autophagic response than did either drug alone and the combination-induced autophagy switched from a cytoprotective signal to a death-promoting signal. Furthermore, we showed that p38 acted as a switch between two different types of cell death (autophagy and apoptosis) induced by aspirin plus ABT-737. Moreover, the increased anti-cancer efficacy of aspirin combined with ABT-737 was further validated in a human lung cancer A549 xenograft model. We hope that this synergy may contribute to failure of aspirin cancer therapy and ultimately lead to efficacious regimens for cancer therapy. PMID:25388762

  17. Oncogenic IDH1 Mutations Promote Enhanced Proline Synthesis through PYCR1 to Support the Maintenance of Mitochondrial Redox Homeostasis

    Directory of Open Access Journals (Sweden)

    Kate E.R. Hollinshead

    2018-03-01

    Full Text Available Summary: Since the discovery of mutations in isocitrate dehydrogenase 1 (IDH1 in gliomas and other tumors, significant efforts have been made to gain a deeper understanding of the consequences of this oncogenic mutation. One aspect of the neomorphic function of the IDH1 R132H enzyme that has received less attention is the perturbation of cellular redox homeostasis. Here, we describe a biosynthetic pathway exhibited by cells expressing mutant IDH1. By virtue of a change in cellular redox homeostasis, IDH1-mutated cells synthesize excess glutamine-derived proline through enhanced activity of pyrroline 5-carboxylate reductase 1 (PYCR1, coupled to NADH oxidation. Enhanced proline biosynthesis partially uncouples the electron transport chain from tricarboxylic acid (TCA cycle activity through the maintenance of a lower NADH/NAD+ ratio and subsequent reduction in oxygen consumption. Thus, we have uncovered a mechanism by which tumor cell survival may be promoted in conditions associated with perturbed redox homeostasis, as occurs in IDH1-mutated glioma. : Hollinshead et al. demonstrate a role for PYCR1 in control of mitochondrial redox homeostasis. Expression of IDH1 R132H mutation leads to increased NADH-coupled proline biosynthesis, mediated by PYCR1. The resulting metabolic phenotype partially uncouples mitochondrial NADH oxidation from respiration, representing an oxygen-sparing metabolic phenotype. Keywords: glioma, IDH1, redox, metabolism, proline

  18. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc.

    Science.gov (United States)

    Partanen, Johanna I; Nieminen, Anni I; Klefstrom, Juha

    2009-03-01

    Machiavelli wrote, in his famous political treatise Il Principe, about disrupting organization by planting seeds of dissension or by eliminating necessary support elements. Tumor cells do exactly that by disrupting the organized architecture of epithelial cell layers during progression from contained benign tumor to full-blown invasive cancer. However, it is still unclear whether tumor cells primarily break free by activating oncogenes powerful enough to cause chaos or by eliminating tumor suppressor genes guarding the order of the epithelial organization. Studies in Drosophila have exposed genes that encode key regulators of the epithelial apicobasal polarity and which, upon inactivation, cause disorganization of the epithelial layers and promote unscheduled cell proliferation. These polarity regulator/tumor suppressor proteins, which include products of neoplastic tumor suppressor genes (nTSGs), are carefully positioned in polarized epithelial cells to maintain the order of epithelial structures and to impose a restraint on cell proliferation. In this review, we have explored the presence and prevalence of somatic mutations in the human counterparts of Drosophila polarity regulator/tumor suppressor genes across the human cancers. The screen points out LKB1, which is a causal genetic lesion in Peutz-Jeghers cancer syndrome, a gene mutated in certain sporadic cancers and a human homologue of the fly polarity gene par-4. We review the evidence linking Lkb1 protein to polarity regulation in the scope of our recent results suggesting a coupled role for Lkb1 as an architect of organized acinar structures and a suppressor of oncogenic c-Myc. We finally present models to explain how Lkb1-dependent formation of epithelial architecture is coupled to suppression of normal and oncogene-induced proliferation.

  19. Burnable absorber for the PIK reactor

    International Nuclear Information System (INIS)

    Gostev, V.V.; Smolskii, S.L.; Tchmshkyan, D.V.; Zakharov, A.S.; Zvezdkin, V.S.; Konoplev, K.A.

    1998-01-01

    In the reactor PIK design a burnable absorber is not used and the cycle duration is limited by the rods weight. Designed cycle time is two weeks and seams to be not enough for the 100 MW power research reactor equipped by many neutron beams and experimental facilities. Relatively frequent reloading reduces the reactor time on full power and in this way increases the maintenance expenses. In the reactor core fuel elements well mastered by practice are used and its modification was not approved. We try to find the possibilities of installation in the core separate burnable elements to avoid poison of the fuel. It is possible to replace a part of the fuel elements by absorbers, since the fuel elements are relatively small (diameter 5.15mm, uranium 235 content 7.14g) and there are more then 3800 elements in the core. Nevertheless, replacing decreases the fuel burnup and its consumption. In the PIK fuel assembles a little part of the volume is occupied by the dumb elements to create a complete package of the assembles shroud, that is necessary in the hydraulic reasons. In the presented report the assessment of such a replacement is done. As a burnable material Gadolinium was selected. The measurements or the beginning of cycle were performed on the critical facility PIK. The burning calculation was confirmed by measurements on the 18MW reactor WWR-M. The results give the opportunity to twice the cycle duration. The proposed modification of the fuel assembles does not lead to alteration in the other reactor systems, but it touch the burned fuel reprocessing technology. (author)

  20. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy.

    Science.gov (United States)

    Goh, Gerald; Walradt, Trent; Markarov, Vladimir; Blom, Astrid; Riaz, Nadeem; Doumani, Ryan; Stafstrom, Krista; Moshiri, Ata; Yelistratova, Lola; Levinsohn, Jonathan; Chan, Timothy A; Nghiem, Paul; Lifton, Richard P; Choi, Jaehyuk

    2016-01-19

    Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine carcinoma, associated with the Merkel cell polyomavirus (MCPyV) in 80% of cases. To define the genetic basis of MCCs, we performed exome sequencing of 49 MCCs. We show that MCPyV-negative MCCs have a high mutation burden (median of 1121 somatic single nucleotide variants (SSNVs) per-exome with frequent mutations in RB1 and TP53 and additional damaging mutations in genes in the chromatin modification (ASXL1, MLL2, and MLL3), JNK (MAP3K1 and TRAF7), and DNA-damage pathways (ATM, MSH2, and BRCA1). In contrast, MCPyV-positive MCCs harbor few SSNVs (median of 12.5 SSNVs/tumor) with none in the genes listed above. In both subgroups, there are rare cancer-promoting mutations predicted to activate the PI3K pathway (HRAS, KRAS, PIK3CA, PTEN, and TSC1) and to inactivate the Notch pathway (Notch1 and Notch2). TP53 mutations appear to be clinically relevant in virus-negative MCCs as 37% of these tumors harbor potentially targetable gain-of-function mutations in TP53 at p.R248 and p.P278. Moreover, TP53 mutational status predicts death in early stage MCC (5-year survival in TP53 mutant vs wild-type stage I and II MCCs is 20% vs. 92%, respectively; P = 0.0036). Lastly, we identified the tumor neoantigens in MCPyV-negative and MCPyV-positive MCCs. We found that virus-negative MCCs harbor more tumor neoantigens than melanomas or non-small cell lung cancers (median of 173, 65, and 111 neoantigens/sample, respectively), two cancers for which immune checkpoint blockade can produce durable clinical responses. Collectively, these data support the use of immunotherapies for virus-negative MCCs.

  1. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial.

    Science.gov (United States)

    Cristofanilli, Massimo; Turner, Nicholas C; Bondarenko, Igor; Ro, Jungsil; Im, Seock-Ah; Masuda, Norikazu; Colleoni, Marco; DeMichele, Angela; Loi, Sherene; Verma, Sunil; Iwata, Hiroji; Harbeck, Nadia; Zhang, Ke; Theall, Kathy Puyana; Jiang, Yuqiu; Bartlett, Cynthia Huang; Koehler, Maria; Slamon, Dennis

    2016-04-01

    In the PALOMA-3 study, the combination of the CDK4 and CDK6 inhibitor palbociclib and fulvestrant was associated with significant improvements in progression-free survival compared with fulvestrant plus placebo in patients with metastatic breast cancer. Identification of patients most suitable for the addition of palbociclib to endocrine therapy after tumour recurrence is crucial for treatment optimisation in metastatic breast cancer. We aimed to confirm our earlier findings with this extended follow-up and show our results for subgroup and biomarker analyses. In this multicentre, double-blind, randomised phase 3 study, women aged 18 years or older with hormone-receptor-positive, HER2-negative metastatic breast cancer that had progressed on previous endocrine therapy were stratified by sensitivity to previous hormonal therapy, menopausal status, and presence of visceral metastasis at 144 centres in 17 countries. Eligible patients-ie, any menopausal status, Eastern Cooperative Oncology Group performance status 0-1, measurable disease or bone disease only, and disease relapse or progression after previous endocrine therapy for advanced disease during treatment or within 12 months of completion of adjuvant therapy-were randomly assigned (2:1) via a centralised interactive web-based and voice-based randomisation system to receive oral palbociclib (125 mg daily for 3 weeks followed by a week off over 28-day cycles) plus 500 mg fulvestrant (intramuscular injection on days 1 and 15 of cycle 1; then on day 1 of subsequent 28-day cycles) or placebo plus fulvestrant. The primary endpoint was investigator-assessed progression-free survival. Analysis was by intention to treat. We also assessed endocrine therapy resistance by clinical parameters, quantitative hormone-receptor expression, and tumour PIK3CA mutational status in circulating DNA at baseline. This study is registered with ClinicalTrials.gov, NCT01942135. Between Oct 7, 2013, and Aug 26, 2014, 521 patients were

  2. TGFBR2 and BAX mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers.

    Directory of Open Access Journals (Sweden)

    Kaori Shima

    Full Text Available Mononucleotide tracts in the coding regions of the TGFBR2 and BAX genes are commonly mutated in microsatellite instability-high (MSI-high colon cancers. The receptor TGFBR2 plays an important role in the TGFB1 (transforming growth factor-β, TGF-β signaling pathway, and BAX plays a key role in apoptosis. However, a role of TGFBR2 or BAX mononucleotide mutation in colorectal cancer as a prognostic biomarker remains uncertain.We utilized a database of 1072 rectal and colon cancers in two prospective cohort studies (the Nurses' Health Study and the Health Professionals Follow-up Study. Cox proportional hazards model was used to compute mortality hazard ratio (HR, adjusted for clinical, pathological and molecular features including the CpG island methylator phenotype (CIMP, LINE-1 methylation, and KRAS, BRAF and PIK3CA mutations. MSI-high was observed in 15% (162/1072 of all colorectal cancers. TGFBR2 and BAX mononucleotide mutations were detected in 74% (117/159 and 30% (48/158 of MSI-high tumors, respectively. In Kaplan-Meier analysis as well as univariate and multivariate Cox regression analyses, compared to microsatellite stable (MSS/MSI-low cases, MSI-high cases were associated with superior colorectal cancer-specific survival [adjusted HR, 0.34; 95% confidence interval (CI, 0.20-0.57] regardless of TGFBR2 or BAX mutation status. Among MSI-high tumors, TGFBR2 mononucleotide mutation was associated with CIMP-high independent of other variables [multivariate odds ratio, 3.57; 95% CI, 1.66-7.66; p = 0.0011].TGFBR2 or BAX mononucleotide mutations are not associated with the patient survival outcome in MSI-high colorectal cancer. Our data do not support those mutations as prognostic biomarkers (beyond MSI in colorectal carcinoma.

  3. Differential splicing of oncogenes and tumor suppressor genes in African and Caucasian American populations: contributing factor in prostate cancer disparities

    Science.gov (United States)

    2017-12-01

    populations: contributing factor in prostate cancer disparities? PRINCIPAL INVESTIGATOR: Norman H Lee, PhD CONTRACTING ORGANIZATION: George Washington...splicing of oncogenes and tumor suppressor genes in African and Caucasian American populations: contributing factor in prostate cancer disparities? 5b...American (AA) versus Caucasian American (CA) prostate cancer (PCa). We focused our efforts on two oncogenes, phosphatidylinositol-4,5-bisphosphate 3

  4. A functional proteogenomic analysis of endometrioid and clear cell carcinomas using reverse phase protein array and mutation analysis: protein expression is histotype-specific and loss of ARID1A/BAF250a is associated with AKT phosphorylation

    International Nuclear Information System (INIS)

    Wiegand, Kimberly C; Lu, Yiling; Zhang, Fan; Anglesio, Michael S; Gilks, Blake; Mills, Gordon B; Huntsman, David G; Carey, Mark S; Hennessy, Bryan T; Leung, Samuel; Wang, Yemin; Ju, Zhenlin; McGahren, Mollianne; Kalloger, Steve E; Finlayson, Sarah; Stemke-Hale, Katherine

    2014-01-01

    Ovarian cancer is now recognized as a number of distinct diseases primarily defined by histological subtype. Both clear cell ovarian carcinomas (CCC) and ovarian endometrioid carcinomas (EC) may arise from endometriosis and frequently harbor mutations in the ARID1A tumor suppressor gene. We studied the influence of histological subtype on protein expression with reverse phase protein array (RPPA) and assessed proteomic changes associated with ARID1A mutation/BAF250a expression in EC and CCC. Immunohistochemistry (IHC) for BAF250a expression was performed on 127 chemotherapy-naive ovarian carcinomas (33 CCC, 29 EC, and 65 high-grade serous ovarian carcinomas (HGSC)). Whole tumor lysates were prepared from frozen banked tumor samples and profiled by RPPA using 116 antibodies. ARID1A mutations were identified by exome sequencing, and PIK3CA mutations were characterized by MALDI-TOF mass spectrometry. SAM (Significance Analysis of Microarrays) was performed to determine differential protein expression by histological subtype and ARID1A mutation status. Multivariate logistic regression was used to assess the impact of ARID1A mutation status/BAF250a expression on AKT phosphorylation (pAKT). PIK3CA mutation type and PTEN expression were included in the model. BAF250a knockdown was performed in 3 clear cell lines using siRNA to ARID1A. Marked differences in protein expression were observed that are driven by histotype. Compared to HGSC, SAM identified over 50 proteins that are differentially expressed in CCC and EC. These included PI3K/AKT pathway proteins, those regulating the cell cycle, apoptosis, transcription, and other signaling pathways including steroid hormone signaling. Multivariate models showed that tumors with loss of BAF250a expression showed significantly higher levels of AKT-Thr 308 and AKT-Ser 473 phosphorylation (p < 0.05). In 31 CCC cases, pAKT was similarly significantly increased in tumors with BAF250a loss on IHC. Knockdown of BAF250a by siRNA in

  5. Oncogenic signalling pathways in benign odontogenic cysts and tumours.

    Science.gov (United States)

    Diniz, Marina Gonçalves; Gomes, Carolina Cavalieri; de Sousa, Sílvia Ferreira; Xavier, Guilherme Machado; Gomez, Ricardo Santiago

    2017-09-01

    The first step towards the prevention of cancer is to develop an in-depth understanding of tumourigenesis and the molecular basis of malignant transformation. What drives tumour initiation? Why do most benign tumours fail to metastasize? Oncogenic mutations, previously considered to be the hallmark drivers of cancers, are reported in benign cysts and tumours, including those that have an odontogenic origin. Despite the presence of such alterations, the vast majority of odontogenic lesions are benign and never progress to the stage of malignant transformation. As these lesions are likely to develop due to developmental defects, it is possible that they harbour quiet genomes. Now the question arises - do they result from DNA replication errors? Specific candidate genes have been sequenced in odontogenic lesions, revealing recurrent BRAF mutation in the case of ameloblastoma, KRAS mutation in adenomatoid odontogenic tumours, PTCH1 mutation in odontogenic keratocysts, and CTNNB1 (Beta-catenin) mutation in calcifying odontogenic cysts. Studies on these benign and rare entities might reveal important information about the tumorigenic process and the mechanisms that hinder/halt neoplastic progression. This is because the role of relatively common oncogenic mutations seems to be context dependent. In this review, each mutation signature of the odontogenic lesion and the affected signalling pathways are discussed in the context of tooth development and tumorigenesis. Furthermore, behavioural differences between different types of odontogenic lesions are explored and discussed based on the molecular alteration described. This review also includes the employment of molecular results for guiding therapeutic approaches towards odontogenic lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.

    Science.gov (United States)

    Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y

    2016-03-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. Copyright © 2016 Elsevier Ltd. All rights

  7. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    Science.gov (United States)

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036

  8. Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.

    Science.gov (United States)

    Springuel, Lorraine; Losdyck, Elisabeth; Saussoy, Pascale; Turcq, Béatrice; Mahon, François-Xavier; Knoops, Laurent; Renauld, Jean-Christophe

    2016-12-01

    Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.

  9. Stage III & IV colon and rectal cancers share a similar genetic profile: a review of the Oregon Colorectal Cancer Registry.

    Science.gov (United States)

    Gawlick, Ute; Lu, Kim C; Douthit, Miriam A; Diggs, Brian S; Schuff, Kathryn G; Herzig, Daniel O; Tsikitis, Vassiliki L

    2013-05-01

    Determining the molecular profile of colon and rectal cancers offers the possibility of personalized cancer treatment. The purpose of this study was to determine whether known genetic mutations associated with colorectal carcinogenesis differ between colon and rectal cancers and whether they are associated with survival. The Oregon Colorectal Cancer Registry is a prospectively maintained, institutional review board-approved tissue repository with associated demographic and clinical information. The registry was queried for any patient with molecular analysis paired with clinical data. Patient demographics, tumor characteristics, microsatellite instability status, and mutational analysis for p53, AKT, BRAF, KRAS, MET, NRAS, and PIK3CA were analyzed. Categorical variables were compared using chi-square tests. Continuous variables between groups were analyzed using Mann-Whitney U tests. Kaplan-Meier analysis was used for survival studies. Comparisons of survival were made using log-rank tests. The registry included 370 patients: 69% with colon cancer and 31% with rectal cancer. Eighty percent of colon cancers and 68% of rectal cancers were stages III and IV. Mutational analysis found no significant differences in detected mutations between colon and rectal cancers, except that there were significantly more BRAF mutations in colon cancers compared with rectal cancers (10% vs 0%, P colon versus rectal cancers when stratified by the presence of KRAS, PIK3CA, and BRAF mutations. Stage III and IV colon and rectal cancers share similar molecular profiles, except that there were significantly more BRAF mutations in colon cancers compared with rectal cancers. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The state of the PIK reactor construction

    International Nuclear Information System (INIS)

    Konoplev, K.A.

    1995-01-01

    Principle concepts of the PIK reactor project were stated late in the 60's but its construction was started in 1976. By the year 1986 the initial project was realised by approximately 70% but then, after Chernobyl accident the construction was essentially frozen to adjust the project to the revised nuclear safety regulations. The revised project was approved only in 1990 when the country was on the threshold of serious economic problems. The PIK reactor is a source of neutrons placed in the heavy water reflector. The fuel is uranium-235 (90% enrichment) of total weight 27 kg. Light water is used as moderator and coolant. Design parameters: thermal power is 100 W; thermal neutron flux in the reflector is 1.2x10 15 n/cm 2 s; in the central vertical beam tube is 5x10 15 n/cm 2 s; number of horizontal beam tubes is 10; diameter of beam tubes is 10 cm, with the possibility of replacement with beam tubes up to 25 cm in diameter. The reactor will be equipped with sources of hot, cold, and ultracold neutrons to obtain beams in different intervals of energy spectrum. The low temperature circuit will enable to irradiate samples at helium temperatures. The reactor has three series cooling circuits. Emergency core cooling systems in LOCA are double and in emergency power supply system is triple. The PIK reactor has no single common containment but four separate systems: for pipelines and units of the first circuit, for heavy water reflector, for operating hall, and for experimental beam tubes hall

  11. Genetic profiles of cervical tumors by high-throughput sequencing for personalized medical care

    International Nuclear Information System (INIS)

    Muller, Etienne; Brault, Baptiste; Holmes, Allyson; Legros, Angelina; Jeannot, Emmanuelle; Campitelli, Maura; Rousselin, Antoine; Goardon, Nicolas; Frébourg, Thierry; Krieger, Sophie; Crouet, Hubert; Nicolas, Alain; Sastre, Xavier; Vaur, Dominique; Castéra, Laurent

    2015-01-01

    Cancer treatment is facing major evolution since the advent of targeted therapies. Building genetic profiles could predict sensitivity or resistance to these therapies and highlight disease-specific abnormalities, supporting personalized patient care. In the context of biomedical research and clinical diagnosis, our laboratory has developed an oncogenic panel comprised of 226 genes and a dedicated bioinformatic pipeline to explore somatic mutations in cervical carcinomas, using high-throughput sequencing. Twenty-nine tumors were sequenced for exons within 226 genes. The automated pipeline used includes a database and a filtration system dedicated to identifying mutations of interest and excluding false positive and germline mutations. One-hundred and seventy-six total mutational events were found among the 29 tumors. Our cervical tumor mutational landscape shows that most mutations are found in PIK3CA (E545K, E542K) and KRAS (G12D, G13D) and others in FBXW7 (R465C, R505G, R479Q). Mutations have also been found in ALK (V1149L, A1266T) and EGFR (T259M). These results showed that 48% of patients display at least one deleterious mutation in genes that have been already targeted by the Food and Drug Administration approved therapies. Considering deleterious mutations, 59% of patients could be eligible for clinical trials. Sequencing hundreds of genes in a clinical context has become feasible, in terms of time and cost. In the near future, such an analysis could be a part of a battery of examinations along the diagnosis and treatment of cancer, helping to detect sensitivity or resistance to targeted therapies and allow advancements towards personalized oncology

  12. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  13. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K.

    Directory of Open Access Journals (Sweden)

    Alexander E Yueh

    Full Text Available The phosphoinositide 3-kinase (PI3K signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin, indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling.

  14. Oncogenes, radiation and cancer; Oncogenes, radiacion y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, S C

    1999-12-31

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) 87 refs., 7 figs., 3 tabs. [Espanol] El descubrimiento de los virus oncogenicos y el analisis de su acido nucleico, junto con el desarrollo de nuevas tecnicas bioquimicas, ha permitido conocer parcialmente los mecanismos moleculares responsables de la transformacion de una celula normal en neoplasica. En este trabajo, ademas de describir el descubrimiento de los primeros virus oncogenicos y las experiencias para demostrar la existencia de los oncogenes, se resumen sus mecanismos de activacion y su intervencion en el metabolismo celular. Entre los agentes expernos que inducen un proceso oncogenico, se encuentran las radiaciones ionizantes. Su participacion en la genesis de este proceso y la contribucion de los oncogenes a la radioresistencia de las celulas tumorales, es otro de los temas a que se hace referencia. Paralelamente al avance del conocimiento teorico, se

  15. Amino acid 489 is encoded by a mutational "hot spot" on the beta 3 integrin chain: the CA/TU human platelet alloantigen system.

    Science.gov (United States)

    Wang, R; McFarland, J G; Kekomaki, R; Newman, P J

    1993-12-01

    A new platelet alloantigen, termed CA, has recently been implicated in a case of neonatal alloimmune thrombocytopenia (NATP) in a Filipino family in Canada. Maternal anti-CA serum reacted with glycoprotein (GP) IIIa and maintained its reactivity after removal of high mannose carbohydrate residues from GPIIIa. The monoclonal antibody (MoAb) AP3 partially blocked binding of anti-CA to GPIIIa, suggesting that the CA polymorphism is proximal to the AP3 epitope. Platelet RNA polymerase chain reaction (PCR) was used to amplify the region of GPIIIa cDNA that encodes this region of the protein. DNA sequence analysis showed a GA nucleotide substitution at base 1564 that results in an arginine (Arg) (CGG)glutamine (Gln) (CAG) polymorphism in amino acid (AA) 489. Further analysis of PCR-amplified genomic DNA from 27 normal individuals showed that AA 489 is encoded by a mutational "hot spot" of the GPIIIa gene, as three different codons for the wild-type Arg489 of GPIIIa were also found. The codon usage for Arg489 was found to be: CGG (63%), CGA (37%), and CGC (Definition of these new molecular variants of the beta 3 integrin chain should prove valuable in the diagnosis of NATP in these two geographically disparate populations, and it may also provide useful genetic markers for examining other pathologic variations of the GPIIb-IIIa complex.

  16. Measurement of Telomere Length in Colorectal Cancers for Improved Molecular Diagnosis

    Directory of Open Access Journals (Sweden)

    Eric Le Balc’h

    2017-08-01

    Full Text Available All tumors have in common to reactivate a telomere maintenance mechanism to allow for unlimited proliferation. On the other hand, genetic instability found in some tumors can result from the loss of telomeres. Here, we measured telomere length in colorectal cancers (CRCs using TRF (Telomere Restriction Fragment analysis. Telomeric DNA content was also quantified as the ratio of total telomeric (TTAGGG sequences over that of the invariable Alu sequences. In most of the 125 CRCs analyzed, there was a significant diminution in telomere length compared with that in control healthy tissue. Only 34 tumors exhibited no telomere erosion and, in some cases, a slight telomere lengthening. Telomere length did not correlate with age, gender, tumor stage, tumor localization or stage of tumor differentiation. In addition, while telomere length did not correlate with the presence of a mutation in BRAF (V-raf murine sarcoma viral oncogene homolog B, PIK3CA (phosphatidylinositol 3-kinase catalytic subunit, or MSI status, it was significantly associated with the occurrence of a mutation in KRAS. Interestingly, we found that the shorter the telomeres in healthy tissue of a patient, the larger an increase in telomere length in the tumor. Our study points to the existence of two types of CRCs based on telomere length and reveals that telomere length in healthy tissue might influence telomere maintenance mechanisms in the tumor.

  17. Multiscale Cues Drive Collective Cell Migration

    Science.gov (United States)

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-07-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.

  18. The oncogenic action of ionizing radiation on rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.; Garte, S.J.

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. Progress is described in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) oncogene activation in radiation-induced rat skin cancers; (3) DNA strand breaks in the epidermis as a function of radiation penetration. 59 refs., 4 tabs

  19. Microsatellite instability and B-type Raf proto-oncogene mutation in colorectal cancer: Clinicopathological characteristics and effects on survival

    Directory of Open Access Journals (Sweden)

    Sebnem Batur

    2016-11-01

    Full Text Available Prognostic significance of microsatellite instability (MSI status and B-type Raf proto-oncogene (BRAF mutation in colorectal cancer is controversial. The aim of this study was to examine the clinical and pathological characteristics associated with microsatellite stability and the effect of MSI and BRAF mutation on the survival of patients with colorectal cancer. The study included 145 colorectal cancer cases. All the patients were examined for DNA mismatch repair (MMR proteins with an immunohistochemical method. Molecular assessment of MSI was available in a subset of 41 patients. In addition, BRAF mutation analysis was performed in 30 cases. Immunohistochemically, MMR deficiency was present in 28 (19.3% patients. Female gender (p = 0.001, lesion size ≥5 cm (p = 0.013, Crohn-like response (p = 0.035, and right-sided localization (p < 0.001 were significantly more frequent among MMR-deficient patients. The overall survival was 44.1 ± 5.1 months (95% confidence interval [CI], 33.7-54.4. Multivariate analyses identified only high tumor grade as an independent predictor of poor overall survival: odd ratio, 6.7 (95% CI 2.1-21.7, p = 0.002. In the subset of patients with available BRAF assessment (n = 30, a negative BRAF status was associated with better survival when compared to a positive BRAF status (36.7 ± 2.1 vs. 34.1 ± 7.2 months, p = 0.048. The sensitivity and specificity of the immunohistochemical method in predicting positive MSI status, with the molecular method as a reference, were 85.7% (95% CI: 56.2%-97.5% and 88.9% (95% CI: 69.7%-97.1%, respectively. BRAF appears to be a significant predictor of a worse outcome in patients with colorectal cancer. Further studies with a large spectrum of clinical and biological variables are warranted.

  20. Ras oncogenes in oral cancer: the past 20 years.

    Science.gov (United States)

    Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Tsuchida, Nobuo

    2012-05-01

    Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Energy parasites trigger oncogene mutation

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Pokorný, Jan; Jandová, Anna; Kobilková, J.; Vrba, J.; Vrba, J. jr.

    2016-01-01

    Roč. 92, č. 10 (2016), s. 577-582 ISSN 0955-3002 R&D Projects: GA ČR GA16-12757S Institutional support: RVO:68378271 ; RVO:67985882 Keywords : cancer initiation * cell-mediated immunity * coherent electromagnetic states * genome somatic mutation * LDH virus * parasitic energy consumption Subject RIV: BO - Biophysics Impact factor: 1.992, year: 2016

  2. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis

    DEFF Research Database (Denmark)

    De Roock, Wendy; Claes, Bart; Bernasconi, David

    2010-01-01

    with KRAS wild-type tumours still do not respond. We studied the effect of other downstream mutations on the efficacy of cetuximab in, to our knowledge, the largest cohort to date of patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab plus chemotherapy in the pre...

  3. Effect of ionizing radiation on the biological activity of activated oncogenes and dormant proto-oncogenes

    International Nuclear Information System (INIS)

    Angenent, G.C.; Berg, K.J. van den.

    1984-01-01

    The authors have studied the effect of ionizing radiation on the cloned human activated Ha-ras oncogene, on the Ha-ras gene in integrated form and on the dormant proto-oncogene murine c-mos using the NIH/3T3 transfection system. NIH/3T3 cells were transfected with DNA from the plasmid pT24 carrying the cloned Ha-ras oncogene of the T24 bladder carcinoma cell line. Various individual foci which developed were injected into nude mice. DNA was isolated from tumours, digested with the restriction enzyme Bam HI, electrophoresed on agarose and blotted onto nitrocellulose filter according to Southern. Hybridization with a pT24 probe showed that all the primary foci of transformed cells contained various fragments of the pT24 plasmid indicating that fibroblast transformation had been induced by introduction of the Ha-ras oncogene. (Auth.)

  4. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.

    Science.gov (United States)

    Chudnovsky, Yakov; Adams, Amy E; Robbins, Paul B; Lin, Qun; Khavari, Paul A

    2005-07-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification. Melanomas also commonly show impairment of the p16(INK4A)-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16(INK4A) and ARF protein loss. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations. TERT amplification also occurs in melanoma. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

  6. Oncogenic K-Ras Activates p38 to Maintain Colorectal Cancer Cell Proliferation during MEK Inhibition

    Directory of Open Access Journals (Sweden)

    Winan J. van Houdt

    2010-01-01

    Full Text Available Background: Colon carcinomas frequently contain activating mutations in the K-ras proto-oncogene. K-ras itself is a poor drug target and drug development efforts have mostly focused on components of the classical Ras-activated MEK/ERK pathway. Here we have studied whether endogenous oncogenic K-ras affects the dependency of colorectal tumor cells on MEK/ERK signaling.

  7. Mutations and epimutations in the origin of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Peltomaeki, Paeivi, E-mail: Paivi.Peltomaki@Helsinki.Fi

    2012-02-15

    Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivation of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.

  8. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    International Nuclear Information System (INIS)

    Lychagin, E.V.; Mityukhlyaev, V.A.; Muzychka, A.Yu.; Nekhaev, G.V.; Nesvizhevsky, V.V.; Onegin, M.S.; Sharapov, E.I.; Strelkov, A.V.

    2016-01-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium ("4He). The PIK reactor is chosen as a perspective example of application of this idea, which consists of installing "4He UCN source in the beam of thermal or cold neutrons and surrounding the source with moderator-reflector, which plays the role of cold neutron (CN) source feeding the UCN source. CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator–reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of "4He source with solid methane (CH_4) or/and liquid deuterium (D_2) moderator–reflector. We show that such a source with CH_4 moderator–reflector at the PIK reactor would provide the UCN density of ~1·10"5 cm"−"3, and the UCN production rate of ~2·10"7 s"−"1. These values are respectively 1000 and 20 times larger than those for the most intense UCN user source. The UCN density in a source with D_2 moderator-reflector would reach the value of ~2·10"5 cm"−"3, and the UCN production rate would be equal ~8·10"7 s"−"1. Installation of such a source in a beam of CNs would slightly increase the density and production rate.

  9. Endometriosis and Type I Interferon & Characterization of a Mammalian Flippase

    DEFF Research Database (Denmark)

    Vestergaard, Anna Lindeløv

    2010-01-01

    endometriosis lesion. Human papillomavirus (HPV) is the causative agent of cervix cancer, and DNA viruses might play a role in endometriosis. DNA purified from tissue samples were subjected to highly sensitive PCR tests detecting HPV types, the herpes family viruses HSV-1 and -2, CMV, and EBV......, and ERa, when analyzed by bisulfate PCR and melting curve analysis. Also, no mutations of BRAF, HRAS, NRAS, CTNNB1, CDK4, FGFR3, PIK3CA, P53, and PTEN were detected by PCR denaturing gradient gel electrophoresis analysis. A well-known cancer-associated mutation in KRAS was detected in a single...

  10. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma

    Directory of Open Access Journals (Sweden)

    Dinesh K. Singh

    2017-01-01

    Full Text Available Efforts to identify and target glioblastoma (GBM drivers have primarily focused on receptor tyrosine kinases (RTKs. Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2 transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2 and zinc-finger E-box binding homeobox 1 (ZEB1, which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  11. Targeting MET Amplification as a New Oncogenic Driver

    International Nuclear Information System (INIS)

    Kawakami, Hisato; Okamoto, Isamu; Okamoto, Wataru; Tanizaki, Junko; Nakagawa, Kazuhiko; Nishio, Kazuto

    2014-01-01

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy

  12. Targeting MET Amplification as a New Oncogenic Driver

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  13. Primary tumor location predicts poor clinical outcome with cetuximab in RAS wild-type metastatic colorectal cancer.

    Science.gov (United States)

    Kim, Dalyong; Kim, Sun Young; Lee, Ji Sung; Hong, Yong Sang; Kim, Jeong Eun; Kim, Kyu-Pyo; Kim, Jihun; Jang, Se Jin; Yoon, Young-Kwang; Kim, Tae Won

    2017-11-23

    In metastatic colorectal cancer, the location of the primary tumor has been suggested to have biological significance. In this study, we investigated whether primary tumor location affects cetuximab efficacy in patients with RAS wild-type metastatic colorectal cancer. Genotyping by the SequenomMassARRAY technology platform (OncoMap) targeting KRAS, NRAS, PIK3CA, and BRAF was performed in tumors from 307 patients who had been given cetuximab as salvage treatment. Tumors with mutated RAS (KRAS or NRAS; n = 127) and those with multiple primary location (n = 10) were excluded. Right colon cancer was defined as a tumor located in the proximal part to splenic flexure. A total of 170 patients were included in the study (right versus left, 23 and 147, respectively). Patients with right colon cancer showed more mutated BRAF (39.1% vs. 5.4%), mutated PIK3CA (13% vs. 1.4%), poorly differentiated tumor (17.4% vs. 3.4%), and peritoneal involvement (26.1% vs. 8.8%) than those with left colon and rectal cancer. Right colon cancer showed poorer progression-free survival (2.0 vs.5.0 months, P = 0.002) and overall survival (4.1 months and 13.0 months, P < 0.001) than the left colon and rectal cancer. By multivariable analysis, BRAF mutation, right colon primary, poorly differentiated histology, and peritoneal involvement were associated with risk of death. In RAS wild-type colon cancer treated with cetuximab as salvage treatment, right colon primary was associated with poorer survival outcomes than left colon and rectal cancer.

  14. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    Science.gov (United States)

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  15. Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma.

    Science.gov (United States)

    Gleber-Netto, Frederico O; Zhao, Mei; Trivedi, Sanchit; Wang, Jiping; Jasser, Samar; McDowell, Christina; Kadara, Humam; Zhang, Jiexin; Wang, Jing; William, William N; Lee, J Jack; Nguyen, Minh Ly; Pai, Sara I; Walline, Heather M; Shin, Dong M; Ferris, Robert L; Carey, Thomas E; Myers, Jeffrey N; Pickering, Curtis R

    2018-01-01

    Human immunodeficiency virus-infected individuals (HIVIIs) have a higher incidence of head and neck squamous cell carcinoma (HNSCC), and clinical and histopathological differences have been observed in their tumors in comparison with those of HNSCC patients without a human immunodeficiency virus (HIV) infection. The reasons for these differences are not clear, and molecular differences between HIV-related HNSCC and non-HIV-related HNSCC may exist. This study compared the mutational patterns of HIV-related HNSCC and non-HIV-related HNSCC. The DNA of 20 samples of HIV-related HNSCCs and 32 samples of non-HIV-related HNSCCs was sequenced. DNA libraries covering exons of 18 genes frequently mutated in HNSCC (AJUBA, CASP8, CCND1, CDKN2A, EGFR, FAT1, FBXW7, HLA-A, HRAS, KEAP1, NFE2L2, NOTCH1, NOTCH2, NSD1, PIK3CA, TGFBR2, TP53, and TP63) were prepared and sequenced on an Ion Personal Genome Machine sequencer. DNA sequencing data were analyzed with Ion Reporter software. The human papillomavirus (HPV) status of the tumor samples was assessed with in situ hybridization, the MassARRAY HPV multiplex polymerase chain reaction assay, and p16 immunostaining. Mutation calls were compared among the studied groups. HIV-related HNSCC revealed a distinct pattern of mutations in comparison with non-HIV-related HNSCC. TP53 mutation frequencies were significantly lower in HIV-related HNSCC. Mutations in HIV+ patients tended to be TpC>T nucleotide changes for all mutated genes but especially for TP53. HNSCC in HIVIIs presents a distinct pattern of genetic mutations, particularly in the TP53 gene. HIV-related HNSCC may have a distinct biology, and an effect of the HIV virus on the pathogenesis of these tumors should not be ruled out. Cancer 2018;124:84-94. © 2017 American Cancer Society. © 2017 American Cancer Society.

  16. Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy

    Science.gov (United States)

    Horstick, Eric J.; Linsley, Jeremy W.; Dowling, James J.; Hauser, Michael A.; McDonald, Kristin K.; Ashley-Koch, Allison; Saint-Amant, Louis; Satish, Akhila; Cui, Wilson W.; Zhou, Weibin; Sprague, Shawn M.; Stamm, Demetra S.; Powell, Cynthia M.; Speer, Marcy C.; Franzini-Armstrong, Clara; Hirata, Hiromi; Kuwada, John Y.

    2013-01-01

    Excitation-contraction coupling, the process that regulates contractions by skeletal muscles, transduces changes in membrane voltage by activating release of Ca2+ from internal stores to initiate muscle contraction. Defects in EC coupling are associated with muscle diseases. Here we identify Stac3 as a novel component of the EC coupling machinery. Using a zebrafish genetic screen, we generate a locomotor mutation that is mapped to stac3. We provide electrophysiological, Ca2+ imaging, immunocytochemical and biochemical evidence that Stac3 participates in excitation-contraction coupling in muscles. Furthermore, we reveal that a mutation in human STAC3 as the genetic basis of the debilitating Native American myopathy (NAM). Analysis of NAM stac3 in zebrafish shows that the NAM mutation decreases excitation-contraction coupling. These findings enhance our understanding of both excitation-contraction coupling and the pathology of myopathies. PMID:23736855

  17. Oncogenic N-Ras Stimulates SRF-Mediated Transactivation via H3 Acetylation at Lysine 9

    Directory of Open Access Journals (Sweden)

    Sun-Ju Yi

    2018-01-01

    Full Text Available Signal transduction pathways regulate the gene expression by altering chromatin dynamics in response to mitogens. Ras proteins are key regulators linking extracellular stimuli to a diverse range of biological responses associated with gene regulation. In mammals, the three ras genes encode four Ras protein isoforms: H-Ras, K-Ras4A, K-Ras4B, and N-Ras. Although emerging evidence suggests that Ras isoforms differentially regulate gene expressions and are functionally nonredundant, the mechanisms underlying Ras specificity and Ras signaling effects on gene expression remain unclear. Here, we show that oncogenic N-Ras acts as the most potent regulator of SRF-, NF-κB-, and AP-1-dependent transcription. N-Ras-RGL2 axis is a distinct signaling pathway for SRF target gene expression such as Egr1 and JunB, as RGL2 Ras binding domain (RBD significantly impaired oncogenic N-Ras-induced SRE activation. By monitoring the effect of Ras isoforms upon the change of global histone modifications in oncogenic Ras-overexpressed cells, we discovered that oncogenic N-Ras elevates H3K9ac/H3K23ac levels globally in the chromatin context. Importantly, chromatin immunoprecipitation (ChIP assays revealed that H3K9ac is significantly enriched at the promoter and coding regions of Egr1 and JunB. Collectively, our findings define an undocumented role of N-Ras in modulating of H3 acetylation and in gene regulation.

  18. Identification of Top-ranked Proteins within a Directional Protein Interaction Network using the PageRank Algorithm: Applications in Humans and Plants.

    Science.gov (United States)

    Li, Xiu-Qing; Xing, Tim; Du, Donglei

    2016-01-01

    Somatic mutation of signal transduction genes or key nodes of the cellular protein network can cause severe diseases in humans but can sometimes genetically improve plants, likely because growth is determinate in animals but indeterminate in plants. This article reviews protein networks; human protein ranking; the mitogen-activated protein kinase (MAPK) and insulin (phospho- inositide 3kinase [PI3K]/phosphatase and tensin homolog [PTEN]/protein kinase B [AKT]) signaling pathways; human diseases caused by somatic mutations to the PI3K/PTEN/ AKT pathway; use of the MAPK pathway in plant molecular breeding; and protein domain evolution. Casitas B-lineage lymphoma (CBL), PTEN, MAPK1 and PIK3CA are among PIK3CA the top-ranked proteins in directional rankings. Eight proteins (ACVR1, CDC42, RAC1, RAF1, RHOA, TGFBR1, TRAF2, and TRAF6) are ranked in the top 50 key players in both signal emission and signal reception and in interaction with many other proteins. Top-ranked proteins likely have major impacts on the network function. Such proteins are targets for drug discovery, because their mutations are implicated in various cancers and overgrowth syndromes. Appropriately managing food intake may help reduce the growth of tumors or malformation of tissues. The role of the protein kinase C/ fatty acid synthase pathway in fat deposition in PTEN/PI3K patients should be investigated. Both the MAPK and insulin signaling pathways exist in plants, and MAPK pathway engineering can improve plant tolerance to biotic and abiotic stresses such as salinity.

  19. SANA - project results and PIK contributions

    Energy Technology Data Exchange (ETDEWEB)

    Bellmann, K; Erhard, M; Flechsig, M; Grote, R; Suckow, F

    1998-03-01

    This report includes the final project results of the two groups at PIK, involved in the project: Firstly, the newly developed physiologically-based forest growth model FORSANA was applied for the first time to three pine stands, which differed largely in their air pollution and deposition history. (The evaluation of the model is presented in PIK Report 32). The model was able to explain the growth during the last decades of at least two of the three stands from the climatic and deposition conditions at the sites. The third site was shown to be exceptional with respect to its relation between dimension and age, and was supposed to be exposed to major disturbances in the past, which could not be accounted for by the model. To extrapolate from the stand level to the regional level, FORSANA was initialised with spatially explicit data from forestry inventory and soil maps. Simulations were executed with measured weather records and regional distributions of deposition and air pollution, which were estimated on the basis of emission inventories and wind directions. Different assumptions about the development of air pollution had been applied to investigate different pollution abatement strategies. The results showed that a positive effect can be expected from the actual emission reductions close the main centres of emission, but showed also that this effect is decreasing with increasing distance from the emission source. (orig./KW)

  20. Knock-in mice harboring a Ca(2+) desensitizing mutation in cardiac troponin C develop early onset dilated cardiomyopathy.

    Science.gov (United States)

    McConnell, Bradley K; Singh, Sonal; Fan, Qiying; Hernandez, Adriana; Portillo, Jesus P; Reiser, Peter J; Tikunova, Svetlana B

    2015-01-01

    The physiological consequences of aberrant Ca(2+) binding and exchange with cardiac myofilaments are not clearly understood. In order to examine the effect of decreasing Ca(2+) sensitivity of cTnC on cardiac function, we generated knock-in mice carrying a D73N mutation (not known to be associated with heart disease in human patients) in cTnC. The D73N mutation was engineered into the regulatory N-domain of cTnC in order to reduce Ca(2+) sensitivity of reconstituted thin filaments by increasing the rate of Ca(2+) dissociation. In addition, the D73N mutation drastically blunted the extent of Ca(2+) desensitization of reconstituted thin filaments induced by cTnI pseudo-phosphorylation. Compared to wild-type mice, heterozygous knock-in mice carrying the D73N mutation exhibited a substantially decreased Ca(2+) sensitivity of force development in skinned ventricular trabeculae. Kaplan-Meier survival analysis revealed that median survival time for knock-in mice was 12 weeks. Echocardiographic analysis revealed that knock-in mice exhibited increased left ventricular dimensions with thinner walls. Echocardiographic analysis also revealed that measures of systolic function, such as ejection fraction (EF) and fractional shortening (FS), were dramatically reduced in knock-in mice. In addition, knock-in mice displayed electrophysiological abnormalities, namely prolonged QRS and QT intervals. Furthermore, ventricular myocytes isolated from knock-in mice did not respond to β-adrenergic stimulation. Thus, knock-in mice developed pathological features similar to those observed in human patients with dilated cardiomyopathy (DCM). In conclusion, our results suggest that decreasing Ca(2+) sensitivity of the regulatory N-domain of cTnC is sufficient to trigger the development of DCM.

  1. [THE SOMATIC MUTATIONS AND ABERRANT METHYLATION AS POTENTIAL GENETIC MARKERS OF URINARY BLADDER CANCER].

    Science.gov (United States)

    Mikhailenko, D S; Kushlinskii, N E

    2016-02-01

    All around the world, more than 330 thousands cases of bladder cancer are registered annually hence representing actual problem of modern oncology. Still in demand are search and characteristic of new molecular markers of bladder cancer detecting in tumor cells from urinary sediment and having high diagnostic accuracy. The studies of last decade, especially using methods of genome-wide sequencing, permitted to receive a large amount of experimental data concerning development and progression of bladder cancer The review presents systematic analysis of publications available in PubMed data base mainly of last five years. The original studies of molecular genetic disorders under bladder cancer and meta-analyzes were considered This approach permitted to detected the most common local alterations of DNA under bladder cancer which can be detected using routine genetic methods indifferent clinical material and present prospective interest for development of test-systems. The molecular genetic markers of disease can be activating missense mutations in 7 and 10 exons of gene of receptor of growth factor of fibroblasts 3 (FGFR3), 9 and 20 exons of gene of Phosphatidylinositol-4,5-bi-phosphate-3-kinase (PIK3CA) and mutation in -124 and -146 nucleotides in promoter of gene of catalytic subunit telomerase (TERT). The development of test-systems on the basis of aberrant methylation of CpG-islets of genes-suppressors still is seemed as a difficult task because of differences in pattern of methylation of different primary tumors at various stages of clonal evolution of bladder cancer though they can be considered as potential markers.

  2. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.

    Science.gov (United States)

    Kamerkar, Sushrut; LeBleu, Valerie S; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F; Melo, Sonia A; Lee, J Jack; Kalluri, Raghu

    2017-06-22

    The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes are extracellular vesicles generated by all cells, and are naturally present in the blood. Here we show that enhanced retention of exosomes, compared to liposomes, in the circulation of mice is likely due to CD47-mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry short interfering RNA or short hairpin RNA specific to oncogenic Kras G12D , a common mutation in pancreatic cancer. Compared to liposomes, the engineered exosomes (known as iExosomes) target oncogenic KRAS with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. Treatment with iExosomes suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased overall survival. Our results demonstrate an approach for direct and specific targeting of oncogenic KRAS in tumours using iExosomes.

  3. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors.

    Science.gov (United States)

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-06-15

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

  4. miR-203 inhibits cell proliferation and promotes cisplatin induced cell death in tongue squamous cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiong; Lin, Yao [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China); Fan, Li [Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi' an, Shaanxi, 710032 (China); Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 (China); Kuang, Wei [Department of Stomatology, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, 510010 (China); Zheng, Liwei [State Key Laboratory of Oral Diseases, Sichuan University, Wuhou District, Chengdu, 610041 (China); Wu, Jiahua [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China); Shang, Peng [Patient-specific Orthopedic Technology Research Center in GuangDong Research Centre for Neural Engineering, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili, Nanshan, Shenzhen, 518055 (China); Wang, Qiaofeng [Department of Pharmaceutical Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi' an, Shanxi, 710032 (China); Tan, Jiali, E-mail: jasminenov@163.com [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China)

    2016-04-29

    Oral squamous cell carcinoma (OSCC) is one of the most common types of the head and neck cancer. Chemo resistance of OSCC has been identified as a substantial therapeutic hurdle. In this study, we analyzed the role of miR-203 in the OSCC and its effects on cisplatin-induced cell death in an OSCC cell line, Tca8113. There was a significant decrease of miR-203 expression in OSCC samples, compared with the adjacent normal, non-cancerous tissue. After 3 days cisplatin treatment, the survived Tca8113 cells had a lower expression of miR-203 than that in the untreated control group. In contrast, PIK3CA showed an inverse expression in cancer and cisplatin survived Tca8113 cells. Transfection of Tca8113 cells with miR-203 mimics greatly reduced PIK3CA expression and Akt activation. Furthermore, miR-203 repressed PIK3CA expression through targeting the 3′UTR. Restoration of miR-203 not only suppressed cell proliferation, but also sensitized cells to cisplatin induced cell apoptosis. This effect was absent in cells that were simultaneously treated with PIK3CA RNAi. In summary, these findings suggest miR-203 plays an important role in cisplatin resistance in OSCC, and furthermore delivery of miR-203 analogs may serve as an adjuvant therapy for OSCC. - Highlights: • Much lower miR-203 expression in cisplatin resistant Tca8113 cells is discovered. • Delivery of miR-203 can sensitize the Tca8113 cells to cisplatin induced cell death. • MiR-203 can downregulate PIK3CA through the 3′UTR. • The effects of miR-203 on cisplatin sensitivity is mainly through PIK3CA pathway.

  5. CaV 3.1 and CaV 3.3 account for T-type Ca2+ current in GH3 cells

    Directory of Open Access Journals (Sweden)

    M.A. Mudado

    2004-06-01

    Full Text Available T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 ± 1.87 ms (N = 16. The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 ± 2.4 and 6.7 ± 0.3 mV (pre-pulse of -120 mV, N = 15, and -27.0 ± 0.97 and 7.5 ± 0.7 mV (pre-pulse of -40 mV, N = 9. The 8-mV shift in the activation mid-point was statistically significant (P < 0.05. The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of a1G (CaV3.1 and a1I (CaV3.3 T-type Ca2+ channel mRNA transcripts.

  6. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    Science.gov (United States)

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  7. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    International Nuclear Information System (INIS)

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-01-01

    Highlights: • As 2 O 3 inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As 2 O 3 than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As 2 O 3 than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As 2 O 3 is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As 2 O 3 ) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As 2 O 3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As 2 O 3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As 2 O 3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As 2 O 3 than HPV 16-positive CaSki and SiHa cells. After As 2 O 3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As 2 O 3 is a potential anticancer drug for cervical cancer

  8. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  9. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas.

    Science.gov (United States)

    Showler, Kaye; Nishimura, Mayumi; Daino, Kazuhiro; Imaoka, Tatsuhiko; Nishimura, Yukiko; Morioka, Takamitsu; Blyth, Benjamin J; Kokubo, Toshiaki; Takabatake, Masaru; Fukuda, Maki; Moriyama, Hitomi; Kakinuma, Shizuko; Fukushi, Masahiro; Shimada, Yoshiya

    2017-03-01

    The PI3K/AKT pathway is one of the most important signaling networks in human breast cancer, and since it was potentially implicated in our preliminary investigations of radiation-induced rat mammary carcinomas, our aim here was to verify its role. We included mammary carcinomas induced by the chemical carcinogen 1-methyl-1-nitrosourea to determine whether any changes were radiation-specific. Most carcinomas from both groups showed activation of the PI3K/AKT pathway, but phosphorylation of AKT1 was often heterogeneous and only present in a minority of carcinoma cells. The negative pathway regulator Inpp4b was significantly downregulated in both groups, compared with in normal mammary tissue, and radiation-induced carcinomas also showed a significant decrease in Pten expression, while the chemically induced carcinomas showed a decrease in Pik3r1 and Pdk1. Significant upregulation of the positive regulators Erbb2 and Pik3ca was observed only in chemically induced carcinomas. However, no genes showed clear correlations with AKT phosphorylation levels, except in individual carcinomas. Only rare carcinomas showed mutations in PI3K/AKT pathway genes, yet these carcinomas did not exhibit stronger AKT phosphorylation. Thus, while AKT phosphorylation is a common feature of rat mammary carcinomas induced by radiation or a canonical chemical carcinogen, the mutation of key genes in the pathways or permanent changes to gene expression of particular signaling proteins do not explain the pathway activation in the advanced cancers. Although AKT signaling likely facilitates cancer development and growth in rat mammary carcinomas, it is unlikely that permanent disruption of the PI3K/AKT pathway genes is a major causal event in radiation carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  10. Statistical method on nonrandom clustering with application to somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Rejto Paul A

    2010-01-01

    Full Text Available Abstract Background Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention. Results We propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and β-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors. Conclusions Our proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.

  11. The Curcumin Analogue 1,5-Bis(2-hydroxyphenyl-1,4-pentadiene-3-one Induces Apoptosis and Downregulates E6 and E7 Oncogene Expression in HPV16 and HPV18-Infected Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Felicia Paulraj

    2015-06-01

    Full Text Available In an effort to study curcumin analogues as an alternative to improve the therapeutic efficacy of curcumin, we screened the cytotoxic potential of four diarylpentanoids using the HeLa and CaSki cervical cancer cell lines. Determination of their EC50 values indicated relatively higher potency of 1,5-bis(2-hydroxyphenyl-1,4-pentadiene-3-one (MS17, 1.03 ± 0.5 μM; 2.6 ± 0.9 μM and 1,5-bis(4-hydroxy-3-methoxyphenyl-1,4-pentadiene-3-one (MS13, 2.8 ± 0.4; 6.7 ± 2.4 μM in CaSki and HeLa, respectively, with significantly greater growth inhibition at 48 and 72 h of treatment compared to the other analogues or curcumin. Based on cytotoxic and anti-proliferative activity, MS17 was selected for comprehensive apoptotic studies. At 24 h of treatment, fluorescence microscopy detected that MS17-exposed cells exhibited significant morphological changes consistent with apoptosis, corroborated by an increase in nucleosomal enrichment due to DNA fragmentation in HeLa and CaSki cells and activation of caspase-3 activity in CaSki cells. Quantitative real-time PCR also detected significant down-regulation of HPV18- and HPV16-associated E6 and E7 oncogene expression following treatment. The overall data suggests that MS17 treatment has cytotoxic, anti-proliferative and apoptosis-inducing potential in HPV-positive cervical cancer cells. Furthermore, its role in down-regulation of HPV-associated oncogenes responsible for cancer progression merits further investigation into its chemotherapeutic role for cervical cancer.

  12. Epigallocatechin-3-gallate accelerates relaxation and Ca2+ transient decay and desensitizes myofilaments in healthy and Mybpc3-targeted knock-in cardiomyopathic mice

    Directory of Open Access Journals (Sweden)

    Felix W. Friedrich

    2016-12-01

    Full Text Available Background. Hypertrophic cardiomyopathy (HCM is the most common inherited cardiac muscle disease with left ventricular hypertrophy, interstitial fibrosis and diastolic dysfunction. Increased myofilament Ca2+ sensitivity could be the underlying cause of diastolic dysfunction. Epigallocatechin-3-gallate (EGCg, a catechin found in green tea has, been reported to decrease myofilament Ca2+ sensitivity in HCM models with troponin mutations. However, whether this is also the case for HCM-associated thick filament mutations is not known. Therefore, we evaluated whether EGCg affects the behavior of cardiomyocytes and myofilaments of a HCM mouse model carrying a gene mutation in cardiac myosin-binding protein C and exhibiting both increased myofilament Ca2+ sensitivity and diastolic dysfunction.Methods and Results. Acute effects of EGCg were tested on fractional sarcomere shortening and Ca2+ transients in intact ventricular myocytes and on force-Ca2+ relationship of skinned ventricular muscle strips isolated from Mybpc3-targeted knock-in (KI and wild-type (WT mice. Fractional sarcomere shortening and Ca2+ transients were analyzed at 37 °C under 1-Hz pacing in the absence or presence of EGCg (1.8 µM. At baseline and in the absence of Fura-2, KI cardiomyocytes displayed lower diastolic sarcomere length, higher fractional sarcomere shortening, longer time to peak shortening and time to 50% relengthening than WT cardiomyocytes. In WT and KI neither diastolic sarcomere length nor fractional sarcomere shortening were influenced by EGCg treatment, but relaxation time was reduced, to a greater extent in KI cells. EGCg shortened time to peak Ca2+ and Ca2+ transient decay in Fura-2-loaded WT and KI cardiomyocytes. EGCg did not influence phosphorylation of phospholamban. In skinned cardiac muscle strips, EGCg (30 µM decreased Ca2+ sensitivity in both groups. Conclusion. EGCg fastened relaxation and Ca2+ transient decay to a larger extent in KI than in WT

  13. Rapid targeted somatic mutation analysis of solid tumors in routine clinical diagnostics.

    Science.gov (United States)

    Magliacane, Gilda; Grassini, Greta; Bartocci, Paola; Francaviglia, Ilaria; Dal Cin, Elena; Barbieri, Gianluca; Arrigoni, Gianluigi; Pecciarini, Lorenza; Doglioni, Claudio; Cangi, Maria Giulia

    2015-10-13

    Tumor genotyping is an essential step in routine clinical practice and pathology laboratories face a major challenge in being able to provide rapid, sensitive and updated molecular tests. We developed a novel mass spectrometry multiplexed genotyping platform named PentaPanel to concurrently assess single nucleotide polymorphisms in 56 hotspots of the 5 most clinically relevant cancer genes, KRAS, NRAS, BRAF, EGFR and PIK3CA for a total of 221 detectable mutations. To both evaluate and validate the PentaPanel performance, we investigated 1025 tumor specimens of 6 different cancer types (carcinomas of colon, lung, breast, pancreas, and biliary tract, and melanomas), systematically addressing sensitivity, specificity, and reproducibility of our platform. Sanger sequencing was also performed for all the study samples. Our data showed that PentaPanel is a high throughput and robust tool, allowing genotyping for targeted therapy selection of 10 patients in the same run, with a practical turnaround time of 2 working days. Importantly, it was successfully used to interrogate different DNAs isolated from routinely processed specimens (formalin-fixed paraffin embedded, frozen, and cytological samples), covering all the requirements of clinical tests. In conclusion, the PentaPanel platform can provide an immediate, accurate and cost effective multiplex approach for clinically relevant gene mutation analysis in many solid tumors and its utility across many diseases can be particularly relevant in multiple clinical trials, including the new basket trial approach, aiming to identify appropriate targeted drug combination strategies.

  14. TAD disruption as oncogenic driver.

    Science.gov (United States)

    Valton, Anne-Laure; Dekker, Job

    2016-02-01

    Topologically Associating Domains (TADs) are conserved during evolution and play roles in guiding and constraining long-range regulation of gene expression. Disruption of TAD boundaries results in aberrant gene expression by exposing genes to inappropriate regulatory elements. Recent studies have shown that TAD disruption is often found in cancer cells and contributes to oncogenesis through two mechanisms. One mechanism locally disrupts domains by deleting or mutating a TAD boundary leading to fusion of the two adjacent TADs. The other mechanism involves genomic rearrangements that break up TADs and creates new ones without directly affecting TAD boundaries. Understanding the mechanisms by which TADs form and control long-range chromatin interactions will therefore not only provide insights into the mechanism of gene regulation in general, but will also reveal how genomic rearrangements and mutations in cancer genomes can lead to misregulation of oncogenes and tumor suppressors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. PI3K inhibition to overcome endocrine resistance in breast cancer.

    Science.gov (United States)

    Keegan, Niamh M; Gleeson, Jack P; Hennessy, Bryan T; Morris, Patrick G

    2018-01-01

    Activation of the phosphatidylinositol-3 kinase (PI3K) pathway is a critical step in oncogenesis and plays a role in the development of treatment resistance for both estrogen receptor (ER) positive and human epidermal growth factor receptor 2 (HER2) positive breast cancers. Hence, there have been efforts to therapeutically inhibit this pathway. Areas covered: Several inhibitors of PI3K are now progressing through clinical trials with varying degrees of efficacy and toxicity to date. Numerous unresolved questions remain concerning the optimal isoform selectivity of PI3K inhibitors and use of predictive biomarkers. This review examines the most important PI3K inhibitors in ER positive breast cancer to date, with a particular focus on their role in overcoming endocrine therapy resistance and the possible use of PIK3CA mutations as a predictive biomarker. Expert opinion: We discuss some of the emerging challenges and questions encountered during the development of PI3K inhibitors from preclinical to phase III studies, including other novel biomarkers and future combinations to overcome endocrine resistance.

  16. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer.

    Science.gov (United States)

    Miles, Kenneth A; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Goh, Vicky J; Ziauddin, Zia; Engledow, Alec; Meagher, Marie; Endozo, Raymondo; Taylor, Stuart A; Halligan, Stephen; Ell, Peter J; Groves, Ashley M

    2014-03-01

    This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer. This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy. The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036). Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.

  17. Oncogenic activation of v-kit involves deletion of a putative tyrosine-substrate interaction site.

    Science.gov (United States)

    Herbst, R; Munemitsu, S; Ullrich, A

    1995-01-19

    The transforming gene of the Hardy-Zuckerman-4 strain of feline sarcoma virus, v-kit, arose by transduction of the cellular c-kit gene, which encodes the receptor tyrosine kinase (RTK) p145c-kit. To gain insight into the molecular basis of the v-kit transforming potential, we characterized the feline c-kit by cDNA cloning. Comparison of the feline v-kit and c-kit sequences revealed, in addition to deletions of the extracellular and transmembrane domains, three additional mutations in the v-kit oncogene product: deletion of tyrosine-569 and valine-570, the exchange of aspartate at position 761 to glycine, and replacement of the C-terminal 50 amino acids by five unrelated residues. Examinations of individual v-kit mutations in the context of chimeric receptors yielded inhibitory effects for some mutants on both autophosphorylation and substrate phosphorylation functions. In contrast, deletion of tyrosine-569 and valine-570 significantly enhanced transforming and mitogenic activities of p145c-kit, while the other mutations had no significant effects. Conservation in subclass III RTKs and the identification of the corresponding residue in beta PDGF-R, Y579, as a binding site for src family tyrosine kinases suggests an important role for Y568 in kit signal regulation and the definition of its oncogenic potential. Repositioning of Y571 by an inframe two codon deletion may be the crucial alteration resulting in enhancement of v-kit oncogenic activity.

  18. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    Science.gov (United States)

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  19. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    Science.gov (United States)

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  20. ERBB2 mutation is associated with a worse prognosis in patients with CDH1 altered invasive lobular cancer of the breast.

    Science.gov (United States)

    Ping, Zheng; Siegal, Gene P; Harada, Shuko; Eltoum, Isam-Eldin; Youssef, Mariam; Shen, Tiansheng; He, Jianbo; Huang, Yingjie; Chen, Dongquan; Li, Yiping; Bland, Kirby I; Chang, Helena R; Shen, Dejun

    2016-12-06

    E-cadherin (CDH1) is a glycoprotein that mediates adhesion between epithelial cells and also suppresses cancer invasion. Mutation or deletion of the CDH1 gene has been reported in 30-60% cases of invasive lobular carcinoma (ILC). However, little is known about genomic differences between ILC with and without a CDH1 alteration. Therefore, we analyzed whole genome sequencing data of 169 ILC cases from The Cancer Genome Atlas (TCGA) to address this deficiency. Our study shows that CDH1 gene was altered in 59.2% (100/169) of ILC. No significant difference was identified between CDH1-altered and -unaltered ILC cases for any of the examined demographic, clinical or pathologic characteristics, including histologic grade, tumor stage, lymph node metastases, or ER/PR/HER2 states. Seven recurrent mutations (PTEN, MUC16, ERBB2, FAT4, PCDHGA2, HERC1 and FLNC) and four chromosomal changes with recurrent copy number variation (CNV) (11q13, 17q12-21, 8p11 and 8q11) were found in ILC, which correlated with a positive or negative CDH1 alteration status, respectively. The prevalence of the most common breast cancer driver abnormalities including TP53 and PIK3CA mutations and MYC and ERBB2 amplifications showed no difference between the two groups. However, CDH1-altered ILC with an ERBB2 mutation shows a significantly worse prognosis compared to its counterparts without such a mutation. Our study suggests that CDH1-altered ILC patients with ERBB2 mutations may represent an actionable group of patients who could benefit from targeted breast cancer therapy.

  1. Disruption of PH–kinase domain interactions leads to oncogenic activation of AKT in human cancers

    Science.gov (United States)

    Parikh, Chaitali; Janakiraman, Vasantharajan; Wu, Wen-I; Foo, Catherine K.; Kljavin, Noelyn M.; Chaudhuri, Subhra; Stawiski, Eric; Lee, Brian; Lin, Jie; Li, Hong; Lorenzo, Maria N.; Yuan, Wenlin; Guillory, Joseph; Jackson, Marlena; Rondon, Jesus; Franke, Yvonne; Bowman, Krista K.; Sagolla, Meredith; Stinson, Jeremy; Wu, Thomas D.; Wu, Jiansheng; Stokoe, David; Stern, Howard M.; Brandhuber, Barbara J.; Lin, Kui; Skelton, Nicholas J.; Seshagiri, Somasekar

    2012-01-01

    The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain–kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH–KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH–KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH–KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH–KD interface. PMID:23134728

  2. Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia

    NARCIS (Netherlands)

    J.E. Park (Julie E.); H.F. Yuen (Hiu Fung); J.B. Zhou (Jian Biao); A.Q.O. Al-aidaroos (Abdul Qader); K. Guo (Ke); P.J.M. Valk (Peter); S.D. Zhang (Shu Dong); W.J. Chng (Wee); C.W. Hong (Cheng William); K. Mills (Ken); Q. Zeng (Qi)

    2013-01-01

    textabstractFLT3-ITD mutations are prevalent mutations in acute myeloid leukaemia (AML). PRL-3, a metastasis-associated phosphatase, is a downstream target of FLT3-ITD. This study investigates the regulation and function of PRL-3 in leukaemia cell lines and AML patients associated with FLT3-ITD

  3. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3 and KIT driven Leukemogenesis

    Science.gov (United States)

    Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H.; Waskow, Emily R.; Visconte, Valeria; Tiu, Ramon V.; Smith, Catherine C.; Shah, Neil; Bunting, Kevin D.; Boswell, H. Scott; Liu, Yan; Chan, Rebecca J.; Kapur, Reuben

    2015-01-01

    SUMMARY Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPN) and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK), whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. PMID:25456130

  4. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Anindya Chatterjee

    2014-11-01

    Full Text Available Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML and myeloproliferative neoplasms (MPNs, and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis.

  5. BRAFV600 mutations in solid tumors, other than metastatic melanoma and papillary thyroid cancer, or multiple myeloma: a screening study

    Directory of Open Access Journals (Sweden)

    Cohn AL

    2017-02-01

    Full Text Available Allen L Cohn,1 Bann-Mo Day,2 Sarang Abhyankar,3 Edward McKenna,2 Todd Riehl,4 Igor Puzanov5 1Medical Research, Rocky Mountain Cancer Centers, Denver, CO, 2US Medical Affairs, 3Global Safety and Risk Management, 4Product Development Oncology, Genentech, Inc., South San Francisco, CA, 5Melanoma Section, Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA Background: Mutations in the BRAF gene have been implicated in several human cancers. The objective of this screening study was to identify patients with solid tumors (other than metastatic melanoma or papillary thyroid cancer or multiple myeloma harboring activating BRAFV600 mutations for enrollment in a vemurafenib clinical study.Methods: Formalin-fixed, paraffin-embedded tumor samples were collected and sent to a central laboratory to identify activating BRAFV600 mutations by bidirectional direct Sanger sequencing.Results: Overall incidence of BRAFV600E mutation in evaluable patients (n=548 was 3% (95% confidence interval [CI], 1.7–4.7: 11% in colorectal tumors (n=75, 6% in biliary tract tumors (n=16, 3% in non-small cell lung cancers (n=71, 2% in other types of solid tumors (n=180, and 3% in multiple myeloma (n=31. There were no BRAFV600 mutations in this cohort of patients with ovarian tumors (n=68, breast cancer (n=86, or prostate cancer (n=21.Conclusion: This multicenter, national screening study confirms previously reported incidences of BRAFV600 mutations from single-center studies. Patients identified with BRAFV600 mutations were potentially eligible for enrollment in the VE-BASKET study. Keywords: genetic testing, proto-oncogene proteins B-raf, PLX4032

  6. ICECREAM: randomised phase II study of cetuximab alone or in combination with irinotecan in patients with metastatic colorectal cancer with either KRAS, NRAS, BRAF and PI3KCA wild type, or G13D mutated tumours

    International Nuclear Information System (INIS)

    Segelov, Eva; Waring, Paul; Desai, Jayesh; Wilson, Kate; Gebski, Val

    2016-01-01

    Patients with metastatic colorectal cancer whose disease has progressed on oxaliplatin- and irinotecan-containing regimens may benefit from EGFR-inhibiting monoclonal antibodies if they do not contain mutations in the KRAS gene (are “wild type”). It is unknown whether these antibodies, such as cetuximab, are more efficacious in refractory metastatic colorectal cancer as monotherapy, or in combination with irinotecan. Lack of mutation in KRAS, BRAF and PIK3CA predicts response to EFGR-inhibitors. The ICECREAM trial examines the question of monotherapy versus combination with chemotherapy in two groups of patients: those with a “quadruple wild type” tumour genotype (no mutations in KRAS, NRAS, PI3KCA or BRAF genes) and those with the specific KRAS mutation in codon G13D, for whom possibly EGFR-inhibitor efficacy may be equivalent. ICECREAM is a randomised, phase II, open-label, controlled trial comparing the efficacy of cetuximab alone or with irinotecan in patients with “quadruple wild type” or G13D-mutated metastatic colorectal cancer, whose disease has progressed on, or who are intolerant of oxaliplatin- and fluoropyrimidine-based chemotherapy. The primary endpoint is the 6-month progression-free survival benefit of the treatment regimen. Secondary endpoints are response rate, overall survival, and quality of life. The tertiary endpoint is prediction of outcome with further biological markers. International collaboration has facilitated recruitment in this prospective trial of treatment in these infrequently found molecular subsets of colorectal cancer. This unique trial will yield prospective information on the efficacy of cetuximab and whether this is further enhanced with chemotherapy in two distinct populations of patients with metastatic colorectal cancer: the “quadruple wild type”, which may ‘superselect’ for tumours sensitive to EGFR-inhibition, and the rare KRAS G13D mutated tumours, which are also postulated to be sensitive to the drug

  7. Characterization of cancer-associated missense mutations in MDM2

    OpenAIRE

    Chauhan, Krishna M.; Ramakrishnan, Gopalakrishnan; Kollareddy, Madhusudhan; Martinez, Luis A.

    2015-01-01

    MDM2 is an E3 ubiquitin ligase that binds the N-terminus of p53 and promotes its ubiquitin-dependent degradation. Elevated levels of MDM2 due to overexpression or gene amplification can contribute to tumor development by suppressing p53 activity. Since MDM2 is an oncogene, we explored the possibility that other genetic lesions, namely missense mutations, might alter its activities. We selected mutations in MDM2 that reside in one of the 4 key regions of the protein: p53 binding domain, acidic...

  8. p53 mutations promote proteasomal activity.

    Science.gov (United States)

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  9. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation.

    Science.gov (United States)

    Choi, Dongsic; Lee, Tae Hoon; Spinelli, Cristiana; Chennakrishnaiah, Shilpa; D'Asti, Esterina; Rak, Janusz

    2017-07-01

    Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker

  10. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas.

    Science.gov (United States)

    Bao, Zhao-Shi; Chen, Hui-Min; Yang, Ming-Yu; Zhang, Chuan-Bao; Yu, Kai; Ye, Wan-Lu; Hu, Bo-Qiang; Yan, Wei; Zhang, Wei; Akers, Johnny; Ramakrishnan, Valya; Li, Jie; Carter, Bob; Liu, Yan-Wei; Hu, Hui-Min; Wang, Zheng; Li, Ming-Yang; Yao, Kun; Qiu, Xiao-Guang; Kang, Chun-Sheng; You, Yong-Ping; Fan, Xiao-Long; Song, Wei Sonya; Li, Rui-Qiang; Su, Xiao-Dong; Chen, Clark C; Jiang, Tao

    2014-11-01

    Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent fusion transcripts: FGFR3-TACC3, RNF213-SLC26A11, and PTPRZ1-MET (ZM). Interestingly, the ZM fusion was found only in grade III astrocytomas (1/13; 7.7%) or secondary GBMs (sGBMs, 3/20; 15.0%). In an independent cohort of sGBMs, the ZM fusion was found in three of 20 (15%) specimens. Genomic analysis revealed that the fusion arose from translocation events involving introns 3 or 8 of PTPRZ and intron 1 of MET. ZM fusion transcripts were found in GBMs irrespective of isocitrate dehydrogenase 1 (IDH1) mutation status. sGBMs harboring ZM fusion showed higher expression of genes required for PIK3CA signaling and lowered expression of genes that suppressed RB1 or TP53 function. Expression of the ZM fusion was mutually exclusive with EGFR overexpression in sGBMs. Exogenous expression of the ZM fusion in the U87MG glioblastoma line enhanced cell migration and invasion. Clinically, patients afflicted with ZM fusion harboring glioblastomas survived poorly relative to those afflicted with non-ZM-harboring sGBMs (P < 0.001). Our study profiles the shifting RNA landscape of gliomas during progression and reveled ZM as a novel, recurrent fusion transcript in sGBMs. © 2014 Bao et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Bioinformatics of non small cell lung cancer and the ras proto-oncogene

    CERN Document Server

    Kashyap, Amita; Babu M, Naresh

    2015-01-01

    Cancer is initiated by activation of oncogenes or inactivation of tumor suppressor genes. Mutations in the K-ras proto-oncogene are responsible for 10–30% of adenocarcinomas. Clinical Findings point to a wide variety of other cancers contributing to lung cancer incidence. Such a scenario makes identification of lung cancer difficult and thus identifying its mechanisms can contribute to the society. Identifying unique conserved patterns common to contributing proto-oncogenes may further be a boon to Pharmacogenomics and pharmacoinformatics. This calls for ab initio/de novo drug discovery that in turn will require a comprehensive in silico approach of Sequence, Domain, Phylogenetic and Structural analysis of the receptors, ligand screening and optimization and detailed Docking studies. This brief involves extensive role of the RAS subfamily that includes a set of proteins, which cause an over expression of cancer-causing genes like M-ras and initiate tumour formation in lungs. SNP Studies and Structure based ...

  12. Mechanisms of a human skeletal myotonia produced by mutation in the C-terminus of NaV1.4: is Ca2+ regulation defective?

    Directory of Open Access Journals (Sweden)

    Subrata Biswas

    Full Text Available Mutations in the cytoplasmic tail (CT of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNaV1.4F1705I are incompletely understood. The location of the hNaV1.4F1705I in the CT prompted us to examine the role of Ca(2+ and calmodulin (CaM regulation in the manifestations of myotonia. To study Na channel related mechanisms of myotonia we exploited the differences in rat and human NaV1.4 channel regulation by Ca(2+ and CaM. hNaV1.4F1705I inactivation gating is Ca(2+-sensitive compared to wild type hNaV1.4 which is Ca(2+ insensitive and the mutant channel exhibits a depolarizing shift of the V1/2 of inactivation with CaM over expression. In contrast the same mutation in the rNaV1.4 channel background (rNaV1.4F1698I eliminates Ca(2+ sensitivity of gating without affecting the CaM over expression induced hyperpolarizing shift in steady-state inactivation. The differences in the Ca(2+ sensitivity of gating between wild type and mutant human and rat NaV1.4 channels are in part mediated by a divergence in the amino acid sequence in the EF hand like (EFL region of the CT. Thus the composition of the EFL region contributes to the species differences in Ca(2+/CaM regulation of the mutant channels that produce myotonia. The myotonia mutation F1705I slows INa decay in a Ca(2+-sensitive fashion. The combination of the altered voltage dependence and kinetics of INa decay contribute to the myotonic phenotype and may involve the Ca(2+-sensing apparatus in the CT of NaV1.4.

  13. An identity crisis for fps/fes: oncogene or tumor suppressor?

    Science.gov (United States)

    Sangrar, Waheed; Zirgnibl, Ralph A; Gao, Yan; Muller, William J; Jia, Zongchao; Greer, Peter A

    2005-05-01

    Fps/Fes proteins were among the first members of the protein tyrosine kinase family to be characterized as dominant-acting oncoproteins. Addition of retroviral GAG sequences or other experimentally induced mutations activated the latent transforming potential of Fps/Fes. However, activating mutations in fps/fes had not been found in human tumors until recently, when mutational analysis of a panel of colorectal cancers identified four somatic mutations in sequences encoding the Fps/Fes kinase domain. Here, we report biochemical and theoretical structural analysis demonstrating that three of these mutations result in inactivation, not activation, of Fps/Fes, whereas the fourth mutation compromised in vivo activity. These results did not concur with a classic dominant-acting oncogenic role for fps/fes involving activating somatic mutations but instead raised the possibility that inactivating fps/fes mutations might promote tumor progression in vivo. Consistent with this, we observed that tumor onset in a mouse model of breast epithelial cancer occurred earlier in mice targeted with either null or kinase-inactivating fps/fes mutations. Furthermore, a fps/fes transgene restored normal tumor onset kinetics in targeted fps/fes null mice. These data suggest a novel and unexpected tumor suppressor role for Fps/Fes in epithelial cells.

  14. Potential actionable targets in appendiceal cancer detected by immunohistochemistry, fluorescent in situ hybridization, and mutational analysis

    Science.gov (United States)

    Millis, Sherri Z.; Kimbrough, Jeffery; Doll, Nancy; Von Hoff, Daniel; Ramanathan, Ramesh K.

    2017-01-01

    Background Appendiceal cancers are rare and consist of carcinoid, mucocele, pseudomyxoma peritonei (PMP), goblet cell carcinoma, lymphoma, and adenocarcinoma histologies. Current treatment involves surgical resection or debulking, but no standard exists for adjuvant chemotherapy or treatment for metastatic disease. Methods Samples were identified from approximately 60,000 global tumors analyzed at a referral molecular profiling CLIA-certified laboratory. A total of 588 samples with appendix primary tumor sites were identified (male/female ratio of 2:3; mean age =55). Sixty-two percent of samples were adenocarcinomas (used for analysis); the rest consisted of 9% goblet cell, 15% mucinous; 6% pseudomyxoma, and less than 5% carcinoids and 2% neuroendocrine. Tests included sequencing [Sanger, next generation sequencing (NGS)], protein expression/immunohistochemistry (IHC), and gene amplification [fluorescent in situ hybridization (FISH) or CISH]. Results Profiling across all appendiceal cancer histological subtypes for IHC revealed: 97% BRCP, 81% MRP1, 81% COX-2, 71% MGMT, 56% TOPO1, 5% PTEN, 52% EGFR, 40% ERCC1, 38% SPARC, 35% PDGFR, 35% TOPO2A, 25% RRM1, 21% TS, 16% cKIT, and 12% for TLE3. NGS revealed mutations in the following genes: 50.4% KRAS, 21.9% P53, 17.6% GNAS, 16.5% SMAD4, 10% APC, 7.5% ATM, 5.5% PIK3CA, 5.0% FBXW7, and 1.8% BRAF. Conclusions Appendiceal cancers show considerable heterogeneity with high levels of drug resistance proteins (BCRP and MRP1), which highlight the difficulty in treating these tumors and suggest an individualized approach to treatment. The incidence of low TS (79%) could be used as a backbone of therapy (using inhibitors such as 5FU/capecitabine or newer agents). Therapeutic options includeTOPO1 inhibitors (irinotecan/topotecan), EGFR inhibitors (erlotinib, cetuximab), PDGFR antagonists (regorafenib, axitinib), MGMT (temozolomide). Clinical trials targeting pathways involving KRAS, p53, GNAS, SMAD4, APC, ATM, PIK3CA, FBXW7, and

  15. An Oncogenic Role for Alternative NF-κB Signaling in DLBCL Revealed upon Deregulated BCL6 Expression

    Directory of Open Access Journals (Sweden)

    Baochun Zhang

    2015-05-01

    Full Text Available Diffuse large B cell lymphoma (DLBCL is a complex disease comprising diverse subtypes and genetic profiles. Possibly because of the prevalence of genetic alterations activating canonical NF-κB activity, a role for oncogenic lesions that activate the alternative NF-κB pathway in DLBCL has remained elusive. Here, we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-κB pathway, occurs in ∼15% of DLBCLs and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-κB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-κB pathway in DLBCL development.

  16. Thermoluminescence of CaCO3:Dy and CaCO3:Mn

    International Nuclear Information System (INIS)

    Bapat, V.N.; Nambi, K.S.V.

    1976-01-01

    CaCO 3 samples doped with Dy and Mn were prepared in the laboratory by co-precipitation techniques. Thermoluminescence and emission spectra of these phosphors were studied and were compared with those of the naturally occuring calcite and undoped CaCO 3 samples. Dy-doping seems to give a more efficient phosphor and indicates a possibility of getting a better phosphor by a judicious choice of a rare earth doping of CaCO 3 . Interesting result have been obtained on the TL glow curve variations of these phosphors with different temperature treatments prior to irradiation. (author)

  17. The mutator pathway is a feature of immunodeficiency-related lymphomas

    Science.gov (United States)

    Duval, Alex; Raphael, Martine; Brennetot, Caroline; Poirel, Helene; Buhard, Olivier; Aubry, Alban; Martin, Antoine; Krimi, Amor; Leblond, Veronique; Gabarre, Jean; Davi, Frederic; Charlotte, Frederic; Berger, Francoise; Gaidano, Gianluca; Capello, Daniela; Canioni, Danielle; Bordessoule, Dominique; Feuillard, Jean; Gaulard, Philippe; Delfau, Marie Helene; Ferlicot, Sophie; Eclache, Virginie; Prevot, Sophie; Guettier, Catherine; Lefevre, Pascale Cornillet; Adotti, Francoise; Hamelin, Richard

    2004-01-01

    The mutator phenotype caused by defects in the mismatch repair system is observed in a subset of solid neoplasms characterized by widespread microsatellite instability-high (MSI-H). It is known to be very rare in non-Hodgkin lymphomas (NHL), whereas mutator NHL is the most frequent tumor subtype in mismatch repair-deficient mice. By screening a series of 603 human NHL with specific markers of the mutator phenotype, we found here 12 MSI-H cases (12/603, 2%). Of interest, we demonstrated that this phenotype was specifically associated with immunodeficiency-related lymphomas (ID-RL), because it was observed in both posttransplant lymphoproliferative disorders (9/111, 8.1%) and HIV infection-related lymphomas (3/128, 2.3%) but not in a large series of NHL arising in the general population (0/364) (P < 0.0001). The MSI pathway is known to lead to the production of hundreds of abnormal protein neoantigens that are generated in MSI-H neoplasms by frameshift mutations of a number of genes containing coding microsatellite sequences. As expected, MSI-H ID-RL were found to harbor such genetic alterations in 12 target genes with a putative role in lymphomagenesis. The observation that the MSI-H phenotype was restricted to HIV infection-related lymphomas and posttransplant lymphoproliferative disorders suggests the existence of the highly immunogenic mutator pathway as a novel oncogenic process in lymphomagenesis whose role is favored when host immunosurveillance is reduced. Because MSI-H-positive cases were found to be either Epstein-Barr virus-positive or -negative, the mutator pathway should act synergistically or not with this other oncogenic factor, playing an important role in ID-RL. PMID:15047891

  18. A novel CISD2 mutation associated with a classical Wolfram syndrome phenotype alters Ca2+ homeostasis and ER-mitochondria interactions.

    Science.gov (United States)

    Rouzier, Cécile; Moore, David; Delorme, Cécile; Lacas-Gervais, Sandra; Ait-El-Mkadem, Samira; Fragaki, Konstantina; Burté, Florence; Serre, Valérie; Bannwarth, Sylvie; Chaussenot, Annabelle; Catala, Martin; Yu-Wai-Man, Patrick; Paquis-Flucklinger, Véronique

    2017-05-01

    Wolfram syndrome (WS) is a progressive neurodegenerative disease characterized by early-onset optic atrophy and diabetes mellitus, which can be associated with more extensive central nervous system and endocrine complications. The majority of patients harbour pathogenic WFS1 mutations, but recessive mutations in a second gene, CISD2, have been described in a small number of families with Wolfram syndrome type 2 (WFS2). The defining diagnostic criteria for WFS2 also consist of optic atrophy and diabetes mellitus, but unlike WFS1, this phenotypic subgroup has been associated with peptic ulcer disease and an increased bleeding tendency. Here, we report on a novel homozygous CISD2 mutation (c.215A > G; p.Asn72Ser) in a Moroccan patient with an overlapping phenotype suggesting that Wolfram syndrome type 1 and type 2 form a continuous clinical spectrum with genetic heterogeneity. The present study provides strong evidence that this particular CISD2 mutation disturbs cellular Ca2+ homeostasis with enhanced Ca2+ flux from the ER to mitochondria and cytosolic Ca2+ abnormalities in patient-derived fibroblasts. This Ca2+ dysregulation was associated with increased ER-mitochondria contact, a swollen ER lumen and a hyperfused mitochondrial network in the absence of overt ER stress. Although there was no marked alteration in mitochondrial bioenergetics under basal conditions, culture of patient-derived fibroblasts in glucose-free galactose medium revealed a respiratory chain defect in complexes I and II, and a trend towards decreased ATP levels. Our results provide important novel insight into the potential disease mechanisms underlying the neurodegenerative consequences of CISD2 mutations and the subsequent development of multisystemic disease. © The Author 2017. Published by Oxford University Press.

  19. Analysis of PI3K/mTOR Pathway Biomarkers and Their Prognostic Value in Women with Hormone Receptor–Positive, HER2-Negative Early Breast Cancer

    Directory of Open Access Journals (Sweden)

    Hamdy A. Azim

    2016-04-01

    Full Text Available BACKGROUND: The PI3K/AKT/mTOR pathway alterations have been shown to play significant roles in the development, progression, and metastatic spread of breast cancer. Furthermore, they have been implicated in the process of drug resistance, especially endocrinal therapies. In this study, we aimed to define the correlation between the PI3K mutations and the expression of the phosphorylated forms of different downstream molecules in women with estrogen receptor (ER–positive, human epidermal growth factor receptor 2–negative (luminal early breast cancer treated at Cairo university hospitals. METHODS: Next-generation sequencing was used to detect mutations in the PIK3CA hotspots (in exons 9 and 20. Immunohistochemistry was performed on tissue microarray blocks prepared from samples of 35 Egyptian luminal breast cancer patients in the pathology department of Centre Léon Bérard (CLB. The intensity and the percentage of stained tumor cells were integrated to define high versus low biomarker expression. The cytoplasmic and nuclear stainings were graded separately. Patients were followed for a median of 4.7 years (2.1 to 6.9 years. Correlation was done between PI3K mutations and the immunohistochemistry expression of pAKT, LKB1, p4EBP1, and pS6 ribosomal protein (pS6RP with the clinicopathologic features and disease free survival (DFS of the patients. RESULTS: Median age at diagnosis was 51.3 years (range, 25 to 82 years. Tumors were larger than 20 mm in 79.2% of the cases, whereas 57.9% had axillary lymph node deposits. Only 12.3% of the patients had SBR grade I tumors, 50.8% had grade II, and 36.8% had grade III. ERs were negative in 6 patients (17% after pathology review. Thirty-two cases were assessable for LKB1 and pAKT, 33 for p4EBP1 and pS6RP, and 24 for PI3K mutations. Nuclear LKB1, cytoplasmic LKB1, nuclear pAKT, cytoplasmic pAKT, nuclear p4EBP1, and cytoplasmic pS6RP expression was high in 65.6%, 62.5%, 62.5%, 68.8%, 42.4%, and 57

  20. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study

    Directory of Open Access Journals (Sweden)

    Shirasawa Senji

    2011-09-01

    Full Text Available Abstract Background Colorectal cancer is a common disease that involves genetic alterations, such as inactivation of tumour suppressor genes and activation of oncogenes. Among them are RAS and BRAF mutations, which rarely coexist in the same tumour. Individual members of the Rho (Ras homology GTPases contribute with distinct roles in tumour cell morphology, invasion and metastasis. The aim of this study is to dissect cell migration and invasion pathways that are utilised by BRAFV600E as compared to KRASG12V and HRASG12V oncoproteins. In particular, the role of RhoA (Ras homolog gene family, member A, Rac1 (Ras-related C3 botulinum toxin substrate 1 and Cdc42 (cell division cycle 42 in cancer progression induced by each of the three oncogenes is described. Methods Colon adenocarcinoma cells with endogenous as well as ectopically expressed or silenced oncogenic mutations of BRAFV600E, KRASG12V and HRASG12V were employed. Signalling pathways and Rho GTPases were inhibited with specific kinase inhibitors and siRNAs. Cell motility and invasion properties were correlated with cytoskeletal properties and Rho GTPase activities. Results Evidence presented here indicate that BRAFV600E significantly induces cell migration and invasion properties in vitro in colon cancer cells, at least in part through activation of RhoA GTPase. The relationship established between BRAFV600E and RhoA activation is mediated by the MEK-ERK pathway. In parallel, KRASG12V enhances the ability of colon adenocarcinoma cells Caco-2 to migrate and invade through filopodia formation and PI3K-dependent Cdc42 activation. Ultimately increased cell migration and invasion, mediated by Rac1, along with the mesenchymal morphology obtained through the Epithelial-Mesenchymal Transition (EMT were the main characteristics rendered by HRASG12V in Caco-2 cells. Moreover, BRAF and KRAS oncogenes are shown to cooperate with the TGFβ-1 pathway to provide cells with additional transforming

  1. Prognostic and predictive value of p-Akt, EGFR, and p-mTOR in early breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Georgios; Lambaki, Sofia [Hospital, Department of Pathology, Thessaloniki (Greece); Karayannopoulou, Georgia [Aristotle Univ. of Thessaloniki School of Medicine, Thessaloniki (Greece). Dept. of Pathology; Eleftheraki, Anastasia G. [Data Office, Athens (Greece). Section of Biostatistics; Papaspirou, Irene [Alexandra Hospital, Athens (Greece). Dept. of Pathology; Bobos, Mattheos [Aristotle Univ. of Thessaloniki School of Medicine, Thessaloniki (Greece). Lab. of Molecular Oncology; Efstratiou, Ioannis [Papageorgiou Hospital, Thessaloniki (Greece). Dept. of Pathology; Pentheroudakis, George [Ioannina Univ. Hospital, Ioannina (Greece). Dept. of Medical Oncology; Zamboglou, Nikolaos [Klinikum Offenbach (Germany). Dept. of Radiation Oncology; Fountzilas, George [Hospital, Department of Pathology, Thessaloniki (Greece); Aristotle Univ. of Thessaloniki School of Medicine, Thessaloniki (Greece). Lab. of Molecular Oncology

    2014-07-15

    There are scarce data available on the prognostic/predictive value of p-Akt and p-mTOR protein expression in patients with high-risk early breast cancer. Formalin-fixed paraffin-embedded (FFPE) tumor tissue samples from 997 patients participating in two adjuvant phase III trials were assessed for EGFR, PTEN, p-Akt, p-mTOR protein expression, and PIK3CA mutational status. These markers were evaluated for associations with each other and with selected patient and tumor characteristics, immunohistochemical subtypes, disease-free survival (DFS), and overall survival (OS). p-mTOR protein expression was negatively associated with EGFR and positively associated with PTEN, with p-Akt473, and with the presence of PIK3CA mutations. EGFR expression was positively associated with p-Akt473, p-Akt308, and PIK3CA wild-type tumors. Finally, p-Akt308 was positively associated with p-Akt473 expression. In univariate analysis, EGFR (p = 0.016) and the coexpression of EGFR and p-mTOR (p = 0.015) were associated with poor OS. Among patients with p-Akt308-negative or low-expressing tumors, those treated with hormonal therapy were associated with decreased risk for both relapse and death (p = 0.013 and p < 0.001, respectively). In the subgroup of patients with locoregional relapse, positive EGFR and mTOR protein expression was found to be associated with increased (p = 0.034) and decreased (p < 0.001) risk for earlier relapse, respectively. In multivariate analysis, low levels of p-Akt308 and the coexpression of EGFR and p-mTOR retained their prognostic value. Low protein expression of p-Akt308 was associated with improved DFS and OS among patients treated with hormonal therapy following adjuvant chemotherapy. Coexpression of EGFR and p-mTOR was associated with worse OS. (orig.) [German] Geringe Daten existieren ueber den prognostischen/praediktiven Wert der p-Akt- und p-mTOR-Proteinexpression bei Patienten mit ''High-risk''-Mammakarzinom im Fruehstadium

  2. The oncogenic action of ionizing radiation on rat skin: Progress report, February 1, 1988-January 31, 1989

    International Nuclear Information System (INIS)

    Burns, F.J.; Garte, S.J.

    1988-01-01

    Progress is described in 3 general areas corresponding to the specific aims of the proposal, including DNA strand breaks in the epidermis as a function of radiation penetration; oncogene activation in radiation-induced rat skin cancers; and carcinogenesis in rat skin induced by the neon ion beam. Numerous experiments have established that DNA strand breaks per unit dose in the rat epidermis are reduced by about 60% when the radiation penetration is reduced from 1.0 mm to 0.2 mm. The activation of oncogenes in the radiation-induced rat skin cancers followed a pattern. Four highly malignant cancers exhibited activation of K-ras and c-myc oncogenes, while the remaining 8 cancers exhibited only one or the other of these 2 oncogenes. Of 5 squamous carcinomas, 4 showed K-ras activation and 1 showed c-myc activation. Approximately 200 rats were exposed to the neon ion beam at the Bevalac in Berkeley, CA. The carcinogenicity of energetic electrons (2.0 MeV) was determined in conjunction with the neon ion experiment. It is too early to evaluate tumor incidence in the neon ion experiment, but for electrons an unusually large excess of connective tissue tumors, fibromas and sarcomas, have been observed so far. 59 refs., 2 tabs

  3. Characterization of a naturally occurring breast cancer subset enriched in EMT and stem cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, Bryan T.; Gonzalez-Angulo, Ana-Maria; Stemke-Hale, Katherine; Gilcrease, Michael Z.; Krishnamurthy, Savitri; Lee, Ju-Seog; Fridlyand, Jane; Sahin, Aysegul; Agarwal, Roshan; Joy, Corwin; Liu, Wenbin; Stivers, David; Baggerly, Keith; Carey, Mark; Lluch, Ana; Monteagudo, Carlos; He, Xiaping; Weigman, Victor; Fan, Cheng; Palazzo, Juan; Hortobagyi, Gabriel N.; Nolden, Laura K.; Wang, Nicholas J.; Valero, Vicente; Gray, Joe W.; Perou, Charles M.; Mills, Gordon B.

    2009-05-19

    Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor-positive cancers (34.5%; P = 0.32), 17 of 75 HER-2-positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a 'tumorigenic' signature defined using CD44{sup +}/CD24{sup -} breast tumor-initiating stem cell-like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell-like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets.

  4. GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth.

    Science.gov (United States)

    Koo, Junghui; Wang, Xuerong; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R; Sun, Shi-Yong

    2015-04-20

    The single-agent activity of rapalogs (rapamycin and its analogues) in most tumor types has been modest at best. The underlying mechanisms are largely unclear. In this report, we have uncovered a critical role of GSK3 in regulating degradation of some oncogenic proteins induced by rapalogs and cell sensitivity to rapalogs. The basal level of GSK3 activity was positively correlated with cell sensitivity of lung cancer cell lines to rapalogs. GSK3 inhibition antagonized rapamycin's growth inhibitory effects both in vitro and in vivo, while enforced activation of GSK3β sensitized cells to rapamycin. GSK3 inhibition rescued rapamcyin-induced reduction of several oncogenic proteins such as cyclin D1, Mcl-1 and c-Myc, without interfering with the ability of rapamycin to suppress mTORC1 signaling and cap binding. Interestingly, rapamycin induces proteasomal degradation of these oncogenic proteins, as evidenced by their decreased stabilities induced by rapamcyin and rescue of their reduction by proteasomal inhibition. Moreover, acute or short-time rapamycin treatment dissociated not only raptor, but also rictor from mTOR in several tested cell lines, suggesting inhibition of both mTORC1 and mTORC2. Thus, induction of GSK3-dependent degradation of these oncogenic proteins is likely secondary to mTORC2 inhibition; this effect should be critical for rapamycin to exert its anticancer activity.

  5. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis.

    Science.gov (United States)

    Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H; Waskow, Emily R; Visconte, Valeria; Tiu, Ramon V; Smith, Catherine C; Shah, Neil; Bunting, Kevin D; Boswell, H Scott; Liu, Yan; Chan, Rebecca J; Kapur, Reuben

    2014-11-20

    Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR.

    Science.gov (United States)

    Wang, Jun; Gui, Lang; Chen, Zong-Yan; Zhang, Qi-Ya

    2016-08-01

    G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315-349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335-340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327-329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture.

  7. Diet, Lifestyle and risk of K-ras mutation-positive and -negative colorectal adenomas

    NARCIS (Netherlands)

    Wark, P.A.; Kuil, van der W.; Ploemacher, J.; Muijen, van G.N.P.; Mulder, Ch.J.J.; Weijenberg, M.P.; Kok, F.J.; Kampman, E.

    2006-01-01

    K-ras mutation-positive (K-ras+) and -negative (K-ras-) colorectal adenomas may differ clinically and pathologically. As environmental compounds may cause mutations in the growth-related K-ras oncogene or affect clonal selection depending on mutational status, we evaluated whether the aetiology of

  8. Racial Disparities in the Molecular Landscape of Cancer.

    Science.gov (United States)

    Heath, Elisabeth I; Lynce, Filipa; Xiu, Joanne; Ellerbrock, Angela; Reddy, Sandeep K; Obeid, Elias; Liu, Stephen V; Bollig-Fischer, Aliccia; Separovic, Duska; Vanderwalde, Ari

    2018-04-01

    African Americans (AA) have the highest incidence and mortality of any racial/ethnic group in the US for most cancer types. Heterogeneity in the molecular biology of cancer, as a contributing factor to this disparity, is poorly understood. To address this gap in knowledge, we explored the molecular landscape of colorectal cancer (CRC), non-small cell lung cancer (NSCLC) and high-grade glioma (HGG) from 271 AA and 636 Caucasian (CC) cases. DNA from formalin-fixed paraffin-embedded tumors was sequenced using next-generation sequencing. Additionally, we evaluated protein expression using immunohistochemistry. The Exome Aggregation Consortium Database was evaluated for known ethnicity associations. Considering only pathogenic or presumed pathogenic mutations, as determined by the American College of Medical Genetics and Genomics guidelines, and using Bonferroni and Benjamini-Hochberg corrections for multiple comparisons, we found that CRC tumors from AA patients harbored significantly more mutations of phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) than those from CC patients. CRC tumors in AA patients also appeared to harbor more mutations of mitogen-activated protein kinase kinase 1 (MAP2K1/MEK1), MPL proto-oncogene (MPL), thrombo-poietin receptor, and neurofibromin 1 (NF1) than those from CC patients. In contrast, CRCs from AA patients were likely to carry fewer mutations of ataxia-telangiectasia mutated (ATM), as well as of proto-oncogene B-Raf (BRAF), including the V600E variant, than those from CC patients. Rates of immunohistochemical positivity for epidermal growth factor receptor (EGFR) and DNA topoisomerase 2-alpha (TOP2A) tended to be higher in CRCs from AA patients than in CC patients. In NSCLC adenocarcinoma, BRAF variants appeared to be more frequent in the AA than in the CC cohort, whereas in squamous cell lung carcinoma, programmed death-ligand 1 (PD-L1) expression tended to be lower in the AA than in CC group. Moreover

  9. Molecular Defects in Cardiac Myofilament Ca2+-Regulation Due to Cardiomyopathy-Linked Mutations Can Be Reversed by Small Molecules Binding to Troponin

    Directory of Open Access Journals (Sweden)

    Alice Sheehan

    2018-03-01

    Full Text Available The inherited cardiomyopathies, hypertrophic cardiomyopathy (HCM and dilated cardiomyopathy (DCM are relatively common, potentially life-threatening and currently untreatable. Mutations are often in the contractile proteins of cardiac muscle and cause abnormal Ca2+ regulation via troponin. HCM is usually linked to higher myofilament Ca2+-sensitivity whilst in both HCM and DCM mutant tissue there is often an uncoupling of the relationship between troponin I (TnI phosphorylation by PKA and modulation of myofilament Ca2+-sensitivity, essential for normal responses to adrenaline. The adrenergic response is blunted, and this may predispose the heart to failure under stress. At present there are no compounds or interventions that can prevent or treat sarcomere cardiomyopathies. There is a need for novel therapies that act at a more fundamental level to affect the disease process. We demonstrated that epigallocatechin-3 gallate (EGCG was found to be capable of restoring the coupled relationship between Ca2+-sensitivity and TnI phosphorylation in mutant thin filaments to normal in vitro, independent of the mutation (15 mutations tested. We have labeled this property “re-coupling.” The action of EGCG in vitro to reverse the abnormality caused by myopathic mutations would appear to be an ideal pharmaceutical profile for treatment of inherited HCM and DCM but EGCG is known to be promiscuous in vivo and is thus unsuitable as a therapeutic drug. We therefore investigated whether other structurally related compounds can re-couple myofilaments without these off-target effects. We used the quantitative in vitro motility assay to screen 40 compounds, related to C-terminal Hsp90 inhibitors, and found 23 that can re-couple mutant myofilaments. There is no correlation between re-couplers and Hsp90 inhibitors. The Ca2+-sensitivity shift due to TnI phosphorylation was restored to 2.2 ± 0.01-fold (n = 19 compared to 2.0 ± 0.24-fold (n = 7 in wild-type thin

  10. Molecular Defects in Cardiac Myofilament Ca2+-Regulation Due to Cardiomyopathy-Linked Mutations Can Be Reversed by Small Molecules Binding to Troponin.

    Science.gov (United States)

    Sheehan, Alice; Messer, Andrew E; Papadaki, Maria; Choudhry, Afnan; Kren, Vladimír; Biedermann, David; Blagg, Brian; Khandelwal, Anuj; Marston, Steven B

    2018-01-01

    The inherited cardiomyopathies, hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are relatively common, potentially life-threatening and currently untreatable. Mutations are often in the contractile proteins of cardiac muscle and cause abnormal Ca 2+ regulation via troponin. HCM is usually linked to higher myofilament Ca 2+ -sensitivity whilst in both HCM and DCM mutant tissue there is often an uncoupling of the relationship between troponin I (TnI) phosphorylation by PKA and modulation of myofilament Ca 2+ -sensitivity, essential for normal responses to adrenaline. The adrenergic response is blunted, and this may predispose the heart to failure under stress. At present there are no compounds or interventions that can prevent or treat sarcomere cardiomyopathies. There is a need for novel therapies that act at a more fundamental level to affect the disease process. We demonstrated that epigallocatechin-3 gallate (EGCG) was found to be capable of restoring the coupled relationship between Ca 2+ -sensitivity and TnI phosphorylation in mutant thin filaments to normal in vitro , independent of the mutation (15 mutations tested). We have labeled this property "re-coupling." The action of EGCG in vitro to reverse the abnormality caused by myopathic mutations would appear to be an ideal pharmaceutical profile for treatment of inherited HCM and DCM but EGCG is known to be promiscuous in vivo and is thus unsuitable as a therapeutic drug. We therefore investigated whether other structurally related compounds can re-couple myofilaments without these off-target effects. We used the quantitative in vitro motility assay to screen 40 compounds, related to C-terminal Hsp90 inhibitors, and found 23 that can re-couple mutant myofilaments. There is no correlation between re-couplers and Hsp90 inhibitors. The Ca 2+ -sensitivity shift due to TnI phosphorylation was restored to 2.2 ± 0.01-fold ( n = 19) compared to 2.0 ± 0.24-fold ( n = 7) in wild-type thin filaments

  11. [Aspirin and colorectal cancer].

    Science.gov (United States)

    Grancher, Adrien; Michel, Pierre; Di Fiore, Frédéric; Sefrioui, David

    2018-02-01

    Colorectal cancer is a worldwide public health problem. Aspirin has been identified as a protective factor against the apparition of colorectal cancer. There are several mechanisms about the actions by aspirin on colorectal tumorogenesis. These are not perfectly known nowadays. On one hand, there are direct mechanisms on colorectal mucosa, on the other hand there are indirect mechanisms through platelet functions. Aspirin also plays a role by its anti-inflammatory action and the stimulation of antitumor immunity. Several studies show that long-term treatment with low-doses of aspirin decreases the incidence of adenomas and colorectal cancers. In the United States, aspirin is currently recommended for primary prevention of the risk of colorectal cancer in all patients aged 50 to 59, with a 10-year risk of cardiovascular event greater than 10 %. However, primary prevention with aspirin should not be a substitute for screening in colorectal cancer. Furthermore, aspirin seems to be beneficial when used in post-diagnosis of colorectal cancer. It could actually decrease the risk of metastasis in case of a localized colorectal cancer, and increase the survival in particular, concerning PIK3CA mutated tumors. The association of aspirin with neoadjuvant treatment of colorectal cancer by radiochimiotherapy seems to have beneficial effects. French prospective randomized study is currently being conducted to investigate postoperative aspirin in colorectal cancers with a PIK3CA mutation. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  12. Normosmic congenital hypogonadotropic hypogonadism due to TAC3/TACR3 mutations: characterization of neuroendocrine phenotypes and novel mutations.

    Directory of Open Access Journals (Sweden)

    Bruno Francou

    Full Text Available CONTEXT: TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH (OMIM #146110. In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. OBJECTIVE: To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. RESULTS: From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%. We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001 higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. CONCLUSION: The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations.

  13. Oncogenic programmes and Notch activity: an 'organized crime'?

    Science.gov (United States)

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Genetic variations of the A13/A14 repeat located within the EGFR 3′ untranslated region have no oncogenic effect in patients with colorectal cancer

    International Nuclear Information System (INIS)

    Sarafan-Vasseur, Nasrin; Latouche, Jean-Baptiste; Frebourg, Thierry; Sesboüé, Richard; Sefrioui, David; Tougeron, David; Lamy, Aude; Blanchard, France; Le Pessot, Florence; Di Fiore, Frédéric; Michel, Pierre; Bézieau, Stéphane

    2013-01-01

    The EGFR 3′ untranslated region (UTR) harbors a polyadenine repeat which is polymorphic (A13/A14) and undergoes somatic deletions in microsatellite instability (MSI) colorectal cancer (CRC). These mutations could be oncogenic in colorectal tissue since they were shown to result into increased EGFR mRNA stability in CRC cell lines. First, we determined in a case control study including 429 CRC patients corresponding to different groups selected or not on age of tumor onset and/or familial history and/or MSI, whether or not, the germline EGFR A13/A14 polymorphism constitutes a genetic risk factor for CRC; second, we investigated the frequency of somatic mutations of this repeat in 179 CRC and their impact on EGFR expression. No statistically significant difference in allelic frequencies of the EGFR polyA repeat polymorphism was observed between CRC patients and controls. Somatic mutations affecting the EGFR 3′UTR polyA tract were detected in 47/80 (58.8%) MSI CRC versus 0/99 microsatellite stable (MSS) tumors. Comparative analysis in 21 CRC samples of EGFR expression, between tumor and non malignant tissues, using two independent methods showed that somatic mutations of the EGFR polyA repeat did not result into an EGFR mRNA increase. Germline and somatic genetic variations occurring within the EGFR 3′ UTR polyA tract have no impact on CRC genetic risk and EGFR expression, respectively. Genotyping of the EGFR polyA tract has no clinical utility to identify patients with a high risk for CRC or patients who could benefit from anti-EGFR antibodies

  15. Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications

    Directory of Open Access Journals (Sweden)

    Shuyu D. Li

    2017-10-01

    Full Text Available Abstract Background Next-generation sequencing (NGS of cancer gene panels are widely applied to enable personalized cancer therapy and to identify novel oncogenic mutations. Methods We performed targeted NGS on 932 clinical cases of non-small-cell lung cancers (NSCLCs using the Ion AmpliSeq™ Cancer Hotspot panel v2 assay. Results Actionable mutations were identified in 65% of the cases with available targeted therapeutic options, including 26% of the patients with mutations in National Comprehensive Cancer Network (NCCN guideline genes. Most notably, we discovered JAK2 p.V617F somatic mutation, a hallmark of myeloproliferative neoplasms, in 1% (9/932 of the NSCLCs. Analysis of cancer cell line pharmacogenomic data showed that a high level of JAK2 expression in a panel of NSCLC cell lines is correlated with increased sensitivity to a selective JAK2 inhibitor. Further analysis of TCGA genomic data revealed JAK2 gain or loss due to genetic alterations in NSCLC clinical samples are associated with significantly elevated or reduced PD-L1 expression, suggesting that the activating JAK2 p.V617F mutation could confer sensitivity to both JAK inhibitors and anti-PD1 immunotherapy. We also detected JAK3 germline activating mutations in 6.7% (62/932 of the patients who may benefit from anti-PD1 treatment, in light of recent findings that JAK3 mutations upregulate PD-L1 expression. Conclusion Taken together, this study demonstrated the clinical utility of targeted NGS with a focused hotspot cancer gene panel in NSCLCs and identified activating mutations in JAK2 and JAK3 with clinical implications inferred through integrative analysis of cancer genetic, genomic, and pharmacogenomic data. The potential of JAK2 and JAK3 mutations as response markers for the targeted therapy against JAK kinases or anti-PD1 immunotherapy warrants further investigation.

  16. Shared Oncogenic Pathways Implicated in Both Virus-Positive and UV-Induced Merkel Cell Carcinomas.

    Science.gov (United States)

    González-Vela, María Del Carmen; Curiel-Olmo, Soraya; Derdak, Sophia; Beltran, Sergi; Santibañez, Miguel; Martínez, Nerea; Castillo-Trujillo, Alfredo; Gut, Martha; Sánchez-Pacheco, Roxana; Almaraz, Carmen; Cereceda, Laura; Llombart, Beatriz; Agraz-Doblas, Antonio; Revert-Arce, José; López Guerrero, José Antonio; Mollejo, Manuela; Marrón, Pablo Isidro; Ortiz-Romero, Pablo; Fernandez-Cuesta, Lynnette; Varela, Ignacio; Gut, Ivo; Cerroni, Lorenzo; Piris, Miguel Ángel; Vaqué, José Pedro

    2017-01-01

    Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55-90% of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multivariable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Contribution of Beta-HPV Infection and UV-Damage to Rapid-onset Cutaneous Squamous Cell Carcinoma during BRAF-inhibition Therapy

    Science.gov (United States)

    Cohen, Daniel N.; Lawson, Steven K.; Shaver, Aaron C.; Du, Liping; Nguyen, Harrison P.; He, Qin; Johnson, Douglas B.; Lumbang, Wilfred A.; Moody, Brent R.; Prescott, James L.; Chandra, Pranil K.; Boyd, Alan S.; Zwerner, Jeffrey P.; Robbins, Jason B.; Tyring, Stephen K.; Rady, Peter L.; Chappell, James D.; Shyr, Yu; Infante, Jeffrey R.; Sosman, Jeffrey A.

    2015-01-01

    Purpose BRAF-inhibition (BRAFi) therapy for advanced melanoma carries a high rate of secondary cutaneous squamous cell carcinoma (cSCC) and risk of other cancers. Ultraviolet (UV) radiation and α-genus human papillomavirus (HPV) are highly associated with SCC, but a novel role for β-genus HPV is suspected in BRAFi-cSCC. Cutaneous β-HPV may act in concert with host and environmental factors in BRAFi-cSCC. Experimental Design Primary BRAFi-cSCC tissue DNA isolated from patients receiving vemurafenib (Vem) or dabrafenib from two cancer centers was analyzed for the presence of cutaneous oncogenic viruses and host genetic mutations. Diagnostic specimens underwent consensus dermatopathology review. Clinical parameters for UV exposure and disease course were statistically analyzed in conjunction with histopathology. Results Twenty-nine patients contributed 69 BRAFi-cSCC lesions. BRAFi-cSCC had wart-like features (BRAFi-cSCC-WF) in 22% of specimens. During Vem therapy, BRAFi-cSCC-WF arose 11.6 weeks more rapidly than conventional-cSCC when controlled for gender and UV-exposure (p-value=0.03). Among all BRAFi-cSCC, β-genus HPV-17, HPV-38, HPV-111 were most frequently isolated and novel β-HPV genotypes were discovered (CTR, CRT-11, CRT-22). Sequencing revealed 63% of evaluated BRAFi-cSCCs harbored RAS mutations with PIK3CA, CKIT, ALK and EGFR mutations also detected. Conclusions We examined clinical, histopathologic, viral and genetic parameters in BRAFi-cSCC demonstrating rapid onset; wart-like histomorphology; β-HPV-17, HPV-38, and HPV-111 infection; UV damage; and novel ALK and CKIT mutations. Discovered β-HPV genotypes expand the spectrum of tumor-associated viruses. These findings enhance our understanding of factors cooperating with BRAF inhibition that accelerate keratinocyte oncogenesis as well as broaden the knowledge base of multifactorial mediators of cancer in general. PMID:25724524

  18. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  19. CLCNKB mutations causing mild Bartter syndrome profoundly alter the pH and Ca2+ dependence of ClC-Kb channels.

    Science.gov (United States)

    Andrini, Olga; Keck, Mathilde; L'Hoste, Sébastien; Briones, Rodolfo; Mansour-Hendili, Lamisse; Grand, Teddy; Sepúlveda, Francisco V; Blanchard, Anne; Lourdel, Stéphane; Vargas-Poussou, Rosa; Teulon, Jacques

    2014-09-01

    ClC-Kb, a member of the ClC family of Cl(-) channels/transporters, plays a major role in the absorption of NaCl in the distal nephron. CLCNKB mutations cause Bartter syndrome type 3, a hereditary renal salt-wasting tubulopathy. Here, we investigate the functional consequences of a Val to Met substitution at position 170 (V170M, α helix F), which was detected in eight patients displaying a mild phenotype. Conductance and surface expression were reduced by ~40-50 %. The regulation of channel activity by external H(+) and Ca(2+) is a characteristic property of ClC-Kb. Inhibition by external H(+) was dramatically altered, with pKH shifting from 7.6 to 6.0. Stimulation by external Ca(2+) on the other hand was no longer detectable at pH 7.4, but was still present at acidic pH values. Functionally, these regulatory modifications partly counterbalance the reduced surface expression by rendering V170M hyperactive. Pathogenic Met170 seems to interact with another methionine on α helix H (Met227) since diverse mutations at this site partly removed pH sensitivity alterations of V170M ClC-Kb. Exploring other disease-associated mutations, we found that a Pro to Leu substitution at position 124 (α helix D, Simon et al., Nat Genet 1997, 17:171-178) had functional consequences similar to those of V170M. In conclusion, we report here for the first time that ClC-Kb disease-causing mutations located around the selectivity filter can result in both reduced surface expression and hyperactivity in heterologous expression systems. This interplay must be considered when analyzing the mild phenotype of patients with type 3 Bartter syndrome.

  20. Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events

    DEFF Research Database (Denmark)

    Serizawa, Reza R; Ralfkiaer, Ulrik; Steven, Kenneth

    2011-01-01

    The bladder cancer genome harbors numerous oncogenic mutations and aberrantly methylated gene promoters. The aim of our study was to generate a profile of these alterations and investigate their use as biomarkers in urine sediments for noninvasive detection of bladder cancer. We systematically sc...... noninvasive, DNA-based detection of bladder cancer....

  1. B-Raf mutation: a key player in molecular biology of cancer.

    Science.gov (United States)

    Rahman, M A; Salajegheh, A; Smith, R A; Lam, A K-Y

    2013-12-01

    B-Raf is one of the more commonly mutated proto-oncogenes implicated in the development of cancers. In this review, we consider the mechanisms and clinical impacts of B-Raf mutations in cancer and discuss the implications for the patient in melanoma, thyroid cancer and colorectal cancer, where B-Raf mutations are particularly common. © 2013.

  2. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer

    DEFF Research Database (Denmark)

    Vallejo, Adrian; Perurena, Naiara; Guruceaga, Elisabet

    2017-01-01

    KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identifica...

  3. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies.

    Science.gov (United States)

    Fang, Bingliang

    2016-01-01

    Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology

  4. Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy.

    Directory of Open Access Journals (Sweden)

    Mona Meyer

    Full Text Available Acute myeloid leukemia (AML is a clonal disease originating from myeloid progenitor cells with a heterogeneous genetic background. High-dose cytarabine is used as the standard consolidation chemotherapy. Oncogenic RAS mutations are frequently observed in AML, and are associated with beneficial response to cytarabine. Why AML-patients with oncogenic RAS benefit most from high-dose cytarabine post-remission therapy is not well understood. Here we used bone marrow cells expressing a conditional MLL-ENL-ER oncogene to investigate the interaction of oncogenic RAS and chemotherapeutic agents. We show that oncogenic RAS synergizes with cytotoxic agents such as cytarabine in activation of DNA damage checkpoints, resulting in a p53-dependent genetic program that reduces clonogenicity and increases myeloid differentiation. Our data can explain the beneficial effects observed for AML patients with oncogenic RAS treated with higher dosages of cytarabine and suggest that induction of p53-dependent differentiation, e.g. by interfering with Mdm2-mediated degradation, may be a rational approach to increase cure rate in response to chemotherapy. The data also support the notion that the therapeutic success of cytotoxic drugs may depend on their ability to promote the differentiation of tumor-initiating cells.

  5. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Therkildsen, Christina; Bergmann, Troels K; Henrichsen-Schnack, Tine

    2014-01-01

    BACKGROUND: In metastatic colorectal cancer, mutation testing for KRAS exon 2 is widely implemented to select patients with wild-type tumors for treatment with the monocloncal anti-EGFR antibodies cetuximab and panitumumab. The added predictive value of additional biomarkers in the RAS-RAF-MAPK a......BACKGROUND: In metastatic colorectal cancer, mutation testing for KRAS exon 2 is widely implemented to select patients with wild-type tumors for treatment with the monocloncal anti-EGFR antibodies cetuximab and panitumumab. The added predictive value of additional biomarkers in the RAS...

  6. TOX3 mutations in breast cancer.

    Directory of Open Access Journals (Sweden)

    James Owain Jones

    Full Text Available TOX3 maps to 16q12, a region commonly lost in breast cancers and recently implicated in the risk of developing breast cancer. However, not much is known of the role of TOX3 itself in breast cancer biology. This is the first study to determine the importance of TOX3 mutations in breast cancers. We screened TOX3 for mutations in 133 breast tumours and identified four mutations (three missense, one in-frame deletion of 30 base pairs in six primary tumours, corresponding to an overall mutation frequency of 4.5%. One potentially deleterious missense mutation in exon 3 (Leu129Phe was identified in one tumour (genomic DNA and cDNA. Whilst copy number changes of 16q12 are common in breast cancer, our data show that mutations of TOX3 are present at low frequency in tumours. Our results support that TOX3 should be further investigated to elucidate its role in breast cancer biology.

  7. Prophylactic thyroidectomy for asymptomatic 3-year-old boy with positive multiple endocrine neoplasia type 2A mutation (codon 634).

    Science.gov (United States)

    Jesić, Maja D; Tancić-Gajić, Milina; Jesić, Milos M; Zivaljević, Vladan; Sajić, Silvija; Vujović, Svetlana; Damjanović, Svetozar

    2014-01-01

    The multiple endocrine neoplasia type 2A (MEN 2A) syndrome, comprising medullary thyroid carcinoma (MTC), pheochromocytoma and primary hyperparathyroidism (PHPT) is most frequently caused by codon 634 activating mutations of the RET (rearranged during transfection) proto-oncogene on chromosome 10. For this codon-mutation carriers, earlier thyroidectomy (before the age of 5 years) would be advantageous in limiting the potential for the development of MTC as well as parathyroid adenomas. This is a case report of 3-year-old boy from the MEN 2A family (the boy's father and grandmother and paternal aunt) in which cysteine substitutes for phenylalanine at codon 634 in exon 11 of the RET proto-oncogene, who underwent thyroidectomy solely on the basis of genetic information. A boy had no thyromegaly, thyroidal irregularities or lymphadenopathy and no abnormality on the neck ultrasound examination. The pathology finding of thyroid gland was negative for MTC. Two years after total thyroidectomy, 5-year-old boy is healthy with permanent thyroxine replacement. His serum calcitonin level is < 2 pg/ml (normal < 13 pg/ml), has normal serum calcium and parathyroid hormone levels and negative urinary catecholamines. Long-term follow-up of this patient is required to determine whether very early thyroidectomy improves the long-term outcome of PHPT. Children with familial antecedents of MEN 2A should be genetically studied for the purpose of determining the risk of MTC and assessing the possibilities of making prophylactic thyroidectomy before the age of 5 years.

  8. Energy parasites trigger oncogene mutation.

    Science.gov (United States)

    Pokorný, Jiří; Pokorný, Jan; Jandová, Anna; Kobilková, Jitka; Vrba, Jan; Vrba, Jan

    2016-10-01

    Cancer initialization can be explained as a result of parasitic virus energy consumption leading to randomized genome chemical bonding. Analysis of experimental data on cell-mediated immunity (CMI) containing about 12,000 cases of healthy humans, cancer patients and patients with precancerous cervical lesions disclosed that the specific cancer and the non-specific lactate dehydrogenase-elevating (LDH) virus antigen elicit similar responses. The specific antigen is effective only in cancer type of its origin but the non-specific antigen in all examined cancers. CMI results of CIN patients display both healthy and cancer state. The ribonucleic acid (RNA) of the LDH virus parasitizing on energy reduces the ratio of coherent/random oscillations. Decreased effect of coherent cellular electromagnetic field on bonding electrons in biological macromolecules leads to elevating probability of random genome reactions. Overlapping of wave functions in biological macromolecules depends on energy of the cellular electromagnetic field which supplies energy to bonding electrons for selective chemical bonds. CMI responses of cancer and LDH virus antigens in all examined healthy, precancerous and cancer cases point to energy mechanism in cancer initiation. Dependence of the rate of biochemical reactions on biological electromagnetic field explains yet unknown mechanism of genome mutation.

  9. Role of GSK-3β in Regulation of Canonical Wnt/β-catenin Signaling and PI3-K/Akt Oncogenic Pathway in Colon Cancer.

    Science.gov (United States)

    Jain, Shelly; Ghanghas, Preety; Rana, Chandan; Sanyal, S N

    2017-08-09

    Non-steroidal anti-inflammatory drugs (NSAIDs) are emerging as novel chemopreventive agents because of their ability in blocking cellular proliferation, and thereby tumor development, and also by promoting apoptosis. GSK-3β, a serine threonine kinase and a negative regulator of the oncogenic Wnt/β-catenin signaling pathway, plays a critical role in the regulation of oncogenesis. Celecoxib and etoricoxib, the two cyclooxygenase-2 (COX-2) selective NSAIDs, and Diclofenac, a preferential COX-2 inhibitory NSAID, had shown uniformly the chemopreventive and anti-neoplastic effects in the early stage of colon cancer by promoting apoptosis as well as an over-expression of GSK-3β while down-regulating the PI3-K/Akt oncogenic pathway.

  10. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies.

    Science.gov (United States)

    Bernasconi-Elias, P; Hu, T; Jenkins, D; Firestone, B; Gans, S; Kurth, E; Capodieci, P; Deplazes-Lauber, J; Petropoulos, K; Thiel, P; Ponsel, D; Hee Choi, S; LeMotte, P; London, A; Goetcshkes, M; Nolin, E; Jones, M D; Slocum, K; Kluk, M J; Weinstock, D M; Christodoulou, A; Weinberg, O; Jaehrling, J; Ettenberg, S A; Buckler, A; Blacklow, S C; Aster, J C; Fryer, C J

    2016-11-24

    Notch receptors have been implicated as oncogenic drivers in several cancers, the most notable example being NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). To characterize the role of activated NOTCH3 in cancer, we generated an antibody that detects the neo-epitope created upon gamma-secretase cleavage of NOTCH3 to release its intracellular domain (ICD3), and sequenced the negative regulatory region (NRR) and PEST (proline, glutamate, serine, threonine) domain coding regions of NOTCH3 in a panel of cell lines. We also characterize NOTCH3 tumor-associated mutations that result in activation of signaling and report new inhibitory antibodies. We determined the structural basis for receptor inhibition by obtaining the first co-crystal structure of a NOTCH3 antibody with the NRR protein and defined two distinct epitopes for NRR antibodies. The antibodies exhibit potent anti-leukemic activity in cell lines and tumor xenografts harboring NOTCH3 activating mutations. Screening of primary T-ALL samples reveals that 2 of 40 tumors examined show active NOTCH3 signaling. We also identified evidence of NOTCH3 activation in 12 of 24 patient-derived orthotopic xenograft models, 2 of which exhibit activation of NOTCH3 without activation of NOTCH1. Our studies provide additional insights into NOTCH3 activation and offer a path forward for identification of cancers that are likely to respond to therapy with NOTCH3 selective inhibitory antibodies.

  11. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4

    DEFF Research Database (Denmark)

    Johansson, Peter; Aoude, Lauren G; Wadt, Karin

    2016-01-01

    Next generation sequencing of uveal melanoma (UM) samples has identified a number of recurrent oncogenic or loss-of-function mutations in key driver genes including: GNAQ, GNA11, EIF1AX, SF3B1 and BAP1. To search for additional driver mutations in this tumor type we carried out whole......, instead, a BRCA mutation signature predominated. In addition to mutations in the known UM driver genes, we found a recurrent mutation in PLCB4 (c.G1888T, p.D630Y, NM_000933), which was validated using Sanger sequencing. The identical mutation was also found in published UM sequence data (1 of 56 tumors......-genome or whole-exome sequencing of 28 tumors or primary cell lines. These samples have a low mutation burden, with a mean of 10.6 protein changing mutations per sample (range 0 to 53). As expected for these sun-shielded melanomas the mutation spectrum was not consistent with an ultraviolet radiation signature...

  12. Ca2+ toxicity due to reverse Na+/Ca2+ exchange contributes to degeneration of neurites of DRG neurons induced by a neuropathy-associated Nav1.7 mutation

    Science.gov (United States)

    Estacion, M.; Vohra, B. P. S; Liu, S.; Hoeijmakers, J.; Faber, C. G.; Merkies, I. S. J.; Lauria, G.; Black, J. A.

    2015-01-01

    Gain-of-function missense mutations in voltage-gated sodium channel Nav1.7 have been linked to small-fiber neuropathy, which is characterized by burning pain, dysautonomia and a loss of intraepidermal nerve fibers. However, the mechanistic cascades linking Nav1.7 mutations to axonal degeneration are incompletely understood. The G856D mutation in Nav1.7 produces robust changes in channel biophysical properties, including hyperpolarized activation, depolarized inactivation, and enhanced ramp and persistent currents, which contribute to the hyperexcitability exhibited by neurons containing Nav1.8. We report here that cell bodies and neurites of dorsal root ganglion (DRG) neurons transfected with G856D display increased levels of intracellular Na+ concentration ([Na+]) and intracellular [Ca2+] following stimulation with high [K+] compared with wild-type (WT) Nav1.7-expressing neurons. Blockade of reverse mode of the sodium/calcium exchanger (NCX) or of sodium channels attenuates [Ca2+] transients evoked by high [K+] in G856D-expressing DRG cell bodies and neurites. We also show that treatment of WT or G856D-expressing neurites with high [K+] or 2-deoxyglucose (2-DG) does not elicit degeneration of these neurites, but that high [K+] and 2-DG in combination evokes degeneration of G856D neurites but not WT neurites. Our results also demonstrate that 0 Ca2+ or blockade of reverse mode of NCX protects G856D-expressing neurites from degeneration when exposed to high [K+] and 2-DG. These results point to [Na+] overload in DRG neurons expressing mutant G856D Nav1.7, which triggers reverse mode of NCX and contributes to Ca2+ toxicity, and suggest subtype-specific blockade of Nav1.7 or inhibition of reverse NCX as strategies that might slow or prevent axon degeneration in small-fiber neuropathy. PMID:26156380

  13. Unique molecular signatures as a hallmark of patients with metastatic breast cancer: implications for current treatment paradigms.

    Science.gov (United States)

    Wheler, Jennifer J; Parker, Barbara A; Lee, Jack J; Atkins, Johnique T; Janku, Filip; Tsimberidou, Apostolia M; Zinner, Ralph; Subbiah, Vivek; Fu, Siqing; Schwab, Richard; Moulder, Stacy; Valero, Vicente; Schwaederle, Maria; Yelensky, Roman; Miller, Vincent A; Stephens, M Philip J; Meric-Bernstam, Funda; Kurzrock, Razelle

    2014-05-15

    Our analysis of the tumors of 57 women with metastatic breast cancer with next generation sequencing (NGS) demonstrates that each patient's tumor is unique in its molecular fingerprint. We observed 216 somatic aberrations in 70 different genes, including 131 distinct aberrations. The most common gene alterations (in order of decreasing frequency) included: TP53, PIK3CA, CCND1, MYC, HER2 (ERBB2), MCL1, PTEN, FGFR1, GATA3, NF1, PIK3R1, BRCA2, EGFR, IRS2, CDH1, CDKN2A, FGF19, FGF3 and FGF4. Aberrations included mutations (46%), amplifications (45%), deletions (5%), splices (2%), truncations (1%), fusions (0.5%) and rearrangements (0.5%), with multiple distinct variants within the same gene. Many of these aberrations represent druggable targets, either through direct pathway inhibition or through an associated pathway (via 'crosstalk'). The 'molecular individuality' of these tumors suggests that a customized strategy, using an "N-of-One" model of precision medicine, may represent an optimal approach for the treatment of patients with advanced tumors.

  14. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.

    Science.gov (United States)

    Nickerson, M L; Witte, N; Im, K M; Turan, S; Owens, C; Misner, K; Tsang, S X; Cai, Z; Wu, S; Dean, M; Costello, J C; Theodorescu, D

    2017-01-05

    The utility of tumor-derived cell lines is dependent on their ability to recapitulate underlying genomic aberrations and primary tumor biology. Here, we sequenced the exomes of 25 bladder cancer (BCa) cell lines and compared mutations, copy number alterations (CNAs), gene expression and drug response to BCa patient profiles in The Cancer Genome Atlas (TCGA). We observed a mutation pattern associated with altered CpGs and APOBEC-family cytosine deaminases similar to mutation signatures derived from somatic alterations in muscle-invasive (MI) primary tumors, highlighting a major mechanism(s) contributing to cancer-associated alterations in the BCa cell line exomes. Non-silent sequence alterations were confirmed in 76 cancer-associated genes, including mutations that likely activate oncogenes TERT and PIK3CA, and alter chromatin-associated proteins (MLL3, ARID1A, CHD6 and KDM6A) and established BCa genes (TP53, RB1, CDKN2A and TSC1). We identified alterations in signaling pathways and proteins with related functions, including the PI3K/mTOR pathway, altered in 60% of lines; BRCA DNA repair, 44%; and SYNE1-SYNE2, 60%. Homozygous deletions of chromosome 9p21 are known to target the cell cycle regulators CDKN2A and CDKN2B. This loci was commonly lost in BCa cell lines and we show the deletions extended to the polyamine enzyme methylthioadenosine (MTA) phosphorylase (MTAP) in 36% of lines, transcription factor DMRTA1 (27%) and antiviral interferon epsilon (IFNE, 19%). Overall, the BCa cell line genomic aberrations were concordant with those found in BCa patient tumors. We used gene expression and copy number data to infer pathway activities for cell lines, then used the inferred pathway activities to build a predictive model of cisplatin response. When applied to platinum-treated patients gathered from TCGA, the model predicted treatment-specific response. Together, these data and analysis represent a valuable community resource to model basic tumor biology and to study

  15. Oncogenes, radiation and cancer

    International Nuclear Information System (INIS)

    Michelin, S.C.

    1998-01-01

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) [es

  16. Mutant p53 - heat shock response oncogenic cooperation: a new mechanism of cancer cell survival

    Directory of Open Access Journals (Sweden)

    Evguenia eAlexandrova

    2015-04-01

    Full Text Available The main tumor suppressor function of p53 as a ‘guardian of the genome’ is to respond to cellular stress by transcriptional activation of apoptosis, growth arrest or senescence in damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic alteration in human cancers. Importantly, mutant p53 (mutp53 proteins not only lose their wild-type tumor suppressor activity, but also can actively promote tumor development. Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic activities known as gain-of-function (GOF. Here we discuss a novel mechanism of mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery. This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic stress and provides both, a strong survival advantage to cancer cells and a promising means for therapeutic intervention.

  17. Oncogenic Signaling by Leukemia-Associated Mutant Cbl Proteins

    Science.gov (United States)

    Nadeau, Scott; An, Wei; Palermo, Nick; Feng, Dan; Ahmad, Gulzar; Dong, Lin; Borgstahl, Gloria E. O.; Natarajan, Amarnath; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2013-01-01

    Members of the Cbl protein family (Cbl, Cbl-b, and Cbl-c) are E3 ubiquitin ligases that have emerged as critical negative regulators of protein tyrosine kinase (PTK) signaling. This function reflects their ability to directly interact with activated PTKs and to target them as well as their associated signaling components for ubiquitination. Given the critical roles of PTK signaling in driving oncogenesis, recent studies in animal models and genetic analyses in human cancer have firmly established that Cbl proteins function as tumor suppressors. Missense mutations or small in-frame deletions within the regions of Cbl protein that are essential for its E3 activity have been identified in nearly 5% of leukemia patients with myelodysplastic/myeloproliferative disorders. Based on evidence from cell culture studies, in vivo models and clinical data, we discuss the potential signaling mechanisms of mutant Cbl-driven oncogenesis. Mechanistic insights into oncogenic Cbl mutants and associated animal models are likely to enhance our understanding of normal hematopoietic stem cell homeostasis and provide avenues for targeted therapy of mutant Cbl-driven cancers. PMID:23997989

  18. Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway.

    Science.gov (United States)

    Dai, Guangyao; Yao, Xiaoguang; Zhang, Yubin; Gu, Jianbin; Geng, Yunfeng; Xue, Fei; Zhang, Jingcheng

    2018-04-01

    Cancer-associated fibroblasts (CAFs) contribute to the proliferation of colorectal cancer(CRC) cells. However, the mechanism by which CAFs develop in the tumor microenvironment remains unknown. Exosomes may be involved in activating CAFs. Using a miRNA expression profiling array, we determined the miRNA expression profile of secretory exosomes in CRC cells and then identified potential miRNAs with significant differential expression compared to normal cells via enrichment analysis. Predicted targets of candidate miRNAs were then assessed via bioinformatics analysis. Realtime qPCR, western blot, and cell cycle analyses were performed to evaluate the role of candidate exosomal miRNAs. Luciferase reporter assays were applied to confirm whether candidate exosomal miRNAs control target pathway expression. A CRC xenograft mouse model was constructed to evaluate tumor growth in vivo. Exosomes from CRC cells contained significantly higher levels of miR-10b than did exosomes from normal colorectal epithelial cells. Moreover, exosomes containing miR-10b were transferred to fibroblasts. Bioinformatics analysis identified PIK3CA, as a potential target of miR-10b. Luciferase reporter assays confirmed that miR-10b directly inhibited PIK3CA expression. Co-culturing fibroblasts with exosomes containing miR-10b significantly suppressed PIK3CA expression and decreased PI3K/Akt/mTOR pathway activity. Finally, exosomes containing miR-10b reduced fibroblast proliferation but promoted expression of TGF-β and SM α-actin, suggesting that exosomal miR-10b may activate fibroblasts to become CAFs that express myofibroblast markers. These activated fibroblasts were able to promote CRC growth in vitro and in vivo. CRC-derived exosomes actively promote disease progression by modulating surrounding stromal cells, which subsequently acquire features of CAFs. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  19. Capture-based next-generation sequencing reveals multiple actionable mutations in cancer patients failed in traditional testing.

    Science.gov (United States)

    Xie, Jing; Lu, Xiongxiong; Wu, Xue; Lin, Xiaoyi; Zhang, Chao; Huang, Xiaofang; Chang, Zhili; Wang, Xinjing; Wen, Chenlei; Tang, Xiaomei; Shi, Minmin; Zhan, Qian; Chen, Hao; Deng, Xiaxing; Peng, Chenghong; Li, Hongwei; Fang, Yuan; Shao, Yang; Shen, Baiyong

    2016-05-01

    Targeted therapies including monoclonal antibodies and small molecule inhibitors have dramatically changed the treatment of cancer over past 10 years. Their therapeutic advantages are more tumor specific and with less side effects. For precisely tailoring available targeted therapies to each individual or a subset of cancer patients, next-generation sequencing (NGS) has been utilized as a promising diagnosis tool with its advantages of accuracy, sensitivity, and high throughput. We developed and validated a NGS-based cancer genomic diagnosis targeting 115 prognosis and therapeutics relevant genes on multiple specimen including blood, tumor tissue, and body fluid from 10 patients with different cancer types. The sequencing data was then analyzed by the clinical-applicable analytical pipelines developed in house. We have assessed analytical sensitivity, specificity, and accuracy of the NGS-based molecular diagnosis. Also, our developed analytical pipelines were capable of detecting base substitutions, indels, and gene copy number variations (CNVs). For instance, several actionable mutations of EGFR,PIK3CA,TP53, and KRAS have been detected for indicating drug susceptibility and resistance in the cases of lung cancer. Our study has shown that NGS-based molecular diagnosis is more sensitive and comprehensive to detect genomic alterations in cancer, and supports a direct clinical use for guiding targeted therapy.

  20. Germline mutation of RET proto-oncogene’s exons 17 and 18 in Iranian medullary thyroid carcinoma patients

    Directory of Open Access Journals (Sweden)

    Marjan Zarif Yeganeh

    2017-03-01

    Full Text Available Background: Thyroid carcinoma is the most common endocrine malignancy. Medullary thyroid carcinoma (MTC approximately accounts for 5-10% of all thyroid carcinoma. Nowadays, it is obviously, the mutations in REarranged during transfection (RET proto-oncogene, especially, mutations in exons 10, 11 and 16 are associated with MTC pathogenesis and occurrence. Thus, early diagnosis of MTC by mutation detection in RET proto-oncogene allows to identify patients who do not have any developed symptoms. The aim of this study was to screening of germline mutations in RET proto-oncogene exons 17 and 18 in MTC patients and their first degree relatives in Iranian population. Methods: In this cross-sectional study, three hundred eleven participates (190 patients, 121 their relatives were referred to endocrine research center, Shahid Beheshti University of Medical Science during September 2013 until September 2015. The inclusion criteria were pathological and clinical diagnosis. After whole blood sampling, genomic DNA was extracted from peripheral blood leucocytes using the standard Salting Out/Proteinase K method. Nucleotide change detection in exons 17 and 18 was performed using PCR and direct DNA sequencing methods. Results: In this study, twenty missense mutations [CGC>TGC, c.2944C>T, p.Arg982Cys (rs17158558] which included 16 heterozygote and 4 homozygote mutations were found in codon 982 (exon 18. In the present study, 154 G>A (rs2742236 and 4 C>T (rs370072408 nucleotide changes were detected in exons 18 and intron 17 respectively. There was no mutation in exon 17. Conclusion: It seems that because of arginine to cysteine substitutions in RET tyrosine kinase protein structure and its polyphen score (0.955 and SIFT score (0.01 the mutation in codon 982 (exon 18 could be have pathogenic effects. On the other hands, the mentioned mutation frequency was 6.4% among MTC patients, so this mutation of exon 18 could be checked in genetic screening tests of RET

  1. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    Science.gov (United States)

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  2. Characterization of Two Novel Oncogenic Pathways Collaborating With Loss of P53 or Activated Neu in Mouse Models of Breast Cancer

    National Research Council Canada - National Science Library

    Lu, Jianrong; Leder, Philip

    2005-01-01

    Cancer develops through accumulation of multiple genetic mutations. Loss of tumor suppressor gene p53 and activation of oncogene Neu/ErbB2 are among the most frequent genetic alterations in human breast cancer...

  3. Cytological and oncogene alterations in radiation-transformed Syrian hamster embryo cells

    International Nuclear Information System (INIS)

    Trutschler, K.; Hieber, L.; Kellerer, A.M.

    1991-01-01

    Syrian hamster embryo (SHE) cells were neoplastically transformed by different types of ionizing radiation (γ-rays, α-particles or carbon ions). Transformed and tumor cell lines (derived from nude mice tumors) were analysed for alterations of the oncogenes c-Ha-ras and c-myc, i.e. RFLPs, gene amplifications, activation by point mutation, gene expression, and for cytological changes. In addition, the chromosome number and the numbers of micronuclei per cell have been determined in a series of cell lines. (author)

  4. The genetic basis of Brugada syndrome: a mutation update

    DEFF Research Database (Denmark)

    Hedley, Paula L; Jørgensen, Poul; Schlamowitz, Sarah

    2009-01-01

    of inheritance with an average prevalence of 5:10,000 worldwide. Currently, more than 100 mutations in seven genes have been associated with BrS. Loss-of-function mutations in SCN5A, which encodes the alpha-subunit of the Na(v)1.5 sodium ion channel conducting the depolarizing I(Na) current, causes 15-20% of Br......S cases. A few mutations have been described in GPD1L, which encodes glycerol-3-phosphate dehydrogenase-1 like protein; CACNA1C, which encodes the alpha-subunit of the Ca(v)1.2 ion channel conducting the depolarizing I(L,Ca) current; CACNB2, which encodes the stimulating beta2-subunit of the Ca(v)1.2 ion...

  5. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    International Nuclear Information System (INIS)

    Yoshida, Ikuma; Ibuki, Yuko

    2014-01-01

    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications

  6. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ikuma; Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp

    2014-12-15

    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.

  7. Prophylactic thyroidectomy for asymptomatic 3-year-old boy with positive multiple endocrine neoplasia type 2A mutation (codon 634

    Directory of Open Access Journals (Sweden)

    Ješić Maja D.

    2014-01-01

    Full Text Available Introduction. The multiple endocrine neoplasia type 2A (MEN 2A syndrome, comprising medullary thyroid carcinoma (MTC, pheochromocytoma and primary hyperparathyroidism (PHPT is most frequently caused by codon 634 activating mutations of the RET (rearranged during transfection proto-oncogene on chromosome 10. For this codon-mutation carriers, earlier thyroidectomy (before the age of 5 years would be advantageous in limiting the potential for the development of MTC as well as parathyroid adenomas. Case Outline. This is a case report of 3-year-old boy from the MEN 2A family (the boy’s father and grandmother and paternal aunt in which cysteine substitutes for phenylalanine at codon 634 in exon 11 of the RET proto-oncogene, who underwent thyroidectomy solely on the basis of genetic information. A boy had no thyromegaly, thyroidal irregularities or lymphadenopathy and no abnormality on the neck ultrasound examination. The pathology finding of thyroid gland was negative for MTC. Two years after total thyroidectomy, 5-year-old boy is healthy with permanent thyroxine replacement. His serum calcitonin level is <2 pg/ml (normal <13 pg/ml, has normal serum calcium and parathyroid hormone levels and negative urinary catecholamines. Long-term follow-up of this patient is required to determine whether very early thyroidectomy improves the long-term outcome of PHPT. Conclusion. Children with familial antecedents of MEN 2A should be genetically studied for the purpose of determining the risk of MTC and assessing the possibilities of making prophylactic thyroidectomy before the age of 5 years.

  8. Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7

    International Nuclear Information System (INIS)

    Elcombe, M.M.; Kisi, E.H.; Hawkins, K.D.; White, T.J.; Goodman, P.; Matheson, S.

    1991-01-01

    The structures of the orthorhombic Ruddlesden-Popper (A n+1 B n X 3n+1 ) phases Ca 3 Ti 2 O 7 (n=2) refined from neutron powder diffraction data at λ=1.893 A. They consist of coherent intergrowths of perovskite (CaTiO 3 ) blocks, n TiO 6 octahedra thick, with single layers of CaO having a distorted NaCl configuration. TiO 6 octahedra are tilted and distorted in a very similar fashion to those in CaTiO 3 (n=∞). This fact was used to determine the space groups of the layered structures. Convergent-beam electron diffraction patterns are best matched by calculations in the above space groups which are thus confirmed. Octahedral tilt angles increase slightly in the sequence n=2, 3, ∞. Strontium addition reduces the octahedral tilt angles because of preferential substitution of Sr on the Ca sites within the perovskite blocks of Ca 4 Ti 3 O 10 . The algorithm used to produce starting models for structure refinements is thought to be generally applicable to Ruddlesden-Popper and possibly other layered perovskite structures. It furnishes the predictions: (a) all n-even compounds in the Ca n+1 Ti n O 3n+1 series will have space group Ccm2 1 , (b) all n-odd compounds in this series will have space group Pcab, (c) all A n+1 B n X 3n+1 series for which the n=∞ end member (ABX 3 ) is isostructural with CaTiO 3 will be isostructural with the compounds reported above (e.g. Ca n+1 Zr n O 3n+1 ). (orig./WL)

  9. Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms

    International Nuclear Information System (INIS)

    Mackenzie, Robertson; Kommoss, Stefan; Winterhoff, Boris J.; Kipp, Benjamin R.; Garcia, Joaquin J.; Voss, Jesse; Halling, Kevin; Karnezis, Anthony; Senz, Janine; Yang, Winnie; Prigge, Elena-Sophie; Reuschenbach, Miriam; Doeberitz, Magnus Von Knebel; Gilks, Blake C.; Huntsman, David G.; Bakkum-Gamez, Jamie; McAlpine, Jessica N.; Anglesio, Michael S.

    2015-01-01

    Mucinous ovarian tumors represent a distinct histotype of epithelial ovarian cancer. The rarest (2-4 % of ovarian carcinomas) of the five major histotypes, their genomic landscape remains poorly described. We undertook hotspot sequencing of 50 genes commonly mutated in human cancer across 69 mucinous ovarian tumors. Our goals were to establish the overall frequency of cancer-hotspot mutations across a large cohort, especially those tumors previously thought to be “RAS-pathway alteration negative”, using highly-sensitive next-generation sequencing as well as further explore a small number of cases with apparent heterogeneity in RAS-pathway activating alterations. Using the Ion Torrent PGM platform, we performed next generation sequencing analysis using the v2 Cancer Hotspot Panel. Regions of disparate ERBB2-amplification status were sequenced independently for two mucinous carcinoma (MC) cases, previously established as showing ERBB2 amplification/overexpression heterogeneity, to assess the hypothesis of subclonal populations containing either KRAS mutation or ERBB2 amplification independently or simultaneously. We detected mutations in KRAS, TP53, CDKN2A, PIK3CA, PTEN, BRAF, FGFR2, STK11, CTNNB1, SRC, SMAD4, GNA11 and ERBB2. KRAS mutations remain the most frequently observed alteration among MC (64.9 %) and mucinous borderline tumors (MBOT) (92.3 %). TP53 mutation occurred more frequently in carcinomas than borderline tumors (56.8 % and 11.5 %, respectively), and combined IHC and mutation data suggest alterations occur in approximately 68 % of MC and as many as 20 % of MBOT. Proven and potential RAS-pathway activating changes were observed in all but one MC. Concurrent ERBB2 amplification and KRAS mutation were observed in a substantial number of cases (7/63 total), as was co-occurrence of KRAS and BRAF mutations (one case). Microdissection of ERBB2-amplified regions of tumors harboring KRAS mutation suggests these alterations are occurring in the same cell

  10. Combined BRAF and MEK Inhibition With Dabrafenib and Trametinib in BRAF V600–Mutant Colorectal Cancer

    Science.gov (United States)

    Corcoran, Ryan B.; Atreya, Chloe E.; Falchook, Gerald S.; Kwak, Eunice L.; Ryan, David P.; Bendell, Johanna C.; Hamid, Omid; Messersmith, Wells A.; Daud, Adil; Kurzrock, Razelle; Pierobon, Mariaelena; Sun, Peng; Cunningham, Elizabeth; Little, Shonda; Orford, Keith; Motwani, Monica; Bai, Yuchen; Patel, Kiran; Venook, Alan P.; Kopetz, Scott

    2015-01-01

    Purpose To evaluate dabrafenib, a selective BRAF inhibitor, combined with trametinib, a selective MEK inhibitor, in patients with BRAF V600–mutant metastatic colorectal cancer (mCRC). Patients and Methods A total of 43 patients with BRAF V600–mutant mCRC were treated with dabrafenib (150 mg twice daily) plus trametinib (2 mg daily), 17 of whom were enrolled onto a pharmacodynamic cohort undergoing mandatory biopsies before and during treatment. Archival tissues were analyzed for microsatellite instability, PTEN status, and 487-gene sequencing. Patient-derived xenografts were established from core biopsy samples. Results Of 43 patients, five (12%) achieved a partial response or better, including one (2%) complete response, with duration of response > 36 months; 24 patients (56%) achieved stable disease as best confirmed response. Ten patients (23%) remained in the study > 6 months. All nine evaluable during-treatment biopsies had reduced levels of phosphorylated ERK relative to pretreatment biopsies (average decrease ± standard deviation, 47% ± 24%). Mutational analysis revealed that the patient achieving a complete response and two of three evaluable patients achieving a partial response had PIK3CA mutations. Neither PTEN loss nor microsatellite instability correlated with efficacy. Responses to dabrafenib plus trametinib were comparable in patient-derived xenograft–bearing mice and the biopsied lesions from each corresponding patient. Conclusion The combination of dabrafenib plus trametinib has activity in a subset of patients with BRAF V600–mutant mCRC. Mitogen-activated protein kinase signaling was inhibited in all patients evaluated, but to a lesser degree than observed in BRAF-mutant melanoma with dabrafenib alone. PIK3CA mutations were identified in responding patients and thus do not preclude response to this regimen. Additional studies targeting the mitogen-activated protein kinase pathway in this disease are warranted. PMID:26392102

  11. The BAG3 gene variants in Polish patients with dilated cardiomyopathy: four novel mutations and a genotype-phenotype correlation.

    Science.gov (United States)

    Franaszczyk, Maria; Bilinska, Zofia T; Sobieszczańska-Małek, Małgorzata; Michalak, Ewa; Sleszycka, Justyna; Sioma, Agnieszka; Małek, Łukasz A; Kaczmarska, Dorota; Walczak, Ewa; Włodarski, Paweł; Hutnik, Łukasz; Milanowska, Blanka; Dzielinska, Zofia; Religa, Grzegorz; Grzybowski, Jacek; Zieliński, Tomasz; Ploski, Rafal

    2014-07-09

    BAG3 gene mutations have been recently implicated as a novel cause of dilated cardiomyopathy (DCM). Our aim was to evaluate the prevalence of BAG3 mutations in Polish patients with DCM and to search for genotype-phenotype correlations. We studied 90 unrelated probands by direct sequencing of BAG3 exons and splice sites. Large deletions/insertions were screened for by quantitative real time polymerase chain reaction (qPCR). We found 5 different mutations in 6 probands and a total of 21 mutations among their relatives: the known p.Glu455Lys mutation (2 families), 4 novel mutations: p.Gln353ArgfsX10 (c.1055delC), p.Gly379AlafsX45 (c.1135delG), p.Tyr451X (c.1353C>A) and a large deletion of 17,990 bp removing BAG3 exons 3-4. Analysis of mutation positive relatives of the probands from this study pooled with those previously reported showed higher DCM prevalence among those with missense vs. truncating mutations (OR = 8.33, P = 0.0058) as well as a difference in age at disease onset between the former and the latter in Kaplan-Meier survival analysis (P = 0.006). Clinical data from our study suggested that in BAG3 mutation carriers acute onset DCM with hemodynamic compromise may be triggered by infection. BAG3 point mutations and large deletions are relatively frequent cause of DCM. Delayed DCM onset associated with truncating vs. non-truncating mutations may be important for genetic counseling.

  12. Cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans.

    Directory of Open Access Journals (Sweden)

    Dania eVecchia

    2015-02-01

    Full Text Available Familial hemiplegic migraine type 1 (FHM1 is caused by gain-of-function mutations in CaV2.1 (P/Q-type Ca2+ channels. Knockin (KI mice carrying the FHM1 R192Q missense mutation show enhanced cortical excitatory synaptic transmission at pyramidal cell synapses but unaltered cortical inhibitory neurotransmission at fast-spiking interneuron synapses. Enhanced cortical glutamate release was shown to cause the facilitation of cortical spreading depression (CSD in R192Q KI mice. It, however, remains unknown how other FHM1 mutations affect cortical synaptic transmission. Here, we studied neurotransmission in cortical neurons in microculture from KI mice carrying the S218L mutation, which causes a severe FHM syndrome in humans and an allele-dosage dependent facilitation of experimental CSD in KI mice, which is larger than that caused by the R192Q mutation. We show gain-of-function of excitatory neurotransmission, due to increased action-potential evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at multipolar interneuron synapses in S218L KI mice. In contrast with the larger gain-of-function of neuronal CaV2.1 current in homozygous than heterozygous S218L KI mice, the gain-of-function of evoked glutamate release, the paired-pulse ratio and the Ca2+ dependence of the EPSC were all similar in homozygous and heterozygous S218L KI mice, suggesting compensatory changes in the homozygous mice. Furthermore, we reveal a unique feature of S218L KI cortical synapses which is the presence of a fraction of mutant CaV2.1 channels being open at resting potential. Our data suggest that, while the gain-of-function of evoked glutamate release may explain the facilitation of CSD in heterozygous S218L KI mice, the further facilitation of CSD in homozygous S218L KI mice is due to other CaV2.1-dependent mechanisms, that likely include Ca2+ influx at voltages sub-threshold for action

  13. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2

    OpenAIRE

    Zuo, Tao; Liu, Runhua; Zhang, Huiming; Chang, Xing; Liu, Yan; Wang, Lizhong; Zheng, Pan; Liu, Yang

    2007-01-01

    S-phase kinase-associated protein 2 (SKP2) is a component of the E3 ubiquitin ligase SKP1-Cul1-Fbox complex. Overexpression of SKP2 results in cell cycle dysregulation and carcinogenesis; however, the genetic lesions that cause this upregulation are poorly understood. We recently demonstrated that forkhead box P3 (FOXP3) is an X-linked breast cancer suppressor and an important repressor of the oncogene ERBB2/HER2. Since FOXP3 suppresses tumor growth regardless of whether the tumors overexpres...

  14. Prediction of Response to Therapy and Clinical Outcome through a Pilot Study of Complete Genetic Assessment of Ovarian Cancer

    Science.gov (United States)

    2015-12-01

    B, PIK3CA, BRCA2, ATM, SETD2, ATRX, MTOR, PIK3R1 Mucinous KRAS, TP53, CDKN2A, SMAD4 , TERT Carcinosarcoma TP53, RB1, APC Granulasa cell ATM...alterations in the PTEN- PI3K- AKT -mTOR pathway in a cohort of 379 ovarian cancer patients. Submitted to American Society of Clinical Oncology Annual meeting

  15. Carpal Tunnel Syndrome in Aberrant Muscle Syndrome: A Case Report and Review of the Literature.

    Science.gov (United States)

    Steele, Jessica; Coombs, Christopher

    2018-06-01

    Aberrant Muscle Syndrome (AMS) is a rare congenital hand difference that is characterised by unilateral non-progressive muscular hyperplasia. The aetiology of aberrant muscle syndrome is not known, but a recently published case has shown a somatic PIK3CA activating mutation in a patient with AMS. Carpal tunnel syndrome (CTS) in children is rare. The most common causes are the mucopolysaccaridoses but space-occupying lesions have also been reported to cause CTS in children. We report the first case of CTS in a child with AMS successfully treated with open carpal tunnel release and excision of aberrant muscles.

  16. Presence of a consensus DNA motif at nearby DNA sequence of the mutation susceptible CG nucleotides.

    Science.gov (United States)

    Chowdhury, Kaushik; Kumar, Suresh; Sharma, Tanu; Sharma, Ankit; Bhagat, Meenakshi; Kamai, Asangla; Ford, Bridget M; Asthana, Shailendra; Mandal, Chandi C

    2018-01-10

    Complexity in tissues affected by cancer arises from somatic mutations and epigenetic modifications in the genome. The mutation susceptible hotspots present within the genome indicate a non-random nature and/or a position specific selection of mutation. An association exists between the occurrence of mutations and epigenetic DNA methylation. This study is primarily aimed at determining mutation status, and identifying a signature for predicting mutation prone zones of tumor suppressor (TS) genes. Nearby sequences from the top five positions having a higher mutation frequency in each gene of 42 TS genes were selected from a cosmic database and were considered as mutation prone zones. The conserved motifs present in the mutation prone DNA fragments were identified. Molecular docking studies were done to determine putative interactions between the identified conserved motifs and enzyme methyltransferase DNMT1. Collective analysis of 42 TS genes found GC as the most commonly replaced and AT as the most commonly formed residues after mutation. Analysis of the top 5 mutated positions of each gene (210 DNA segments for 42 TS genes) identified that CG nucleotides of the amino acid codons (e.g., Arginine) are most susceptible to mutation, and found a consensus DNA "T/AGC/GAGGA/TG" sequence present in these mutation prone DNA segments. Similar to TS genes, analysis of 54 oncogenes not only found CG nucleotides of the amino acid Arg as the most susceptible to mutation, but also identified the presence of similar consensus DNA motifs in the mutation prone DNA fragments (270 DNA segments for 54 oncogenes) of oncogenes. Docking studies depicted that, upon binding of DNMT1 methylates to this consensus DNA motif (C residues of CpG islands), mutation was likely to occur. Thus, this study proposes that DNMT1 mediated methylation in chromosomal DNA may decrease if a foreign DNA segment containing this consensus sequence along with CG nucleotides is exogenously introduced to dividing

  17. Characterization of new cell line stably expressing CHI3L1 oncogene

    Directory of Open Access Journals (Sweden)

    Chekhonin V. P.

    2011-06-01

    Full Text Available Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene (CHI3L1. Methods. 293 cells, stably transfected with pcDNA3.1_CHI3L1, and 293 cells, stably transfected with pcDNA3.1 as a negative control, were used throughout all experiments. The clones of CHI3L1-expressing 293 cells and 293 cells, transfected with pcDNA3.1, were analyzed by immunofluorescence and confocal microscopy. Cell proliferation was measured using MTT assay; analyses of ERK1/2 and AKT activation and their cellular localization were performed with anti-phospho-ERK and anti-phospho-AKT antibodies. Specific activation of MAP and PI3 kinases was measured by densitometric analysis of Western-blot signals. Results. The obtained results show quite modest ability of CHI3L1 to stimulate cell growth and reflect rather an improved cellular plating efficiency of the 293 cells stably transfected with pcDNA3.1_CHI3L1 as compared to the 293 cells transfected with an «empty» vector. ERK1/2 and AKT are activated in the 293_CHI3L1 cells. In these cells phosphorylated ERK1/2 were localized in both cell cytoplasm and nuclei while AKT only in cytoplasm. The 293_CHI3L1 cells differed from the 293 cells, transfected with an «empty» vector, in their size and ability to adhere to the culture plates. Conclusions. The overexpression of CHI3L1 is likely to have an important role in tumorigenesis via a mechanism which involves activation of PI3K and ERK1/2 pathways. The tumors which can be induced by orthotopic implantation of the transformed human cells with overexpressed human oncogene CHI3L1 into the rat brain can be used as a target for anticancer drug development.

  18. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  19. The sequence of the CA-SP1 junction accounts for the differential sensitivity of HIV-1 and SIV to the small molecule maturation inhibitor 3-O-{3',3'-dimethylsuccinyl}-betulinic acid

    Directory of Open Access Journals (Sweden)

    Aiken Christopher

    2004-06-01

    Full Text Available Abstract Background Despite the effectiveness of currently available antiretroviral therapies in the treatment of HIV-1 infection, a continuing need exists for novel compounds that can be used in combination with existing drugs to slow the emergence of drug-resistant viruses. We previously reported that the small molecule 3-O-{3',3'-dimethylsuccinyl}-betulinic acid (DSB specifically inhibits HIV-1 replication by delaying the processing of the CA-SP1 junction in Pr55Gag. By contrast, SIVmac239 replicates efficiently in the presence of high concentrations of DSB. To determine whether sequence differences in the CA-SP1 junction can fully account for the differential sensitivity of HIV-1 and SIV to DSB, we engineered mutations in this region of two viruses and tested their sensitivity to DSB in replication assays using activated human primary CD4+ T cells. Results Substitution of the P2 and P1 residues of HIV-1 by the corresponding amino acids of SIV resulted in strong resistance to DSB, but the mutant virus replicated with reduced efficiency. Conversely, replication of an SIV mutant containing three amino acid substitutions in the CA-SP1 cleavage site was highly sensitive to DSB, and the mutations resulted in delayed cleavage of the CA-SP1 junction in the presence of the drug. Conclusions These results demonstrate that the CA-SP1 junction in Pr55Gag represents the primary viral target of DSB. They further suggest that the therapeutic application of DSB will be accompanied by emergence of mutant viruses that are highly resistant to the drug but which exhibit reduced fitness relative to wild type HIV-1.

  20. RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Directory of Open Access Journals (Sweden)

    Singh Tej P

    2011-07-01

    Full Text Available Abstract Background The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site. Description We have developed the RAS Oncogene Database (RASOnD as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i browse the data (ii search any field through a simple or advance search interface and (iii perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD. Conclusions This database is a resource and search tool dedicated to Ras oncogenes. It has

  1. Maternal and fetal genomes interplay through phosphoinositol 3-kinase(PI3K)-p110α signaling to modify placental resource allocation

    Science.gov (United States)

    Sferruzzi-Perri, Amanda N.; López-Tello, Jorge; Fowden, Abigail L.; Constancia, Miguel

    2016-01-01

    Pregnancy success and life-long health depend on a cooperative interaction between the mother and the fetus in the allocation of resources. As the site of materno-fetal nutrient transfer, the placenta is central to this interplay; however, the relative importance of the maternal versus fetal genotypes in modifying the allocation of resources to the fetus is unknown. Using genetic inactivation of the growth and metabolism regulator, Pik3ca (encoding PIK3CA also known as p110α, α/+), we examined the interplay between the maternal genome and the fetal genome on placental phenotype in litters of mixed genotype generated through reciprocal crosses of WT and α/+ mice. We demonstrate that placental growth and structure were impaired and associated with reduced growth of α/+ fetuses. Despite its defective development, the α/+ placenta adapted functionally to increase the supply of maternal glucose and amino acid to the fetus. The specific nature of these changes, however, depended on whether the mother was α/+ or WT and related to alterations in endocrine and metabolic profile induced by maternal p110α deficiency. Our findings thus show that the maternal genotype and environment programs placental growth and function and identify the placenta as critical in integrating both intrinsic and extrinsic signals governing materno-fetal resource allocation. PMID:27621448

  2. Targeted therapies in development for non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Thanyanan Reungwetwattana

    2013-01-01

    Full Text Available The iterative discovery in various malignancies during the past decades that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by "druggable" protein kinases has led to a revolutionary change in drug development. In non-small cell lung cancer (NSCLC, the ErbB family of receptors (e.g., EGFR [epidermal growth factor receptor], HER2 [human epidermal growth factor receptor 2], RAS (rat sarcoma gene, BRAF (v-raf murine sarcoma viral oncogene homolog B1, MAPK (mitogen-activated protein kinase c-MET (c-mesenchymal-epithelial transition, FGFR (fibroblast growth factor receptor, DDR2 (discoidin domain receptor 2, PIK3CA (phosphatidylinositol-4,5-bisphosphate3-kinase, catalytic subunit alpha, PTEN (phosphatase and tensin homolog, AKT (protein kinase B, ALK (anaplastic lym phoma kinase, RET (rearranged during transfection, ROS1 (reactive oxygen species 1 and EPH (erythropoietin-producing hepatoma are key targets of various agents currently in clinical development. These oncogenic targets exert their selective growth advantage through various intercommunicating pathways, such as through RAS/RAF/MEK, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin and SRC-signal transduction and transcription signaling. The recent clinical studies, EGFR tyrosine kinase inhibitors and crizotinib were considered as strongly effective targeted therapies in metastatic NSCLC. Currently, five molecular targeted agents were approved for treatment of advanced NSCLC: Gefitinib, erlotinib and afatinib for positive EGFR mutation, crizotinib for positive echinoderm microtubule-associated protein-like 4 (EML4-ALK translocation and bevacizumab. Moreover, oncogenic mutant proteins are subject to regulation by protein trafficking pathways, specifically through the heat shock protein 90 system. Drug combinations affecting various nodes in these signaling and intracellular processes are predicted and demonstrated to be synergistic and

  3. mTOR inhibition elicits a dramatic response in PI3K-dependent colon cancers.

    Directory of Open Access Journals (Sweden)

    Dustin A Deming

    Full Text Available The phosphatidylinositide-3-kinase (PI3K signaling pathway is critical for multiple cellular functions including metabolism, proliferation, angiogenesis, and apoptosis, and is the most commonly altered pathway in human cancers. Recently, we developed a novel mouse model of colon cancer in which tumors are initiated by a dominant active PI3K (FC PIK3ca. The cancers in these mice are moderately differentiated invasive mucinous adenocarcinomas of the proximal colon that develop by 50 days of age. Interestingly, these cancers form without a benign intermediary or aberrant WNT signaling, indicating a non-canonical mechanism of tumorigenesis. Since these tumors are dependent upon the PI3K pathway, we investigated the potential for tumor response by the targeting of this pathway with rapamycin, an mTOR inhibitor. A cohort of FC PIK3ca mice were treated with rapamycin at a dose of 6 mg/kg/day or placebo for 14 days. FDG dual hybrid PET/CT imaging demonstrated a dramatic tumor response in the rapamycin arm and this was confirmed on necropsy. The tumor tissue remaining after treatment with rapamycin demonstrated increased pERK1/2 or persistent phosphorylated ribosomal protein S6 (pS6, indicating potential resistance mechanisms. This unique model will further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification.

  4. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    International Nuclear Information System (INIS)

    Park, Jeong Mi; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-01-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D 3 . It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman

  5. Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans

    Science.gov (United States)

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M.J.M.; Pietrobon, Daniela

    2015-01-01

    Familial hemiplegic migraine type 1 (FHM1) is caused by gain-of-function mutations in CaV2.1 (P/Q-type) Ca2+ channels. Knockin (KI) mice carrying the FHM1 R192Q missense mutation show enhanced cortical excitatory synaptic transmission at pyramidal cell synapses but unaltered cortical inhibitory neurotransmission at fast-spiking interneuron synapses. Enhanced cortical glutamate release was shown to cause the facilitation of cortical spreading depression (CSD) in R192Q KI mice. It, however, remains unknown how other FHM1 mutations affect cortical synaptic transmission. Here, we studied neurotransmission in cortical neurons in microculture from KI mice carrying the S218L mutation, which causes a severe FHM syndrome in humans and an allele-dosage dependent facilitation of experimental CSD in KI mice, which is larger than that caused by the R192Q mutation. We show gain-of-function of excitatory neurotransmission, due to increased action-potential evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at multipolar interneuron synapses in S218L KI mice. In contrast with the larger gain-of-function of neuronal CaV2.1 current in homozygous than heterozygous S218L KI mice, the gain-of-function of evoked glutamate release, the paired-pulse ratio and the Ca2+ dependence of the excitatory postsynaptic current were similar in homozygous and heterozygous S218L KI mice, suggesting compensatory changes in the homozygous mice. Furthermore, we reveal a unique feature of S218L KI cortical synapses which is the presence of a fraction of mutant CaV2.1 channels being open at resting potential. Our data suggest that, while the gain-of-function of evoked glutamate release may explain the facilitation of CSD in heterozygous S218L KI mice, the further facilitation of CSD in homozygous S218L KI mice is due to other CaV2.1-dependent mechanisms, that likely include Ca2+ influx at voltages sub-threshold for action

  6. Oncogenic transformation in C3H10T1/2 cells by low-energy neutrons.

    Science.gov (United States)

    Miller, R C; Marino, S A; Napoli, J; Shah, H; Hall, E J; Geard, C R; Brenner, D J

    2000-03-01

    Occupational exposure to neutrons typically includes significant doses of low-energy neutrons, with energies below 100 keV. In addition, the normal-tissue dose from boron neutron capture therapy will largely be from low-energy neutrons. Microdosimetric theory predicts decreasing biological effectiveness for neutrons with energies below about 350 keV compared with that for higher-energy neutrons; based on such considerations, and limited biological data, the current radiation weighting factor (quality factor) for neutrons with energies from 10 keV to 100 keV is less than that for higher-energy neutrons. By contrast, some reports have suggested that the biological effectiveness of low-energy neutrons is similar to that of fast neutrons. The purpose of the current work is to assess the relative biological effectiveness of low-energy neutrons for an endpoint of relevance to carcinogenesis: in vitro oncogenic transformation. Oncogenic transformation induction frequencies were determined for C3H10T1/2 cells exposed to two low-energy neutron beams, respectively, with dose-averaged energies of 40 and 70 keV, and the results were compared with those for higher-energy neutrons and X-rays. These results for oncogenic transformation provide evidence for a significant decrease in biological effectiveness for 40 keV neutrons compared with 350 keV neutrons. The 70 keV neutrons were intermediate in effectiveness between the 70 and 350 keV beams. A decrease in biological effectiveness for low-energy neutrons is in agreement with most (but not all) earlier biological studies, as well as microdosimetric considerations. The results for oncogenic transformation were consistent with the currently recommended decreased values for low-energy neutron radiation weighting factors compared with fast neutrons.

  7. The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.

    Science.gov (United States)

    Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, Wenyi

    2017-04-01

    BRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APC FZR1 , APC FZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APC FZR1 , leading to elevation of a cohort of oncogenic APC FZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APC FZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis. Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APC FZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR. See related commentary by Zhang and Bollag, p. 356 This article is highlighted in the In This Issue feature, p. 339 . ©2017 American Association for Cancer Research.

  8. AKT inhibitors promote cell death in cervical cancer through disruption of mTOR signaling and glucose uptake.

    Directory of Open Access Journals (Sweden)

    Ramachandran Rashmi

    Full Text Available PI3K/AKT pathway alterations are associated with incomplete response to chemoradiation in human cervical cancer. This study was performed to test for mutations in the PI3K pathway and to evaluate the effects of AKT inhibitors on glucose uptake and cell viability.Mutational analysis of DNA from 140 pretreatment tumor biopsies and 8 human cervical cancer cell lines was performed. C33A cells (PIK3CAR88Q and PTENR233* were treated with increasing concentrations of two allosteric AKT inhibitors (SC-66 and MK-2206 with or without the glucose analogue 2-deoxyglucose (2-DG. Cell viability and activation status of the AKT/mTOR pathway were determined in response to the treatment. Glucose uptake was evaluated by incubation with 18F-fluorodeoxyglucose (FDG. Cell migration was assessed by scratch assay.Activating PIK3CA (E545K, E542K and inactivating PTEN (R233* mutations were identified in human cervical cancer. SC-66 effectively inhibited AKT, mTOR and mTOR substrates in C33A cells. SC-66 inhibited glucose uptake via reduced delivery of Glut1 and Glut4 to the cell membrane. SC-66 (1 µg/ml-56% and MK-2206 (30 µM-49% treatment decreased cell viability through a non-apoptotic mechanism. Decreases in cell viability were enhanced when AKT inhibitors were combined with 2-DG. The scratch assay showed a substantial reduction in cell migration upon SC-66 treatment.The mutational spectrum of the PI3K/AKT pathway in cervical cancer is complex. AKT inhibitors effectively block mTORC1/2, decrease glucose uptake, glycolysis, and decrease cell viability in vitro. These results suggest that AKT inhibitors may improve response to chemoradiation in cervical cancer.

  9. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  10. Lack of Association between ABO, PPAP2B, ADAMST7, PIK3CG, and EDNRA and Carotid Intima-Media Thickness, Carotid Plaques, and Cardiovascular Disease in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Raquel López-Mejías

    2014-01-01

    Full Text Available Introduction. Rheumatoid arthritis (RA is a polygenic disease associated with accelerated atherosclerosis and increased cardiovascular (CV mortality. Recent studies have identified the ABO rs579459, PPAP2B rs17114036, and ADAMTS7 rs3825807 polymorphisms as genetic variants associated with coronary artery disease and the PIK3CG rs17398575 and EDNRA rs1878406 polymorphisms as the most significant signals related to the presence of carotid plaque in nonrheumatic Caucasian individuals. Accordingly, we evaluated the potential relationship between these 5 polymorphisms and subclinical atherosclerosis (assessed by carotid intima-media thickness (cIMT and presence/absence of carotid plaques and CV disease in RA. Material and Methods. 2140 Spanish RA patients were genotyped for the 5 polymorphisms by TaqMan assays. Subclinical atherosclerosis was evaluated in 620 of these patients by carotid ultrasonography technology. Results. No statistically significant differences were found when each polymorphism was assessed according to cIMT values and presence/absence of carotid plaques in RA, after adjusting the results for potential confounders. Moreover, no significant differences were obtained when RA patients were stratified according to the presence/absence of CV disease after adjusting for potential confounders. Conclusion. Our results do not confirm association between ABO rs579459, PPAP2B rs17114036, ADAMTS7 rs3825807, PIK3CG rs17398575, and EDNRA rs1878406 and subclinical atherosclerosis and CV disease in RA.

  11. TU-CD-BRB-07: Identification of Associations Between Radiologist-Annotated Imaging Features and Genomic Alterations in Breast Invasive Carcinoma, a TCGA Phenotype Research Group Study

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A; Net, J [University of Miami, Miami, Florida (United States); Brandt, K [Mayo Clinic, Rochester, Minnesota (United States); Huang, E [National Cancer Institute, NIH, Bethesda, MD (United States); Freymann, J; Kirby, J [Leidos Biomedical Research Inc., Frederick, MD (United States); Burnside, E [University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (United States); Morris, E; Sutton, E [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Bonaccio, E [Roswell Park Cancer Institute, Buffalo, NY (United States); Giger, M; Jaffe, C [Univ Chicago, Chicago, IL (United States); Ganott, M; Zuley, M [University of Pittsburgh Medical Center - Magee Womens Hospital, Pittsburgh, Pennsylvania (United States); Le-Petross, H [MD Anderson Cancer Center, Houston, TX (United States); Dogan, B [UT MDACC, Houston, TX (United States); Whitman, G [UTMDACC, Houston, TX (United States)

    2015-06-15

    Purpose: To determine associations between radiologist-annotated MRI features and genomic measurements in breast invasive carcinoma (BRCA) from the Cancer Genome Atlas (TCGA). Methods: 98 TCGA patients with BRCA were assessed by a panel of radiologists (TCGA Breast Phenotype Research Group) based on a variety of mass and non-mass features according to the Breast Imaging Reporting and Data System (BI-RADS). Batch corrected gene expression data was obtained from the TCGA Data Portal. The Kruskal-Wallis test was used to assess correlations between categorical image features and tumor-derived genomic features (such as gene pathway activity, copy number and mutation characteristics). Image-derived features were also correlated with estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) status. Multiple hypothesis correction was done using Benjamini-Hochberg FDR. Associations at an FDR of 0.1 were selected for interpretation. Results: ER status was associated with rim enhancement and peritumoral edema. PR status was associated with internal enhancement. Several components of the PI3K/Akt pathway were associated with rim enhancement as well as heterogeneity. In addition, several components of cell cycle regulation and cell division were associated with imaging characteristics.TP53 and GATA3 mutations were associated with lesion size. MRI features associated with TP53 mutation status were rim enhancement and peritumoral edema. Rim enhancement was associated with activity of RB1, PIK3R1, MAP3K1, AKT1,PI3K, and PIK3CA. Margin status was associated with HIF1A/ARNT, Ras/ GTP/PI3K, KRAS, and GADD45A. Axillary lymphadenopathy was associated with RB1 and BCL2L1. Peritumoral edema was associated with Aurora A/GADD45A, BCL2L1, CCNE1, and FOXA1. Heterogeneous internal nonmass enhancement was associated with EGFR, PI3K, AKT1, HF/MET, and EGFR/Erbb4/neuregulin 1. Diffuse nonmass enhancement was associated with HGF/MET/MUC20/SHIP

  12. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Mi E-mail: jmpark@cmc.cuk.ac.kr; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-08-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D{sub 3}. It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman.

  13. Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions.

    Science.gov (United States)

    Lee, Jun-Yeop; Yun, Jong-Il

    2013-07-21

    The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.

  14. Use of Human Tissue to Assess the Oncogenic Activity of Melanoma-Associated Mutations

    OpenAIRE

    Chudnovsky, Yakov; Adams, Amy E.; Robbins, Paul B.; Lin, Qun; Khavari, Paul A.

    2005-01-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence1,2. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Ras and Raf induction can occur via active N-Ras and B-Raf mutants as well as by gene amplification3–5. Activation of PI3K pathway components occurs by PTEN loss and by AKT amplification6–8. Melanomas also commonly display impairment of p16INK4A-CDK4-Rb and ARF-HDM2-p53 tumor s...

  15. Transforming activity and therapeutic targeting of C-terminal-binding protein 2 in Apc-mutated neoplasia.

    Science.gov (United States)

    Sumner, E T; Chawla, A T; Cororaton, A D; Koblinski, J E; Kovi, R C; Love, I M; Szomju, B B; Korwar, S; Ellis, K C; Grossman, S R

    2017-08-17

    Overexpression of the transcriptional coregulators C-terminal binding proteins 1 and 2 (CtBP1 and 2) occurs in many human solid tumors and is associated with poor prognosis. CtBP modulates oncogenic gene expression programs and is an emerging drug target, but its oncogenic role is unclear. Consistent with this oncogenic potential, exogenous CtBP2 transformed primary mouse and human cells to anchorage independence similarly to mutant H-Ras. To investigate CtBP's contribution to in vivo tumorigenesis, Apc min/+ mice, which succumb to massive intestinal polyposis, were bred to Ctbp2 +/- mice. CtBP interacts with adenomatous polyposis coli (APC) protein, and is stabilized in both APC-mutated human colon cancers and Apc min/+ intestinal polyps. Ctbp2 heterozygosity increased the median survival of Apc min/+ mice from 21 to 48 weeks, and reduced polyp formation by 90%, with Ctbp2 +/- polyps exhibiting reduced levels of β-catenin and its oncogenic transcriptional target, cyclin D1. CtBP's potential as a therapeutic target was studied by treating Apc min/+ mice with the CtBP small-molecule inhibitors 4-methylthio-2-oxobutyric acid and 2-hydroxy-imino phenylpyruvic acid, both of which reduced polyposis by more than half compared with vehicle treatment. Phenocopying Ctbp2 deletion, both Ctbp inhibitors caused substantial decreases in the protein level of Ctbp2, as well its oncogenic partner β-catenin, and the effects of the inhibitors on CtBP and β-catenin levels could be modeled in an APC-mutated human colon cancer cell line. CtBP2 is thus a druggable transforming oncoprotein critical for the evolution of neoplasia driven by Apc mutation.

  16. The oncogenic action of ionizing radiation on rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs

  17. Somatic RET mutation in a patient with pigmented adrenal pheochromocytoma

    NARCIS (Netherlands)

    Maison, Nicole; Korpershoek, Esther; Eisenhofer, Graeme; Robledo, Mercedes; de Krijger, Ronald; Beuschlein, Felix

    UNLABELLED: Pheochromocytomas (PCC) and paraganglioma (PGL) are rare neuroendocrine tumors arising from chromaffin cells of the neural crest. Mutations in the RET-proto-oncogene are associated with sporadic pheochromocytoma, familial or sporadic medullary thyroid carcinoma (MTC) and multiple

  18. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors.

    Science.gov (United States)

    Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James

    2015-12-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.

  19. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture.

    Science.gov (United States)

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-05-01

    Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra

  20. Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries.

    Science.gov (United States)

    Toussay, Xavier; Morel, Jean-Luc; Biendon, Nathalie; Rotureau, Lolita; Legeron, François-Pierre; Boutonnet, Marie-Charlotte; Cho, Yoon H; Macrez, Nathalie

    2017-10-01

    Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca 2+ ) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca 2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca 2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca 2+ -release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca 2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca 2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca 2+ signals in PS1dE9 mutant mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Identifying Breast Cancer Oncogenes

    Science.gov (United States)

    2011-10-01

    cells we observed that it promoted transformation of HMLE cells, suggesting a tumor suppressive role of Merlin in breast cancer (Figure 4B). A...08-1-0767 TITLE: Identifying Breast Cancer Oncogenes PRINCIPAL INVESTIGATOR: Yashaswi Shrestha...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 W81XWH-08-1-0767 Identifying Breast Cancer Oncogenes Yashaswi Shrestha Dana-Farber

  2. Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations

    International Nuclear Information System (INIS)

    Kalari, Krishna R.; Rossell, David; Necela, Brian M.; Asmann, Yan W.; Nair, Asha

    2012-01-01

    KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene–gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.

  3. Oncogenic cancer/testis antigens

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer....../testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...... immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic...

  4. Ab-initio calculations of the Ruddlesden-Popper phases CaMnO3, CaO(CaMnO3) and CaO(CaMnO3)2

    International Nuclear Information System (INIS)

    Cardoso, C; Borges, R P; Gasche, T; Godinho, M

    2008-01-01

    The present work reports ab-initio density functional theory calculations for the Ruddlesden-Popper phase CaO(CaMnO 3 ) n compounds. In order to study the evolution of the properties with the number of perovskite layers, a detailed analysis of the densities of states calculated for each compound and for several magnetic configurations was performed. The effect of distortions of the crystal structure on the magnetic ground state is also analysed and the exchange constants and transition temperatures are calculated for the three compounds using a mean field model. The calculated magnetic ground state structures and magnetic moments are in good agreement with experimental results and previous calculations

  5. The system La(PO3)3-Ca(PO3)2-P2O5

    International Nuclear Information System (INIS)

    Jungowska, W.; Znamierowska, T.

    1993-01-01

    Ternary system La(PO 3 ) 3 -Ca(PO 3 ) 2 -P 2 O 5 has been studied by means of thermal and roentgenography analysis. The existence of single intermediate compound CaLa(PO 3 ) 5 has been observed. The phase diagrams for the ternary system as well as for two binary systems La(PO 3 ) 3 -Ca(PO 3 ) 2 and CaLa(PO 3 ) 5 -LaP 5 O 11 have been shown. 7 refs, 3 figs

  6. Ca 3d unoccupied states in Bi2Sr2CaCu2O8 investigated by Ca L2,3 x-ray-absorption near-edge structure

    International Nuclear Information System (INIS)

    Borg, A.; King, P.L.; Pianetta, P.; Lindau, I.; Mitzi, D.B.; Kapitulnik, A.; Soldatov, A.V.; Della Longa, S.; Bianconi, A.

    1992-01-01

    The high-resolution Ca L 2,3 x-ray-absorption near-edge-structure (XANES) spectrum of a Bi 2 Sr 2 CaCu 2 O 8 single crystal has been measured by use of a magnetic-projection x-ray microscope probing a surface area of 200x200 μm 2 . The Ca L 2,3 XANES spectrum is analyzed by performing a multiple-scattering XANES calculation in real space and comparing the results with the spectrum of CaF 2 . Good agreement between the calculated and experimental crystal-field splitting Δ f of the Ca 3d final states is found and the splitting is shown to be smaller by 0.5 eV than in the initial state. The Ca 3d partial density of states is found to be close to the Fermi level in the initial state. The Ca-O(in plane) distance is shown to be a critical parameter associated with the shift of the Ca 3d states relative to the Fermi level; in particular, we have studied the effect of the out-of-plane dimpling mode of the in-plane oxygen atoms O(in plane) that will move the Ca 3d states on or off the Fermi level. This mode can therefore play a role in modulating the charge transfer between the two CuO 2 planes separated by the Ca ions

  7. Ca 3d unoccupied states in Bi2Sr2CaCu2O8 investigated by Ca L2,3 x-ray-absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Borg, A; King, P L; Pianetta, P; Lindau, I; Mitzi, D B

    1992-01-01

    The high-resolution Ca L(2,3) x-ray-absorption near-edge-structure (XANES) spectrum of a Bi2Sr2CaCu2O8 single crystal has been measured by use of a magnetic-projection x-ray microscope probing a surface area of 200x200 micrometers square. The Ca L(2,3) XANES spectrum is analyzed by performing a multiple-scattering XANES calculation in real space and comparing the results with the spectrum of CaF2. Good agreement between the calculated and experimental crystal-field splitting Delta f of the Ca 3d final states is found and the splitting is shown to be smaller by 0.5 eV than in the initial state. The Ca 3d partial density of states is found to be close to the Fermi level in the initial state. The Ca-O (in plane) distance is shown to be a critical parameter associated with the shift of the Ca 3d states relative to the Fermi level; in particular, the authors have studied the effect of the out-of-plane dimpling mode of the in-plane oxygen atoms O(in plane) that will move the Ca 3d states on or off the Fermi level. This mode can therefore play a role in modulating the charge transfer between the two CuO2 planes separated by the Ca ions.

  8. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    Science.gov (United States)

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.

  9. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    OpenAIRE

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce ...

  10. Calpain 3 and CaMKIIβ signaling are required to induce HSP70 necessary for adaptive muscle growth after atrophy

    Science.gov (United States)

    Kramerova, Irina; Torres, Jorge A; Eskin, Ascia; Nelson, Stanley F; Spencer, Melissa J

    2018-01-01

    Abstract Mutations in CAPN3 cause autosomal recessive limb girdle muscular dystrophy 2A. Calpain 3 (CAPN3) is a calcium dependent protease residing in the myofibrillar, cytosolic and triad fractions of skeletal muscle. At the triad, it colocalizes with calcium calmodulin kinase IIβ (CaMKIIβ). CAPN3 knock out mice (C3KO) show reduced triad integrity and blunted CaMKIIβ signaling, which correlates with impaired transcriptional activation of myofibrillar and oxidative metabolism genes in response to running exercise. These data suggest a role for CAPN3 and CaMKIIβ in gene regulation that takes place during adaptation to endurance exercise. To assess whether CAPN3- CaMKIIβ signaling influences skeletal muscle remodeling in other contexts, we subjected C3KO and wild type mice to hindlimb unloading and reloading and assessed CaMKIIβ signaling and gene expression by RNA-sequencing. After induced atrophy followed by 4 days of reloading, both CaMKIIβ activation and expression of inflammatory and cellular stress genes were increased. C3KO muscles failed to activate CaMKIIβ signaling, did not activate the same pattern of gene expression and demonstrated impaired growth at 4 days of reloading. Moreover, C3KO muscles failed to activate inducible HSP70, which was previously shown to be indispensible for the inflammatory response needed to promote muscle recovery. Likewise, C3KO showed diminished immune cell infiltration and decreased expression of pro-myogenic genes. These data support a role for CaMKIIβ signaling in induction of HSP70 and promotion of the inflammatory response during muscle growth and remodeling that occurs after atrophy, suggesting that CaMKIIβ regulates remodeling in multiple contexts: endurance exercise and growth after atrophy. PMID:29528394

  11. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival.

    Science.gov (United States)

    Lin, Zhiqiang; Zhou, Pingzhu; von Gise, Alexander; Gu, Fei; Ma, Qing; Chen, Jinghai; Guo, Haidong; van Gorp, Pim R R; Wang, Da-Zhi; Pu, William T

    2015-01-02

    Yes-associated protein (YAP), the nuclear effector of Hippo signaling, regulates cellular growth and survival in multiple organs, including the heart, by interacting with TEA (transcriptional enhancer activator)-domain sequence-specific DNA-binding proteins. Recent studies showed that YAP stimulates cardiomyocyte proliferation and survival. However, the direct transcriptional targets through which YAP exerts its effects are poorly defined. To identify direct YAP targets that mediate its mitogenic and antiapoptotic effects in the heart. We identified direct YAP targets by combining differential gene expression analysis in YAP gain- and loss-of-function with genome-wide identification of YAP-bound loci using chromatin immunoprecipitation and high throughput sequencing. This screen identified Pik3cb, encoding p110β, a catalytic subunit of phosphoinositol-3-kinase, as a candidate YAP effector that promotes cardiomyocyte proliferation and survival. YAP and TEA-domain occupied a conserved enhancer within the first intron of Pik3cb, and this enhancer drove YAP-dependent reporter gene expression. Yap gain- and loss-of-function studies indicated that YAP is necessary and sufficient to activate the phosphoinositol-3-kinase-Akt pathway. Like Yap, Pik3cb gain-of-function stimulated cardiomyocyte proliferation, and Pik3cb knockdown dampened YAP mitogenic activity. Reciprocally, impaired heart function in Yap loss-of-function was significantly rescued by adeno-associated virus-mediated Pik3cb expression. Pik3cb is a crucial direct target of YAP, through which the YAP activates phosphoinositol-3-kinase-AKT pathway and regulates cardiomyocyte proliferation and survival. © 2014 American Heart Association, Inc.

  12. Next-generation sequencing for molecular diagnosis of lung adenocarcinoma specimens obtained by fine needle aspiration cytology

    Science.gov (United States)

    Qiu, Tian; Guo, Huiqin; Zhao, Huan; Wang, Luhua; Zhang, Zhihui

    2015-06-01

    Identification of multi-gene variations has led to the development of new targeted therapies in lung adenocarcinoma patients, and identification of an appropriate patient population with a reliable screening method is the key to the overall success of tumor targeted therapies. In this study, we used the Ion Torrent next-generation sequencing (NGS) technique to screen for mutations in 89 cases of lung adenocarcinoma metastatic lymph node specimens obtained by fine-needle aspiration cytology (FNAC). Of the 89 specimens, 30 (34%) were found to harbor epidermal growth factor receptor (EGFR) kinase domain mutations. Seven (8%) samples harbored KRAS mutations, and three (3%) samples had BRAF mutations involving exon 11 (G469A) and exon 15 (V600E). Eight (9%) samples harbored PIK3CA mutations. One (1%) sample had a HRAS G12C mutation. Thirty-two (36%) samples (36%) harbored TP53 mutations. Other genes including APC, ATM, MET, PTPN11, GNAS, HRAS, RB1, SMAD4 and STK11 were found each in one case. Our study has demonstrated that NGS using the Ion Torrent technology is a useful tool for gene mutation screening in lung adenocarcinoma metastatic lymph node specimens obtained by FNAC, and may promote the development of new targeted therapies in lung adenocarcinoma patients.

  13. IP3 stimulates CA++ efflux from fusogenic carrot protoplasts

    International Nuclear Information System (INIS)

    Rincon, M.; Boss, W.F.

    1986-01-01

    Polyphosphoinositide breakdown plays an important role in signal transduction in animal cells (Berridge and Irvine, 1984, Nature, 312:315). Upon stimulation, phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol both of which act as cellular second messengers. IP 3 mobilizes Ca ++ from internal stores, hence the cytosolic free Ca ++ concentration increases and those physiological activities regulated by Ca ++ are stimulated. To test if plant cells also responded to IP 3 , Ca ++ efflux studies were done with fusogenic carrot protoplasts released in EGTA. The protoplasts were preloaded with 45 Ca ++ placed in a Ca ++ -free medium, and efflux determined as 45 Ca ++ loss from the protoplasts. IP 3 (10-20μM) caused enhanced 45 Ca ++ efflux and the response was sustained for at least 15 min. In plants, as in animals, the observed IP 3 -enhanced 45 Ca ++ efflux suggested that IP 3 released Ca ++ from internal stores, and the increased free cytosolic Ca ++ activated Ca ++ pumping mechanisms which restored the Ca ++ concentration in the cytosol to the normal level

  14. High-pressure synthesis and structural, physical properties of CaIr1-xPtxO3 and CaIr1-xRhxO3

    Science.gov (United States)

    Hirai, S.; Bromiley, G. D.; Klemme, S.; Irifune, T.; Ohfuji, H.; Attfield, P.; Nishiyama, N.

    2010-12-01

    Since the discovery of the perovskite to post-perovskite transition in MgSiO3 in a laser-heated DAC, wide attention has been focussed on the post-perovskite phase of MgSiO3. This is because the post-perovskite phase is likely to play a key role in Earth’s lowermost mantle, and because the perovskite to post-perovskite transition can explain many features of the D” seismic discontinuity. While it is meaningful to conduct further studies of MgSiO3, the post-perovskite phase of MgSiO3 cannot be quenched to ambient pressure/temperature conditions. Thus, further studies must be conducted using analogue compounds of MgSiO3 post-perovskite, which are quenchable to ambient pressure/temperature conditions. The post-perovskite phase of MgSiO3 crystallizes in a layered structure with CaIrO3-structure. Therefore, it is useful to investigate compounds with CaIrO3-structure. There are only four quenchable oxides with CaIrO3-structure reported to date: CaIrO3, CaPtO3, CaRhO3 and CaRuO3. CaIrO3 can be synthesized at ambient pressure, whilst the other three oxides can only be obtained at high pressure/temperature conditions using a multi-anvil apparatus. Further studies on these materials have revealed structural phase transitions at high P-T and a metal-insulator transition by hole doping. In the case of CaIrO3, The post-perovskite phase of CaIrO3 synthesized at 2GPa, 1373K transforms into a perovskite phase at 2GPa, 1673K. In other words, the perovskite phase can be synthesized at temperatures higher than those needed for synthesizing the post-perovskite phase. This is also the case for CaRhO3 (6GPa, 1873K) and CaRuO3 (23GPa, 1343K), while CaPtO3 remained post-perovskite at higher temperatures. We have succeeded in synthesizing solid solutions between CaIrO3, CaPtO3 and CaRhO3. We have found the systematic change in structural and physical properties of post-perovskite oxides, with composition and P-T, which broadens the future opportunity for studying post-perovskite systems

  15. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Inés Mármol

    2017-01-01

    Full Text Available Colorectal cancer (CRC is the third most common cancer and the fourth most common cause of cancer-related death. Most cases of CRC are detected in Western countries, with its incidence increasing year by year. The probability of suffering from colorectal cancer is about 4%–5% and the risk for developing CRC is associated with personal features or habits such as age, chronic disease history and lifestyle. In this context, the gut microbiota has a relevant role, and dysbiosis situations can induce colonic carcinogenesis through a chronic inflammation mechanism. Some of the bacteria responsible for this multiphase process include Fusobacterium spp, Bacteroides fragilis and enteropathogenic Escherichia coli. CRC is caused by mutations that target oncogenes, tumour suppressor genes and genes related to DNA repair mechanisms. Depending on the origin of the mutation, colorectal carcinomas can be classified as sporadic (70%; inherited (5% and familial (25%. The pathogenic mechanisms leading to this situation can be included in three types, namely chromosomal instability (CIN, microsatellite instability (MSI and CpG island methylator phenotype (CIMP. Within these types of CRC, common mutations, chromosomal changes and translocations have been reported to affect important pathways (WNT, MAPK/PI3K, TGF-β, TP53, and mutations; in particular, genes such as c-MYC, KRAS, BRAF, PIK3CA, PTEN, SMAD2 and SMAD4 can be used as predictive markers for patient outcome. In addition to gene mutations, alterations in ncRNAs, such as lncRNA or miRNA, can also contribute to different steps of the carcinogenesis process and have a predictive value when used as biomarkers. In consequence, different panels of genes and mRNA are being developed to improve prognosis and treatment selection. The choice of first-line treatment in CRC follows a multimodal approach based on tumour-related characteristics and usually comprises surgical resection followed by chemotherapy combined

  16. Mild achondroplasia/hypochondroplasia with acanthosis nigricans, normal development, and a p.Ser348Cys FGFR3 mutation.

    Science.gov (United States)

    Couser, Natario L; Pande, Chetna K; Turcott, Christie M; Spector, Elaine B; Aylsworth, Arthur S; Powell, Cynthia M

    2017-04-01

    Pathogenic allelic variants in the fibroblast growth factor receptor 3 (FGFR3) gene have been associated with a number of phenotypes including achondroplasia, hypochondroplasia, thanatophoric dysplasia, Crouzon syndrome with acanthosis nigricans (Crouzonodermoskeletal syndrome), and SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans). Crouzon syndrome with acanthosis nigricans is caused by the pathogenic variant c.1172C>A (p.Ala391Glu) in the FGFR3 gene. The p.Lys650Thr pathogenic variant in FGFR3 has been linked to acanthosis nigricans without significant craniofacial or skeletal abnormalities. Recently, an infant with achondroplasia and a novel p.Ser348Cys FGFR3 mutation was reported. We describe the clinical history of an 8-year-old child with a skeletal dysplasia in the achondroplasia-hypochondroplasia spectrum, acanthosis nigricans, typical development, and the recently described p.Ser348Cys FGFR3 mutation. © 2017 Wiley Periodicals, Inc.

  17. Increased NQO1 but Not c-MET and Survivin Expression in Non-Small Cell Lung Carcinoma with KRAS Mutations

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz

    2014-09-01

    Full Text Available Cigarette smoking is one of the most significant public health issues and the most common environmental cause of preventable cancer deaths worldwide. EGFR (Epidermal Growth Factor Receptor-targeted therapy has been used in the treatment of LC (lung cancer, mainly caused by the carcinogens in cigarette smoke, with variable success. Presence of mutations in the KRAS (Kirsten rat sarcoma viral oncogene homolog driver oncogene may confer worse prognosis and resistance to treatment for reasons not fully understood. NQO1 (NAD(PH:quinone oxidoreductase, also known as DT-diaphorase, is a major regulator of oxidative stress and activator of mitomycins, compounds that have been targeted in over 600 pre-clinical trials for treatment of LC. We sequenced KRAS and investigated expression of NQO1 and five clinically relevant proteins (DNMT1, DNMT3a, ERK1/2, c-MET, and survivin in 108 patients with non-small cell lung carcinoma (NSCLC. NQO1, ERK1/2, DNMT1, and DNMT3a but not c-MET and survivin expression was significantly more frequent in patients with KRAS mutations than those without, suggesting the following: (1 oxidative stress may play an important role in the pathogenesis, worse prognosis, and resistance to treatment reported in NSCLC patients with KRAS mutations, (2 selecting patients based on their KRAS mutational status for future clinical trials may increase success rate, and (3 since oxidation of nucleotides also specifically induces transversion mutations, the high rate of KRAS transversions in lung cancer patients may partly be due to the increased oxidative stress in addition to the known carcinogens in cigarette smoke.

  18. Molecular characteristics of endometrial cancer coexisting with peritoneal malignant mesothelioma in Li-Fraumeni-like syndrome.

    Science.gov (United States)

    Chao, Angel; Lai, Chyong-Huey; Lee, Yun-Shien; Ueng, Shir-Hwa; Lin, Chiao-Yun; Wang, Tzu-Hao

    2015-01-15

    Endometrial cancer that occurs concurrently with peritoneal malignant mesothelioma (PMM) is difficult to diagnose preoperatively. A postmenopausal woman had endometrial cancer extending to the cervix, vagina and pelvic lymph nodes, and PMM in bilateral ovaries, cul-de-sac, and multiple peritoneal sites. Adjuvant therapies included chemotherapy and radiotherapy. Targeted, massively parallel DNA sequencing and molecular inversion probe microarray analysis revealed a germline TP53 mutation compatible with Li-Fraumeni-like syndrome, somatic mutations of PIK3CA in the endometrial cancer, and a somatic mutation of GNA11 and JAK3 in the PMM. Large-scale genomic amplifications and some deletions were found in the endometrial cancer. The patient has been stable for 24 months after therapy. One of her four children was also found to carry the germline TP53 mutation. Molecular characterization of the coexistent tumors not only helps us make the definite diagnosis, but also provides information to select targeted therapies if needed in the future. Identification of germline TP53 mutation further urged us to monitor future development of malignancies in this patient and encourage cancer screening in her family.

  19. M-COPA suppresses endolysosomal Kit-Akt oncogenic signalling through inhibiting the secretory pathway in neoplastic mast cells.

    Directory of Open Access Journals (Sweden)

    Yasushi Hara

    Full Text Available Gain-of-function mutations in Kit receptor tyrosine kinase result in the development of a variety of cancers, such as mast cell tumours, gastrointestinal stromal tumours (GISTs, acute myeloid leukemia, and melanomas. The drug imatinib, a selective inhibitor of Kit, is used for treatment of mutant Kit-positive cancers. However, mutations in the Kit kinase domain, which are frequently found in neoplastic mast cells, confer an imatinib resistance, and cancers expressing the mutants can proliferate in the presence of imatinib. Recently, we showed that in neoplastic mast cells that endogenously express an imatinib-resistant Kit mutant, Kit causes oncogenic activation of the phosphatidylinositol 3-kinase-Akt (PI3K-Akt pathway and the signal transducer and activator of transcription 5 (STAT5 but only on endolysosomes and on the endoplasmic reticulum (ER, respectively. Here, we show a strategy for inhibition of the Kit-PI3K-Akt pathway in neoplastic mast cells by M-COPA (2-methylcoprophilinamide, an inhibitor of this secretory pathway. In M-COPA-treated cells, Kit localization in the ER is significantly increased, whereas endolysosomal Kit disappears, indicating that M-COPA blocks the biosynthetic transport of Kit from the ER. The drug greatly inhibits oncogenic Akt activation without affecting the association of Kit with PI3K, indicating that ER-localized Kit-PI3K complex is unable to activate Akt. Importantly, M-COPA but not imatinib suppresses neoplastic mast cell proliferation through inhibiting anti-apoptotic Akt activation. Results of our M-COPA treatment assay show that Kit can activate Erk not only on the ER but also on other compartments. Furthermore, Tyr568/570, Tyr703, Tyr721, and Tyr936 in Kit are phosphorylated on the ER, indicating that these five tyrosine residues are all phosphorylated before mutant Kit reaches the plasma membrane (PM. Our study provides evidence that Kit is tyrosine-phosphorylated soon after synthesis on the ER but is

  20. M-COPA suppresses endolysosomal Kit-Akt oncogenic signalling through inhibiting the secretory pathway in neoplastic mast cells.

    Science.gov (United States)

    Hara, Yasushi; Obata, Yuuki; Horikawa, Keita; Tasaki, Yasutaka; Suzuki, Kyohei; Murata, Takatsugu; Shiina, Isamu; Abe, Ryo

    2017-01-01

    Gain-of-function mutations in Kit receptor tyrosine kinase result in the development of a variety of cancers, such as mast cell tumours, gastrointestinal stromal tumours (GISTs), acute myeloid leukemia, and melanomas. The drug imatinib, a selective inhibitor of Kit, is used for treatment of mutant Kit-positive cancers. However, mutations in the Kit kinase domain, which are frequently found in neoplastic mast cells, confer an imatinib resistance, and cancers expressing the mutants can proliferate in the presence of imatinib. Recently, we showed that in neoplastic mast cells that endogenously express an imatinib-resistant Kit mutant, Kit causes oncogenic activation of the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway and the signal transducer and activator of transcription 5 (STAT5) but only on endolysosomes and on the endoplasmic reticulum (ER), respectively. Here, we show a strategy for inhibition of the Kit-PI3K-Akt pathway in neoplastic mast cells by M-COPA (2-methylcoprophilinamide), an inhibitor of this secretory pathway. In M-COPA-treated cells, Kit localization in the ER is significantly increased, whereas endolysosomal Kit disappears, indicating that M-COPA blocks the biosynthetic transport of Kit from the ER. The drug greatly inhibits oncogenic Akt activation without affecting the association of Kit with PI3K, indicating that ER-localized Kit-PI3K complex is unable to activate Akt. Importantly, M-COPA but not imatinib suppresses neoplastic mast cell proliferation through inhibiting anti-apoptotic Akt activation. Results of our M-COPA treatment assay show that Kit can activate Erk not only on the ER but also on other compartments. Furthermore, Tyr568/570, Tyr703, Tyr721, and Tyr936 in Kit are phosphorylated on the ER, indicating that these five tyrosine residues are all phosphorylated before mutant Kit reaches the plasma membrane (PM). Our study provides evidence that Kit is tyrosine-phosphorylated soon after synthesis on the ER but is unable to

  1. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice

    Science.gov (United States)

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C.

    2016-01-01

    ABSTRACT   Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. Importance   Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an

  2. Stac3 has a direct role in skeletal muscle-type excitation-contraction coupling that is disrupted by a myopathy-causing mutation.

    Science.gov (United States)

    Polster, Alexander; Nelson, Benjamin R; Olson, Eric N; Beam, Kurt G

    2016-09-27

    In skeletal muscle, conformational coupling between CaV1.1 in the plasma membrane and type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR) is thought to underlie both excitation-contraction (EC) coupling Ca(2+) release from the SR and retrograde coupling by which RyR1 increases the magnitude of the Ca(2+) current via CaV1.1. Recent work has shown that EC coupling fails in muscle from mice and fish null for the protein Stac3 (SH3 and cysteine-rich domain 3) but did not establish the functional role of Stac3 in the CaV1.1-RyR1 interaction. We investigated this using both tsA201 cells and Stac3 KO myotubes. While confirming in tsA201 cells that Stac3 could support surface expression of CaV1.1 (coexpressed with its auxiliary β1a and α2-δ1 subunits) and the generation of large Ca(2+) currents, we found that without Stac3 the auxiliary γ1 subunit also supported membrane expression of CaV1.1/β1a/α2-δ1, but that this combination generated only tiny Ca(2+) currents. In Stac3 KO myotubes, there was reduced, but still substantial CaV1.1 in the plasma membrane. However, the CaV1.1 remaining in Stac3 KO myotubes did not generate appreciable Ca(2+) currents or EC coupling Ca(2+) release. Expression of WT Stac3 in Stac3 KO myotubes fully restored Ca(2+) currents and EC coupling Ca(2+) release, whereas expression of Stac3W280S (containing the Native American myopathy mutation) partially restored Ca(2+) currents but only marginally restored EC coupling. We conclude that membrane trafficking of CaV1.1 is facilitated by, but does not require, Stac3, and that Stac3 is directly involved in conformational coupling between CaV1.1 and RyR1.

  3. The status of the PIK reactor

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu V [Academy of Sciences of Russia, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation)

    1992-07-01

    This report describes the 100 MW research reactor PIK which is now under construction. The thermal neutron flux in the heavy water reflector exceeds 10{sup 15} cm{sup -2}s{sup -1}; in the light water trap, it is about 4{center_dot}10{sup 15} cm{sup -2}s{sup -1}. The replaceable core vessel allows to vary the parameters of the core over a wide range. The reactor provides sources of hot, cold and ultracold neutrons for 10 horizontal, 6 inclined neutron beams, and 8 neutron guides. At the ends of the beam tubes, the neutron flux is 10{sup 10} - 10{sup 11} cm{sup -2}s{sup -1}. The flux of the long wave neutrons exceeds 10{sup 9} cm{sup -2}s{sup -1}. To ensure precise measurements, the experimental hall is protected against vibrations. The project meets all modern safety requirements. The calculated parameters of the reactor were verified using a full-scale mock-up. Seventy percent of the reactor construction and installation were completed in the beginning of 1992. (author)

  4. Mutations in GABRB3

    DEFF Research Database (Denmark)

    Møller, Rikke S; Wuttke, Thomas V; Helbig, Ingo

    2017-01-01

    OBJECTIVE: To examine the role of mutations in GABRB3 encoding the β3 subunit of the GABAA receptor in individual patients with epilepsy with regard to causality, the spectrum of genetic variants, their pathophysiology, and associated phenotypes. METHODS: We performed massive parallel sequencing ...

  5. EFFECT OF FERRITE PHASE ON THE FORMATION AND COEXISTENCE OF 3CaO.3Al₂O₃.CaSO₄ AND 3CaO.SiO₂ MINERALS

    Directory of Open Access Journals (Sweden)

    Xiaolei Lu

    2017-12-01

    Full Text Available The effect of ferrite on the formation and coexistence of 3CaO.3Al₂O₃.CaSO₄ (C₄A₃$ and 3CaO.SiO₂ (C3S was investigated in this paper. The results indicate that 20 % content of ferrite phase with the composition of C₂A0.5F0.5 can facilitate the coexistence of C₄A₃$ and C₃S solid solutions at 1350 ° C. There are other trace elements that incorporate into clinker minerals and form solid solutions. In addition, the dark and polygonal C₄A₃$ solid solution is not dissolved in liquid phase at 1350 ° C. It can promote the burnability of the raw mixes and provide a favorable condition for the formation of C₃S. However, it has an adverse effect on the coexistence of two clinker minerals with the changing of ferrite compositions. This will provide the important basis for the preparation of the calcium sulphoaluminate cement clinker containing C₃S.

  6. Gene mutations in hepatocellular adenomas

    DEFF Research Database (Denmark)

    Raft, Marie B; Jørgensen, Ernö N; Vainer, Ben

    2015-01-01

    is associated with bi-allelic mutations in the TCF1 gene and morphologically has marked steatosis. β-catenin activating HCA has increased activity of the Wnt/β-catenin pathway and is associated with possible malignant transformation. Inflammatory HCA is characterized by an oncogene-induced inflammation due...... to alterations in the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. In the diagnostic setting, sub classification of HCA is based primarily on immunohistochemical analyzes, and has had an increasing impact on choice of treatment and individual prognostic assessment....... This review offers an overview of the reported gene mutations associated with hepatocellular adenomas together with a discussion of the diagnostic and prognostic value....

  7. BRAF V600E mutations in papillary craniopharyngioma

    Science.gov (United States)

    Brastianos, Priscilla K.; Santagata, Sandro

    2016-01-01

    Papillary craniopharyngioma is an intracranial tumor that results in high levels of morbidity. We recently demonstrated that the vast majority of these tumors harbor the oncogenic BRAF V600E mutation. The pathologic diagnosis of papillary craniopharyngioma can now be confirmed using mutation specific immunohistochemistry and targeted genetic testing. Treatment with targeted agents is now also a possibility in select situations. We recently reported a patient with a multiply recurrent papillary craniopharyngioma in whom targeting both BRAF and MEK resulted in a dramatic therapeutic response with a marked anti-tumor immune response. This work shows that activation of the MAPK pathway is the likely principal oncogenic driver of these tumors. We will now investigate the efficacy of this approach in a multicenter phase II clinical trial. Post-treatment resection samples will be monitored for the emergence of resistance mechanisms. Further advances in the non-invasive diagnosis of papillary craniopharyngioma by radiologic criteria and by cell-free DNA testing could someday allow neo-adjuvant therapy for this disease in select patient populations. PMID:26563980

  8. Highly prevalent LIPH founder mutations causing autosomal recessive woolly hair/hypotrichosis in Japan and the genotype/phenotype correlations.

    Directory of Open Access Journals (Sweden)

    Kana Tanahashi

    Full Text Available Mutations in LIPH cause of autosomal recessive woolly hair/hypotrichosis (ARWH, and the 2 missense mutations c.736T>A (p.Cys246Ser and c.742C>A (p.His248Asn are considered prevalent founder mutations for ARWH in the Japanese population. To reveal genotype/phenotype correlations in ARWH cases in Japan and the haplotypes in 14 Japanese patients from 14 unrelated Japanese families. 13 patients had woolly hair, and 1 patient had complete baldness since birth. An LIPH mutation search revealed homozygous c.736T>A mutations in 10 of the patients. Compound heterozygous c.736T>A and c.742C>A mutations were found in 3 of the patients, and homozygous c.742C>A mutation in 1 patient. The phenotype of mild hypotrichosis with woolly hair was restricted to the patients with the homozygous c.736T>A mutation. The severe phenotype of complete baldness was seen in only 1 patient with homozygous c.742C>A. Haplotype analysis revealed that the alleles containing the LIPH c.736T>A mutation had a haplotype identical to that reported previously, although 4 alleles out of 5 chromosomes containing the LIPH c.742C>A mutation had a different haplotype from the previously reported founder allele. These alleles with c.742C>A are thought to be the third founder LIPH mutation causing ARWH. To accurately determine the prevalence of the founder mutations, we investigated allele frequencies of those mutations in 819 Japanese controls. Heterozygous c.736T>A mutations were found in 13 controls (allele frequency: 0.0079; carrier rate: 0.016, and heterozygous c.742C>A mutations were found in 2 controls (allele frequency: 0.0012; carrier rate: 0.0024. In conclusion, this study confirms the more accurate allele frequencies of the pathogenic founder mutations of LIPH and shows that there is a third founder mutation in Japan. In addition, the present findings suggest that the mutation patterns of LIPH might be associated with hypotrichosis severity in ARWH.

  9. Rational design of a conformation-switchable Ca2+- and Tb3+-binding protein without the use of multiple coupled metal-binding sites.

    Science.gov (United States)

    Li, Shunyi; Yang, Wei; Maniccia, Anna W; Barrow, Doyle; Tjong, Harianto; Zhou, Huan-Xiang; Yang, Jenny J

    2008-10-01

    Ca2+, as a messenger of signal transduction, regulates numerous target molecules via Ca2+-induced conformational changes. Investigation into the determinants for Ca2+-induced conformational change is often impeded by cooperativity between multiple metal-binding sites or protein oligomerization in naturally occurring proteins. To dissect the relative contributions of key determinants for Ca2+-dependent conformational changes, we report the design of a single-site Ca2+-binding protein (CD2.trigger) created by altering charged residues at an electrostatically sensitive location on the surface of the host protein rat Cluster of Differentiation 2 (CD2).CD2.trigger binds to Tb3+ and Ca2+ with dissociation constants of 0.3 +/- 0.1 and 90 +/- 25 microM, respectively. This protein is largely unfolded in the absence of metal ions at physiological pH, but Tb3+ or Ca2+ binding results in folding of the native-like conformation. Neutralization of the charged coordination residues, either by mutation or protonation, similarly induces folding of the protein. The control of a major conformational change by a single Ca2+ ion, achieved on a protein designed without reliance on sequence similarity to known Ca2+-dependent proteins and coupled metal-binding sites, represents an important step in the design of trigger proteins.

  10. Synergistic Interactions with PI3K Inhibition that Induce Apoptosis. | Office of Cancer Genomics

    Science.gov (United States)

    Activating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a PIK3CA mutant human breast cancer cell. We identified 5 genes (PIM2, ZAK, TACC1, ZFR, ZNF565) whose suppression induced cell death upon PI3K inhibition.

  11. Primary Type3 (Non-ABC, Non-GCB Subtype of Extranodal Diffuse Large B-Cell Lymphoma of the Thyroid Bearing No MYD88 Mutation by Padlock Probe Hybridization

    Directory of Open Access Journals (Sweden)

    Yukiko Nishi

    2017-06-01

    Full Text Available Primary extranodal malignant lymphoma of the thyroid is a rare entity composed of mostly neoplastic transformation of germinal center-like B cells (GCB or memory B cells. Other B-cell-type malignancies arising primarily in the thyroid have rarely been described. Immunohistochemical examination of autopsied primary malignant lymphoma of the thyroid in an 83-year-old Japanese female revealed the presence of a non-GCB subtype of diffuse large B-cell lymphoma (DLBCL without the typical codon 206 or 265 missense mutation of MYD88. The lack of the highly oncogenic MYD88 gene mutation, frequently observed in DLBCL of the activated B-cell (ABC subtype, and the detection of an extremely aggressive yet local clinical phenotype demonstrated that the present case was an exceptional entity of the type3 (non-GCB and non-ABC subtype.

  12. Intrinsic and Extrinsic Regulation of PD-L2 Expression in Oncogene-Driven Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Shibahara, Daisuke; Tanaka, Kentaro; Iwama, Eiji; Kubo, Naoki; Ota, Keiichi; Azuma, Koichi; Harada, Taishi; Fujita, Jiro; Nakanishi, Yoichi; Okamoto, Isamu

    2018-03-27

    The interaction of programmed cell death ligand 2 (PD-L2) with programmed cell death 1 is implicated in tumor immune escape. The regulation of PD-L2 expression in tumor cells has remained unclear, however. We here examined intrinsic and extrinsic regulation of PD-L2 expression in NSCLC. PD-L2 expression was evaluated by reverse transcription and real-time polymerase chain reaction analysis and by flow cytometry. BEAS-2B cells stably expressing an activated mutant form of EGFR or the echinoderm microtubule associated protein like 4 (EML4)-ALK receptor tyrosine kinase fusion oncoprotein manifested increased expression of PD-L2 at both the mRNA and protein levels. Furthermore, treatment of NSCLC cell lines that harbor such driver oncogenes with corresponding EGFR or ALK tyrosine kinase inhibitors or depletion of EGFR or ALK by small interfering RNA transfection suppressed expression of PD-L2, demonstrating that activating EGFR mutations or echinoderm microtubule associated protein like 4 gene (EML4)-ALK receptor tyrosine kinase gene (ALK) fusion intrinsically induce PD-L2 expression. We also found that interferon gamma (IFN-γ) extrinsically induced expression of PD-L2 through signal transducer and activator of transcription 1 signaling in NSCLC cells. Oncogene-driven expression of PD-L2 in NSCLC cells was inhibited by knockdown of the transcription factors signal transducer and activator of transcription 3 (STAT3) or c-FOS. IFN-γ also activated STAT3 and c-FOS, suggesting that these proteins may also contribute to the extrinsic induction of PD-L2 expression. Expression of PD-L2 is induced intrinsically by activating EGFR mutations or EML4-ALK fusion and extrinsically by IFN-γ, with STAT3 and c-FOS possibly contributing to both intrinsic and extrinsic pathways. Our results thus provide insight into the complexity of tumor immune escape in NSCLC. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  13. Multiple-integrations of HPV16 genome and altered transcription of viral oncogenes and cellular genes are associated with the development of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Xulian Lu

    Full Text Available The constitutive expression of the high-risk HPV E6 and E7 viral oncogenes is the major cause of cervical cancer. To comprehensively explore the composition of HPV16 early transcripts and their genomic annotation, cervical squamous epithelial tissues from 40 HPV16-infected patients were collected for analysis of papillomavirus oncogene transcripts (APOT. We observed different transcription patterns of HPV16 oncogenes in progression of cervical lesions to cervical cancer and identified one novel transcript. Multiple-integration events in the tissues of cervical carcinoma (CxCa are significantly more often than those of low-grade squamous intraepithelial lesions (LSIL and high-grade squamous intraepithelial lesions (HSIL. Moreover, most cellular genes within or near these integration sites are cancer-associated genes. Taken together, this study suggests that the multiple-integrations of HPV genome during persistent viral infection, which thereby alters the expression patterns of viral oncogenes and integration-related cellular genes, play a crucial role in progression of cervical lesions to cervix cancer.

  14. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    Science.gov (United States)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011) and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP). A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011).

  15. Photoluminescence and thermoluminescence characterization of Eu3+- and Dy3+ -activated Ca3(PO4)2 phosphor

    International Nuclear Information System (INIS)

    Nagpure, I.M.; Saha, Subhajit; Dhoble, S.J.

    2009-01-01

    Rare-earth-doped polycrystalline Ca 3 (PO 4 ) 2 :Eu, Ca 3 (PO 4 ) 2 :Dy and Ca 3 (PO 4 ) 2 :Eu,Dy phosphors prepared by a modified solid-state synthesis has been studied for its X-ray diffraction, thermoluminescence (TL) and photoluminescence (PL) characteristics. The PL emission spectra of the phosphor suggest the presence of Eu 3+ ion in Ca 3 (PO 4 ) 2 :Eu and Dy 3+ ion in Ca 3 (PO 4 ) 2 :Dy lattice sites. The TL glow curve of the Ca 3 (PO 4 ) 2 :Eu compounds has a simple structure with a prominent peak at 228 deg. C, while Ca 3 (PO 4 ) 2 :Dy peaking at 146 and 230 deg. C. TL sensitivity of phosphors are compared with CaSO 4 : Dy and found 1.52 and 1.20 times less in Ca 3 (PO 4 ) 2 :Eu and Ca 3 (PO 4 ) 2 :Dy phosphors, respectively. The Ca 3 (PO 4 ) 2 :Eu,Dy phosphors shows switching behavior under two different excitation wavelengths and enhancement in PL intensity of Dy 3+ ions were reported. The paper discusses the photoluminescence and thermoluminescence behavior of Eu 3+ and Dy 3+ ion in Ca 3 (PO 4 ) 2 hosts, it may be applicable to solid-state lighting as well as thermoluminescence dosimetry applications.

  16. Somatic mutations in histiocytic sarcoma identified by next generation sequencing.

    Science.gov (United States)

    Liu, Qingqing; Tomaszewicz, Keith; Hutchinson, Lloyd; Hornick, Jason L; Woda, Bruce; Yu, Hongbo

    2016-08-01

    Histiocytic sarcoma is a rare malignant neoplasm of presumed hematopoietic origin showing morphologic and immunophenotypic evidence of histiocytic differentiation. Somatic mutation importance in the pathogenesis or disease progression of histiocytic sarcoma was largely unknown. To identify somatic mutations in histiocytic sarcoma, we studied 5 histiocytic sarcomas [3 female and 2 male patients; mean age 54.8 (20-72), anatomic sites include lymph node, uterus, and pleura] and matched normal tissues from each patient as germ line controls. Somatic mutations in 50 "Hotspot" oncogenes and tumor suppressor genes were examined using next generation sequencing. Three (out of five) histiocytic sarcoma cases carried somatic mutations in BRAF. Among them, G464V [variant frequency (VF) of 43.6 %] and G466R (VF of 29.6 %) located at the P loop potentially interfere with the hydrophobic interaction between P and activating loops and ultimately activation of BRAF. Also detected was BRAF somatic mutation N581S (VF of 7.4 %), which was located at the catalytic loop of BRAF kinase domain: its role in modifying kinase activity was unclear. A similar mutational analysis was also performed on nine acute monocytic/monoblastic leukemia cases, which did not identify any BRAF somatic mutations. Our study detected several BRAF mutations in histiocytic sarcomas, which may be important in understanding the tumorigenesis of this rare neoplasm and providing mechanisms for potential therapeutical opportunities.

  17. Ernst Julius Öpik's (1916) note on the theory of explosion cratering on the Moon's surface—The complex case of a long-overlooked benchmark paper

    Science.gov (United States)

    Racki, Grzegorz; Koeberl, Christian; Viik, Tõnu; Jagt-Yazykova, Elena A.; Jagt, John W. M.

    2014-10-01

    High-velocity impact as a common phenomenon in planetary evolution was ignored until well into the twentieth century, mostly because of inadequate understanding of cratering processes. An eight-page note, published in Russian by the young Ernst Julius Öpik, a great Estonian astronomer, was among the key selenological papers, but due to the language barrier, it was barely known and mostly incorrectly cited. This particular paper is here intended to serve as an explanatory supplement to an English translation of Öpik's article, but also to document an early stage in our understanding of cratering. First, we outline the historical-biographical background of this benchmark paper, and second, a comprehensive discussion of its merits is presented, from past and present perspectives alike. In his theoretical research, Öpik analyzed the explosive formation of craters numerically, albeit in a very simple way. For the first time, he approximated relationships among minimal meteorite size, impact energy, and crater diameter; this scaling focused solely on the gravitational energy of excavating the crater (a "useful" working approach). This initial physical model, with a rational mechanical basis, was developed in a series of papers up to 1961. Öpik should certainly be viewed as the founder of the numerical simulation approach in planetary sciences. In addition, the present note also briefly describes Nikolai A. Morozov as a remarkable man, a forgotten Russian scientist and, surprisingly, the true initiator of Öpik's explosive impact theory. In fact, already between 1909 and 1911, Morozov probably was the first to consider conclusively that explosion craters would be circular, bowl-shaped depressions even when formed under different impact angles.

  18. Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers

    International Nuclear Information System (INIS)

    Holstege, Henne; Wessels, Lodewyk FA; Nederlof, Petra M; Jonkers, Jos; Beers, Erik van; Velds, Arno; Liu, Xiaoling; Joosse, Simon A; Klarenbeek, Sjoerd; Schut, Eva; Kerkhoven, Ron; Klijn, Christiaan N

    2010-01-01

    Genomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development. To identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1 Δ/Δ ;p53 Δ/Δ , Brca2 Δ/Δ ;p53 Δ/Δ and p53 Δ/Δ mammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers. Our genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2 Δ/Δ ;p53 Δ/Δ tumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species. The selection of the oncogenome during

  19. c-Ha-ras BamHI RFLP in human urothelial tumors and point mutations in hot codons

    International Nuclear Information System (INIS)

    Weismanova, E; Skovraga, M.; Kaluz, S.

    1993-01-01

    High-molecular weights DNAs from 30 bladder and renal cell carcinomas (RCC) were isolated and the c-Ha-ras the c-Ha-ras gene BamHI RFLP was examined. Amplification of c-Ha-ras with normal localization with regard to the size of alleles was found only in the case. One of the normally localized c-Ha-ras allele termed RCC c-H-ras of a length of about 6.6 kbp was cloned and an oncogene-activating point mutation was identified using two restriction enzymes. After comparison of CfrI and Cfr10I cleavage maps of RCC c-Ha-ras to complete nucleotide sequences of EJ/T24 c-Ha-ras oncogene and its normal counterpart, a point mutation was identified within codon 11 or 12. The use of CfrI and Cfr10I is of value for clinical practice in identification of point mutations in c-Ha-ras PCR product in neoplasia accompanied by somatic mutation of c-Ha-ras. The correlation among c-Ha-ras allele, amplification/loss, presence of point mutation and progression of neoplasia is discussed. (author)

  20. Nonoverlapping Clinical and Mutational Patterns in Melanomas from the Female Genital Tract and Atypical Genital Nevi.

    Science.gov (United States)

    Yélamos, Oriol; Merkel, Emily A; Sholl, Lauren Meldi; Zhang, Bin; Amin, Sapna M; Lee, Christina Y; Guitart, Gerta E; Yang, Jingyi; Wenzel, Alexander T; Bunick, Christopher G; Yazdan, Pedram; Choi, Jaehyuk; Gerami, Pedram

    2016-09-01

    Genital melanomas (GM) are the second most common cancer of the female external genitalia and may be confused with atypical genital nevi (AGN), which exhibit atypical histological features but have benign behavior. In this study, we compared the clinical, histological, and molecular features of 19 GM and 25 AGN. We described chromosomal copy number aberrations and the mutational status of 50 oncogenes and tumor suppressor genes in both groups. Our study showed that a pigmented lesion occurring in mucosal tissue, particularly in postmenopausal women, was more likely to be a melanoma than a nevus. GM had high levels of chromosomal instability, with many copy number aberrations. Furthermore, we found a completely nonoverlapping pattern of oncogenic mutations when comparing GM and AGN. In GM, we report somatic mutations in KIT and TP53. Conversely, AGN had frequent BRAF V600E mutations, which were not seen in any of the GM. Our results show that GM and AGN have distinct clinical and molecular changes and that GM have a different mutational pattern compared with AGN. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The oncogenic potential of three different 7, 12-dimethylbenz (a)anthracene transformed C3H/10T1/2 cell clones at various passages and the importance of the mode of immunosuppression

    International Nuclear Information System (INIS)

    Saxholm, H.J.K.

    1979-01-01

    The oncogenic potential of C3H/10T1/2 cells which were transformed in vitro with 7,12-dimethylbenz(a)anthracene is reported. The ability of the cells to grow as malignant tumors in syngeneic immunosuppressed mice was used as parameter for oncogenic potential. Cells of types I, II and III were assayed at several dosage levels, i.e., 10 4 , 10 5 or 10 6 cells per inoculum, with or without immunosuppression by antithymocyte serum globulin fraction. The studies were performed in several strains of host animals, i.e., male and female syngeneic C3H mice supplied by the National Cancer Institute, C3H mice supplied by Charles River and nude, athymic female mice. Morphological transformation preceded oncological transformation, and type I cells could not be established as tumors. Type II and type III cells developed oncogenic potential only after several passages in culture. Oncogenic potential was pronounced in the type III cells, and less strongly expressed in type II cells. Also tested were different methods of immunosuppression of the animal against the expression of the oncogenic potential of DMBA transformed C3H/10T1/2 cells from type II and III clones. Immunosuppression by antithymocyte serum globulin fraction was an effective method of preparing the syngeneic host so that cells with a low oncogenic potential would grow as tumors, whereas total body irradiation was not effective. For cells with a high oncogenic potential both ways of immunosuppression were sufficient. Admixing lethally irradiated cells in the cell inoculum slightly enhanced the tumor development from cells with low oncogenic potential and such addition was clearly effective for cells with a higher oncogenic potential, both for the antibody-treated and for the irradiated series. The findings were reproducible. The study stresses the importance of immunosuppression by antithymocyte globulins for detecting in vitro transformed weakly oncogenic cells. (author)

  2. MUTATIONS IN THE ARX GENE: CLINICAL, ELECTROENCEPHALOGRAPHIC AND NEUROIMAGING FEATURES IN 3 PATIENTS

    Directory of Open Access Journals (Sweden)

    I. V. Ivanova

    2017-01-01

    Full Text Available The Aristaless-related homeobox (ARX gene is a member of the paired-type homeodomain transcription factor family with critical roles in embryonic development, particularly in the developing brain. Mutations in ARX gene demonstrate striking intra- and interfamilial pleiotropy together with genetic heterogeneity and lead to a broad spectrum of diseases. They give rise to 4 key phenotypic features: a different types of brain malformation, abnormal genitalia, epilepsy and intellectual disability. Authors present 3 clinical cases: a girl with duplication on the short arm of X-chromosome (Xp11.22-p22.33, which include genes ARX and CDKL5; a girl and a boy with a missense mutation in ARX gene that have not been previously described (chrX:25031522C>A, causes the substitution of an amino acid in the 197 protein position (p.Gly197Val, NM_139058.2. All patients suffer from severe epilepsy, that is refractory to antiepileptic drugs, and all of them have different degrees of psychomotor delay. The patients with missense mutation also have movement disorders: stereotypic movements in the girl and choreo athetosis and dystonia in the boy. Electroencephalographic abnormalities have been identified in all patients, and there were not significant abnormalities on magnetic resonance imaging in all cases. The described cases broaden the clinical spectrum of mutations in ARX gene.

  3. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma

    NARCIS (Netherlands)

    Schindler, G.; Capper, D.; Meyer, J.; Janzarik, W.; Omran, H.; Herold-Mende, C.; Schmieder, K.; Wesseling, P.; Mawrin, C.; Hasselblatt, M.; Louis, D.N.; Korshunov, A.; Pfister, S.; Hartmann, C.; Paulus, W.; Reifenberger, G.; Deimling, A. Von

    2011-01-01

    Missense mutations of the V600E type constitute the vast majority of tumor-associated somatic alterations in the v-RAF murine sarcoma viral oncogene homolog B1 (BRAF) gene. Initially described in melanoma, colon and papillary thyroid carcinoma, these alterations have also been observed in primary

  4. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia

    Science.gov (United States)

    Piazza, Rocco; Valletta, Simona; Winkelmann, Nils; Redaelli, Sara; Spinelli, Roberta; Pirola, Alessandra; Antolini, Laura; Mologni, Luca; Donadoni, Carla; Papaemmanuil, Elli; Schnittger, Susanne; Kim, Dong-Wook; Boultwood, Jacqueline; Rossi, Fabio; Gaipa, Giuseppe; De Martini, Greta P; di Celle, Paola Francia; Jang, Hyun Gyung; Fantin, Valeria; Bignell, Graham R; Magistroni, Vera; Haferlach, Torsten; Pogliani, Enrico Maria; Campbell, Peter J; Chase, Andrew J; Tapper, William J; Cross, Nicholas C P; Gambacorti-Passerini, Carlo

    2013-01-01

    Atypical chronic myeloid leukemia (aCML) shares clinical and laboratory features with CML, but it lacks the BCR-ABL1 fusion. We performed exome sequencing of eight aCMLs and identified somatic alterations of SETBP1 (encoding a p.Gly870Ser alteration) in two cases. Targeted resequencing of 70 aCMLs, 574 diverse hematological malignancies and 344 cancer cell lines identified SETBP1 mutations in 24 cases, including 17 of 70 aCMLs (24.3%; 95% confidence interval (CI) = 16–35%). Most mutations (92%) were located between codons 858 and 871 and were identical to changes seen in individuals with Schinzel-Giedion syndrome. Individuals with mutations had higher white blood cell counts (P = 0.008) and worse prognosis (P = 0.01). The p.Gly870Ser alteration abrogated a site for ubiquitination, and cells exogenously expressing this mutant exhibited higher amounts of SETBP1 and SET protein, lower PP2A activity and higher proliferation rates relative to those expressing the wild-type protein. In summary, mutated SETBP1 represents a newly discovered oncogene present in aCML and closely related diseases. PMID:23222956

  5. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    Science.gov (United States)

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  6. Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels.

    Science.gov (United States)

    Mikhitarian, Kaidi; Pollen, Maressa; Zhao, Zhiguo; Shyr, Yu; Merchant, Nipun B; Parikh, Alexander; Revetta, Frank; Washington, M Kay; Vnencak-Jones, Cindy; Shi, Chanjuan

    2014-05-01

    Our objective was to explore alteration of the epidermal growth factor receptor (EGFR) signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of EGFR. A lab-developed assay was used to identify mutations in the EGFR pathway genes, including KRAS, BRAF, PIK3CA, PTEN, and AKT1. A total of 52 ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors, with the intestinal type being associated with a younger age at diagnosis (P=0.03) and a better prognosis (PSMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not adversely affect overall survival. In conclusion, EGFR expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared with its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the EGFR pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma.

  7. Mass-spectrometer of knock-on nuclei for reactor 'Pik'

    International Nuclear Information System (INIS)

    Begzhanov, P.B.; Nazarov, A.G.; Petrov, G.A.; Pikul', V.P.

    1999-01-01

    For reactor 'Pik' (that is being built in St. Petersburg Institute of Nuclear Physics) there was designed a universal two shoulder mass-spectrometer for non-decelerated fission products (FP) of nuclei. The spectrometer helps to obtain different values of linear magnification, dispersion, aberration coefficients and transmission without making structural changes in the device. To separate FP for one shoulder of spectrometer we chose ion-optical scheme (IOS) consisting of three electrostatic analyzers and three-sectional magnet 'JOSEF' that had high dispersion by masses at small deflection radius. IOS calculations of mass-spectrometer were performed with the help of program TRANSVOL (transfer of phase volume) designed basing on TRIO program. The program allows calculating of complete IOS transmission with taking into account elements aperture and beam officering

  8. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    Directory of Open Access Journals (Sweden)

    Ana Laura Sanchez-Sandoval

    Full Text Available Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA and low-voltage (LVA activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  9. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels

    Science.gov (United States)

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30–40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers. PMID:29474447

  10. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    Science.gov (United States)

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel; Gomora, Juan Carlos

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  11. Mucins CA 125, CA 19.9, CA 15.3 and TAG-72.3 as tumor markers in patients with lung cancer: comparison with CYFRA 21-1, CEA, SCC and NSE.

    Science.gov (United States)

    Molina, Rafael; Auge, Jose Maria; Escudero, Jose Miguel; Marrades, Ramon; Viñolas, Nuria; Carcereny, Emilio; Ramirez, Jose; Filella, Xavier

    2008-01-01

    Tumor marker serum levels were prospectively studied in 289 patients with suspected, but unconfirmed, lung cancer and in 513 patients with lung cancer [417 non-small cell lung cancer (NSCLC) patients and 96 small cell lung cancer (SCLC) patients]. In patients with benign disease, abnormal serum levels were found for the following tumor markers: CEA (in 6.6% of patients); CA 19.9 (6.2%); CA 125 (28.7%); NSE (0.7%); CYFRA (8.7%); TAG-72.3 (4.2%); SCC (3.5%), and CA 15.3 (3.5%). Excluding patients with renal failure or liver diseases, tumor marker specificity improved with abnormal levels in 0.5% for NSE, 0.9% for SCC, 2.8% for CEA, CA 15.3 and TAG-72.3, 3.8% for CA 19.9, 4.2% for CYFRA and 21.4% for CA 125. Excluding CA 125, one of the markers was abnormal in 15% of patients without malignancy. Tumor marker sensitivity was related to cancer histology and tumor extension. NSE had the highest sensitivity in SCLC and CYFRA and CEA in NSCLC. Significantly higher concentrations of CEA, SCC, CA 125, CA 15.3 and TAG-72.3 were found in NSCLC than in SCLC. Likewise, significantly higher CEA (p tumors. Using a combination of 3 tumor markers (CEA, CYFRA 21-1 in all histologies, SCC in squamous tumors and CA 15.3 in adenocarcinomas), a high sensitivity may be achieved in all histological types. Tumor markers may be useful in the histological differentiation of NSCLC and SCLC. Using specific criteria for the differentiation of SCLC and NSCLC, the sensitivity was 84.2 and 68.8%, the specificity was 93.8 and 99.7%, the positive predictive value was 98.3 and 98.5% and the negative predictive value was 57.7 and 93.3%, respectively. Copyright 2008 S. Karger AG, Basel.

  12. The combination of sorafenib and everolimus shows antitumor activity in preclinical models of malignant pleural mesothelioma

    International Nuclear Information System (INIS)

    Pignochino, Ymera; Dell’Aglio, Carmine; Inghilleri, Simona; Zorzetto, Michele; Basiricò, Marco; Capozzi, Federica; Canta, Marta; Piloni, Davide; Cemmi, Francesca; Sangiolo, Dario; Gammaitoni, Loretta; Soster, Marco; Marchiò, Serena; Pozzi, Ernesto; Morbini, Patrizia; Luisetti, Maurizio; Aglietta, Massimo; Grignani, Giovanni; Stella, Giulia M

    2015-01-01

    Malignant Pleural Mesothelioma (MPM) is an aggressive tumor arising from mesothelial cells lining the pleural cavities characterized by resistance to standard therapies. Most of the molecular steps responsible for pleural transformation remain unclear; however, several growth factor signaling cascades are known to be altered during MPM onset and progression. Transducers of these pathways, such as PIK3CA-mTOR-AKT, MAPK, and ezrin/radixin/moesin (ERM) could therefore be exploited as possible targets for pharmacological intervention. This study aimed to identify ‘druggable’ pathways in MPM and to formulate a targeted approach based on the use of commercially available molecules, such as the multikinase inhibitor sorafenib and the mTOR inhibitor everolimus. We planned a triple approach based on: i) analysis of immunophenotypes and mutational profiles in a cohort of thoracoscopic MPM samples, ii) in vitro pharmacological assays, ii) in vivo therapeutic approaches on MPM xenografts. No mutations were found in ‘hot spot’ regions of the mTOR upstream genes (e.g. EGFR, KRAS and PIK3CA). Phosphorylated mTOR and ERM were specifically overexpressed in the analyzed MPM samples. Sorafenib and everolimus combination was effective in mTOR and ERM blockade; exerted synergistic effects on the inhibition of MPM cell proliferation; triggered ROS production and consequent AMPK-p38 mediated-apoptosis. The antitumor activity was displayed when orally administered to MPM-bearing NOD/SCID mice. ERM and mTOR pathways are activated in MPM and ‘druggable’ by a combination of sorafenib and everolimus. Combination therapy is a promising therapeutic strategy against MPM. The online version of this article (doi:10.1186/s12885-015-1363-1) contains supplementary material, which is available to authorized users

  13. Two design aspects connected with the safety of the PIK reactor presently under construction

    International Nuclear Information System (INIS)

    Gostev, V.V.; Zakharov, A.S.; Konoplev, K.A.; Levandovskii, N.V.; Ploshchanskii, L.M.; Smolsky, S.L.

    1993-01-01

    The PIK reactor is designed for physical research with neutron beams and sample irradiation. In the central trap the thermal neutrons flux is 4x10 15 n/cm 2 s. The reactor power is 100 MW, the thermal neutron flux in the reflector at the maximum of distribution is 1x10 15 n/cm 2 s. The core with a high uranium concentration of 600 g/l is light water-cooled, heavy water being used in the reflector. The Chernobyl disaster happened at the time of equipment installation at the PIK. The code revision, a change of the authors ideas about the safety, and a change of public attitude towards nuclear installations resulted in a stopping of construction and project revision. Reconstruction project has led to a change of all safety systems and involved in various degrees all essential reactor systems. The construction is presently resumed in spite of economic difficulties in Russia. The reactor was inspected by experts from a number of European countries, USA, and European Commission delegated by their governments to prepare a report on whether supporting the construction to its completion would be reasonable. In the course of inspection the experts from USA and EU expressed doubts concerning two systems, namely, the containment and scram. These two points are discussed in the present paper. Three type of containments are proposed and an analysis of their efficiency is presented. The PIK reactor is controlled by eight rods in the heavy-water reflector -and an absorbing cylinder at the boundary between the core and the central light-water neutron trap. The rods are used for emergency protection and reactor start-up. The central control cylinder called here the shutter serves several functions, namely, as scram, automatic control, and burnup compensation. The delay time before the onset of negative reactivity is 1.05 sec for rods and 0.25 sec for the shutter

  14. A V1143F mutation in the neuronal-enriched isoform 2 of the PMCA pump is linked with ataxia.

    Science.gov (United States)

    Vicario, Mattia; Zanni, Ginevra; Vallese, Francesca; Santorelli, Filippo; Grinzato, Alessandro; Cieri, Domenico; Berto, Paola; Frizzarin, Martina; Lopreiato, Raffaele; Zonta, Francesco; Ferro, Stefania; Sandre, Michele; Marin, Oriano; Ruzzene, Maria; Bertini, Enrico; Zanotti, Giuseppe; Brini, Marisa; Calì, Tito; Carafoli, Ernesto

    2018-04-12

    The fine regulation of intracellular calcium is fundamental for all eukaryotic cells. In neurons, Ca 2+ oscillations govern the synaptic development, the release of neurotransmitters and the expression of several genes. Alterations of Ca 2+ homeostasis were found to play a pivotal role in neurodegenerative progression. The maintenance of proper Ca 2+ signaling in neurons demands the continuous activity of Ca 2+ pumps and exchangers to guarantee physiological cytosolic concentration of the cation. The plasma membrane Ca 2+ ATPases (PMCA pumps) play a key role in the regulation of Ca 2+ handling in selected sub-plasma membrane microdomains. Among the four basic PMCA pump isoforms existing in mammals, isoforms 2 and 3 are particularly enriched in the nervous system. In humans, genetic mutations in the PMCA2 gene in association with cadherin 23 mutations have been linked to hearing loss phenotypes, while those occurring in the PMCA3 gene were associated with X-linked congenital cerebellar ataxias. Here we describe a novel missense mutation (V1143F) in the calmodulin binding domain (CaM-BD) of the PMCA2 protein. The mutant pump was present in a patient showing congenital cerebellar ataxia but no overt signs of deafness, in line with the absence of mutations in the cadherin 23 gene. Biochemical and molecular dynamics studies on the mutated PMCA2 have revealed that the V1143F substitution alters the binding of calmodulin to the CaM-BD leading to impaired Ca 2+ ejection. Copyright © 2018. Published by Elsevier Inc.

  15. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    Science.gov (United States)

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  16. Suppression of different classes of somatic mutations in Arabidopsis by vir gene-expressing Agrobacterium strains.

    Science.gov (United States)

    Shah, Jasmine M; Ramakrishnan, Anantha Maharasi; Singh, Amit Kumar; Ramachandran, Subalakshmi; Unniyampurath, Unnikrishnan; Jayshankar, Ajitha; Balasundaram, Nithya; Dhanapal, Shanmuhapreya; Hyde, Geoff; Baskar, Ramamurthy

    2015-08-26

    Agrobacterium infection, which is widely used to generate transgenic plants, is often accompanied by T-DNA-linked mutations and transpositions in flowering plants. It is not known if Agrobacterium infection also affects the rates of point mutations, somatic homologous recombinations (SHR) and frame-shift mutations (FSM). We examined the effects of Agrobacterium infection on five types of somatic mutations using a set of mutation detector lines of Arabidopsis thaliana. To verify the effect of secreted factors, we exposed the plants to different Agrobacterium strains, including wild type (Ach5), its derivatives lacking vir genes, oncogenes or T-DNA, and the heat-killed form for 48 h post-infection; also, for a smaller set of strains, we examined the rates of three types of mutations at multiple time-points. The mutation detector lines carried a non-functional β-glucuronidase gene (GUS) and a reversion of mutated GUS to its functional form resulted in blue spots. Based on the number of blue spots visible in plants grown for a further two weeks, we estimated the mutation frequencies. For plants co-cultivated for 48 h with Agrobacterium, if the strain contained vir genes, then the rates of transversions, SHRs and FSMs (measured 2 weeks later) were lower than those of uninfected controls. In contrast, co-cultivation for 48 h with any of the Agrobacterium strains raised the transposition rates above control levels. The multiple time-point study showed that in seedlings co-cultivated with wild type Ach5, the reduced rates of transversions and SHRs after 48 h co-cultivation represent an apparent suppression of an earlier short-lived increase in mutation rates (peaking for plants co-cultivated for 3 h). An increase after 3 h co-cultivation was also seen for rates of transversions (but not SHR) in seedlings exposed to the strain lacking vir genes, oncogenes and T-DNA. However, the mutation rates in plants co-cultivated for longer times with this strain subsequently

  17. The somatic FAH C.1061C>A change counteracts the frequent FAH c.1062+5G>A mutation and permits U1snRNA-based splicing correction.

    Science.gov (United States)

    Scalet, Daniela; Sacchetto, Claudia; Bernardi, Francesco; Pinotti, Mirko; van de Graaf, Stan F J; Balestra, Dario

    2018-05-01

    In tyrosinaemia type 1(HT1), a mosaic pattern of fumarylacetoacetase (FAH) immunopositive or immunonegative nodules in liver tissue has been reported in many patients. This aspect is generally explained by a spontaneous reversion of the mutation into a normal genotype. In one HT1 patient carrying the frequent FAH c.1062+5G>A mutation, a second somatic change (c.1061C>A) has been reported in the same allele, and found in immunopositive nodules. Here, we demonstrated that the c.1062+5G>A prevents usage of the exon 12 5' splice site (ss), even when forced by an engineered U1snRNA specifically designed on the FAH 5'ss to strengthen its recognition. Noticeably the new somatic c.1061C>A change, in linkage with the c.1062+5G>A mutation, partially rescues the defective 5'ss and is associated to trace level (~5%) of correct transcripts. Interestingly, this combined genetic condition strongly favored the rescue by the engineered U1snRNA, with correct transcripts reaching up to 60%. Altogether, these findings elucidate the molecular basis of HT1 caused by the frequent FAH c.1062+5G>A mutation, and demonstrate the compensatory effect of the c.1061C>A change in promoting exon definition, thus unraveling a rare mechanism leading to FAH immune-reactive mosaicism.

  18. IQGAP1 is an oncogenic target in canine melanoma.

    Directory of Open Access Journals (Sweden)

    Becky H Lee

    Full Text Available Canine oral mucosal melanoma is an aggressive malignant neoplasm and is characterized by local infiltration and a high metastatic potential. The disease progression is similar to that of human oral melanomas. Whereas human cutaneous melanoma is primarily driven by activating mutations in Braf (60% or Nras (20%, human mucosal melanoma harbors these mutations much less frequently. This makes therapeutic targeting and research modeling of the oral form potentially different from that of the cutaneous form in humans. Similarly, research has found only rare Nras mutations and no activating Braf mutations in canine oral melanomas, but they are still reliant on MAPK signaling. IQGAP1 is a signaling scaffold that regulates oncogenic ERK1/2 MAPK signaling in human Ras- and Raf- driven cancers, including melanomas. To investigate whether IQGAP1 is a potential target in canine melanoma, we examined the expression and localization of IQGAP1 in primary canine melanomas and canine oral melanoma cell lines obtained from the University of California-Davis. Using CRISPR/Cas9 knockout of IQGAP1, we examined effects on downstream ERK1/2 pathway activity and assayed proliferation of cell lines when treated with a peptide that blocks the interaction between IQGAP1 and ERK1/2. We observed that canine IQGAP1 is expressed and localizes to a similar extent in both human and canine melanoma by qPCR, Western blot, and immunofluorescence. Deletion of IQGAP1 reduces MAPK pathway activation in cell lines, similar to effects seen in human BrafV600E cell lines. Additionally, we demonstrated reduced proliferation when these cells are treated with a blocking peptide in vitro.

  19. Ventral tegmental area disruption selectively affects CA1/CA2 but not CA3 place fields during a differential reward working memory task.

    Science.gov (United States)

    Martig, Adria K; Mizumori, Sheri J Y

    2011-02-01

    Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial working memory and place fields when the reward context changes. CA1 and CA3 process environmental context changes differently and VTA preferentially innervates CA1. Given these anatomical data and electrophysiological evidence that implicate DA in reward processing, we predicted that CA1 place fields would respond more strongly to both VTA disruption and changes in the reward context than CA3 place fields. Rats (N = 9) were implanted with infusion cannula targeting VTA and recording tetrodes aimed at HPC. Then they were tested on a differential reward, win-shift working memory task. One recording session consisted of 5 baseline and 5 manipulation trials during which place cells in CA1/CA2 (N = 167) and CA3 (N = 94) were recorded. Prior to manipulation trials rats were infused with either baclofen or saline and then subjected to control or reward conditions during which the learned locations of large and small reward quantities were reversed. VTA disruption resulted in an increase in errors, and in CA1/CA2 place field reorganization. There were no changes in any measures of CA3 place field stability during VTA disruption. Reward manipulations did not affect performance or place field stability in CA1/CA2 or CA3; however, changes in the reward locations "rescued" performance and place field stability in CA1/CA2 when VTA activity was compromised, perhaps by trigging compensatory mechanisms. These data support the hypothesis that VTA contributes to spatial working memory performance perhaps by maintaining place field stability selectively in CA1/CA2. Copyright © 2009 Wiley-Liss, Inc.

  20. Study of hTERT and Histone 3 Mutations in Medulloblastoma.

    Science.gov (United States)

    Viana-Pereira, Marta; Almeida, Gisele Caravina; Stavale, João Norberto; Malheiro, Susana; Clara, Carlos; Lobo, Patrícia; Pimentel, José; Reis, Rui Manuel

    2017-01-01

    Hotspot activating mutations of the telomerase reverse transcriptase (hTERT) promoter region were recently described in several tumor types. These mutations lead to enhanced expression of telomerase, being responsible for telomere maintenance and allowing continuous cell division. Additionally, there are alternative telomere maintenance mechanisms, associated with histone H3 mutations, responsible for disrupting the histone code and affecting the regulation of transcription. Here, we investigated the clinical relevance of these mechanistically related molecules in medulloblastoma. Sixty-nine medulloblastomas, formalin fixed and paraffin embedded, from a cohort of patients aged 1.5-70 years, were used to investigate the hotspot mutations of the hTERT promoter region, i.e. H3F3A and HIST1H3B, using Sanger sequencing. We successfully sequenced hTERT in all 69 medulloblastoma samples and identified a total of 19 mutated cases (27.5%). c.-124:G>A and c.-146:G>A mutations were detected, respectively, in 16 and 3 samples. Similar to previous reports, hTERT mutations were more frequent in older patients (p < 0.0001), being found only in 5 patients <20 years of age. In addition, hTERT-mutated tumors were more frequently recurrent (p = 0.026) and hTERT mutations were significantly enriched in tumors located in the right cerebellar hemisphere (p = 0.039). No mutations were found on the H3F3A or HIST1H3B genes. hTERT promoter mutations are frequent in medulloblastoma and are associated with older patients, prone to recurrence and located in the right cerebellar hemisphere. On the other hand, histone 3 mutations do not seem to be present in medulloblastoma. © 2016 S. Karger AG, Basel.

  1. Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency

    DEFF Research Database (Denmark)

    Munthe-Fog, Lea; Hummelshøj, Tina; Honoré, Christian

    2009-01-01

    Ficolin-3, encoded by the FCN3 gene and expressed in the lung and liver, is a recognition molecule in the lectin pathway of the complement system. Heterozygosity for an FCN3 frameshift mutation (rs28357092), leading to a distortion of the C-terminal end of the molecule, occurs in people without...... disease (allele frequency among whites, 0.01). We describe a patient with recurrent infections who was homozygous for this mutation, who had undetectable serum levels of ficolin-3, and who had a deficiency in ficolin-3-dependent complement activation....

  2. Filling the holes in the CaFe4As3 structure: Synthesis and magnetism of CaCo5As3

    Science.gov (United States)

    Rosa, P. F. S.; Scott, B. L.; Ronning, F.; Bauer, E. D.; Thompson, J. D.

    2017-07-01

    Here, we investigate single crystals of CaCo5As3 by means of single-crystal x-ray diffraction, microprobe, magnetic susceptibility, heat capacity, and pressure-dependent transport measurements. CaCo5As3 shares the same structure of CaFe4As3 with an additional Co atom filling a lattice vacancy and undergoes a magnetic transition at TM=16 K associated with a frustrated magnetic order. CaCo5As3 displays metallic behavior and its Sommerfeld coefficient (γ =70 mJ/mol K2) indicates a moderate enhancement of electron-electron correlations. Transport data under pressures to 2.5 GPa reveal a suppression of TM at a rate of -0.008 K/GPa. First-principles electronic structure calculations show a complex three-dimensional band structure and magnetic moments that depend on the local environment at each Co site. Our results are compared with previous data on CaFe4As3 and provide a scenario for a magnetically frustrated ground state in this family of compounds.

  3. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: phenotypic and molecular characterization.

    Science.gov (United States)

    Li, Dong; Opas, Evan E; Tuluc, Florin; Metzger, Daniel L; Hou, Cuiping; Hakonarson, Hakon; Levine, Michael A

    2014-09-01

    Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH. Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism. Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members. We collected clinical and biochemical data from 6 of 11 affected subjects and performed whole-exome sequence analysis on DNA from two affected sisters and their affected father. Functional studies were performed after expression of wild-type and mutant Gα11 proteins in human embryonic kidney-293-CaR cells that stably express calcium-sensing receptors. Whole-exome-sequencing followed by Sanger sequencing revealed a heterozygous mutation, c.179G>T; p.R60L, in GNA11, which encodes the α-subunit of G11, the principal heterotrimeric G protein that couples calcium-sensing receptors to signal activation in parathyroid cells. Functional studies of Gα11 R60L showed increased accumulation of intracellular concentration of free calcium in response to extracellular concentration of free calcium with a significantly decreased EC50 compared with wild-type Gα11. By contrast, R60L was significantly less effective than the oncogenic Q209L form of Gα11 as an activator of the MAPK pathway. Compared to subjects with CASR mutations, patients with GNA11 mutations lacked hypercalciuria and had normal serum magnesium levels. Our findings indicate that the germline gain-of-function mutation of GNA11 is a cause of ADH and implicate a novel role for GNA11 in skeletal growth.

  4. Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3

    DEFF Research Database (Denmark)

    Benveniste, H; Jørgensen, M B; Sandberg, M

    1989-01-01

    The removal of glutamatergic afferents to CA1 by destruction of the CA3 region is known to protect CA1 pyramidal cells against 10 min of transient global ischemia. To investigate further the pathogenetic significance of glutamate, we measured the release of glutamate in intact and CA3-lesioned CA...

  5. Effects of cellular non-protein sulfhydryl depletion in radiation induced oncogenic transformation and genotoxicity in mouse C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Hei, T.K.; Geard, C.R.; Hall, E.J.

    1984-01-01

    A study was made of the effects of cellular non-protein sulfhydryl (NPSH) depletion on cytotoxicity, cell cycle kinetics, oncogenic transformation and sister chromatid exchange (SCE) in C 3 H 10T1/2 cells. Using DL-Buthionine S-R-Sulfoximine (BSO) to deplete thiols, it was found spectrophotometrically that less than 5% of control NPSH level remained in the cells after 24-hour treatment under aerated conditions. Such NPSH depleted cells, when subject to a 3 Gy γ-ray treatment, were found to have no radiosensitizing response either in terms of cell survival or oncogenic transformation. In addition, decreased levels of NPSH had no effect on spontaneous or radiation-induced SCE nor were cell cycle kinetics additionally altered. Therefore, the inability of NPSH depletion to alter γ-ray induced cellular transformation was unrelated to any possible effect of BSO on the cell cycle. These results suggest that such depletion may result in little or no additional oncogenic or genotoxic effects on aerated normal tissues

  6. CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth's mantle

    Science.gov (United States)

    Merlini, M.; Hanfland, M.; Crichton, W. A.

    2012-06-01

    Calcite, CaCO3, undergoes several high pressure phase transitions. We report here the crystal structure determination of the CaCO3-III and CaCO3-VI high-pressure polymorphs obtained by single-crystal synchrotron X-ray diffraction. This new technical development at synchrotron beamlines currently affords the possibility of collecting single-crystal data suitable for structure determination in-situ at non-ambient conditions, even after multiphase transitions. CaCO3-III, observed in the pressure range 2.5-15 GPa, is triclinic, and it presents two closely related structural modifications, one, CaCO3-III, with 50 atoms in the unit cell [a=6.281(1) Å, b=7.507(2) Å, c=12.516(3) Å, α=93.76(2)°, β=98.95(2)°, γ=106.49(2)°, V=555.26(20) Å3 at 2.8 GPa], the second, CaCO3-IIIb, with 20 atoms [a=6.144(3) Å, b=6.3715(14) Å, c=6.3759(15) Å, α= 93.84(2)°, β=107.34(3)°, γ=107.16(3)°, V=224.33(13) Å3 at 3.1 GPa]. Different pressure-time experimental paths can stabilise one or the other polymorph. Both structures are characterised by the presence of non-coplanar CO3 groups. The densities of CaCO3-III (2.99 g/cm3 at 2.8 GPa) and CaCO3-IIIb (2.96 g/cm3 at 3.1 GPa) are lower than aragonite, in agreement with the currently accepted view of aragonite as the thermodynamically stable Ca-carbonate phase at these pressures. The presence of different cation sites, with variable volume and coordination number (7-9), suggests however that these structures have the potential to accommodate cations with different sizes without introducing major structural strain. Indeed, this structure can be adopted by natural Ca-rich carbonates, which often exhibit compositions deviating from pure calcite. Mg-calcites are found both in nature (Frezzotti et al., 2011) and in experimental syntheses at conditions corresponding to deep subduction environments (Poli et al., 2009). At these conditions, the low pressure rhombohedral calcite structure is most unlikely to be stable, and, at the same

  7. Molecular alterations in lesions of anogenital mammary-like glands and their mammary counterparts including hidradenoma papilliferum, intraductal papilloma, fibroadenoma and phyllodes tumor.

    Science.gov (United States)

    Konstantinova, Anastasia M; Vanecek, Tomas; Martinek, Petr; Kyrpychova, Liubov; Spagnolo, Dominic V; Stewart, Colin J R; Portelli, Francesca; Michal, Michal; Kazakov, Dmitry V

    2017-06-01

    Lesions affecting anogenital mammary-like glands (AGMLG) are histopathologically very similar to those seen in the breast but whether this morphological similarity is also reflected at the genetic level is unknown. To compare the underlying molecular mechanisms in lesions of AGMLG and their mammary counterparts, we analyzed the mutational profile of 16 anogenital neoplasms including 5 hidradenomas papilliferum (HP), 1 lesion with features of HP and fibroadenoma (FA), 7 FA, 3 phyllodes tumors (PhT)) and 18 analogous breast lesions (6 intraductal papillomas (IDP), 9 FA, and 3 PhT) by high-coverage next generation sequencing (NGS) using a panel comprising 50 cancer-related genes. Additionally, all cases were analyzed for the presence of a mutation in the MED12 gene. All detected mutations with allele frequencies over 20% were independently validated by Sanger sequencing (concordance: 100%). Mutations in PIK3CA, AKT1, MET, ABL1 and TP53 genes were found in lesions of AGMLG and also their mammary counterparts. The PI3K-AKT cascade plays a role in tumors arising at both sites. It appears that some histopathologically similar anogenital and breast lesions develop along similar molecular pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A germline RET proto-oncogene mutation in multiple members of an ...

    African Journals Online (AJOL)

    Makia Marafie

    2016-09-17

    Sep 17, 2016 ... The Egyptian Journal of Medical Human Genetics (2017) 18, 193–197. HOSTED BY ... been reported in 85% of tested individuals, nearly 50% of them are amino acid .... [1] Krampitz GW, Norton JA. RET gene mutations ...

  9. Low temperature synthesis of CaZrO3 nanoceramics from CaCl2–NaCl molten eutectic salt

    Directory of Open Access Journals (Sweden)

    Rahman Fazli

    2015-06-01

    Full Text Available CaZrO3 nanoceramics were successfully synthesized at 700 C using the molten salt method, and the effects of processing parameters, such as temperature, holding time, and amount of salt on the crystallization of CaZrO3 were investigated. CaCl2, Na2CO3, and nano-ZrO2 were used as starting materials. On heating, CaCl2–NaCl molten eutectic salt provided a liquid medium for the reaction of CaCO3 and ZrO2 to form CaZrO3. The results demonstrated that CaZrO3 started to form at about 600C and that, after the temperature was increased to 1,000C, the amounts of CaZrO3 in the resultant powders increased with a concomitant decrease in CaCO3and ZrO2 contents. After washing with hot distilled water, the samples heated for 3 h at 700C were single-phase CaZrO3 with 90–95 nm particle size. Furthermore, the synthesized CaZrO3 particles retained the size and morphology of the ZrO2 powders which indicated that a template mechanism dominated the formation of CaZrO3 by molten-salt method.

  10. Value of Combined Detection of Serum CEA, CA72-4, CA19-9, CA15-3 and CA12-5 in the Diagnosis of Gastric Cancer.

    Science.gov (United States)

    Chen, Changguo; Chen, Qiuyuan; Zhao, Qiangyuan; Liu, Min; Guo, Jianwei

    2017-05-01

    To examine whether the combined detection of serum tumor markers (CEA, CA72-4, CA19-9, CA15-3 and CA12-5) improves the sensitivity and accuracy in the diagnosis of gastric cancer (GC). An automatic chemiluminescence immune analyzer with matched kits was used to determine the levels of serum CEA, CA72-4, CA19-9, CA15-3, and CA12-5 in 87 patients with gastric cancer (GC group), 60 patients with gastric benign diseases (GBD group) who were hospitalized during the same period, and 40 healthy subjects undergoing a physical examination. The values of these 5 tumor markers in the diagnosis of gastric cancer were analyzed. The levels of serum CEA, CA72-4, CA19-9, and CA12-5 were higher in the GC group than in the GBD group and healthy subjects, and these differences were significant ( P 0.05). The combined detection of CEA, CA72-4, CA19-9, and CA12-5 had a higher diagnostic value for gastric cancer than did single detection, and the positive detection rate of the combined detection of the four tumor markers was 60.9%. The diagnostic power when using the combined detection of CA72-4, CEA, CA19-9, and CA12-5 was the best. The combined detection of serum CA72-4, CEA, CA19-9 and CA12-5 increases the sensitivity and accuracy in the diagnosis of GC and can thus be considered an important tool for early diagnosis. © 2017 by the Association of Clinical Scientists, Inc.

  11. Patient-specific mutations impair BESTROPHIN1’s essential role in mediating Ca2+-dependent Cl- currents in human RPE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yao [Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital/Columbia University, New York, United States; Zhang, Yu [Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States; Xu, Yu [Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital/Columbia University, New York, United States; Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Kittredge, Alec [Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States; Ward, Nancy [Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States; Chen, Shoudeng [Molecular Imaging Center, Department of Experimental Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Tsang, Stephen H. [Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital/Columbia University, New York, United States; Yang, Tingting [Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States

    2017-10-24

    Mutations in the human BEST1 gene lead to retinal degenerative diseases displaying progressive vision loss and even blindness. BESTROPHIN1, encoded by BEST1, is predominantly expressed in retinal pigment epithelium (RPE), but its physiological role has been a mystery for the last two decades. Using a patient-specific iPSC-based disease model and interdisciplinary approaches, we comprehensively analyzed two distinct BEST1 patient mutations, and discovered mechanistic correlations between patient clinical phenotypes, electrophysiology in their RPEs, and the structure and function of BESTROPHIN1 mutant channels. Our results revealed that the disease-causing mechanism of BEST1 mutations is centered on the indispensable role of BESTROPHIN1 in mediating the long speculated Ca2+-dependent Cl- current in RPE, and demonstrate that the pathological potential of BEST1 mutations can be evaluated and predicted with our iPSC-based ‘disease-in-a-dish’ approach. Moreover, we demonstrated that patient RPE is rescuable with viral gene supplementation, providing a proof-of-concept for curing BEST1-associated diseases.

  12. Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types

    Directory of Open Access Journals (Sweden)

    Michael Seiler

    2018-04-01

    Full Text Available Summary: Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA, and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like, or hotspot mutation profile (oncogene-like. Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis. : Seiler et al. report that 119 splicing factor genes carry putative driver mutations over 33 tumor types in TCGA. The most common mutations appear to be mutually exclusive and are associated with lineage-independent altered splicing. Samples with these mutations show deregulation of cell-autonomous pathways and immune infiltration. Keywords: splicing, SF3B1, U2AF1, SRSF2, RBM10, FUBP1, cancer, mutation

  13. Mutational profile of GNAQQ209 in human tumors.

    Directory of Open Access Journals (Sweden)

    Simona Lamba

    Full Text Available BACKGROUND: Frequent somatic mutations have recently been identified in the ras-like domain of the heterotrimeric G protein alpha-subunit (GNAQ in blue naevi 83%, malignant blue naevi (50% and ocular melanoma of the uvea (46%. The mutations exclusively affect codon 209 and result in GNAQ constitutive activation which, in turn, acts as a dominant oncogene. METHODOLOGY: To assess if the mutations are present in other tumor types we performed a systematic mutational profile of the GNAQ exon 5 in a panel of 922 neoplasms, including glioblastoma, gastrointestinal stromal tumors (GIST, acute myeloid leukemia (AML, blue naevi, skin melanoma, bladder, breast, colorectal, lung, ovarian, pancreas, and thyroid carcinomas. PRINCIPAL FINDINGS: We detected the previously reported mutations in 6/13 (46% blue naevi. Changes affecting Q209 were not found in any of the other tumors. Our data indicate that the occurrence of GNAQ mutations display a unique pattern being present in a subset of melanocytic tumors but not in malignancies of glial, epithelial and stromal origin analyzed in this study.

  14. Combined drug action of 2-phenylimidazo[2,1-b]benzothiazole derivatives on cancer cells according to their oncogenic molecular signatures.

    Directory of Open Access Journals (Sweden)

    Alessandro Furlan

    Full Text Available The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by "RTK swapping" by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in

  15. Anti-tumor activity of self-charged (Eu,Ca):WO3 and Eu:CaWO4 nanoparticles

    International Nuclear Information System (INIS)

    Lin, Cao; Cong, Wang; De'An, Pan; Jiexin, Cao; Ping, Che; Volinsky, Alex A.

    2012-01-01

    Non-stoichiometric (Eu,Ca):WO 3 and Eu:CaWO 4 nanoparticles with anti-tumor activity are synthesized in a sol-gel method by adding excessive Eu 3+ and Ca 2+ ions to tungsten oxide crystal structure. Colorimetric assay shows that 10 nm (Eu,Ca):WO 3 and Eu:CaWO 4 nanoparticles can effectively inhibit growth of mammary cancer cells without any harm to normal cells. Nanoparticles are characterized by X-ray diffraction, high resolution transmission electron microscopy and fluorescence optical spectrometry. Nanomaterials, insoluble in synthesized water, have complicated self-charging surfaces that trap mammary cancer cells. Surface self-charging effect is suggested as the inhibition mechanism. (author)

  16. Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures.

    Science.gov (United States)

    Johnson, Adrienne; Severson, Eric; Gay, Laurie; Vergilio, Jo-Anne; Elvin, Julia; Suh, James; Daniel, Sugganth; Covert, Mandy; Frampton, Garrett M; Hsu, Sigmund; Lesser, Glenn J; Stogner-Underwood, Kimberly; Mott, Ryan T; Rush, Sarah Z; Stanke, Jennifer J; Dahiya, Sonika; Sun, James; Reddy, Prasanth; Chalmers, Zachary R; Erlich, Rachel; Chudnovsky, Yakov; Fabrizio, David; Schrock, Alexa B; Ali, Siraj; Miller, Vincent; Stephens, Philip J; Ross, Jeffrey; Crawford, John R; Ramkissoon, Shakti H

    2017-12-01

    Pediatric brain tumors are the leading cause of death for children with cancer in the U.S. Incorporating next-generation sequencing data for both pediatric low-grade (pLGGs) and high-grade gliomas (pHGGs) can inform diagnostic, prognostic, and therapeutic decision-making. We performed comprehensive genomic profiling on 282 pediatric gliomas (157 pHGGs, 125 pLGGs), sequencing 315 cancer-related genes and calculating the tumor mutational burden (TMB; mutations per megabase [Mb]). In pLGGs, we detected genomic alterations (GA) in 95.2% (119/125) of tumors. BRAF was most frequently altered (48%; 60/125), and FGFR1 missense (17.6%; 22/125), NF1 loss of function (8.8%; 11/125), and TP53 (5.6%; 7/125) mutations were also detected. Rearrangements were identified in 35% of pLGGs, including KIAA1549-BRAF , QKI-RAF1 , FGFR3-TACC3 , CEP85L-ROS1 , and GOPC-ROS1 fusions. Among pHGGs, GA were identified in 96.8% (152/157). The genes most frequently mutated were TP53 (49%; 77/157), H3F3A (37.6%; 59/157), ATRX (24.2%; 38/157), NF1 (22.2%; 35/157), and PDGFRA (21.7%; 34/157). Interestingly, most H3F3A mutations (81.4%; 35/43) were the variant K28M. Midline tumor analysis revealed H3F3A mutations (40%; 40/100) consisted solely of the K28M variant. Pediatric high-grade gliomas harbored oncogenic EML4-ALK , DGKB-ETV1 , ATG7-RAF1 , and EWSR1-PATZ1 fusions. Six percent (9/157) of pHGGs were hypermutated (TMB >20 mutations per Mb; range 43-581 mutations per Mb), harboring mutations deleterious for DNA repair in MSH6, MSH2, MLH1, PMS2, POLE , and POLD1 genes (78% of cases). Comprehensive genomic profiling of pediatric gliomas provides objective data that promote diagnostic accuracy and enhance clinical decision-making. Additionally, TMB could be a biomarker to identify pediatric glioblastoma (GBM) patients who may benefit from immunotherapy. By providing objective data to support diagnostic, prognostic, and therapeutic decision-making, comprehensive genomic profiling is necessary for

  17. Observation of microstructure of hydrated Ca3SiO5

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Sato, Takashi; Fukunaga, Toshiharu; Oishi, Koji; Kimura, Katsuhiko; Iwase, Kenji; Sugiyama, Masaaki; Itoh, Keiji; Shikanai, Fumihito; Wuernisha, Tuerxun; Yonemura, Masao; Sulistyanintyas, Dyah; Tsukushi, Itaru; Takata, Shinich; Otomo, Toshiya; Kamiyma, Takashi; Kawai, Masayoshi

    2006-01-01

    Quasi-elastic neutron scattering experiments were carried out to evaluate the hydration rate of tricalcium silicate (Ca 3 SiO 5 ). Furthermore, in the early hydration period, a variation in surface roughness of Ca 3 SiO 5 was observed in nano-scale by the small-angle neutron scattering. From these results, it was found that the hydration rate of Ca 3 SiO 5 is suppressed when the surface of Ca 3 SiO 5 becomes rough through the creation of hydration products C-S-H gel and Ca(OH) 2 , and this roughness is associated with changes in the Ca 3 SiO 5 hydration rate

  18. The diagnostic value of serum tumor markers CEA, CA19-9, CA125, CA15-3, and TPS in metastatic breast cancer.

    Science.gov (United States)

    Wang, Weigang; Xu, Xiaoqin; Tian, Baoguo; Wang, Yan; Du, Lili; Sun, Ting; Shi, Yanchun; Zhao, Xianwen; Jing, Jiexian

    2017-07-01

    This study aims to understand the diagnostic value of serum tumor markers carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9), cancer antigen 125 (CA125), cancer antigen 15-3 (CA15-3), and tissue polypeptide-specific antigen (TPS) in metastatic breast cancer (MBC). A total of 164 metastatic breast cancer patients in Shanxi Cancer Hospital were recruited between February 2016 and July 2016. 200 breast cancer patients without metastasis in the same period were randomly selected as the control group. The general characteristics, immunohistochemical, and pathological results were investigated between the two groups, and tumor markers were determined. There were statistical differences in the concentration and the positive rates of CEA, CA19-9, CA125, CA15-3, and TPS between the MBC and control group (Ptumor marker at 56.7% and 97.0%, respectively. In addition, two tumor markers were used for the diagnosis of MBC and the CEA and TPS combination had the highest diagnostic sensitivity with 78.7%, while the CA15-3 and CA125 combination had the highest specificity of 91.5%. Analysis of tumor markers of 164 MBC found that there were statistical differences in the positive rates of CEA and CA15-3 between bone metastases and other metastases (χ 2 =6.00, P=0.014; χ 2 =7.32, P=0.007, respectively). The sensitivity and specificity values of the CEA and CA15-3 combination in the diagnosis of bone metastases were 77.1% and 45.8%, respectively. The positive rate of TPS in the lung metastases group was lower than in other metastases (χ 2 =8.06, P=0.005).There were significant differences in the positive rates of CA15-3 and TPS between liver metastases and other metastases (χ 2 =15.42, Ptumor markers have varying diagnostic value. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Linear optical properties of Ca4EuO(BO3)3 and Eu3+ : Ca4GdO(BO3)3 crystals

    International Nuclear Information System (INIS)

    Antic-Fidancev, E.; Lemaitre-Blaise, M.; Porcher, P.; Caramanian, A.; Aka, G.

    1998-01-01

    Full text: The title compounds are now intensively studied due to their quadratic nonlinear properties in view of applications, e.g. high power laser frequency conversion. Rare earth calcium oxoborates, Ca 4 REO(BO 3 ) 3 , constitute an isostructural family along the rare earth series with RE = La - Lu, Y included. These compounds crystallize in the monoclinic biaxial crystal system with Cm (N 8) space group. They are isostructural to the calcium fluoroborate Ca 5 (BO 3 ) 3 F which is related to the fluoroapatite structure Ca 5 (PO 4 ) 3 F. The rare earth ions are located in the distorted octahedron with C s point site symmetry in the mirror plane. Two types of distorted octahedral sites exist for calcium ions. The existence of some disorder between calcium and rare earth atoms is suspected from the structural analysis. Good optical quality crystals of europium (or gadolinium) oxoborate, EuCOB (GdCOB) have been grown from the stoichiometric melt by the Czochralski pulling method. From the luminescence of the Eu 3+ doped gadolinium or in the europium stoichiometric compound very complex emission spectra have been obtained. It principally depends on the preparation method of studied samples: i) for a monocrystalline sample, a single phase with a single site is observed; ii) for a polycrystalline sample complex feature occurs. It is probably due to an expanded disorder between calcium and rare earth atoms. Practically, there is one principal site corresponding to the low symmetry site of the rare earth as expected from the structural investigation. Other minor sites are attributed to the local distortion created around the active rare earth ion. The intensity of the emission lines of Eu 3+ used as a local structural probe related to these minor sites increases when the gadolinium in Ca 4 GdO(BO 0 ) 3 is substituted by lanthanum or yttrium ions. It seems therefore evident that the synthesis of these rare earth calcium oxoborates must be realised carefully. The crystal

  20. A Novel Founder Mutation in MYBPC3: Phenotypic Comparison With the Most Prevalent MYBPC3 Mutation in Spain.

    Science.gov (United States)

    Sabater-Molina, María; Saura, Daniel; García-Molina Sáez, Esperanza; González-Carrillo, Josefa; Polo, Luis; Pérez-Sánchez, Inmaculada; Olmo, María Del Carmen; Oliva-Sandoval, María José; Barriales-Villa, Roberto; Carbonell, Pablo; Pascual-Figal, Domigo; Gimeno, Juan R

    2017-02-01

    Mutations in MYBPC3 are the cause of hypertrophic cardiomyopathy (HCM). Although most lead to a truncating protein, the severity of the phenotype differs. We describe the clinical phenotype of a novel MYBPC3 mutation, p.Pro108Alafs*9, present in 13 families from southern Spain and compare it with the most prevalent MYBPC3 mutation in this region (c.2308+1 G>A). We studied 107 relatives of 13 index cases diagnosed as HCM carriers of the p.Pro108Alafs*9 mutation. Pedigree analysis, clinical evaluation, and genotyping were performed. A total of 54 carriers of p.Pro108Alafs*9 were identified, of whom 39 had HCM. There were 5 cases of sudden death in the 13 families. Disease penetrance was greater as age increased and HCM patients were more frequently male and developed disease earlier than female patients. The phenotype was similar in p.Pro108Alafs*9 and in c.2308+1 G>A, but differences were found in several risk factors and in survival. There was a trend toward a higher left ventricular mass in p.Pro108Alafs*9 vs c.2308+1G>A. Cardiac magnetic resonance revealed a similar extent and pattern of fibrosis. The p.Pro108Alafs*9 mutation is associated with HCM, high penetrance, and disease onset in middle age. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    International Nuclear Information System (INIS)

    Lee, Yoon Jae; Jang, Yo Han; Kim, Paul; Lee, Yun Ha; Lee, Young Jae; Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik; Seong, Baik Lin

    2016-01-01

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  2. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Jae [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Jang, Yo Han [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Kim, Paul; Lee, Yun Ha; Lee, Young Jae [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Seong, Baik Lin, E-mail: blseong@yonsei.ac.kr [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of)

    2016-04-15

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  3. Enhanced magnetoresistance in La0.7Ca0.3Mn03/Nd0.7Ca0.3Mn03 epitaxial multilayers

    International Nuclear Information System (INIS)

    Sharma, Himanshu; Khan, Md. S.; Tomy, C.V.; Jain, Sourabh; Tulapurkar, Ashwin

    2014-01-01

    Magnanite multilayers of La 0.7 Ca 0.3 MnO 3 /Nd 0.7 Ca 0.5 MnO 3 have been fabricated on SrTiO 3 (100) substrate using Nd 0.7 Ca 0.5 MnO 3 as the spacer layers. An enhanced magnetoresistance (MR) of more than 80% is observed in the multilayers compared with LCMO thin film (∼50%). Result suggests that the interface strains between LCMO and NCMO layers may have influences on the transport properties and a suitable film structure could be used to increase the large low field magnetoresistance. (author)

  4. Oncogenes and radiosensitivity: in vitro studies. Potential impact in radiotherapy

    International Nuclear Information System (INIS)

    Alapetite, C.; Moustacchi, E.; Cosset, J.M.

    1992-01-01

    It is of interest to address the question of whether or not activated oncogenes can influence tumorigenic cell response to radiations. Malignant transformation through transfection of oncogenes offers a possibility for in vitro comparison of transformed cells and parental cells. Murin cellular system analysis suggests an acquisition of radioresistance through some oncogenes transfection. In human cells, only a limited number of oncogenes (ras and myc) has been studied so far. To date, no crucial influence could be demonstrated. The extension of the analysis to other oncogenes and suppressor genes could potentially be helpful for the choice and the modalities of cancer treatment

  5. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways

    OpenAIRE

    Meng, X; Carlson, NR; Dong, J; Zhang, Y

    2015-01-01

    The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf–Mdm2–p53 and the ribosomal protein (RP)–Mdm2–p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2C305F mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly s...

  6. Clinical and biological characteristics of cervical neoplasias with FGFR3 mutation

    Directory of Open Access Journals (Sweden)

    Thiery Jean

    2005-05-01

    Full Text Available Abstract Background We have previously reported activating mutations of the gene coding for the fibroblast growth factor receptor 3 (FGFR3 in invasive cervical carcinoma. To further analyze the role of FGFR3 in cervical tumor progression, we extended our study to screen a total of 75 invasive tumors and 80 cervical intraepithelial neoplasias (40 low-grade and 40 high-grade lesions. Results Using single strand conformation polymorphism (SSCP followed by DNA sequencing, we found FGFR3 mutation (S249C in all cases in 5% of invasive cervical carcinomas and no mutation in intraepithelial lesions. These results suggest that, unlike in bladder carcinoma, FGFR3 mutation does not or rarely occur in non invasive lesions. Compared to patients with wildtype FGFR3 tumor, patients with S249C FGFR3 mutated tumors were older (mean age 64 vs. 49.4 years, P = 0.02, and were more likely to be associated with a non-16/18 HPV type in their tumor. Gene expression analysis demonstrated that FGFR3 mutated tumors were associated with higher FGFR3b mRNA expression levels compared to wildtype FGFR3 tumors. Supervised analysis of Affymetrix expression data identified a significant number of genes specifically differentially expressed in tumors with respect to FGFR3 mutation status. Conclusion This study suggest that tumors with FGFR3 mutation appear to have distinctive clinical and biological characteristics that may help in defining a population of patients for FGFR3 mutation screening.

  7. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63.

    Science.gov (United States)

    Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu

    2016-11-01

    Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations.

  8. Novel CREB3L3 Nonsense Mutation in a Family With Dominant Hypertriglyceridemia.

    Science.gov (United States)

    Cefalù, Angelo B; Spina, Rossella; Noto, Davide; Valenti, Vincenza; Ingrassia, Valeria; Giammanco, Antonina; Panno, Maria D; Ganci, Antonina; Barbagallo, Carlo M; Averna, Maurizio R

    2015-12-01

    Cyclic AMP responsive element-binding protein 3-like 3 (CREB3L3) is a novel candidate gene for dominant hypertriglyceridemia. To date, only 4 kindred with dominant hypertriglyceridemia have been found to be carriers of 2 nonsense mutations in CREB3L3 gene (245fs and W46X). We investigated a family in which hypertriglyceridemia displayed an autosomal dominant pattern of inheritance. The proband was a 49-year-old woman with high plasma triglycerides (≤1300 mg/dL; 14.68 mmol/L). Her father had a history of moderate hypertriglyceridemia, and her 51-year-old brother had triglycerides levels as high as 1600 mg/dL (18.06 mmol/L). To identify the causal mutation in this family, we analyzed the candidate genes of recessive and dominant forms of primary hypertriglyceridemia by direct sequencing. The sequencing of CREB3L3 gene led to the discovery of a novel minute frame shift mutation in exon 3 of CREB3L3 gene, predicted to result in the formation of a truncated protein devoid of function (c.359delG-p.K120fsX20). Heterozygosity for the c.359delG mutation resulted in a severe phenotype occurring later in life in the proband and her brother and a good response to diet and a hypotriglyceridemic treatment. The same mutation was detected in a 13-year-old daughter who to date is normotriglyceridemic. We have identified a novel pathogenic mutation in CREB3L3 gene in a family with dominant hypertriglyceridemia with a variable pattern of penetrance. © 2015 American Heart Association, Inc.

  9. A process analysis of the CA3 subregion of the hippocampus

    Directory of Open Access Journals (Sweden)

    Raymond PIERRE Kesner

    2013-05-01

    Full Text Available AbstractFrom a behavioral perspective the CA3a,b subregion of the hippocampus plays an important role in the encoding of new spatial information within short-term memory with a duration of seconds and minutes. This can easily be observed in tasks that require rapid encoding, novelty detection, 1-trial short- term or working memory, and 1-trial cued recall primarily for spatial information. These are tasks that have been assumed to reflect the operations of episodic memory and require interactions between CA3a,b and the dentate gyrus via mossy fiber inputs into the CA3a,b. The CA3a,b is also important for encoding of spatial information requiring the acquisition of arbitrary and relational associations. All these tasks are assumed to operate within an autoassociative network function of the CA3 region. The CA3a,b also supports retrieval of short-term memory information based on a spatial pattern completion process. Based on afferent inputs into CA3a,b from the dentate gyrus (DG via mossy fibers and afferents from the entorhinal cortex into CA3a,b as well as reciprocal connections with the septum, CA3a,b can bias the process of encoding utilizing the operation of spatial pattern separation and the process of retrieval utilizing the operation of pattern completion. The CA3a,b also supports sequential processing of information in cooperation with CA1 based on the Schaffer collateral output from CA3a,b to CA1. The CA3c function is in part based on modulation of the DG in supporting pattern separation processes.

  10. Activity of RE/sub 2/O/sub 3/ in liquid La/sub 2/O/sub 3/-Al/sub 2/O/sub 3/-CaF/sub 2/ and Ce/sub 2/O/sub 3/-CaO-CaF/sub 2/ slags

    International Nuclear Information System (INIS)

    Changzhen, W.; Shuqing, Y.; Qieng, D.

    1985-01-01

    In the course of electro-slag refining, if the slag contains rare earth oxides, the amount of rare earth introduced to the steel depends on the composition of the slag and other conditions. The main aim of this investigation is to study the activity of RE/sub 2/O/sub 3/ in the electro-slags of various compositions. One is the La/sub 2/O/sub 3/-CaO-CaF/sub 2/ ternary slag system and the other is the Ce/sub 2/O/sub 3/-CaO-CaF/sub 2/ slag system. The iso-activity diagram for RE/sub 2/O/sub 3/ and the liquid boundary for slags system were estimated

  11. Application package DeCA. Version 3.3

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Strelkov, M.A.; Zelinskij, A.Yu.

    1993-01-01

    The application package DeCA (Design of Cyclic Accelerators) is intended for solving a wide range of problems related to the dynamics of charged particle beams in cyclic accelerators and storage rings. It can be used for both design or modification purposes and numerical experimentation. The package DeCA consist of several program blocks, which are unified by functional principle. In this article we are consider the description of two blocks: the control block (COMM), and the description of magnetic elements and lattices block (IMOS). The formats of package commands, language of lattice definition and list of own commands of these blocks are described. (author). 4 refs., 3 ape

  12. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    Science.gov (United States)

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  13. The Potsdam Parallel Ice Sheet Model (PISM-PIK – Part 1: Model description

    Directory of Open Access Journals (Sweden)

    R. Winkelmann

    2011-09-01

    Full Text Available We present the Potsdam Parallel Ice Sheet Model (PISM-PIK, developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009. Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011 and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP. A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011.

  14. Ablation of phosphoinositide-3-kinase class II alpha suppresses hepatoma cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Stanley K.L. [Singapore Immunology Network A-STAR (Singapore); Neo, Soek-Ying, E-mail: neo_soek_ying@sics.a-star.edu.sg [Singapore Immunology Network A-STAR (Singapore); Yap, Yann-Wan [Singapore Immunology Network A-STAR (Singapore); Karuturi, R. Krishna Murthy; Loh, Evelyn S.L. [Genome Institute of Singapore A-STAR (Singapore); Liau, Kui-Hin [Department of General Surgery, Tan Tock Seng Hospital (Singapore); Ren, Ee-Chee, E-mail: ren_ee_chee@immunol.a-star.edu.sg [Singapore Immunology Network A-STAR (Singapore); Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore (Singapore)

    2009-09-18

    Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2{alpha}) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2{alpha} mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2{alpha} was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2{alpha} can modulate HCC cell growth.

  15. A New Strategy to Control and Eradicate "Undruggable" Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology.

    Science.gov (United States)

    Van Sciver, Robert E; Lee, Michael P; Lee, Caroline Dasom; Lafever, Alex C; Svyatova, Elizaveta; Kanda, Kevin; Colliver, Amber L; Siewertsz van Reesema, Lauren L; Tang-Tan, Angela M; Zheleva, Vasilena; Bwayi, Monicah N; Bian, Minglei; Schmidt, Rebecca L; Matrisian, Lynn M; Petersen, Gloria M; Tang, Amy H

    2018-05-14

    Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.

  16. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC

    DEFF Research Database (Denmark)

    Christoffersen, N R; Shalgi, R; Frankel, L B

    2010-01-01

    Aberrant oncogene activation induces cellular senescence, an irreversible growth arrest that acts as a barrier against tumorigenesis. To identify microRNAs (miRNAs) involved in oncogene-induced senescence, we examined the expression of miRNAs in primary human TIG3 fibroblasts after constitutive...

  17. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons.

    Science.gov (United States)

    Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K

    2018-02-01

    Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.

  18. New insights into genotype-phenotype correlation for GLI3 mutations.

    Science.gov (United States)

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent-Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania

    2015-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype-phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype-phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues.

  19. New insights into genotype–phenotype correlation for GLI3 mutations

    Science.gov (United States)

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent- Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania

    2015-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister–Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype–phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype–phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues. PMID:24736735

  20. The role of mutation in the new cancer paradigm

    Directory of Open Access Journals (Sweden)

    Prehn Richmond T

    2005-04-01

    Full Text Available Abstract The almost universal belief that cancer is caused by mutation may gradually be giving way to the belief that cancer begins as a cellular adaptation that involves the local epigenetic silencing of various genes. In my own interpretation of the new epigenetic paradigm, the genes epigenetically suppressed are genes that normally serve in post-embryonic life to suppress and keep suppressed those other genes upon which embryonic development depends. Those other genes, if not silenced or suppressed in the post-embryonic animal, become, I suggest, the oncogenes that are the basis of neoplasia. Mutations that occur in silenced genes supposedly go unrepaired and are, therefore, postulated to accumulate, but such mutations probably play little or no causative role in neoplasia because they occur in already epigenetically silenced genes. These mutations probably often serve to make the silencing, and therefore the cancer, epigenetically irreversible.

  1. CaV1.3 L-type Ca2+ channels modulate depression-like behaviour in mice independent of deaf phenotype.

    Science.gov (United States)

    Busquet, Perrine; Nguyen, Ngoc Khoi; Schmid, Eduard; Tanimoto, Naoyuki; Seeliger, Mathias W; Ben-Yosef, Tamar; Mizuno, Fengxia; Akopian, Abram; Striessnig, Jörg; Singewald, Nicolas

    2010-05-01

    Mounting evidence suggests that voltage-gated L-type Ca2+ channels can modulate affective behaviour. We therefore explored the role of CaV1.3 L-type Ca2+ channels in depression- and anxiety-like behaviours using CaV1.3-deficient mice (CaV1.3-/-). We showed that CaV1.3-/- mice displayed less immobility in the forced swim test as well as in the tail suspension test, indicating an antidepressant-like phenotype. Locomotor activity in the home cage or a novel open-field test was not influenced. In the elevated plus maze (EPM), CaV1.3-/- mice entered the open arms more frequently and spent more time there indicating an anxiolytic-like phenotype which was, however, not supported in the stress-induced hyperthermia test. By performing parallel experiments in Claudin 14 knockout mice (Cldn14-/-), which like CaV1.3-/- mice are congenitally deaf, an influence of deafness on the antidepressant-like phenotype could be ruled out. On the other hand, a similar EPM behaviour indicative of an anxiolytic phenotype was also found in the Cldn14-/- animals. Using electroretinography and visual behavioural tasks we demonstrated that at least in mice, CaV1.3 channels do not significantly contribute to visual function. However, marked morphological changes were revealed in synaptic ribbons in the outer plexiform layer of CaV1.3-/- retinas by immunohistochemistry suggesting a possible role of this channel type in structural plasticity at the ribbon synapse. Taken together, our findings indicate that CaV1.3 L-type Ca2+ channels modulate depression-like behaviour but are not essential for visual function. The findings raise the possibility that selective modulation of CaV1.3 channels could be a promising new therapeutic concept for the treatment of mood disorders.

  2. Mutations in pseudohypoparathyroidism 1a and pseudopseudohypoparathyroidism in ethnic Chinese.

    Directory of Open Access Journals (Sweden)

    Yi-Lei Wu

    Full Text Available An inactivating mutation in the GNAS gene causes either pseudohypoparathyroidism 1a (PHP1A when it is maternally inherited or pseudopseudohypoparathyroidism (PPHP when it is paternally inherited. We investigated clinical manifestations and mutations of the GNAS gene in ethnic Chinese patients with PHP1A or PPHP. Seven patients from 5 families including 4 girls and 2 boys with PHP1A and 1 girl with PPHP were studied. All PHP1A patients had mental retardation. They were treated with calcitriol and CaCO3 with regular monitoring of serum Ca levels, urinary Ca/Cr ratios, and renal sonography. Among them, 5 patients also had primary hypothyroidism suggesting TSH resistance. One female patient had a renal stone which was treated with extracorporeal shockwave lithotripsy. She had an increased urinary Ca/Cr ratio of 0.481 mg/mg when the stone was detected. We detected mutations using PCR and sequencing as well as analysed a splice acceptor site mutation using RT-PCR, sequencing, and minigene construct. We detected 5 mutations: c.85C>T (Q29*, c.103C>T (Q35*, c.840-2A>G (R280Sfs*21, c.1027_1028delGA (D343*, and c.1174G>A (E392K. Mutations c.840-2A>G and c.1027_1028delGA were novel. The c.840-2A>G mutation at the splice acceptor site of intron 10 caused retention of intron 10 in the minigene construct but skipping of exon 11 in the peripheral blood cells. The latter was the most probable mechanism which caused a frameshift, changing Arg to Ser at residue 280 and invoking a premature termination of translation at codon 300 (R280Sfs*21. Five GNAS mutations in ethnic Chinese with PHP1A and PPHP were reported. Two of them were novel. Mutation c.840-2A>G destroyed a spice acceptor site and caused exon skipping. Regular monitoring and adjustment in therapy are mandatory to achieve optimal therapeutic effects and avoid nephrolithiasis in patients with PHP1A.

  3. Mechanical and thermal-expansion characteristics of Ca10(PO46(OH2-Ca3(PO42 composites

    Directory of Open Access Journals (Sweden)

    Ruseska G.

    2006-01-01

    Full Text Available Three types of composites consisting of Ca10(PO46(OH2 and Ca3(PO42 with composition: 75% (wt Ca10(PO46(OH2: 25%(wt Ca3(PO42; 50%(wt Ca10(PO46(OH2: 50%(wtCa3(PO42 and 25 %(wt Ca10(PO46(OH2: 75%(wt Ca3(PO42 were the subject of our investigation. Sintered compacts were in thermal equilibrium, which was proved by the absence of hysteresis effect of the dependence ΔL/L=f(T during heating /cooling in the temperature interval 20-1000-200C. Sintered compacts with the previously mentioned composition possess 26-50% higher values of the E-modulus, G-modulus and K-modulus indicating the presence of a synergism effect. Several proposed model equations for predicting the thermal expansion coefficient in dependence of the thermal and elastic properties of the constitutive phases and their volume fractions, given by: Turner, Kerner, Tummala and Friedberg, Thomas and Taya, were used for making correlations between mechanical and thermal-expansion characteristics of the Ca10(PO46(OH2 - Ca3(PO42 composites. Application of the previously mentioned model equations to all kinds of composites leads to the conclusion that the experimentally obtained results for the thermal expansion coefficient are in an excellent agreement with the theoretical calculated values on account of the volume fraction of each constitutive phase and with all applied model equations, with a coefficient of correlation from 98.16-99.86 %.

  4. WIP-YAP/TAZ as A New Pro-Oncogenic Pathway in Glioma

    Directory of Open Access Journals (Sweden)

    Sergio Rivas

    2018-06-01

    Full Text Available Wild-type p53 (wtp53 is described as a tumour suppressor gene, and mutations in p53 occur in many human cancers. Indeed, in high-grade malignant glioma, numerous molecular genetics studies have established central roles of RTK-PI3K-PTEN and ARF-MDM2-p53 INK4a-RB pathways in promoting oncogenic capacity. Deregulation of these signalling pathways, among others, drives changes in the glial/stem cell state and environment that permit autonomous growth. The initially transformed cell may undergo subsequent modifications, acquiring a more complete tumour-initiating phenotype responsible for disease advancement to stages that are more aggressive. We recently established that the oncogenic activity of mutant p53 (mtp53 is driven by the actin cytoskeleton-associated protein WIP (WASP-interacting protein, correlated with tumour growth, and more importantly that both proteins are responsible for the tumour-initiating cell phenotype. We reported that WIP knockdown in mtp53-expressing glioblastoma greatly reduced proliferation and growth capacity of cancer stem cell (CSC-like cells and decreased CSC-like markers, such as hyaluronic acid receptor (CD44, prominin-1 (CD133, yes-associated protein (YAP and transcriptional co-activator with PDZ-binding motif (TAZ. We thus propose a new CSC signalling pathway downstream of mtp53 in which Akt regulates WIP and controls YAP/TAZ stability. WIP drives a mechanism that stimulates growth signals, promoting YAP/TAZ and β-catenin stability in a Hippo-independent fashion, which allows cells to coordinate processes such as proliferation, stemness and invasiveness, which are key factors in cancer progression. Based on this multistep tumourigenic model, it is tantalizing to propose that WIP inhibitors may be applied as an effective anti-cancer therapy.

  5. The Therapeutic Potential of CRISPR/Cas9 Systems in Oncogene-Addicted Cancer Types: Virally Driven Cancers as a Model System

    Directory of Open Access Journals (Sweden)

    Luqman Jubair

    2017-09-01

    Full Text Available The field of gene editing is undergoing unprecedented growth. The first ex vivo human clinical trial in China started in 2016, more than 1000 US patents have been filed, and there is exponential growth in publications. The ability to edit genes with high fidelity is promising for the development of new treatments for a range of diseases, particularly inherited conditions, infectious diseases, and cancers. For cancer, a major issue is the identification of driver mutations and oncogenes to target for therapeutic effect, and this requires the development of robust models with which to prove their efficacy. The challenge is that there is rarely a single critical gene. However, virally driven cancers, in which cells are addicted to the expression of a single viral oncogene in some cases, may serve as model systems for CRISPR/Cas therapies, as they did for RNAi. These models and systems offer an excellent opportunity to test both preclinical models and clinical conditions to examine the effectiveness of gene editing, and here we review the options and offer a way forward. Keywords: CRISPR/Cas9, virally-driven cancers, cervical cancer, oncogene-addiction

  6. Value of preoperative enhanced multi-slice spiral CT scan for judging TNM staging of gastric cancer as well as its relationship with tumor marker and proliferation molecule expression

    Directory of Open Access Journals (Sweden)

    Ai-Jun Wu

    2016-12-01

    Full Text Available Objective: To study the value of preoperative enhanced multi-slice spiral CT scan for judging TNM staging of gastric cancer as well as its relationship with tumor marker and proliferation molecule expression. Methods: A total of 135 patients with gastric cancer who received surgical resection in our hospital between May 2012 and October 2015 were selected as the research subjects, preoperative enhanced multi-slice spiral CT scan was conducted to judge TNM staging, and serum was collected to determine the content of tumor markers; tumor tissue was collected after operation to determine the content of cytokines and pro-proliferation molecules. Results: CEA, CA199, CA153, CA125 and CA724 content in serum as well as TGFβ1, TGFβ2, VEGF, FGF2, PTP1B, PIK3CD, Survivin, Ezrin and YAP content in gastric cancer tissue of patients with TNM II, III and IV stage gastric cancer were significantly higher than those of patients with TNM I stage; CEA, CA199, CA153, CA125 and CA724 content in serum as well as TGFβ1, TGFβ2, VEGF, FGF2, PTP1B, PIK3CD, Survivin, Ezrin and YAP content in gastric cancer tissue of patients with TNM III and IV stage gastric cancer were significantly higher than those of patients with TNM II stage; CEA, CA199, CA153, CA125 and CA724 content in serum as well as TGFβ1, TGFβ2, VEGF, FGF2, PTP1B, PIK3CD, Survivin, Ezrin and YAP content in gastric cancer tissue of patients with TNM IV stage gastric cancer were significantly higher than those of patients with TNM III stage. Conclusions: TNM staging of gastric cancer decided by preoperative enhanced multi-slice spiral CT scan has good consistency with the content of tumor markers in serum and proliferation molecules in tumor lesion.

  7. Comparison of CA15-3 and CEA in breast cancer

    International Nuclear Information System (INIS)

    Rajkovaca, Z.; Mijatovic, J.; Matavulj, A.; Kovacevic, P.; Ponorac, N.

    2002-01-01

    Aim: Tumor markers are potentially powerful means for obtaining information about cancers whilst causing minimal morbidity, inconvenience and cost. CA 15-3 and CEA are considered useful tumor markers in monitoring breast cancer patients. The aim of this study was to evaluate which of these two markers are in better correlate with the disease in patients surgically treated for breast cancer. Material and Methods: We retrospectively reviewed values of CA15-3 and CEA in 342 patients (median age 52.18 years, range 27-78 years) with surgically treated and pathologically proven breast cancer. CA15-3 and CEA was measured by radioimmunoassay. CA15-3 levels above 30 U/ml and CEA levels above 5 ng/ml were considered as positive values. Results: Out of 342 patients, 86 had elevated CA15-3 levels (sensitivity: 25.1%) and 68 of 342 patients had positive CEA levels (sensitivity 19.9%). Two hundred thirty seven (237) of the patients suffering from breast cancer (69.3%) did not have metastatic disease. In this group CA15-3 sensitivity was 94.5%, while CEA sensitivity was 87.3%. One hundred and five (105) patients (30.7%) had metastatic disease. In this group, CA15-3 sensitivity was 69.5% and CEA sensitivity was 36.2% (P < 0.05). With regard to the correlation of the two tumor markers with clinical course patients had significantly higher levels of CA15-3 than of CEA in metastatic breast cancer. Conclusion: This result suggests CA15-3 to be the more sensitive and more specific of the two tumor markers for metastatic breast cancer detection and monitoring

  8. High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO·Al2O3·CaCO3·11H2O

    KAUST Repository

    Moon, Juhyuk; Oh, Jae Eun; Balonis, Magdalena; Glasser, Fredrik P.; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-01-01

    Synchrotron X-ray diffraction data was collected from a sample of monocarboaluminate 3CaO•Al2O3CaCO 3•11H2O from ambient pressure to 4.3 GPa. The refined crystal structure at ambient pressure is triclinic with parameters a = 5.77(2) Å, b = 8

  9. A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.

    Science.gov (United States)

    Zhu, Y; Lin, E C

    1988-05-01

    L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose.

  10. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  11. Systems of Ba(PO3)2-Sr(Pu3)2, Cd(PO3)2-Ca(PO3)2

    International Nuclear Information System (INIS)

    Tokman, I.A.; Bukhalova, G.A.

    1977-01-01

    Phase diagrams of the Ba(PO 3 ) 2 -Sr(PO 3 ) 2 and Cd(PO 3 ) 2 -Ca(PO 3 ) 2 systems have been studied and plotted by the methods of differential-thermal analysis (DTA), visual-polythermal, X-ray phase and infrared spectroscopy. The Ba(PO 3 ) 2 -Sr(PO 3 ) 2 system is of the eutectic type. In the binary system Cd(PO 3 ) 2 -Ca(PO 3 ) 2 the existence of a continuous series of solid solutions with a minimum at 858 deg C and 27.5 mol.% Ca(PO 3 ) 2 has been established

  12. Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish.

    Directory of Open Access Journals (Sweden)

    Cristina Santoriello

    2010-12-01

    Full Text Available Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed.Using the combinatorial Gal4-UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2-4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1-3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period.This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens.

  13. Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity.

    Science.gov (United States)

    Desideri, Enrico; Vegliante, Rolando; Ciriolo, Maria Rosa

    2015-01-28

    The tricarboxylic acid (TCA) cycle is a central route for oxidative metabolism. Besides being responsible for the production of NADH and FADH2, which fuel the mitochondrial electron transport chain to generate ATP, the TCA cycle is also a robust source of metabolic intermediates required for anabolic reactions. This is particularly important for highly proliferating cells, like tumour cells, which require a continuous supply of precursors for the synthesis of lipids, proteins and nucleic acids. A number of mutations among the TCA cycle enzymes have been discovered and their association with some tumour types has been established. In this review we summarise the current knowledge regarding alterations of the TCA cycle in tumours, with particular attention to the three germline mutations of the enzymes succinate dehydrogenase, fumarate hydratase and isocitrate dehydrogenase, which are involved in the pathogenesis of tumours, and to the aberrant regulation of TCA cycle components that are under the control of oncogenes and tumour suppressors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. FGFR3 mutation causes abnormal membranous ossification in achondroplasia.

    Science.gov (United States)

    Di Rocco, Federico; Biosse Duplan, Martin; Heuzé, Yann; Kaci, Nabil; Komla-Ebri, Davide; Munnich, Arnold; Mugniery, Emilie; Benoist-Lasselin, Catherine; Legeai-Mallet, Laurence

    2014-06-01

    FGFR3 gain-of-function mutations lead to both chondrodysplasias and craniosynostoses. Achondroplasia (ACH), the most frequent dwarfism, is due to an FGFR3-activating mutation which results in impaired endochondral ossification. The effects of the mutation on membranous ossification are unknown. Fgfr3(Y367C/+) mice mimicking ACH and craniofacial analysis of patients with ACH and FGFR3-related craniosynostoses provide an opportunity to address this issue. Studying the calvaria and skull base, we observed abnormal cartilage and premature fusion of the synchondroses leading to modifications of foramen magnum shape and size in Fgfr3(Y367C/+) mice, ACH and FGFR3-related craniosynostoses patients. Partial premature fusion of the coronal sutures and non-ossified gaps in frontal bones were also present in Fgfr3(Y367C/+) mice and ACH patients. Our data provide strong support that not only endochondral ossification but also membranous ossification is severely affected in ACH. Demonstration of the impact of FGFR3 mutations on craniofacial development should initiate novel pharmacological and surgical therapeutic approaches.

  15. Control of ciliary motility by Ca2+: Integration of Ca2+-dependent functions and targets for Ca2+ action

    International Nuclear Information System (INIS)

    Evans, T.C.

    1988-01-01

    To identify functions that regulate Ca 2+ -induced ciliary reversal in Paramecium, mutants defective in terminating depolarization-induced backward swimming were selected. Six independent recessive mutations (k-shy) comprising two complementation groups, k-shyA and k-shyB, were identified. All mutants exhibited prolonged backward swimming in depolarizing solutions. Voltage clamp studies revealed that mutant Ca 2+ current amplitudes were reduced, but could be restored to wild type levels by EGTA injection. The recovery of the mutant Ca 2+ current from Ca 2+ -dependent inactivation, and the decay of the Ca 2+ -dependent K + and Ca 2+ -dependent Na + currents after depolarization were slow in k-shy compared to wild type. To identify protein targets of Ca 2+ action, ciliary proteins that interact with calmodulin (CaM) were characterized. With a 125 I-CaM blot assay, several CaM-binding proteins were identified including axonemal, soluble, and membrane-bound polypeptides. Competitive displacement studies with unlabeled Paramecium CaM, bovine CaM, and troponinC suggested that both protein types bind CaM with high affinity and specificity. To examine the presence of CaM-binding sites in intact axonemes, a filtration binding assay was developed

  16. Elementary properties of CaV1.3 Ca2+ channels expressed in mouse cochlear inner hair cells

    Science.gov (United States)

    Zampini, Valeria; Johnson, Stuart L; Franz, Christoph; Lawrence, Neil D; Münkner, Stefan; Engel, Jutta; Knipper, Marlies; Magistretti, Jacopo; Masetto, Sergio; Marcotti, Walter

    2010-01-01

    Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type CaV1.3 Ca2+ channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca2+ channels in immature mouse IHCs under near-physiological recording conditions. CaV1.3 Ca2+ channels at the cell pre-synaptic site co-localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about −70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca2+ action potential activity characteristic of these immature cells. The CaV1.3 Ca2+ channels showed a very low open probability (about 0.15 at −20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca2+ currents indicated that very few Ca2+ channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca2+ channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca2+ channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres. PMID:19917569

  17. Elementary properties of CaV1.3 Ca(2+) channels expressed in mouse cochlear inner hair cells.

    Science.gov (United States)

    Zampini, Valeria; Johnson, Stuart L; Franz, Christoph; Lawrence, Neil D; Münkner, Stefan; Engel, Jutta; Knipper, Marlies; Magistretti, Jacopo; Masetto, Sergio; Marcotti, Walter

    2010-01-01

    Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type Ca(V)1.3 Ca(2+) channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca(2+) channels in immature mouse IHCs under near-physiological recording conditions. Ca(V)1.3 Ca(2+) channels at the cell pre-synaptic site co-localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about 70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca(2+) action potential activity characteristic of these immature cells. The Ca(V)1.3 Ca(2+) channels showed a very low open probability (about 0.15 at 20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca(2+) currents indicated that very few Ca(2+) channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca(2+) channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca(2+) channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres.

  18. Vibrational spectroscopic study of poldervaartite CaCa[SiO3(OH)(OH)

    Science.gov (United States)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Lima, Rosa Malena Fernandes

    2015-02-01

    We have studied the mineral poldervaartite CaCa[SiO3(OH)(OH)] which forms a series with its manganese analogue olmiite CaMn[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is reasonably pure and contains only calcium and manganese with low amounts of Al and F. Thermogravimetric analysis proves the mineral decomposes at 485 °C with a mass loss of 7.6% compared with the theoretical mass loss of 7.7%. A strong Raman band at 852 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations. Intense prominent peaks observed at 3487, 3502, 3509, 3521 and 3547 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of poldervaartite.

  19. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Lee, Seongwon; Llinás, Rodolfo R.

    2015-01-01

    In unconscious status (e.g., deep sleep and anesthetic unconsciousness) where cognitive functions are not generated there is still a significant level of brain activity present. Indeed, the electrophysiology of the unconscious brain is characterized by well-defined thalamocortical rhythmicity. Here we address the ionic basis for such thalamocortical rhythms during unconsciousness. In particular, we address the role of CaV3.1 T-type Ca2+ channels, which are richly expressed in thalamic neurons. Toward this aim, we examined the electrophysiological and behavioral phenotypes of mice lacking CaV3.1 channels (CaV3.1 knockout) during unconsciousness induced by ketamine or ethanol administration. Our findings indicate that CaV3.1 KO mice displayed attenuated low-frequency oscillations in thalamocortical loops, especially in the 1- to 4-Hz delta band, compared with control mice (CaV3.1 WT). Intriguingly, we also found that CaV3.1 KO mice exhibited augmented high-frequency oscillations during unconsciousness. In a behavioral measure of unconsciousness dynamics, CaV3.1 KO mice took longer to fall into the unconscious state than controls. In addition, such unconscious events had a shorter duration than those of control mice. The thalamocortical interaction level between mediodorsal thalamus and frontal cortex in CaV3.1 KO mice was significantly lower, especially for delta band oscillations, compared with that of CaV3.1 WT mice, during unconsciousness. These results suggest that the CaV3.1 channel is required for the generation of a given set of thalamocortical rhythms during unconsciousness. Further, that thalamocortical resonant neuronal activity supported by this channel is important for the control of vigilance states. PMID:26056284

  20. Pyrosequencing-Based Assays for Rapid Detection of HER2 and HER3 Mutations in Clinical Samples Uncover an E332E Mutation Affecting HER3 in Retroperitoneal Leiomyosarcoma

    Directory of Open Access Journals (Sweden)

    Paula González-Alonso

    2015-08-01

    Full Text Available Mutations in Human Epidermal Growth Factor Receptors (HER are associated with poor prognosis of several types of solid tumors. Although HER-mutation detection methods are currently available, such as Next-Generation Sequencing (NGS, alternative pyrosequencing allow the rapid characterization of specific mutations. We developed specific PCR-based pyrosequencing assays for identification of most prevalent HER2 and HER3 mutations, including S310F/Y, R678Q, L755M/P/S/W, V777A/L/M, 774-776 insertion, and V842I mutations in HER2, as well as M91I, V104M/L, D297N/V/Y, and E332E/K mutations in HER3. We tested 85 Formalin Fixed and Paraffin Embbeded (FFPE samples and we detected three HER2-V842I mutations in colorectal carcinoma (CRC, ovarian carcinoma, and pancreatic carcinoma patients, respectively, and a HER2-L755M mutation in a CRC specimen. We also determined the presence of a HER3-E332K mutation in an urothelial carcinoma sample, and two HER3-D297Y mutations, in both gastric adenocarcinoma and CRC specimens. The D297Y mutation was previously detected in breast and gastric tumors, but not in CRC. Moreover, we found a not-previously-described HER3-E332E synonymous mutation in a retroperitoneal leiomyosarcoma patient. The pyrosequencing assays presented here allow the detection and characterization of specific HER2 and HER3 mutations. These pyrosequencing assays might be implemented in routine diagnosis for molecular characterization of HER2/HER3 receptors as an alternative to complex NGS approaches.