WorldWideScience

Sample records for oncogenic pik3ca mutations

  1. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Murat, C.B.; Braga, P.B.S.; Fortes, M.A.H.Z. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Bronstein, M.D. [Unidade de Neuroendocrinologia, Serviço de Endocrinologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Corrêa-Giannella, M.L.C.; Giorgi, R.R. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-07-13

    The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland.

  2. Mutational profiling reveals PIK3CA mutations in gallbladder carcinoma

    Directory of Open Access Journals (Sweden)

    Bardeesy Nabeel

    2011-02-01

    Full Text Available Abstract Background The genetics of advanced biliary tract cancers (BTC, which encompass intra- and extra-hepatic cholangiocarcinomas as well as gallbladder carcinomas, are heterogeneous and remain to be fully defined. Methods To better characterize mutations in established known oncogenes and tumor suppressor genes we tested a mass spectrometric based platform to interrogate common cancer associated mutations across a panel of 77 formalin fixed paraffin embedded archived BTC cases. Results Mutations among three genes, KRAS, NRAS and PIK3CA were confirmed in this cohort. Activating mutations in PIK3CA were identified exclusively in GBC (4/32, 12.5%. KRAS mutations were identified in 3 (13% intra-hepatic cholangiocarcinomas and 1 (33% perihillar cholangiocarcinoma but were not identified in gallbladder carcinomas and extra-hepatic cholangiocarcinoma. Conclusions The presence of activating mutations in PIK3CA specifically in GBC has clinical implications in both the diagnosis of this cancer type, as well as the potential utility of targeted therapies such as PI3 kinase inhibitors.

  3. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA)

    Science.gov (United States)

    Burke, John E.; Perisic, Olga; Masson, Glenn R.; Vadas, Oscar; Williams, Roger L.

    2012-01-01

    The p110α catalytic subunit (PIK3CA) is one of the most frequently mutated genes in cancer. We have examined the activation of the wild-type p110α/p85α and a spectrum of oncogenic mutants using hydrogen/deuterium exchange mass spectrometry (HDX-MS). We find that for the wild-type enzyme, the natural transition from an inactive cytosolic conformation to an activated form on membranes entails four distinct events. Analysis of oncogenic mutations shows that all up-regulate the enzyme by enhancing one or more of these dynamic events. We provide the first insight into the activation mechanism by mutations in the linker between the adapter-binding domain (ABD) and the Ras-binding domain (RBD) (G106V and G118D). These mutations, which are common in endometrial cancers, enhance two of the natural activation events: movement of the ABD and ABD–RBD linker relative to the rest of the catalytic subunit and breaking the C2–iSH2 interface on binding membranes. C2 domain mutants (N345K and C420R) also mimic these events, even in the absence of membranes. A third event is breaking the nSH2–helical domain contact caused by phosphotyrosine-containing peptides binding to the enzyme, which is mimicked by a helical domain mutation (E545K). Interaction of the C lobe of the kinase domain with membranes is the fourth activation event, and is potentiated by kinase domain mutations (e.g., H1047R). All mutations increased lipid binding and basal activity, even mutants distant from the membrane surface. Our results elucidate a unifying mechanism in which diverse PIK3CA mutations stimulate lipid kinase activity by facilitating allosteric motions required for catalysis on membranes. PMID:22949682

  4. Mutations in PIK3CA sensitize breast cancer cells to physiologic levels of aspirin.

    Science.gov (United States)

    Turturro, Sanja B; Najor, Matthew S; Ruby, Carl E; Cobleigh, Melody A; Abukhdeir, Abde M

    2016-02-01

    A review of the literature finds that women diagnosed with breast cancer, who were on an aspirin regimen, experienced a decreased risk of distant metastases and death. Several recent studies have reported an improvement in overall survival in colorectal cancer patients who harbored mutations in the oncogene PIK3CA and received a daily aspirin regimen. Breast cancer patients on a daily aspirin regimen experienced decreased risk of distant metastases and death. PIK3CA is the most frequently mutated oncogene in breast cancer, occurring in up to 45 % of all breast cancers. In order to determine if mutations in PIK3CA sensitized breast cancers to aspirin treatment, we employed the use of isogenic cellular clones of the non-tumorigenic, breast epithelial cell line MCF-10A that harbored mutations in either PIK3CA or KRAS or both. We report that mutations in both PIK3CA and KRAS are required for the greatest aspirin sensitivity in breast cancer, and that the GSK3β protein was hyperphosphorylated in aspirin-treated double knockin cells, but not in other clones/treatments. A more modest effect was observed with single mutant PIK3CA, but not KRAS alone. These observations were further confirmed in a panel of breast cancer cell lines. Our findings provide the first evidence that mutations in PIK3CA sensitize breast cancer cells to aspirin.

  5. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers.

    Directory of Open Access Journals (Sweden)

    Filip Janku

    Full Text Available BACKGROUND: Oncogenic mutations of PIK3CA, RAS (KRAS, NRAS, and BRAF have been identified in various malignancies, and activate the PI3K/AKT/mTOR and RAS/RAF/MEK pathways, respectively. Both pathways are critical drivers of tumorigenesis. METHODS: Tumor tissues from 504 patients with diverse cancers referred to the Clinical Center for Targeted Therapy at MD Anderson Cancer Center starting in October 2008 were analyzed for PIK3CA, RAS (KRAS, NRAS, and BRAF mutations using polymerase chain reaction-based DNA sequencing. RESULTS: PIK3CA mutations were found in 54 (11% of 504 patients tested; KRAS in 69 (19% of 367; NRAS in 19 (8% of 225; and BRAF in 31 (9% of 361 patients. PIK3CA mutations were most frequent in squamous cervical (5/14, 36%, uterine (7/28, 25%, breast (6/29, 21%, and colorectal cancers (18/105, 17%; KRAS in pancreatic (5/9, 56%, colorectal (49/97, 51%, and uterine cancers (3/20, 15%; NRAS in melanoma (12/40, 30%, and uterine cancer (2/11, 18%; BRAF in melanoma (23/52, 44%, and colorectal cancer (5/88, 6%. Regardless of histology, KRAS mutations were found in 38% of patients with PIK3CA mutations compared to 16% of patients with wild-type (wtPIK3CA (p = 0.001. In total, RAS (KRAS, NRAS or BRAF mutations were found in 47% of patients with PIK3CA mutations vs. 24% of patients wtPIK3CA (p = 0.001. PIK3CA mutations were found in 28% of patients with KRAS mutations compared to 10% with wtKRAS (p = 0.001 and in 20% of patients with RAS (KRAS, NRAS or BRAF mutations compared to 8% with wtRAS (KRAS, NRAS or wtBRAF (p = 0.001. CONCLUSIONS: PIK3CA, RAS (KRAS, NRAS, and BRAF mutations are frequent in diverse tumors. In a wide variety of tumors, PIK3CA mutations coexist with RAS (KRAS, NRAS and BRAF mutations.

  6. Expression of PIK3CA, PTEN mRNA and PIK3CA mutations in primary breast cancer

    DEFF Research Database (Denmark)

    Palimaru, Irina; Brügmann, Anja; Wium-Andersen, Marie Kim;

    2013-01-01

    tissue samples of breast carcinoma and normal breast tissue were obtained from 175 breast cancer patients at the time of primary surgery, of these 105 patients were lymph node positive. Expression of PIK3CA and PTEN mRNA was quantified with Quantitative Real Time PCR. Somatic mutations in exon 9 and exon......PURPOSE: High activity of the intracellular phosphatidylinositol-3 kinase (PI3K) pathway is common in breast cancer. Here, we explore differences in expression of important PI3K pathway regulators: the activator, phosphatidylinositol-3-kinase catalytic subunit alpha (PIK3CA), and the tumour...... suppressor, phosphatase and tensin homolog (PTEN), in breast carcinoma tissue and normal breast tissue. Furthermore, we examine whether expression of PIK3CA and PTEN mRNA and occurrence of PIK3CA mutations are associated with lymph node metastases in patients with primary breast cancer. METHODS: Paired...

  7. BRAF, PIK3CA, and HER2 Oncogenic Alterations According to KRAS Mutation Status in Advanced Colorectal Cancers with Distant Metastasis.

    Directory of Open Access Journals (Sweden)

    Soo Kyung Nam

    Full Text Available Anti-EGFR antibody-based treatment is an important therapeutic strategy for advanced colorectal cancer (CRC; despite this, several mutations--including KRAS, BRAF, and PIK3CA mutations, and HER2 amplification--are associated with the mechanisms underlying the development of resistance to anti-EGFR therapy. The aim of our study was to investigate the frequencies and clinical implications of these genetic alterations in advanced CRC.KRAS, BRAF, and PIK3CA mutations were determined by Cobas real-time polymerase chain reaction (PCR in 191 advanced CRC patients with distant metastasis. Microsatellite instability (MSI status was determined by a fragmentation assay and HER2 amplification was assessed by silver in situ hybridization. In addition, KRAS mutations were investigated by the Sanger sequencing method in 97 of 191 CRC cases.Mutations in KRAS, BRAF, and PIK3CA were found in 104 (54.5%, 6 (3.1%, and 25 (13.1% cases of advanced CRC, respectively. MSI-high status and HER2 amplification were observed in 3 (1.6% and 16 (8.4% cases, respectively. PIK3CA mutations were more frequently found in KRAS mutant type (18.3% than KRAS wild type (6.9% (P = 0.020. In contrast, HER2 amplifications and BRAF mutations were associated with KRAS wild type with borderline significance (P = 0.052 and 0.094, respectively. In combined analyses with KRAS, BRAF and HER2 status, BRAF mutations or HER2 amplifications were associated with the worst prognosis in the wild type KRAS group (P = 0.004. When comparing the efficacy of detection methods, the results of real time PCR analysis revealed 56 of 97 (57.7% CRC cases with KRAS mutations, whereas Sanger sequencing revealed 49 cases (50.5%.KRAS mutations were found in 54.5% of advanced CRC patients. Our results support that subgrouping using PIK3CA and BRAF mutation or HER2 amplification status, in addition to KRAS mutation status, is helpful for managing advanced CRC patients.

  8. Mutations in PIK3CA are infrequent in neuroblastoma

    Directory of Open Access Journals (Sweden)

    Mazanek Pavel

    2006-07-01

    Full Text Available Abstract Background Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. Methods Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain "hot spots" where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. Results We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%. Neither mutation (R524M and E982D has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively. Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model

  9. Mutational analyses of the BRAF, KRAS, and PIK3CA genes in oral squamous cell carcinoma

    Science.gov (United States)

    Bruckman, Karl C.; Schönleben, Frank; Qiu, Wanglong; Woo, Victoria L.; Su, Gloria H.

    2010-01-01

    OBJECTIVES The development of oral squamous cell carcinoma (OSCC) is a complex, multistep process. To date, numerous oncogenes and tumor-suppressor genes have been implicated in oral carcinogenesis. Of particular interest in this regard are genes involved in cell cycling and apoptosis, such BRAF, KRAS, and PIK3CA genes. STUDY DESIGN Mutations of BRAF, KRAS, and PIK3CA were evaluated by direct genomic sequencing of exons 1 of KRAS, 11 and 15 of BRAF, and 9 and 20 of PIK3CA in OSCC specimens. RESULTS Both BRAF and KRAS mutations were detected with a mutation frequency of 2% (1/42). PIK3CA mutations were detected at 3% (1/35). CONCLUSIONS This is the first report implicating BRAF mutation in OSCC. Our study supports that mutations in the BRAF, KRAS, and PIK3CA genes make at least a minor contribution to OSCC tumorigenesis, and pathway-specific therapies targeting these two pathways should be considered for OSCC in a subset of patients with these mutations. PMID:20813562

  10. PIK3CA mutations may be discordant between primary and corresponding metastatic disease in Breast Cancer

    DEFF Research Database (Denmark)

    Dupont Jensen, Jeanette; Laenkholm, Anne-Vibeke; Knoop, Ann;

    2011-01-01

    PURPOSE: PIK3CA mutations are frequent in breast cancer and activate the PI3K/Akt pathway. Unexpectedly, PIK3CA mutation appears in general to be associated with better outcome. In a cohort of patients where both primary and metastatic lesions were available the objective was to assess changes...... recurrence than wild type cases (p=0.03). CONCLUSIONS: PIK3CA mutations occur at high frequency in primary and metastatic breast cancer; these may not necessarily confer increased aggressiveness as mutants had a longer time to recurrence. Because PIK3CA status quite frequently changes between primary...

  11. The prevalence of PIK3CA mutations in gastric and colon cancer

    NARCIS (Netherlands)

    Velho, S; Oliveira, C; Ferreira, A; Ferreira, AC; Suriano, G; Schwartz, S; Duval, A; Carneiro, F; Machado, JC; Hamelin, R; Seruca, R

    2005-01-01

    A wide variety of tumours show PIK3CA mutations leading to increased phosphatidylinositol-3 kinase (PI3K) activity. We have determined the frequency of PIK3CA mutations in exons 9 and 20 that has previously been reported as mutational hotspot regions in distinct tumour models. One hundred and fifty

  12. PIK3CA Mutation in Colorectal Cancer: Relationship with Genetic and Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    2008-06-01

    Full Text Available Somatic PIK3CA mutations are often present in colorectal cancer. Mutant PIK3CA activates AKT signaling, which up-regulates fatty acid synthase (FASN. Microsatellite instability (MSI and CpG island methylator phenotype (CIMP are important molecular classifiers in colorectal cancer. However, the relationship between PIK3CA mutation, MSI and CIMP remains uncertain. Using Pyrosequencing technology, we detected PIK3CA mutations in 91 (15% of 590 population-based colorectal cancers. To determine CIMP status, we quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A (p16, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight. PIK3CA mutation was significantly associated with mucinous tumors [P = .0002; odds ratio (OR = 2.44], KRAS mutation (P < .0001; OR = 2.68, CIMP-high (P = .03; OR = 2.08, phospho–ribosomal protein S6 expression (P = .002; OR = 2.19, and FASN expression (P = .02; OR = 1.85 and inversely with p53 expression (P = .01; OR = 0.54 and β-catenin (CTNNB1 alteration (P = .004; OR = 0.43. In addition, PIK3CA G-to-A mutations were associated with MGMT loss (P = .001; OR = 3.24 but not with MGMT promoter methylation. In conclusion, PIK3CA mutation is significantly associated with other key molecular events in colorectal cancer, and MGMT loss likely contributes to the development of PIK3CA G>A mutation. In addition, Pyrosequencing is useful in detecting PIK3CA mutation in archival paraffin tumor tissue. PIK3CA mutational data further emphasize heterogeneity of colorectal cancer at the molecular level.

  13. Liquid biopsy of PIK3CA mutations in cervical cancer in Hong Kong Chinese women.

    Science.gov (United States)

    Chung, Tony K H; Cheung, Tak Hong; Yim, So Fan; Yu, Mei Yun; Chiu, Rossa W K; Lo, Keith W K; Lee, Ida P C; Wong, Raymond R Y; Lau, Kitty K M; Wang, Vivian W; Worley, Michael J; Elias, Kevin M; Fiascone, Stephen J; Smith, David I; Berkowitz, Ross S; Wong, Yick Fu

    2017-08-01

    Cervical cancer is the fourth most common female cancer worldwide. The prognosis for women with advanced-stage or recurrent cervical cancer remains poor and response to treatment is variable. Standardized management protocols leave little room for individualization. We report on a novel blood-based liquid biopsy for specific PIK3CA mutations as a clinically useful biomarker in patients with invasive cervical cancer. One hundred seventeen Hong Kong Chinese women with primary invasive cervical cancer and their pre-treatment plasma samples were investigated. Two PIK3CA mutations, p.E542K and p.E545K were measured in cell free DNA (cfDNA) extracted from plasma using droplet digital PCR. This liquid biopsy of PIK3CA in cervical cancer was correlated to clinico-pathological features to verify the potential of PIK3CA as a clinically useful molecular biomarker for predicting disease prognosis and monitoring for progression. PIK3CA mutations, either p.E542K or p.E545K, were detected in plasma cfDNA from 22.2% of the patients. PIK3CA mutation status was significantly correlated to median tumor size (p<0.01). PIK3CA mutations detected in the plasma were significantly associated with decreased disease-free survival and overall survival (p<0.05). As a liquid molecular biopsy, analysis of circulating PIK3CA mutations shows promise as a way to refine risk stratification of individual patients with cervical cancer, and provides a platform for further research to offer individualized therapy with the purpose of improving outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Insights into the oncogenic effects of /PIK3CA/ mutations from the structure of p110[alpha]/p85[alpha

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chuan-Hsiang; Mandelker, Diana; Gabelli, Sandra B.; Amzel, L.Mario (JHU)

    2011-07-14

    Phosphatidylinositide-3-kinases (PI3K) initiate a number of signaling pathways by recruiting other kinases, such as Akt, to the plasma membrane. One of the isoforms, PI3K{alpha}, is an oncogene frequently mutated in several cancer types. These mutations increase PI3K kinase activity, leading to increased cell survival, cell motility, cell metabolism, and cell cycle progression. The structure of the complex between the catalytic subunit of PI3K{alpha}, p110{alpha}, and a portion of its regulatory subunit, p85{alpha} reveals that the majority of the oncogenic mutations occur at the interfaces between p110 domains and between p110 and p85 domains. At these positions, mutations disrupt interactions resulting in changes in the kinase domain that may increase enzymatic activity. The structure also suggests that interaction with the membrane is mediated by one of the p85 domains (iSH2). These findings may provide novel structural loci for the design of new anti-cancer drugs.

  15. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Cossu-Rocca

    Full Text Available Triple Negative Breast Cancer (TNBC accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data.PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC.Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  16. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice.

    Science.gov (United States)

    Kinross, Kathryn M; Montgomery, Karen G; Kleinschmidt, Margarete; Waring, Paul; Ivetac, Ivan; Tikoo, Anjali; Saad, Mirette; Hare, Lauren; Roh, Vincent; Mantamadiotis, Theo; Sheppard, Karen E; Ryland, Georgina L; Campbell, Ian G; Gorringe, Kylie L; Christensen, James G; Cullinane, Carleen; Hicks, Rodney J; Pearson, Richard B; Johnstone, Ricky W; McArthur, Grant A; Phillips, Wayne A

    2012-02-01

    Mutations in the gene encoding the p110α subunit of PI3K (PIK3CA) that result in enhanced PI3K activity are frequently observed in human cancers. To better understand the role of mutant PIK3CA in the initiation or progression of tumorigenesis, we generated mice in which a PIK3CA mutation commonly detected in human cancers (the H1047R mutation) could be conditionally knocked into the endogenous Pik3ca locus. Activation of this mutation in the mouse ovary revealed that alone, Pik3caH1047R induced premalignant hyperplasia of the ovarian surface epithelium but no tumors. Concomitantly, we analyzed several human ovarian cancers and found PIK3CA mutations coexistent with KRAS and/or PTEN mutations, raising the possibility that a secondary defect in a co-regulator of PI3K activity may be required for mutant PIK3CA to promote transformation. Consistent with this notion, we found that Pik3caH1047R mutation plus Pten deletion in the mouse ovary led to the development of ovarian serous adenocarcinomas and granulosa cell tumors. Both mutational events were required for early, robust Akt activation. Pharmacological inhibition of PI3K/mTOR in these mice delayed tumor growth and prolonged survival. These results demonstrate that the Pik3caH1047R mutation with loss of Pten is enough to promote ovarian cell transformation and that we have developed a model system for studying possible therapies.

  17. Relationship of KRAS and PIK3CA gene mutation in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Fan-Bao Yao; Qian-Yi Kuang; Xi Fu; Shi-Yao Huang

    2016-01-01

    Objective:To analyze the relationship between KRAS/PIK3CA gene mutation and clinicopathologic characteristics such as gender, age, tumor location, pathological pattern, histological grade, TNM stage and lymph node metastasis, especially the relationship with distant metastasis of colorectal cancer.Methods:A total of94 cases of colorectal cancer samples surgically resected in Gastrointestinal Surgery Department of our hospital from January 2012 to August 2015 were collected, DNA was extracted and then KRAS and PIK3CA gene sequencing was carried out; their clinicopathologic characteristics (gender, age, tumor location, pathological pattern, histological grade, TNM stage, lymph node metastasis and distant metastasis) were analyzed, the relationship between KRAS/PIK3CA gene mutation and above factors, especially distant metastasis was analyzed, and statistical analysis processing was conducted; patients received 3-year follow-up, distant metastasis and recurrence were observed, and the number of their cases was counted, statistically analyzed and processed.Results:KRAS gene mutation was not associated with gender, age, tumor location, pathological pattern and histological grade, and significantly associated with distant metastasis, lymph node metastasis and TNM stage; PIK3CA was not associated with gender, age, tumor location, pathological pattern and histological grade, and associated with TNM stage, lymph node metastasis and distant metastasis; 7 cases (7.4%) were with mutation of both KRAS and PIK3CA (double positive), and 55 cases (57.4%) were with no mutation at all (double negative); in double positive cases, 5 cases were with distant metastasis, metastasis rate was 71.4% and higher than that of double negative (16/55, 29.1%), and there were statistical differences; it was found in follow-up that metastasis rate of KRAS mutant type was higher than that of wild type, and differences were statistically significant; recurrence rates of KRAS and PIK3CA mutant type

  18. Investigating the structure and dynamics of the PIK3CA wild-type and H1047R oncogenic mutant.

    Directory of Open Access Journals (Sweden)

    Paraskevi Gkeka

    2014-10-01

    Full Text Available The PIK3CA gene is one of the most frequently mutated oncogenes in human cancers. It encodes p110α, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3Kα, which activates signaling cascades leading to cell proliferation, survival, and cell growth. The most frequent mutation in PIK3CA is H1047R, which results in enzymatic overactivation. Understanding how the H1047R mutation causes the enhanced activity of the protein in atomic detail is central to developing mutant-specific therapeutics for cancer. To this end, Surface Plasmon Resonance (SPR experiments and Molecular Dynamics (MD simulations were carried out for both wild-type (WT and H1047R mutant proteins. An expanded positive charge distribution on the membrane binding regions of the mutant with respect to the WT protein is observed through MD simulations, which justifies the increased ability of the mutated protein variant to bind to membranes rich in anionic lipids in our SPR experiments. Our results further support an auto-inhibitory role of the C-terminal tail in the WT protein, which is abolished in the mutant protein due to loss of crucial intermolecular interactions. Moreover, Functional Mode Analysis reveals that the H1047R mutation alters the twisting motion of the N-lobe of the kinase domain with respect to the C-lobe and shifts the position of the conserved P-loop residues in the vicinity of the active site. These findings demonstrate the dynamical and structural differences of the two proteins in atomic detail and propose a mechanism of overactivation for the mutant protein. The results may be further utilized for the design of mutant-specific PI3Kα inhibitors that exploit the altered mutant conformation.

  19. Molecular spectrum of KRAS, BRAF, and PIK3CA gene mutation: determination of frequency, distribution pattern in Indian colorectal carcinoma.

    Science.gov (United States)

    Bisht, Swati; Ahmad, Firoz; Sawaimoon, Satyakam; Bhatia, Simi; Das, Bibhu Ranjan

    2014-09-01

    Molecular evaluation of KRAS, BRAF, and PIK3CA mutation has become an important part in colorectal carcinoma evaluation, and their alterations may determine the therapeutic response to anti-EGFR therapy. The current study demonstrates the evaluation of KRAS, BRAF, and PIK3CA mutation using direct sequencing in 204 samples. The frequency of KRAS, BRAF, and PIK3CA mutations was 23.5, 9.8, and 5.9 %, respectively. Five different substitution mutations at KRAS codon 12 (G12S, G12D, G12A, G12V, and G12C) and one substitution type at codon 13 (G13D) were observed. KRAS mutations were significantly higher in patients who were >50 years, and were associated with moderate/poorly differentiated tumors and adenocarcinomas. All mutations in BRAF gene were of V600E type, which were frequent in patients who were ≤ 50 years. Unlike KRAS mutations, BRAF mutations were more frequent in well-differentiated tumors and right-sided tumors. PIK3CA-E545K was the most recurrent mutation while other mutations detected were T544I, Q546R, H1047R, G1049S, and D1056N. No significant association of PIK3CA mutation with age, tumor differentiation, location, and other parameters was noted. No concomitant mutation of KRAS and BRAF mutations was observed, while, interestingly, five cases showed concurrent mutation of KRAS and PIK3CA mutations. In conclusion, to our knowledge, this is the first study to evaluate the PIK3CA mutation in Indian CRC patients. The frequency of KRAS, BRAF, and PIK3CA was similar to worldwide reports. Furthermore, identification of molecular markers has unique strengths, and can provide insights into the pathogenic process and help optimize personalized prevention and therapy.

  20. An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Stemke-Hale, Katherine; Gonzalez-Angulo, Ana Maria; Lluch, Ana; Neve, Richard M.; Kuo, Wen-Lin; Davies, Michael; Carey, Mark; Hu, Zhi; Guan, Yinghui; Sahin, Aysegul; Symmans, W. Fraser; Pusztai, Lajos; Nolden, Laura K.; Horlings, Hugo; Berns, Katrien; Hung, Mien-Chie; van de Vijver, Marc J.; Valero, Vicente; Gray, Joe W.; Bernards, Rene; Mills, Gordon B.; Hennessy, Bryan T.

    2008-05-06

    Phosphatidylinositol-3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT and PTEN mutations, and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in-vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor positive (33.8%) and HER2-positive (24.6%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers with PTEN protein levels also being significantly lower in hormone receptor-positive cancers. Unlike AKT1 mutations, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant impact on outcome in 166 hormone receptor-positive breast cancer patients after adjuvant tamoxifen. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and indeed inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines, and PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss but not PIK3CA mutations rendered cells sensitive to growth inhibition by the PI3K inhibitor LY294002. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.

  1. Segmental overgrowth syndrome due to an activating PIK3CA mutation identified in affected muscle tissue by exome sequencing

    DEFF Research Database (Denmark)

    Rasmussen, Maria; Sunde, Lone; Weigert, Karen Petra;

    2014-01-01

    Mosaic PIK3CA-mutations have been described in an increasing number of overgrowth syndromes. We describe a patient with a previously unreported segmental overgrowth syndrome with the mutation, PIKCA3 c.3140A>G (p.His1047Arg) in affected tissue diagnosed by exome sequencing. This PIK3CA-associated......-associated segmental overgrowth syndrome overlaps with CLOVES syndrome and fibroadipose hyperplasia but is distinct from each of these entities....

  2. Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: power and promise of molecular pathological epidemiology.

    Science.gov (United States)

    Ogino, S; Lochhead, P; Giovannucci, E; Meyerhardt, J A; Fuchs, C S; Chan, A T

    2014-06-05

    Regular use of aspirin reduces incidence and mortality of various cancers, including colorectal cancer. Anticancer effect of aspirin represents one of the 'Provocative Questions' in cancer research. Experimental and clinical studies support a carcinogenic role for PTGS2 (cyclooxygenase-2), which is an important enzymatic mediator of inflammation, and a target of aspirin. Recent 'molecular pathological epidemiology' (MPE) research has shown that aspirin use is associated with better prognosis and clinical outcome in PIK3CA-mutated colorectal carcinoma, suggesting somatic PIK3CA mutation as a molecular biomarker that predicts response to aspirin therapy. The PI3K (phosphatidylinositol-4,5-bisphosphonate 3-kinase) enzyme has a pivotal role in the PI3K-AKT signaling pathway. Activating PIK3CA oncogene mutations are observed in various malignancies including breast cancer, ovarian cancer, brain tumor, hepatocellular carcinoma, lung cancer and colon cancer. The prevalence of PIK3CA mutations increases continuously from rectal to cecal cancers, supporting the 'colorectal continuum' paradigm, and an important interplay of gut microbiota and host immune/inflammatory reaction. MPE represents an interdisciplinary integrative science, conceptually defined as 'epidemiology of molecular heterogeneity of disease'. As exposome and interactome vary from person to person and influence disease process, each disease process is unique (the unique disease principle). Therefore, MPE concept and paradigm can extend to non-neoplastic diseases including diabetes mellitus, cardiovascular diseases, metabolic diseases, and so on. MPE research opportunities are currently limited by paucity of tumor molecular data in the existing large-scale population-based studies. However, genomic, epigenomic and molecular pathology testings (for example, analyses for microsatellite instability, MLH1 promoter CpG island methylation, and KRAS and BRAF mutations in colorectal tumors) are becoming routine

  3. Discovery of Colorectal Cancer PIK3CA Mutation as Potential Predictive Biomarker: Power and Promise of Molecular Pathological Epidemiology

    Science.gov (United States)

    Ogino, Shuji; Lochhead, Paul; Giovannucci, Edward; Meyerhardt, Jeffrey A; Fuchs, Charles S; Chan, Andrew T

    2013-01-01

    Regular use of aspirin reduces incidence and mortality of various cancers, including colorectal cancer. Anti-cancer effect of aspirin represents one of the “Provocative Questions” in cancer research. Experimental and clinical studies support a carcinogenic role for PTGS2 (cyclooxygenase-2), which is an important enzymatic mediator of inflammation, and a target of aspirin. Recent “Molecular Pathological Epidemiology” (MPE) research has shown that aspirin use is associated with better prognosis and clinical outcome in PIK3CA-mutated colorectal carcinoma, suggesting somatic PIK3CA mutation as a molecular biomarker that predicts response to aspirin therapy. The PI3K enzyme plays a pivotal role in the PI3K-AKT signaling pathway. Activating PIK3CA oncogene mutations are observed in various malignancies including breast cancer, ovarian cancer, brain tumor, hepatocellular carcinoma, lung cancer and colon cancer. The prevalence of PIK3CA mutations increases continuously from rectal to cecal cancers, supporting the “colorectal continuum” paradigm, and an important interplay of gut microbiota and host immune/inflammatory reaction. MPE represents an interdisciplinary integrative science, conceptually defined as “epidemiology of molecular heterogeneity of disease”. Because exposome and interactome vary from person to person and influence disease process, each disease process is unique (the unique disease principle). Hence, MPE concept and paradigm can extend to non-neoplastic diseases including diabetes mellitus, cardiovascular diseases, metabolic diseases, etc. MPE research opportunities are currently limited by paucity of tumor molecular data in existing large-scale population-based studies. However, genomic, epigenomic, and molecular pathology testing (e.g., analyses for microsatellite instability, MLH1 promoter CpG island methylation, and KRAS and BRAF mutations in colorectal tumors) is becoming routine clinical practice. In order for integrative molecular

  4. Selective BRAFV600E inhibitor PLX4720, requires TRAIL assistance to overcome oncogenic PIK3CA resistance.

    Science.gov (United States)

    Oikonomou, Eftychia; Koc, Michal; Sourkova, Vladimira; Andera, Ladislav; Pintzas, Alexander

    2011-01-01

    Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAF(V600E) alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAF(V600E) mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK) suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKO(BRAFV600E/PIK3CAH1047) cells. In contrast, for the same level of apoptosis in HT29(BRAFV600E/PIK3CAP449T) cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAF(V600E). TRAIL dependence on the constitutive activation of BRAF(V600E) is emphasised through the overexpression of BRAF(V600E) in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CA(MT) as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAF(V600E) mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAF(V600E) inhibitors in combination with TRAIL in a BRAF(V600E

  5. Selective BRAFV600E inhibitor PLX4720, requires TRAIL assistance to overcome oncogenic PIK3CA resistance.

    Directory of Open Access Journals (Sweden)

    Eftychia Oikonomou

    Full Text Available Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAF(V600E alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAF(V600E mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKO(BRAFV600E/PIK3CAH1047 cells. In contrast, for the same level of apoptosis in HT29(BRAFV600E/PIK3CAP449T cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAF(V600E. TRAIL dependence on the constitutive activation of BRAF(V600E is emphasised through the overexpression of BRAF(V600E in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CA(MT as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAF(V600E mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAF(V600E inhibitors in combination with TRAIL in a BRAF(V600

  6. Dietary restriction-resistant human tumors harboring the PIK3CA-activating mutation H1047R are sensitive to metformin

    Science.gov (United States)

    Cufí, Sílvia; Corominas-Faja, Bruna; Lopez-Bonet, Eugeni; Bonavia, Rosa; Pernas, Sonia; López, Isabel álvarez; Dorca, Joan; Martínez, Susana; López, Norberto Batista; Fernández, Severina Domínguez; Cuyàs, Elisabet; Visa, Joana; Rodríguez-Gallego, Esther; Quirantes-Piné, Rosa; Segura-Carretero, Antonio; Joven, Jorge; Martin-Castillo, Begoña; Menendez, Javier A.

    2013-01-01

    Cancer cells expressing constitutively active phosphatidylinositol-3 kinase (PI3K) are proliferative regardless of the absence of insulin, and they form dietary restriction (DR)-resistant tumors in vivo. Because the binding of insulin to its receptors activates the PI3K/AKT/mammalian target of rapamycin (mTOR) signaling cascade, activating mutations in the PIK3CA oncogene may determine tumor response to DR-like pharmacological strategies targeting the insulin and mTOR pathways. The anti-diabetic drug metformin is a stereotypical DR mimetic that exerts its anti-cancer activity through a dual mechanism involving insulin-related (systemic) and mTOR-related (cell-autonomous) effects. However, it remains unclear whether PIK3CA-activating mutations might preclude the anti-cancer activity of metformin in vivo. To model the oncogenic PIK3CA-driven early stages of cancer, we used the clonal breast cancer cell line MCF10DCIS.com, which harbors the gain-of-function H1047R hot-spot mutation in the catalytic domain of the PI3KCA gene and has been shown to form DR-refractory xenotumors. To model PIK3CA-activating mutations in late stages of cancer, we took advantage of the isogenic conversion of a PIK3CA-wild-type tumor into a PIK3CA H1047R-mutated tumor using the highly metastatic colorectal cancer cell line SW48. MCF10DCIS.com xenotumors, although only modestly affected by treatment with oral metformin (approximately 40% tumor growth inhibition), were highly sensitive to the intraperitoneal (i.p.) administration of metformin, the anti-cancer activity of which increased in a time-dependent manner and reached >80% tumor growth inhibition by the end of the treatment. Metformin treatment via the i.p. route significantly reduced the proliferation factor mitotic activity index (MAI) and decreased tumor cellularity in MCF10DCIS.com cancer tissues. Whereas SW48-wild-type (PIK3CA+/+) cells rapidly formed metformin-refractory xenotumors in mice, ad libitum access to water containing

  7. The favorable impact of PIK3CA mutations on survival: an analysis of 2587 patients with breast cancer

    Institute of Scientific and Technical Information of China (English)

    Amaury G.Dumont; Sarah N.Dumont; Jonathan C.Trent

    2012-01-01

    The phosphatidylinositol-3 kinase (PI3K) pathway regulates a number of cellular processes,including cell survival,cell growth,and cell cycle progression.Consequently,this pathway is commonly deregulated in cancer.In particular,mutations in the gene PIK3CA that encodes the p110α catalytic subunit of the PI3K enzymes result in cell proliferation and resistance to apoptosis in vitro and induce breast tumors in transgenic mice.These data underscore the role of this pathway during oncogenesis.Thus,an ongoing,large-scale effort is underway to develop clinically active drugs that target elements of the PI3K pathway.However,conflicting data suggest that gain-of-function PIK3CA mutations may be associated with either a favorable or a poor clinical outcome,compared with the wild-type PIK3CA gene.In the current study,we performed a systematic review of breast cancer clinical studies.Upon evaluation of 2587 breast cancer cases from 12 independent studies,we showed that patients with tumors harboring a PIK3CA mutation have a better clinical outcome than those with a wild-type PIK3CA gene.Importantly,this improved prognosis may pertain only to patients with mutations in the kinase domain of p110α and to postmenopausal women with estrogen receptor-positive breast cancer.We propose three potential explanations for this paradoxical observation.First,PIK3CA mutations may interfere with the metastasis process or may induce senescence,which results in a better outcome for patients with mutated tumors.Secondly,we speculate that PIK3CA mutations may increase early tumor diagnosis by modification of the actin cytoskeleton in tumor cells.Lastly,we propose that PIK3CA mutations may be a favorable predictive factor for response to hormonal therapy,giving a therapeutic advantage to these patients.Ultimately,an improved understanding of the clinical impact of PIK3CA mutations is critical for the development of optimally personalized therapeutics against breast cancer and other solid tumors

  8. Effectors of epidermal growth factor receptor pathway: the genetic profiling ofKRAS, BRAF, PIK3CA, NRAS mutations in colorectal cancer characteristics and personalized medicine.

    Directory of Open Access Journals (Sweden)

    Yinchen Shen

    Full Text Available Mutations in KRAS oncogene are recognized biomarkers that predict lack of response to anti- epidermal growth factor receptor (EGFR antibody therapies. However, some patients with KRAS wild-type tumors still do not respond, so other downstream mutations in BRAF, PIK3CA and NRAS should be investigated. Herein we used direct sequencing to analyze mutation status for 676 patients in KRAS (codons 12, 13 and 61, BRAF (exon 11 and exon 15, PIK3CA (exon 9 and exon 20 and NRAS (codons12, 13 and 61. Clinicopathological characteristics associations were analyzed together with overall survival (OS of metastatic colorectal cancer patients (mCRC. We found 35.9% (242/674 tumors harbored a KRAS mutation, 6.96% (47/675 harbored a BRAF mutation, 9.9% (62/625 harbored a PIK3CA mutation and 4.19% (26/621 harbored a NRAS mutation. KRAS mutation coexisted with BRAF, PIK3CA and NRAS mutation, PIK3CA exon9 mutation appeared more frequently in KRAS mutant tumors (P = 0.027 while NRAS mutation almost existed in KRAS wild-types (P<0.001. Female patients and older group harbored a higher KRAS mutation (P = 0.018 and P = 0.031, respectively; BRAF (V600E mutation showed a higher frequency in colon cancer and poor differentiation tumors (P = 0.020 and P = 0.030, respectively; proximal tumors appeared a higher PIK3CA mutation (P<0.001 and distant metastatic tumors shared a higher NRAS mutation (P = 0.010. However, in this study no significant result was found between OS and gene mutation in mCRC group. To our knowledge, the first large-scale retrospective study on comprehensive genetic profile which associated with anti-EGFR MoAbs treatment selection in East Asian CRC population, appeared a specific genotype distribution picture, and the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.

  9. KRAS, BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Chen Mao

    Full Text Available BACKGROUND: To investigate the frequency and relationship of the KRAS, BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer (CRC. METHODOLOGY/PRINCIPAL FINDINGS: Genomic DNA was extracted from the formalin-fixed paraffin-embedded (FFPE tissues of 69 patients with histologically confirmed CRC. Automated sequencing analysis was conducted to detect mutations in the KRAS (codons 12, 13, and 14, BRAF (codon 600 and PIK3CA (codons 542, 545 and 1047. PTEN protein expression was evaluated by immunohistochemistry on 3 mm FFPE tissue sections. Statistical analysis was carried out using SPSS 16.0 software. The frequency of KRAS, BRAF and PIK3CA mutations and loss of PTEN expression was 43.9% (25/57, 25.4% (15/59, 8.2% (5/61 and 47.8% (33/69, respectively. The most frequent mutation in KRAS, BRAF and PIK3CA was V14G (26.7% of all mutations, V600E (40.0% of all mutations and V600L (40.0% of all mutations, and H1047L (80.0% of all mutations, respectively. Six KRAS mutant patients (24.0% harbored BRAF mutations. BRAF and PIK3CA mutations were mutually exclusive. No significant correlation was observed between the four biomarkers and patients' characteristics. CONCLUSIONS/SIGNIFICANCE: BRAF mutation rate is much higher in this study than in other studies, and overlap a lot with KRAS mutations. Besides, the specific types of KRAS and PIK3CA mutations in Chinese patients could be quite different from that of patients in other countries. Further studies are warranted to examine their impact on prognosis and response to targeted treatment.

  10. PIK3CA mutations define favorable prognostic biomarkers in operable breast cancer: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Liu YR

    2014-04-01

    Full Text Available Yi-Rong Liu,* Yi-Zhou Jiang,* Wen-Jia Zuo, Ke-Da Yu, Zhi-Ming ShaoDepartment of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China, *These authors contributed equally to this publication Background: Mutations of the p110α catalytic subunit of phosphatidylinositol 3-kinase (PIK3CA are among the most common genetic aberrations in human breast cancer. At present, controversy exists concerning the prognostic value of the mutations. Methods: We performed a systematic review and meta-analysis to clarify the association between PIK3CA mutations and survival outcomes. A comprehensive, computerized literature search of PubMed, Web of Science databases, the Chinese Biomedical Literature Database, and Wangfang Data until August 27, 2013 was carried out. Eligible studies were included according to specific inclusion criteria. Pooled hazard ratio was estimated by using the fixed effects model or random effects model according to heterogeneity between studies. Results: Eight eligible studies were included in the analysis, all of which were retrospective cohort studies. The overall meta-analysis demonstrated that the PIK3CA mutations were associated with better clinical outcomes (hazard ratio 0.72; 95% confidence interval: 0.57–0.91; P=0.006. None of the single studies materially altered the original results and no evidence of publication bias was found. Further subgroup analysis of mutations in exons 9 and 20 did not show statistical significance. Conclusion: PIK3CA mutations in operable primary breast cancer indicate a good prognosis. Further studies should be conducted to investigate the effect of PIK3CA mutations on clinical outcomes in different histologic types, different molecular subtypes of breast cancer, and different exons of PIK3CA. Keywords: early breast cancer, p110g catalytic subunit of phosphatidylinositol 3-kinase, somatic mutations, prognosis

  11. Dual PI3K/mTOR Inhibition in Colorectal Cancers with APC and PIK3CA Mutations.

    Science.gov (United States)

    Foley, Tyler M; Payne, Susan N; Pasch, Cheri A; Yueh, Alex E; Van De Hey, Dana R; Korkos, Demetra P; Clipson, Linda; Maher, Molly E; Matkowskyj, Kristina A; Newton, Michael A; Deming, Dustin A

    2017-02-09

    Therapeutic targeting of the PI3K pathway is an active area of research in multiple cancer types, including breast and endometrial cancers. This pathway is commonly altered in cancer and plays an integral role in numerous vital cellular functions. Mutations in the PIK3CA gene, resulting in a constitutively active form of PI3K, often occur in colorectal cancer, though the population of patients who would benefit from targeting this pathway has yet to be identified. In human colorectal cancers, PIK3CA mutations most commonly occur concomitantly with loss of adenomatous polyposis coli (APC). Here, treatment strategies are investigated that target the PI3K pathway in colon cancers with mutations in APC and PIK3CA Colorectal cancer spheroids with Apc and Pik3ca mutations were generated and characterized confirming that these cultures represent the tumors from which they were derived. Pan and alpha isomer-specific PI3K inhibitors did not induce a significant treatment response, whereas the dual PI3K/mTOR inhibitors BEZ235 and LY3023414 induced a dramatic treatment response through decreased cellular proliferation and increased differentiation. The significant treatment responses were confirmed in mice with Apc and Pik3ca-mutant colon cancers as measured using endoscopy with a reduction in median lumen occlusion of 53% with BEZ235 and a 24% reduction with LY3023414 compared with an increase of 53% in controls (P APC and PIK3CA-mutant colorectal cancers. Thus, further clinical studies of dual PI3K/mTOR inhibitors are warranted in colorectal cancers with these mutations. Mol Cancer Res; 15(3); 1-11. ©2016 AACR.

  12. Antitumoral efficacy of the protease inhibitor gabexate mesilate in colon cancer cells harbouring KRAS, BRAF and PIK3CA mutations.

    Directory of Open Access Journals (Sweden)

    Giovanni Brandi

    Full Text Available The employment of anti-epidermal growth factor receptor (EGFR antibodies represents a backbone of the therapeutic options for the treatment of metastatic colorectal cancer (mCRC. However, this therapy is poorly effective or ineffective in unselected patients. Mutations in KRAS, BRAF and PIK3CA genes have recently emerged as the best predictive factors of low/absent response to EGFR-targeted therapy. Due to the need for efficacious treatment options for mCRC patients bearing these mutations, in this short report we examined the antitumoral activity of the protease inhibitor gabexate mesilate, alone and in combination with the anti-EGFR monoclonal antibody cetuximab, in a panel of human CRC cell lines harbouring a different expression pattern of wild-type/mutated KRAS, BRAF and PIK3CA genes. Results obtained showed that gabexate mesilate significantly inhibited the growth, invasive potential and tumour-induced angiogenesis in all the CRC cells employed in this study (including those ones harbouring dual KRAS/PIK3CA or BRAF/PIK3CA mutation, while cetuximab affected these parameters only in CRC cells with KRAS, BRAF and PIK3CA wild-type. Notably, the antitumoral efficacy of gabexate mesilate and cetuximab in combination was found to be not superior than that observed with gabexate mesilate as single agent. Overall, these preliminary findings suggest that gabexate mesilate could represent a promising therapeutic option for mCRC patients, particularly for those harbouring KRAS, BRAF and PIK3CA mutations, either as mono-therapy or in addition to standard chemotherapy regimens. Further studies to better elucidate gabexate mesilate mechanism of action in CRC cells are therefore warranted.

  13. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer.

    Science.gov (United States)

    Young, Christian D; Zimmerman, Lisa J; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B; Gatza, Michael L; Morrison, Meghan M; Moore, Preston D; Whitwell, Corbin A; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E; Silva, Grace O; Patel, Premal; Brantley-Sieders, Dana M; Levin, Maren; Horiates, Marina; Palma, Norma A; Wang, Kai; Stephens, Philip J; Perou, Charles M; Weaver, Alissa M; O'Shaughnessy, Joyce A; Chang, Jenny C; Park, Ben Ho; Liebler, Daniel C; Cook, Rebecca S; Arteaga, Carlos L

    2015-07-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer*

    Science.gov (United States)

    Young, Christian D.; Zimmerman, Lisa J.; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B.; Gatza, Michael L.; Morrison, Meghan M.; Moore, Preston D.; Whitwell, Corbin A.; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E.; Silva, Grace O.; Patel, Premal; Brantley-Sieders, Dana M.; Levin, Maren; Horiates, Marina; Palma, Norma A.; Wang, Kai; Stephens, Philip J.; Perou, Charles M.; Weaver, Alissa M.; O'Shaughnessy, Joyce A.; Chang, Jenny C.; Park, Ben Ho; Liebler, Daniel C.; Cook, Rebecca S.; Arteaga, Carlos L.

    2015-01-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR. PMID:25953087

  15. Investigating the Inhibitory Effect of Wortmannin in the Hotspot Mutation at Codon 1047 of PIK3CA Kinase Domain: A Molecular Docking and Molecular Dynamics Approach.

    Science.gov (United States)

    Kumar, D Thirumal; Doss, C George Priya

    2016-01-01

    Oncogenic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) are the most frequently reported in association with various forms of cancer. Several studies have reported the significance of hotspot mutations in a catalytic subunit of PIK3CA in association with breast cancer. Mutations are frequently observed in the highly conserved region of the kinase domain (797-1068 amino acids) of PIK3CA are activating or gain-of-function mutations. Mutation in codon 1047 occurs in the C-terminal region of the kinase domain with histidine (H) replaced by arginine (R), lysine (L), and tyrosine (Y). Pathogenicity and protein stability predictors PhD-SNP, Align GVGD, HANSA, iStable, and MUpro classified H1047R as highly deleterious when compared to H1047L and H1047Y. To explore the inhibitory activity of Wortmannin toward PIK3CA, the three-dimensional structure of the mutant protein was determined using homology modeling followed by molecular docking and molecular dynamics analysis. Docking studies were performed for the three mutants and native with Wortmannin to measure the differences in their binding pattern. Comparative docking study revealed that H1047R-Wortmannin complex has a higher number of hydrogen bonds as well as the best binding affinity next to the native protein. Furthermore, 100 ns molecular dynamics simulation was initiated with the docked complexes to understand the various changes induced by the mutation. Though Wortmannin was found to nullify the effect of H1047R over the protein, further studies are required for designing a better compound. As SNPs are major genetic variations observed in disease condition, personalized medicine would provide enhanced drug therapy.

  16. FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features.

    Directory of Open Access Journals (Sweden)

    Sara A Byron

    Full Text Available Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been identified in endometrial cancer. The aim of this study was to provide insight into the clinicopathological features associated with patterns of mutation in these genes, a necessary step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The relationships between mutation status, tumor microsatellite instability (MSI and clinicopathological features including overall survival (OS and disease-free survival (DFS were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. Mutations were identified in FGFR2 (48/466; KRAS (87/464; CTNNB1 (88/454 and PIK3CA (104/464. KRAS and FGFR2 mutations were significantly more common, and CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a near mutually exclusive pattern (p = 0.05 and, surprisingly, mutations in KRAS and CTNNB1 also occurred in a near mutually exclusive pattern (p = 0.0002. Multivariate analysis revealed that mutation in KRAS and FGFR2 showed a trend (p = 0.06 towards longer and shorter DFS, respectively. In the 386 patients with early stage disease (stage I and II, FGFR2 mutation was significantly associated with shorter DFS (HR = 3.24; 95% confidence interval, CI, 1.35-7.77; p = 0.008 and OS (HR = 2.00; 95% CI 1.09-3.65; p = 0.025 and KRAS was associated with longer DFS (HR = 0.23; 95% CI 0.05-0.97; p = 0.045. In conclusion, although KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data suggest very different roles in tumor biology. This has implications for the implementation of anti-FGFR or anti-MEK biologic therapies.

  17. Characteristics and prevalence of KRAS, BRAF, and PIK3CA mutations in colorectal cancer by high-resolution melting analysis in Taiwanese population.

    Science.gov (United States)

    Hsieh, Li-Ling; Er, Tze-Kiong; Chen, Chih-Chieh; Hsieh, Jan-Sing; Chang, Jan-Gowth; Liu, Ta-Chih

    2012-10-09

    The identification of KRAS, BRAF, and PIK3CA mutations before the administration of anti-epidermal growth factor receptor therapy of colorectal cancer has become important. The aim of the present study was to investigate the occurrence of KRAS, BRAF, and PIK3CA mutations in the Taiwanese population with colorectal cancer. This study was undertaken to identify BRAF and PIK3CA mutations in patients with colorectal cancer by high-resolution melting (HRM) analysis. HRM analysis is a new gene scan tool that quickly performs the PCR and identifies sequence alterations without requiring post-PCR treatment. In the present study, DNAs were extracted from 182 cases of formalin-fixed, paraffin-embedded (FFPE) colorectal cancer samples for clinical KRAS mutational analysis by direct sequencing. All the samples were also tested for mutations within BRAF V600E and PIK3CA (exons 9 and 20) by HRM analysis. The results were confirmed by direct sequencing. The frequency of BRAF and PIK3CA mutations is 1.1%, and 7.1%, respectively. Intriguingly, we found that nine patients (4.9%) with the KRAS mutation were coexistent with the PIK3CA mutation. Four patients (2.2%) without the KRAS mutation were existent with the PIK3CA mutation. Two patients (1.1%) without the KRAS mutation were existent with the BRAF mutation. In the current study, we suppose that HRM analysis is rapid, feasible, and powerful diagnostic tool for the detection of BRAF and PIK3CA mutations in a clinical setting. Additionally, our results indicated the prevalence of KRAS, BRAF, and PIK3CA mutational status in the Taiwanese population. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. PIK3CA mutations define favorable prognostic biomarkers in operable breast cancer: a systematic review and meta-analysis

    OpenAIRE

    Liu YR; Jiang YZ; Zuo WJ; Yu KD; Shao ZM

    2014-01-01

    Yi-Rong Liu,* Yi-Zhou Jiang,* Wen-Jia Zuo, Ke-Da Yu, Zhi-Ming ShaoDepartment of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China, *These authors contributed equally to this publication Background: Mutations of the p110α catalytic subunit of phosphatidylinositol 3-kinase (PIK3CA) are among the most common genetic aberrations in human breast cancer. At present, controversy exists concerning...

  19. PI3K expression and PIK3CA mutations are related to colorectal cancer metastases

    Institute of Scientific and Technical Information of China (English)

    Yu-Fen Zhu; Bao-Hua Yu; Da-Li Li; Hong-Lin Ke; Xian-Zhi Guo; Xiu-Ying Xiao

    2012-01-01

    AIM:To assess the significance of phosphatidylinositol 3-kinase (PI3K) in colorectal cancer (CRC) and toxicity of LY294002 in CRC cells with different metastatic abilities.METHODS:Sixty formalin-fixed and paraffin-embedded CRC tumor specimens were investigated.Adjacent normal colonic mucosa specimens from 10 of these cases were selected as controls.PI3K protein was detected by immunohistochemistry and PIK3CA mutations were investigated by gene sequencing analysis.A flowcytometry-based apoptosis detection kit was used to determine PI3K inhibitor-induced apoptosis in CRC cell lines SW480 and SW620.Expression of phosphorylated protein kinase B in CRC cell lines was detected by Western blotting.RESULTS:There was a significant difference in the proportion of primary lesions (30%,18/60) vs metastatic lesions (46.7%,28/60) that were positive for PI3K (P <0.05).Mutations were detected in exon 9 (13.3%) and exon 20 (8.3%).Out of 60 cases,seven mutations were identified:two hotspot mutations,C.1633G>A resulting in E545A,and C.3140A>G resulting in H1047R; two novel missense mutations C.1624G>A and C.3079G>A;and three synonymous mutations (C.1641G>A,C.1581C>T and C.3027T>A).Exposure of SW480 cells to PI3K inhibitor for 48 h resulted in a significant increase of apoptotic cells in a dose-dependent manner [3.2% apoptotic cells in 0 μmol/L,4.3% in 5 μmol/L,6.3% in 10 μ.mol/L (P < 0.05),and 6.7% in 20 μmol/L (P < 0.05)].Moreover,PI3K inhibitor induced a similar significant increase of apoptotic cells in the SW620 cell line for 48 h [3.3% apoptotic cells in 0 μmol/L,13.3%in 5 μmol/L (P < 0.01),19.2% in 10 μmol/L (P < 0.01),and 21.3% in 20 μmol/L (P < 0.01)J.CONCLUSION:High PI3K expression is associated with CRC metastasis.PI3K inhibitor induced apoptosis in CRC cells and displayed strong cytotoxicity for highly metastatic cells.PI3K inhibition may be an effective treatment for CRC.

  20. Significance of PIK3CA Mutations in Patients with Early Breast Cancer Treated with Adjuvant Chemotherapy: A Hellenic Cooperative Oncology Group (HeCOG Study.

    Directory of Open Access Journals (Sweden)

    George Papaxoinis

    Full Text Available The PI3K-AKT pathway is frequently activated in breast cancer. PIK3CA mutations are most frequently found in the helical (exon 9 and kinase (exon 20 domains of this protein. The aim of the present study was to examine the role of different types of PIK3CA mutations in combination with molecular biomarkers related to PI3K-AKT signaling in patients with early breast cancer.Tumor tissue samples from 1008 early breast cancer patients treated with adjuvant chemotherapy in two similar randomized trials of HeCOG were examined. Tumors were subtyped with immunohistochemistry (IHC and FISH for ER, PgR, Ki67, HER2 and androgen receptor (AR. PIK3CA mutations were analyzed by Sanger sequencing (exon 20 and qPCR (exon 9 (Sanger/qPCR mutations. In 610 cases, next generation sequencing (NGS PIK3CA mutation data were also available. PIK3CA mutations and PTEN protein expression (IHC were analyzed in luminal tumors (ER and/or PgR positive, molecular apocrine carcinomas (MAC; ER/PgR negative / AR positive and hormone receptor (ER/PgR/AR negative tumors.PIK3CA mutations were detected in 235/1008 tumors (23% with Sanger/qPCR and in 149/610 tumors (24% with NGS. Concordance between the two methods was good with a Kappa coefficient of 0.76 (95% CI 0.69-0.82. Lobular histology, low tumor grade and luminal A tumors were associated with helical domain mutations (PIK3CAhel, while luminal B with kinase domain mutations (PIK3CAkin. The overall incidence of PIK3CA mutations was higher in luminal as compared to MAC and hormone receptor negative tumors (p = 0.004. Disease-free and overall survival did not significantly differ with respect to PIK3CA mutation presence and type. However, a statistically significant interaction between PIK3CA mutation status and PTEN low protein expression with regard to prognosis was identified.The present study did not show any prognostic significance of specific PIK3CA mutations in a large group of predominantly lymph-node positive breast cancer

  1. Physiological Levels of Pik3caH1047R Mutation in the Mouse Mammary Gland Results in Ductal Hyperplasia and Formation of ERα-Positive Tumors

    Science.gov (United States)

    Tikoo, Anjali; Roh, Vincent; Montgomery, Karen G.; Ivetac, Ivan; Waring, Paul; Pelzer, Rebecca; Hare, Lauren; Shackleton, Mark; Humbert, Patrick; Phillips, Wayne A.

    2012-01-01

    PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3caH1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin−; CD29lo; CD24+; CD61+) cell population. The Pik3caH1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3caH1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3caH1047R mutation in mammary tumorigenesis both in vivo and in vitro. PMID:22666336

  2. Physiological levels of Pik3ca(H1047R) mutation in the mouse mammary gland results in ductal hyperplasia and formation of ERα-positive tumors.

    Science.gov (United States)

    Tikoo, Anjali; Roh, Vincent; Montgomery, Karen G; Ivetac, Ivan; Waring, Paul; Pelzer, Rebecca; Hare, Lauren; Shackleton, Mark; Humbert, Patrick; Phillips, Wayne A

    2012-01-01

    PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3ca(H1047R), into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin(-); CD29(lo); CD24(+); CD61(+)) cell population. The Pik3ca(H1047R) expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3ca(H1047R) in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3ca(H1047R) mutation in mammary tumorigenesis both in vivo and in vitro.

  3. Effects of TP53 and PIK3CA mutations in early breast cancer: a matter of co-mutation and tumor-infiltrating lymphocytes.

    Science.gov (United States)

    Kotoula, Vassiliki; Karavasilis, Vasilios; Zagouri, Flora; Kouvatseas, George; Giannoulatou, Eleni; Gogas, Helen; Lakis, Sotiris; Pentheroudakis, George; Bobos, Mattheos; Papadopoulou, Kyriaki; Tsolaki, Eleftheria; Pectasides, Dimitrios; Lazaridis, Georgios; Koutras, Angelos; Aravantinos, Gerasimos; Christodoulou, Christos; Papakostas, Pavlos; Markopoulos, Christos; Zografos, George; Papandreou, Christos; Fountzilas, George

    2016-07-01

    The purpose of this study is to investigate whether the outcome of breast cancer (BC) patients treated with adjuvant chemotherapy is affected by co-mutated TP53 and PIK3CA according to stromal tumor-infiltrating lymphocytes (TILs). Paraffin tumors of all clinical subtypes from 1661 patients with operable breast cancer who were treated within 4 adjuvant trials with anthracycline-taxanes chemotherapy were informative for TP53 and PIK3CA mutation status (semiconductor sequencing genotyping) and for stromal TILs density. Disease-free survival (DFS) was examined. TP53 mutations were associated with higher (p TP53-PIK3CA co-mutations (6 % of all tumors) conferred worst DFS (HR 0.59; 95 % CI 0.44-0.79; p = 0.001 for PIK3CA-only). TP53-only mutations were unfavorable in patients with lower TILs, while patients with lower TILs performed worse if their tumors carried TP53-only mutations (interaction p = 0.046). Multivariate analysis revealed favorable PIK3CA-only mutations in non-LPBC (HR 0.64; 95 % CI 0.47-0.88; p = 0.007), and unfavorable TP53 mutations in ER/PgRpos/HER2neg (HR 1.55; 95 % CI 1.07-2.24; p = 0.021). Mutations did not interact with TILs in non-LP triple-negative and HER2-positive patients. TP53 and PIK3CA mutations appear to have diverse effects on the outcome of early BC patients, according to whether these genes are co-mutated or not, and for TP53 according to TILs density and ER/PgR-status. These findings need to be considered when evaluating the effect of these two most frequently mutated genes in the context of large clinical trials.

  4. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer.

    Science.gov (United States)

    De Roock, Wendy; De Vriendt, Veerle; Normanno, Nicola; Ciardiello, Fortunato; Tejpar, Sabine

    2011-06-01

    The discovery of mutant KRAS as a predictor of resistance to epidermal growth-factor receptor (EGFR) monoclonal antibodies brought a major change in the treatment of metastatic colorectal cancer. This seminal finding also highlighted our sparse knowledge about key signalling pathways in colorectal tumours. Drugs that inhibit oncogenic alterations such as phospho-MAP2K (also called MEK), phospho-AKT, and mutant B-RAF seem promising as single treatment or when given with EGFR inhibitors. However, our understanding of the precise role these potential drug targets have in colorectal tumours, and the oncogenic dependence that tumours might have on these components, has not progressed at the same rate. As a result, patient selection and prediction of treatment effects remain problematic. We review the role of mutations in genes other than KRAS on the efficacy of anti-EGFR therapy, and discuss strategies to target these oncogenic alterations alone or in combination with receptor tyrosine-kinase inhibition.

  5. Prevalence of KRAS, BRAF, and PIK3CA somatic mutations in patients with colorectal carcinoma may vary in the same population: clues from Sardinia

    Directory of Open Access Journals (Sweden)

    Palomba Grazia

    2012-08-01

    Full Text Available Abstract Background Role of KRAS, BRAF and PIK3CA mutations in pathogenesis of colorectal cancer (CRC has been recently investigated worldwide. In this population-based study, we evaluated the incidence rates and distribution of such somatic mutations in genetically isolated population from Sardinia. Methods From April 2009 to July 2011, formalin-fixed paraffin-embedded tissues (N = 478 were prospectively collected from Sardinian CRC patients at clinics across the entire island. Genomic DNA was isolated from tissue sections and screened for mutations in KRAS, BRAF, and PIK3CA genes by automated DNA sequencing. Results Overall, KRAS tumour mutation rate was 30% (145/478 positive cases. Distribution of mutation carriers was surprisingly different within the island: 87/204 (43% in North Sardinia vs. 58/274 (21% in Middle-South Sardinia (pBRAF gene; PIK3CA was found mutated in 67 (17% patients. A significant inverse distribution of PIK3CA mutation rates was observed within Sardinian population: 19/183 (10% cases from northern vs. 48/201 (24% cases from central-southern island (pKRAS/PIK3CA somatic mutations is consistent with already-reported discrepancies in distribution of germline mutations for other malignancies within Sardinian population. Preliminary clinical evaluation of 118 KRAS wild-type patients undergoing anti-EGFR-based treatment indicated lack of role for PIK3CA in predicting response to therapy. Conclusions Our findings support the hypothesis that differences in patients’ origins and related genetic backgrounds may contribute to even determine the incidence rate of somatic mutations in candidate cancer genes.

  6. PIK3CA in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Gieri eCathomas

    2014-03-01

    Full Text Available PIK3CA, the catalytic subunit of PI3K, is mutated in many different tumours, including colorectal cancer. Mutations of PIK3CA have been reported in 10 – 20% of colorectal cancer, about 80% of mutations found in two hot spots in exon 9 and exon 20. In RAS wild-type colorectal cancers, PIK3CA mutations have been associated with a worse clinical outcome and with a negative prediction of a response to targeted therapy by anti-EGFR monoclonal antibodies. However, these findings have not been confirmed in all studies and subsequent more detailed analysis has revealed that these effects may be restricted to mutations in Exon 20. Finally, mutations in PIK3CA may be the long sought biomarker for successful adjuvant therapy with aspirin in patients with colorectal cancer. Therefore, PIK3CA mutations appear to be a promising predictive biomarker; however, further data are needed to conclusively define the impact of somatic mutations in the PIK3CA gene for the management of patients with colorectal cancer.

  7. Prevalence and coexistence of KRAS, BRAF, PIK3CA, NRAS, TP53, and APC mutations in Indian colorectal cancer patients: Next-generation sequencing-based cohort study.

    Science.gov (United States)

    Jauhri, Mayank; Bhatnagar, Akanksha; Gupta, Satish; Bp, Manasa; Minhas, Sachin; Shokeen, Yogender; Aggarwal, Shyam

    2017-02-01

    Colorectal cancer incidences are on a rise in India. In this study, we have analyzed the mutation frequencies of six potential biomarkers, their coexistence, association with clinicopathological characteristics, and tumor location in Indian colorectal cancer patients. Next-generation sequencing was performed to identify mutations in the six potential biomarker genes using formalin-fixed paraffin-embedded tissue blocks of 112 colorectal cancer patients. The mutation frequency observed in KRAS, BRAF, PIK3CA, NRAS, TP53, and APC was 35.7%, 7.1%, 16.1%, 6.3%, 39.3%, and 29.5%, respectively. The significant associations of mutations were KRAS with age less than 60 years (p = 0.041), PIK3CA with males (p = 0.032), tumor stage I-II (p = 0.013), lack of metastasis in lymph nodes (p = 0.040), NRAS with rectum (p = 0.002), and APC with T2 stage of tumor growth (p = 0.013). No single patient harbored mutations in these six genes or any five genes simultaneously. Significance was noted in coexistence of KRAS with APC (p = 0.024) and mutual exclusion of KRAS with BRAF (p = 0.029). PIK3CA exon 9 was observed to be more frequently associated with KRAS mutations than PIK3CA exon 20 (p = 0.072). NRAS mutations were mutually exclusive with BRAF and PIK3CA mutations. As per our knowledge, this is the first next-generation sequencing-based biomarker study in Indian colorectal cancer patients. Frequent coexistence of gene mutations in pairs and triplets suggests that synergistic effect of overlapping mutations might further trigger the disease. In addition, infrequent coexistence of multiple gene mutations hints toward different signaling pathways for colorectal cancer tumorigenesis.

  8. PIK3CA and TP53 gene mutations in human breast cancer tumors frequently detected by ion torrent DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xusheng Bai

    Full Text Available Breast cancer is the most common malignancy and the leading cause of cancer deaths in women worldwide. While specific genetic mutations have been linked to 5-10% of breast cancer cases, other environmental and epigenetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive breast cancer molecular profile is needed to develop more effective target therapies. Until recently, identifying genetic cancer mutations via personalized DNA sequencing was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 105 human breast cancer samples. The sequencing analysis revealed missense mutations in PIK3CA, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  9. The clinical value of HER-2 overexpression and PIK3CA mutations in the older breast cancer population: a FOCUS study analysis.

    Science.gov (United States)

    Engels, Charla C; Kiderlen, Mandy; Bastiaannet, Esther; van Eijk, Ronald; Mooyaart, Antien; Smit, Vincent T H B M; de Craen, Anton J M; Kuppen, Peter J K; Kroep, Judith R; van de Velde, Cornelis J H; Liefers, Gerrit Jan

    2016-04-01

    Studies to confirm the effect of acknowledged prognostic markers in older breast cancer patients are scarce. The aim of this study was to evaluate the prognostic value of HER-2 overexpression and PIK3CA mutations in older breast cancer patients. Female breast cancer patients aged 65 years or older, diagnosed between 1997 and 2004 in a geographical region in The Netherlands, with an invasive, non-metastatic tumour and tumour material available, were included in the study. The primary endpoint was relapse-free period and secondary endpoint was relative survival. Determinants were immunochemical HER-2 scores (0/1+, 2+ or 3+) and PIK3CA as a binary measure. Overall, 1698 patients were included, and 103 had a HER-2 score of 3+. HER-2 overexpression was associated with a higher recurrence risk (5 years recurrence risk 34 % vs. 12 %, adjusted p = 0.005), and a worse relative survival (10 years relative survival 48 % vs. 84 % for HER-2 negative; p = 0.004). PIK3CA mutations had no significant prognostic effect. We showed, in older breast cancer patients, that HER-2 overexpression was significantly associated with a worse outcome, but PIK3CA mutations had no prognostic effect. These results imply that older patients with HER-2 overexpressing breast cancer might benefit from additional targeted anti-HER-2 therapy.

  10. Asymmetric real-time PCR and multiplex melting curve analysis with TaqMan probes for detecting PIK3CA mutations

    Directory of Open Access Journals (Sweden)

    Irina V. Botezatu

    2015-12-01

    Full Text Available The data in this article are related to the research article entitled “Optimization of melting analysis with TaqMan probes for detection of KRAS, NRAS, and BRAF mutations” Botezatu et al. [1]. Somatic mutations in the PIK3CA gene (“hot spots” in exons 9 and 20 are found in many human cancers, and their presence can determine prognosis and a treatment strategy. An effective method of mutation scanning PIK3CA in clinical laboratories is DNA Melting Analysis (DMA (Vorkas et al., 2010; Simi et al., 2008 [2,3]. It was demonstrated recently that the TaqMan probes which have been long used in Real Time PCR may also be utilized in DMA (Huang et al., 2011 [4]. After optimization of this method Botezatu et al. [1], it was used for multiplex scanning PIK3CA hotspot mutations in formalin-fixed paraffin-embedded (FFPE samples from patients with colorectal and lung cancer.

  11. RNAi knockdown of PIK3CA preferentially inhibits invasion of mutant PIK3CA cells

    Institute of Scientific and Technical Information of China (English)

    Xin-Ke Zhou; Sheng-Song Tang; Gao Yi; Min Hou; Jin-Hui Chen; Bo Yang; Ji-Fang Liu; Zhi-Min He

    2011-01-01

    AIM: To explore the effects of siRNA silencing of PIK3CA on proliferation, migration and invasion of gastric cancer cells and to investigate the underlying mechanisms.METHODS: The mutation of PIK3CA in exons 9 and 20 of gastric cancer cell lines HGC-27, SGC-7901, BGC-823, MGC-803 and MKN-45 was screened by poly-merase chain reaction (PCR) followed by sequencing. BGC-823 cells harboring no mutations in either of the exons, and HGC-27 cells containing PIK3CA mutations were employed in the current study. siRNA targeting PIK3CA was chemically synthesized and was transfect-ed into these two cell lines in vitro. mRNA and protein expression of PIK3CA were detected by real-time PCR and Western blotting, respectively. We also measured phosphorylation of a serine/threonine protein kinase (Akt) using Western blotting. The proliferation, migra-tion and invasion of these cells were examined sepa-rately by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-razolium bromide (MTT), wound healing and Transwell chambers assay.RESULTS: The siRNA directed against PIK3CA effec-tively led to inhibition of both endogenous mRNA and protein expression of PIK3CA, and thus significantly down-regulated phosphorylation of Akt (P < 0.05). Furthermore, simultaneous silencing of PIK3CA result-ed in an obvious reduction in tumor cell proliferation activity, migration and invasion potential (P < 0.01). Intriguing, mutant HGC-27 cells exhibited stronger invasion ability than that shown by wild-type BGC-823 cells. Knockdown of PIK3CA in mutant HGC-27 cells contributed to a reduction in cell invasion to a greater extent than in non-mutant BGC-823 cells.CONCLUSION: siRNA mediated targeting of PIK3CA may specifically knockdown the expression of PIK3CA in gastric cancer cells, providing a potential implication for therapy of gastric cancer.

  12. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis.

    Science.gov (United States)

    De Roock, Wendy; Claes, Bart; Bernasconi, David; De Schutter, Jef; Biesmans, Bart; Fountzilas, George; Kalogeras, Konstantine T; Kotoula, Vassiliki; Papamichael, Demetris; Laurent-Puig, Pierre; Penault-Llorca, Frédérique; Rougier, Philippe; Vincenzi, Bruno; Santini, Daniele; Tonini, Giuseppe; Cappuzzo, Federico; Frattini, Milo; Molinari, Francesca; Saletti, Piercarlo; De Dosso, Sara; Martini, Miriam; Bardelli, Alberto; Siena, Salvatore; Sartore-Bianchi, Andrea; Tabernero, Josep; Macarulla, Teresa; Di Fiore, Frédéric; Gangloff, Alice Oden; Ciardiello, Fortunato; Pfeiffer, Per; Qvortrup, Camilla; Hansen, Tine Plato; Van Cutsem, Eric; Piessevaux, Hubert; Lambrechts, Diether; Delorenzi, Mauro; Tejpar, Sabine

    2010-08-01

    Following the discovery that mutant KRAS is associated with resistance to anti-epidermal growth factor receptor (EGFR) antibodies, the tumours of patients with metastatic colorectal cancer are now profiled for seven KRAS mutations before receiving cetuximab or panitumumab. However, most patients with KRAS wild-type tumours still do not respond. We studied the effect of other downstream mutations on the efficacy of cetuximab in, to our knowledge, the largest cohort to date of patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab plus chemotherapy in the pre-KRAS selection era. 1022 tumour DNA samples (73 from fresh-frozen and 949 from formalin-fixed, paraffin-embedded tissue) from patients treated with cetuximab between 2001 and 2008 were gathered from 11 centres in seven European countries. 773 primary tumour samples had sufficient quality DNA and were included in mutation frequency analyses; mass spectrometry genotyping of tumour samples for KRAS, BRAF, NRAS, and PIK3CA was done centrally. We analysed objective response, progression-free survival (PFS), and overall survival in molecularly defined subgroups of the 649 chemotherapy-refractory patients treated with cetuximab plus chemotherapy. 40.0% (299/747) of the tumours harboured a KRAS mutation, 14.5% (108/743) harboured a PIK3CA mutation (of which 68.5% [74/108] were located in exon 9 and 20.4% [22/108] in exon 20), 4.7% (36/761) harboured a BRAF mutation, and 2.6% (17/644) harboured an NRAS mutation. KRAS mutants did not derive benefit compared with wild types, with a response rate of 6.7% (17/253) versus 35.8% (126/352; odds ratio [OR] 0.13, 95% CI 0.07-0.22; p<0.0001), a median PFS of 12 weeks versus 24 weeks (hazard ratio [HR] 1.98, 1.66-2.36; p<0.0001), and a median overall survival of 32 weeks versus 50 weeks (1.75, 1.47-2.09; p<0.0001). In KRAS wild types, carriers of BRAF and NRAS mutations had a significantly lower response rate than did BRAF and NRAS wild types

  13. In situ single cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2+ breast cancer

    Science.gov (United States)

    Janiszewska, Michalina; Liu, Lin; Almendro, Vanessa; Kuang, Yanan; Paweletz, Cloud; Sakr, Rita A.; Weigelt, Britta; Hanker, Ariella B.; Chandarlapaty, Sarat; King, Tari A.; Reis-Filho, Jorge S.; Arteaga, Carlos L.; Park, So Yeon; Michor, Franziska; Polyak, Kornelia

    2015-01-01

    Detection of minor genetically distinct subpopulations within tumors is a key challenge in cancer genomics. Here we report STAR-FISH (Specific-To-Allele PCR – FISH), a novel method for the combined detection of single nucleotide and copy number alterations in single cells in intact archived tissues. Using this method, we assessed the clinical impact of changes in the frequency and topology of PIK3CA mutation and HER2/ERBB2 amplification within HER2+ breast cancer during neoadjuvant therapy. We found that the two genetic events are not always present within the same cell. Chemotherapy selects for PIK3CA mutant cells, a minor subpopulation in nearly all treatment-naïve samples, and modulates genetic diversity within tumors. Treatment-associated changes in spatial distribution of cellular genetic diversity correlated with poor long-term outcome following adjuvant trastuzumab therapy. Our findings support the use of in situ single-cell based methods in cancer genomics and imply that chemotherapy before HER2-targeted therapy may promote treatment resistance. PMID:26301495

  14. Impact of KRAS, BRAF, PIK3CA mutations, PTEN, AREG, EREG expression and skin rash in ≥ 2 line cetuximab-based therapy of colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Zacharenia Saridaki

    Full Text Available BACKGROUND: To investigate the predictive significance of KRAS, BRAF, PIK3CA mutational status, AREG- EREG mRNA expression, PTEN protein expression and skin rash in metastatic colorectal cancer (mCRC patients treated with cetuximab containing salvage chemotherapy. METHODS: Primary tumors from 112 mCRC patients were analyzed. The worst skin toxicity during treatment was recorded. RESULTS: KRAS, BRAF and PIK3CA mutations were present in 37 (33%, 8 (7.2% and 11 (9.8% cases, respectively, PTEN was lost in 21 (19.8% cases, AREG and EREG were overexpressed in 48 (45% and 51 (49% cases. In the whole study population, time to tumor progression (TTP and overall survival (OS was significantly lower in patients with KRAS (p = 0.001 and p = 0.026, respectively or BRAF (p = 0.001 and p<0.0001, respectively mutant tumors, downregulation of AREG (p = 0.018 and p = 0.013, respectively or EREG (p = 0.002 and p = 0.004, respectively and grade 0-1 skin rash (p<0.0001 and p<0.0001, respectively. In KRAS wt patients TTP and OS was significantly lower in patients with BRAF (p = 0.0001 and p<0.0001, respectively mutant tumors, downregulation of AREG (p = 0.021 and p = 0.004, respectively or EREG (p = 0.0001 and p<0.0001, respectively and grade 0-1 skin rash (p<0.0001 and p<0.0001, respectively. TTP was significantly lower in patients with PIK3CA mutations (p = 0.01 or lost PTEN (p = 0.002. Multivariate analysis revealed KRAS (Hazard Ratio [HR] 4.3, p<0.0001, BRAF mutation (HR: 5.1, p<0.0001, EREG low expression (HR: 1.6, p = 0.021 and absence of severe/moderate skin rash (HR: 4.0, p<0.0001 as independent prognostic factors for decreased TTP. Similarly, KRAS (HR 2.9, p = 0.01, BRAF mutation (HR: 3.0, p = 0.001, EREG low expression (HR: 1.7, p = 0.021, absence of severe/moderate skin rash (HR: 3.7, p<0.0001 and the presence of undifferantited tumours (HR: 2.2, p = 0.001 were revealed as independent prognostic factors for decreased OS. CONCLUSIONS: These results

  15. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies.

    Science.gov (United States)

    Hanker, Ariella B; Pfefferle, Adam D; Balko, Justin M; Kuba, María Gabriela; Young, Christian D; Sánchez, Violeta; Sutton, Cammie R; Cheng, Hailing; Perou, Charles M; Zhao, Jean J; Cook, Rebecca S; Arteaga, Carlos L

    2013-08-27

    Human epidermal growth factor receptor 2 (HER2; ERBB2) amplification and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations often co-occur in breast cancer. Aberrant activation of the phosphatidylinositol 3-kinase (PI3K) pathway has been shown to correlate with a diminished response to HER2-directed therapies. We generated a mouse model of HER2-overexpressing (HER2(+)), PIK3CA(H1047R)-mutant breast cancer. Mice expressing both human HER2 and mutant PIK3CA in the mammary epithelium developed tumors with shorter latencies compared with mice expressing either oncogene alone. HER2 and mutant PIK3CA also cooperated to promote lung metastases. By microarray analysis, HER2-driven tumors clustered with luminal breast cancers, whereas mutant PIK3CA tumors were associated with claudin-low breast cancers. PIK3CA and HER2(+)/PIK3CA tumors expressed elevated transcripts encoding markers of epithelial-to-mesenchymal transition and stem cells. Cells from HER2(+)/PIK3CA tumors more efficiently formed mammospheres and lung metastases. Finally, HER2(+)/PIK3CA tumors were resistant to trastuzumab alone and in combination with lapatinib or pertuzumab. Both drug resistance and enhanced mammosphere formation were reversed by treatment with a PI3K inhibitor. In sum, PIK3CA(H1047R) accelerates HER2-mediated breast epithelial transformation and metastatic progression, alters the intrinsic phenotype of HER2-overexpressing cancers, and generates resistance to approved combinations of anti-HER2 therapies.

  16. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations | Office of Cancer Genomics

    Science.gov (United States)

    Large-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers.

  17. Somatic Mutations in the Notch, NF-KB, PIK3CA, and Hedgehog Pathways in Human Breast Cancers

    OpenAIRE

    Jiao, Xiang; Wood, Laura; Lindman, Monica; Jones, Sian,; Buckhaults, Phillip; Polyak, Kornelia; Sukumar, Saraswati; Carter, Hannah; Kim, Dewey; Karchin, Rachel; Sjöblom, Tobias

    2012-01-01

    Exome sequencing of human breast cancers has revealed a substantial number of candidate cancer genes with recurring but infrequent somatic mutations. To determine more accurately their mutation prevalence, we performed a mutation analysis of 36 novel candidate cancer genes in 96 human breast cancers. Somatic mutations with potential impact on protein function were observed in the genes ADAM12, CENTB1, CENTG1, DIP2C, GLI1, GRIN2D, HDLBP, IKBKB, KPNA5, NFKB1, NOTCH1, and OTOF. These findings st...

  18. Identification of E545k mutation in plasma from a PIK3CA wild-type metastatic breast cancer patient by array-based digital polymerase chain reaction: Circulating-free DNA a powerful tool for biomarker testing in advance disease.

    Science.gov (United States)

    Romero, Atocha; Acosta-Eyzaguirre, Daniel; Sanz, Julián; Moreno, Fernando; Serrano, Gloria; Díaz-Rubio, Eduardo; Caldés, Trinidad; Garcia-Saenz, José Á

    2015-12-01

    PIK3CA gene is frequently mutated in patients with breast cancer and it has been the focus of intense research. Inhibitors of PI3K pathway are being evaluated in ongoing clinical trials but the impact of PIKC3A mutation status on tumor response is yet uncertain. In the metastatic setting, several studies are evaluating the predictive value of PIK3CA mutations. However, results could be biased by biopsy localization. Digital polymerase chain reaction is a new technology that enables detection and quantification of cancer DNA molecules from peripheral blood and can potentially overcome such situation. As a proof of the concept, we present the case of a metastatic patient with a PIK3CA wild-type primary tumor in which the PIK3CA E545K mutation was identified in both the circulating-free DNA obtained from a peripheral blood sample and in the formalin-fixed, paraffin-embedded liver metastasis.

  19. 结直肠癌KRAS、BRAF及PIK3CA基因突变状态分析%Detection of KRAS, BRAF and PIK3CA gene mutations in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    罗妙玲; 徐韫健

    2016-01-01

    目的:检测结直肠癌组织KRAS、BRAF及PIK3CA基因突变状态,分析突变与临床特征的关系。方法收集结直肠癌手术切除或穿刺活检标本177例,提取DNA经探针扩增阻滞突变系统聚合酶链反应扩增后,检测KRAS、BRAF及PIK3CA基因的突变状态,分析结直肠癌组织中3个基因间突变的内在关系,并分析KRAS突变与临床特征的关系。结果 KRAS基因突变率为37.9%,以Gly12Val突变最多,占总突变率的32.8%;BRAF基因突变率为4.0%;PIK3CA突变率为14.1%,以E542K突变最多,占总突变率的36.0%。BRAF基因突变者共7例,全部为KRAS和PIK3CA野生型的患者;PIK3CA基因突变者共25例,其中19例(76.0%)与KRAS存在共同突变。结论结直肠癌患者KRAS基因突变率较高,KRAS基因突变与淋巴结转移和肿瘤进展相关。联合检测KRAS、BRAF及PIK3CA基因对指导临床制定个体化治疗有重要意义。%Objective To detect the mutations of KRAS,BRAF and PIK3CA genes in colorectal cancer and to analyze the relations between the mutation and clinical characteristics. Methods 177 samples of colorectal cancer were collected by surgical excision or biopsy, and DNA was extracted and amplified by using amplification refractory mutation system-polymerase chain reaction. The mutations of KRAS, BRAF and PIK3CA genes were detected and the intrinsic relationships between them were analyzed. The relations between KRAS mutation and clinical characteristics were analyzed. Results The mutation rate of KRAS was 37.9%, mostly Gly12Val mutations; the mutation rate of BRAF was 4.0%; the mutation rate of PIK3CA was 14.1%, mostly E542K mutations. There were 7 patients with BRAF gene mutations, all of which were wild-type of KRAS and PIK3CA; there were 25 patients with PIK3CA gene mutations, 19 (76.0%) of them had KRAS mutation. Conclusion The mutation rate of KRAS gene is high, and KRAS mutations are associated with

  20. 结直肠癌KRAS、BRAF及PIK3 CA基因突变的检测及内在关系%Detection of KRAS, BRAF and PIK3CA gene mutation s in colorectal cancer and their intrinsic relationship

    Institute of Scientific and Technical Information of China (English)

    常江; 于跃利; 王颖

    2015-01-01

    Objective:To detect the mutations of KRAS, BRAF and PIK3CA genes in colorectal cancer and to analyze the intrinsic relation-ship between the three genes.Method:41 samples of colorectal cancer were collected in the General Surgery Department of Banyannur Hospital from March 2011 to October 2011, whose DNAs were extracted and amplified by using polymerase chain reaction methods.The mutations of KRAS, BRAF and PIK3CA genes were detected and the intrinsic relationship between them were analyzed .Results:15, 5 and 7 patients were found mutations of KRAS, BRAF and PIK3CA genes respectively with the mutation rates being 36.6 %、12.2 % and 17.1 % respectively.(2) There were 5 patients with KRAS gene mutations, all of which were wild-type; there were 7 patients with PIK3CA mutations, 3 (42.9 %) of whom had wild-type KRAS and 4 (57.1%) of whom had KRAS mutation.There was no co -mutation between BRAF and PIK3CA genes. Conclusions: (1) KRAS gene mutation rate is high, so there is a need for regular inspection.(2) BRAF gene mutation in Some patients with wild-type BRAF gene may be one of the reasons for the occurrence and the development of colorectal cancers.The co-mutation of BRAF gene and PIK3CA gene may contribute to the occurrence and development of colorectal cancers.%目的:检测结直肠癌组织KRAS、BRAF及PIK3CA基因突变情况,并分析其内在关系。方法:收集内蒙古巴彦淖尔市医院普外一科2011年3月至2011年8月结直肠癌手术切除标本41例,提取DNA经PCR扩增后,检测KRAS、BRAF和PIK3CA基因的突变情况,分析结直肠癌组织KRAS、BRAF及PIK3CA基因突变间的内在关系。结果:(1)15例患者的KRAS基因发生突变,突变率36.6%,5例患者的BRAF基因发生突变,突变率12.2%,7例患者的PIK3CA基因发生突变,突变率17.1%。(2)BRAF基因突变者共5例,全部为KRAS野生型的患者;PIK3CA基因突变者共7例,其中3例(42.9%

  1. PTEN/PIK3CA genes are frequently mutated in spontaneous and medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumours of tree shrews.

    Science.gov (United States)

    Xia, Hou-Jun; He, Bao-Li; Wang, Chun-Yan; Zhang, Hai-Lin; Ge, Guang-Zhe; Zhang, Yuan-Xu; Lv, Long-Bao; Jiao, Jian-Lin; Chen, Ceshi

    2014-12-01

    Tree shrew has increasingly become an attractive experimental animal model for human diseases, particularly for breast cancer due to spontaneous breast tumours and their close relationship to primates and by extension to humans. However, neither normal mammary glands nor breast tumours have been well characterised in the Chinese tree shrew (Tupaia belangeri chinensis). In this study, normal mammary glands from four different developmental stages and 18 spontaneous breast tumours were analysed. Haematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) showed that normal mammary gland morphology and structures of tree shrews were quite similar to those found in humans. Spontaneous breast tumours of tree shrews were identified as being intraductal papilloma, papillary carcinoma, and invasive ductal carcinoma with or without lung metastasis. To further analyse breast cancer tumours among tree shrews, 40 3-4 month-old female tree shrews were orally administrated 20 mg 7,12-dimethylbenz(a)anthracene (DMBA) or peanut oil thrice, and then, 15 of these DMBA administrated tree shrews were implanted with medroxyprogesterone acetate (MPA) pellets. DMBA was shown to induce breast tumours (12%) while the addition of MPA increased the tumour incidence (50%). Of these, three induced breast tumours were intraductal papillary carcinomas and one was invasive ductal carcinoma (IDC). The PTEN/PIK3CA (phosphatase and tensin homologue/phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha), but not TP53 and GATA3, genes are frequently mutated in breast tumours, and the PTEN/PIK3CA gene mutation status correlated with the expression of pAKT in tree shrew breast tumours. These results suggest that tree shrews may be a promising animal model for a subset of human breast cancers with PTEN/PIK3CA gene mutations.

  2. Antitumor Efficacy of the Dual PI3K/mTOR Inhibitor PF-04691502 in a Human Xenograft Tumor Model Derived from Colorectal Cancer Stem Cells Harboring a PIK3CA Mutation.

    Directory of Open Access Journals (Sweden)

    Douglas D Fang

    Full Text Available PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide mutations can help predict the antitumor activity of phosphatidylinositol-3-kinase (PI3K/mammalian target of rapamycin (mTOR pathway inhibitors in both preclinical and clinical settings. In light of the recent discovery of tumor-initiating cancer stem cells (CSCs in various tumor types, we developed an in vitro CSC model from xenograft tumors established in mice from a colorectal cancer patient tumor in which the CD133+/EpCAM+ population represented tumor-initiating cells. CD133+/EpCAM+ CSCs were enriched under stem cell culture conditions and formed 3-dimensional tumor spheroids. Tumor spheroid cells exhibited CSC properties, including the capability for differentiation and self-renewal, higher tumorigenic potential and chemo-resistance. Genetic analysis using an OncoCarta™ panel revealed a PIK3CA (H1047R mutation in these cells. Using a dual PI3K/mTOR inhibitor, PF-04691502, we then showed that blockage of the PI3K/mTOR pathway inhibited the in vitro proliferation of CSCs and in vivo xenograft tumor growth with manageable toxicity. Tumor growth inhibition in mice was accompanied by a significant reduction of phosphorylated Akt (pAKT (S473, a well-established surrogate biomarker of PI3K/mTOR signaling pathway inhibition. Collectively, our data suggest that PF-04691502 exhibits potent anticancer activity in colorectal cancer by targeting both PIK3CA (H1047R mutant CSCs and their derivatives. These results may assist in the clinical development of PF-04691502 for the treatment of a subpopulation of colorectal cancer patients with poor outcomes.

  3. Molecular and Functional Characterization of Three Different Postzygotic Mutations in PIK3CA-Related Overgrowth Spectrum (PROS Patients: Effects on PI3K/AKT/mTOR Signaling and Sensitivity to PIK3 Inhibitors.

    Directory of Open Access Journals (Sweden)

    Daria C Loconte

    Full Text Available PIK3CA-related overgrowth spectrum (PROS include a group of disorders that affect only the terminal portion of a limb, such as type I macrodactyly, and conditions like fibroadipose overgrowth (FAO, megalencephaly-capillary malformation (MCAP syndrome, congenital lipomatous asymmetric overgrowth of the trunk, lymphatic, capillary, venous, and combined-type vascular malformations, epidermal nevi, skeletal and spinal anomalies (CLOVES syndrome and Hemihyperplasia Multiple Lipomatosis (HHML. Heterozygous postzygotic PIK3CA mutations are frequently identified in these syndromes, while timing and tissue specificity of the mutational event are likely responsible for the extreme phenotypic variability observed.We carried out a combination of Sanger sequencing and targeted deep sequencing of genes involved in the PI3K/AKT/mTOR pathway in three patients (1 MCAP and 2 FAO to identify causative mutations, and performed immunoblot analyses to assay the phosphorylation status of AKT and P70S6K in affected dermal fibroblasts. In addition, we evaluated their ability to grow in the absence of serum and their response to the PI3K inhibitors wortmannin and LY294002 in vitro.Our data indicate that patients' cells showed constitutive activation of the PI3K/Akt pathway. Of note, PI3K pharmacological blockade resulted in a significant reduction of the proliferation rate in culture, suggesting that inhibition of PI3K might prove beneficial in future therapies for PROS patients.

  4. KRAS, BRAF and PIK3CA status in squamous cell anal carcinoma (SCAC.

    Directory of Open Access Journals (Sweden)

    Andrea Casadei Gardini

    Full Text Available Anti-EGFR therapy appears to be a potential treatment option for squamous cell anal carcinoma (SCAC. KRAS mutation is a rare event in SCAC, indicating the absence of the principal mechanism of resistance to this type of therapy. However, no information is available from the literature regarding the status of BRAF or PIK3CA in this cancer type. We analysed KRAS, BRAF and PIK3CA status in SCAC patients in relation to the clinical-pathological characteristics of patients and to the presence of the human papilloma virus (HPV. One hundred and three patients were treated with the Nigro scheme for anal cancer from March 2001 to August 2012. Fifty patients were considered for the study as there was insufficient paraffin-embedded tumour tissue to perform molecular analysis the remaining 53. DNA was extracted from paraffin-embedded sections. KRAS, BRAF and PIK3CA gene status and HPV genotype were evaluated by pyrosequencing. KRAS and BRAF genes were wild-type in all cases. Conversely, PIK3CA gene was found to be mutated in 11 (22% cases. In particular, 8 mutations occurred in exon 9 and 3 in exon 20 of the PIK3CA gene. These findings suggest that SCAC could potentially respond to an anti-EGFR drug. PIK3CA mutation may be involved in the process of carcinogenesis in some cases of SCAC.

  5. Alterations in PTEN and PIK3CA in colorectal cancers in the EPIC Norfolk study: associations with clinicopathological and dietary factors

    Directory of Open Access Journals (Sweden)

    Mitrou Panagiota N

    2011-04-01

    Full Text Available Abstract Background The PTEN tumour suppressor gene and PIK3CA proto-oncogene encode proteins which contribute to regulation and propagation of signal transduction through the PI3K/AKT signalling pathway. This study investigates the prevalence of loss of PTEN expression and mutations in both PTEN and PIK3CA in colorectal cancers (CRC and their associations with tumour clinicopathological features, lifestyle factors and dietary consumptions. Methods 186 adenocarcinomas and 16 adenomas from the EPIC Norfolk study were tested for PTEN and PIK3CA mutations by DNA sequencing and PTEN expression changes by immunohistochemistry. Dietary and lifestyle data were collected prospectively using seven day food diaries and lifestyle questionnaires. Results Mutations in exons 7 and 8 of PTEN were observed in 2.2% of CRC and PTEN loss of expression was identified in 34.9% CRC. Negative PTEN expression was associated with lower blood low-density lipoprotein concentrations (p = 0.05. PIK3CA mutations were observed in 7% of cancers and were more frequent in CRCs in females (p = 0.04. Analysis of dietary intakes demonstrated no link between PTEN expression status and any specific dietary factor. PTEN expression negative, proximal CRC were of more advanced Dukes' stage (p = 0.02 and poor differentiation (p PIK3CA mutations and loss of PTEN expression demonstrated that these two events were independent (p = 0.55. Conclusion These data demonstrated the frequent occurrence (34.9% of PTEN loss of expression in colorectal cancers, for which gene mutations do not appear to be the main cause. Furthermore, dietary factors are not associated with loss of PTEN expression. PTEN expression negative CRC were not homogenous, as proximal cancers were associated with a more advanced Dukes' stage and poor differentiation, whereas distal cancers were associated with earlier Dukes' stage.

  6. Expression of activated PIK3CA in ovarian surface epithelium results in hyperplasia but not tumor formation.

    Directory of Open Access Journals (Sweden)

    Shun Liang

    Full Text Available BACKGROUND: The Phosphatidylinositol 3'-kinase is a key regulator in various cancer-associated signal transduction pathways. Genetic alterations of its catalytic subunit alpha, PIK3CA, have been identified in ovarian cancer. Our in vivo data suggests that PIK3CA activation is one of the early genetic events in ovarian cancer. However, its role in malignant transformation of ovarian surface epithelium (OSE is largely unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using the Müllerian inhibiting substance type II receptor (MISIIR promoter, we generated transgenic mice that expressed activated PIK3CA in the Müllerian epithelium. Overexpression of PIK3CA in OSE induced remarkable hyperplasia, but was not able to malignantly transform OSE in vivo. The consistent result was also observed in primary cultured OSEs. Although enforced expression of PIK3CA could not induce OSE anchorage-independent growth, it significantly increased anchorage-independent growth of OSE transformed by mutant K-ras. CONCLUSIONS/SIGNIFICANCE: While PIK3CA activation may not be able to initiate OSE transformation, we conclude that activation of PIK3CA may be an important molecular event contributing to the maintenance of OSE transformation initiated by oncogenes such as K-ras.

  7. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis

    DEFF Research Database (Denmark)

    De Roock, Wendy; Claes, Bart; Bernasconi, David

    2010-01-01

    Following the discovery that mutant KRAS is associated with resistance to anti-epidermal growth factor receptor (EGFR) antibodies, the tumours of patients with metastatic colorectal cancer are now profiled for seven KRAS mutations before receiving cetuximab or panitumumab. However, most patients ...

  8. Genome Analysis of Latin American Cervical Cancer: Frequent Activation of the PIK3CA Pathway.

    Science.gov (United States)

    Lou, Hong; Villagran, Guillermo; Boland, Joseph F; Im, Kate M; Polo, Sarita; Zhou, Weiyin; Odey, Ushie; Juárez-Torres, Eligia; Medina-Martínez, Ingrid; Roman-Basaure, Edgar; Mitchell, Jason; Roberson, David; Sawitzke, Julie; Garland, Lisa; Rodríguez-Herrera, Maria; Wells, David; Troyer, Jennifer; Pinto, Francisco Castillo; Bass, Sara; Zhang, Xijun; Castillo, Miriam; Gold, Bert; Morales, Hesler; Yeager, Meredith; Berumen, Jaime; Alvirez, Enrique; Gharzouzi, Eduardo; Dean, Michael

    2015-12-01

    Cervical cancer is one of the most common causes of cancer mortality for women living in poverty, causing more than 28,000 deaths annually in Latin America and 266,000 worldwide. To better understand the molecular basis of the disease, we ascertained blood and tumor samples from Guatemala and Venezuela and performed genomic characterization. We performed human papillomavirus (HPV) typing and identified somatically mutated genes using exome and ultra-deep targeted sequencing with confirmation in samples from Mexico. Copy number changes were also assessed in the exome sequence. Cervical cancer cases in Guatemala and Venezuela have an average age of diagnosis of 50 years and 5.6 children. Analysis of 675 tumors revealed activation of PIK3CA and other PI3K/AKT pathway genes in 31% of squamous carcinomas and 24% of adeno- and adenosquamous tumors, predominantly at two sites (E542K, E545K) in the helical domain of the PIK3CA gene. This distribution of PIK3CA mutations is distinct from most other cancer types and does not result in the in vitro phosphorylation of AKT. Somatic mutations were more frequent in squamous carcinomas diagnosed after the age of 50 years. Frequent gain of chromosome 3q was found, and low PIK3CA mutation fractions in many tumors suggest that PI3K mutation can be a late event in tumor progression. PI3K pathway mutation is important to cervical carcinogenesis in Latin America. Therapeutic agents that directly target PI3K could play a role in the therapy of this common malignancy. ©2015 American Association for Cancer Research.

  9. Oncogene mutational profile in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZC

    2014-03-01

    Full Text Available Zi-Chen Zhang,1,* Sha Fu,1,* Fang Wang,1 Hai-Yun Wang,1 Yi-Xin Zeng,2 Jian-Yong Shao11Department of Molecular Diagnostics, 2Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Nasopharyngeal carcinoma (NPC is a common tumor in Southern China, but the oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The relationships between mutational status and clinical data were assessed with a χ2 or Fisher's exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank test. In 123 patients, 21 (17.1% NPC tumors were positive for mutations in eight oncogenes: six patients had PIK3CA mutations (4.9%, five NRAS mutations (4.1%, four KIT mutations (3.3%, two PDGFRA mutations (1.6%, two ABL mutations (1.6%, and one with simultaneous mutations in HRAS, EGFR, and BRAF (1%. Patients with mutations were more likely to relapse or develop metastasis than those with wild-type alleles (P=0.019. No differences or correlations were found in other clinical characteristics or in patient survival. No mutations were detected in oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, PDGFRA, and ABL, which are associated with patient relapse and metastasis. Keywords: NPC, oncogene, mutation

  10. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy

    Science.gov (United States)

    Roy, Achira; Skibo, Jonathan; Kalume, Franck; Ni, Jing; Rankin, Sherri; Lu, Yiling; Dobyns, William B; Mills, Gordon B; Zhao, Jean J; Baker, Suzanne J; Millen, Kathleen J

    2015-01-01

    Mutations in the catalytic subunit of phosphoinositide 3-kinase (PIK3CA) and other PI3K-AKT pathway components have been associated with cancer and a wide spectrum of brain and body overgrowth. In the brain, the phenotypic spectrum of PIK3CA-related segmental overgrowth includes bilateral dysplastic megalencephaly, hemimegalencephaly and focal cortical dysplasia, the most common cause of intractable pediatric epilepsy. We generated mouse models expressing the most common activating Pik3ca mutations (H1047R and E545K) in developing neural progenitors. These accurately recapitulate all the key human pathological features including brain enlargement, cortical malformation, hydrocephalus and epilepsy, with phenotypic severity dependent on the mutant allele and its time of activation. Underlying mechanisms include increased proliferation, cell size and altered white matter. Notably, we demonstrate that acute 1 hr-suppression of PI3K signaling despite the ongoing presence of dysplasia has dramatic anti-epileptic benefit. Thus PI3K inhibitors offer a promising new avenue for effective anti-epileptic therapy for intractable pediatric epilepsy patients. DOI: http://dx.doi.org/10.7554/eLife.12703.001 PMID:26633882

  11. PRKCI negatively regulates autophagy via PIK3CA/AKT–MTOR signaling

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Liujing; Li, Ge; Xia, Dan; Hongdu, Beiqi; Xu, Chentong; Lin, Xin [Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Beijing (China); Peking University Center for Human Disease Genomics, Peking University, Beijing (China); Chen, Yingyu, E-mail: yingyu_chen@bjmu.edu.cn [Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Beijing (China); Peking University Center for Human Disease Genomics, Peking University, Beijing (China)

    2016-02-05

    The atypical protein kinase C isoform PRKC iota (PRKCI) plays a key role in cell proliferation, differentiation, and carcinogenesis, and it has been shown to be a human oncogene. Here, we show that PRKCI overexpression in U2OS cells impaired functional autophagy in normal or cell stress conditions, as characterized by decreased levels of light chain 3B-II protein (LC3B-II) and weakened degradation of endogenous and exogenous autophagic substrates. Conversely, PRKCI knockdown by small interference RNA resulted in opposite effects. Additionally, we identified two novel PRKCI mutants, PRKCI{sup L485M} and PRKCI{sup P560R}, which induced autophagy and exhibited dominant negative effects. Further studies indicated that PRKCI knockdown–mediated autophagy was associated with the inactivation of phosphatidylinositol 3-kinase alpha/AKT–mammalian target of rapamycin (PIK3CA/AKT–MTOR) signaling. These data underscore the importance of PRKCI in the regulation of autophagy. Moreover, the finding may be useful in treating PRKCI-overexpressing carcinomas that are characterized by increased levels of autophagy. - Highlights: • The atypical protein kinase C iota isoform (PRKCI) is a human oncogene. • PRKCI overexpression impairs functional autophagy in U2OS cells. • It reduces LC3B-II levels and weakens SQSTM1 and polyQ80 aggregate degradation. • PRKCI knockdown has the opposite effect. • The effect of PRKCI knockdown is related to PIK3CA/AKT–MTOR signaling inactivation.

  12. Multiple oncogenic mutations related to targeted therapy in nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jian-Wei Zhang; Hong-Yuan Zhao; Yu-Xiang Ma; Zhi-Huang Hu; Pei-Yu Huang; Li Zhang; Tao Qin; Shao-Dong Hong; Jing Zhang; Wen-Feng Fang; Yuan-Yuan Zhao; Yun-Peng Yang; Cong Xue; Yan Huang

    2015-01-01

    Introduction:An increasing number of targeted drugs have been tested for the treatment of nasopharyngeal carcinoma (NPC). However, targeted therapy-related oncogenic mutations have not been fully evaluated. This study aimed to detect targeted therapy-related oncogenic mutations in NPC and to determine which targeted therapy might be potentially effective in treating NPC. Methods:By using the SNaPshot assay, a rapid detection method, 19 mutation hotspots in 6 targeted therapy-related oncogenes were examined in 70 NPC patients. The associations between oncogenic mutations and clinicopathologic factors were analyzed. Results:Among 70 patients, 12 (17.1%) had mutations in 5 oncogenes:7 (10.0%) had v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) mutation, 2 (2.8%) had epidermal growth factor receptor (EGFR) mutation, 1 (1.4%) had phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutation, 1 (1.4%) had Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation, and 1 (1.4%) had simultaneous EGFR and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) mutations. No significant differences were observed between oncogenic mutations and clinicopathologic characteristics. Additionally, these oncogenic mutations were not associated with tumor recurrence and metastasis. Conclusions:Oncogenic mutations are present in NPC patients. The efficacy of targeted drugs on patients with the related oncogenic mutations requires further validation.

  13. Conditional loss of ErbB3 delays mammary gland hyperplasia induced by mutant PIK3CA without affecting mammary tumor latency, gene expression, or signaling.

    Science.gov (United States)

    Young, Christian D; Pfefferle, Adam D; Owens, Philip; Kuba, María G; Rexer, Brent N; Balko, Justin M; Sánchez, Violeta; Cheng, Hailing; Perou, Charles M; Zhao, Jean J; Cook, Rebecca S; Arteaga, Carlos L

    2013-07-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K), have been shown to transform mammary epithelial cells (MEC). Studies suggest this transforming activity requires binding of mutant p110α via p85 to phosphorylated YXXM motifs in activated receptor tyrosine kinases (RTK) or adaptors. Using transgenic mice, we examined if ErbB3, a potent activator of PI3K, is required for mutant PIK3CA-mediated transformation of MECs. Conditional loss of ErbB3 in mammary epithelium resulted in a delay of PIK3CA(H1047R)-dependent mammary gland hyperplasia, but tumor latency, gene expression, and PI3K signaling were unaffected. In ErbB3-deficient tumors, mutant PI3K remained associated with several tyrosyl phosphoproteins, potentially explaining the dispensability of ErbB3 for tumorigenicity and PI3K activity. Similarly, inhibition of ErbB RTKs with lapatinib did not affect PI3K signaling in PIK3CA(H1047R)-expressing tumors. However, the p110α-specific inhibitor BYL719 in combination with lapatinib impaired mammary tumor growth and PI3K signaling more potently than BYL719 alone. Furthermore, coinhibition of p110α and ErbB3 potently suppressed proliferation and PI3K signaling in human breast cancer cells harboring PIK3CA(H1047R). These data suggest that PIK3CA(H1047R)-driven tumor growth and PI3K signaling can occur independently of ErbB RTKs. However, simultaneous blockade of p110α and ErbB RTKs results in superior inhibition of PI3K and mammary tumor growth, suggesting a rational therapeutic combination against breast cancers harboring PIK3CA activating mutations.

  14. Relative quantification of PIK3CA gene expression level in fine-needle aspiration biopsy thyroid specimens collected from patients with papillary thyroid carcinoma and non-toxic goitre by real-time RT-PCR

    Directory of Open Access Journals (Sweden)

    Wojciechowska-Durczyńska Katarzyna

    2010-08-01

    Full Text Available Abstract Background Recent studies have shown that the phosphatidylinositol 3-kinase (PI3K signaling pathway is important regulator of many cellular events, including apoptosis, proliferation and motility. PI3K pathway alterations (PIK3CA gene mutations and/or amplification have been observed in various human tumours. In the majority of diagnosed cases, mutations are localized in one of the three "hot spots" in the gene, responsible for coding catalytic subunit α of class I PI3K (PIK3CA. Mutations and amplification of PIK3CA gene are characteristic for thyroid cancer, as well. Methods The aim of our study was to examine a gene expression level of PIK3CA in fine-needle aspiration biopsy (FNAB thyroid specimens in two types of thyroid lesions, papillary thyroid carcinoma (PTC and non-toxic goitre (NTG. Following conventional cytological examination, 42 thyroid FNAB specimens, received from patients with PTC (n = 20 and NTG (n = 22, were quantitatively evaluated regarding PIK3CA expression level by real-time PCR in the ABI PRISM® 7500 Sequence Detection System. Results Significantly higher expression level (RQ of PIK3CA in PTC group has been noted in comparison with NTG group (p Conclusion These observations may suggest role of PIK3CA alterations in PTC carcinogenesis.

  15. Global gene expression profiling of a mouse model of ovarian clear cell carcinoma caused by ARID1A and PIK3CA mutations implicates a role for inflammatory cytokine signaling

    Directory of Open Access Journals (Sweden)

    Ronald L. Chandler

    2015-09-01

    Full Text Available Ovarian clear-cell carcinoma (OCCC is an aggressive form of epithelial ovarian cancer (EOC. OCCC represents 5–25% of all EOC incidences and is the second leading cause of death from ovarian cancer (Glasspool and McNeish, 2013 [1]. A recent publication by Chandler et al. reported the first mouse model of OCCC that resembles human OCCC both genetically and histologically by inducing a localized deletion of ARID1A and the expression of the PIK3CAH1047R substitution mutation (Chandler et al., 2015 [2]. We utilized Affymetrix Mouse Gene 2.1 ST arrays for the global gene expression profiling of mouse primary OCCC tumor samples and animal-matched normal ovaries to identify cancer-dependent gene expression. We describe the approach used to generate the differentially expressed genes from the publicly available data deposited at the Gene Expression Omnibus (GEO database under the accession number GSE57380. These data were used in cross-species comparisons to publically available human OCCC gene expression data and allowed the identification of coordinately regulated genes in both mouse and human OCCC and supportive of a role for inflammatory cytokine signaling in OCCC pathogenesis (Chandler et al., 2015 [2].

  16. NGS detection for Chinese primary lung cancer patients gene mutation on EGFR, KRAS, BRAF and PIK3CA%NGS技术检测中国原发性肺癌患者的EGFR、KRAS、BRAF和PIK3CA基因突变

    Institute of Scientific and Technical Information of China (English)

    支修益; 胡牧; 王鑫

    2015-01-01

    Objective To evaluate the feasibility of application of next generation sequencing (NGS) technology in clinical molecular diagnosis of lung cancer. Method The NGS platform-Ion Torrent was utilized in this study to examine the mutational status of EGFR, KRAS, BRAF and PIK3CA in 30 cases of lung cancer. The NGS results were compared with qPCR results. Result The technical parameters of NGS method were stable and the NGS results were entirely consistent with qPCR results (100%). Conclusion After further technical validation of more clinical samples, NGS technology is expected to be applied broadly in clinical setting. It is believed to elevate the molecular diagnosis and individualized treatment of lung cancer to a new level.%目的:评估下一代测序(NGS)技术在原发性肺癌临床分子诊断中应用的可行性。方法本研究应用Ion Torrent NGS平台,一次性检测30例肺癌病理样本EGFR、KRAS、BRAF和PIK3CA基因的突变情况,并与实时荧光定量核酸扩增检测(qPCR)技术检测结果进行对比。结果 NGS检测方法技术参数稳定,且与qPCR技术检测结果完全一致(100%)。结论经过更多临床样本的方法验证后, NGS技术有望得到临床推广,并将原发性肺癌分子诊断和个体化诊疗提高到一个新的水平。

  17. Determination of somatic oncogenic mutations linked to target-based therapies using MassARRAY technology

    Science.gov (United States)

    Llorca-Cardeñosa, Marta J.; Mongort, Cristina; Alonso, Elisa; Navarro, Samuel; Burgues, Octavio; Vivancos, Ana; Cejalvo, Juan Miguel; Perez-Fidalgo, José Alejandro; Roselló, Susana; Ribas, Gloria; Cervantes, Andrés

    2016-01-01

    Somatic mutation analysis represents a useful tool in selecting personalized therapy. The aim of our study was to determine the presence of common genetic events affecting actionable oncogenes using a MassARRAY technology in patients with advanced solid tumors who were potential candidates for target-based therapies. The analysis of 238 mutations across 19 oncogenes was performed in 197 formalin-fixed paraffin-embedded samples of different tumors using the OncoCarta Panel v1.0 (Sequenom Hamburg, Germany). Of the 197 specimens, 97 (49.2%) presented at least one mutation. Forty-nine different oncogenic mutations in 16 genes were detected. Mutations in KRAS and PIK3CA were detected in 40/97 (41.2%) and 30/97 (30.9%) patients respectively. Thirty-one patients (32.0%) had mutations in two genes, 20 of them (64.5%) initially diagnosed with colorectal cancer. The co-occurrence of mutation involved mainly KRAS, PIK3CA, KIT and RET. Mutation profiles were validated using a customized panel and the Junior Next-Generation Sequencing technology (GS-Junior 454, Roche). Twenty-eight patients participated in early clinical trials or received specific treatments according to the molecular characterization (28.0%). MassARRAY technology is a rapid and effective method for identifying key cancer-driving mutations across a large number of samples, which allows for a more appropriate selection for personalized therapies. PMID:26968814

  18. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Therkildsen, Christina; Bergmann, Troels K; Henrichsen-Schnack, Tine

    2014-01-01

    BACKGROUND: In metastatic colorectal cancer, mutation testing for KRAS exon 2 is widely implemented to select patients with wild-type tumors for treatment with the monocloncal anti-EGFR antibodies cetuximab and panitumumab. The added predictive value of additional biomarkers in the RAS......-RAF-MAPK and PI3K-AKT-mTOR pathways in colorectal cancer is uncertain, which led us to systematically review the impact of alterations in KRAS (outside of exon 2), NRAS, BRAF, PIK3CA and PTEN in relation to the clinical benefit from anti-EGFR treatment. METHODS: In total, 22 studies that include 2395 patients......, NRAS, BRAF and PIK3CA and non-functional PTEN predict resistance to anti-EGFR therapies and demonstrates that biomarker analysis beyond KRAS exon 2 should be implemented for prediction of clinical benefit from anti-EGFR antibodies in metastatic colorectal cancer....

  19. Oncogenic events associated with endometrial and ovarian cancers are rare in endometriosis

    DEFF Research Database (Denmark)

    Vestergaard, Anna Lindeløv; Thorup, Katrine; Knudsen, Ulla Breth

    2011-01-01

    using methylation-specific melting curve analysis (MS-MCA), and 9 genes (BRAF, HRAS, NRAS, CTNNB1, CDK4, FGFR3, PIK3CA, TP53 and PTEN) were analyzed for mutations using denaturing gradient gel electrophoresis (DGGE) and direct sequencing. An oncogenic mutation in KRAS (c. 34G>T; p.G12C) was detected...

  20. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yihui [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Tang, Qingchao [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China); Li, Mingqi; Jiang, Shixiong [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Wang, Xishan, E-mail: wxshan12081@163.com [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China)

    2014-02-07

    Highlights: • miR-375 is downregulated in colorectal cancer cell lines and tissues. • miR-375 inhibits colorectal cancer cell growth by targeting PIK3CA. • miR-375 inhibits colorectal cancer cell growth in xenograft nude mice model. - Abstract: Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normal human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway.

  1. Pyrosequencing-based methods reveal marked inter-individual differences in oncogene mutation burden in human colorectal tumours.

    Science.gov (United States)

    Weidlich, S; Walsh, K; Crowther, D; Burczynski, M E; Feuerstein, G; Carey, F A; Steele, R J C; Wolf, C R; Miele, G; Smith, G

    2011-07-12

    The epidermal growth factor receptor-targeted monoclonal antibody cetuximab (Erbitux) was recently introduced for the treatment of metastatic colorectal cancer. Treatment response is dependent on Kirsten-Ras (K-Ras) mutation status, in which the majority of patients with tumour-specific K-Ras mutations fail to respond to treatment. Mutations in the oncogenes B-Raf and PIK3CA (phosphoinositide-3-kinase) may also influence cetuximab response, highlighting the need for a sensitive, accurate and quantitative assessment of tumour mutation burden. Mutations in K-Ras, B-Raf and PIK3CA were identified by both dideoxy and quantitative pyrosequencing-based methods in a cohort of unselected colorectal tumours (n=102), and pyrosequencing-based mutation calls correlated with various clinico-pathological parameters. The use of quantitative pyrosequencing-based methods allowed us to report a 13.7% increase in mutation burden, and to identify low-frequency (<30% mutation burden) mutations not routinely detected by dideoxy sequencing. K-Ras and B-Raf mutations were mutually exclusive and independently associated with a more advanced tumour phenotype. Pyrosequencing-based methods facilitate the identification of low-frequency tumour mutations and allow more accurate assessment of tumour mutation burden. Quantitative assessment of mutation burden may permit a more detailed evaluation of the role of specific tumour mutations in the pathogenesis and progression of colorectal cancer and may improve future patient selection for targeted drug therapies.

  2. Mutation analysis of KRAS, NRAS, BRAF and PIK3CA genes in 252 cases of colorectal cancer tissues%252例结直肠癌组织中KRAS、NRAS、 BRAF、PIK3CA的基因突变分析

    Institute of Scientific and Technical Information of China (English)

    刘影; 郑细闰; 朱亚珍; 何青莲; 郑广娟

    2016-01-01

    目的 分析结直肠癌(colorectal cancer,CRC)组织中KRAS、NRAS、BRAF和PIK3CA基因的常见突变类型及其与临床病理指标的关系.方法 对252例CRC石蜡包埋组织进行DNA提取,采用Sanger测序法对KRAS、NRAS、BRAF和PIK3CA基因进行检测,分析各个基因的突变率与临床病理特征的关系,并统计各个基因的突变类型.结果 252例CRC中,KRAS、BRAF、NRAS和PIK3CA突变发生率在性别、年龄、肿瘤部位、病理分期和有无淋巴结转移上差异均无统计学意义(P>0.05);检测阳性突变共140例(55.5%),其中KRAS 113例(44.8%),NRAS 1例(0.4%),BRAF 19例(7.5%),PIK3CA 28例(11.1%),包括PIK3 CA与KRAS、NRAS、BRAF基因发生双突变21例(8.3%);KRAS的主要突变类型包括G12A、G12C、G12D、G12R、G12S、G12V、G13D、T20M、A59T、Q61H、Q61L、Q61P;NRAS仅有1例突变为G12D;BRAF的主要突变类型为V600E、D594G、K601E;PIK3CA的主要突变类型包括E542K、E545K、Q546K、Q546P、Q546R、M1043I、H1047R.PIK3CA与KRAS、NRAS、BRAF之间会发生交叉突变,但KRAS、NRAS、BRAF三者之间基本不存在交叉突变.结论 CRC中KRAS阳性突变率居高,PIK3CA次之,BRAF、NRAS突变率最低,且PIK3CA常与KRAS、NRAS、BRAF发生交叉突变.对CRC患者行KRAS、NRAS、BRAF、PIK3CA等多基因检测,可正确指导并选择抗EGFR单抗药,从而实现真正意义上的个体化靶向治疗.

  3. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    Science.gov (United States)

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  4. HER2 missense mutations have distinct effects on oncogenic signaling and migration.

    Science.gov (United States)

    Zabransky, Daniel J; Yankaskas, Christopher L; Cochran, Rory L; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M; Red Brewer, Monica; Rosen, D Marc; Dalton, W Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A; Manto, Kristen M; Bose, Ron; Lauring, Josh; Arteaga, Carlos L; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-11-10

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as "negative" by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them.

  5. Predictive value of K-ras and PIK3CA in non-small cell lung cancer patients treated with EGFR-TKIs: a systemic review and meta-analysis

    Science.gov (United States)

    Chen, Jie-Ying; Cheng, Ya-Nan; Han, Lei; Wei, Feng; Yu, Wen-Wen; Zhang, Xin-Wei; Cao, Shui; Yu, Jin-Pu

    2015-01-01

    Objective A meta-analysis was performed to augment the insufficient data on the impact of mutative EGFR downstream phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on the clinical efficiency of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment of non-small cell lung cancer (NSCLC) patients. Methods Network databases were explored in April, 2015. Papers that investigated the clinical outcomes of NSCLC patients treated with EGFR-TKIs according to the status of K-ras and/or PIK3CA gene mutation were included. A quantitative meta-analysis was conducted using standard statistical methods. Odds ratios (ORs) for objective response rate (ORR) and hazard ratios (HRs) for progression-free survival (PFS) and overall survival (OS) were calculated. Results Mutation in K-ras significantly predicted poor ORR [OR =0.22; 95% confidence interval (CI), 0.13-0.35], shorter PFS (HR =1.56; 95% CI, 1.27-1.92), and shorter OS (HR =1.59; 95% CI, 1.33-1.91) in NSCLC patients treated with EGFR-TKIs. Mutant PIK3CA significantly predicted shorter OS (HR =1.83; 95% CI, 1.05-3.20), showed poor ORR (OR =0.70; 95% CI, 0.22-2.18), and shorter PFS (HR =1.79; 95% CI, 0.91-3.53) in NSCLC patients treated with EGFR-TKIs. Conclusion K-ras mutation adversely affected the clinical response and survival of NSCLC patients treated with EGFR-TKIs. PIK3CA mutation showed similar trends. In addition to EGFR, adding K-ras and PIK3CA as routine gene biomarkers in clinical genetic analysis is valuable to optimize the effectiveness of EGFR-TKI regimens and identify optimal patients who will benefit from EGFR-TKI treatment. PMID:26175928

  6. Predictive value of K-ras and PIK3CA in non-small cell lung cancer patients treated with EGFR-TKIs:a systemic review and meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Jie-Ying Chen; Ya-Nan Cheng; Lei Han; Feng Wei; Wen-Wen Yu; Xin-Wei Zhang; Shui Cao; Jin-Pu Yu

    2015-01-01

    Objective:A meta-analysis was performed to augment the insuffcient data on the impact of mutative EGFR downstream phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on the clinical effciency of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment of non-small cell lung cancer (NSCLC) patients. Methods:Network databases were explored in April, 2015. Papers that investigated the clinical outcomes of NSCLC patients treated with EGFR-TKIs according to the status of K-ras and/or PIK3CA gene mutation were included. A quantitative meta-analysis was conducted using standard statistical methods. Odds ratios (ORs) for objective response rate (ORR) and hazard ratios (HRs) for progression-free survival (PFS) and overall survival (OS) were calculated. Results:Mutation in K-ras signiifcantly predicted poor ORR [OR=0.22;95%conifdence interval (CI), 0.13-0.35], shorter PFS (HR=1.56;95%CI, 1.27-1.92), and shorter OS (HR=1.59;95%CI, 1.33-1.91) in NSCLC patients treated with EGFR-TKIs. Mutant PIK3CA signiifcantly predicted shorter OS (HR=1.83;95%CI, 1.05-3.20), showed poor ORR (OR=0.70;95%CI, 0.22-2.18), and shorter PFS (HR=1.79;95%CI, 0.91-3.53) in NSCLC patients treated with EGFR-TKIs. Conclusion:K-ras mutation adversely affected the clinical response and survival of NSCLC patients treated with EGFR-TKIs. PIK3CA mutation showed similar trends. In addition to EGFR, adding K-ras and PIK3CA as routine gene biomarkers in clinical genetic analysis is valuable to optimize the effectiveness of EGFR-TKI regimens and identify optimal patients who will beneift from EGFR-TKI treatment.

  7. Identification of anaplastic lymphoma kinase break points and oncogenic mutation profiles in acral/mucosal melanomas.

    Science.gov (United States)

    Niu, Hai-Tao; Zhou, Qi-Ming; Wang, Fang; Shao, Qiong; Guan, Yuan-Xiang; Wen, Xi-Zhi; Chen, Li-Zhen; Feng, Qi-Sheng; Li, Wei; Zeng, Yi-Xin; Zhang, Xiao-Shi

    2013-09-01

    Acral and mucosal melanomas, the two most common subtypes of melanoma in China, exhibit different genetic alterations and biologic behavior compared with other subtypes of melanomas. The purpose of this study was to identify the genetic alterations in patients with acral or mucosal melanomas in southern China. Fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) analysis, polymerase chain reaction (PCR), and quantitative real-time reverse transcriptase PCR (qRT-PCR) were used to assess the anaplastic lymphoma kinase (ALK) break points. Furthermore, a mass spectrometry-based genotyping platform was used to analyze 30 acral melanomas and 28 mucosal melanomas to profile 238 known somatic mutations in 19 oncogenes. ALK break points were identified in four acral cases (6.9%). Eight (13.8%) cases harbored BRAF mutations, six (10.3%) had NRAS mutations, four (6.9%) had KIT mutations, two (3.5%) had EGFR mutations, two (3.5%) had KRAS mutations, two (3.5%) had MET mutations, one (1.7%) had an HRAS mutation, and one (1.7%) had a PIK3CA mutation. Two cases exhibited co-occurring mutations, and one case with a BRAF mutation had a translocation in ALK. This study represents a comprehensive and concurrent analysis of the major recurrent oncogenic mutations involved in melanoma cases from southern China. These data have implications for both clinical trial designs and therapeutic strategies.

  8. Oncogene Mutations in Colorectal Polyps Identified in the Norwegian Colorectal Cancer Prevention (NORCCAP) Screening Study

    Science.gov (United States)

    Lorentzen, Jon A.; Grzyb, Krzysztof; De Angelis, Paula M.; Hoff, Geir; Eide, Tor J.; Andresen, Per Arne

    2016-01-01

    Data are limited on oncogene mutation frequencies in polyps from principally asymptomatic participants of population-based colorectal cancer screening studies. In this study, DNA from 204 polyps, 5 mm or larger, were collected from 176 participants of the NORCCAP screening study and analyzed for mutations in KRAS, BRAF, and PIK3CA including the rarely studied KRAS exons 3 and 4 mutations. KRAS mutations were identified in 23.0% of the lesions and were significantly associated with tubulovillous adenomas and large size. A significantly higher frequency of KRAS mutations in females was associated with mutations in codon 12. The KRAS exon 3 and 4 mutations constituted 23.4% of the KRAS positive lesions, which is a larger proportion compared to previous observations in colorectal cancer. BRAF mutations were identified in 11.3% and were associated with serrated polyps. None of the individuals were diagnosed with de novo or recurrent colorectal cancer during the follow-up time (median 11.2 years). Revealing differences in mutation-spectra according to gender and stages in tumorigenesis might be important for optimal use of oncogenes as therapeutic targets and biomarkers. PMID:27656095

  9. Characterization of breast cancers with PI3K mutations in an academic practice setting using SNaPshot profiling.

    Science.gov (United States)

    Abramson, Vandana G; Cooper Lloyd, M; Ballinger, Tarah; Sanders, Melinda E; Du, Liping; Lai, Darson; Su, Zengliu; Mayer, Ingrid; Levy, Mia; LaFrance, Delecia R; Vnencak-Jones, Cindy L; Shyr, Yu; Dahlman, Kimberly B; Pao, William; Arteaga, Carlos L

    2014-06-01

    Mutations in the PIK3CA gene are common in breast cancer and represent a clinically useful therapeutic target. Several larger, population-based studies have shown a positive prognostic significance associated with these mutations. This study aims to further identify characteristics of patients harboring PIK3CA mutations while evaluating the clinical impact of genomic testing for these mutations. Tumors from 312 patients at Vanderbilt-Ingram Cancer Center were analyzed for PIK3CA mutations using a multiplex screening assay (SNaPshot). Mutation rates, receptor status, histopathologic characteristics, and time to recurrence were assessed. The number of patients participating in clinical trials, specifically trials relating to the PIK3CA mutation, was examined. Statistically significant differences between wild-type and mutated tumors were determined using the Wilcoxon, Pearson, and Fischer exact tests. The PIK3CA mutation was found in 25 % of tumors tested. Patients with PIK3CA mutations were significantly more likely to express hormone receptors, be of lower combined histological grade, and have a reduced time to recurrence. Patients found to have a PIK3CA mutation were significantly more likely to enter a PIK3CA-specific clinical trial. In addition to confirming previously established positive prognostic characteristics of tumors harboring PIK3CA mutations, this study demonstrates the feasibility and utility of mutation profiling in a clinical setting. PIK3CA mutation testing impacted treatment and resulted in more patients entering mutation-specific clinical trials.

  10. Meta-analysis on the association of PIK3CA expression with the effects of Kras wild-type mCRC patients treated with anti-EGFR MoAbs%PIK3CA表达水平与抗EGFR单抗治疗KRAS野生型转移性结直肠癌疗效的META分析

    Institute of Scientific and Technical Information of China (English)

    张岱; 裴毅

    2014-01-01

    目的:探讨PIK3CA表达水平与抗EGFR单抗治疗KRAS野生型转移性结直肠癌的疗效关系。方法:通过PubMed、EMBASE、中国知网和万方数据库检索,采用Meta分析的方法,评价PIK3CA表达水平与抗EGFR抗体治疗mCRC患者疗效的关系。结果:共纳入8项研究,在抗EGFR单抗治疗KRAS野生型转移性结直肠癌患者中PIK3CA突变有较短的无进展生存期、总生存期以及较低的肿瘤反应率。结论: PIK3CA是抗EGFR单抗治疗KRAS野生型转移性结直肠癌疗效的预测因子。%Aims This article explore the relationship between the expression of PIK3CA and the efficacy of KRAS wild-type mCRC patients treated with anti-EGFR MoAbs. Methods We performed a systematic literature search in PubMed, EMBASE, CNKI and Wan Fang Digital Journals retrieval, a meta-analysis was used to analyze the relationship between the expression of PIK3CA and anti-EGFR MoAbs effects of KRAS wild-type mCRC patients.Results In the KRAS wild-type metastatic colorectal cancer patients with anti-EGFR MoAbs , PIK3CA mutation was associated shorter PFS, shorter OS and lower ORR.Conclusions The expression level of PIK3CA is a predictive factor for the effects of KRAS wild-type metastatic colorectal cancer patients with anti-EGFR MoAbs.

  11. Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI frequently occur together in tumor cells.

    Directory of Open Access Journals (Sweden)

    Junichi Soh

    Full Text Available BACKGROUND: Activating mutations in one allele of an oncogene (heterozygous mutations are widely believed to be sufficient for tumorigenesis. However, mutant allele specific imbalance (MASI has been observed in tumors and cell lines harboring mutations of oncogenes. METHODOLOGY/PRINCIPAL FINDINGS: We determined 1 mutational status, 2 copy number gains (CNGs and 3 relative ratio between mutant and wild type alleles of KRAS, BRAF, PIK3CA and EGFR genes by direct sequencing and quantitative PCR assay in over 400 human tumors, cell lines, and xenografts of lung, colorectal, and pancreatic cancers. Examination of a public database indicated that homozygous mutations of five oncogenes were frequent (20% in 833 cell lines of 12 tumor types. Our data indicated two major forms of MASI: 1 MASI with CNG, either complete or partial; and 2 MASI without CNG (uniparental disomy; UPD, due to complete loss of wild type allele. MASI was a frequent event in mutant EGFR (75% and was due mainly to CNGs, while MASI, also frequent in mutant KRAS (58%, was mainly due to UPD. Mutant: wild type allelic ratios at the genomic level were precisely maintained after transcription. KRAS mutations or CNGs were significantly associated with increased ras GTPase activity, as measured by ELISA, and the two molecular changes were synergistic. Of 237 lung adenocarcinoma tumors, the small number with both KRAS mutation and CNG were associated with shortened survival. CONCLUSIONS: MASI is frequently present in mutant EGFR and KRAS tumor cells, and is associated with increased mutant allele transcription and gene activity. The frequent finding of mutations, CNGs and MASI occurring together in tumor cells indicates that these three genetic alterations, acting together, may have a greater role in the development or maintenance of the malignant phenotype than any individual alteration.

  12. Deregulation of ARID1A, CDH1, cMET and PIK3CA and target-related microRNA expression in gastric cancer

    Science.gov (United States)

    Ibarrola-Villava, Maider; Llorca-Cardeñosa, Marta J.; Tarazona, Noelia; Mongort, Cristina; Fleitas, Tania; Perez-Fidalgo, José Alejandro; Roselló, Susana; Navarro, Samuel; Ribas, Gloria; Cervantes, Andrés

    2015-01-01

    Genetic and epigenetic alterations play an important role in gastric cancer (GC) pathogenesis. Aberrations of the phosphatidylinositol-3-kinase signaling pathway are well described. However, emerging genes have been described such as, the chromatin remodeling gene ARID1A. Our aim was to determine the expression levels of four GC-related genes, ARID1A, CDH1, cMET and PIK3CA, and 14 target-related microRNAs (miRNAs). We compared mRNA and miRNA expression levels among 66 gastric tumor and normal adjacent mucosa samples using quantitative real-time reverse transcription PCR. Moreover, ARID1A, cMET and PIK3CA protein levels were assessed by immunohistochemistry (IHC). Finally, gene and miRNAs associations with clinical characteristics and outcome were also evaluated. An increased cMET and PIK3CA mRNA expression was found in 78.0% (P = 2.20 × 10−5) and 73.8% (P = 1.00 × 10−3) of the tumors, respectively. Moreover, IHC revealed that cMET and PIK3CA expression was positive in 63.6% and 87.8% of the tumors, respectively. Six miRNAs had significantly different expression between paired-samples, finding five up-regulated [miR-223-3p (P = 1.65 × 10−6), miR-19a-3p (P = 1.23 × 10−4), miR-128-3p (P = 3.49 × 10−4), miR-130b-3p (P = 1.00 × 10−3) and miR-34a-5p (P = 4.00 × 10−3)] and one down-regulated [miR-124-3p (P = 0.03)]. Our data suggest that cMET, PIK3CA and target-related miRNAs play an important role in GC and may serve as potential targets for therapy. PMID:26334097

  13. Decoupling of the PI3K Pathway via Mutation Necessitates Combinatorial Treatment in HER2+ Breast Cancer.

    Directory of Open Access Journals (Sweden)

    James E Korkola

    Full Text Available We report here on experimental and theoretical efforts to determine how best to combine drugs that inhibit HER2 and AKT in HER2(+ breast cancers. We accomplished this by measuring cellular and molecular responses to lapatinib and the AKT inhibitors (AKTi GSK690693 and GSK2141795 in a panel of 22 HER2(+ breast cancer cell lines carrying wild type or mutant PIK3CA. We observed that combinations of lapatinib plus AKTi were synergistic in HER2(+/PIK3CA(mut cell lines but not in HER2(+/PIK3CA(wt cell lines. We measured changes in phospho-protein levels in 15 cell lines after treatment with lapatinib, AKTi or lapatinib + AKTi to shed light on the underlying signaling dynamics. This revealed that p-S6RP levels were less well attenuated by lapatinib in HER2(+/PIK3CA(mut cells compared to HER2(+/PIK3CAwt cells and that lapatinib + AKTi reduced p-S6RP levels to those achieved in HER2(+/PIK3CA(wt cells with lapatinib alone. We also found that that compensatory up-regulation of p-HER3 and p-HER2 is blunted in PIK3CA(mut cells following lapatinib + AKTi treatment. Responses of HER2(+ SKBR3 cells transfected with lentiviruses carrying control or PIK3CA(mut sequences were similar to those observed in HER2(+/PIK3CA(mut cell lines but not in HER2(+/PIK3CA(wt cell lines. We used a nonlinear ordinary differential equation model to support the idea that PIK3CA mutations act as downstream activators of AKT that blunt lapatinib inhibition of downstream AKT signaling and that the effects of PIK3CA mutations can be countered by combining lapatinib with an AKTi. This combination does not confer substantial benefit beyond lapatinib in HER2+/PIK3CA(wt cells.

  14. Systemic epidermal nevus with involvement of the oral mucosa due to FGFR3 mutation

    DEFF Research Database (Denmark)

    Bygum, Anette; Fagerberg, Christina R; Clemmensen, Ole J

    2011-01-01

    Epidermal nevi (EN) represent benign congenital skin lesions following the lines of Blaschko. They result from genetic mosaicism, and activating FGFR3 and PIK3CA mutations have been implicated.......Epidermal nevi (EN) represent benign congenital skin lesions following the lines of Blaschko. They result from genetic mosaicism, and activating FGFR3 and PIK3CA mutations have been implicated....

  15. Germline PTPN11 and somatic PIK3CA variant in a boy with megalencephaly-capillary malformation syndrome (MCAP) - pure coincidence?

    Science.gov (United States)

    Döcker, Dennis; Schubach, Max; Menzel, Moritz; Spaich, Christiane; Gabriel, Heinz-Dieter; Zenker, Martin; Bartholdi, Deborah; Biskup, Saskia

    2015-01-01

    Megalencephaly-capillary malformation (MCAP) syndrome is an overgrowth syndrome that is diagnosed by clinical criteria. Recently, somatic and germline variants in genes that are involved in the PI3K-AKT pathway (AKT3, PIK3R2 and PIK3CA) have been described to be associated with MCAP and/or other related megalencephaly syndromes. We performed trio-exome sequencing in a 6-year-old boy and his healthy parents. Clinical features were macrocephaly, cutis marmorata, angiomata, asymmetric overgrowth, developmental delay, discrete midline facial nevus flammeus, toe syndactyly and postaxial polydactyly—thus, clearly an MCAP phenotype. Exome sequencing revealed a pathogenic de novo germline variant in the PTPN11 gene (c.1529A>G; p.(Gln510Arg)), which has so far been associated with Noonan, as well as LEOPARD syndrome. Whole-exome sequencing (>100 × coverage) did not reveal any alteration in the known megalencephaly genes. However, ultra-deep sequencing results from saliva (>1000 × coverage) revealed a 22% mosaic variant in PIK3CA (c.2740G>A; p.(Gly914Arg)). To our knowledge, this report is the first description of a PTPN11 germline variant in an MCAP patient. Data from experimental studies show a complex interaction of SHP2 (gene product of PTPN11) and the PI3K-AKT pathway. We hypothesize that certain PTPN11 germline variants might drive toward additional second-hit alterations. PMID:24939587

  16. Germline PTPN11 and somatic PIK3CA variant in a boy with megalencephaly-capillary malformation syndrome (MCAP)--pure coincidence?

    Science.gov (United States)

    Döcker, Dennis; Schubach, Max; Menzel, Moritz; Spaich, Christiane; Gabriel, Heinz-Dieter; Zenker, Martin; Bartholdi, Deborah; Biskup, Saskia

    2015-03-01

    Megalencephaly-capillary malformation (MCAP) syndrome is an overgrowth syndrome that is diagnosed by clinical criteria. Recently, somatic and germline variants in genes that are involved in the PI3K-AKT pathway (AKT3, PIK3R2 and PIK3CA) have been described to be associated with MCAP and/or other related megalencephaly syndromes. We performed trio-exome sequencing in a 6-year-old boy and his healthy parents. Clinical features were macrocephaly, cutis marmorata, angiomata, asymmetric overgrowth, developmental delay, discrete midline facial nevus flammeus, toe syndactyly and postaxial polydactyly--thus, clearly an MCAP phenotype. Exome sequencing revealed a pathogenic de novo germline variant in the PTPN11 gene (c.1529A>G; p.(Gln510Arg)), which has so far been associated with Noonan, as well as LEOPARD syndrome. Whole-exome sequencing (>100 × coverage) did not reveal any alteration in the known megalencephaly genes. However, ultra-deep sequencing results from saliva (>1000 × coverage) revealed a 22% mosaic variant in PIK3CA (c.2740G>A; p.(Gly914Arg)). To our knowledge, this report is the first description of a PTPN11 germline variant in an MCAP patient. Data from experimental studies show a complex interaction of SHP2 (gene product of PTPN11) and the PI3K-AKT pathway. We hypothesize that certain PTPN11 germline variants might drive toward additional second-hit alterations.

  17. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer

    Science.gov (United States)

    Ellis, Matthew J; Lin, Li; Crowder, Robert; Tao, Yu; Hoog, Jeremy; Snider, Jacqueline; Davies, Sherri; DeSchryver, Katherine; Evans, Dean B; Steinseifer, Jutta; Bandaru, Raj; Liu, WeiHua; Gardner, Humphrey; Semiglazov, Vladimir; Watson, Mark; Hunt, Kelly; Olson, John; Baselga, José

    2010-01-01

    Background Mutations in the alpha catalytic subunit of phosphoinositol-3-kinase (PIK3CA) occur in ~30% of ER positive breast cancers. We therefore sought to determine the impact of PIK3CA mutation on response to neoadjuvant endocrine therapy. Methods Exon 9 (helical domain - HD) and Exon 20 (kinase domain- KD) mutations in PIK3CA were determined samples from four neoadjuvant endocrine therapy trials. Interactions with clinical, pathological and biomarker response parameters were examined. Results A weak negative interaction between PIK3CA mutation status and clinical response to neoadjuvant endocrine treatment was detected (N=235 P=<0.05), but not with treatment-induced changes in Ki67-based proliferation index (N=418). Despite these findings, PIK3CA KD mutation was a favorable prognostic factor for relapse-free survival (RFS log rank P=0.02) in the P024 trial (N=153). The favorable prognostic effect was maintained in a multivariable analysis (N=125) that included the preoperative prognostic index (PEPI), an approach to predicting RFS based on post neoadjuvant endocrine therapy pathological stage, ER and Ki67 levels (HR for no PIK3CA KD mutation, 14, CI 1.9–105 P=0.01). Conclusion PIK3CA mutation status did not strongly interact with neoadjuvant endocrine therapy responsiveness in estrogen receptor positive breast cancer. Nonetheless, as with other recent studies, a favorable interaction between PIK3CA kinase domain mutation and prognosis was detected. The mechanism for the favorable prognostic impact of PIK3CA mutation status therefore remains unexplained. PMID:19844788

  18. Energy parasites trigger oncogene mutation.

    Science.gov (United States)

    Pokorný, Jiří; Pokorný, Jan; Jandová, Anna; Kobilková, Jitka; Vrba, Jan; Vrba, Jan

    2016-10-01

    Cancer initialization can be explained as a result of parasitic virus energy consumption leading to randomized genome chemical bonding. Analysis of experimental data on cell-mediated immunity (CMI) containing about 12,000 cases of healthy humans, cancer patients and patients with precancerous cervical lesions disclosed that the specific cancer and the non-specific lactate dehydrogenase-elevating (LDH) virus antigen elicit similar responses. The specific antigen is effective only in cancer type of its origin but the non-specific antigen in all examined cancers. CMI results of CIN patients display both healthy and cancer state. The ribonucleic acid (RNA) of the LDH virus parasitizing on energy reduces the ratio of coherent/random oscillations. Decreased effect of coherent cellular electromagnetic field on bonding electrons in biological macromolecules leads to elevating probability of random genome reactions. Overlapping of wave functions in biological macromolecules depends on energy of the cellular electromagnetic field which supplies energy to bonding electrons for selective chemical bonds. CMI responses of cancer and LDH virus antigens in all examined healthy, precancerous and cancer cases point to energy mechanism in cancer initiation. Dependence of the rate of biochemical reactions on biological electromagnetic field explains yet unknown mechanism of genome mutation.

  19. The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Jatin Roper

    Full Text Available To examine the in vitro and in vivo efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type colorectal cancer (CRC.PIK3CA mutant and wild-type human CRC cell lines were treated in vitro with NVP-BEZ235, and the resulting effects on proliferation, apoptosis, and signaling were assessed. Colonic tumors from a genetically engineered mouse (GEM model for sporadic wild-type PIK3CA CRC were treated in vivo with NVP-BEZ235. The resulting effects on macroscopic tumor growth/regression, proliferation, apoptosis, angiogenesis, and signaling were examined.In vitro treatment of CRC cell lines with NVP-BEZ235 resulted in transient PI3K blockade, sustained decreases in mTORC1/mTORC2 signaling, and a corresponding decrease in cell viability (median IC(50 = 9.0-14.3 nM. Similar effects were seen in paired isogenic CRC cell lines that differed only in the presence or absence of an activating PIK3CA mutant allele. In vivo treatment of colonic tumor-bearing mice with NVP-BEZ235 resulted in transient PI3K inhibition and sustained blockade of mTORC1/mTORC2 signaling. Longitudinal tumor surveillance by optical colonoscopy demonstrated a 97% increase in tumor size in control mice (p = 0.01 vs. a 43% decrease (p = 0.008 in treated mice. Ex vivo analysis of the NVP-BEZ235-treated tumors demonstrated a 56% decrease in proliferation (p = 0.003, no effects on apoptosis, and a 75% reduction in angiogenesis (p = 0.013.These studies provide the preclinical rationale for studies examining the efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type CRC.

  20. Detecting the spectrum of multigene mutations in non-small cell lung cancer by Snapshot assay

    Institute of Scientific and Technical Information of China (English)

    Jian Su; Xiao-Sui Huang; Yi-Long Wu; Xu-Chao Zhang; She-Juan An; Wen-Zhao Zhong; Ying Huang; Shi-Liang Chen; Hong-Hong Yan; Zhi-Hong Chen; Wei-Bang Guo

    2014-01-01

    As molecular targets continue to be identified and more targeted inhibitors are developed for personalized treatment of non-small cell lung cancer (NSCLC), multigene mutation determination will be needed for routine oncology practice and for clinical trials. In this study, we evaluated the sensitivity and specificity of multigene mutation testing by using the Snapshot assay in NSCLC. We retrospectively reviewed a cohort of 110 consecutive NSCLC specimens for which epidermal growth factor receptor (EGFR) mutation testing was performed between November 2011 and December 2011 using Sanger sequencing. Using the Snapshot assay, mutation statuses were detected forEGFR, Kirsten rate sarcoma viral oncogene homolog (KRAS), phosphoinositide-3-kinase catalytic alpha polypeptide (PIK3CA), v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), v-ras neuroblastoma viral oncogene homolog (NRAS), dual specificity mitogen activated protein kinase kinase 1 (MEK1), phosphatase and tensin homolog (PTEN), and human epidermal growth factor receptor 2 (HER2) in patient specimens and cellline DNA. Snapshot data were compared to Sanger sequencing data. Of the 110 samples, 51 (46.4%) harbored at least one mutation. The mutation frequency in adenocarcinoma specimens was 55.6%, and the frequencies ofEGFR, KRAS, PIK3CA, PTEN, andMEK1 mutations were 35.5%, 9.1%, 3.6%, 0.9%, and 0.9%, respectively. No mutation was found in theHER2, NRAS, orBRAF genes. Three of the 51 mutant samples harbored double mutations: twoPIK3CA mutations coexisted withKRAS orEGFR mutations, and another KRAS mutation coexisted with aPTEN mutation. Among the 110 samples, 47 were surgical specimens, 60 were biopsy specimens, and 3 were cytological specimens; the corresponding mutation frequencies were 51.1%, 41.7%, and 66.7%, respectively (P = 0.532). Compared to Sanger sequencing, Snapshot specificity was 98.4% and sensitivity was 100% (positive predictive value, 97.9%; negative predictive value, 100%). The Snapshot assay

  1. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis.

    Science.gov (United States)

    Mancini, Maria L; Lien, Evan C; Toker, Alex

    2016-04-05

    One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K).

  2. Oncogenic mutation profiles involved in melanoma in Southern China%华南地区黑色素瘤癌基因突变谱分析

    Institute of Scientific and Technical Information of China (English)

    周启明; 张星; 丁娅; 彭瑞清; 颜淑梅; 张晓实

    2014-01-01

    目的:研究华南地区黑色素瘤的癌基因突变谱,为黑色素瘤分子靶向治疗策略的优化提供理论依据。方法:本研究收集中山大学肿瘤防治中心2000年3月至2009年4月黑色素瘤病理组织蜡块86例,其中肢端黑色素瘤28例、黏膜黑色素瘤28例、非慢性阳光损伤型黑色素瘤30例,采用Sequenom平台(OncoCarta Panel v1.0和MassARRAY体系)研究黑色素瘤癌基因的突变谱。结果:有38.4%(33/86)的黑色素瘤病灶可见基因突变,突变的基因包括:BRAF(16.3%)、NRAS(10.5%)、KIT(5.8%)、EGFR(4.7%)、HRAS(2.3%)、KRAS(2.3%)、MET(2.3%)和PIK3CA(1.2%)。其中BRAF突变型患者与野生型相比发病年龄早[(45.7±15.3)岁vs.(55.9±12.7)岁,P=0.01],NRAS突变型患者与野生型相比溃疡表现率高(88.9%vs.48.1%,P=0.049)。结论:本研究是对华南地区黑色素瘤癌基因突变谱的综合分析,有利于进一步指导华南地区黑色素瘤的个体化治疗。%Objective:To examine the oncogenic mutations involved in melanoma in Southern China and to provide a theoretical basis for the development of melanoma molecular targeted therapy strategy. Methods:The Sequenom platform (OncoCarta Panel v1.0 and MassARRAY System) was used to determine the prevalence of oncogene mutations in 28 acral melanoma samples, 28 mucosal mel-anoma samples, and 30 non-chronic sun-induced-damage (no-CSD) melanoma samples from Southern China. Results:At least one mu-tation was detected in 33 of the 86 melanomas (38.4%) with mutations observed in BRAF (16.3%), NRAS (10.5%), KIT (5.8%), EGFR (4.7%), HRAS (2.3%), KRAS (2.3%), MET (2.3%), and PIK3CA (1.2%). In BRAF, the age of patients with mutations was significantly lower than those without BRAF mutation (45.7±15.3 vs. 55.9±12.7, P=0.01). Patients with mutations in NRAS were more likely to have ulceration compared with patients without NRAS mutations (88.9%vs. 48.1%, P=0

  3. Expression of P21ras and PIK3CA in human tissues of hepatocellular carcinoma and hepatic cirrhosis%P21ras、PIK3CA在肝癌与肝硬化中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    郑鹏飞; 李玉民; 李汛; 刘士源; 张全保; 何雯婷; 刘涛

    2010-01-01

    Objective To investigate the expression of P21ras and PIK3CA proteins in hepatitis B virus-related hepatocellular carcinoma(HBV-HCC), post-hepatitis B hepatic cirrhosis (HBV-hepatic cirrhosis)and normal hepatic tissues specimen, and their correlation between HBV-HCC and HBV-hepatic cirrhosis tissues.Methods Using immunohistochemistry, the expression of P21ras and PIK3CA proteins in 34 cases of HBV-HCC, 37 cases of HBV-hepatic cirrhosis and 30 cases of normal liver tissues specimen were detected and compared. Results The mean gray scales of P21ras protein in HBV-HCC, HBV-hepatic cirrhosis and normal hepatic tissue specimen were 138.86 ± 2.9, 145. 34 ± 2.06 and 152.07 ± 1.17 (P < 0. 0l), respectively, and were related to the progression of hepatopathy (P <0.01). The mean gray scales of PIK3CA protein in HBV-HCC, HBV-hepatic cirrhosis and normal hepatic tissue specimen were 138.20 ± 3. 14, 149.49 ±0. 78 and 154.71 ± 1.29 (P < 0.01), respectively, and were related to the progression of hepatopathy (P < 0. 01).There were apparent correlation between P21ras and PIK3CA in HBV-HCC and HBV-hepatic cirrhosis respectively (r =0. 64, P <0. 05; r =0. 42, P <0. 05). Conclusion The overexpression of P21ras and PIK3CA in HCC and hepatic cirrhosis tissue suggests that they participate in the tumorigenesis and development of hepatocellular carcinoma and hepatic cirrhosis, and there may be a signal transduction pathway of P21ras-PI3K in HBV-HCC and HBV-hepatic cirrhosis.%目的 研究P21ras和PIK3CA蛋白在乙肝病毒相关性肝细胞肝癌、乙型病毒性肝炎后肝硬化及正常肝组织标本中的表达差异、相关性及意义.方法 收集乙肝病毒相关性肝细胞肝癌组织标本34例、乙型病毒性肝炎后肝硬化37例、正常肝组织标本30例,用免疫组化检测P21ras和PIK3CA蛋白表达水平,并进行比较和相关性分析.结果 P21 ras在乙肝病毒相关性肝细胞肝癌、乙型病毒性肝炎后肝硬化及正常肝组

  4. Mutations in the RET proto-oncogene in sporadic pheochromocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, S.N.; Lindor, N.M.; Honchel, R. [Mayo Clinic and Foundation, Rochester, MN (United States)] [and others

    1994-09-01

    Mutations in the RET proto-oncogene have recently been demonstrated in kindreds with Multiple Endocrine Neoplasia (MEN) types 2A and 2B. Both of these autosomal dominant disorders are characterized by the development of neoplasia in cell lines of neural crest origin, such as medullary throid carcinomas and pheochromocytomas. Individuals with MEN 2B have, in addition, ganglioneuromas of the lips, tongue and colon, a marfanoid habitus, and corneal nerve thickening. Approximately 90% of patients with MEN 2A have a germline mutation in exons 10 or 11, while 95% of patients with MEN 2B have a T{yields}C transition in codon 918 of exon 16. In this study, pheochromocytomas from 29 individuals who had no clinical evidence of MEN 2A or 2B (sporadic) were examined for the presence of either germline or somatic mutations in exons 10, 11, and 16 of the RET proto-oncogene. Of the 29 tumors examined, 3 (10%) were found to have a mutation in one of the three exons. One tumor had a G{yields}A transition in codon 609 (exon 10), another had a 6 bp deletion encompassing codons 632 & 633 (exon 11), and the final tumor had a T{yields}C transition in codon 918 (exon 16). These mutations were not found in the corresponding normal DNA from these individuals, indicating that the mutation were somatic in origin. Although we cannot exclude the possibility of mutations in other regions of the RET proto-oncogene, our data suggests that: (1) individuals presenting with apparently sporadic pheochromocytomas are not likely to have undiagnosed MEN 2A or 2B; and (2) somatic mutations in the RET proto-oncogene contribute to the process of tumorigenesis in a small percentage of sporadic pheochromocytomas.

  5. Clinical Genotyping of Non–Small Cell Lung Cancers Using Targeted Next-Generation Sequencing: Utility of Identifying Rare and Co-mutations in Oncogenic Driver Genes

    Directory of Open Access Journals (Sweden)

    Laura J. Tafe

    2016-09-01

    Full Text Available Detection of somatic mutations in non–small cell lung cancers (NSCLCs, especially adenocarcinomas, is important for directing patient care when targeted therapy is available. Here, we present our experience with genotyping NSCLC using the Ion Torrent Personal Genome Machine (PGM and the AmpliSeq Cancer Hotspot Panel v2. We tested 453 NSCLC samples from 407 individual patients using the 50 gene AmpliSeq Cancer Hotspot Panel v2 from May 2013 to July 2015. Using 10 ng of DNA, up to 11 samples were simultaneously sequenced on the Ion Torrent PGM (316 and 318 chips. We identified variants with the Ion Torrent Variant Caller Plugin, and Golden Helix's SVS software was used for annotation and prediction of the significance of the variants. Three hundred ninety-eight samples were successfully sequenced (12.1% failure rate. In all, 633 variants in 41 genes were detected with a median of 2 (range of 0 to 7 variants per sample. Mutations detected in BRAF, EGFR, ERBB2, KRAS, NRAS, and PIK3CA were considered potentially actionable and were identified in 237 samples, most commonly in KRAS (37.9%, EGFR (11.1%, BRAF (4.8%, and PIK3CA (4.3%. In our patient population, all mutations in EGFR, KRAS, and BRAF were mutually exclusive. The Ion Torrent Ampliseq technology can be utilized on small biopsy and cytology specimens, requires very little input DNA, and can be applied in clinical laboratories for genotyping of NSCLC. This targeted next-generation sequencing approach allows for detection of common and also rare mutations that are clinically actionable in multiple patients simultaneously.

  6. A pathway-centric survey of somatic mutations in Chinese patients with colorectal carcinomas.

    Directory of Open Access Journals (Sweden)

    Chao Ling

    Full Text Available Previous genetic studies on colorectal carcinomas (CRC have identified multiple somatic mutations in four candidate pathways (TGF-β, Wnt, P53 and RTK-RAS pathways on populations of European ancestry. However, it is under-studied whether other populations harbor different sets of hot-spot somatic mutations in these pathways and other oncogenes. In this study, to evaluate the mutational spectrum of novel somatic mutations, we assessed 41 pairs of tumor-stroma tissues from Chinese patients with CRC, including 29 colon carcinomas and 12 rectal carcinomas. We designed Illumina Custom Amplicon panel to target 43 genes, including genes in the four candidate pathways, as well as several known oncogenes for other cancers. Candidate mutations were validated by Sanger sequencing, and we further used SIFT and PolyPhen-2 to assess potentially functional mutations. We discovered 3 new somatic mutations in gene APC, TCF7L2, and PIK3CA that had never been reported in the COSMIC or NCI-60 databases. Additionally, we confirmed 6 known somatic mutations in gene SMAD4, APC, FBXW7, BRAF and PTEN in Chinese CRC patients. While most were previously reported in CRC, one mutation in PTEN was reported only in malignant endometrium cancer. Our study confirmed the existence of known somatic mutations in the four candidate pathways for CRC in Chinese patients. We also discovered a number of novel somatic mutations in these pathways, which may have implications for the pathogenesis of CRC.

  7. Structural Effects of Oncogenic PI3K alpha Mutations

    Energy Technology Data Exchange (ETDEWEB)

    S Gabelli; C Huang; D Mandelker; O Schmidt-Kittler; B Vogelstein; L Amzel

    2011-12-31

    Physiological activation of PI3K{alpha} is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3K{alpha} result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  8. Structural effects of oncogenic PI3Kα mutations.

    Science.gov (United States)

    Gabelli, Sandra B; Huang, Chuan-Hsiang; Mandelker, Diana; Schmidt-Kittler, Oleg; Vogelstein, Bert; Amzel, L Mario

    2010-01-01

    Physiological activation of PI3Kα is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3Kα result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  9. KRAS mutation testing in metastatic colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Cong Tan; Xiang Du

    2012-01-01

    The KRAS oncogene is mutated in approximately 35%-45% of colorectal cancers,and KRAS mutational status testing has been highlighted in recent years.The most frequent mutations in this gene,point substitutions in codons 12 and 13,were validated as negative predictors of response to anti-epidermal growth factor receptor antibodies.Therefore,determining the KRAS mutational status of tumor samples has become an essential tool for managing patients with colorectal cancers.Currently,a variety of detection methods have been established to analyze the mutation status in the key regions of the KRAS gene; however,several challenges remain related to standardized and uniform testing,including the selection of tumor samples,tumor sample processing and optimal testing methods.Moreover,new testing strategies,in combination with the mutation analysis of BRAF,PIK3CA and loss of PTEN proposed by many researchers and pathologists,should be promoted.In addition,we recommend that microsatellite instability,a prognostic factor,be added to the abovementioned concomitant analysis.This review provides an overview of KRAS biology and the recent advances in KRAS mutation testing.This review also addresses other aspects of status testing for determining the appropriate treatment and offers insight into the potential drawbacks of mutational testing.

  10. Mutations of the KRAS oncogene in endometrial hyperplasia and carcinoma.

    Directory of Open Access Journals (Sweden)

    Wiesława Niklińska

    2009-05-01

    Full Text Available The aim of this study was to examine the prevalence and clinicopathological significance of KRAS point mutation in endometrial hyperplasia and carcinoma. We analysed KRAS in 11 cases of complex atypical hyperplasia and in 49 endometrial carcinomas using polymerase chain reaction associated with restriction fragment length polymorphism (PCR-RFPL. Point mutations at codon 12 of KRAS oncogene were identified in 7 of 49 (14,3% tumor specimens and in 2 of 11 (18,2% hyperplasias. No correlation was found between KRAS gene mutation and age at onset, histology, grade of differentiation and clinical stage. We conclude that KRAS mutation is a relatively common event in endometrial carcinogenesis, but with no prognostic value.

  11. Human Papillomavirus 16E6 Oncogene Mutation in Cervical Cancer

    Institute of Scientific and Technical Information of China (English)

    Feng Sun; Xiao-qin Ha; Tong-de Lv; Chuan-ping Xing; Bin Liu; Xiao-zhe Cao

    2009-01-01

    Objective: Cervical cancer (CC) is the second most common type of cancer in women worldwide, after breast cancer. High-risk human papillomaviruses (HR-HPVs) are considered to be the major causes of cervical cancer. HPV16 is the most common type of HR-HPVs and HPV16 E6 gene is one of the major oncogenes. Specific mutations are considered as dangerous factors causing CC. This study was designed to find mutations of HPV16 E6 and the relationship between the mutations and the happening of CC.Methods: The tissue DNA was extracted from 15 biopsies of CC. Part of HPV16 E6 gene (nucleotide 201-523) was amplified by polymerase chain reaction (PCR) from the CC tissue DNA. The PCR fragments were sequenced and analyzed.Results: The result of PCR showed that the positive rate of HPV16 E6 was 93.33% (14/15). After sequencing and analyzing, in the 13 out of 14 PCR fragments, 4 maintained prototype (30.77%), 8 had a same 350G mutation (61.54%), and 1 had a 249G mutation (7.69%).Conclusion: This study suggest that there is a high infection rate of HPV in cervical cancer and most of the HPV16 E6 gene has mutations. Those mutations may have an association with the development of cervical cancer.

  12. A frequent kinase domain mutation that changes the interaction between PI3K[alpha] and the membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mandelker, Diana; Gabelli, Sandra B.; Schmidt-Kittler, Oleg; Zhu, Jiuxiang; Cheong, Ian; Huang, Chuan-Hsiang; Kinzler, Kenneth W.; Vogelstein, Bert; Amzel, L. Mario; (JHU-MED); (HHMI)

    2009-12-01

    Mutations in oncogenes often promote tumorigenesis by changing the conformation of the encoded proteins, thereby altering enzymatic activity. The PIK3CA oncogene, which encodes p110{alpha}, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3K{alpha}), is one of the two most frequently mutated oncogenes in human cancers. We report the structure of the most common mutant of p110{alpha} in complex with two interacting domains of its regulatory partner (p85{alpha}), both free and bound to an inhibitor (wortmannin). The N-terminal SH2 (nSH2) domain of p85{alpha} is shown to form a scaffold for the entire enzyme complex, strategically positioned to communicate extrinsic signals from phosphopeptides to three distinct regions of p110{alpha}. Moreover, we found that Arg-1047 points toward the cell membrane, perpendicular to the orientation of His-1047 in the WT enzyme. Surprisingly, two loops of the kinase domain that contact the cell membrane shift conformation in the oncogenic mutant. Biochemical assays revealed that the enzymatic activity of the p110{alpha} His1047Arg mutant is differentially regulated by lipid membrane composition. These structural and biochemical data suggest a previously undescribed mechanism for mutational activation of a kinase that involves perturbation of its interaction with the cellular membrane.

  13. EGFR related mutational status and association to clinical outcome of third-line cetuximab-irinotecan in metastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Frifeldt Sanne K

    2011-03-01

    Full Text Available Abstract Background As supplement to KRAS mutational analysis, BRAF and PIK3CA mutations as well as expression of PTEN may account for additional non-responders to anti-EGFR-MoAbs treatment. The aim of the present study was to investigate the utility as biomarkers of these mutations in a uniform cohort of patients with metastatic colorectal cancer treated with third-line cetuximab/irinotecan. Methods One-hundred-and-seven patients were prospectively included in the study. Mutational analyses of KRAS, BRAF and PIK3CA were performed on DNA from confirmed malignant tissue using commercially available kits. Loss of PTEN and EGFR was assessed by immunohistochemistry. Results DNA was available in 94 patients. The frequency of KRAS, BRAF and PIK3CA mutations were 44%, 3% and 14%, respectively. All were non-responders. EGF receptor status by IHC and loss of PTEN failed to show any clinical importance. KRAS and BRAF were mutually exclusive. Supplementing KRAS analysis with BRAF and PIK3CA indentified additional 11% of non-responders. Patient with any mutation had a high risk of early progression, whereas triple-negative status implied a response rate (RR of 41% (p Conclusion Triple-negative status implied a clear benefit from treatment, and we suggest that patient selection for third-line combination therapy with cetuximab/irinotecan could be based on triple mutational testing.

  14. Mutational Analysis of Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Erstad, Derek J. [Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States); Cusack, James C. Jr., E-mail: jcusack@mgh.harvard.edu [Division of Surgical Oncology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States)

    2014-10-17

    Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine malignancy that is associated with a poor prognosis. The pathogenesis of MCC is not well understood, and despite a recent plethora of mutational analyses, we have yet to find a set of signature mutations implicated in the majority of cases. Mutations, including TP53, Retinoblastoma and PIK3CA, have been documented in subsets of patients. Other mechanisms are also likely at play, including infection with the Merkel cell polyomavirus in a subset of patients, dysregulated immune surveillance, epigenetic alterations, aberrant protein expression, posttranslational modifications and microRNAs. In this review, we summarize what is known about MCC genetic mutations and chromosomal abnormalities, and their clinical significance. We also examine aberrant protein function and microRNA expression, and discuss the therapeutic and prognostic implications of these findings. Multiple clinical trials designed to selectively target overexpressed oncogenes in MCC are currently underway, though most are still in early phases. As we accumulate more molecular data on MCC, we will be better able to understand its pathogenic mechanisms, develop libraries of targeted therapies, and define molecular prognostic signatures to enhance our clinicopathologic knowledge.

  15. Activating mutation in MET oncogene in familial colorectal cancer

    Directory of Open Access Journals (Sweden)

    Schildkraut Joellen M

    2011-10-01

    Full Text Available Abstract Background In developed countries, the lifetime risk of developing colorectal cancer (CRC is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies. Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will

  16. Screening for circulating RAS/RAF mutations by multiplex digital PCR

    DEFF Research Database (Denmark)

    Andersen, Rikke Fredslund; Jakobsen, Anders

    2016-01-01

    by technical challenges primarily due to the low levels of ctDNA in patients with localized disease and in patients responding to therapy. The approach presented here is a multiplex digital PCR method of screening for 31 mutations in the KRAS, NRAS, BRAF, and PIK3CA genes in the plasma. The upper level...

  17. A systematic study of gene mutations in urothelial carcinoma; inactivating mutations in TSC2 and PIK3R1.

    Directory of Open Access Journals (Sweden)

    Gottfrid Sjödahl

    Full Text Available BACKGROUND: Urothelial carcinoma (UC is characterized by frequent gene mutations of which activating mutations in FGFR3 are the most frequent. Several downstream targets of FGFR3 are also mutated in UC, e.g., PIK3CA, AKT1, and RAS. Most mutation studies of UCs have been focused on single or a few genes at the time or been performed on small sample series. This has limited the possibility to investigate co-occurrence of mutations. METHODOLOGY/PRINCIPAL FINDINGS: We performed mutation analyses of 16 genes, FGFR3, PIK3CA, PIK3R1 PTEN, AKT1, KRAS, HRAS, NRAS, BRAF, ARAF, RAF1, TSC1, TSC2, APC, CTNNB1, and TP53, in 145 cases of UC. We show that FGFR3 and PIK3CA mutations are positively associated. In addition, we identified PIK3R1 as a target for mutations. We demonstrate a negative association at borderline significance between FGFR3 and RAS mutations, and show that these mutations are not strictly mutually exclusive. We show that mutations in BRAF, ARAF, RAF1 rarely occurs in UC. Our data emphasize the possible importance of APC signaling as 6% of the investigated tumors either showed inactivating APC or activating CTNNB1 mutations. TSC1, as well as TSC2, that constitute the mTOR regulatory tuberous sclerosis complex were found to be mutated at a combined frequency of 15%. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a significant association between FGFR3 and PIK3CA mutations in UC. Moreover, the identification of mutations in PIK3R1 further emphasizes the importance of the PI3-kinase pathway in UC. The presence of TSC2 mutations, in addition to TSC1 mutations, underlines the involvement of mTOR signaling in UC.

  18. Spliceosome mutations exhibit specific associations with epigenetic modifiers and proto-oncogenes mutated in myelodysplastic syndrome.

    Science.gov (United States)

    Mian, Syed A; Smith, Alexander E; Kulasekararaj, Austin G; Kizilors, Aytug; Mohamedali, Azim M; Lea, Nicholas C; Mitsopoulos, Konstantinos; Ford, Kevin; Nasser, Erick; Seidl, Thomas; Mufti, Ghulam J

    2013-07-01

    evolution with emerging oncogenic mutations adversely affecting patients' outcome, implicating spliceosome mutations as founder mutations in myelodysplastic syndromes.

  19. Mutation of genes of the PI3K/AKT pathway in breast cancer supports their potential importance as biomarker for breast cancer aggressiveness.

    Science.gov (United States)

    Tserga, Aggeliki; Chatziandreou, Ilenia; Michalopoulos, Nicolaos V; Patsouris, Efstratios; Saetta, Angelica A

    2016-07-01

    Deregulation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is closely associated with cancer development and cancer progression. PIK3CA, AKT1, and PTEN are the fundamental molecules of the PI3K/AKT pathway with increased mutation rates in cancer cases leading to aberrant regulation of the pathway. Even though molecular alterations of the PI3K/AKT pathway have been studied in breast cancer, correlations between specific molecular alterations and clinicopathological features remain contradictory. In this study, we examined mutations of the PI3K/AKT pathway in 75 breast carcinomas using high-resolution melting analysis and pyrosequencing, in parallel with analysis of relative expression of PIK3CA and AKT2 genes. Mutations of PIK3CA were found in our cohort in 21 cases (28 %), 10 (13 %) in exon 9 and 11(15 %) in exon 20. Mutation frequency of AKT1 and PTEN genes was 4 and 3 %, respectively. Overall, alterations in the PI3K/AKT signaling cascade were detected in 35 % of the cases. Furthermore, comparison of 50 breast carcinomas with adjacent normal tissues showed elevated PIK3CA messenger RNA (mRNA) levels in 18 % of tumor cases and elevated AKT2 mRNA levels in 14 %. Our findings, along with those of previous studies, underline the importance of the PI3K/AKT pathway components as potential biomarkers for breast carcinogenesis.

  20. A germline RET proto-oncogene mutation in multiple members of an ...

    African Journals Online (AJOL)

    Makia Marafie

    2016-09-17

    Sep 17, 2016 ... multiple members of an Arab family with variable onset of MEN type ... fashion and caused by germline mutation in RET proto- oncogene. The main .... ing sudden severe high blood pressure crises that required immediate ...

  1. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer

    Science.gov (United States)

    Sobani, Zain A; Sawant, Ashwin; Jafri, Mikram; Correa, Amit Keith; Sahin, Ibrahim Halil

    2016-01-01

    Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade. PMID:27777877

  2. Mutational dichotomy in desmoplastic malignant melanoma corroborated by multigene panel analysis.

    Science.gov (United States)

    Jahn, Stephan W; Kashofer, Karl; Halbwedl, Iris; Winter, Gerlinde; El-Shabrawi-Caelen, Laila; Mentzel, Thomas; Hoefler, Gerald; Liegl-Atzwanger, Bernadette

    2015-07-01

    Desmoplastic malignant melanoma is a distinct melanoma entity histologically subtyped into mixed and pure forms due to significantly reduced lymph node metastases in the pure form. Recent reports investigating common actionable driver mutations have demonstrated a lack of BRAF, NRAS, and KIT mutation in pure desmoplastic melanoma. In search for alternative driver mutations next generation amplicon sequencing for hotspot mutations in 50 genes cardinal to tumorigenesis was performed and in addition the RET G691S polymorphism was investigated. Data from 21 desmoplastic melanomas (12 pure and 9 mixed) were retrieved. Pure desmoplastic melanomas were either devoid of mutations (50%) or displayed mutations in tumor suppressor genes (TP53, CDKN2A, and SMAD4) singularly or in combination with the exception of a PIK3CA double-mutation lacking established biological relevance. Mixed desmoplastic melanomas on the contrary were frequently mutated (89%), and 67% exhibited activating mutations similar to common-type cutaneous malignant melanomas (BRAF, NRAS, FGFR2, and ERBB2). Separate analysis of morphologically heterogeneous tumor areas in four mixed desmoplastic malignant melanomas displayed no difference in mutation status and RET G691 status. GNAQ and GNA11, two oncogenes in BRAF and NRAS wild-type uveal melanomas, were not mutated in our cohort. The RET G691S polymorphism was found in 25% of pure and 38% of mixed desmoplastic melanomas. Apart from RET G691S our findings demonstrate absence of activating driver mutations in pure desmoplastic melanoma beyond previously investigated oncogenes (BRAF, NRAS, and KIT). The findings underline the therapeutic dichotomy of mixed versus pure desmoplastic melanoma with regard to activating mutations primarily of the mitogen-activated protein kinase pathway.

  3. High frequency of the HRAS oncogene codon 12 mutation in Macedonian patients with urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Sasho Panov

    2004-01-01

    Full Text Available Point mutations at codon 12 of the HRAS (v-Ha-ras Harvey rat sarcoma viral oncogene homolog oncogene are one of the best defined and widely studied molecular genetic events in transitional cell carcinoma (TCC of the urinary bladder. The aim of this study was to use the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP analysis of paraffin-embedded tissue-derived DNA to determine the frequency of the HRAS oncogene G ->T codon 12 mutation in TCC patients being treated at the University Urology Clinic in Skopje, Republic of Macedonia. DNA isolated from paraffin-embedded tissue (PET surgically removed TCC specimens of 62 (81.58% out of 76 patients were successfully amplified, the remaining 14 (18.42% showing compromised DNA integrity. The codon 12 mutation of the HRAS oncogene was found in 24 (38.71% out of 62 successfully tested TCC urinary bladder samples. No significant relationship between the mutation frequency and the histopathological grade of tumor differentiation was detected (chi² = 0.044; p = 0.978. The relatively high frequency of mutations found in our study was comparable with some of the previously reported data obtained by this and/or other PCR-based methods. This highly sensitive and specific PCR-RFLP analysis was demonstrated to be a suitable method for the detection of mutations at codon 12 of the HRAS oncogene in PET samples of urinary bladder TCC.

  4. Oncogenic GNAQ mutations are not correlated with disease-free survival in uveal melanoma

    NARCIS (Netherlands)

    Bauer, J.; Kilic, E.; Vaarwater, J.; Bastian, B. C.; Garbe, C.; de Klein, A.

    2009-01-01

    BACKGROUND: Recently, oncogenic G protein alpha subunit q (GNAQ) mutations have been described in about 50% of uveal melanomas and in the blue nevi of the skin. METHODS: GNAQ exon 5 was amplified from 75 ciliary body and choroidal melanoma DNAs and sequenced directly. GNAQ mutation status was correl

  5. Megalencephaly syndromes: exome pipeline strategies for detecting low-level mosaic mutations.

    Directory of Open Access Journals (Sweden)

    William J Tapper

    Full Text Available Two megalencephaly (MEG syndromes, megalencephaly-capillary malformation (MCAP and megalencephaly-polymicrogyriapolydactyly-hydrocephalus (MPPH, have recently been defined on the basis of physical and neuroimaging features. Subsequently, exome sequencing of ten MEG cases identified de-novo postzygotic mutations in PIK3CA which cause MCAP and de-novo mutations in AKT and PIK3R2 which cause MPPH. Here we present findings from exome sequencing three unrelated megalencephaly patients which identified a causal PIK3CA mutation in two cases and a causal PIK3R2 mutation in the third case. However, our patient with the PIK3R2 mutation which is considered to cause MPPH has a marked bifrontal band heterotopia which is a feature of MCAP. Furthermore, one of our patients with a PIK3CA mutation lacks syndactyly/polydactyly which is a characteristic of MCAP. These findings suggest that the overlap between MCAP and MPPH may be greater than the available studies suggest. In addition, the PIK3CA mutation in one of our patients could not be detected using standard exome analysis because the mutation was observed at a low frequency consistent with somatic mosaicism. We have therefore investigated several alternative methods of exome analysis and demonstrate that alteration of the initial allele frequency spectrum (AFS, used as a prior for variant calling in samtools, had the greatest power to detect variants with low mutant allele frequencies in our 3 MEG exomes and in simulated data. We therefore recommend non-default settings of the AFS in combination with stringent quality control when searching for causal mutation(s that could have low levels of mutant reads due to post-zygotic mutation.

  6. Mutation of RET proto-oncogene in Hirschsprung's disease and intestinal neuronal dysplasia

    Institute of Scientific and Technical Information of China (English)

    Jin-Fa Tou; Min-Ju Li; Tao Guan; Ji-Cheng Li; Xiong-Kai Zhu; Zhi-Gang Feng

    2006-01-01

    AIM: To investigate the genetic relationship between Hirschsprung's disease (HD) and intestinal neuronal dysplasia (IND) in Chinese population.METHODS: Peripheral blood samples were obtained from 30 HD patients, 20 IND patients, 18 HD/IND combined patients and 20 normal individuals as control.Genomic DNA was extracted according to standard procedure. Exons 11,13,15,17 of RET proto-oncogene were amplified by polymerase chain reaction (PCR).The mutations of RET proto-oncogene were analyzed by single strand conformational polymorphism (SSCP)and sequencing of the positive amplified products was performed.RESULTS: Eight germline sequence variants were detected. In HD patients, 2 missense mutations in exon 11at nucleotide 15165 G→A (G667S), 2 frameshift mutations in exon 13 at nucleotide 18974 (18974insG), 1missense mutation in exon 13 at nucleotide 18919 A→G (K756E) and 1silent mutation in exon 15 at nucleotide 20692 G→A(Q916Q) were detected. In HD/IND combined patients, 1 missense mutation in exon 11 at nucleotide 15165 G→A and 1 silent mutation in exon 13at nucleotide 18888 T→G (L745L) were detected. No mutation was found in IND patients and controls.CONCLUSION: Mutation of RET proto-oncogene is involved in the etiopathogenesis of HD. The frequency of RET proto-oncogene mutation is quite different between IND and HD in Chinese population. IND is a distinct clinical entity genetically different from HD.

  7. Whole genomes redefine the mutational landscape of pancreatic cancer

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J.; Fink, J. Lynn; Holmes, Oliver; Kazakoff, Stephen H.; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J.; Lee, Hong C.; Jones, Marc D.; Nagrial, Adnan M.; Humphris, Jeremy; Chantrill, Lorraine A.; Chin, Venessa; Steinmann, Angela M.; Mawson, Amanda; Humphrey, Emily S.; Colvin, Emily K.; Chou, Angela; Scarlett, Christopher J.; Pinho, Andreia V.; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S.; Kench, James G.; Pettitt, Jessica A.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B.; Graham, Janet S.; Niclou, Simone P.; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A.; Gill, Anthony J.; Eshleman, James R.; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A.; Pearson, John V.; Biankin, Andrew V.; Grimmond, Sean M.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded. PMID:25719666

  8. [ Spectrum of oncogene mutations is different in melanoma subtypes].

    Science.gov (United States)

    Mazurenko, N N; Tsyganova, I V; Lushnikova, A A; Ponkratova, D A; Anurova, O A; Cheremushkin, E A; Mikhailova, I N; Demidov, L V

    2015-01-01

    Melanoma is the most lethal malignancy of skin, which is comprised of clinically relevant molecular subsets defined by specific "driver" mutations in BRAF, NRAS, and KIT genes. Recently, the better results in melanoma treatment were obtained with the mutation-specific inhibitors that have been developed for clinical use and target only patients with particular tumor genotypes. The aim of the study was to characterize the spectrum of "driver" mutations in melanoma subtypes from 137 patients with skin melanoma and 14 patients with mucosal melanoma. In total 151 melanoma cases, the frequency of BRAF, NRAS, KIT, PDGFRA, and KRAS mutations was 55.0, 10.6, 4.0, 0.7, and 0.7%, respectively. BRAF mutations were found in 69% of cutaneous melanoma without UV exposure and in 43% of cutaneous melanoma with chronic UV exposure (p=0.045), rarely in acral and mucosal melanomas. Most of melanomas containing BRAF mutations, V600E (92%) and V600K (6.0%) were potentially sensitive to inhibitors vemurafenib and dabrafenib. NRAS mutations were more common in cutaneous melanoma with chronic UV exposure (26.0%), in acral and mucosal melanomas; the dominant mutations being Q61R/K/L (87.5%). KIT mutations were found in cutaneous melanoma with chronic UV exposure (8.7%) and mucosal one (28.6%), but not in acral melanoma. Most of KIT mutations were identified in exon 11; these tumors being sensitive to tyrosine kinase inhibitors. This is the first monitoring of BRAF, NRAS, KIT, PDGFRA, and KRAS hotspot mutations in different subtypes of melanoma for Russian population. On the base of data obtained, one can suppose that at the molecular level melanomas are heterogeneous tumors that should be tested for "driver" mutations in the each case for evaluation of the potential sensitivity to target therapy. The obtained results were used for treatment of melanoma patients.

  9. Normal Expression of a Rearranged and Mutated c-myc Oncogene after Transfection into Fibroblasts

    Science.gov (United States)

    Richman, Adam; Hayday, Adrian

    1989-10-01

    Expression of the c-myc oncogene is deregulated in a variety of malignancies. Rearrangement and mutation of the c-myc locus is a characteristic feature of human Burkitt's lymphoma. Whether deregulation is solely a result of mutation of c-myc or whether it is influenced by the transformed B cell context has not been determined. A translocated and mutated allele of c-myc was stably transfected into fibroblasts. The rearranged allele was expressed indistinguishably from a normal c-myc gene: it had serum-regulated expression, was transcribed with normal promoter preference, and was strongly attenuated. Thus mutations by themselves are insufficient to deregulate c-myc transcription.

  10. K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study

    NARCIS (Netherlands)

    Brink, M.; Goeij, A.F.P.M. de; Weijenberg, M.P.; Roemen, G.M.J.M.; Lentjes, M.H.F.M.; Pachen, M.M.M.; Smits, K.M.; Bruïne, A.P. de; Goldbohm, R.A.; Brandt, P.A. van den

    2003-01-01

    Activation of K-ras oncogene has been implicated in colorectal carcinogenesis, being mutated in 30-60% of the adenocarcinomas. In this study, 737 incident colorectal cancer (CRC) patients, originating from 120 852 men and women (55-69 years at baseline) participating in the Netherlands Cohort Study

  11. Correlation between oncogenic mutations and parameter sensitivity of the apoptosis pathway model.

    Directory of Open Access Journals (Sweden)

    Jia Chen

    2014-01-01

    Full Text Available One of the major breakthroughs in oncogenesis research in recent years is the discovery that, in most patients, oncogenic mutations are concentrated in a few core biological functional pathways. This discovery indicates that oncogenic mechanisms are highly related to the dynamics of biologic regulatory networks, which govern the behaviour of functional pathways. Here, we propose that oncogenic mutations found in different biological functional pathways are closely related to parameter sensitivity of the corresponding networks. To test this hypothesis, we focus on the DNA damage-induced apoptotic pathway--the most important safeguard against oncogenesis. We first built the regulatory network that governs the apoptosis pathway, and then translated the network into dynamics equations. Using sensitivity analysis of the network parameters and comparing the results with cancer gene mutation spectra, we found that parameters that significantly affect the bifurcation point correspond to high-frequency oncogenic mutations. This result shows that the position of the bifurcation point is a better measure of the functionality of a biological network than gene expression levels of certain key proteins. It further demonstrates the suitability of applying systems-level analysis to biological networks as opposed to studying genes or proteins in isolation.

  12. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  13. Preliminary Study on c-Ha-ras Oncogene Mutations in Hydatidiform Mole Tissues

    Institute of Scientific and Technical Information of China (English)

    王芳; 谭运年; 陈碧; 李英勇; 康旭

    2001-01-01

    Objective To study the presence of c-Ha-fas oncogene mutations in hydatidiform mole (HM) tissues and to further explore its relationship with mole's malignancy Materials & methods c-Ha-ras codon 12 mutation was detected in invasive and noninvasive HM by using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP).Results c-Ha-fas codon 12 mutation was detected in 7 samples (53. 85%) of 13 invasive HM and 8 samples (26. 67%) in 30 non-invasive HM. c-Ha-ras mutations also showed loss of wild-type c-Ha-fas. No mutation in control group was observed.Conclusion The tendency of c-Ha-ras codon 12 mutation may be related with a higher invasive degree of HM.

  14. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration.

    Science.gov (United States)

    Smid, Marcel; Rodríguez-González, F Germán; Sieuwerts, Anieta M; Salgado, Roberto; Prager-Van der Smissen, Wendy J C; Vlugt-Daane, Michelle van der; van Galen, Anne; Nik-Zainal, Serena; Staaf, Johan; Brinkman, Arie B; van de Vijver, Marc J; Richardson, Andrea L; Fatima, Aquila; Berentsen, Kim; Butler, Adam; Martin, Sancha; Davies, Helen R; Debets, Reno; Gelder, Marion E Meijer-Van; van Deurzen, Carolien H M; MacGrogan, Gaëtan; Van den Eynden, Gert G G M; Purdie, Colin; Thompson, Alastair M; Caldas, Carlos; Span, Paul N; Simpson, Peter T; Lakhani, Sunil R; Van Laere, Steven; Desmedt, Christine; Ringnér, Markus; Tommasi, Stefania; Eyford, Jorunn; Broeks, Annegien; Vincent-Salomon, Anne; Futreal, P Andrew; Knappskog, Stian; King, Tari; Thomas, Gilles; Viari, Alain; Langerød, Anita; Børresen-Dale, Anne-Lise; Birney, Ewan; Stunnenberg, Hendrik G; Stratton, Mike; Foekens, John A; Martens, John W M

    2016-09-26

    A recent comprehensive whole genome analysis of a large breast cancer cohort was used to link known and novel drivers and substitution signatures to the transcriptome of 266 cases. Here, we validate that subtype-specific aberrations show concordant expression changes for, for example, TP53, PIK3CA, PTEN, CCND1 and CDH1. We find that CCND3 expression levels do not correlate with amplification, while increased GATA3 expression in mutant GATA3 cancers suggests GATA3 is an oncogene. In luminal cases the total number of substitutions, irrespective of type, associates with cell cycle gene expression and adverse outcome, whereas the number of mutations of signatures 3 and 13 associates with immune-response specific gene expression, increased numbers of tumour-infiltrating lymphocytes and better outcome. Thus, while earlier reports imply that the sheer number of somatic aberrations could trigger an immune-response, our data suggests that substitutions of a particular type are more effective in doing so than others.

  15. High-throughput genotyping in metastatic esophageal squamous cell carcinoma identifies phosphoinositide-3-kinase and BRAF mutations.

    Directory of Open Access Journals (Sweden)

    Chi Hoon Maeng

    Full Text Available BACKGROUND: Given the high incidence of metastatic esophageal squamous cell carcinoma, especially in Asia, we screened for the presence of somatic mutations using OncoMap platform with the aim of defining subsets of patients who may be potential candidate for targeted therapy. METHODS AND MATERIALS: We analyzed 87 tissue specimens obtained from 80 patients who were pathologically confirmed with esophageal squamous cell carcinoma and received 5-fluoropyrimidine/platinum-based chemotherapy. OncoMap 4.0, a mass-spectrometry based assay, was used to interrogate 471 oncogenic mutations in 41 commonly mutated genes. Tumor specimens were prepared from primary cancer sites in 70 patients and from metastatic sites in 17 patients. In order to test the concordance between primary and metastatic sites from the patient for mutations, we analyzed 7 paired (primary-metastatic specimens. All specimens were formalin-fixed paraffin embedded tissues and tumor content was >70%. RESULTS: In total, we have detected 20 hotspot mutations out of 80 patients screened. The most frequent mutation was PIK3CA mutation (four E545K, five H1047R and one H1047L (N = 10, 11.5% followed by MLH1 V384D (N = 7, 8.0%, TP53 (R306, R175H and R273C (N = 3, 3.5%, BRAF V600E (N = 1, 1.2%, CTNNB1 D32N (N = 1, 1.2%, and EGFR P733L (N = 1, 1.2%. Distributions of somatic mutations were not different according to anatomic sites of esophageal cancer (cervical/upper, mid, lower. In addition, there was no difference in frequency of mutations between primary-metastasis paired samples. CONCLUSIONS: Our study led to the detection of potentially druggable mutations in esophageal SCC which may guide novel therapies in small subsets of esophageal cancer patients.

  16. Detection of FLT3 Oncogene Mutations in Acute Myeloid Leukemia Using Conformation Sensitive Gel Electrophoresis

    OpenAIRE

    2008-01-01

    FLT3 (fms-related tyrosine kinase 3) is a receptor tyrosine kinase class III that is expressed on by early hematopoietic progenitor cells and plays an important role in hematopoietic stem cell proliferation, differentiation and survival. FLT3 is also expressed on leukemia blasts in most cases of acute myeloid leukemia (AML). In order to determine the frequency of FLT3 oncogene mutations, we analyzed genomic DNA of adult de novo acute myeloid leukemia (AML). Polymerase chain reaction (PCR) and...

  17. Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers.

    Directory of Open Access Journals (Sweden)

    Chenguang Li

    Full Text Available PURPOSE: We previously showed that 90% (47 of 52; 95% CI, 0.79 to 0.96 of lung adenocarcinomas from East Asian never-smokers harbored well-known oncogenic mutations in just four genes: EGFR, HER2, ALK, and KRAS. Here, we sought to extend these findings to more samples and identify driver alterations in tumors negative for these mutations. EXPERIMENTAL DESIGN: We have collected and analyzed 202 resected lung adenocarcinomas from never smokers seen at Fudan University Shanghai Cancer Center. Since mutations were mutually exclusive in the first 52 examined, we determined the status of EGFR, KRAS, HER2, ALK, and BRAF in stepwise fashion as previously described. Samples negative for mutations in these 5 genes were subsequently examined for known ROS1 fusions by RT-PCR and direct sequencing. RESULTS: 152 tumors (75.3% harbored EGFR mutations, 12 (6% had HER2 mutations, 10 (5% had ALK fusions all involving EML4 as the 5' partner, 4 (2% had KRAS mutations, and 2 (1% harbored ROS1 fusions. No BRAF mutation were detected. CONCLUSION: The vast majority (176 of 202; 87.1%, 95% CI: 0.82 to 0.91 of lung adenocarcinomas from never smokers harbor mutant kinases sensitive to available TKIs. Interestingly, patients with EGFR mutant patients tend to be older than those without EGFR mutations (58.3 Vs 54.3, P = 0.016 and patient without any known oncogenic driver tend to be diagnosed at a younger age (52.3 Vs 57.9, P = 0.013. Collectively, these data indicate that the majority of never smokers with lung adenocarcinoma could benefit from treatment with a specific tyrosine kinase inhibitor.

  18. No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms

    Energy Technology Data Exchange (ETDEWEB)

    Latronico, A.C.; Reincke, M.; Mendonca, B.B. [National Inst. of Child Health and Human Development, Bethesda, MD (United States)] [and others

    1995-03-01

    The mechanism(s) of tumorigenesis for the majority of adrenocortical neoplasms remain unknown. G-Protein-coupled receptors were recently proposed as candidate protooncogenes. That activating mutations of this class of receptors might be important for tumor induction or progression of endocrine neoplasms was strengthened by the recent identification of such mutations in hyperfunctioning thyroid adenomas. To examine whether the ACTH receptor (ACTH-R) gene could be an oncogene in human adrenocortical tumors, we amplified by the polymerase chain reaction and directly sequenced the entire exon of the ACTH-R gene in 25 adrenocortical tumors (17 adenomas and 8 carcinomas) and 2 adrenocortical cancer cell lines. We found no missense point mutations or even silent polymorphisms in any of the tumors and cell lines studied. We conclude that activating mutations of the ACTH-R gene do not represent a frequent mechanism of human adrenocortical tumorigenesis. 15 refs., 2 tabs.

  19. Oncogenic mutation profiling in new lung cancer and mesothelioma cell lines

    Directory of Open Access Journals (Sweden)

    Lam DC

    2015-01-01

    Full Text Available David CL Lam,1 Susan Y Luo,1 Wen Deng,2 Johnny SH Kwan,3 Jaime Rodriguez-Canales,4 Annie LM Cheung,5 Grace HW Cheng,6 Chi-Ho Lin,6 Ignacio I Wistuba,4 Pak C Sham,6 Thomas SK Wan,7 Sai-Wah Tsao5 1Department of Medicine, 2School of Nursing, 3Department of Psychiatry, University of Hong Kong, Hong Kong SAR, People’s Republic of China; 4Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas at Houston, Houston, TX, USA; 5Department of Anatomy, 6Center for Genome Sciences, 7Department of Pathology, University of Hong Kong, Hong Kong SAR, People’s Republic of China Background: Thoracic tumor, especially lung cancer, ranks as the top cancer mortality in most parts of the world. Lung adenocarcinoma is the predominant subtype and there is increasing knowledge on therapeutic molecular targets, namely EGFR, ALK, KRAS, and ROS1, among lung cancers. Lung cancer cell lines established with known clinical characteristics and molecular profiling of oncogenic targets like ALK or KRAS could be useful tools for understanding the biology of known molecular targets as well as for drug testing and screening. Materials and methods: Five new cancer cell lines were established from pleural fluid or biopsy tissues obtained from Chinese patients with primary lung adenocarcinomas or malignant pleural mesothelioma. They were characterized by immunohistochemistry, growth kinetics, tests for tumorigenicity, EGFR and KRAS gene mutations, ALK gene rearrangement and OncoSeq mutation profiling. Results: These newly established lung adenocarcinoma and mesothelioma cell lines were maintained for over 100 passages and demonstrated morphological and immunohistochemical features as well as growth kinetics of tumor cell lines. One of these new cell lines bears EML4-ALK rearrangement variant 2, two lung cancer cell lines bear different KRAS mutations at codon 12, and known single nucleotide polymorphism variants were identified in these cell

  20. Detection of FLT3 Oncogene Mutations in Acute Myeloid Leukemia Using Conformation Sensitive Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Mamdooh Gari

    2008-11-01

    Full Text Available FLT3 (fms-related tyrosine kinase 3 is a receptor tyrosine kinase class III that is expressed on by early hematopoietic progenitor cells and plays an important role in hematopoietic stem cell proliferation, differentiation and survival. FLT3 is also expressed on leukemia blasts in most cases of acute myeloid leukemia (AML. In order to determine the frequency of FLT3 oncogene mutations, we analyzed genomic DNA of adult de novo acute myeloid leukemia (AML. Polymerase chain reaction (PCR and conformation-sensitive gel electrophoresis (CSGE were used for FLT3 exons 11, 14, and 15, followed by direct DNA sequencing. Two different types of functionally important FLT 3 mutations have been identified. Those mutations were unique to patients with inv(16, t(15:17 or t(8;21 and comprised fifteen cases with internal tandem duplication (ITD mutation in the juxtamembrane domain and eleven cases with point mutation (exon 20, Asp835Tyr. The high frequency of the flt3 proto-oncogene mutations in acute myeloid leukemia AML suggests a key role for the receptor function. The association of FLT3 mutations with chromosomal abnormalities invites speculation as to the link between these two changes in the pathogenesis of acute myeloid leukemiaAML. Furthermore, CSGE method has shown to be a rapid and sensitive screening method for detection of nucleotide alteration in FLT3 gene. Finally, this study reports, for the first time in Saudi Arabia, mutations in the human FLT3 gene in acute myeloid leukemia AML patients.

  1. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Fiorella Guadagni

    2012-01-01

    Full Text Available The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine at codon 57. In addition, we found in the same patient’s sample a silent polymorphism at codon 11 (Ala11Ala of exon 1. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 729–733

  2. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer.

    Science.gov (United States)

    Palmirotta, Raffaele; Savonarola, Annalisa; Ludovici, Giorgia; De Marchis, Maria Laura; Covello, Renato; Ettorre, Giuseppe Maria; Ialongo, Cristiano; Guadagni, Fiorella

    2011-01-01

    The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine) at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine) at codon 57. In addition, we found in the same patient's sample a silent polymorphism at codon 11 (Ala11Ala) of exon 1.

  3. Mutational profiling of familial male breast cancers reveals similarities with luminal A female breast cancer with rare TP53 mutations.

    Science.gov (United States)

    Deb, S; Wong, S Q; Li, J; Do, H; Weiss, J; Byrne, D; Chakrabarti, A; Bosma, T; Fellowes, A; Dobrovic, A; Fox, S B

    2014-12-09

    Male breast cancer (MBC) is still poorly understood with a large proportion arising in families with a history of breast cancer. Genomic studies have focused on germline determinants of MBC risk, with minimal knowledge of somatic changes in these cancers. Using a TruSeq amplicon cancer panel, this study evaluated 48 familial MBCs (3 BRCA1 germline mutant, 17 BRCA2 germline mutant and 28 BRCAX) for hotspot somatic mutations and copy number changes in 48 common cancer genes. Twelve missense mutations included nine PIK3CA mutations (seven in BRCAX patients), two TP53 mutations (both in BRCA2 patients) and one PTEN mutation. Common gains were seen in GNAS (34.1%) and losses were seen in GNAQ (36.4%), ABL1 (47.7%) and ATM (34.1%). Gains of HRAS (37.5% vs 3%, P=0.006), STK11 (25.0% vs 0%, P=0.01) and SMARCB1 (18.8% vs 0%, P=0.04) and the loss of RB1 (43.8% vs 13%, P=0.03) were specific to BRCA2 tumours. This study is the first to perform high-throughput somatic sequencing on familial MBCs. Overall, PIK3CA mutations are most commonly seen, with fewer TP53 and PTEN mutations, similar to the profile seen in luminal A female breast cancers. Differences in mutation profiles and patterns of gene gains/losses are seen between BRCA2 (associated with TP53/PTEN mutations, loss of RB1 and gain of HRAS, STK11 and SMARCB1) and BRCAX (associated with PIK3CA mutations) tumours, suggesting that BRCA2 and BRCAX MBCs may be distinct and arise from different tumour pathways. This has implications on potential therapies, depending on the BRCA status of MBC patients.

  4. TP53 GENE MUTATIONS – FROM GUARDIAN OF THE GENOME TO ONCOGENE

    Directory of Open Access Journals (Sweden)

    Petar Babović

    2010-03-01

    Full Text Available TP53 tumor suppressor gene mutations are the most frequent genetic alterations in human cancer affecting a specific gene. The occurrence of TP53 mutations is considerably influenced by cancer-initiating events, such as DNA damage, the aftermath of which is the promotion of cancer development through the loss of anti-proliferative activities, including apoptosis and cellular senescence. Over 27.000 TP53 gene mutations have been discovered and found in more than 50% of human cancers. The most frequent alterations are the point mutations with a single base substitution in gene segment encoding for DNA-binding domaine of p53 molecule, leading to the production of mutant protein that differs from the wild-type protein by one amino acid (missense mutations usually causing the change in tertiary structure of gene product, thus preventing p53 to bind to DNA and activate transcription of target genes. The result of the mutations may also be the proteins with new, abnormal functions, and the ability to modulate expression of genes responsible for neoangiogenesis, resistance to chemotherapeutics and prevention of tumor initiation and promotion. In such circumstances, not only the mutant TP53 loses its tumor suppressive function, but acquires oncogenic potential and becomes an active participant in the neoplastic transformation of the cell.Vast heterogeneity of mutations and methodological approaches in p53 status assessment represent the main difficulties in rapid and effective integration of basic p53 research into clinical practice.

  5. Somatic mutations of the RET proto-oncogene are not required for tumor development in multiple endocrine neoplasia type 2 (MEN 2) gene carriers

    NARCIS (Netherlands)

    Landsvater, RM; deWit, MJ; Zewald, RA; Hofstra, RMW; Buys, CHCM; vanAmstel, HKP; Hoppener, JWM; Lips, CJM

    1996-01-01

    Germ line mutations in one allele of the RET proto-oncogene predispose to the multiple endocrine neoplasia type 2 (MEN 2) syndromes, To investigate whether these inherited mutations alone can cause the development of tumors in vivo (oncogene model) or whether somatic mutations in the homologous RET

  6. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma.

    Science.gov (United States)

    Crescenzo, Ramona; Abate, Francesco; Lasorsa, Elena; Tabbo', Fabrizio; Gaudiano, Marcello; Chiesa, Nicoletta; Di Giacomo, Filomena; Spaccarotella, Elisa; Barbarossa, Luigi; Ercole, Elisabetta; Todaro, Maria; Boi, Michela; Acquaviva, Andrea; Ficarra, Elisa; Novero, Domenico; Rinaldi, Andrea; Tousseyn, Thomas; Rosenwald, Andreas; Kenner, Lukas; Cerroni, Lorenzo; Tzankov, Alexander; Ponzoni, Maurilio; Paulli, Marco; Weisenburger, Dennis; Chan, Wing C; Iqbal, Javeed; Piris, Miguel A; Zamo', Alberto; Ciardullo, Carmela; Rossi, Davide; Gaidano, Gianluca; Pileri, Stefano; Tiacci, Enrico; Falini, Brunangelo; Shultz, Leonard D; Mevellec, Laurence; Vialard, Jorge E; Piva, Roberto; Bertoni, Francesco; Rabadan, Raul; Inghirami, Giorgio

    2015-04-13

    A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.

  7. High-throughput oncogene mutation profiling shows demographic differences in BRAF mutation rates among melanoma patients.

    Science.gov (United States)

    van den Hurk, Karin; Balint, Balazs; Toomey, Sinead; O'Leary, Patrick C; Unwin, Louise; Sheahan, Kieran; McDermott, Enda W; Murphy, Ian; van den Oord, Joost J; Rafferty, Mairin; FitzGerald, Dara M; Moran, Julie; Cummins, Robert; MacEneaney, Owen; Kay, Elaine W; O'Brien, Cathal P; Finn, Stephen P; Heffron, Cynthia C B B; Murphy, Michelle; Yela, Ruben; Power, Derek G; Regan, Padraic J; McDermott, Clodagh M; O'Keeffe, Allan; Orosz, Zsolt; Donnellan, Paul P; Crown, John P; Hennessy, Bryan T; Gallagher, William M

    2015-06-01

    Because of advances in targeted therapies, the clinical evaluation of cutaneous melanoma is increasingly based on a combination of traditional histopathology and molecular pathology. Therefore, it is necessary to expand our knowledge of the molecular events that accompany the development and progression of melanoma to optimize clinical management. The central objective of this study was to increase our knowledge of the mutational events that complement melanoma progression. High-throughput genotyping was adapted to query 159 known single nucleotide mutations in 33 cancer-related genes across two melanoma cohorts from Ireland (n=94) and Belgium (n=60). Results were correlated with various clinicopathological characteristics. A total of 23 mutations in 12 genes were identified, that is--BRAF, NRAS, MET, PHLPP2, PIK3R1, IDH1, KIT, STK11, CTNNB1, JAK2, ALK, and GNAS. Unexpectedly, we discovered significant differences in BRAF, MET, and PIK3R1 mutations between the cohorts. That is, cases from Ireland showed significantly lower (PBRAF(V600E) mutation rates (19%) compared with the mutation frequency observed in Belgian patients (43%). Moreover, MET mutations were detected in 12% of Irish cases, whereas none of the Belgian patients harbored these mutations, and Irish patients significantly more often (P=0.027) had PIK3R1-mutant (33%) melanoma versus 17% of Belgian cases. The low incidence of BRAF(V600E)(-) mutant melanoma among Irish patients was confirmed in five independent Irish cohorts, and in total, only 165 of 689 (24%) Irish cases carried mutant BRAF(V600E). Together, our data show that melanoma-driving mutations vary by demographic area, which has important implications for the clinical management of this disease.

  8. Profiling cancer gene mutations in clinical formalin-fixed, paraffin-embedded colorectal tumor specimens using targeted next-generation sequencing.

    Science.gov (United States)

    Zhang, Liangxuan; Chen, Liangjing; Sah, Sachin; Latham, Gary J; Patel, Rajesh; Song, Qinghua; Koeppen, Hartmut; Tam, Rachel; Schleifman, Erica; Mashhedi, Haider; Chalasani, Sreedevi; Fu, Ling; Sumiyoshi, Teiko; Raja, Rajiv; Forrest, William; Hampton, Garret M; Lackner, Mark R; Hegde, Priti; Jia, Shidong

    2014-04-01

    The success of precision oncology relies on accurate and sensitive molecular profiling. The Ion AmpliSeq Cancer Panel, a targeted enrichment method for next-generation sequencing (NGS) using the Ion Torrent platform, provides a fast, easy, and cost-effective sequencing workflow for detecting genomic "hotspot" regions that are frequently mutated in human cancer genes. Most recently, the U.K. has launched the AmpliSeq sequencing test in its National Health Service. This study aimed to evaluate the clinical application of the AmpliSeq methodology. We used 10 ng of genomic DNA from formalin-fixed, paraffin-embedded human colorectal cancer (CRC) tumor specimens to sequence 46 cancer genes using the AmpliSeq platform. In a validation study, we developed an orthogonal NGS-based resequencing approach (SimpliSeq) to assess the AmpliSeq variant calls. Validated mutational analyses revealed that AmpliSeq was effective in profiling gene mutations, and that the method correctly pinpointed "true-positive" gene mutations with variant frequency >5% and demonstrated high-level molecular heterogeneity in CRC. However, AmpliSeq enrichment and NGS also produced several recurrent "false-positive" calls in clinically druggable oncogenes such as PIK3CA. AmpliSeq provided highly sensitive and quantitative mutation detection for most of the genes on its cancer panel using limited DNA quantities from formalin-fixed, paraffin-embedded samples. For those genes with recurrent "false-positive" variant calls, caution should be used in data interpretation, and orthogonal verification of mutations is recommended for clinical decision making.

  9. Genetic and pharmacological suppression of oncogenic mutations in RAS genes of yeast and humans

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, W.R.; Sterne, R.; Thorner, J.; Rine, J.; Kim, R.; Kim, S.H. (Lawrece Berkeley Lab., CA (USA))

    1989-07-28

    The activity of an oncoprotein and the secretion of a pheromone can be affected by an unusual protein modification. Specifically, posttranslational modification of yeast-a-factor and Ras protein requires an intermediate of the cholesterol biosynthetic pathway. This modification is apparently essential for biological activity. Studies of yeast mutants blocked in sterol biosynthesis demonstrated that the membrane association and biological activation of the yeast Ras2 protein require mevalonate, a precursor of sterols and other isoprenes such as farnesyl pyrophosphate. Furthermore, drugs that inhibit mevalonate biosynthesis blocked the in vivo action of oncogenic derivatives of human Ras protein in the Xenopus oocyte assay. The same drugs and mutations also prevented the posttranslational processing and secretion of yeast a-factor, a peptide that is farnesylated. Thus, the mevalonate requirement for Ras activation may indicate that attachment of a mevalonate-derived (isoprenoid) moiety to Ras proteins is necessary for membrane association and biological function. These observations establish a connection between the cholesterol biosynthetic pathway and transformation by the ras oncogene and offer a novel pharmacological approach to investigating, and possibly controlling, ras-mediated malignant transformations. 50 refs., 3 figs., 3 tabs.

  10. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Directory of Open Access Journals (Sweden)

    Simon Leuchs

    Full Text Available Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs and live pigs carrying a latent TP53(R167H mutant allele, orthologous to oncogenic human mutant TP53(R175H and mouse Trp53(R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.

  11. Somatic Copy Number Abnormalities and Mutations in PI3K/AKT/mTOR Pathway Have Prognostic Significance for Overall Survival in Platinum Treated Locally Advanced or Metastatic Urothelial Tumors.

    Directory of Open Access Journals (Sweden)

    Joaquim Bellmunt

    Full Text Available An integrative analysis was conducted to identify genomic alterations at a pathway level that could predict overall survival (OS in patients with advanced urothelial carcinoma (UC treated with platinum-based chemotherapy.DNA and RNA were extracted from 103 formalin-fixed paraffin embedded (FFPE invasive high-grade UC samples and were screened for mutations, copy number variation (CNV and gene expression analysis. Clinical data were available from 85 cases. Mutations were analyzed by mass-spectrometry based on genotyping platform (Oncomap 3 and genomic imbalances were detected by comparative genomic hybridization (CGH analysis. Regions with threshold of log2 ratio ≥0.4, or ≤0.6 were defined as either having copy number gain or loss and significantly recurrent CNV across the set of samples were determined using a GISTIC analysis. Expression analysis on selected relevant UC genes was conducted using Nanostring. To define the co-occurrence pattern of mutations and CNV, we grouped genomic events into 5 core signal transduction pathways: 1 TP53 pathway, 2 RTK/RAS/RAF pathway, 3 PI3K/AKT/mTOR pathway, 4 WNT/CTNNB1, 5 RB1 pathway. Cox regression was used to assess pathways abnormalities with survival outcomes.35 samples (41% harbored mutations on at least one gene: TP53 (16%, PIK3CA (9%, FGFR3 (2%, HRAS/KRAS (5%, and CTNNB1 (1%. 66% of patients had some sort of CNV. PIK3CA/AKT/mTOR pathway alteration (mutations+CNV had the greatest impact on OS (p=0.055. At a gene level, overexpression of CTNNB1 (p=0.0008 and PIK3CA (p=0.02 were associated with shorter OS. Mutational status on PIK3CA was not associated with survival. Among other individually found genomic alterations, TP53 mutations (p=0.07, mTOR gain (p=0.07 and PTEN overexpression (p=0.08 have a marginally significant negative impact on OS.Our study suggests that targeted therapies focusing on the PIK3CA/AKT/mTOR pathway genomic alterations can generate the greatest impact in the overall patient

  12. Circulating-free DNA Mutation Associated with Response of Targeted Therapy in Human Epidermal Growth Factor Receptor 2-positive Metastatic Breast Cancer

    Science.gov (United States)

    Ye, Qing; Qi, Fan; Bian, Li; Zhang, Shao-Hua; Wang, Tao; Jiang, Ze-Fei

    2017-01-01

    Background: The addition of anti-human epidermal growth factor receptor 2 (HER2)-targeted drugs, such as trastuzumab, lapatinib, and trastuzumab emtansine (T-DM1), to chemotherapy significantly improved prognosis of HER2-positive breast cancer patients. However, it was confused that metastatic patients vary in the response of targeted drug. Therefore, methods of accurately predicting drug response were really needed. To overcome the spatial and temporal limitations of biopsies, we aimed to develop a more sensitive and less invasive method of detecting mutations associated with anti-HER2 therapeutic response through circulating-free DNA (cfDNA). Methods: From March 6, 2014 to December 10, 2014, 24 plasma samples from 20 patients with HER2-positive metastatic breast cancer who received systemic therapy were eligible. We used a panel for detection of hot-spot mutations from 50 oncogenes and tumor suppressor genes, and then used targeted next-generation sequencing (NGS) to identify somatic mutation of these samples in those 50 genes. Samples taken before their first trastuzumab administration and subsequently proven with clinical benefit were grouped into sensitive group. The others were collected after disease progression of the trastuzumab-based therapy and were grouped into the resistant group. Results: A total of 486 single-nucleotide variants from 46 genes were detected. Of these 46 genes, phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), proto-oncogene c-Kit (KIT), and tumor protein p53 (TP53) were the most common mutated genes. Seven genes, including epidermal growth factor receptor (EGFR), G protein subunit alpha S (GNAS), HRas proto-oncogene (HRAS), mutL homolog 1 (MLH1), cadherin 1 (CDH1), neuroblastoma RAS viral oncogene homolog (NRAS), and NOTCH1, that only occurred mutations in the resistant group were associated with the resistance of targeted therapy. In addition, we detected a HER2 S855I mutation in two patients who had

  13. The Importance of Identification of M-BCRABL Oncogene and JAK2V617F Mutation in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Szántó Annamária

    2014-04-01

    Full Text Available Background: The elucidation of the genetic background of the myeloproliferative neoplasms completely changed the management of these disorders: the presence of the Philadelphia chromosome and/or the BCR-ABL oncogene is pathognomonic for chronic myeloid leukemia and identification of JAK2 gene mutations are useful in polycytemia vera (PV, essential thrombocytemia (ET and myelofibrosis (PMF. The aim of this study was to investigate the role of molecular biology tests in the management of myeloproliferative neoplasms.

  14. Prognostic value of codon 918 (ATG-->ACG) RET proto-oncogene mutations in sporadic medullary thyroid carcinoma.

    Science.gov (United States)

    Schilling, T; Bürck, J; Sinn, H P; Clemens, A; Otto, H F; Höppner, W; Herfarth, C; Ziegler, R; Schwab, M; Raue, F

    2001-01-20

    We have determined the frequency of 918 RET proto-oncogene mutations (ATG-->ACG) in primary MTC tumors and metastases and correlated the presence or absence of this mutation with the clinical outcome of patients suffering from sporadic medullary thyroid carcinoma (MTC). A total of 197 samples, consisting of both primary tumors and lymph node metastases from 34 patients with sporadic MTC, were collected for PCR analysis of the RET 918 mutation. In 75 of the samples (38%), codon 918 (ATG-->ACG) mutations could be detected. The mutations showed a heterogeneous distribution: 21/34 patients (62%) had mutations in at least 1 tumor sample, and in 13 patients (38%) the mutation was present in all examined samples. Patients were considered 918mt when at least 1 tumor sample showed the RET 918 mutation. These 918mt and 918 wild-type (918wt) patients did not differ significantly concerning sex, age at diagnosis, TNM stage at diagnosis, number of examined tumor samples or follow-up time. However, 918mt patients showed more aggressive development of distant metastases during follow-up (p = 0.032, Fisher's exact test) with decreased metastases-free survival (p rank test). Furthermore, 918mt patients had a significantly lower survival rate than 918wt patients (p = 0.048, log-rank test). These data show that the RET codon 918 mutation has a prognostic impact on patients with sporadic MTC which may influence follow-up treatment.

  15. Oncogene Mutation Survey in MPNST Cell Lines Enhances the Dominant Role of Hyperactive Ras in NF1 Associated Pro-Survival and Malignancy.

    Science.gov (United States)

    Sun, Daochun; Tainsky, Michael A; Haddad, Ramsi

    2012-01-01

    Malignant peripheral nerve sheath tumors (MPNST) are a type of soft tissue sarcoma that can be associated with germline mutations in Neurofibromatosis type 1 (NF1) or may occur sporadically. Although the etiology of MPNST is poorly understood, it is clear that a loss of function of the NF1 gene, encoding a Ras-GAP, is an important factor in the tumorigenesis of the inherited form of MPNST. Tumor latency in NF1 patients suggests that additional mutational events are probably required for malignancy. In order to define oncogene mutations associated with 5 MPNST cell lines, we assayed the 238 most frequent mutations in 19 commonly activated oncogenes using mass spectroscopy-based analysis. All 238 mutation sites in the assayed oncogenes were determined to harbor only wild-type sequences. These data suggest that hyperactive Ras resulting from the loss function of neurofibromin may be sufficient to set up the direction of malignant transformation of Schwann cells to MPNST.

  16. Oncogenic CARD11 mutations induce hyperactive signaling by disrupting autoinhibition by the PKC-responsive inhibitory domain.

    Science.gov (United States)

    Lamason, Rebecca L; McCully, Ryan R; Lew, Stefanie M; Pomerantz, Joel L

    2010-09-28

    The regulated activation of NF-κB by antigen receptor signaling is required for normal B and T lymphocyte activation during the adaptive immune response. Dysregulated NF-κB activation is associated with several types of lymphoma, including diffuse large B cell lymphoma (DLBCL). During normal antigen receptor signaling, the multidomain scaffold protein CARD11 undergoes a transition from a closed, inactive state to an open, active conformation that recruits several signaling proteins into a complex, leading to IKK kinase activation. This transition is regulated by the CARD11 inhibitory domain (ID), which participates in intramolecular interactions that prevent cofactor binding to CARD11 prior to signaling, but which is neutralized after receptor engagement by phosphorylation. Several oncogenic CARD11 mutations have been identified in DLBCL that enhance activity and that are mostly found in the coiled-coil domain. However, the mechanisms by which these mutations cause CARD11 hyperactivity and spontaneous NF-κB activation are poorly understood. In this report, we provide several lines of evidence that oncogenic mutations F123I and L225LI induce CARD11 hyperactivity by disrupting autoinhibition by the CARD11 ID. These mutations disrupt ID-mediated intramolecular interactions and ID-dependent inhibition and bypass the requirement for ID phosphorylation during T cell receptor signaling. Intriguingly, these mutations selectively enhance the apparent affinity of CARD11 for Bcl10, but not for other signaling proteins that are recruited to CARD11 in an ID-dependent manner during normal antigen receptor signaling. Our results establish a mechanism that explains how DLBCL-associated mutations in CARD11 can initiate spontaneous, receptor-independent activation of NF-κB.

  17. Lazarus response to treatment of patients with lung cancer and oncogenic mutations in the intensive care unit

    Science.gov (United States)

    Chien, Chun-Ru

    2016-01-01

    Novel targeted therapy for patients with non-small-cell lung cancer (NSCLC) and oncogenic mutations along with poor performance status (PS) sometimes evokes a “Lazarus” response. Moreover, for critically ill patients with NSCLC and respiratory failure requiring mechanical ventilation (MV) in the intensive care unit (ICU), only a few case reports have demonstrated positive outcomes with targeted therapy. This perspective review describes in detail the most recently published data in order to highlight the findings and the main pitfalls of targeted therapy for patients with NSCLC in the ICU. PMID:28066630

  18. The butterfly effect in cancer: a single base mutation can remodel the cell.

    Science.gov (United States)

    Hart, Jonathan R; Zhang, Yaoyang; Liao, Lujian; Ueno, Lynn; Du, Lisa; Jonkers, Marloes; Yates, John R; Vogt, Peter K

    2015-01-27

    We have compared the proteome, transcriptome, and metabolome of two cell lines: the human breast epithelial line MCF-10A and its mutant descendant MCF-10A-H1047R. These cell lines are derived from the same parental stock and differ by a single amino acid substitution (H1047R) caused by a single nucleotide change in one allele of the PIK3CA gene, which encodes the catalytic subunit p110α of PI3K (phosphatidylinositol 3-kinase). They are considered isogenic. The H1047R mutation of PIK3CA is one of the most frequently encountered somatic cancer-specific mutations. In MCF-10A, this mutation induces an extensive cellular reorganization that far exceeds the known signaling activities of PI3K. The changes are highly diverse, with examples in structural protein levels, the DNA repair machinery, and sterol synthesis. Gene set enrichment analysis reveals a highly significant concordance of the genes differentially expressed in MCF-10A-H1047R cells and the established protein and RNA signatures of basal breast cancer. No such concordance was found with the specific gene signatures of other histological types of breast cancer. Our data document the power of a single base mutation, inducing an extensive remodeling of the cell toward the phenotype of a specific cancer.

  19. Mutational analysis of primary and metastatic colorectal cancer samples underlying the resistance to cetuximab-based therapy

    Directory of Open Access Journals (Sweden)

    Nemecek R

    2016-07-01

    Full Text Available Radim Nemecek,1 Jitka Berkovcova,2 Lenka Radova,3 Tomas Kazda,4 Jitka Mlcochova,3 Petra Vychytilova-Faltejskova,1,3 Ondrej Slaby,1,3 Marek Svoboda1 1Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Masaryk University, Brno, Czech Republic; 2Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic; 3Central European Institute of Technology, Masaryk University, Brno, Czech Republic; 4Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Masaryk University, Brno, Czech Republic Purpose: Although several molecular markers predicting resistance to cetuximab- or panitumumab-based therapy of metastatic colorectal cancer were described, mutations in RAS proto-oncogenes remain the only predictors being used in daily clinical practice. However, 35%–45% of wild-type RAS patients still do not respond to this anti-epidermal growth factor receptor (anti-EGFR monoclonal antibody-based therapy, and therefore the definition of other predictors forms an important clinical need. The aim of the present retrospective single-institutional study was to evaluate potential genes responsible for resistance to anti-EGFR therapy in relation to mutational analysis of primary versus metastatic lesions. Patients and methods: Twenty-four paired primary and corresponding metastatic tissue samples from eight nonresponding and four responding metastatic colorectal cancer patients treated with cetuximab-based therapy were sequenced using a next-generation sequencing panel of 26 genes involved in EGFR signaling pathway and colorectal carcinogenesis. Results: Mutational status of primary tumors and metastatic lesions was highly concordant in TP53, APC, CTNNB1, KRAS, PIK3CA, PTEN, and FBXW7 genes. Metastatic samples harbor significantly more mutations than primary tumors. Potentially negative predictive value of FBXW7 mutations in relationship to anti-EGFR treatment outcomes was confirmed

  20. Activating FGFR2-RAS-BRAF mutations in ameloblastoma.

    Science.gov (United States)

    Brown, Noah A; Rolland, Delphine; McHugh, Jonathan B; Weigelin, Helmut C; Zhao, Lili; Lim, Megan S; Elenitoba-Johnson, Kojo S J; Betz, Bryan L

    2014-11-01

    Ameloblastoma is an odontogenic neoplasm whose overall mutational landscape has not been well characterized. We sought to characterize pathogenic mutations in ameloblastoma and their clinical and functional significance with an emphasis on the mitogen-activated protein kinase (MAPK) pathway. A total of 84 ameloblastomas and 40 non-ameloblastoma odontogenic tumors were evaluated with a combination of BRAF V600E allele-specific PCR, VE1 immunohistochemistry, the Ion AmpliSeq Cancer Hotspot Panel, and Sanger sequencing. Efficacy of a BRAF inhibitor was evaluated in an ameloblastoma-derived cell line. Somatic, activating, and mutually exclusive RAS-BRAF and FGFR2 mutations were identified in 88% of cases. Somatic mutations in SMO, CTNNB1, PIK3CA, and SMARCB1 were also identified. BRAF V600E was the most common mutation, found in 62% of ameloblastomas and in ameloblastic fibromas/fibrodentinomas but not in other odontogenic tumors. This mutation was associated with a younger age of onset, whereas BRAF wild-type cases arose more frequently in the maxilla and showed earlier recurrences. One hundred percent concordance was observed between VE1 immunohistochemistry and molecular detection of BRAF V600E mutations. Ameloblastoma cells demonstrated constitutive MAPK pathway activation in vitro. Proliferation and MAPK activation were potently inhibited by the BRAF inhibitor vemurafenib. Our findings suggest that activating FGFR2-RAS-BRAF mutations play a critical role in the pathogenesis of most cases of ameloblastoma. Somatic mutations in SMO, CTNNB1, PIK3CA, and SMARCB1 may function as secondary mutations. BRAF V600E mutations have both diagnostic and prognostic implications. In vitro response of ameloblastoma to a BRAF inhibitor suggests a potential role for targeted therapy. ©2014 American Association for Cancer Research.

  1. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.

    Science.gov (United States)

    Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko

    2015-05-26

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.

  2. MDM2 Amplification and PI3KCA Mutation in a Case of Sclerosing Rhabdomyosarcoma.

    Science.gov (United States)

    Kikuchi, Ken; Wettach, George R; Ryan, Christopher W; Hung, Arthur; Hooper, Jody E; Beadling, Carol; Warrick, Andrea; Corless, Christopher L; Olson, Susan B; Keller, Charles; Mansoor, Atiya

    2013-01-01

    A rare sclerosing variant of rhabdomyosarcoma characterized by prominent hyalinization and pseudovascular pattern has recently been described as a subtype biologically distinct from embryonal, alveolar, and pleomorphic forms. We present cytogenetic and molecular findings as well as experimental studies of an unusual case of sclerosing rhabdomyosarcoma. The primary lesion arose within the plantar subcutaneous tissue of the left foot of an otherwise healthy 23-year-old male who eventually developed pulmonary nodules despite systemic chemotherapy. Two genetic abnormalities identified in surgical and/or autopsy samples of the tumor were introduced into 10T1/2 murine fibroblasts to determine whether these genetic changes cooperatively facilitated transformation and growth. Cytogenetic analysis revealed a complex abnormal hyperdiploid clone, and MDM2 gene amplification was confirmed by fluorescence in situ hybridization. Cancer gene mutation screening using a combination of multiplexed PCR and mass spectroscopy revealed a PIK3CA exon 20 H1047R mutation in the primary tumor, lung metastasis, and liver metastasis. However, this mutation was not cooperative with MDM2 overexpression in experimental assays for transformation or growth. Nevertheless, MDM2 and PIK3CA are genes worthy of further investigation in patients with sclerosing rhabdomyosarcoma and might be considered in the enrollment of these patients into clinical trials of targeted therapeutics.

  3. MDM2 Amplification and PI3KCA Mutation in a Case of Sclerosing Rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Ken Kikuchi

    2013-01-01

    Full Text Available A rare sclerosing variant of rhabdomyosarcoma characterized by prominent hyalinization and pseudovascular pattern has recently been described as a subtype biologically distinct from embryonal, alveolar, and pleomorphic forms. We present cytogenetic and molecular findings as well as experimental studies of an unusual case of sclerosing rhabdomyosarcoma. The primary lesion arose within the plantar subcutaneous tissue of the left foot of an otherwise healthy 23-year-old male who eventually developed pulmonary nodules despite systemic chemotherapy. Two genetic abnormalities identified in surgical and/or autopsy samples of the tumor were introduced into 10T1/2 murine fibroblasts to determine whether these genetic changes cooperatively facilitated transformation and growth. Cytogenetic analysis revealed a complex abnormal hyperdiploid clone, and MDM2 gene amplification was confirmed by fluorescence in situ hybridization. Cancer gene mutation screening using a combination of multiplexed PCR and mass spectroscopy revealed a PIK3CA exon 20 H1047R mutation in the primary tumor, lung metastasis, and liver metastasis. However, this mutation was not cooperative with MDM2 overexpression in experimental assays for transformation or growth. Nevertheless, MDM2 and PIK3CA are genes worthy of further investigation in patients with sclerosing rhabdomyosarcoma and might be considered in the enrollment of these patients into clinical trials of targeted therapeutics.

  4. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly.

    Science.gov (United States)

    Lee, Jeong Ho; Huynh, My; Silhavy, Jennifer L; Kim, Sangwoo; Dixon-Salazar, Tracy; Heiberg, Andrew; Scott, Eric; Bafna, Vineet; Hill, Kiley J; Collazo, Adrienne; Funari, Vincent; Russ, Carsten; Gabriel, Stacey B; Mathern, Gary W; Gleeson, Joseph G

    2012-06-24

    De novo somatic mutations in focal areas are well documented in diseases such as neoplasia but are rarely reported in malformation of the developing brain. Hemimegalencephaly (HME) is characterized by overgrowth of either one of the two cerebral hemispheres. The molecular etiology of HME remains a mystery. The intractable epilepsy that is associated with HME can be relieved by the surgical treatment hemispherectomy, allowing sampling of diseased tissue. Exome sequencing and mass spectrometry analysis in paired brain-blood samples from individuals with HME (n = 20 cases) identified de novo somatic mutations in 30% of affected individuals in the PIK3CA, AKT3 and MTOR genes. A recurrent PIK3CA c.1633G>A mutation was found in four separate cases. Identified mutations were present in 8-40% of sequenced alleles in various brain regions and were associated with increased neuronal S6 protein phosphorylation in the brains of affected individuals, indicating aberrant activation of mammalian target of rapamycin (mTOR) signaling. Thus HME is probably a genetically mosaic disease caused by gain of function in phosphatidylinositol 3-kinase (PI3K)-AKT3-mTOR signaling.

  5. Rationally designed aberrant kinase-targeted endogenous protein nanomedicine against oncogene mutated/amplified refractory chronic myeloid leukemia.

    Science.gov (United States)

    Retnakumari, Archana P; Hanumanthu, Prasanna Lakshmi; Malarvizhi, Giridharan L; Prabhu, Raghuveer; Sidharthan, Neeraj; Thampi, Madhavan V; Menon, Deepthy; Mony, Ullas; Menon, Krishnakumar; Keechilat, Pavithran; Nair, Shantikumar; Koyakutty, Manzoor

    2012-11-05

    Deregulated protein kinases play a very critical role in tumorigenesis, metastasis, and drug resistance of cancer. Although molecularly targeted small molecule kinase inhibitors (SMI) are effective against many types of cancer, point mutations in the kinase domain impart drug resistance, a major challenge in the clinic. A classic example is chronic myeloid leukemia (CML) caused by BCR-ABL fusion protein, wherein a BCR-ABL kinase inhibitor, imatinib (IM), was highly successful in the early chronic phase of the disease, but failed in the advanced stages due to amplification of oncogene or point mutations in the drug-binding site of kinase domain. Here, by identifying critical molecular pathways responsible for the drug-resistance in refractory CML patient samples and a model cell line, we have rationally designed an endogenous protein nanomedicine targeted to both cell surface receptors and aberrantly activated secondary kinase in the oncogenic network. Molecular diagnosis revealed that, in addition to point mutations and amplification of oncogenic BCR-ABL kinase, relapsed/refractory patients exhibited significant activation of STAT5 signaling with correlative overexpression of transferrin receptors (TfR) on the cell membrane. Accordingly, we have developed a human serum albumin (HSA) based nanomedicine, loaded with STAT5 inhibitor (sorafenib), and surface conjugated the same with holo-transferrin (Tf) ligands for TfR specific delivery. This dual-targeted "transferrin conjugated albumin bound sorafenib" nanomedicine (Tf-nAlb-Soraf), prepared using aqueous nanoprecipitation method, displayed uniform spherical morphology with average size of ∼150 nm and drug encapsulation efficiency of ∼74%. TfR specific uptake and enhanced antileukemic activity of the nanomedicine was found maximum in the most drug resistant patient sample having the highest level of STAT5 and TfR expression, thereby confirming the accuracy of our rational design and potential of dual

  6. Detection of point mutation in K-ras oncogene at codon 12 in pancreatic diseases

    Institute of Scientific and Technical Information of China (English)

    Yue-Xin Ren; Guo-Ming Xu; Zhao-Shen Li; Yu-Gang Song

    2004-01-01

    AIM: To investigate frequency and clinical significance of Kras mutations in pancreatic diseases and to identify its diagnostic values in pancreatic carcinoma. METHODS: 117 ductal lesions were identified in the available sections from pancreatic resection specimens of pancreatic ductal adenocarcinoma, comprising 24 pancreatic ductal adenocarcinoma, 19 peritumoral ductal atypical hyperplasia, 58 peritumoral ductal hyperplasia and 19 normal duct at the tumor free resection margin. 24 ductal lesions were got from 24 chronic pancreatitis. DNA was extracted. Codon 12 K-ras mutations were examined using the twostep polymerase chain reaction (PCR) combined with restriction enzyme digestion, followed by nonradioisotopic single-strand conformation polymorphism (SSCP) analysis and by means of automated DNA sequencing. RESULTS: K-ras mutation rate of the pancreatic carcinoma was 79%(19/24) which was significantly higher than that in the chronic pancreatitis 33%(8/24) (P<0.01). It was also found that K-ras mutation rate was progressively increased from normal duct at the tumor free resection margin, peritumoral ductal hyperplasia, peritumoral ductal atypical hyperplasia to pancreatic ductal adenocarcinoma. The mutation pattern of K ras 12 coclon of chronic pancreatitis was GGT→GAT, GGT and CGT, which is identical to that in pancreatic carcinoma.CONCLUSION: K-fas mutation may play a role in the malignant transformation of pancreatic ductal cell. K-ras mutation was not specific enough to diagnose pancreatic carcinoma.

  7. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    Science.gov (United States)

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  8. PIK3CAH1047R and Her2 initiated mammary tumors escape PI3K dependency by compensatory activation of MEK-ERK signaling

    Science.gov (United States)

    Cheng, Hailing; Liu, Pixu; Ohlson, Carolynn; Xu, Erbo; Symonds, Lynn; Isabella, Adam; Muller, William J.; Lin, Nancy U.; Krop, Ian E.; Roberts, Thomas M.; Winer, Eric P.; Arteaga, Carlos L.; Zhao, Jean J.

    2015-01-01

    Human breast cancers that have HER2 amplification/overexpression frequently carry PIK3CA mutations, and are often associated with a worse prognosis. However, the role of PIK3CA mutations in the initiation and maintenance of these breast cancers remains elusive. In the present study, we generated a compound mouse model that genetically mimics HER2 positive breast cancer with coexisting PIK3CAH1047R. Induction of PIK3CAH1047R expression in mouse mammary glands with constitutive expression of activated Her2/Neu resulted in accelerated mammary tumorigenesis with enhanced metastatic potential. Interestingly, inducible expression of mutant PIK3CA resulted in a robust activation of PI3K/AKT signaling but attenuation of Her2/Her3 signaling, and this can be reversed by deinduction of PIK3CAH1047R expression. Strikingly, while these Her2+ PIK3CAH1047R initiated primary mammary tumors are refractory to HER2-targeted therapy, all tumors responded to inactivation of the oncogenic PIK3CAH1047R, a situation closely mimicking the use of a highly effective inhibitor specifically targeting the mutant PIK3CA/p110a. Notably, these tumors eventually resumed growth, and a fraction of them escaped PI3K dependence by compensatory ERK activation, which can be blocked by combined inhibition of Her2 and MEK. Together, these results suggest that PIK3CA-specific inhibition as a monotherapy followed by combination therapy targeting MAPK and HER2 in a timely manner may be an effective treatment approach against HER2 positive cancers with coexisting PIK3CA-activating mutations. PMID:26640141

  9. Association between proto-oncogene mutations and clinicopathologic characteristics and overall survival in colorectal cancer in East Azerbaijan, Iran

    Directory of Open Access Journals (Sweden)

    Dolatkhah R

    2016-12-01

    , those with KRAS mutations had significantly higher mortality (hazard ratio 3.74, 95% confidence interval 1.44–9.68; log-rank P=0.003. Conclusion: Better understanding of the causality of CRC can be established by combining epidemiology and research on molecular mechanisms of the disease. Keywords: proto-oncogene, sequence analysis, regression, colorectal cancer, survival

  10. Progression inference for somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Leif E. Peterson

    2017-04-01

    Full Text Available Computational methods were employed to determine progression inference of genomic alterations in commonly occurring cancers. Using cross-sectional TCGA data, we computed evolutionary trajectories involving selectivity relationships among pairs of gene-specific genomic alterations such as somatic mutations, deletions, amplifications, downregulation, and upregulation among the top 20 driver genes associated with each cancer. Results indicate that the majority of hierarchies involved TP53, PIK3CA, ERBB2, APC, KRAS, EGFR, IDH1, VHL, etc. Research into the order and accumulation of genomic alterations among cancer driver genes will ever-increase as the costs of nextgen sequencing subside, and personalized/precision medicine incorporates whole-genome scans into the diagnosis and treatment of cancer.

  11. Frameshift mutation of UVRAG: Switching a tumor suppressor to an oncogene in colorectal cancer.

    Science.gov (United States)

    He, Shanshan; Liang, Chengyu

    2015-01-01

    Colorectal cancer (CRC) ranks as the second leading cause of cancer-related deaths in the Western world. It has a nearly 50% metastasis rate and only a subset of patients respond to current treatment strategy. UVRAG, a key autophagy effector and a guardian of chromosomal stability, is truncated by a frameshift (FS) mutation in CRC with microsatellite instability (MSI). However, the pathological and clinical significance of this UVRAG truncation remains less understood. Our recent study discovered that this FS mutation yields a much shortened form of the UVRAG protein, which counteracts most of the tumor-suppressor functions of wild-type (WT) UVRAG in autophagy, centrosome stability, and DNA repair in a dominant-negative fashion. Whereas this truncated mutation of UVRAG promotes tumorigenesis, epithelial-to-mesenchymal transition, and metastasis, it appears to sensitize CRC tumors to adjuvant chemotherapy, making it a potential molecular marker to individualize therapeutic approach in CRC.

  12. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus

    Science.gov (United States)

    Di Nicolantonio, Federica; Arena, Sabrina; Tabernero, Josep; Grosso, Stefano; Molinari, Francesca; Macarulla, Teresa; Russo, Mariangela; Cancelliere, Carlotta; Zecchin, Davide; Mazzucchelli, Luca; Sasazuki, Takehiko; Shirasawa, Senji; Geuna, Massimo; Frattini, Milo; Baselga, José; Gallicchio, Margherita; Biffo, Stefano; Bardelli, Alberto

    2010-01-01

    Personalized cancer medicine is based on the concept that targeted therapies are effective on subsets of patients whose tumors carry specific molecular alterations. Several mammalian target of rapamycin (mTOR) inhibitors are in preclinical or clinical trials for cancers, but the molecular basis of sensitivity or resistance to these inhibitors among patients is largely unknown. Here we have identified oncogenic variants of phosphoinositide-3-kinase, catalytic, α polypeptide (PIK3CA) and KRAS as determinants of response to the mTOR inhibitor everolimus. Human cancer cells carrying alterations in the PI3K pathway were responsive to everolimus, both in vitro and in vivo, except when KRAS mutations occurred concomitantly or were exogenously introduced. In human cancer cells with mutations in both PIK3CA and KRAS, genetic ablation of mutant KRAS reinstated response to the drug. Consistent with these data, PIK3CA mutant cells, but not KRAS mutant cells, displayed everolimus-sensitive translation. Importantly, in a cohort of metastatic cancer patients, the presence of oncogenic KRAS mutations was associated with lack of benefit after everolimus therapy. Thus, our results demonstrate that alterations in the KRAS and PIK3CA genes may represent biomarkers to optimize treatment of patients with mTOR inhibitors. PMID:20664172

  13. Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane

    Science.gov (United States)

    Zhang, Mingzhen; Zheng, Jie; Nussinov, Ruth; Ma, Buyong

    2016-09-01

    Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail.

  14. The structural pathway of interleukin 1 (IL-1 initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer.

    Directory of Open Access Journals (Sweden)

    Saliha Ece Acuner Ozbabacan

    2014-02-01

    Full Text Available Interleukin-1 (IL-1 is a large cytokine family closely related to innate immunity and inflammation. IL-1 proteins are key players in signaling pathways such as apoptosis, TLR, MAPK, NLR and NF-κB. The IL-1 pathway is also associated with cancer, and chronic inflammation increases the risk of tumor development via oncogenic mutations. Here we illustrate that the structures of interfaces between proteins in this pathway bearing the mutations may reveal how. Proteins are frequently regulated via their interactions, which can turn them ON or OFF. We show that oncogenic mutations are significantly at or adjoining interface regions, and can abolish (or enhance the protein-protein interaction, making the protein constitutively active (or inactive, if it is a repressor. We combine known structures of protein-protein complexes and those that we have predicted for the IL-1 pathway, and integrate them with literature information. In the reconstructed pathway there are 104 interactions between proteins whose three dimensional structures are experimentally identified; only 15 have experimentally-determined structures of the interacting complexes. By predicting the protein-protein complexes throughout the pathway via the PRISM algorithm, the structural coverage increases from 15% to 71%. In silico mutagenesis and comparison of the predicted binding energies reveal the mechanisms of how oncogenic and single nucleotide polymorphism (SNP mutations can abrogate the interactions or increase the binding affinity of the mutant to the native partner. Computational mapping of mutations on the interface of the predicted complexes may constitute a powerful strategy to explain the mechanisms of activation/inhibition. It can also help explain how an oncogenic mutation or SNP works.

  15. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site.

    Science.gov (United States)

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-11-27

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4B(WT)-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4B(WT)-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding.

  16. Mutation-Specific RAS Oncogenicity Explains N-RAS Codon 61 Selection in Melanoma

    Science.gov (United States)

    Burd, Christin E.; Liu, Wenjin; Huynh, Minh V.; Waqas, Meriam A.; Gillahan, James E.; Clark, Kelly S.; Fu, Kailing; Martin, Brit L.; Jeck, William R.; Souroullas, George P.; Darr, David B.; Zedek, Daniel C.; Miley, Michael J.; Baguley, Bruce C.; Campbell, Sharon L.

    2014-01-01

    N-RAS mutation at codon 12, 13 or 61 is associated with transformation; yet, in melanoma, such alterations are nearly exclusive to codon 61. Here, we compared the melanoma susceptibility of an N-RasQ61R knock-in allele to similarly designed K-RasG12D and N-RasG12D alleles. With concomitant p16INK4a inactivation, K-RasG12D or N-RasQ61R expression efficiently promoted melanoma in vivo, whereas N-RasG12D did not. Additionally, N-RasQ61R mutation potently cooperated with Lkb1/Stk11 loss to induce highly metastatic disease. Functional comparisons of N-RasQ61R and N-RasG12D revealed little difference in the ability of these proteins to engage PI3K or RAF. Instead, N-RasQ61R showed enhanced nucleotide binding, decreased intrinsic GTPase activity and increased stability when compared to N-RasG12D. This work identifies a faithful model of human N-RAS mutant melanoma, and suggests that the increased melanomagenecity of N-RasQ61R over N-RasG12D is due to heightened abundance of the active, GTP-bound form rather than differences in the engagement of downstream effector pathways. PMID:25252692

  17. Oncogenic mutations weaken the interactions that stabilize the p110α-p85α heterodimer in phosphatidylinositol 3-kinase α.

    Science.gov (United States)

    Echeverria, Ignacia; Liu, Yunlong; Gabelli, Sandra B; Amzel, L Mario

    2015-09-01

    Phosphatidylinositol 3-kinase (PI3K) α is a heterodimeric lipid kinase that catalyzes the conversion of phosphoinositol-4,5-bisphosphate to phosphoinositol-3,4,5-trisphosphate. The PI3Kα signaling pathway plays an important role in cell growth, proliferation, and survival. This pathway is activated in numerous cancers, where the PI3KCA gene, which encodes for the p110α PI3Kα subunit, is mutated. Its mutation often results in gain of enzymatic activity; however, the mechanism of activation by oncogenic mutations remains unknown. Here, using computational methods, we show that oncogenic mutations that are far from the catalytic site and increase the enzymatic affinity destabilize the p110α-p85α dimer. By affecting the dynamics of the protein, these mutations favor the conformations that reduce the autoinhibitory effect of the p85α nSH2 domain. For example, we determined that, in all of the mutants, the nSH2 domain shows increased positional heterogeneity as compared with the wild-type, as demonstrated by changes in the fluctuation profiles computed by normal mode analysis of coarse-grained elastic network models. Analysis of the interdomain interactions of the wild-type and mutants at the p110α-p85α interface obtained with molecular dynamics simulations suggest that all of the tumor-associated mutations effectively weaken the interactions between p110α and p85α by disrupting key stabilizing interactions. These findings have important implications for understanding how oncogenic mutations change the conformational multiplicity of PI3Kα and lead to increased enzymatic activity. This mechanism may apply to other enzymes and/or macromolecular complexes that play a key role in cell signaling.

  18. Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events

    DEFF Research Database (Denmark)

    Serizawa, Reza R; Ralfkiaer, Ulrik; Steven, Kenneth;

    2011-01-01

    screened FGFR3, PIK3CA, TP53, HRAS, NRAS and KRAS for mutations and quantitatively assessed the methylation status of APC, ARF, DBC1, INK4A, RARB, RASSF1A, SFRP1, SFRP2, SFRP4, SFRP5 and WIF1 in a prospective series of tumor biopsies (N = 105) and urine samples (N = 113) from 118 bladder tumor patients. We...... sensitivities of 72% and 70%, respectively. In urine samples, the sensitivity was 70% for all markers, 50% for mutation markers and 52% for methylation markers. FGFR3 mutations occurred more frequently in tumors with no methylation events than in tumors with one or more methylation events (78% vs. 33%; p ....0001). FGFR3 mutation in combination with three methylation markers (APC, RASSF1A and SFRP2) provided a sensitivity of 90% in tumors and 62% in urine with 100% specificity. These results suggest an inverse correlation between FGFR3 mutations and hypermethylation events, which may be used to improve...

  19. The Structural Pathway of Interleukin 1 (IL-1) Initiated Signaling Reveals Mechanisms of Oncogenic Mutations and SNPs in Inflammation and Cancer

    OpenAIRE

    Saliha Ece Acuner Ozbabacan; Attila Gursoy; Ruth Nussinov; Ozlem Keskin

    2014-01-01

    The Structural Pathway of Interleukin 1 (IL-1) Initiated Signaling Reveals Mechanisms of Oncogenic Mutations and SNPs in Inflammation and Cancer Saliha Ece Acuner Ozbabacan1, Attila Gursoy1*, Ruth Nussinov2,3, Ozlem Keskin1* 1 Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Sariyer Istanbul, Turkey, 2 Cancer and Inflammation Program, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick National Laboratory, Freder...

  20. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia.

    Science.gov (United States)

    Jansen, Laura A; Mirzaa, Ghayda M; Ishak, Gisele E; O'Roak, Brian J; Hiatt, Joseph B; Roden, William H; Gunter, Sonya A; Christian, Susan L; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G; Shendure, Jay; Hevner, Robert F; Dobyns, William B

    2015-06-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum. © The Author (2015). Published by Oxford University Press

  1. Structure of human POFUT1, its requirement in ligand-independent oncogenic Notch signaling, and functional effects of Dowling-Degos mutations

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Brian J.; Zimmerman, Brandon; Egan, Emily D.; Lofgren, Michael; Xu, Xiang; Hesser, Anthony; Blacklow, Stephen C.

    2017-03-17

    Protein O-fucosyltransferase-1 (POFUT1), which transfers fucose residues to acceptor sites on serine and threonine residues of epidermal growth factor-like repeats of recipient proteins, is essential for Notch signal transduction in mammals. Here, we examine the consequences of POFUT1 loss on the oncogenic signaling associated with certain leukemia-associated mutations of human Notch1, report the structures of human POFUT1 in free and GDP-fucose bound states, and assess the effects of Dowling-Degos mutations on human POFUT1 function. CRISPR-mediated knockout of POFUT1 in U2OS cells suppresses both normal Notch1 signaling, and the ligand-independent signaling associated with leukemogenic mutations of Notch1. Normal and oncogenic signaling are rescued by wild-type POFUT1 but rescue is impaired by an active-site R240A mutation. The overall structure of the human enzyme closely resembles that of the Caenorhabditis elegans protein, with an overall backbone RMSD of 0.93 Å, despite primary sequence identity of only 39% in the mature protein. GDP-fucose binding to the human enzyme induces limited backbone conformational movement, though the side chains of R43 and D244 reorient to make direct contact with the fucose moiety in the complex. The reported Dowling-Degos mutations of POFUT1, except for M262T, fail to rescue Notch1 signaling efficiently in the CRISPR-engineered POFUT1-/- background. Together, these studies identify POFUT1 as a potential target for cancers driven by Notch1 mutations and provide a structural roadmap for its inhibition.

  2. Characterization of a cluster of oncogenic mutations in E6 of a human papillomavirus 83 variant isolated from a high-grade squamous intraepithelial lesion.

    Science.gov (United States)

    Cannavo, Isabelle; Benchetrit, Maxime; Loubatier, Céline; Michel, Gregory; Lemichez, Emmanuel; Giordanengo, Valérie

    2011-10-01

    We previously isolated human papillomavirus 83 (HPV83m) from a cervical smear. Sequence analysis of E6 and E7 proteins highlighted five mutations located in the second putative zinc-finger region of E6 (E6m), an important domain for protein-protein or protein-DNA interactions. Here, we show that E6m of HPV83m can trigger human primary cell proliferation and anchorage-independent growth properties, similarly to E6 of HPV16, a high-risk HPV (HR-HPV). Interestingly, we demonstrate that, in contrast to E6 of HPV16, E6m corrupts neither p53 stability nor telomerase activity, but acts as a specific modulator of the transcriptional machinery. By studying E6m reversion mutants, we confirmed the importance of the second zinc-finger domain in triggering the observed upregulation of cell growth and of the transcriptional machinery. Reversion of these mutations in E6m (to yield strain E6r) fully abolished the oncogenic potential of E6m, transforming the phenotype of E6 from a high-risk to a low-risk phenotype. Importantly, our data define the importance of a cluster of mutations in the second zinc finger of E6m in increasing the oncogenic potential of HPV83.

  3. Molecular genetic characterization of p53 mutated oropharyngeal squamous cell carcinoma cells transformed with human papillomavirus E6 and E7 oncogenes.

    Science.gov (United States)

    Oh, Ji-Eun; Kim, Jeong-Oh; Shin, Jung-Young; Zhang, Xiang-Hua; Won, Hye-Sung; Chun, Sang-Hoon; Jung, Chan-Kwon; Park, Won-Sang; Nam, Suk-Woo; Eun, Jung-Woo; Kang, Jin-Hyoung

    2013-08-01

    Patients with HPV-positive oropharyngeal cancer show better tumor response to radiation or chemotherapy than patients with HPV-negative cancer. HPV oncoprotein E6 binds and degrades a typically wild-type p53 protein product. However, HPV16 infection and p53 mutation infrequently coexist in a subset of HNSCCs. The purpose of this study was to investigate the mechanisms through which tumor biology and molecular genetic mechanisms change when two HPV-negative, p53-mutated oropharyngeal cell lines (YD8, non-disruptive p53 mutation; YD10B, disruptive p53 mutation) derived from patients with a history of heavy smoking are transfected with HPV E6 and E7 oncogenes in vitro. Transfection with HPV E6 and E7 oncogenes in YD8, reduced the abundance of proteins encoded by tumor suppressor genes, such as p-p53 and p-Rb. Cell proliferative activity was increased in the cells transfected with E6E7 compared to cells transfected with vector alone (P=0.09), whereas the invasiveness of E6E7-transfected cells was significantly reduced (P=0.02). cDNA microarray of the transfected cells with E6E7 showed significant changes in mRNA expression in several signaling pathways, including focal adhesion, JAK-STAT signaling pathway, cell cycle and p53 signaling pathway. Regarding the qPCR array for the p53 signaling pathway, the mRNA expression of STAT1 was remarkably upregulated by 6.47-fold (Pcell carcinoma cases with non-disruptive p53 mutations.

  4. Analysis of mutations in the URR and E6/E7 oncogenes of HPV 16 cervical cancer isolates from central China.

    Science.gov (United States)

    Stephen, A L; Thompson, C H; Tattersall, M H; Cossart, Y E; Rose, B R

    2000-06-01

    High rates of cervical cancer have been reported from parts of China and this may reflect a predominance of cervical infection with particularly aggressive human papillomavirus (HPV) variants. This PCR-based investigation of cervical tumours from Sichuan province in central China demonstrated an HPV positivity rate of 88%. HPV 16 was most common (21/34, 61%), followed by HPV 18 (3/34, 9%), while types 33, 45, 58 and 59 were each identified in one specimen. Sequencing of up to 1349 bases of the 21 HPV 16-positive isolates, encompassing the enhancer/promoter of the upstream regulatory region (URR) and the E6 and E7 genes, revealed distinct patterns of genomic stability and variability. An overall mutation rate of 5% was seen in the URR. One isolate had a large deletion of 436 bases in the enhancer; while varying combinations of 21 point mutations were identified in the remainder, impacting several YY1, NF1, TEF-1 and Oct-1 sites. More sequence variations were found in E6 compared to E7 (81% vs. 52% of isolates showing at least one mutation), some of which resulted in changes to the translated amino acids. Since the E6/E7 genes encode the oncogenic proteins essential for malignant transformation, and as their expression is controlled by the URR, it is possible that some of the identified mutations altered the oncogenicity of the virus: either directly by changing amino acid sequences of the E6 or E7 oncoproteins, or indirectly through alterations to transcription factor binding sites in the URR.

  5. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2015-07-01

    progenitor cells (NPCs) by expressing an activated form of Notch1 (N1ICD) or oncogenic PIK3CA (PIK3CA*) in the developing mouse cerebellum, using cell...resistance, pediatric cancer, brain tumor, Notch1, PIK3CA, cell of origin, molecular subtypes, neural stem cells, neural progenitor cells, tumor initiation...neural progenitor cells, tumor initiation. 3. ACCOMPLISHMENTS: Major goals of the project: The stated goals of this project are to: 1) test the

  6. Pesticides and oncogenic modulation.

    Science.gov (United States)

    Vakonaki, Elena; Androutsopoulos, Vasilis P; Liesivuori, Jyrki; Tsatsakis, Aristidis M; Spandidos, Demetrios A

    2013-05-10

    Pesticides constitute a diverse class of chemicals used for the protection of agricultural products. Several lines of evidence demonstrate that organochlorine and organophosphate pesticides can cause malignant transformation of cells in in vitro and in vivo models. In the current minireview a comprehensive summary of recent in vitro findings is presented along with data reported from human population studies, regarding the impact of pesticide exposure on activation or dysregulation of oncogenes and tumor suppressor genes. Substantial mechanistic work suggests that pesticides are capable of inducing mutations in oncogenes and increase their transcriptional expression in vitro, whereas human population studies indicate associations between pesticide exposure levels and mutation occurrence in cancer-related genes. Further work is required to fully explore the exact mechanisms by which pesticide exposure affects the integrity and normal function of oncogenes and tumor suppressor genes in human populations.

  7. Exomic Sequencing of Medullary Thyroid Cancer Reveals Dominant and Mutually Exclusive Oncogenic Mutations in RET and RAS

    Science.gov (United States)

    Jiao, Yuchen; Sausen, Mark; Leary, Rebecca; Bettegowda, Chetan; Roberts, Nicholas J.; Bhan, Sheetal; Ho, Allen S.; Khan, Zubair; Bishop, Justin; Westra, William H.; Wood, Laura D.; Hruban, Ralph H.; Tufano, Ralph P.; Robinson, Bruce; Dralle, Henning; Toledo, Sergio P. A.; Toledo, Rodrigo A.; Morris, Luc G. T.; Ghossein, Ronald A.; Fagin, James A.; Chan, Timothy A.; Velculescu, Victor E.; Vogelstein, Bert; Kinzler, Kenneth W.; Papadopoulos, Nickolas; Nelkin, Barry D.; Ball, Douglas W.

    2013-01-01

    Context: Medullary thyroid cancer (MTC) is a rare thyroid cancer that can occur sporadically or as part of a hereditary syndrome. Objective: To explore the genetic origin of MTC, we sequenced the protein coding exons of approximately 21,000 genes in 17 sporadic MTCs. Patients and Design: We sequenced the exomes of 17 sporadic MTCs and validated the frequency of all recurrently mutated genes and other genes of interest in an independent cohort of 40 MTCs comprised of both sporadic and hereditary MTC. Results: We discovered 305 high-confidence mutations in the 17 sporadic MTCs in the discovery phase, or approximately 17.9 somatic mutations per tumor. Mutations in RET, HRAS, and KRAS genes were identified as the principal driver mutations in MTC. All of the other additional somatic mutations, including mutations in spliceosome and DNA repair pathways, were not recurrent in additional tumors. Tumors without RET, HRAS, or KRAS mutations appeared to have significantly fewer mutations overall in protein coding exons. Conclusions: Approximately 90% of MTCs had mutually exclusive mutations in RET, HRAS, and KRAS, suggesting that RET and RAS are the predominant driver pathways in MTC. Relatively few mutations overall and no commonly recurrent driver mutations other than RET, HRAS, and KRAS were seen in the MTC exome. PMID:23264394

  8. Vav1 Oncogenic Mutation Inhibits T Cell Receptor-induced Calcium Mobilization through Inhibition of Phospholipase Cγ1 Activation*

    Science.gov (United States)

    Knyazhitsky, Mira; Moas, Etay; Shaginov, Ekaterina; Luria, Anna; Braiman, Alex

    2012-01-01

    Robust elevation of the cytosolic calcium concentration is a crucial early step for T cell activation triggered by the T cell antigen receptor. Vav1 is a proto-oncogene expressed in hematopoietic cells that is indispensable for transducing the calcium-mobilizing signal. Following T cell receptor stimulation, Vav1 facilitates formation of signaling microclusters through multiple interactions with other proteins participating in the signaling cascade. Truncation of the N terminus of Vav1 produces its oncogenic version, which is unable to support normal calcium flux following T cell activation. We show here that truncation of the N-terminal region of Vav1 alters the fine structure of protein complexes in the signaling clusters, affecting the interaction of Vav1 with phospholipase Cγ1 (PLCγ1). This alteration is accompanied by a decrease in PLCγ1 phosphorylation and inhibition of inositol 1,4,5-trisphosphate production. We suggest that the structural integrity of the N-terminal region of Vav1 is important for the proper formation of the Vav1-associated signaling complexes. The oncogenic truncation of this region elicits conformational changes that interfere with the Vav1-mediated activation of PLCγ1 and that inhibit calcium mobilization. PMID:22474331

  9. Oncogenes in melanoma: an update.

    Science.gov (United States)

    Kunz, Manfred

    2014-01-01

    Melanoma is a highly aggressive tumour with poor prognosis in the metastatic stage. BRAF, NRAS, and KIT are three well-known oncogenes involved in melanoma pathogenesis. Targeting of mutated BRAF kinase has recently been shown to significantly improve overall survival of metastatic melanoma patients, underscoring the particular role of this oncogene in melanoma biology. However, recurrences regularly occur within several months, which supposedly involve further oncogenes. Moreover, oncogenic driver mutations have not been described for up to 30% of all melanomas. In order to obtain a more complete picture of the mutational landscape of melanoma, more recent studies used high-throughput DNA sequencing technologies. A number of new oncogene candidates such as MAPK1/2, ERBB4, GRIN2A, GRM3, RAC1, and PREX2 were identified. Their particular role in melanoma biology is currently under investigation. Evidence for the functional relevance of some of these new oncogene candidates has been provided in in vitro and in vivo experiments. However, these findings await further validation in clinical studies. This review provides an overview on well-known melanoma oncogenes and new oncogene candidates, based on recent high-throughput sequencing studies. The list of genes discussed herein is of course not complete but highlights some of the most significant of recent findings in this area. The new candidates may support more individualized treatment approaches for metastatic melanoma patients in the future.

  10. Transforming activity of the c-Ha-ras oncogene having two point mutations in codons 12 and 61.

    Science.gov (United States)

    Sekiya, T; Prassolov, V S; Fushimi, M; Nishimura, S

    1985-09-01

    A recombinant plasmid carrying the human c-Ha-ras gene with two point mutations in codons 12 and 61 was constructed and its transforming activity on mouse NIH 3T3 cells was compared with those of genes with a single mutation in either codon 12 or 61. Quantitative analyses revealed that the gene with two mutations had essentially the same transforming activity as the genes with single mutations. These results indicate that a single mutation of the c-Ha-ras gene in either codon 12 or 61 is sufficient to activate the gene and that neither of the two mutation sites involved in activation of the gene needs to be intact for transforming activity.

  11. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    Full Text Available BACKGROUND: Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line. CONCLUSIONS/SIGNIFICANCE: This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  12. Germline mutations of the RET proto-oncogene in pedigree with MEN type 2A: DNA analysis and its implications for pediatric surgery.

    Science.gov (United States)

    Shimotake, T; Iwai, N; Inoue, K; Inazawa, J; Nishisho, I

    1996-06-01

    To assess the feasibility of screening for multiple endocrine neoplasia type 2A (MEN 2A), the authors used DNA sequence analysis to evaluate the RET proto-oncogene in a kindred with MEN 2A. The kindred consisted of 95 members (1 to 79 years of age) and their spouses, and spanned five generations. Genomic DNA was extracted from peripheral blood lymphocytes or lymphoblastoid cell lines established from the family members, and the RET gene was amplified by polymerase chain reaction (PCR) using RET-specific primers (10q 11.2) and was sequenced. Periodic endocrine screening also was performed, by measuring the plasma calcitonin concentration after provocation with pentagastrin (0.5 microgram/kg intravenously) to assess its reliability for detecting the associated neoplasms. Nineteen patients were confirmed to have MEN 2A by medical records or the screening program. The DNA sequence of the PCR products from clinically established MEN 2A patients showed a mutation at codon 634 (TGC-->CGC) that resulted in an amino acid change from cysteine to arginine. Endocrine screening tests showed that six other family members had a mutated RET protooncogene. DNA sequencing can detect high-risk cases at a preclinical stage of the disease. The establishment of mutated MEN 2A gene carriers allows pediatric surgeons to consider total thyroidectomy at a very early stage of neoplasm development (C-cell hyperplasia) or even prophylactically.

  13. Multiple endocrine neoplasia type 2B caused by a single point mutation in RET proto-oncogene in a Chinese patient

    Institute of Scientific and Technical Information of China (English)

    张翼飞; 洪洁; 赵咏桔; 江凌; 戴蒙; 金晓龙; 陈家伦; 宁光

    2004-01-01

    @@ Multiple endocrine neoplasia type 2 (MEN 2) is a hereditary syndrome which can present itself either in a familial form, characterized by a dominant pattern of inheritance, or in a sporadic form. It can be subdivided into multiple endocrine neoplasia type 2A (MEN-2A), multiple endocrine neoplasia type 2B (MEN-2B), and familial medullary thyroid carcinoma (FMTC).1-3 Among these conditions, MEN-2B, which has an extremely low rate of incidence, is the most severe form. Its clinical presentation includes C-cell hyperplasia or medullary thyroid carcinoma, pheochromocytoma, ganglioneuromatosis, accompanied with Marfanoid body habitus.4-8 Using the methods of single-strand conformational polymorphism (SSCP) and direct gene sequencing, Hofstra et al9 and Calson et al10 showed for the first time that MEN-2B is associated with a mutation in the RE arranged during transfection (RET) proto-oncogene, which is a receptor-type tyrosine kinase. The RET gene is located in the centromeric region of chromosome 10q11.2, and consists of 21 exons. Over 95% of MEN-2B patients have a specific point mutation at codon 918 in exon 16 of RET, resulting in the replacement of methionine with threonine [918Met(ATG)→Thr(ACG)].11-16 Although there have been many reports on the gene mutation associated with MEN-2B,17-19 there has been no previous reports on similar genetic studies in Chinese patients. In this study, we identified a MEN-2B Chinese patient and tried to establish the relationship between an RET gene mutation and the onset of MEN-2B, in order to further understand the hereditary characteristics of this disease and a basis for early diagnosis and early intervention.

  14. A novel fully automated molecular diagnostic system (AMDS for colorectal cancer mutation detection.

    Directory of Open Access Journals (Sweden)

    Shiro Kitano

    Full Text Available BACKGROUND: KRAS, BRAF and PIK3CA mutations are frequently observed in colorectal cancer (CRC. In particular, KRAS mutations are strong predictors for clinical outcomes of EGFR-targeted treatments such as cetuximab and panitumumab in metastatic colorectal cancer (mCRC. For mutation analysis, the current methods are time-consuming, and not readily available to all oncologists and pathologists. We have developed a novel, simple, sensitive and fully automated molecular diagnostic system (AMDS for point of care testing (POCT. Here we report the results of a comparison study between AMDS and direct sequencing (DS in the detection of KRAS, BRAF and PI3KCA somatic mutations. METHODOLOGY/PRINCIPAL FINDING: DNA was extracted from a slice of either frozen (n = 89 or formalin-fixed and paraffin-embedded (FFPE CRC tissue (n = 70, and then used for mutation analysis by AMDS and DS. All mutations (n = 41 among frozen and 27 among FFPE samples detected by DS were also successfully (100% detected by the AMDS. However, 8 frozen and 6 FFPE samples detected as wild-type in the DS analysis were shown as mutants in the AMDS analysis. By cloning-sequencing assays, these discordant samples were confirmed as true mutants. One sample had simultaneous "hot spot" mutations of KRAS and PIK3CA, and cloning assay comfirmed that E542K and E545K were not on the same allele. Genotyping call rates for DS were 100.0% (89/89 and 74.3% (52/70 in frozen and FFPE samples, respectively, for the first attempt; whereas that of AMDS was 100.0% for both sample sets. For automated DNA extraction and mutation detection by AMDS, frozen tissues (n = 41 were successfully detected all mutations within 70 minutes. CONCLUSIONS/SIGNIFICANCE: AMDS has superior sensitivity and accuracy over DS, and is much easier to execute than conventional labor intensive manual mutation analysis. AMDS has great potential for POCT equipment for mutation analysis.

  15. Values of mutations of K-ras oncogene at codon 12 in detection of pancreatic cancer:15-year experience

    Institute of Scientific and Technical Information of China (English)

    De-Qing Mu; You-Shu Peng; Qiao-Jian Xu

    2004-01-01

    AIM: To summarize progress in the study of K-ras gene studies in pancreatic cancer and its potential clinical significance in screening test for early detection of pancreatic cancer, and to differentiate pancreatic cancer from chronic pancreatitis in recent decade.METHODS: Literature search (MEDLINE 1986-2003) was performed using the key words K-ras gene, pancreatic cancer, chronic pancreatitis, and diagnosis. Two kind of opposite points of view on the significance of K-ras gene in detection early pancreatic cancer and differentiation pancreatic cancer from chronic pancreatitis were investigated.The presence of a K-ras gene mutation at codon 12 has been seen in 75-100% of pancreatic cancers, and is not rare in patients with chronic pancreatitis, and represents an increased risk of developing pancreatic cancer. However, the significance of the detection of this mutation in specimens obtained by needle aspiration from pure pancreatic juice and from stools for its utilization for the detection of early pancreatic cancer, and differentiation pancreatic cancer from chronic pancreatitis remains controversial. CONCLUSION: The value of K-ras gene mutation for the detection of early pancreatic cancer and differentiation pancreatic cancer from chronic pancreatitis remains uncertains in clinical pratice. Nevertheless, K-ras mutation screening may increase the sensitivity of FNA and ERP cytology and may be useful in identifying pancreatitis patients at high risk for developing cancer, and as a adjunct with cytology to differentiate pancreatic cancer from chronic pancreatitis.

  16. Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors.

    Science.gov (United States)

    Ducker, G S; Atreya, C E; Simko, J P; Hom, Y K; Matli, M R; Benes, C H; Hann, B; Nakakura, E K; Bergsland, E K; Donner, D B; Settleman, J; Shokat, K M; Warren, R S

    2014-03-20

    The mammalian target of rapamycin (mTOR) regulates cell growth by integrating nutrient and growth factor signaling and is strongly implicated in cancer. But mTOR is not an oncogene, and which tumors will be resistant or sensitive to new adenosine triphosphate (ATP) competitive mTOR inhibitors now in clinical trials remains unknown. We screened a panel of over 600 human cancer cell lines to identify markers of resistance and sensitivity to the mTOR inhibitor PP242. RAS and phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) mutations were the most significant genetic markers for resistance and sensitivity to PP242, respectively; colon origin was the most significant marker for resistance based on tissue type. Among colon cancer cell lines, those with KRAS mutations were most resistant to PP242, whereas those without KRAS mutations most sensitive. Surprisingly, cell lines with co-mutation of PIK3CA and KRAS had intermediate sensitivity. Immunoblot analysis of the signaling targets downstream of mTOR revealed that the degree of cellular growth inhibition induced by PP242 was correlated with inhibition of phosphorylation of the translational repressor eIF4E-binding protein 1 (4E-BP1), but not ribosomal protein S6 (rpS6). In a tumor growth inhibition trial of PP242 in patient-derived colon cancer xenografts, resistance to PP242-induced inhibition of 4E-BP1 phosphorylation and xenograft growth was again observed in KRAS mutant tumors without PIK3CA co-mutation, compared with KRAS wild-type controls. We show that, in the absence of PIK3CA co-mutation, KRAS mutations are associated with resistance to PP242 and that this is specifically linked to changes in the level of phosphorylation of 4E-BP1.

  17. The oncogenic 70Z Cbl mutation blocks the phosphotyrosine binding domain-dependent negative regulation of ZAP-70 by c-Cbl in Jurkat T cells.

    Science.gov (United States)

    van Leeuwen, J E; Paik, P K; Samelson, L E

    1999-10-01

    T-cell receptor (TCR) engagement results in the activation of Src family (Lck and Fyn) and ZAP-70 protein tyrosine kinases, leading to tyrosine phosphorylation of multiple cellular substrates including the complex adapter protein c-Cbl. Moreover, Cbl is tyrosine phosphorylated upon engagement of growth factor receptors, cytokine receptors, and immunoreceptors and functions as a negative regulator of tyrosine kinase signalling pathways. Cbl associates via its phosphotyrosine binding (PTB) domain to the ZAP-70 pY292 negative regulatory phosphotyrosine. We recently demonstrated that the oncogenic Cbl mutant, 70Z Cbl, requires its PTB domain to upregulate NFAT in unstimulated Jurkat T cells. Here, we demonstrate that kinase-dead but not wild-type forms of Fyn, Lck, and ZAP-70 block 70Z Cbl-mediated NFAT activation. Moreover, 70Z Cbl does not upregulate NFAT in the ZAP-70-deficient P116 Jurkat T-cell line. The requirement for Fyn, Lck, and ZAP-70 is not due to tyrosine phosphorylation of 70Z Cbl, as mutation of all tyrosines in, or deletion of, the C-terminal region of 70Z Cbl (amino acids 655 to 906) blocks 70Z Cbl tyrosine phosphorylation but enhances 70Z Cbl-mediated NFAT activation. Further, 70Z Cbl does not cooperate with ZAP-70 Y292F to upregulate NFAT, indicating that 70Z Cbl and ZAP-70 do not activate parallel signalling pathways. Finally, the upregulation of NFAT observed upon ZAP-70 overexpression is blocked by Cbl in a PTB domain-dependent manner. We conclude that oncogenic 70Z Cbl acts as a dominant negative to block the PTB domain-dependent negative regulatory role of endogenous Cbl on ZAP-70, leading to constitutive ZAP-70 signalling and activation of transcription factors.

  18. Characterizing mutational heterogeneity in a glioblastoma patient with double recurrence.

    Directory of Open Access Journals (Sweden)

    Gabrielle C Nickel

    Full Text Available Human cancers are driven by the acquisition of somatic mutations. Separating the driving mutations from those that are random consequences of general genomic instability remains a challenge. New sequencing technology makes it possible to detect mutations that are present in only a minority of cells in a heterogeneous tumor population. We sought to leverage the power of ultra-deep sequencing to study various levels of tumor heterogeneity in the serial recurrences of a single glioblastoma multiforme patient. Our goal was to gain insight into the temporal succession of DNA base-level lesions by querying intra- and inter-tumoral cell populations in the same patient over time. We performed targeted "next-generation" sequencing on seven samples from the same patient: two foci within the primary tumor, two foci within an initial recurrence, two foci within a second recurrence, and normal blood. Our study reveals multiple levels of mutational heterogeneity. We found variable frequencies of specific EGFR, PIK3CA, PTEN, and TP53 base substitutions within individual tumor regions and across distinct regions within the same tumor. In addition, specific mutations emerge and disappear along the temporal spectrum from tumor at the time of diagnosis to second recurrence, demonstrating evolution during tumor progression. Our results shed light on the spatial and temporal complexity of brain tumors. As sequencing costs continue to decline and deep sequencing technology eventually moves into the clinic, this approach may provide guidance for treatment choices as we embark on the path to personalized cancer medicine.

  19. Oncogenic mutations in adenomatous polyposis coli (Apc activate mechanistic target of rapamycin complex 1 (mTORC1 in mice and zebrafish

    Directory of Open Access Journals (Sweden)

    Alexander J. Valvezan

    2014-01-01

    Full Text Available Truncating mutations in adenomatous polyposis coli (APC are strongly linked to colorectal cancers. APC is a negative regulator of the Wnt pathway and constitutive Wnt activation mediated by enhanced Wnt–β-catenin target gene activation is believed to be the predominant mechanism responsible for APC mutant phenotypes. However, recent evidence suggests that additional downstream effectors contribute to APC mutant phenotypes. We previously identified a mechanism in cultured human cells by which APC, acting through glycogen synthase kinase-3 (GSK-3, suppresses mTORC1, a nutrient sensor that regulates cell growth and proliferation. We hypothesized that truncating Apc mutations should activate mTORC1 in vivo and that mTORC1 plays an important role in Apc mutant phenotypes. We find that mTORC1 is strongly activated in apc mutant zebrafish and in intestinal polyps in Apc mutant mice. Furthermore, mTORC1 activation is essential downstream of APC as mTORC1 inhibition partially rescues Apc mutant phenotypes including early lethality, reduced circulation and liver hyperplasia. Importantly, combining mTORC1 and Wnt inhibition rescues defects in morphogenesis of the anterior-posterior axis that are not rescued by inhibition of either pathway alone. These data establish mTORC1 as a crucial, β-catenin independent effector of oncogenic Apc mutations and highlight the importance of mTORC1 regulation by APC during embryonic development. Our findings also suggest a new model of colorectal cancer pathogenesis in which mTORC1 is activated in parallel with Wnt/β-catenin signaling.

  20. Oncogene abnormalities in a series of primary melanomas of the sinonasal tract: NRAS mutations and cyclin D1 amplification are more frequent than KIT or BRAF mutations.

    Science.gov (United States)

    Chraybi, Meriem; Abd Alsamad, Issam; Copie-Bergman, Christiane; Baia, Maryse; André, Jocelyne; Dumaz, Nicolas; Ortonne, Nicolas

    2013-09-01

    Primary malignant melanoma of sinonasal tract is a rare but severe form of melanoma. We retrospectively analyzed 17 cases and focused on the histologic presentation and the expression of c-Kit, epidermal growth factor receptor (EGFR), cyclin D1/Bcl-1, PS100, and HMB45 and searched for BRAF, NRAS, and KIT mutations that are known to be associated with melanoma subtypes, together with amplifications of KIT, cyclin D1, cyclin-dependent kinase 4, MDM2, and microphthalmia-associated transcription factor using quantitative polymerase chain reaction. In most cases (78%), an in situ component was evidenced. Invasive components were composed of diffuse areas of rhabdoid, epithelioid, or spindle cells and, in most cases, lacked inflammatory reaction, suggesting that an immune escape phenomenon probably develops when the disease progresses. EGFR was rarely and weakly expressed in the in situ component of 2 cases. None of the investigated case showed BRAF V600E, but 1 had a D594G mutation. NRAS mutations in exon 2 (G12D or G12A) were found in 3 cases (18%), and a KIT mutation in exon 11 (L576P), in 1, whereas c-Kit was expressed at the protein level in half of the cases. Amplifications of cyclin D1 were evidenced in 5 cases, confirmed in 3 by fluorescence in situ hybridization, but this was not always correlated with protein expression, found in 8 patients (62.5%), 3 having no significant amplification. In conclusion, primary malignant melanoma of sinonasal tract is not associated with BRAF V600E mutations. Instead, NRAS or KIT mutations and cyclin D1 amplification can be found in a proportion of cases, suggesting that primary malignant melanoma of sinonasal tract is heterogeneous at the molecular level and should not be sensitive to therapeutic approaches aiming at BRAF.

  1. Sequence analysis of mutations and translocations across breast cancer subtypes

    Science.gov (United States)

    Banerji, Shantanu; Cibulskis, Kristian; Rangel-Escareno, Claudia; Brown, Kristin K.; Carter, Scott L.; Frederick, Abbie M.; Lawrence, Michael S.; Sivachenko, Andrey Y.; Sougnez, Carrie; Zou, Lihua; Cortes, Maria L.; Fernandez-Lopez, Juan C.; Peng, Shouyong; Ardlie, Kristin G.; Auclair, Daniel; Bautista-Piña, Veronica; Duke, Fujiko; Francis, Joshua; Jung, Joonil; Maffuz-Aziz, Antonio; Onofrio, Robert C.; Parkin, Melissa; Pho, Nam H.; Quintanar-Jurado, Valeria; Ramos, Alex H.; Rebollar-Vega, Rosa; Rodriguez-Cuevas, Sergio; Romero-Cordoba, Sandra L.; Schumacher, Steven E.; Stransky, Nicolas; Thompson, Kristin M.; Uribe-Figueroa, Laura; Baselga, Jose; Beroukhim, Rameen; Polyak, Kornelia; Sgroi, Dennis C.; Richardson, Andrea L.; Jimenez-Sanchez, Gerardo; Lander, Eric S.; Gabriel, Stacey B.; Garraway, Levi A.; Golub, Todd R.; Melendez-Zajgla, Jorge; Toker, Alex; Getz, Gad; Hidalgo-Miranda, Alfredo; Meyerson, Matthew

    2014-01-01

    Breast carcinoma is the leading cause of cancer-related mortality in women worldwide with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone1. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis, and responses to available therapy2–4. Recurrent somatic alterations in breast cancer have been described including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration5. Prior DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements 6–10. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA11, TP536, AKT112, GATA313, and MAP3K110, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking estrogen and progesterone receptors and ERBB2 expression. The Magi3-Akt3 fusion leads to constitutive activation of Akt kinase, which is abolished by treatment with an ATP-competitive Akt small-molecule inhibitor. PMID:22722202

  2. No evidence of oncogenic KRAS mutations in squamous cell carcinomas of the anogenital tract and head and neck region independent of human papillomavirus and p16(INK4a) status.

    Science.gov (United States)

    Prigge, Elena-Sophie; Urban, Katharina; Stiegler, Sandrine; Müller, Meike; Kloor, Matthias; Mai, Sabine; Ottstadt, Martine; Lohr, Frank; Wenz, Frederik; Wagner, Steffen; Wittekindt, Claus; Klussmann, Jens Peter; Hampl, Monika; von Knebel Doeberitz, Magnus; Reuschenbach, Miriam

    2014-11-01

    Carcinogenesis of squamous cell carcinomas (SCCs) in the anogenital tract and head and neck region is heterogeneous. A substantial proportion of SCC in the vulva, anus, and head and neck follows a human papillomavirus (HPV)-induced carcinogenic pathway. However, the molecular pathways of carcinogenesis in the HPV-independent lesions are not completely understood. We hypothesized that oncogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations might represent a carcinogenic mechanism in a proportion of those HPV-negative cancers. Considering the repeated observation of KRAS-associated p16(INK4a) overexpression in human tumors, it was assumed that KRAS mutations might be particularly present in the group of HPV-negative, p16(INK4a)-positive cancers. To test this hypothesis, we analyzed 66 anal, vulvar, and head and neck SCC with known immunohistochemical p16(INK4a) and HPV DNA status for KRAS mutations in exon 2 (codons 12, 13, and 15). We enriched the tumor collection with HPV DNA-negative, p16(INK4a)-positive cancers. A subset of 37 cancers was also analyzed for mutations in the B-Raf proto-oncogene, serine/threonine kinase (BRAF) gene. None of the 66 tumors harbored mutations in KRAS exon 2, thus excluding KRAS mutations as a common event in SCC of the anogenital and head and neck region and as a cause of p16(INK4a) expression in these tumors. In addition, no BRAF mutations were detected in the 37 analyzed tumors. Further studies are required to determine the molecular events underlying HPV-negative anal, vulvar, and head and neck carcinogenesis. Considering HPV-independent p16(INK4a) overexpression in some of these tumors, particular focus should be placed on alternative upstream activators and potential downstream disruption of the p16(INK4a) pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. BRAF(V600E) mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl.

    Science.gov (United States)

    Mitsutake, Norisato; Fukushima, Toshihiko; Matsuse, Michiko; Rogounovitch, Tatiana; Saenko, Vladimir; Uchino, Shinya; Ito, Masahiro; Suzuki, Keiji; Suzuki, Shinichi; Yamashita, Shunichi

    2015-11-20

    After the accident at the Fukushima Daiichi Nuclear Power Plant, the thyroid ultrasound screening program for children aged 0-18 at the time of the accident was started from October 2011. The prevalence of thyroid carcinomas in that population has appeared to be very high (84 cases per 296,253). To clarify the pathogenesis, we investigated the presence of driver mutations in these tumours. 61 classic papillary thyroid carcinomas (PTCs), two follicular variant PTCs, four cribriform-morular variant PTCs and one poorly-differentiated thyroid carcinoma were analysed. We detected BRAF(V600E) in 43 cases (63.2%), RET/PTC1 in six (8.8%), RET/PTC3 in one (1.5%) and ETV6/NTRK3 in four (5.9%). Among classic and follicular variant PTCs, BRAF(V600E) was significantly associated with the smaller size. The genetic pattern was completely different from post-Chernobyl PTCs, suggesting non-radiogenic etiology of these cancers. This is the first study demonstrating the oncogene profile in the thyroid cancers discovered by large mass screening, which probably reflects genetic status of all sporadic and latent tumours in the young Japanese population. It is assumed that BRAF(V600E) may not confer growth advantage on paediatric PTCs, and many of these cases grow slowly, suggesting that additional factors may be important for tumour progression in paediatric PTCs.

  4. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review

    Science.gov (United States)

    2014-01-01

    Background KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence interval (CI) = 0.29-2.26 for codon 61 mutation; colorectal cancer-specific mortality HR = 0.86, 95% CI = 0.42-1.78 for codon 146 mutation]. Conclusions Tumors with KRAS mutations in codons 61 and 146 account for an appreciable proportion (approximately 5%) of colorectal cancers, and their clinicopathological and molecular features appear generally similar to KRAS codon 12 or 13 mutated cancers. To

  5. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas.

    Directory of Open Access Journals (Sweden)

    Stephanie Puget

    Full Text Available Diffuse intrinsic pontine glioma (DIPG is one of the most frequent malignant pediatric brain tumor and its prognosis is universaly fatal. No significant improvement has been made in last thirty years over the standard treatment with radiotherapy. To address the paucity of understanding of DIPGs, we have carried out integrated molecular profiling of a large series of samples obtained with stereotactic biopsy at diagnosis. While chromosomal imbalances did not distinguish DIPG and supratentorial tumors on CGHarrays, gene expression profiling revealed clear differences between them, with brainstem gliomas resembling midline/thalamic tumours, indicating a closely-related origin. Two distinct subgroups of DIPG were identified. The first subgroup displayed mesenchymal and pro-angiogenic characteristics, with stem cell markers enrichment consistent with the possibility to grow tumor stem cells from these biopsies. The other subgroup displayed oligodendroglial features, and appeared largely driven by PDGFRA, in particular through amplification and/or novel missense mutations in the extracellular domain. Patients in this later group had a significantly worse outcome with an hazard ratio for early deaths, ie before 10 months, 8 fold greater that the ones in the other subgroup (p = 0.041, Cox regression model. The worse outcome of patients with the oligodendroglial type of tumors was confirmed on a series of 55 paraffin-embedded biopsy samples at diagnosis (median OS of 7.73 versus 12.37 months, p = 0.045, log-rank test. Two distinct transcriptional subclasses of DIPG with specific genomic alterations can be defined at diagnosis by oligodendroglial differentiation or mesenchymal transition, respectively. Classifying these tumors by signal transduction pathway activation and by mutation in pathway member genes may be particularily valuable for the development of targeted therapies.

  6. Detection of somatic mutations by high-resolution DNA melting (HRM analysis in multiple cancers.

    Directory of Open Access Journals (Sweden)

    Jesus Gonzalez-Bosquet

    Full Text Available Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each. HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  7. Mutational Context and Diverse Clonal Development in Early and Late Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Iver Nordentoft

    2014-06-01

    Full Text Available Bladder cancer (or urothelial cell carcinoma [UCC] is characterized by field disease (malignant alterations in surrounding mucosa and frequent recurrences. Whole-genome, exome, and transcriptome sequencing of 38 tumors, including four metachronous tumor pairs and 20 superficial tumors, identified an APOBEC mutational signature in one-third. This was biased toward the sense strand, correlated with mean expression level, and clustered near breakpoints. A > G mutations were up to eight times more frequent on the sense strand (p < 0.002 in [ACG]AT contexts. The patient-specific APOBEC signature was negatively correlated to repair-gene expression and was not related to clinicopathological parameters. Mutations in gene families and single genes were related to tumor stage, and expression of chromatin modifiers correlated with survival. Evolutionary and subclonal analyses of early/late tumor pairs showed a unitary origin, and discrete tumor clones contained mutated cancer genes. The ancestral clones contained Pik3ca/Kdm6a mutations and may reflect the field-disease mutations shared among later tumors.

  8. A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Alessandra Viel

    2017-06-01

    Full Text Available 8-Oxoguanine, a common mutagenic DNA lesion, generates G:C>T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC in MUTYH-Associated Polyposis (MAP syndrome. Here, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C>T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strong sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. The occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs.

  9. The clonal and mutational evolution spectrum of primary triple negative breast cancers

    Science.gov (United States)

    Shah, Sohrab P.; Roth, Andrew; Goya, Rodrigo; Oloumi, Arusha; Ha, Gavin; Zhao, Yongjun; Turashvili, Gulisa; Ding, Jiarui; Tse, Kane; Haffari, Gholamreza; Bashashati, Ali; Prentice, Leah M.; Khattra, Jaswinder; Burleigh, Angela; Yap, Damian; Bernard, Virginie; McPherson, Andrew; Shumansky, Karey; Crisan, Anamaria; Giuliany, Ryan; Heravi-Moussavi, Alireza; Rosner, Jamie; Lai, Daniel; Birol, Inanc; Varhol, Richard; Tam, Angela; Dhalla, Noreen; Zeng, Thomas; Ma, Kevin; Chan, Simon; Griffith, Malachi; Moradian, Annie; Grace Cheng, S.-W.; Morin, Gregg B.; Watson, Peter; Gelmon, Karen; Chia, Stephen; Chin, Suet-Feung; Curtis, Christina; Rueda, Oscar; Pharoah, Paul D; Damaraju, Sambasivarao; Mackey, John; Hoon, Kelly; Harkins, Timothy; Tadigotla, Vasisht; Sigaroudinia, Mahvash; Gascard, Philippe; Tlsty, Thea; Costello, Joseph F; Meyer, Irmtraud M; Eaves, Connie J; Wasserman, Wyeth W; Jones, Steven; Huntsman, David; Hirst, Martin; Caldas, Carlos; Marra, Marco A; Aparicio, Samuel

    2013-01-01

    Primary triple negative breast cancers (TNBC) represent approximately 16% of all breast cancers1 and are a tumour type defined by exclusion, for which comprehensive landscapes of somatic mutation have not been determined. Here we show in 104 early TNBC cases, that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some exhibiting only a handful of somatic aberrations in a few pathways, whereas others contain hundreds of somatic events and multiple pathways implicated. Integration with matched whole transcriptome sequence data revealed that only ~36% of mutations are expressed. By examining single nucleotide variant (SNV) allelic abundance derived from deep re-sequencing (median >20,000 fold) measurements in 2414 somatic mutations, we determine for the first time in an epithelial tumour, the relative abundance of clonal genotypes among cases in the population. We show that TNBC vary widely and continuously in their clonal frequencies at the time of diagnosis, with basal subtype TNBC2,3 exhibiting more variation than non-basal TNBC. Although p53 and PIK3CA/PTEN somatic mutations appear clonally dominant compared with other pathways, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal and cell shape/motility proteins occurred at lower clonal frequencies, suggesting they occurred later during tumour progression. Taken together our results show that future attempts to dissect the biology and therapeutic responses of TNBC will require the determination of individual tumour clonal genotypes. PMID:22495314

  10. Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer

    DEFF Research Database (Denmark)

    Jönsson, Mats; Ekstrand, Anna Isinger; Jönsson, Mats;

    2010-01-01

    The phosphatidylinositol 3-kinases-AKT-mammalian target of rapamycin pathway (PI3K/AKT/mTOR) is central in colorectal tumors. Data on its role in hereditary cancers are, however, scarce and we therefore characterized mutations in PIK3CA and KRAS, and expression of PIK3CA, phosphorylated AKT...

  11. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas.

    Science.gov (United States)

    Clark, Victoria E; Harmancı, Akdes Serin; Bai, Hanwen; Youngblood, Mark W; Lee, Tong Ihn; Baranoski, Jacob F; Ercan-Sencicek, A Gulhan; Abraham, Brian J; Weintraub, Abraham S; Hnisz, Denes; Simon, Matthias; Krischek, Boris; Erson-Omay, E Zeynep; Henegariu, Octavian; Carrión-Grant, Geneive; Mishra-Gorur, Ketu; Durán, Daniel; Goldmann, Johanna E; Schramm, Johannes; Goldbrunner, Roland; Piepmeier, Joseph M; Vortmeyer, Alexander O; Günel, Jennifer Moliterno; Bilgüvar, Kaya; Yasuno, Katsuhito; Young, Richard A; Günel, Murat

    2016-10-01

    RNA polymerase II mediates the transcription of all protein-coding genes in eukaryotic cells, a process that is fundamental to life. Genomic mutations altering this enzyme have not previously been linked to any pathology in humans, which is a testament to its indispensable role in cell biology. On the basis of a combination of next-generation genomic analyses of 775 meningiomas, we report that recurrent somatic p.Gln403Lys or p.Leu438_His439del mutations in POLR2A, which encodes the catalytic subunit of RNA polymerase II (ref. 1), hijack this essential enzyme and drive neoplasia. POLR2A mutant tumors show dysregulation of key meningeal identity genes, including WNT6 and ZIC1/ZIC4. In addition to mutations in POLR2A, NF2, SMARCB1, TRAF7, KLF4, AKT1, PIK3CA, and SMO, we also report somatic mutations in AKT3, PIK3R1, PRKAR1A, and SUFU in meningiomas. Our results identify a role for essential transcriptional machinery in driving tumorigenesis and define mutually exclusive meningioma subgroups with distinct clinical and pathological features.

  12. Liver tumors induced in B6C3F{sub 1} mice by benz[a]anthracene and two of its halogenated derivatives contain K-RAS oncogene mutations

    Energy Technology Data Exchange (ETDEWEB)

    Xia, O.; Yi, P.; Zhan, D. [and others

    1997-10-01

    Polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs are genotoxic environmental contaminants. We previously examined the tumorigenicity of benz[a]anthracene (BA), 7-Cl-BA, and 7-Br-BA in the neonatal mouse tumorigenicity bioassay. Male B6C3F{sub 1} mice were administered i.p. injections at a total dose of 400 nmol per mouse on 1, 8, and 15 days after birth. BA, 7-Cl-BA, and 7-Br-BA induced hepatocellular adenoma in 67, 92, and 96% of the mice, respectively, and induced hepatocellular carcinoma in 15, 100 and 83% of the mice, respectively. In the present study, mRNA was isolated from each of the liver tumors induced by the three compounds, reversed-transcribed to cDNA, and portions of the K- and H-ras oncogene coding sequences were amplified and analyzed for DNA sequence alterations. 92% (11/12) of BA-induced, 79% (19/24) of 7-Cl-BA-induced and 86% (19/22) of 7-Br-BA-induced liver tumors had activated ras protooncogenes. In contrast to the general finding of H-ras mutations in B6C3F{sub 1} mouse liver tumors, all the mutations were at the first base of K-ras codon 13, resulting in a pattern of GGC{yields}CGC. No other ras oncogene mutations were detected. Our results clearly demonstrate that these chemicals induce a unique type of ras (K-ras) oncogene activation in the liver tumors of B6C3F{sub 1} mice.

  13. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups

    Science.gov (United States)

    Mafficini, Andrea; Wood, Laura D.; Corbo, Vincenzo; Melisi, Davide; Malleo, Giuseppe; Vicentini, Caterina; Malpeli, Giorgio; Antonello, Davide; Sperandio, Nicola; Capelli, Paola; Tomezzoli, Anna; Iacono, Calogero; Lawlor, Rita T.; Bassi, Claudio; Hruban, Ralph H.; Guglielmi, Alfredo; Tortora, Giampaolo; de Braud, Filippo; Scarpa, Aldo

    2014-01-01

    One-hundred-fifty-three biliary cancers, including 70 intrahepatic cholangiocarcinomas (ICC), 57 extrahepatic cholangiocarcinomas (ECC) and 26 gallbladder carcinomas (GBC) were assessed for mutations in 56 genes using multigene next-generation sequencing. Expression of EGFR and mTOR pathway genes was investigated by immunohistochemistry. At least one mutated gene was observed in 118/153 (77%) cancers. The genes most frequently involved were KRAS (28%), TP53 (18%), ARID1A (12%), IDH1/2 (9%), PBRM1 (9%), BAP1 (7%), and PIK3CA (7%). IDH1/2 (p=0.0005) and BAP1 (p=0.0097) mutations were characteristic of ICC, while KRAS (p=0.0019) and TP53 (p=0.0019) were more frequent in ECC and GBC. Multivariate analysis identified tumour stage and TP53 mutations as independent predictors of survival. Alterations in chromatin remodeling genes (ARID1A, BAP1, PBRM1, SMARCB1) were seen in 31% of cases. Potentially actionable mutations were seen in 104/153 (68%) cancers: i) KRAS/NRAS/BRAF mutations were found in 34% of cancers; ii) mTOR pathway activation was documented by immunohistochemistry in 51% of cases and by mutations in mTOR pathway genes in 19% of cancers; iii) TGF-ß/Smad signaling was altered in 10.5% cancers; iv) mutations in tyrosine kinase receptors were found in 9% cases. Our study identified molecular subgroups of cholangiocarcinomas that can be explored for specific drug targeting in clinical trials. PMID:24867389

  14. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor.

    Science.gov (United States)

    Rodrik-Outmezguine, Vanessa S; Okaniwa, Masanori; Yao, Zhan; Novotny, Chris J; McWhirter, Claire; Banaji, Arpitha; Won, Helen; Wong, Wai; Berger, Mike; de Stanchina, Elisa; Barratt, Derek G; Cosulich, Sabina; Klinowska, Teresa; Rosen, Neal; Shokat, Kevan M

    2016-06-09

    Precision medicines exert selective pressure on tumour cells that leads to the preferential growth of resistant subpopulations, necessitating the development of next-generation therapies to treat the evolving cancer. The PIK3CA-AKT-mTOR pathway is one of the most commonly activated pathways in human cancers, which has led to the development of small-molecule inhibitors that target various nodes in the pathway. Among these agents, first-generation mTOR inhibitors (rapalogs) have caused responses in 'N-of-1' cases, and second-generation mTOR kinase inhibitors (TORKi) are currently in clinical trials. Here we sought to delineate the likely resistance mechanisms to existing mTOR inhibitors in human cell lines, as a guide for next-generation therapies. The mechanism of resistance to the TORKi was unusual in that intrinsic kinase activity of mTOR was increased, rather than a direct active-site mutation interfering with drug binding. Indeed, identical drug-resistant mutations have been also identified in drug-naive patients, suggesting that tumours with activating MTOR mutations will be intrinsically resistant to second-generation mTOR inhibitors. We report the development of a new class of mTOR inhibitors that overcomes resistance to existing first- and second-generation inhibitors. The third-generation mTOR inhibitor exploits the unique juxtaposition of two drug-binding pockets to create a bivalent interaction that allows inhibition of these resistant mutants.

  15. Concomitant occurrence of EGFR (epidermal growth factor receptor) and KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) mutations in an ALK (anaplastic lymphoma kinase)-positive lung adenocarcinoma patient with acquired resistance to crizotinib

    DEFF Research Database (Denmark)

    Rossing, Henrik H; Grauslund, Morten; Urbanska, Edyta M;

    2013-01-01

    , the events behind crizotinib-resistance currently remain largely uncharacterized. Thus, we report on an anaplastic lymphoma kinase-positive non-small cell lung carcinoma patient with concomitant occurrence of epidermal growth factor receptor and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog mutations......Anaplastic lymphoma kinase-positive non-small cell lung carcinoma patients are generally highly responsive to the dual anaplastic lymphoma kinase and MET tyrosine kinase inhibitor crizotinib. However, they eventually acquire resistance to this drug, preventing the anaplastic lymphoma kinase...... inhibitors from having a prolonged beneficial effect. The molecular mechanisms responsible for crizotinib resistance are beginning to emerge, e.g., in some anaplastic lymphoma kinase-positive non-small cell lung carcinomas the development of secondary mutations in this gene has been described. However...

  16. Pancreatic endocrine tumours: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries

    Science.gov (United States)

    Corbo, V.; Beghelli, S.; Bersani, S.; Antonello, D.; Talamini, G.; Brunelli, M.; Capelli, P.; Falconi, M.; Scarpa, A.

    2012-01-01

    Background: Kinases represent potential therapeutic targets in pancreatic endocrine tumours (PETs). Patients and methods: Thirty-five kinase genes were sequenced in 36 primary PETs and three PET cell lines: (i) 4 receptor tyrosine kinases (RTK), epithelial growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), tyrosine-protein kinase KIT (KIT), platelet-derived growth factor receptor alpha (PDGFRalpha); (ii) 6 belonging to the Akt/mTOR pathway; and (iii) 25 frequently mutated in cancers. The immunohistochemical expression of the four RTKs and the copy number of EGFR and HER2 were assessed in 140 PETs. Results: Somatic mutations were found in KIT in one and ATM in two primary neoplasms. Among 140 PETs, EGFR was immunopositive in 18 (13%), HER2 in 3 (2%), KIT in 16 (11%), and PDGFRalpha in 135 (96%). HER2 amplification was found in 2/130 (1.5%) PETs. KIT membrane immunostaining was significantly associated with tumour aggressiveness and shorter patient survival. PET cell lines QGP1, CM and BON harboured mutations in FGFR3, FLT1/VEGFR1 and PIK3CA, respectively. Conclusions: Only rare PET cases, harbouring either HER2 amplification or KIT mutation, might benefit from targeted drugs. KIT membrane expression deserves further attention as a prognostic marker. ATM mutation is involved in a proportion of PET. The finding of specific mutations in PET cell lines renders these models useful for preclinical studies involving pathway-specific therapies. PMID:21447618

  17. Mutational profiles in triple-negative breast cancer defined by ultradeep multigene sequencing show high rates of PI3K pathway alterations and clinically relevant entity subgroup specific differences.

    Science.gov (United States)

    Kriegsmann, Mark; Endris, Volker; Wolf, Thomas; Pfarr, Nicole; Stenzinger, Albrecht; Loibl, Sibylle; Denkert, Carsten; Schneeweiss, Andreas; Budczies, Jan; Sinn, Peter; Weichert, Wilko

    2014-10-30

    Mutational profiling of triple-negative breast cancer (TNBC) by whole exome sequencing (WES) yielded a landscape of genomic alterations in this tumor entity. However, the clinical significance of these findings remains enigmatic. Further, integration of WES in routine diagnostics using formalin-fixed paraffin-embedded (FFPE) material is currently not feasible. Therefore, we designed and validated a breast cancer specific gene panel for semiconductor-based sequencing comprising 137 amplicons covering mutational hotspots in 44 genes and applied this panel on a cohort of 104 well-characterized FFPE TNBC with complete clinical follow-up. TP53 mutations were present in more than 80% of cases. PI3K pathway alterations (29.8%) comprising mainly PIK3CA mutations (22.1%) but also mutations and/or amplifications/deletions in other PI3K-associated genes (7.7%) were far more frequently observed, when compared to WES data. Alterations in MAPK signaling genes (8.7%) and cell-cycle regulators (14.4%) were also frequent. Mutational profiles were linked to TNBC subgroups defined by morphology and immunohistochemistry. Alterations in cell-cycle pathway regulators were linked with better overall (p=0.053) but not disease free survival. Taken together, we could demonstrate that breast cancer targeted hotspot sequencing is feasible in a routine setting and yields reliable and clinically meaningful results. Mutational spectra were linked to clinical and immunohistochemically defined parameters.

  18. Potential actionable targets in appendiceal cancer detected by immunohistochemistry, fluorescent in situ hybridization, and mutational analysis

    Science.gov (United States)

    Millis, Sherri Z.; Kimbrough, Jeffery; Doll, Nancy; Von Hoff, Daniel; Ramanathan, Ramesh K.

    2017-01-01

    Background Appendiceal cancers are rare and consist of carcinoid, mucocele, pseudomyxoma peritonei (PMP), goblet cell carcinoma, lymphoma, and adenocarcinoma histologies. Current treatment involves surgical resection or debulking, but no standard exists for adjuvant chemotherapy or treatment for metastatic disease. Methods Samples were identified from approximately 60,000 global tumors analyzed at a referral molecular profiling CLIA-certified laboratory. A total of 588 samples with appendix primary tumor sites were identified (male/female ratio of 2:3; mean age =55). Sixty-two percent of samples were adenocarcinomas (used for analysis); the rest consisted of 9% goblet cell, 15% mucinous; 6% pseudomyxoma, and less than 5% carcinoids and 2% neuroendocrine. Tests included sequencing [Sanger, next generation sequencing (NGS)], protein expression/immunohistochemistry (IHC), and gene amplification [fluorescent in situ hybridization (FISH) or CISH]. Results Profiling across all appendiceal cancer histological subtypes for IHC revealed: 97% BRCP, 81% MRP1, 81% COX-2, 71% MGMT, 56% TOPO1, 5% PTEN, 52% EGFR, 40% ERCC1, 38% SPARC, 35% PDGFR, 35% TOPO2A, 25% RRM1, 21% TS, 16% cKIT, and 12% for TLE3. NGS revealed mutations in the following genes: 50.4% KRAS, 21.9% P53, 17.6% GNAS, 16.5% SMAD4, 10% APC, 7.5% ATM, 5.5% PIK3CA, 5.0% FBXW7, and 1.8% BRAF. Conclusions Appendiceal cancers show considerable heterogeneity with high levels of drug resistance proteins (BCRP and MRP1), which highlight the difficulty in treating these tumors and suggest an individualized approach to treatment. The incidence of low TS (79%) could be used as a backbone of therapy (using inhibitors such as 5FU/capecitabine or newer agents). Therapeutic options includeTOPO1 inhibitors (irinotecan/topotecan), EGFR inhibitors (erlotinib, cetuximab), PDGFR antagonists (regorafenib, axitinib), MGMT (temozolomide). Clinical trials targeting pathways involving KRAS, p53, GNAS, SMAD4, APC, ATM, PIK3CA, FBXW7, and

  19. Deep sequence analysis of non-small cell lung cancer: Integrated analysis of gene expression, alternative splicing, and single nucleotide variations in lung adenocarcinomas with and without oncogenic KRAS mutations

    Directory of Open Access Journals (Sweden)

    Krishna R Kalari

    2012-02-01

    Full Text Available KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC, and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes, alternate splicing (259 genes and SNV-related changes (65 genes in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFkB, ERK1/2 and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene-gene connections within the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFkB, ERK1/2 and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.

  20. A novel RET proto-oncogene mutation in multiple endocrine neoplasia type 2A%多发性内分泌腺瘤病2A型RET原癌基因新的突变方式

    Institute of Scientific and Technical Information of China (English)

    曹萌萌; 孙良阁; 朱亚丽; 任蕾; 张梦阳; 张晓亚

    2013-01-01

    Objective To observe the mode of RET proto-oncogene mutation in a pedigree with multiple endocrine neoplasia type 2A (MEN2A).Methods Six members from a MEN2A family,including the proband,were enrolled.Genomic DNAs of these members were extracted from peripheral blood lymphocytes for polymerase chain reaction(PCR),PCR products of 21 exons of the RET proto-oncogene were purified and a direct gene sequence analysis was performed.DNA sequencing was performed on the related exon of the other family members after verifying the mutation site.Results The female proband sufferd from pheochromocytoma and medullary thyroid carcinoma since the age of 45,two missense mutations of TGC(Cys) to TCC(Ser) at codon 634 and CTG(Leu) to TTT(Phe) at codon 633 in exon 11 of the RET proto-oncogene were detected in the proband,while the other members remain unchanged.Conclusions Analysis of the RET proto-oncogene identifies a united mutation of TGC (Cys) to TCC (Ser) at codon 634 and CTG(Leu) to TTT(Phe) at codon 633 in the proband.The former is a proven mutation related to MEN2A,while the latter has never been reported before.%目的 探讨多发性内分泌腺瘤病2A型(MEN2A)的RET原癌基因突变方式.方法 一个MEN2A家系,提取包括先证者共6名成员的外周血淋巴细胞DNA,对先证者RET原癌基因的全部21个外显子进行聚合酶链反应(PCR),PCR产物进行直接基因测序分析,判定变异的位点及编码氨基酸序列的变化,测得突变所在的外显子后,将其他家系成员相应外显子的扩增产物进行测序.结果 该家系先证者系45岁起被先后确诊为肾上腺嗜铬细胞瘤和甲状腺髓样癌的女性患者.通过基因测序分析发现了该先证者RET原癌基因第11号外显子存在Cys (TGC) 634 Ser(TCC)错义突变同时合并Leu(CTG) 633 Phe(TTT)错义突变,其他家系成员基因测序结果未见异常.其中测序发现的突变点与Cariff医学遗传学院人类基因突变数据库收录的MEN2A相关

  1. Determination of Mutation of C-myc Oncogene in Gastric Cancer by Capillary Electrophoresis%毛细管电泳法检测癌基因C-myc胃癌中基因点突变

    Institute of Scientific and Technical Information of China (English)

    谢希晖; 王荣; 贾正平; 谢华; 张爱梅; 徐娟; 王晓莉; 王先华

    2011-01-01

    癌基因C-myc激活和突变在胃癌形成过程中起着重要作用.通过毛细管电泳(CE)方法检测50例胃癌患者中C-myc基因突变,建立一种准确、快速诊断早期胃癌的方法.本实验采用PCR扩增胃癌及癌旁正常组织中C-myc基因第二外显子易发突变的部位基因序列,扩增样品分别经96℃变性和EcoRV酶切处理,以PAGE-SSCP,CE-SSCP,CE-RFLP分别对其突变情况进行检测.优化的CE检测条件:筛分介质PEO浓度3.0%,pH 8.2,电压15 kV,温度15℃;荧光检测:λex=488 nm,λem=520 nm.检测结果:C-myc基因总突变率为20.0% (10/50).测序分析结果显示C-myc基因第二外显子第53密码子存在点突变,碱基A变为碱基T(GAT→GTT),碱基的改变使氨基酸由亮氨酸替代为谷氨酰胺.本研究数据证实C-myc基因突变与胃癌的形成紧密相关,CE检测C-myc突变基因可作为胃癌早期诊断的简便可靠的方法.%Activation of C-myc oncogene by mutation has been reported to play an important role in gastric cancer tumorigenesis. We determined C-myc mutation in 50 patients with gastric cancer by capillary electrophoresis (CE) to establish an exactly and volant clinical diagnostic method in early gastric cancer. In this experiment, genomic DNA was extracted from normal tissue and gastric cancer tissue and the sequence of C-myc oncogene on exon 2 (possible with high mutation frequency) in the extracted genomic DNA was amplified by polymerase chain reaction (PCR). Then amplified DNA samples were denatured at 96 oC and digested by EcoRV and detected by PAGE-single strand conformation polymorphism (SSCP), CE-SSCP, CE-restriction fragment length polymorphism (RFLP). The optimum CE detection conditions including 3. 0% sieving medium poly(ethylene oxide) (PEO), pH 8. 2, separation voltage of 15 kV and temperature of 15 oC were adopted. The laser-induced fluorescence detector was set at λex = 488 nm, λem = 520 nm. The results reveal that the mutation frequency of C

  2. Whole-exome sequencing identified mutational profiles of high-grade colon adenomas

    Science.gov (United States)

    Kim, Tae-Min; Rhee, Je-Keun; Park, Hyeon-Chun; Sung, Min Kim; Kim, Sung Soo; Hyeok, Chang An; Lee Hyung, Sug; Chung, Yeun-Jun

    2017-01-01

    Although gene-to-gene analyses identified genetic alterations such as APC, KRAS and TP53 mutations in colon adenomas, it is largely unknown whether there are any others in them. Mutational profiling of high-grade colon adenoma (HGCA) that just precedes colon carcinoma might identify not only novel adenoma-specific genes but also critical genes for its progression to carcinoma. For this, we performed whole-exome sequencing (WES) of 12 HGCAs and identified 11 non-hypermutated and one hypermutated (POLE-mutated) cases. We identified 22 genes including APC, KRAS, TP53, GNAS, NRAS, SMAD4, ARID2, and PIK3CA with non-silent mutations in the cancer Census Genes. Bi-allelic and mono-allelic APC alterations were found in nine and one HGCAs, respectively, while the other two harbored wild-type APC. Five HGCAs harbored either mono-allelic (four HGCAs) or bi-allelic (one HGCA) SMAD4 mutation or 18q loss that had been known as early carcinoma-specific changes. We identified MTOR, ACVR1B, GNAQ, ATM, CNOT1, EP300, ARID2, RET and MAP2K4 mutations for the first time in colon adenomas. Our WES data is largely matched with the earlier ‘adenoma-carcinoma model’ (APC, KRAS, NRAS and GNAS mutations), but there are newly identified SMAD4, MTOR, ACVR1B, GNAQ, ATM, CNOT1, EP300, ARID2, RET and MAP2K4 mutations in this study. Our findings provide resource for understanding colon premalignant lesions and for identifying genomic clues for differential diagnosis and therapy options for colon adenomas and carcinomas. PMID:28179590

  3. KRAS Mutation Status and Clinical Outcome of Preoperative Chemoradiation With Cetuximab in Locally Advanced Rectal Cancer: A Pooled Analysis of 2 Phase II Trials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Young; Shim, Eun Kyung [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Yeo, Hyun Yang [Division of Translational and Clinical Research I, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Baek, Ji Yeon [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Hong, Yong Sang [Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Dae Yong [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Division of Translational and Clinical Research I, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Kim, Tae Won [Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Jee Hyun [Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Im, Seock-Ah [Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jung, Kyung Hae [Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Chang, Hee Jin, E-mail: heejincmd@yahoo.com [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Division of Translational and Clinical Research I, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of)

    2013-01-01

    Purpose: Cetuximab-containing chemotherapy is known to be effective for KRAS wild-type metastatic colorectal cancer; however, it is not clear whether cetuximab-based preoperative chemoradiation confers an additional benefit compared with chemoradiation without cetuximab in patients with locally advanced rectal cancer. Methods and Materials: We analyzed EGFR, KRAS, BRAF, and PIK3CA mutation status with direct sequencing and epidermal growth factor receptor (EGFR) and Phosphatase and tensin homolog (PTEN) expression status with immunohistochemistry in tumor samples of 82 patients with locally advanced rectal cancer who were enrolled in the IRIX trial (preoperative chemoradiation with irinotecan and capecitabine; n=44) or the ERBIRIX trial (preoperative chemoradiation with irinotecan and capecitabine plus cetuximab; n=38). Both trials were similarly designed except for the administration of cetuximab; radiation therapy was administered at a dose of 50.4 Gy/28 fractions and irinotecan and capecitabine were given at doses of 40 mg/m{sup 2} weekly and 1650 mg/m{sup 2}/day, respectively, for 5 days per week. In the ERBIRIX trial, cetuximab was additionally given with a loading dose of 400 mg/m{sup 2} on 1 week before radiation, and 250 mg/m{sup 2} weekly thereafter. Results: Baseline characteristics before chemoradiation were similar between the 2 trial cohorts. A KRAS mutation in codon 12, 13, and 61 was noted in 15 (34%) patients in the IRIX cohort and 5 (13%) in the ERBIRIX cohort (P=.028). Among 62 KRAS wild-type cancer patients, major pathologic response rate, disease-free survival and pathologic stage did not differ significantly between the 2 cohorts. No mutations were detected in BRAF exon 11 and 15, PIK3CA exon 9 and 20, or EGFR exon 18-24 in any of the 82 patients, and PTEN and EGFR expression were not predictive of clinical outcome. Conclusions: In patients with KRAS wild-type locally advanced rectal cancer, the addition of cetuximab to the chemoradiation with

  4. Dasatinib treatment can overcome imatinib and nilotinib resistance in CML patient carrying F359I mutation of BCR-ABL oncogene.

    Science.gov (United States)

    Barańska, Marta; Lewandowski, Krzysztof; Gniot, Michał; Iwoła, Małgorzata; Lewandowska, Maria; Komarnicki, Mieczysław

    2008-01-01

    Point mutations of bcr-abl tyrosine kinase are the most frequent causes of imatinib resistance in chronic myeloid leukaemia (CML) patients. In most CML cases with BCR-ABL mutations leading to imatinib resistance the second generation of tyrosine kinase inhibitors (TKI- e.g. nilotinib or dasatinib) may be effective. Here, we report a case of a CML patient who during imatinib treatment did not obtain clinical and cytogenetic response within 12 months of therapy. The sequencing of BCR-ABL kinase domains was performed and revealed the presence of a F359I point mutation (TTC-to-ATC nucleotide change leading to Phe-to-Ile amino acid substitution). After 1 month of nilotinib therapy a rapid progression of clinical symptoms was observed. In the presence of the F359I point mutation only dasatinib treatment overcame imatinib and nilotinib resistance.

  5. Detection of codon 12 mutation in the k-ras oncogene in pancreatic tumors Detecção de mutação no códon 12 do oncogene K-ras em tumores pancreáticos

    Directory of Open Access Journals (Sweden)

    Márcia Saldanha Kubrusly

    1999-02-01

    Full Text Available Mutations at codons 12, 13, or 61 of the H-ras, K-ras, and N-ras have been detected in human neoplasias by a variety of techniques. Some of these techniques are very sensitive and can detect K-ras mutation in 90% of the cases of pancreatic adenocarcinomas. We analyzed 11 samples of pancreatic adenocarcinoma, three samples of pancreatic mucinous cystadenoma, and two samples without tumors in formalin-fixed paraffin embedded tissue sections. K-ras mutations at codon 12 were detected by a two-step PCR-enriched technique in all the samples of pancreatic adenocarcinoma, but not in cystadenoma or control samples. This technique may be useful for early detection of pancreatic cancer.Muitos dos oncogenes detectados em neoplasias malignas humanas pertencem à família do gene ras. Mutações nos códons 12, 13 ou 61 em um dos tres genes ras; H-ras, K-ras e N-ras, convertem esses genes em oncogenes ativos. Ensaios rápidos para detecção dessas mutações pontuais, tais como a reação em cadeia de polimertização têm sido desenvolvidos nas últimas décadas e usados para investigar o papel dos genes ras mutados na patogênese de tumores humanos. As mutações no gene ras podem ser encontradas numa variedade de tipos de tumores. Incidências mais altas aparecem em adenocarcinomas do pâncreas (90% e cólon (50%. Analisamos 11 amostras de tumores primários de pâncreas com diferentes metástases, três amostras de cistadenoma mucinoso e dois casos de ausência de tumor de material incluído em parafina, de onde extraímos o DNA para realização das amplificações. Os resultados mostraram que todos os casos de tumores apresentaram a banda de 135 pares de bases correspondente ao gene mutado e para os normais, a banda característica de 106 pares de bases. Nos três casos de cistadenoma mucinosos, não detectamos a banda de 135 pares de bases , apenas a banda de 106 pares de bases.

  6. Differential response to 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in non-small cell lung cancer cells with distinct oncogene mutations.

    Science.gov (United States)

    Zhang, Qiuhong; Kanterewicz, Beatriz; Shoemaker, Suzanne; Hu, Qiang; Liu, Song; Atwood, Kristopher; Hershberger, Pamela

    2013-07-01

    We previously demonstrated that non-small cell lung cancer (NSCLC) cells and primary human lung tumors aberrantly express the vitamin D3-catabolizing enzyme, CYP24, and that CYP24 restricts transcriptional regulation and growth control by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in NSCLC cells. To ascertain the basis for CYP24 dysregulation, we assembled a panel of cell lines that represent distinct molecular classes of lung cancer: cell lines were selected which harbored mutually exclusive mutations in either the K-ras or the Epidermal Growth Factor Receptor (EGFR) genes. We observed that K-ras mutant lines displayed a basal vitamin D receptor (VDR)(low)CYP24(high) phenotype, whereas EGFR mutant lines had a VDR(high)CYP24(low) phenotype. A mutation-associated difference in CYP24 expression was also observed in clinical specimens. Specifically, K-ras mutation was associated with a median 4.2-fold increase in CYP24 mRNA expression (p=4.8×10(-7)) compared to EGFR mutation in a series of 147 primary lung adenocarcinoma cases. Because of their differential basal expression of VDR and CYP24, we hypothesized that NSCLC cells with an EGFR mutation would be more responsive to 1,25(OH)2D3 treatment than those with a K-ras mutation. To test this, we measured the ability of 1,25(OH)2D3 to increase reporter gene activity, induce transcription of endogenous target genes, and suppress colony formation. In each assay, the extent of 1,25(OH)2D3 response was greater in EGFR mutation-positive HCC827 and H1975 cells than in K-ras mutation-positive A549 and 128.88T cells. We subsequently examined the effect of combining 1,25(OH)2D3 with erlotinib, which is used clinically in the treatment of EGFR mutation-positive NSCLC. 1,25(OH)2D3/erlotinib combination resulted in significantly greater growth inhibition than either single agent in both the erlotinib-sensitive HCC827 cell line and the erlotinib-resistant H1975 cell line. These data are the first to suggest that EGFR mutations may

  7. Breast Tumor Resembling Tall Cell Variant of Papillary Thyroid Carcinoma: A Solid Papillary Neoplasm With Characteristic Immunohistochemical Profile and Few Recurrent Mutations.

    Science.gov (United States)

    Bhargava, Rohit; Florea, Anca V; Pelmus, Manuela; Jones, Miroslawa W; Bonaventura, Marguerite; Wald, Abigail; Nikiforova, Marina

    2017-04-01

    Breast tumor resembling tall cell variant of papillary thyroid carcinoma (BTRPTC) is a rare breast lesion that is unrelated to thyroid carcinoma. Morphologically, it shows a solid papillary lesion with bland cytology, eosinophilic/amphophilic secretions, nuclear grooves, reversal of nuclear polarity (recently described), and nuclear inclusions. Clinical course is often uneventful with few exceptions reported in the literature. Herein, we report three additional cases. Immunohistochemical staining and next-generation sequencing was performed on all three cases. The lesional cells on all cases were positive for cytokeratin 5 and S100, with weak expression/lack of estrogen receptor. No staining was observed for myoepithelial markers (p63 and myosin heavy chain) around the lesion. IDH2 mutations were identified in two cases at nucleotide 172 (cases 1 and 3). ATM gene mutation was identified in cases 2 and 3 and PIK3CA mutation in case 3. All patients are currently without disease. BTRPTC is a slow-growing neoplastic lesion that needs to be distinguished from other papillary lesions for optimizing therapy.

  8. H1047R phosphatidylinositol 3-kinase mutant enhances HER2-mediated transformation via heregulin production and activation of HER3

    Science.gov (United States)

    Chakrabarty, Anindita; Rexer, Brent N.; Wang, Shizhen Emily; Cook, Rebecca S.; Engelman, Jeffrey A.; Arteaga, Carlos, L.

    2010-01-01

    Hyperactivation of phosphatidylinositol-3 kinase (PI3K) can occur as a result of somatic mutations in PIK3CA, the gene encoding the p110α subunit of PI3K. The HER2 oncogene is amplified in 25% of all breast cancers and some of these tumors also harbor PIK3CA mutations. We examined mechanisms by which mutant PI3K can enhance transformation and confer resistance to HER2-directed therapies. We introduced the PI3K mutations E545K and H1047R in MCF10A human mammary epithelial cells that also overexpress HER2. Both mutants conferred a gain of function to MCF10A/HER2 cells. Expression of H1047R PI3K but not E545K PI3K markedly upregulated the HER3/HER4 ligand heregulin (HRG). HRG siRNA inhibited growth of H1047R but not E545K-expressing cells and synergized with the HER2 inhibitors trastuzumab and lapatinib. The PI3K inhibitor BEZ235 markedly inhibited HRG and pAKT levels and, in combination with lapatinib, completely inhibited growth of cells expressing H1047R PI3K. These observations suggest that PI3K mutants enhance HER2-mediated transformation by amplifying the ligand-induced signaling output of the ErbB network. This also counteracts the full effect of therapeutic inhibitors of HER2. These data also suggest that mammary tumors that contain both HER2 gene amplification and PIK3CA mutations should be treated with a combination of HER2 and PI3K inhibitors. PMID:20581867

  9. Construction of a multiplex mutation hot spot PCR panel: the first step towards colorectal cancer genotyping on the GS Junior platform

    Science.gov (United States)

    Péterfia, Bálint; Kalmár, Alexandra; Patai, Árpád V.; Csabai, István; Bodor, András; Micsik, Tamás; Wichmann, Barnabás; Egedi, Krisztina; Hollósi, Péter; Kovalszky, Ilona; Tulassay, Zsolt; Molnár, Béla

    2017-01-01

    Background: To support cancer therapy, development of low cost library preparation techniques for targeted next generation sequencing (NGS) is needed. In this study we designed and tested a PCR-based library preparation panel with limited target area for sequencing the top 12 somatic mutation hot spots in colorectal cancer on the GS Junior instrument. Materials and Methods: A multiplex PCR panel was designed to amplify regions of mutation hot spots in 12 selected genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53). Amplicons were sequenced on a GS Junior instrument using ligated and barcoded adaptors. Eight samples were sequenced in a single run. Colonic DNA samples (8 normal mucosa; 33 adenomas; 17 adenocarcinomas) as well as HT-29 and Caco-2 cell lines with known mutation profiles were analyzed. Variants found by the panel on APC, BRAF, KRAS and NRAS genes were validated by conventional sequencing. Results: In total, 34 kinds of mutations were detected including two novel mutations (FBXW7 c.1740:C>G and SMAD4 c.413C>G) that have not been recorded in mutation databases, and one potential germline mutation (APC). The most frequently mutated genes were APC, TP53 and KRAS with 30%, 15% and 21% frequencies in adenomas and 29%, 53% and 29% frequencies in carcinomas, respectively. In cell lines, all the expected mutations were detected except for one located in a homopolymer region. According to re-sequencing results sensitivity and specificity was 100% and 92% respectively. Conclusions: Our NGS-based screening panel denotes a promising step towards low cost colorectal cancer genotyping on the GS Junior instrument. Despite the relatively low coverage, we discovered two novel mutations and obtained mutation frequencies comparable to literature data. Additionally, as an advantage, this panel requires less template DNA than sequence capture colon cancer panels currently available for the GS Junior instrument.

  10. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63.

    Science.gov (United States)

    Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu

    2016-11-01

    Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations.

  11. Surgical and clinical strategies in the management of thyroid medullary carcinoma in children with and without ret proto-oncogene mutations.

    Science.gov (United States)

    Boybeyi-Türer, Özlem; Vurallı, Doğuş; Karnak, İbrahim; Gönç, Nazlı; Yalçın, Emel Şule; Orhan, Diclehan; Kandemir, Nurgün; Tanyel, Feridun Cahit

    2016-01-01

    Medullary thyroid carcinoma (MTC) may arise sporadically or in familial manner. We presented sporadic and familial cases with MTC in order to raise awareness on management of such patients. Three medullary thyroid carcinoma (MTC) cases were presented. Case 1 had RET634 mutation; managed with total thyroidectomy (TT) and cervical lymph node dissection (CLND). Case 2 had RET804 mutation; managed with prophylactic TT. Case 3 had thyroid nodule; managed with TT and CLND. Case 1 had micro-carcinomatosis foci, Case 2 had normal thyroid tissue in histopathological examination and Case 3 had medullary thyroid carcinoma with tumor negative surgical borders. Case 1 was re-operated for persisting focus of disease. Follow-up of cases were uneventful. Clinicians and surgeons should be aware of critical timing for surgery and various surgical and clinical strategies in the management of MTC in children.

  12. Activation of proto-oncogenes by disruption of chromosome neighborhoods.

    Science.gov (United States)

    Hnisz, Denes; Weintraub, Abraham S; Day, Daniel S; Valton, Anne-Laure; Bak, Rasmus O; Li, Charles H; Goldmann, Johanna; Lajoie, Bryan R; Fan, Zi Peng; Sigova, Alla A; Reddy, Jessica; Borges-Rivera, Diego; Lee, Tong Ihn; Jaenisch, Rudolf; Porteus, Matthew H; Dekker, Job; Young, Richard A

    2016-03-25

    Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.

  13. Cancers of the upper gastro-intestinal tract: a review of somatic mutation distributions.

    Science.gov (United States)

    Abedi-Ardekani, Behnoush; Hainaut, Pierre

    2014-04-01

    Cancers of the upper gastro-intestinal tract (UGIT) comprise esophageal, esophago-gastric junction, stomach and duodenal cancers. Together, these cancers represent over 1.5 million cases and are the cause of about 1.25 million deaths annually. This group of cancers encompasses diseases with marked disparities in etiology, geographic distribution, histopathological features and frequency. Based on histological origin, squamous cell carcinoma of the esophagus (ESCC), which arises through a dysplasia-carcinoma sequence within the squamous mucosa, is a completely different cancer than junction, stomach and duodenal cancers, which develop within glandular epithelia through cascades involving inflammation, metaplasia, dysplasia and carcinoma. At the frontline between these two histological domains, cancers of the esophago-gastric junction constitute a mixed group of glandular tumors including distal esophageal adenocarcinomas and cancers arising within the most proximal part of the stomach - the cardia. Most of UGIT cancers are sporadic, although familial susceptibility genes have been identified for stomach and rare cases of ESCC. We have used the COSMIC database (http://www.sanger.ac.uk/genetics/CGP/cosmic/) to identify genes commonly mutated in UGIT cancers. Regardless of etiology and histopathology, three genes are mutated in at least 5% of UGIT cancers: TP53, CDKN2a and PIK3CA. Another three genes, NFE2L2, PTCH1 and NOTCH1, are mutated in ESCC only. Conversely, genes of the RAS family and of the CDH1/APC/CTNNB1 pathway are mutated only in non-squamous cancers, with differences in mutated genes according to topography. We review the potential functional significance of these observations for understanding mechanisms of UGIT carcinogenesis.

  14. Genes involved in angiogenesis and mTOR pathways are frequently mutated in Asian patients with pancreatic neuroendocrine tumors

    Science.gov (United States)

    Chou, Wen-Chi; Lin, Po-Han; Yeh, Yi-Chen; Shyr, Yi-Ming; Fang, Wen-Liang; Wang, Shin-E; Liu, Chun-Yu; Chang, Peter Mu-Hsin; Chen, Ming-Han; Hung, Yi-Ping; Li, Chung-Pin; Chao, Yee; Chen, Ming-Huang

    2016-01-01

    Introduction: To address the issue of limited data on and inconsistent findings for genetic alterations in pancreatic neuroendocrine tumors (pNETs), we analyzed sequences of known pNET-associated genes for their impact on clinical outcomes in a Taiwanese cohort. Methods: Tissue samples from 40 patients with sporadic pNETs were sequenced using a customized sequencing panel that analyzed 43 genes with either an established or potential association with pNETs. Genetic mutations and clinical outcomes were analyzed for potential associations. Results: Thirty-three patients (82.5%) survived for a median 5.9 years (range, 0.3-18.4) of follow up. The median number of mutations per patient was 3 (range, 0-16). The most frequent mutations were in ATRX (28%), MEN1 (28%), ASCL1 (28%), TP53 (20%), mTOR (20%), ARID1A (20%), and VHL (20%). The mutation frequencies in the MEN1 (including MEN1/PSIP1/ARID1A), mTOR (including mTOR/PIK3CA/AKT1/PTEN /TS1/TSC2/ATM), DAXX/ATRX, and angiogenesis (including VHL/ANGPT1/ANGPT2 /HIF1A) pathways were 48%, 48%, 38%, and 45%, respectively. Mutations in ATRX were associated with WHO grade I pNET (vs. grade II or III, p = 0.043), and so were those in genes involved in angiogenesis (p = 0.002). Patients with mutated MEN1 and DAXX/ATRX pathways showed a trend toward better survival, compared to patients with the wild-type genes (p = 0.08 and 0.12, respectively). Conclusion: Genetic profiles of Asian patients with pNETs were distinct from Caucasian patient profiles. Asian patients with pNETs were more frequently mutated for the mTOR and angiogenesis pathways. This could partially explain the better outcome observed for targeted therapy in Asian patients with pNETs. PMID:27994516

  15. Analysis of mutations in the E6/E7 oncogenes and L1 gene of human papillomavirus 16 cervical cancer isolates from China.

    Science.gov (United States)

    Wu, Yuping; Chen, Yulong; Li, Longyu; Yu, Guifang; He, Ying; Zhang, Yanling

    2006-05-01

    Human papillomavirus type 16 (HPV16) has a number of intratypic variants; each has a different geographical distribution and some are associated with enhanced oncogenic potential. Cervical samples were collected from 223 cervical cancer patients and from 196 age-matched control subjects in China. DNA samples were amplified by using primers specific for the E6, E7 and partial L1 regions. Products were sequenced and analysed. It was found by using a PCR-sequence-based typing method that HPV infection rates in China were 92.8 % in cervical cancer patients and 15.8 % in healthy controls. HPV16 was detected in 70.4 % of cervical cancer patients and in 6.1 % of controls. In HPV16-positive cervical cancers, 23.6 % belonged to the prototype, 65.5 % were of the Asian variant, 5.5 % were of African type 1 and 3.6 % were European variants, whilst only one was a new variant that differed from any variant published so far. Prevalences of HPV16 E6 D25E and E113D variants were 67.3 and 9 %, respectively. In addition to D25E and E113D, the following E6 variations were found in this study: R129K, E89Q, S138C, H78Y, L83V and F69L. The results also showed that the prevalences of three hot spots of E7 nucleotide variation, N29S, S63F and a silent variation, nt T846C, were 70.2 % (33/47), 51.1 % (24/47) and 61.7 % (29/47), respectively. The following L1 variations were found in this study: S377A, K387E, E378D, K382E and T379P. It was also found that the average age of Asian variant-positive cervical cancer patients (42.98+/-10.43 years) was 7.56 years lower than that of prototype-positive patients (50.54+/-10.91). It is suggested that the high frequency of HPV16 Asian variants might contribute to the high incidence of cervical cancer in China.

  16. Mutations in the c-Kit Gene Disrupt Mitogen-Activated Protein Kinase Signaling during Tumor Development in Adenoid Cystic Carcinoma of the Salivary Glands

    Directory of Open Access Journals (Sweden)

    Osamu Tetsu

    2010-09-01

    Full Text Available The Ras/mitogen-activated protein kinase (MAPK pathway is considered to be a positive regulator of tumor initiation, progression, and maintenance. This study reports an opposite finding: we have found strong evidence that the MAPK pathway is inhibited in a subset of adenoid cystic carcinomas (ACCs of the salivary glands. ACC tumors consistently overexpress the receptor tyrosine kinase (RTK c-Kit, which has been considered a therapeutic target. We performed mutational analysis of the c-Kit gene (KIT in 17 cases of ACC and found that 2 cases of ACC had distinct missense mutations in KIT at both the genomic DNA and messenger RNA levels. These mutations caused G664R and R796G amino acid substitutions in the kinase domains. Surprisingly, the mutations were functionally inactive in cultured cells. We observed a significant reduction of MAPK (ERK1/2 activity in tumor cells, as assessed by immunohistochemistry. We performed further mutational analysis of the downstream effectors in the c-Kit pathway in the genes HRAS, KRAS, NRAS, BRAF, PIK3CA, and PTEN. This analysis revealed that two ACC tumors without KIT mutations had missense mutations in either KRAS or BRAF, causing S17N K-Ras and V590I B-Raf mutants, respectively. Our functional analysis showed that proteins with these mutations were also inactive in cultured cells. This is the first time that MAPK activity from the RTK signaling has been shown to be inhibited by gene mutations during tumor development. Because ACC seems to proliferate despite inactivation of the c-Kit signaling pathway, we suggest that selective inhibition of c-Kit is probably not a suitable treatment strategy for ACC.

  17. The fate of BRCA1-related germline mutations in triple-negative breast tumors

    Science.gov (United States)

    Kotoula, Vassiliki; Fostira, Florentia; Papadopoulou, Kyriaki; Apostolou, Paraskevi; Tsolaki, Eleftheria; Lazaridis, Georgios; Manoussou, Kyriaki; Zagouri, Flora; Pectasides, Dimitrios; Vlachos, Ioannis; Tikas, Ioannis; Lakis, Sotiris; Konstantopoulou, Irene; Pentheroudakis, George; Gogas, Helen; Papakostas, Pavlos; Christodoulou, Christos; Bafaloukos, Dimitrios; Razis, Evangelia; Karavasilis, Vasilios; Bamias, Christina; Yannoukakos, Drakoulis; Fountzilas, George

    2017-01-01

    The preservation of pathogenic BRCA1/2 germline mutations in tumor tissues is usually not questioned, while it remains unknown whether these interact with somatic genotypes for patient outcome. Herein we compared germline and tumor genotypes in operable triple-negative breast cancer (TNBC) and evaluated their combined effects on prognosis. We analyzed baseline germline and primary tumor genotype data obtained by Sanger and Next Generation Sequencing in 194 TNBC patients. We also performed multiple tests interrogating the preservation of germline mutations in matched tumors and breast tissue from carriers with available material. Patients had been treated within clinical trials with adjuvant anthracyclines-taxanes based chemotherapy. We identified 50 (26%) germline mutation carriers (78% in BRCA1) and 136 (71%) tumors with somatic mutations (83% in TP53). Tumor mutation patterns differed between carriers and non-carriers (P<0.001); PIK3CA mutations were exclusively present in non-carriers (P=0.007). Germline BRCA1/2 mutations were not detected in matched tumors and breast tissues from 14 out of 33 (42%) evaluable carriers. Microsatellite markers revealed tumor loss of the germline mutant allele in one case only. Tumors that had lost the germline mutation demonstrated a higher incidence of somatic TP53 mutations as compared to tumors with preserved germline mutations (P=0.036). Germline mutation status significantly interacted with tumor TP53 mutations for patient disease-free survival (interaction P=0.026): In non-carriers, tumor TP53 mutations did not affect outcome; In carriers, those with mutated TP53 tumors experienced more relapses compared to those with wild-type TP53 tumors (36% vs. 9% relapse rate, respectively). In conclusion, we show that loss of germline BRCA1/2 mutations is not a rare event in TNBC. This finding, the observed differences in tumor genotypes with respect to germline status and the prognostic interaction between germline BRCA1-related and

  18. Oncogenic viruses and cancer

    Institute of Scientific and Technical Information of China (English)

    Guangxiang; George; Luo; Jing-hsiung; James; Ou

    2015-01-01

    <正>This special issue of the journal is dedicated to the important topic of oncogenic viruses and cancer.It contains seven review articles covering all known oncogenic viruses except for human T-lymphotropic virus type1(HTLV-1).These review articles are contributed by experts on specific viruses and their associated human cancers.Viruses account for about 20%of total human cancer cases.Although many viruses can cause various tumors in animals,only seven of them

  19. Imaging oncogene expression

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Archana [Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)], E-mail: Archana.Mukherjee@jefferson.edu; Wickstrom, Eric [Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S, 10th street, Philadelphia, PA 19107 (United States)], E-mail: eric@tesla.jci.tju.edu; Thakur, Mathew L. [Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)], E-mail: Mathew.Thakur@jefferson.edu

    2009-05-15

    This review briefly outlines the importance of molecular imaging, particularly imaging of endogenous gene expression for noninvasive genetic analysis of radiographic masses. The concept of antisense imaging agents and the advantages and challenges in the development of hybridization probes for in vivo imaging are described. An overview of the investigations on oncogene expression imaging is given. Finally, the need for further improvement in antisense-based imaging agents and directions to improve oncogene mRNA targeting is stated.

  20. Alterations in the human epidermal growth factor receptor 2-phosphatidylinositol 3-kinase-v-Akt pathway in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Yasutaka Sukawa; Hiroyuki Yamamoto; Katsuhiko Nosho; Hiroaki Kunimoto; Hiromu Suzuki; Yasushi Adachi; Mayumi Nakazawa

    2012-01-01

    AIM:To investigate human epidermal growth factor receptor 2 (HER2)-phosphatidylinositol 3-kinase (PI3K)-v-Akt murine thymoma viral oncogene homolog signaling pathway.METHODS:We analyzed 231 formalin-fixed,paraffinembedded gastric cancer tissue specimens from Japanese patients who had undergone surgical treatment.The patients' age,sex,tumor location,depth of invasion,pathological type,lymph node metastasis,and pathological stage were determined by a review of the medical records.Expression of HER2 was analyzed by immunohistochemistry (IHC) using the HercepTestTM kit.Standard criteria for HER2 positivity (0,1+,2+,and 3+) were used.Tumors that scored 3+ were considered HER2-positive.Expression of phospho Akt (pAkt)was also analyzed by IHC.Tumors were considered pAkt-positive when the percentage of positive tumor cells was 10% or more.PI3K,catalytic,alpha polypeptide (PIK3CA) mutations in exons 1,9 and 20 were analyzed by pyrosequencing.Epstein-Barr virus (EBV)infection was analyzed by in situ hybridization targeting EBV-encoded small RNA (EBER) with an EBER-RNA probe.Microsatellite instability (MSI) was analyzed by polymerase chain reaction using the mononucleotide markers BAT25 and BAT26.RESULTS:HER2 expression levels of 0,1+,2+ and 3+ were found in 167 (72%),32 (14%),12 (5%) and 20 (8.7%) samples,respectively.HER2 overexpression (IHC 3+) significantly correlated with intestinal histological type (15/20 vs 98/205,P =0.05).PIK3CA mutations were present in 20 cases (8.7%) and significantly correlated with MSI (10/20 vs 9/211,P < 0.01).The mutation frequency was high (21%) in T4 cancers and very low (6%) in T2 cancers.Mutations in exons 1,9 and 20 were detected in 5 (2%),9 (4%) and 7(3%) cases,respectively.Two new types of PIK3CA mutation,R88Q and R108H,were found in exon1.All PIK3CA mutations were heterozygous missense singlebase substitutions,the most common being H1047R (6/20,30%) in exon20.Eighteen cancers (8%) were EBV-positive and this

  1. University of Texas MD Anderson: Phenotypic Examination of PIK3CA Allelic Series using In Vitro/In Vivo Sensor Platforms | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized an established and operational MCF10A normal breast epithelial cell model to assess the ability of candidate driver aberrations to promote cell grow in anchorage-independent conditions (soft agar assay) and proliferate in the absence of insulin and epidermal growth factor (EGF).

  2. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    OpenAIRE

    Marialuisa Moccia; Qingsong Liu; Teresa Guida; Giorgia Federico; Annalisa Brescia; Zheng Zhao; Hwan Geun Choi; Xianming Deng; Li Tan; Jinhua Wang; Marc Billaud; Gray, Nathanael S.; Francesca Carlomagno; Massimo Santoro

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-media...

  3. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration

    NARCIS (Netherlands)

    Smid, M.; Rodriguez-Gonzalez, F.G.; Sieuwerts, A.M.; Salgado, R.; Smissen, W.J. Prager-Van der; Vlugt-Daane, M.V.; Galen, A. van; Nik-Zainal, S.; Staaf, J.; Brinkman, A.B.; Vijver, M.J. van de; Richardson, A.L.; Fatima, A.; Berentsen, K.; Butler, A.; Martin, S.; Davies, H.R.; Debets, R.; Gelder, M.E. Meijer-van; Deurzen, C.H. van; MacGrogan, G.; Eynden, G.G. Van den; Purdie, C.; Thompson, A.M.; Caldas, C.; Span, P.N; Simpson, P.T.; Lakhani, S.R.; Laere, S. van; Desmedt, C.; Ringner, M.; Tommasi, S.; Eyford, J.; Broeks, A.; Vincent-Salomon, A.; Futreal, P.A.; Knappskog, S.; King, T.; Thomas, G; Viari, A.; Langerod, A.; Borresen-Dale, A.L.; Birney, E.; Stunnenberg, H.G.; Stratton, M.; Foekens, J.A.; Martens, J.W.M.

    2016-01-01

    A recent comprehensive whole genome analysis of a large breast cancer cohort was used to link known and novel drivers and substitution signatures to the transcriptome of 266 cases. Here, we validate that subtype-specific aberrations show concordant expression changes for, for example, TP53, PIK3CA,

  4. KRASness and PIK3CAness in patients with advanced colorectal cancer: outcome after treatment with early-phase trials with targeted pathway inhibitors.

    Directory of Open Access Journals (Sweden)

    Ignacio Garrido-Laguna

    Full Text Available PURPOSE: To evaluate clinicopathologic and molecular features of patients with metastatic colorectal cancer (mCRC and their outcomes in early-phase trials using pathway-targeting agents. PATIENTS AND METHODS: We analyzed characteristics of 238 patients with mCRC referred to the phase 1 trials unit at MD Anderson Cancer Center. KRAS, PIK3CA and BRAF status were tested using PCR-based DNA sequencing. RESULTS: Fifty-one percent of patients harbored KRAS mutations; 15% had PIK3CA mutations. In the multivariate regression model for clinical characteristics KRAS mutations were associated with an increased incidence of lung and bone metastases and decreased incidence of adrenal metastases; PIK3CA mutations were marginally correlated with mucinous tumors (p = 0.05. In the univariate analysis, KRAS and PIK3CA mutations were strongly associated. Advanced Duke's stage (p<0.0001 and KRAS mutations (p = 0.01 were the only significant independent predictors of poor survival (Cox proportional hazards model. Patients with PIK3CA mutations had a trend toward shorter progression-free survival when treated with anti-EGFR therapies (p = 0.07. Eighteen of 78 assessable patients (23% treated with PI3K/Akt/mTOR axis inhibitors achieved stable disease [SD] ≥6 months or complete response/partial response (CR/PR, only one of whom were in the subgroup (N = 15 with PIK3CA mutations, perhaps because 10 of these 15 patients (67% had coexisting KRAS mutations. No SD ≥6 months/CR/PR was observed in the 10 patients treated with mitogen-activating protein kinase (MAPK pathway targeting drugs. CONCLUSIONS: KRAS and PIK3CA mutations frequently coexist in patients with colorectal cancer, and are associated with clinical characteristics and outcome. Overcoming resistance may require targeting both pathways.

  5. Breast ductal carcinoma in situ carry mutational driver events representative of invasive breast cancer.

    Science.gov (United States)

    Pang, Jia-Min B; Savas, Peter; Fellowes, Andrew P; Mir Arnau, Gisela; Kader, Tanjina; Vedururu, Ravikiran; Hewitt, Chelsee; Takano, Elena A; Byrne, David J; Choong, David Yh; Millar, Ewan Ka; Lee, C Soon; O'Toole, Sandra A; Lakhani, Sunil R; Cummings, Margaret C; Mann, G Bruce; Campbell, Ian G; Dobrovic, Alexander; Loi, Sherene; Gorringe, Kylie L; Fox, Stephen B

    2017-03-24

    The spectrum of genomic alterations in ductal carcinoma in situ (DCIS) is relatively unexplored, but is likely to provide useful insights into its biology, its progression to invasive carcinoma and the risk of recurrence. DCIS (n=20) with a range of phenotypes was assessed by massively parallel sequencing for mutations and copy number alterations and variants validated by Sanger sequencing. PIK3CA mutations were identified in 11/20 (55%), TP53 mutations in 6/20 (30%), and GATA3 mutations in 9/20 (45%). Screening an additional 91 cases for GATA3 mutations identified a final frequency of 27% (30/111), with a high proportion of missense variants (8/30). TP53 mutations were exclusive to high grade DCIS and more frequent in PR-negative tumors compared with PR-positive tumors (P=0.037). TP53 mutant tumors also had a significantly higher fraction of the genome altered by copy number than wild-type tumors (P=0.005), including a significant positive association with amplification or gain of ERBB2 (P<0.05). The association between TP53 mutation and ERBB2 amplification was confirmed in a wider DCIS cohort using p53 immunohistochemistry as a surrogate marker for TP53 mutations (P=0.03). RUNX1 mutations and MAP2K4 copy number loss were novel findings in DCIS. Frequent copy number alterations included gains on 1q, 8q, 17q, and 20q and losses on 8p, 11q, 16q, and 17p. Patterns of genomic alterations observed in DCIS were similar to those previously reported for invasive breast cancers, with all DCIS having at least one bona fide breast cancer driver event. However, an increase in GATA3 mutations and fewer copy number changes were noted in DCIS compared with invasive carcinomas. The role of such alterations as prognostic and predictive biomarkers in DCIS is an avenue for further investigation.Modern Pathology advance online publication, 24 March 2017; doi:10.1038/modpathol.2017.21.

  6. Inhibition of Ras oncogenic activity by Ras protooncogenes.

    Science.gov (United States)

    Diaz, Roberto; Lue, Jeffrey; Mathews, Jeremy; Yoon, Andrew; Ahn, Daniel; Garcia-España, Antonio; Leonardi, Peter; Vargas, Marcelo P; Pellicer, Angel

    2005-01-10

    Point mutations in ras genes have been found in a large number and wide variety of human tumors. These oncogenic Ras mutants are locked in an active GTP-bound state that leads to a constitutive and deregulated activation of Ras function. The dogma that ras oncogenes are dominant, whereby the mutation of a single allele in a cell will predispose the host cell to transformation regardless of the presence of the normal allele, is being challenged. We have seen that increasing amounts of Ras protooncogenes are able to inhibit the activity of the N-Ras oncogene in the activation of Elk in NIH 3T3 cells and in the formation of foci. We have been able to determine that the inhibitory effect is by competition between Ras protooncogenes and the N-Ras oncogene that occurs first at the effector level at the membranes, then at the processing level and lastly at the effector level in the cytosol. In addition, coexpression of the N-Ras protooncogene in thymic lymphomas induced by the N-Ras oncogene is associated with increased levels of p107, p130 and cyclin A and decreased levels of Rb. In the present report, we have shown that the N-Ras oncogene is not truly dominant over Ras protooncogenes and their competing activities might be depending on cellular context.

  7. Prospective blinded study of somatic mutation detection in cell-free DNA utilizing a targeted 54-gene next generation sequencing panel in metastatic solid tumor patients

    Science.gov (United States)

    Lanman, Richard B.; Mortimer, Stefanie; Zill, Oliver A.; Kim, Kyoung-Mee; Jang, Kee Taek; Kim, Seok-Hyung; Park, Se Hoon; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Eltoukhy, Helmy; Kang, Won Ki; Lee, Woo Yong; Kim, Hee-Cheol; Park, Keunchil; Lee, Jeeyun; Talasaz, AmirAli

    2015-01-01

    Sequencing of the mutant allele fraction of circulating cell-free DNA (cfDNA) derived from tumors is increasingly utilized to detect actionable genomic alterations in cancer. We conducted a prospective blinded study of a comprehensive cfDNA sequencing panel with 54 cancer genes. To evaluate the concordance between cfDNA and tumor DNA (tDNA), sequencing results were compared between cfDNA from plasma and genomic tumor DNA (tDNA). Utilizing next generation digital sequencing technology (DST), we profiled approximately 78,000 bases encoding 512 complete exons in the targeted genes in cfDNA from plasma. Seventy-five patients were prospectively enrolled between February 2013 and March 2014, including 61 metastatic cancer patients and 14 clinical stage II CRC patients with matched plasma and tissue samples. Using the 54-gene panel, we detected at least one somatic mutation in 44 of 61 tDNA (72.1%) and 29 of 44 (65.9%) cfDNA. The overall concordance rate of cfDNA to tDNA was 85.9%, when all detected mutations were considered. We collected serial cfDNAs during cetuximab-based treatment in 2 metastatic KRAS wild-type CRC patients, one with acquired resistance and one with primary resistance. We demonstrate newly emerged KRAS mutation in cfDNA 1.5 months before radiologic progression. Another patient had a newly emerged PIK3CA H1047R mutation on cfDNA analysis at progression during cetuximab/irinotecan chemotherapy with gradual increase in allele frequency from 0.8 to 2.1%. This blinded, prospective study of a cfDNA sequencing showed high concordance to tDNA suggesting that the DST approach may be used as a non-invasive biopsy-free alternative to conventional sequencing using tumor biopsy. PMID:26452027

  8. Prospective blinded study of somatic mutation detection in cell-free DNA utilizing a targeted 54-gene next generation sequencing panel in metastatic solid tumor patients.

    Science.gov (United States)

    Kim, Seung Tae; Lee, Won-Suk; Lanman, Richard B; Mortimer, Stefanie; Zill, Oliver A; Kim, Kyoung-Mee; Jang, Kee Taek; Kim, Seok-Hyung; Park, Se Hoon; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Eltoukhy, Helmy; Kang, Won Ki; Lee, Woo Yong; Kim, Hee-Cheol; Park, Keunchil; Lee, Jeeyun; Talasaz, AmirAli

    2015-11-24

    Sequencing of the mutant allele fraction of circulating cell-free DNA (cfDNA) derived from tumors is increasingly utilized to detect actionable genomic alterations in cancer. We conducted a prospective blinded study of a comprehensive cfDNA sequencing panel with 54 cancer genes. To evaluate the concordance between cfDNA and tumor DNA (tDNA), sequencing results were compared between cfDNA from plasma and genomic tumor DNA (tDNA). Utilizing next generation digital sequencing technology (DST), we profiled approximately 78,000 bases encoding 512 complete exons in the targeted genes in cfDNA from plasma. Seventy-five patients were prospectively enrolled between February 2013 and March 2014, including 61 metastatic cancer patients and 14 clinical stage II CRC patients with matched plasma and tissue samples. Using the 54-gene panel, we detected at least one somatic mutation in 44 of 61 tDNA (72.1%) and 29 of 44 (65.9%) cfDNA. The overall concordance rate of cfDNA to tDNA was 85.9%, when all detected mutations were considered. We collected serial cfDNAs during cetuximab-based treatment in 2 metastatic KRAS wild-type CRC patients, one with acquired resistance and one with primary resistance. We demonstrate newly emerged KRAS mutation in cfDNA 1.5 months before radiologic progression. Another patient had a newly emerged PIK3CA H1047R mutation on cfDNA analysis at progression during cetuximab/irinotecan chemotherapy with gradual increase in allele frequency from 0.8 to 2.1%. This blinded, prospective study of a cfDNA sequencing showed high concordance to tDNA suggesting that the DST approach may be used as a non-invasive biopsy-free alternative to conventional sequencing using tumor biopsy.

  9. A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer.

    Science.gov (United States)

    Mayer, Ingrid A; Abramson, Vandana G; Formisano, Luigi; Balko, Justin M; Estrada, Mónica V; Sanders, Melinda E; Juric, Dejan; Solit, David; Berger, Michael F; Won, Helen H; Li, Yisheng; Cantley, Lewis C; Winer, Eric; Arteaga, Carlos L

    2017-01-01

    Alpelisib, a selective oral inhibitor of the class I PI3K catalytic subunit p110α, has shown synergistic antitumor activity with endocrine therapy against ER(+)/PIK3CA-mutated breast cancer cells. This phase Ib study evaluated alpelisib plus letrozole's safety, tolerability, and preliminary activity in patients with metastatic ER(+) breast cancer refractory to endocrine therapy. Twenty-six patients received letrozole and alpelisib daily. Outcomes were assessed by standard solid-tumor phase I methods. Tumor blocks were collected for DNA extraction and next-generation sequencing. Alpelisib's maximum-tolerated dose (MTD) in combination with letrozole was 300 mg/d. Common drug-related adverse events included hyperglycemia, nausea, fatigue, diarrhea, and rash with dose-limiting toxicity occurring at 350 mg/d of alpelisib. The clinical benefit rate (lack of progression ≥6 months) was 35% (44% in patients with PIK3CA-mutated and 20% in PIK3CA wild-type tumors; 95% CI, 17%-56%), including five objective responses. Of eight patients remaining on treatment ≥12 months, six had tumors with a PIK3CA mutation. Among evaluable tumors, those with FGFR1/2 amplification and KRAS and TP53 mutations did not derive clinical benefit. Overexpression of FGFR1 in ER(+)/PIK3CA mutant breast cancer cells attenuated the response to alpelisib in vitro CONCLUSIONS: The combination of letrozole and alpelisib was safe, with reversible toxicities. Clinical activity was observed independently of PIK3CA mutation status, although clinical benefit was seen in a higher proportion of patients with PIK3CA-mutated tumors. Phase II and III trials of alpelisib and endocrine therapy in patients with ER(+) breast cancer are ongoing. Clin Cancer Res; 23(1); 26-34. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Melanoma: oncogenic drivers and the immune system

    Science.gov (United States)

    Karachaliou, Niki; Pilotto, Sara; Teixidó, Cristina; Viteri, Santiago; González-Cao, María; Riso, Aldo; Morales-Espinosa, Daniela; Molina, Miguel Angel; Chaib, Imane; Santarpia, Mariacarmela; Richardet, Eduardo; Bria, Emilio

    2015-01-01

    Advances and in-depth understanding of the biology of melanoma over the past 30 years have contributed to a change in the consideration of melanoma as one of the most therapy-resistant malignancies. The finding that oncogenic BRAF mutations drive tumor growth in up to 50% of melanomas led to a molecular therapy revolution for unresectable and metastatic disease. Moving beyond BRAF, inactivation of immune regulatory checkpoints that limit T cell responses to melanoma has provided targets for cancer immunotherapy. In this review, we discuss the molecular biology of melanoma and we focus on the recent advances of molecularly targeted and immunotherapeutic approaches. PMID:26605311

  11. RET oncogene in MEN2, MEN2B, MTC and other forms of thyroid cancer.

    Science.gov (United States)

    Lodish, Maya B; Stratakis, Constantine A

    2008-04-01

    Hereditary medullary thyroid carcinoma (MTC) is caused by specific autosomal dominant gain-of-function mutations in the RET proto-oncogene. Genotype-phenotype correlations exist that help predict the presence of other associated endocrine neoplasms as well as the timing of thyroid cancer development. MTC represents a promising model for targeted cancer therapy, as the oncogenic event responsible for initiating malignancy has been well characterized. The RET proto-oncogene has become the target for molecularly designed drug therapy. Tyrosine kinase inhibitors targeting activated RET are currently in clinical trials for the treatment of patients with MTC. This review will provide a brief overview of MTC and the associated RET oncogenic mutations, and will summarize the therapies designed to strategically interfere with the pathologic activation of the RET oncogene.

  12. CRAF R391W is a melanoma driver oncogene

    Science.gov (United States)

    Atefi, Mohammad; Titz, Bjoern; Tsoi, Jennifer; Avramis, Earl; Le, Allison; Ng, Charles; Lomova, Anastasia; Lassen, Amanda; Friedman, Michael; Chmielowski, Bartosz; Ribas, Antoni; Graeber, Thomas G.

    2016-01-01

    Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas. PMID:27273450

  13. Oncogenes in myeloproliferative disorders.

    Science.gov (United States)

    Tefferi, Ayalew; Gilliland, D Gary

    2007-03-01

    Myeloproliferative disorders (MPDs) constitute a group of hematopoietic malignancies that feature enhanced proliferation and survival of one or more myeloid lineage cells. William Dameshek is credited for introducing the term "MPDs" in 1951 when he used it to group chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) under one clinicopathologic category. Since then, other myeloid neoplasms have been added to the MPD member list: chronic neutrophilic (CNL), eosinophilic (CEL) and myelomonocytic (CMML) leukemias; juvenile myelomonocytic leukemia (JMML); hypereosinophilic syndrome (HES); systemic mastocytosis (SM); and others. Collectively, MPDs are stem cell-derived clonal proliferative diseases whose shared and diverse phenotypic characteristics can be attributed to dysregulated signal transduction--a consequence of acquired somatic mutations. The most recognized among the latter is BCR-ABL, the disease-causing mutation in CML. Other mutations of putative pathogenetic relevance in MPDs include: JAK2V617F in PV, ET, and PMF; JAK2 exon 12 mutations in PV; MPLW515L/K in PMF and ET; KITD816V in SM; FIP1L1-PDGFRA in CEL-SM; rearrangements of PDGFRB in CEL-CMML and FGFR1 in stem cell leukemia-lymphoma syndrome; and RAS/PTPN11/NF1 mutations in JMML. This increasing repertoire of mutant molecules has streamlined translational research and molecularly targeted drug development in MPDs.

  14. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase.

    Directory of Open Access Journals (Sweden)

    Marialuisa Moccia

    Full Text Available Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI, ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  15. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase.

    Science.gov (United States)

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S; Carlomagno, Francesca; Santoro, Massimo

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  16. Oncogenic extracellular vesicles in brain tumour progression

    Directory of Open Access Journals (Sweden)

    Esterina eD'Asti

    2012-07-01

    Full Text Available The brain is a frequent site of neoplastic growth, including both primary and metastatic tumours. The clinical intractability of many brain tumours and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs. Their biogenesis (vesiculation and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumour cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumour-derived EVs (oncosomes also contain oncogenic proteins, transcripts, DNA and microRNA (miR. Uptake of this material may change properties of the recipient cells and impact the tumour microenvironment. Examples of transformation-related molecules found in the cargo of tumour-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII, tumour suppressors (PTEN and oncomirs (miR-520g. It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF of brain tumour patients may be used to decipher molecular features (mutations of the underlying malignancy, reflect responses to therapy or molecular subtypes of primary brain tumours (e.g. glioma or medulloblastoma. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies.

  17. Aggressive transformation of juvenile myelomonocytic leukemia associated with duplication of oncogenic KRAS due to acquired uniparental disomy.

    Science.gov (United States)

    Kato, Motohiro; Yasui, Naoko; Seki, Masafumi; Kishimoto, Hiroshi; Sato-Otsubo, Aiko; Hasegawa, Daisuke; Kiyokawa, Nobutaka; Hanada, Ryoji; Ogawa, Seishi; Manabe, Atsushi; Takita, Junko; Koh, Katsuyoshi

    2013-06-01

    A small fraction of cases of juvenile myelomonocytic leukemia (JMML) develop massive disease activation. Through genomic analysis of JMML, which developed in an individual with mosaicism for oncogenic KRAS mutation with rapid progression, we identified acquired uniparental disomy at 12p. We demonstrated that duplication of oncogenic KRAS is associated with rapid JMML progression.

  18. Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice

    NARCIS (Netherlands)

    Janssen, KP; El Marjou, F; Pinto, D; Sastre, X; Rouillard, D; Fouquet, C; Soussi, T; Louvard, D; Robine, S

    2002-01-01

    Background & Aims: Ras oncoproteins are mutated in about 50% of human colorectal cancers, but their precise role in tumor initiation or progression is still unclear. Methods: This study presents transgenic mice that express K-ras(V12G), the most frequent oncogenic mutation in human tumors, under con

  19. Oncogenic activation of NF-kappaB.

    Science.gov (United States)

    Staudt, Louis M

    2010-06-01

    Recent genetic evidence has established a pathogenetic role for NF-kappaB signaling in cancer. NF-kappaB signaling is engaged transiently when normal B lymphocytes respond to antigens, but lymphomas derived from these cells accumulate genetic lesions that constitutively activate NF-kappaB signaling. Many genetic aberrations in lymphomas alter CARD11, MALT1, or BCL10, which constitute a signaling complex that is intermediate between the B-cell receptor and IkappaB kinase. The activated B-cell-like subtype of diffuse large B-cell lymphoma activates NF-kappaB by a variety of mechanisms including oncogenic mutations in CARD11 and a chronic active form of B-cell receptor signaling. Normal plasma cells activate NF-kappaB in response to ligands in the bone marrow microenvironment, but their malignant counterpart, multiple myeloma, sustains a variety of genetic hits that stabilize the kinase NIK, leading to constitutive activation of the classical and alternative NF-kappaB pathways. Various oncogenic abnormalities in epithelial cancers, including mutant K-ras, engage unconventional IkappaB kinases to activate NF-kappaB. Inhibition of constitutive NF-kappaB signaling in each of these cancer types induces apoptosis, providing a rationale for the development of NF-kappaB pathway inhibitors for the treatment of cancer.

  20. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the V600EBRAF oncogene

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Meyle, Kathrine Damm; Lange, Marina Krarup

    2013-01-01

    Oncogene addiction describes how cancer cells exhibit dependence on single oncogenes to escape apoptosis and senescence. While oncogene addiction constitutes the basis for new cancer treatment strategies targeting individual kinases and pathways activated by oncogenic mutations, the biochemical...... basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to V600EBRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably...

  1. Oncogenic Kras initiates leukemia in hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Amit J Sabnis

    2009-03-01

    Full Text Available How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs and leukemias. We investigated the effects of expressing oncogenic Kras(G12D from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells. MPD could be initiated by Kras(G12D expression in a highly restricted population enriched for hematopoietic stem cells (HSCs, but not in common myeloid progenitors. Kras(G12D HSCs demonstrated a marked in vivo competitive advantage over wild-type cells. Kras(G12D expression also increased the fraction of proliferating HSCs and reduced the overall size of this compartment. Transplanted Kras(G12D HSCs efficiently initiated acute T-lineage leukemia/lymphoma, which was associated with secondary Notch1 mutations in thymocytes. We conclude that MPD-initiating activity is restricted to the HSC compartment in Kras(G12D mice, and that distinct self-renewing populations with cooperating mutations emerge during cancer progression.

  2. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture.

    Science.gov (United States)

    Li, Xingnan; Nadauld, Lincoln; Ootani, Akifumi; Corney, David C; Pai, Reetesh K; Gevaert, Olivier; Cantrell, Michael A; Rack, Paul G; Neal, James T; Chan, Carol W-M; Yeung, Trevor; Gong, Xue; Yuan, Jenny; Wilhelmy, Julie; Robine, Sylvie; Attardi, Laura D; Plevritis, Sylvia K; Hung, Kenneth E; Chen, Chang-Zheng; Ji, Hanlee P; Kuo, Calvin J

    2014-07-01

    The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here we used a single air-liquid interface culture method without modification to engineer oncogenic mutations into primary epithelial and mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia as a result of expression of Kras carrying the G12D mutation (Kras(G12D)), p53 loss or both and readily generated adenocarcinoma after in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, Kras(G12D) and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), as compared to the more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the IGF2 (insulin-like growth factor-2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues.

  3. Oncogenic cancer/testis antigens

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer....../testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...... immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic...

  4. SMAD4 - Molecular gladiator of the TGF-β signaling is trampled upon by mutational insufficiency in colorectal carcinoma of Kashmiri population: an analysis with relation to KRAS proto-oncogene

    Directory of Open Access Journals (Sweden)

    Banday Mujeeb Z

    2010-06-01

    Full Text Available Abstract Background The development and progression of colorectal cancer has been extensively studied and the genes responsible have been well characterized. However the correlation between the SMAD4 gene mutations with KRAS mutant status has not been explored by many studies so far. Here, in this study we aimed to investigate the role of SMAD4 gene aberrations in the pathogenesis of CRC in Kashmir valley and to correlate it with various clinicopathological variables and KRAS mutant genotype. Methods We examined the paired tumor and normal tissue specimens of 86 CRC patients for the occurrence of aberrations in MCR region of SMAD4 and exon 1 of KRAS by PCR-SSCP and/or PCR-Direct sequencing. Results The overall mutation rate of mutation cluster region (MCR region of SMAD4 gene among 86 patients was 18.6% (16 of 86. 68.75% (11/16 of the SMAD4 gene mutants were found to have mutations in KRAS gene as well. The association between the KRAS mutant genotype with SMAD4 mutants was found to be significant (P =SMAD4 gene (P = Conclusion Our study suggests that SMAD4 gene aberrations are the common event in CRC development but play a differential role in the progression of CRC in higher tumor grade (C+D and its association with the KRAS mutant status suggest that these two molecules together are responsible for the progression of the tumor to higher/advanced stage.

  5. Prediction of oncogenic interactions and cancer-related signaling networks based on network topology.

    Science.gov (United States)

    Acencio, Marcio Luis; Bovolenta, Luiz Augusto; Camilo, Esther; Lemke, Ney

    2013-01-01

    Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI). This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved in cancer research

  6. Prediction of oncogenic interactions and cancer-related signaling networks based on network topology.

    Directory of Open Access Journals (Sweden)

    Marcio Luis Acencio

    Full Text Available Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI. This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved

  7. Microglandular adenosis associated with triple-negative breast cancer is a neoplastic lesion of triple-negative phenotype harbouring TP53 somatic mutations.

    Science.gov (United States)

    Guerini-Rocco, Elena; Piscuoglio, Salvatore; Ng, Charlotte K Y; Geyer, Felipe C; De Filippo, Maria R; Eberle, Carey A; Akram, Muzaffar; Fusco, Nicola; Ichihara, Shu; Sakr, Rita A; Yatabe, Yasushi; Vincent-Salomon, Anne; Rakha, Emad A; Ellis, Ian O; Wen, Y Hannah; Weigelt, Britta; Schnitt, Stuart J; Reis-Filho, Jorge S

    2016-04-01

    Microglandular adenosis (MGA) is a rare proliferative lesion of the breast composed of small glands lacking myoepithelial cells and lined by S100-positive, oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative epithelial cells. There is evidence to suggest that MGA may constitute a non-obligate precursor of triple-negative breast cancer (TNBC). We sought to define the genomic landscape of pure MGA and of MGA, atypical MGA (AMGA) and associated TNBCs, and to determine whether synchronous MGA, AMGA, and TNBCs would be clonally related. Two pure MGAs and eight cases of MGA and/or AMGA associated with in situ or invasive TNBC were collected, microdissected, and subjected to massively parallel sequencing targeting all coding regions of 236 genes recurrently mutated in breast cancer or related to DNA repair. Pure MGAs lacked clonal non-synonymous somatic mutations and displayed limited copy number alterations (CNAs); conversely, all MGAs (n = 7) and AMGAs (n = 3) associated with TNBC harboured at least one somatic non-synonymous mutation (range 3-14 and 1-10, respectively). In all cases where TNBCs were analyzed, identical TP53 mutations and similar patterns of gene CNAs were found in the MGA and/or AMGA and in the associated TNBC. In the MGA/AMGA associated with TNBC lacking TP53 mutations, somatic mutations affecting PI3K pathway-related genes (eg PTEN, PIK3CA, and INPP4B) and tyrosine kinase receptor signalling-related genes (eg ERBB3 and FGFR2) were identified. At diagnosis, MGAs associated with TNBC were found to display subclonal populations, and clonal shifts in the progression from MGA to AMGA and/or to TNBC were observed. Our results demonstrate the heterogeneity of MGAs, and that MGAs associated with TNBC, but not necessarily pure MGAs, are genetically advanced, clonal, and neoplastic lesions harbouring recurrent mutations in TP53 and/or other cancer genes, supporting the notion that a subset of MGAs and AMGAs may constitute

  8. Incidência de mutação no códon 12 do protoncogene K-ras em carcinoma de próstata humana em uma amostra da população brasileira The incidence of mutation in codon 12 of the k-ras proto-oncogene in human prostate carcinoma with a Brazilian population sample

    Directory of Open Access Journals (Sweden)

    José Raul Cisternas Gajardo

    2004-06-01

    Full Text Available Com o intuito de estudar a participação do gene ras ativado na tumorigênese humana, pesquisamos a freqüência de mutação pontual no códon 12 do gene K-ras em espécimes cirúrgicos de pacientes portadores de câncer de próstata. Foi utilizado um grupo controle de pacientes com hiperplasia prostática benigna (HPB. Os cortes destinados ao estudo foram submetidos a extração do DNA pelo método da proteinase K. A amplificação do fragmento isolado foi obtida pela reação em cadeia de polimerase seguida por clivagem, utilizando-se a enzima de restrição Mval. A eletroforese em gel de agarose permitiu a verificação da presença de mutações. Constatamos a presença de mutação no códon 12 do gene K-ras em dois dos 15 carcinomas de próstata estudados (13,3%, sendo que nenhuma em pacientes com HPB. A ocorrência de mutação de 13,3% na amostra da população brasileira analisada caracteriza uma incidência intermediária entre as populações japonesa e americana. É pouco provável que a mutação isolada do K-ras seja um evento significativo na carcinogênese prostática nesta população.Aiming to study the participation of activated ras gene on the human tumorogenesis, we have researched the frequency of a punctual mutation in codon 12 of the K-Ras oncogene in surgical specimens of patients with prostate cancer. We used control group of patients with benign prostatic hyperplasia. The pieces addressed to the study was submitted to the extraction of DNA by the proteina kinase method. The isolated fragment amplification was obtained using a polymerase chain reaction followed by clevage with Mval restriction enzime. The electrophoresis process allowed the verification of the mutation presence. We noticed the presence of mutation in codon 12 of the K-ras oncogene in two of 15 prostate carcinomas studied (13.3%. None of the patients with prostatic benign prostatic hyperplasia presented any mutation. The mutation incidence of 13.3% on

  9. The clinical significance of KRAS and BRAF oncogene mutations in hepatocellular carci-noma%原发性肝癌中 KRAS 及 BRAF 基因突变及其临床意义

    Institute of Scientific and Technical Information of China (English)

    尹小兰; 许青

    2016-01-01

    Objective:To investigate the mutations of KRAS and BRAF genes in patients with hepatocellular carci-noma(HCC),and to determine its roles in the development of disease and treatment.Methods:Plasma samples (51 cases)were collected from HCC patients,including 25 patients with extrahepatic metastasis,and 26 patients without extrahepatic metastasis.10ml plasma was collected and DNA was extracted from the plasma samples,and human KRAS /NRAS gene and BRAF V600E gene mutation detection kits were used to detect KRAS and BRAF gene muta-tion.Finally analyzing the correlation between gene mutation probability and its clinical and pathological features.Re-sults:The KRAS mutation rates of patients with extrahepatic metastasis (24%,6 /25)was much higher than the pa-tients without extrahepatic metastasis (0%,0 /26),and the difference was significant (P <0.05).No mutation was detected in BRAF gene in hepatocellular carcinoma patients.Conclusion:This study showed that mutation of KRAS gene will be occurred in hepatocellular carcinoma patients,while no mutation was observed in BRAF gene or the muta-tion ratio of BRAF was low.The KRAS mutation frequency was increased with the increased risk of extrahepatic me-tastasis.%目的:检测原发性肝癌患者血浆中的 KRAS 与 BRAF 基因突变机率及特征,研究与疾病进展的相关性及对治疗的意义。方法:收集肝癌患者血液(51例),观察组25例,为肝癌伴肝外转移患者;对照组26例,为病灶局限于肝脏的肝癌患者。所有的患者抽取外周血10ml,从血样中游离 DNA,采用人类 KRAS /NRAS 基因突变联合检测试剂盒及人类 BRAF 基因 V600E 突变检测试剂盒分别对 KRAS 基因和 BRAF 基因突变进行检测,并分析基因突变机率及与其突变特征。结果:51例肝癌患者中,伴肝外转移患者 KRAS 基因突变率(24%,6/25)明显高于无肝外转移患者 KRAS 基因突变率(0%,0/26;P <0.05

  10. Targeting MET Amplification as a New Oncogenic Driver

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  11. c-Abl antagonizes the YAP oncogenic function.

    Science.gov (United States)

    Keshet, R; Adler, J; Ricardo Lax, I; Shanzer, M; Porat, Z; Reuven, N; Shaul, Y

    2015-06-01

    YES-associated protein (YAP) is a central transcription coactivator that functions as an oncogene in a number of experimental systems. However, under DNA damage, YAP activates pro-apoptotic genes in conjunction with p73. This program switching is mediated by c-Abl (Abelson murine leukemia viral oncogene) via phosphorylation of YAP at the Y357 residue (pY357). YAP as an oncogene coactivates the TEAD (transcriptional enhancer activator domain) family transcription factors. Here we asked whether c-Abl regulates the YAP-TEAD functional module. We found that DNA damage, through c-Abl activation, specifically depressed YAP-TEAD-induced transcription. Remarkably, c-Abl counteracts YAP-induced transformation by interfering with the YAP-TEAD transcriptional program. c-Abl induced TEAD1 phosphorylation, but the YAP-TEAD complex remained unaffected. In contrast, TEAD coactivation was compromised by phosphomimetic YAP Y357E mutation but not Y357F, as demonstrated at the level of reporter genes and endogenous TEAD target genes. Furthermore, YAP Y357E also severely compromised the role of YAP in cell transformation, migration, anchorage-independent growth, and epithelial-to-mesenchymal transition (EMT) in human mammary MCF10A cells. These results suggest that YAP pY357 lost TEAD transcription activation function. Our results demonstrate that YAP pY357 inactivates YAP oncogenic function and establish a role for YAP Y357 phosphorylation in cell-fate decision.

  12. Targeting MET Amplification as a New Oncogenic Driver

    Directory of Open Access Journals (Sweden)

    Hisato Kawakami

    2014-07-01

    Full Text Available Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  13. Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent.

    Science.gov (United States)

    Morgan, Michael J; Gamez, Graciela; Menke, Christina; Hernandez, Ariel; Thorburn, Jacqueline; Gidan, Freddi; Staskiewicz, Leah; Morgan, Shellie; Cummings, Christopher; Maycotte, Paola; Thorburn, Andrew

    2014-10-01

    Chloroquine (CQ) is an antimalarial drug and late-stage inhibitor of autophagy currently FDA-approved for use in the treatment of rheumatoid arthritis and other autoimmune diseases. Based primarily on its ability to inhibit autophagy, CQ and its derivative, hydroxychloroquine, are currently being investigated as primary or adjuvant therapy in multiple clinical trials for cancer treatment. Oncogenic RAS has previously been shown to regulate autophagic flux, and cancers with high incidence of RAS mutations, such as pancreatic cancer, have been described in the literature as being particularly susceptible to CQ treatment, leading to the hypothesis that oncogenic RAS makes cancer cells dependent on autophagy. This autophagy "addiction" suggests that the mutation status of RAS in tumors could identify patients who would be more likely to benefit from CQ therapy. Here we show that RAS mutation status itself is unlikely to be beneficial in such a patient selection because oncogenic RAS does not always promote autophagy addiction. Moreover, oncogenic RAS can have opposite effects on both autophagic flux and CQ sensitivity in different cells. Finally, for any given cell type, the positive or negative effect of oncogenic RAS on autophagy does not necessarily predict whether RAS will promote or inhibit CQ-mediated toxicity. Thus, although our results confirm that different tumor cell lines display marked differences in how they respond to autophagy inhibition, these differences can occur irrespective of RAS mutation status and, in different contexts, can either promote or reduce chloroquine sensitivity of tumor cells.

  14. Genetics Home Reference: ovarian cancer

    Science.gov (United States)

    ... mutations, are not inherited. Somatic mutations in the TP53 gene occur in almost half of all ovarian ... PALB2 PIK3CA PMS2 PRKN RAD50 RAD51C RAD51D STK11 TP53 Related Information What is a gene? What is ...

  15. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation.

    Directory of Open Access Journals (Sweden)

    Cornelia Brendel

    Full Text Available RAS mutations are frequently found among acute myeloid leukemia patients (AML, generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1 in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC driven differentiation. Taken together, our findings show that AML with inv(16 and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies.

  16. The ETS family of oncogenic transcription factors in solid tumours.

    Science.gov (United States)

    Sizemore, Gina M; Pitarresi, Jason R; Balakrishnan, Subhasree; Ostrowski, Michael C

    2017-06-01

    Findings over the past decade have identified aberrant activation of the ETS transcription factor family throughout all stages of tumorigenesis. Specifically in solid tumours, gene rearrangement and amplification, feed-forward growth factor signalling loops, formation of gain-of-function co-regulatory complexes and novel cis-acting mutations in ETS target gene promoters can result in increased ETS activity. In turn, pro-oncogenic ETS signalling enhances tumorigenesis through a broad mechanistic toolbox that includes lineage specification and self-renewal, DNA damage and genome instability, epigenetics and metabolism. This Review discusses these different mechanisms of ETS activation and subsequent oncogenic implications, as well as the clinical utility of ETS factors.

  17. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences

    Science.gov (United States)

    Balaj, Leonora; Lessard, Ryan; Dai, Lixin; Cho, Yoon-Jae; Pomeroy, Scott L.; Breakefield, Xandra O.; Skog, Johan

    2011-01-01

    Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. Here, we show that tumour microvesicles also carry DNA, which reflects the genetic status of the tumour, including amplification of the oncogene c-Myc. We also find amplified c-Myc in serum microvesicles from tumour-bearing mice. Further, we find remarkably high levels of retrotransposon RNA transcripts, especially for some human endogenous retroviruses, such as LINE-1 and Alu retrotransposon elements, in tumour microvesicles and these transposable elements could be transferred to normal cells. These findings expand the nucleic acid content of tumour microvesicles to include: elevated levels of specific coding and non-coding RNA and DNA, mutated and amplified oncogene sequences and transposable elements. Thus, tumour microvesicles contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer. PMID:21285958

  18. Advances on Driver Oncogenes of Squamous Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Wei HONG

    2014-05-01

    Full Text Available Background and objective Lung cancer is the leading cause of cancer-related deaths worldwide. Next to adenocarcinoma, squamous cell carcinoma (SCC of the lung is the most frequent histologic subtype in non-small cell lung cancer. Several molecular alterations have been defined as "driver oncogenes" responsible for both the initiation and maintenance of the malignancy. The squamous cell carcinoma of the lung has recently shown peculiar molecular characteristics which relate with both carcinogenesis and response to targeted drugs. So far, about 40% of lung squamous cell carcinoma has been found harbouring driver oncogenes, in which fibroblast growth factor receptor 1 (FGFR1 plays important roles. In this review, we will report the mainly advances on some latest driver mutations of squamous cell lung cancer.

  19. Pharmacological strategies to target oncogenic KRAS signaling in pancreatic cancer.

    Science.gov (United States)

    Chuang, Hsiao-Ching; Huang, Po-Hsien; Kulp, Samuel K; Chen, Ching-Shih

    2017-03-01

    The clear importance of mutated KRAS as a therapeutic target has driven the investigation of multiple approaches to inhibit oncogenic KRAS signaling at different molecular levels. However, no KRAS-targeted therapy has reached the clinic to date, which underlies the intrinsic difficulty in developing effective, direct inhibitors of KRAS. Thus, this article provides an overview of the history and recent progress in the development of pharmacological strategies to target oncogenic KRAS with small molecule agents. Mechanistically, these KRAS-targeted agents can be classified into the following four categories. (1) Small-molecule RAS-binding ligands that prevent RAS activation by binding within or outside the nucleotide-binding motif. (2) Inhibitors of KRAS membrane anchorage. (3) Inhibitors that bind to RAS-binding domains of RAS-effector proteins. (4) Inhibitors of KRAS expression. The advantage and limitation of each type of these anti-KRAS agents are discussed.

  20. A comprehensive comparative analysis of the histomorphological features of ALK-rearranged lung adenocarcinoma based on driver oncogene mutations: frequent expression of epithelial-mesenchymal transition markers than other genotype.

    Directory of Open Access Journals (Sweden)

    Hyojin Kim

    Full Text Available Molecular classification of lung cancer correlates well with histomorphological features. However, specific histomorphological features that differentiate anaplastic lymphoma kinase (ALK-rearranged tumors from ALK-negative tumors have not been fully evaluated. Eighty ALK-rearranged and 213 ALK-negative (91 epidermal growth factor receptor-mutated; 29 K-ras-mutated; 93 triple-negative resected lung adenocarcinomas were analyzed for several histomorphological parameters and histological subtype. ALK-rearranged tumors were associated with younger age at presentation, frequent nodal metastasis, and higher stage of disease at diagnosis. ALK-rearranged tumors were more likely to show a solid predominant pattern than ALK-negative tumors (43.8%; 35/80; p<0.001. Unlike ALK-negative tumors, a lepidic predominant pattern was not observed in ALK-rearranged tumors (p<0.001. In multivariate analysis, the most significant morphological features that distinguished ALK-rearranged tumors from ALK-negative tumors were cribriform formation (odds ratio [OR], 3.253; p = 0.028, presence of mucin-containing cells (OR, 4.899; p = 0.008, close relationship to adjacent bronchioles (OR, 5.361; p = 0.001, presence of psammoma bodies (OR, 4.026; p = 0.002, and a solid predominant pattern (OR, 13.685; p = 0.023. ALK-rearranged tumors exhibited invasive histomorphological features, aggressive behavior and frequent expression of epithelial-mesenchymal transition markers (loss of E-cadherin and expression of vimentin compared with other genotype (p = 0.015. Spatial proximity between bronchus and ALK-rearranged tumors and frequent solid histologic subtype with p63 expression may cause diagnostic difficulties to differentiate squamous cell carcinoma in the small biopsy, whereas p40 was rarely expressed in ALK-rearranged adenocarcinoma. Knowledge of these features may improve the diagnostic accuracy and lead to a better understanding of the characteristic behavior of ALK

  1. Functional transition of Pak proto-oncogene during early evolution of metazoans.

    Science.gov (United States)

    Watari, A; Iwabe, N; Masuda, H; Okada, M

    2010-07-01

    Proto-oncogenes encode signaling molecular switches regulating cellular homeostasis in metazoans, and can be converted to oncogenes by gain-of-function mutations. To address the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata by monitoring their transforming activities, and isolated a Pak gene ortholog encoding a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian fibroblasts, although the Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alteration of the auto-inhibitory domain (AID) of MoPak confers higher constitutive kinase activity, as well as greater binding ability to Rho family GTPases than the multicellular Paks, and this structural alteration is responsible for cell transformation and disruption of multicellular tissue organization. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and suggest a potential link between the establishment of the regulatory system of proto-oncogenes and metazoan evolution.

  2. Detección de una mutación no estándar en el Proto-oncogen RET por mutagénesis dirigida Detection of a non-standard mutation in the ret protoncogene by site directed mutagenesis

    Directory of Open Access Journals (Sweden)

    Sebastián Real

    2005-03-01

    Full Text Available El síndrome de MEN2A es una enfermedad autosómica dominante que se caracteriza por el desarrollo de cáncer medular de tiroides, feocromocitoma e hiperplasia de paratiroides. Mutaciones en el ret proto-oncogén se asocian con MEN2A, con una penetrancia cercana al 100%. El gen se encuentra en el cromosoma 10q11.2 y codifica para una proteína transmembrana con función de receptor del tipo tirosina quinasa. Mutaciones que afectan el dominio extracelular de la proteína estimulan la dimerización espontánea del receptor y un aumento de la actividad de tirosina quinasa basal. El codón 634 codifica para una cisteína, y es considerado un sitio hot-spot por encontrarse mutado en el 85% de las familias con MEN2A. Para este sitio, nuestro grupo desarrolló en 2002 una metodología de detección indirecta y económica. Ante una familia sospechada de MEN2A, se aplicó esta estrategia, que reveló un codón 634 sano. Por posterior secuenciación se confirmó que el paciente índice portaba una mutación en el codón 611. Se desarrolló una nueva estrategia familia-específica por PCR mutagénica, que permitió diagnosticar en nuestro país a todos los integrantes de la familia con costos accesibles. Un niño en el cual se halló la mutación, fue tiroidectomizado preventivamente, y a la fecha goza de buena salud. De esta manera, combinando la estrategia de detección de mutaciones en el sitio hot-spot y un posterior diseño de otra metodología familia-específica se pudo diagnosticar e intervenir preventivamente a la familia, sin enviar todas las muestras al extranjero.MEN2A is an autosomic dominant disease, characterized by medullary thyroid cancer, pheochromocytoma and parathyroid hyperplasia. Mutations in the ret proto-oncogene are associated with this disease, with almost 100% of pennetrance. The gene, situated on chromosome 10q11.2, codes for a transmembrane protein with a tirosinkinase-like receptor function. Mutations that affect its

  3. Oncogenicity of human N-ras oncogene and proto-oncogene introduced into retroviral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Souyri, M.; Vigon, I.; Charon, M.; Tambourin, P. (Hopital Cochin, Paris (France))

    1989-09-01

    The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, the authors have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10{sup 4} foci per {mu}g of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, they found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which the authors had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.

  4. Mutation specific functions of EGFR result in a mutation-specific downstream pathway activation

    NARCIS (Netherlands)

    L. Eraslan-Erdem (Lale); Y. Gao; N.K. Kloosterhof (Nanne); Y. Atlasi (Yaser); J.A.A. Demmers (Jeroen); A. Sacchetti (Andrea); J.M. Kros (Johan); P.A.E. Sillevis Smitt (Peter); J.G.J.V. Aerts (Joachim); P.J. French (Pim)

    2015-01-01

    markdownabstractBackground: Epidermal growth factor receptor (EGFR) is frequently mutated in various types of cancer. Although all oncogenic mutations are considered activating, different tumour types have different mutation spectra. It is possible that functional differences underlie this tumour-ty

  5. Dependence on phosphoinositide 3-kinase and RAS-RAF pathways drive the activity of RAF265, a novel RAF/VEGFR2 inhibitor, and RAD001 (Everolimus) in combination.

    Science.gov (United States)

    Mordant, Pierre; Loriot, Yohann; Leteur, Céline; Calderaro, Julien; Bourhis, Jean; Wislez, Marie; Soria, Jean-Charles; Deutsch, Eric

    2010-02-01

    Activation of phosphatidylinositol-3-kinase (PI3K)-AKT and Kirsten rat sarcoma viral oncogene homologue (KRAS) can induce cellular immortalization, proliferation, and resistance to anticancer therapeutics such as epidermal growth factor receptor inhibitors or chemotherapy. This study assessed the consequences of inhibiting these two pathways in tumor cells with activation of KRAS, PI3K-AKT, or both. We investigated whether the combination of a novel RAF/vascular endothelial growth factor receptor inhibitor, RAF265, with a mammalian target of rapamycin (mTOR) inhibitor, RAD001 (everolimus), could lead to enhanced antitumoral effects in vitro and in vivo. To address this question, we used cell lines with different status regarding KRAS, PIK3CA, and BRAF mutations, using immunoblotting to evaluate the inhibitors, and MTT and clonogenic assays for effects on cell viability and proliferation. Subcutaneous xenografts were used to assess the activity of the combination in vivo. RAD001 inhibited mTOR downstream signaling in all cell lines, whereas RAF265 inhibited RAF downstream signaling only in BRAF mutant cells. In vitro, addition of RAF265 to RAD001 led to decreased AKT, S6, and Eukaryotic translation initiation factor 4E binding protein 1 phosphorylation in HCT116 cells. In vitro and in vivo, RAD001 addition enhanced the antitumoral effect of RAF265 in HCT116 and H460 cells (both KRAS mut, PIK3CA mut); in contrast, the combination of RAF265 and RAD001 yielded no additional activity in A549 and MDAMB231 cells. The combination of RAF and mTOR inhibitors is effective for enhancing antitumoral effects in cells with deregulation of both RAS-RAF and PI3K, possibly through the cross-inhibition of 4E binding protein 1 and S6 protein.

  6. Oncogenic Brain Metazoan Parasite Infection

    Directory of Open Access Journals (Sweden)

    Angela N. Spurgeon

    2013-01-01

    Full Text Available Multiple observations suggest that certain parasitic infections can be oncogenic. Among these, neurocysticercosis is associated with increased risk for gliomas and hematologic malignancies. We report the case of a 71-year-old woman with colocalization of a metazoan parasite, possibly cysticercosis, and a WHO grade IV neuroepithelial tumor with exclusively neuronal differentiation by immunohistochemical stains (immunopositive for synaptophysin, neurofilament protein, and Neu-N and not for GFAP, vimentin, or S100. The colocalization and temporal relationship of these two entities suggest a causal relationship.

  7. Escape from premature senescence is not sufficient for oncogenic transformation by Ras

    NARCIS (Netherlands)

    Peeper, D.S.; Dannenberg, J.-H.; Douma, S.; Riele, H. te; Bernards, R.A.

    2001-01-01

    Resistance of primary cells to transformation by oncogenic Ras has been attributed to the induction of replicative growth arrest1, 2, 3. This irreversible 'fail-safe mechanism' resembles senescence and requires induction by Ras of p19ARF and p53 (refs 3−5). Mutation of either p19ARF or p53 alleviate

  8. Clinical relevance of the K-ras oncogene in colorectal cancer: Experience in a Mexican population

    Directory of Open Access Journals (Sweden)

    F. Cabrera-Mendoza

    2014-07-01

    Conclusions: No relation was found between the K-ras oncogene mutation and reduced survival, in contrast to what has been established in the international medical literature. Further studies that include both a larger number of patients and those receiving monoclonal treatment, need to be conducted. There were only 5 patients in the present study that received cetuximab, resulting in a misleading analysis.

  9. CT assessment of early response to neoadjuvant therapy in colon cancer

    DEFF Research Database (Denmark)

    Rafaelsen, Søren Rafael; Dam, Claus; Lund-Rasmussen, Vera

    patients had histologically confirmed colon cancer, a T4 or T3 tumour with extramural invasion ≥ 5 mm and no distant metastases or peritoneal nodules. The patients were treated with oxaliplatin and capecitabine. In addition, those with no mutations in the KRAS, BRAF and PIK3CA genes were also treated...

  10. Computed tomography assessment of early response to neoadjuvant therapy in colon cancer

    DEFF Research Database (Denmark)

    Dam, Claus; Lund-Rasmussen, Vera; Pløen, John

    2015-01-01

    patients had histologically confirmed colon cancer, a T4 or T3 tumour with extramural invasion ≥ 5 mm and no distant metastases or peritoneal nodules. The patients were treated with oxaliplatin and capecitabine. In addition, those with no mutations in the KRAS, BRAF and PIK3CA genes were also treated...

  11. Risk factors for brain metastases in patients with metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Troels Dreier; Palshof, Jesper Andreas; Larsen, Finn Ole

    2017-01-01

    patients had previously progression on 5-FU, irinotecan and oxaliplatin containing regimens and received CetIri treatment independent of RAS mutations status. We subsequently performed KRAS, NRAS, BRAF, PIK3CA, PTEN, ERBB2 and EGFR sequencing of DNA extracted from primary tumor tissue. Results: Totally...

  12. What is your diagnosis?

    Science.gov (United States)

    Panteliades, Manuela; Silva, Claudia Marcia Resende; Gontijo, Bernardo

    2016-01-01

    CLOVES syndrome is a rare, newly described, and relatively unknown syndrome, related to somatic mutations of the PIK3CA gene. Clinical findings include adipose tissue overgrowth, vascular malformations, epidermal nevi, scoliosis, and spinal deformities. This report deals with a characteristic phenotype case, highlighting peculiar cutaneous and radiological changes. PMID:27438212

  13. 40 CFR 798.3300 - Oncogenicity.

    Science.gov (United States)

    2010-07-01

    ... Species of Experimental Animals for Inhalation Carcinogenicity Studies” Paper presented at Conference on...) HEALTH EFFECTS TESTING GUIDELINES Chronic Exposure § 798.3300 Oncogenicity. (a) Purpose. The objective of a long-term oncogenicity study is to observe test animals for a major portion of their life span for...

  14. Predictive role of multiple gene alterations in response to cetuximab in metastatic colorectal cancer: A single center study

    Directory of Open Access Journals (Sweden)

    Ulivi Paola

    2012-05-01

    Full Text Available Abstract Background KRAS mutations negatively affect outcome after treatment with cetuximab in metastatic colorectal cancer (mCRC patients. As only 20% of KRAS wild type (WT patients respond to cetuximab it is possible that other mutations, constitutively activating the EGFR pathway, are present in the non-responding KRAS WT patients. We retrospectively analyzed objective tumor response rate, (ORR progression-free (PFS and overall survival (OS with respect to the mutational status of KRAS, BRAF, PIK3CA and PTEN expression in mCRC patients treated with a cetuximab-based regimen. Methods 67 mCRC patients were enrolled onto the study. DNA was extracted from paraffin-embedded sections derived from primary or metastatic lesions. Exon 2 of KRAS and exon 15 of BRAF were analyzed by direct sequencing, PIK3CA was evaluated by pyrosequencing and PTEN expression by immunohistochemistry. Results BRAF and PIK3CA mutations were independently associated with worse PFS (p = 0.006 and p = 0.028, respectively and OS (p = 0.008 and p = 0.029, respectively. No differences in clinical outcome were found between patients who were positive or negative for PTEN expression. Conversely, patients negative for KRAS, BRAF and PIK3CA mutations were characterized by significantly better ORR, PFS and OS than patients with at least one of these mutations. Conclusions BRAF and PIK3CA mutations would seem to be independent predictors of anti-EGFR therapy effectiveness and could be taken into consideration during treatment decision making.

  15. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma

    Directory of Open Access Journals (Sweden)

    Dinesh K. Singh

    2017-01-01

    Full Text Available Efforts to identify and target glioblastoma (GBM drivers have primarily focused on receptor tyrosine kinases (RTKs. Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2 transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2 and zinc-finger E-box binding homeobox 1 (ZEB1, which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  16. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma.

    Science.gov (United States)

    Singh, Dinesh K; Kollipara, Rahul K; Vemireddy, Vamsidara; Yang, Xiao-Li; Sun, Yuxiao; Regmi, Nanda; Klingler, Stefan; Hatanpaa, Kimmo J; Raisanen, Jack; Cho, Steve K; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara; Mashimo, Tomoyuki; Wang, Shan; Humphries, Caroline G; Mickey, Bruce; Maher, Elizabeth A; Zheng, Hongwu; Kim, Ryung S; Kittler, Ralf; Bachoo, Robert M

    2017-01-24

    Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  17. Oncogenic c-kit transcript is a target for binase.

    Science.gov (United States)

    Mitkevich, Vladimir A; Petrushanko, Irina Y; Kretova, Olga V; Zelenikhin, Pavel V; Prassolov, Vladimir S; Tchurikov, Nickolai A; Ilinskaya, Olga N; Makarov, Alexander A

    2010-07-01

    Mutational activation of c-Kit receptor tyrosine kinase is common in acute myelogenous leukemia (AML). One such activating point mutation is the N822K replacement in the c-Kit protein. Here we investigate the selective cytotoxic effect of binase--RNase from Bacillus intermedius--on FDC-P1-N822K cells. These cells were derived from myeloid progenitor FDC-P1 cells, in which ectopic expression of N822K c-kit gene induces interleukin-3 independent growth. In order to determine whether the sensitivity of these cells to binase is caused by the expression of c-kit oncogene, the cytotoxicity of the RNase was studied in the presence of selective inhibitor of mutated c-Kit imatinib (Gleevec). Inhibition of mutated c-Kit protein leads to the loss of cell sensitivity to the apoptotic effect of binase, while the latter still decreases the amount of cellular RNA. Using green fluorescent protein as an expression marker for the c-Kit oncoprotein, we demonstrate that the elimination of c-Kit is the key factor in selective cytotoxicity of binase. Quantitative RT-PCR with RNA samples isolated from the binase-treated FDC-P1-N822K cells shows that binase treatment results in 41% reduction in the amount of с-kit mRNA. This indicates that the transcript of the activated mutant c-kit is the target for toxic action of binase. Thus, the combination of inhibition of oncogenic protein with the destruction of its mRNA is a promising approach to eliminating malignant cells.

  18. Gene mutations in hepatocellular adenomas

    DEFF Research Database (Denmark)

    Raft, Marie B; Jørgensen, Ernö N; Vainer, Ben

    2015-01-01

    is associated with bi-allelic mutations in the TCF1 gene and morphologically has marked steatosis. β-catenin activating HCA has increased activity of the Wnt/β-catenin pathway and is associated with possible malignant transformation. Inflammatory HCA is characterized by an oncogene-induced inflammation due....... This review offers an overview of the reported gene mutations associated with hepatocellular adenomas together with a discussion of the diagnostic and prognostic value....

  19. Regulation of Proto-Oncogenic Dbl by Chaperone-Controlled, Ubiquitin-Mediated Degradation▿

    OpenAIRE

    Kamynina, Elena; Kauppinen, Krista; Duan, Faping; Muakkassa, Nora; Manor, Danny

    2006-01-01

    The dbl proto-oncogene product is a prototype of a growing family of guanine nucleotide exchange factors (GEFs) that stimulate the activation of small GTP-binding proteins from the Rho family. Mutations that result in the loss of proto-Dbl's amino terminus produce a variant with constitutive GEF activity and high oncogenic potential. Here, we show that proto-Dbl is a short-lived protein that is kept at low levels in cells by efficient ubiquitination and degradation. The cellular fate of proto...

  20. Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy.

    Science.gov (United States)

    Willis, Rudolph E

    2012-01-01

    An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the

  1. Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer

    DEFF Research Database (Denmark)

    Ekstrand, Anna Isinger; Jönsson, Mats; Lindblom, Annika;

    2010-01-01

    The phosphatidylinositol 3-kinases-AKT-mammalian target of rapamycin pathway (PI3K/AKT/mTOR) is central in colorectal tumors. Data on its role in hereditary cancers are, however, scarce and we therefore characterized mutations in PIK3CA and KRAS, and expression of PIK3CA, phosphorylated AKT...... and PTEN in 58 HNPCC-associated colorectal cancers. Derangements of at least one of the PI3K/AKT/mTOR components analyzed were found in 51/58 (88%) tumors. Mutations in PIK3CA and KRAS were identified in 14 and 31% of the tumors respectively. Overexpression of PIK3CA and phosphorylated AKT occurred in 59...... and 75% and were strongly associated (P = 0.005). Reduced/lost PTEN expression was found in 63% of the tumors. Though HNPCC-associated colorectal cancers show simple genetic profiles with few chromosomal alterations, we demonstrate frequent and repeated targeting of the PI3K/AKT/mTOR pathway, which...

  2. Bioinformatics of non small cell lung cancer and the ras proto-oncogene

    CERN Document Server

    Kashyap, Amita; Babu M, Naresh

    2015-01-01

    Cancer is initiated by activation of oncogenes or inactivation of tumor suppressor genes. Mutations in the K-ras proto-oncogene are responsible for 10–30% of adenocarcinomas. Clinical Findings point to a wide variety of other cancers contributing to lung cancer incidence. Such a scenario makes identification of lung cancer difficult and thus identifying its mechanisms can contribute to the society. Identifying unique conserved patterns common to contributing proto-oncogenes may further be a boon to Pharmacogenomics and pharmacoinformatics. This calls for ab initio/de novo drug discovery that in turn will require a comprehensive in silico approach of Sequence, Domain, Phylogenetic and Structural analysis of the receptors, ligand screening and optimization and detailed Docking studies. This brief involves extensive role of the RAS subfamily that includes a set of proteins, which cause an over expression of cancer-causing genes like M-ras and initiate tumour formation in lungs. SNP Studies and Structure based ...

  3. Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Andrea Sartore-Bianchi

    Full Text Available BACKGROUND: KRAS mutations occur in 35-45% of metastatic colorectal cancers (mCRC and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance. METHODOLOGY/PRINCIPAL FINDINGS: We retrospectively analyzed objective tumor response, progression-free (PFS and overall survival (OS together with the mutational status of KRAS, BRAF, PIK3CA and expression of PTEN in 132 tumors from cetuximab or panitumumab treated mCRC patients. Among the 106 non-responsive patients, 74 (70% had tumors with at least one molecular alteration in the four markers. The probability of response was 51% (22/43 among patients with no alterations, 4% (2/47 among patients with 1 alteration, and 0% (0/24 for patients with > or =2 alterations (p or =2 molecular alteration(s (p<0.001. CONCLUSIONS/SIGNIFICANCE: When expression of PTEN and mutations of KRAS, BRAF and PIK3CA are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to anti-EGFR therapies can be identified. We propose to define as 'quadruple negative', the CRCs lacking alterations in KRAS, BRAF, PTEN and PIK3CA. Comprehensive molecular dissection of the EGFR signaling pathways should be considered to select mCRC patients for cetuximab- or panitumumab-based therapies.

  4. Amplification of cellular oncogenes in solid tumors

    Directory of Open Access Journals (Sweden)

    Ozkan Bagci

    2015-01-01

    Full Text Available The term gene amplification refers to an increase in copy number of a gene. Upregulation of gene expression through amplification is a general mechanism to increase gene dosage. Oncogene amplifications have been shown in solid human cancers and they are often associated with progression of cancer. Defining oncogene amplification is useful since it is used as a prognostic marker in clinical oncology nowadays, especially v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (HER2 targeted agents are used in breast cancer patients with high level of HER2 overexpression as a therapeutic approach. However, patients without HER2 overexpression do not appear to benefit from these agents. We concluded that determination of oncogene amplification in solid tumors is an important factor in treatment of human cancers with many unknowns. We have referred to PubMed and some databases to prepare this article.

  5. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF.

    Directory of Open Access Journals (Sweden)

    Claudia Wellbrock

    Full Text Available The Microphthalmia-associated transcription factor (MITF is an important regulator of cell-type specific functions in melanocytic cells. MITF is essential for the survival of pigmented cells, but whereas high levels of MITF drive melanocyte differentiation, lower levels are required to permit proliferation and survival of melanoma cells. MITF is phosphorylated by ERK, and this stimulates its activation, but also targets it for degradation through the ubiquitin-proteosome pathway, coupling MITF degradation to its activation. We have previously shown that because ERK is hyper-activated in melanoma cells in which BRAF is mutated, the MITF protein is constitutively down-regulated. Here we describe another intriguing aspect of MITF regulation by oncogenic BRAF in melanoma cells. We show oncogenic BRAF up-regulates MITF transcription through ERK and the transcription factor BRN2 (N-Oct3. In contrast, we show that in melanocytes this pathway does not exist because BRN2 is not expressed, demonstrating that MITF regulation is a newly acquired function of oncogenic BRAF that is not performed by the wild-type protein. Critically, in melanoma cells MITF is required downstream of oncogenic BRAF because it regulates expression of key cell cycle regulatory proteins such as CDK2 and CDK4. Wild-type BRAF does not regulate this pathway in melanocytes. Thus, we show that oncogenic BRAF exerts exquisite control over MITF on two levels. It downregulates the protein by stimulating its degradation, but then counteracts this by increasing transcription through BRN2. Our data suggest that oncogenic BRAF plays a critical role in regulating MITF expression to ensure that its protein levels are compatible with proliferation and survival of melanoma cells. We propose that its ability to appropriate the regulation of this critical factor explains in part why BRAF is such a potent oncogene in melanoma.

  6. Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib.

    Directory of Open Access Journals (Sweden)

    Darrell C Bessette

    Full Text Available Basal-like and triple negative breast cancer (TNBC share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed.Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer.Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non

  7. Activation of cellular oncogenes by chemical carcinogens in Syrian hamster embryo fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R.; Reiss, E.; Roellich, G.; Schiffmann, D. (Univ. of Wuerzburg (West Germany)); Barrett, J.C.; Wiseman, R.W. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA)); Pechan, R.

    1990-08-01

    Carcinogen-induced point mutations resulting in activation of ras oncogenes have been demonstrated in various experimental systems such as skin carcinogenesis, mammary, and liver carcinogenesis. In many cases, the data support the conclusion that these point mutations are critical changes in the initiation of these tumors. The Syrian hamster embryo (SHE) cell transformation model system has been widely used to study the multistep process of chemically induced neoplastic transformation. Recent data suggest that activation of the Ha-ras gene via point mutation is one of the crucial events in the transformation of these cells. The authors have now cloned the c-Ha-ras proto-oncogene from SHE cDNA-libraries, and we have performed polymerase chain reaction and direct sequencing to analyze tumor cell lines induced by different chemical carcinogens for the presence of point mutations. No changes were detectable at codons 12, 13, 59, 61, and 117 or adjacent regions in tumor cell lines induced by diethylstilbestrol, asbestos, benzo(a)pyrene, trenbolone, or aflatoxin B{sub 1}. Thus, it is not known whether point mutations in the Ha-ras proto-oncogene are essential for the acquisition of the neoplastic phenotype of SHE cells. Activation of other oncogenes or inactivation of tumor suppressor genes may be responsible for the neoplastic progression of these cells. However, in SHE cells neoplastically transformed by diethylstilbestrol or trenbolone, a significant elevation of the c-Ha-ras expression was observed. Enhanced expression of c-myc was detected in SHE cells transformed by benzo(a)pyrene or trenbolone.

  8. Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors.

    Science.gov (United States)

    Obata, Y; Horikawa, K; Takahashi, T; Akieda, Y; Tsujimoto, M; Fletcher, J A; Esumi, H; Nishida, T; Abe, R

    2017-02-13

    Gastrointestinal stromal tumors (GISTs) are caused by gain-of-function mutations in the Kit receptor tyrosine kinase. Most primary GIST patients respond to the Kit inhibitor imatinib, but this drug often becomes ineffective because of secondary mutations in the Kit kinase domain. The characteristic intracellular accumulation of imatinib-sensitive and -resistant Kit protein is well documented, but its relationship to oncogenic signaling remains unknown. Here, we show that in cancer tissue from primary GIST patients as well as in cell lines, mutant Kit accumulates on the Golgi apparatus, whereas normal Kit localizes to the plasma membrane (PM). In imatinib-resistant GIST with a secondary Kit mutation, Kit localizes predominantly on the Golgi apparatus. Both imatinib-sensitive and imatinib-resistant Kit (Kit(mut)) become fully auto-phosphorylated only on the Golgi and only if in a complex-glycosylated form. Kit(mut) accumulates on the Golgi during the early secretory pathway, but not after endocytosis. The aberrant kinase activity of Kit(mut) prevents its export from the Golgi to the PM. Furthermore, Kit(mut) on the Golgi signals and activates the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway, signal transducer and activator of transcription 5 (STAT5), and the Mek-Erk pathway. Blocking the biosynthetic transport of Kit(mut) to the Golgi from the endoplasmic reticulum inhibits oncogenic signaling. PM localization of Kit(mut) is not required for its signaling. Activation of Src-family tyrosine kinases on the Golgi is essential for oncogenic Kit signaling. These results suggest that the Golgi apparatus serves as a platform for oncogenic Kit signaling. Our study demonstrates that Kit(mut)'s pathogenicity is related to its mis-localization, and may offer a new strategy for treating imatinib-resistant GISTs.Oncogene advance online publication, 13 February 2017; doi:10.1038/onc.2016.519.

  9. Phosphatidylinositol-3-kinase pathway aberrations in gastric and colorectal cancer: meta-analysis, co-occurrence and ethnic variation.

    Science.gov (United States)

    Chong, Mei-Ling; Loh, Marie; Thakkar, Bhavin; Pang, Brendan; Iacopetta, Barry; Soong, Richie

    2014-03-01

    Inhibition of the phosphatidylinositol-3-kinase (PI3K) signaling pathway is a cancer treatment strategy that has entered into clinical trials. We performed a meta-analysis on the frequency of prominent genetic (PIK3CA mutation, PIK3CA amplification and PTEN deletion) and protein expression (high PI3K, PTEN loss and high pAkt) aberrations in the PI3K pathway in gastric cancer (GC) and colorectal cancer (CRC). We also performed laboratory analysis to investigate the co-occurrence of these aberrations. The meta-analysis indicated that East Asian and Caucasian GC patients differ significantly for the frequencies of PIK3CA Exon 9 and 20 mutations (7% vs. 15%, respectively), PTEN deletion (21% vs. 4%) and PTEN loss (47% vs. 78%), while CRC patients differed for PTEN loss (57% vs. 26%). High study heterogeneity (I(2) > 80) was observed for all aberrations except PIK3CA mutations. Laboratory analysis of tumors from East Asian patients revealed significant differences between GC (n = 79) and CRC (n = 116) for the frequencies of PIK3CA amplification (46% vs. 4%) and PTEN loss (54% vs. 78%). The incidence of GC cases with 0, 1, 2 and 3 concurrent aberrations was 14%, 52%, 27% and 8%, respectively, while for CRC it was 10%, 60%, 25% and 4%, respectively. Our study consolidates knowledge on the frequency, co-occurrence and clinical relevance of PI3K pathway aberrations in GC and CRC. Up to 86% of GC and 90% of CRC have at least one aberration in the PI3K pathway, and there are significant differences in the frequencies of these aberrations according to cancer type and ethnicity.

  10. Impact of the oncogenic status on the mode of recurrence in resected non-small cell lung cancer.

    Science.gov (United States)

    Mizuno, Tetsuya; Yatabe, Yasushi; Kuroda, Hiroaki; Sakakura, Noriaki; Sakao, Yukinori

    2016-10-01

    Surgical resection is employed in patients with resectable non-small cell lung cancer. Despite complete resection, recurrence is sometimes observed. Oncogenic mutations promote initiation and progression of lung cancer, and mutation status predicts treatment outcome of advanced non-small cell lung cancer; however, their impact on the recurrence patterns remains poorly understood. We retrospectively studied 401 patients showing recurrence after complete resection of non-small cell lung cancer. Clinicopathological factors were reviewed for time to recurrence, and recurrence patterns were compared according to oncogenic status and examined according to EGFR mutational subtype. Among 401 patients, 185 with EGFR mutation, 46 with KRAS mutation, 15 with ALK rearrangement and 155 with triple-negative mutation were identified. Multivariate analysis following univariate analyses showed that younger age, well-moderately-differentiated histology, earlier pathologic stage and presence of EGFR or ALK mutation were favorable prognostic factors for time to recurrence. Locoregional recurrence was observed in 53.3% of ALK-positive patients, being significantly common in these patients than in EGFR- and KRAS-positive patients. EGFR-positive patients mostly experienced pleural recurrence, the incidence of which was significantly higher in triple-negative mutation patients. Adrenal recurrence was observed in 7.2% of triple-negative mutation patients, but it was rarely identified in EGFR-positive patients. Among EGFR-positive patients, the incidence of brain metastases was significantly higher in L858R cohort than in Del Ex19 cohort. In resected non-small cell lung cancer, younger age, well-moderately-differentiated histology, earlier pathologic stage and presence of EGFR or ALK mutation were favorable factors for TTR, and distinct recurrence patterns were revealed according to oncogenic mutation status and mutational EGFR subtype. Our results may provide suggestions for developing a

  11. Oncogenic programmes and Notch activity: an 'organized crime'?

    Science.gov (United States)

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'.

  12. Gene mutation and protein expression of v-Raf murine sarcoma viral oncogene homolog B1 in esophageal cancer%食管癌中鼠类肉瘤滤过性毒菌致癌同源体B1基因的突变和蛋白质表达情况

    Institute of Scientific and Technical Information of China (English)

    刘广杰; 张浩然; 解少男; 李立哲; 刘芳; 刘庆熠

    2016-01-01

    目的 探讨食管癌中鼠类肉瘤滤过性毒菌致癌同源体B1 (BRAF)的基因突变和蛋白质表达情况.方法 纳入2014年2月至2015年9月接受手术治疗的75例食管癌患者,取其癌组织、近癌组织和远癌组织,检测BRAF基因的突变和BRAF蛋白质的表达情况,分析BRAF蛋白质阳性表达与食管癌患者临床病理特征的关系.计数资料比较采用卡方检验.结果 在食管癌组织中未检测到BRAF基因第11和15外显子存在突变.75份食管癌组织中,5份Ⅲb期标本在第11外显子上增加了1个碱基C或T.75份食管癌组织中,46份(61.3 %) BRAF蛋白质表达阳性;57份近癌组织中,9份(15.8%)BRAF蛋白质表达阳性;75份远癌组织中,5份(6.7%)BRAF蛋白质表达阳性;3组间比较差异有统计学意义(x2 =61.098,P<0.05).TNM分期Ⅰ、Ⅱ、Ⅲ期食管癌患者的BRAF蛋白质阳性率分别为21.7%(5/23)、70.8%(17/24)和85.7%(24/28),有和无淋巴结转移患者的BRAF蛋白质阳性率分别为81.6%(31/38)和40.5%(15/37);BRAF蛋白质表达阳性与TNM分期和肿瘤淋巴结转移有关(x2 =23.136、13.313,P均<0.01),与患者性别、年龄和肿瘤分化程度无关(P均>0.05).结论 食管癌组织中BRAF基因第11外显子上有碱基插入情况,但未见突变发生.BRAF蛋白质在食管癌中呈高表达,与TNM分期和淋巴结转移情况有关,可作为判断食管癌恶性程度和患者预后的指标.%Objective To estimate the gene mutation and the protein expression of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) in esophageal cancer.Methods From February 2014 to September 2015,75 patients with esophageal cancer who received operation were enrolled.Tissues of cancer,adjacent to cancer and far from cancer were taken.The mutation and protein expression of BRAF were detected.The relationship between BRAF protein positive expression and clinical characteristics of patients with esophageal cancer was analyzed.The enumeration data

  13. Targeted Therapies in Non-Small Cell Lung Cancer—Beyond EGFR and ALK

    Directory of Open Access Journals (Sweden)

    Sacha I. Rothschild

    2015-05-01

    Full Text Available Systemic therapy for non-small cell lung cancer (NSCLC has undergone a dramatic paradigm shift over the past decade. Advances in our understanding of the underlying biology of NSCLC have revealed distinct molecular subtypes. A substantial proportion of NSCLC depends on oncogenic molecular aberrations (so-called “driver mutations” for their malignant phenotype. Personalized therapy encompasses the strategy of matching these subtypes with effective targeted therapies. EGFR mutations and ALK translocation are the most effectively targeted oncogenes in NSCLC. EGFR mutations and ALK gene rearrangements are successfully being targeted with specific tyrosine kinase inhibitors. The number of molecular subgroups of NSCLC continues to grow. The scope of this review is to discuss recent data on novel molecular targets as ROS1, BRAF, KRAS, HER2, c-MET, RET, PIK3CA, FGFR1 and DDR2. Thereby the review will focus on therapeutic strategies targeting these aberrations. Moreover, the emerging challenge of acquired resistance to initially effective therapies will be discussed.

  14. Oncogene activation in human benign tumors of the skin (keratoacanthomas): Is HRAS involved in differentiation as well as proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Corominas, M.; Kamino, Hideko; Leon, J.; Pellicer, A. (New York Univ. Medical Center, New York, NY (USA))

    1989-08-01

    In vitro DNA amplification followed by oligonucleotide mismatch hybridization was used to study the frequency of HRAS mutations in the benign self-regressing skin tumors keratoacanthomas and in squamous cell carcinomas. The authors used freshly obtained keratoacanthomas as well as Formalin-fixed paraffin-embedded tissues from both types of tumors. DNA from 50 samples of each tumor type was analyzed for activating mutations involving codons 12 and 61. A relatively high percentage (30%) of HRAS mutations was found in the keratoacanthomas compared with 13% in the squamous cell carcinomas. The most frequent mutation identified is the A{center dot}T-to-T{center dot}A transversion in the second position of codon 61. The present findings demonstrate the involvement of the HRAS oncogene in human benign tumors. Moreover, they indicate that an activated HRAS oncogene is not sufficient to maintain a neoplastic phenotype and argue against a role of HRAS in the progression of skin tumorigenesis.

  15. Oncogenes, protooncogenes, and tumor suppressor genes in acute myelogenous leukemia.

    Science.gov (United States)

    Hijiya, N; Gewirtz, A M

    1995-05-01

    In recent years, our understanding of normal human hematopoiesis has expanded greatly. We have increased our knowledge of regulatory growth factors, the receptors through which they act, and the secondary messengers involved in transducing the growth/differentiation signals from the cytoplasmic membrane to the nucleus. This knowledge has revealed potential mechanisms for inducing the neoplastic transformation of hematopoietic cells. This applies in particular to the role of viral oncogenes and cellular protooncogenes and, more recently, to the role of tumor suppressor genes. Protooncogenes are intimately involved in the processes of cell proliferation and differentiation. Therefore, any amplification, mutation, structural alteration, or change in transcriptional regulation of protooncogenes might lead to or be associated with induction of the malignant phenotype. Based on the importance of these genes in leukemogenesis and the maintenance of the malignant phenotype, it seems reasonable to hypothesize that targeted disruption of leukemogenic genes may be of therapeutic value.

  16. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  17. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation

    OpenAIRE

    Le Rolle, Anne-France; Chiu, Thang K; ZENG, ZHAOSHI; Shia, Jinru; Weiser, Martin R; Paty, Philip B.; Chiu, Vi K

    2016-01-01

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut ) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer i...

  18. Disulfiram Treatment Facilitates Phosphoinositide 3-Kinase Inhibition in Human Breast Cancer Cells In vitro and In vivo

    Science.gov (United States)

    Zhang, Haijun; Chen, Di; Ringler, Jonathan; Chen, Wei; Cui, Qiuzhi Cindy; Ethier, Stephen P.; Dou, Q. Ping; Wu, Guojun

    2013-01-01

    Frequent genetic alterations of the components in the phosphoinositide 3-kinase (PI3K)/PTEN/AKT signaling pathway contribute greatly to breast cancer initiation and progression, which makes targeting this signaling pathway a promising therapeutic strategy for breast cancer treatment. In this study, we showed that in the presence of copper (Cu), disulfiram (DSF), a clinically used antialcoholism drug, could potently inhibit breast cancer cell growth regardless of the PIK3CA status. Surprisingly, the treatment with a mixture of DSF and copper (DSF-Cu) led to the decreased expression of PTEN protein and the activation of AKT in a dose- and time-dependent manner in different cell lines with or without PIK3CA mutations. Treatment of breast cancer cell lines with a combination of DSF-Cu and LY294002, a pan-PI3K inhibitor, resulted in the significant inhibition of cell growth when compared with either drug alone. In addition, the combined treatment of DSF and LY294002 significantly inhibited the growth of the breast tumor xenograft in nude mice induced by MDA-MB-231 cells expressing mutant PIK3CA-H1047R and PIK3CA-E545K, whereas neither DSF nor LY294002 alone could significantly retard tumor growth. Finally, the observed in vivo inhibitory effects are found associated with aberrant signaling alterations and apoptosis-inducing activities in tumor samples. Thus, our finding shows for the first time that treatment of breast cancer with DSF results in a novel feedback mechanism that activates AKT signaling. Our study also suggests that the combination of DSF and a PI3K inhibitor may offer a new combinational treatment model for breast cancer, particularly for those with PIK3CA mutations. PMID:20424113

  19. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer

    DEFF Research Database (Denmark)

    Vallejo, Adrian; Perurena, Naiara; Guruceaga, Elisabet

    2017-01-01

    KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identifica...

  20. Targeting oncogenic KRAS in non-small cell lung cancer cells by phenformin inhibits growth and angiogenesis

    OpenAIRE

    2015-01-01

    Tumors require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors. Many potential oncogenic mutations have been identified in tumor angiogenesis. Somatic mutations in the small GTPase KRAS are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Biguanides, such as the diabetes therapeutics metformin and phenformin, have demonstrated anti-tumor activity both in vitro and...

  1. Targeted sequencing reveals TP53 as a potential diagnostic biomarker in the post-treatment surveillance of head and neck cancer.

    Science.gov (United States)

    van Ginkel, Joost H; de Leng, Wendy W J; de Bree, Remco; van Es, Robert J J; Willems, Stefan M

    2016-09-20

    Head and neck squamous cell carcinomas (HNSCC) form a large heterogeneous group of tumors and have a relatively poor outcome in advanced cases. Revealing the underlying genetic mutations in HNSCC facilitates the development of diagnostic biomarkers, which might lead to improved diagnosis and post treatment surveillance. We retrospectively analyzed mutational hotspots using targeted next-generation sequencing (NGS) of 239 HNSCC tumor samples in order to examine the mutational profile of HNSCC. Furthermore, we assessed prevalence, co-occurrence, and synonymy of gene mutations in (matched) tumor samples. TP53 was found mutated the most frequent with mutation rates of up to 83% in all tumors, compared to mutation rates of between 0 and 21% of CDKN2A, PIK3CA, HRAS, CDK4, FBXW7 and RB1. Mutational co-occurrence predominantly existed between TP53 and PIK3CA, TP53 and CDKN2A, and HRAS and PIK3CA. Mutational synonymy between primary tumor and associated metastasis and recurrence was present in respectively 88% and 89%. TP53 mutations were concordantly mutated in 95% of metastases and in 91% of recurrences. This indicates TP53 mutations to be highly prevalent and concordant in primary tumors and associated locoregional metastases and recurrences. In turn, this provides ground for further investigating the use of TP53 mutations as diagnostic biomarkers in HNSCC patients.

  2. Computational drugs repositioning identifies inhibitors of oncogenic PI3K/AKT/P70S6K-dependent pathways among FDA-approved compounds

    Science.gov (United States)

    Carrella, Diego; Manni, Isabella; Tumaini, Barbara; Dattilo, Rosanna; Papaccio, Federica; Mutarelli, Margherita; Sirci, Francesco; Amoreo, Carla A.; Mottolese, Marcella; Iezzi, Manuela; Ciolli, Laura; Aria, Valentina; Bosotti, Roberta; Isacchi, Antonella; Loreni, Fabrizio; Bardelli, Alberto; Avvedimento, Vittorio E.; di Bernardo, Diego; Cardone, Luca

    2016-01-01

    The discovery of inhibitors for oncogenic signalling pathways remains a key focus in modern oncology, based on personalized and targeted therapeutics. Computational drug repurposing via the analysis of FDA-approved drug network is becoming a very effective approach to identify therapeutic opportunities in cancer and other human diseases. Given that gene expression signatures can be associated with specific oncogenic mutations, we tested whether a “reverse” oncogene-specific signature might assist in the computational repositioning of inhibitors of oncogenic pathways. As a proof of principle, we focused on oncogenic PI3K-dependent signalling, a molecular pathway frequently driving cancer progression as well as raising resistance to anticancer-targeted therapies. We show that implementation of “reverse” oncogenic PI3K-dependent transcriptional signatures combined with interrogation of drug networks identified inhibitors of PI3K-dependent signalling among FDA-approved compounds. This led to repositioning of Niclosamide (Niclo) and Pyrvinium Pamoate (PP), two anthelmintic drugs, as inhibitors of oncogenic PI3K-dependent signalling. Niclo inhibited phosphorylation of P70S6K, while PP inhibited phosphorylation of AKT and P70S6K, which are downstream targets of PI3K. Anthelmintics inhibited oncogenic PI3K-dependent gene expression and showed a cytostatic effect in vitro and in mouse mammary gland. Lastly, PP inhibited the growth of breast cancer cells harbouring PI3K mutations. Our data indicate that drug repositioning by network analysis of oncogene-specific transcriptional signatures is an efficient strategy for identifying oncogenic pathway inhibitors among FDA-approved compounds. We propose that PP and Niclo should be further investigated as potential therapeutics for the treatment of tumors or diseases carrying the constitutive activation of the PI3K/P70S6K signalling axis. PMID:27542212

  3. Human genome: proto-oncogenes and proretroviruses.

    Science.gov (United States)

    Kisselev, L L; Chumakov, I M; Zabarovsky, E R; Prassolov, V S; Mett, V L; Berditchevsky, F B; Tret'yakov, L D

    1985-01-01

    A brief review of the studies undertaken at the Laboratory for Molecular Bases of Oncogenesis (Institute of Molecular Biology, Moscow) till middle of 1984 is presented. The human genome contains multiple dispersed nucleotide sequences related to the proto-oncogene mos and to proretroviral sequences in tight juxtaposition to each other. From sequencing appropriate cloned fragments of human DNA in phage and plasmid vectors it follows that one of these regions, NV-1, is a pseudogene of proto-mos with partial duplications and two Alu elements intervening its coding sequence, and the other, CL-1, seems to be also a mos-related gene with a deletion of the internal part of the structural gene. CL-1 is flanked by a proretroviral-like sequence including tRNAiMet binding site and U5 (part of the long terminal repeat). The proretroviral-like sequences are transcribed in 21-35S poly(A)+RNA abundant in normal and malignant human cells. Two hypotheses are proposed: endogenous retroviruses take part in amplification of at least some proto-oncogenes; proto-oncogenes are inactivated via insertion of movable genetic elements and conversion into pseudogenes. Potential oncogenicity of a normal human genome undergoes two controversial influences: it increases due to proto-oncogene amplification and decreases due to inactivation of some of them.

  4. RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Directory of Open Access Journals (Sweden)

    Singh Tej P

    2011-07-01

    Full Text Available Abstract Background The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site. Description We have developed the RAS Oncogene Database (RASOnD as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i browse the data (ii search any field through a simple or advance search interface and (iii perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD. Conclusions This database is a resource and search tool dedicated to Ras oncogenes. It has

  5. Activation of the LMO2 oncogene through a somatically acquired neomorphic promoter in T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Rahman, Sunniyat; Magnussen, Michael; León, Theresa E; Farah, Nadine; Li, Zhaodong; Abraham, Brian J; Alapi, Krisztina Z; Mitchell, Rachel J; Naughton, Tom; Fielding, Adele K; Pizzey, Arnold; Bustraan, Sophia; Allen, Christopher; Popa, Teodora; Pike-Overzet, Karin; Garcia-Perez, Laura; Gale, Rosemary E; Linch, David C; Staal, Frank J T; Young, Richard A; Look, A Thomas; Mansour, Marc R

    2017-03-07

    Somatic mutations within non-coding genomic regions that aberrantly activate oncogenes have remained poorly characterized. Here we describe recurrent activating intronic mutations of LMO2, a prominent oncogene in T-cell acute lymphoblastic leukemia (T-ALL). Heterozygous mutations were identified in PF-382 and DU.528 T-ALL cell lines, in addition to 3.7% (6/160) of pediatric and 5.5% (9/163) of adult T-ALL patient samples. The majority of indels harbour putative de novo MYB, ETS1 or RUNX1 consensus binding sites. Analysis of 5'-capped RNA transcripts in mutant cell lines identified the usage of an intermediate promoter site, with consequential monoallelic LMO2 overexpression. CRISPR/Cas9-mediated disruption of the mutant allele in PF-382 cells markedly downregulated LMO2 expression, establishing clear causality between the mutation and oncogene dysregulation. Furthermore, the spectrum of CRISPR/Cas9-derived mutations provide important insights into the interconnected contributions of functional transcription factor binding. Finally, these mutations occur in the same intron as retroviral integration sites in gene therapy induced T-ALL, suggesting that such events occur at preferential sites in the non-coding genome.

  6. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes.

    Science.gov (United States)

    Mitkevich, Vladimir A; Petrushanko, Irina Y; Spirin, Pavel V; Fedorova, Tatiana V; Kretova, Olga V; Tchurikov, Nickolai A; Prassolov, Vladimir S; Ilinskaya, Olga N; Makarov, Alexander A

    2011-12-01

    Some RNases selectively attack malignant cells, triggering an apoptotic response, and therefore are considered as alternative chemotherapeutic drugs. Here we studied the effects of Bacillus intermedius RNase (binase) on murine myeloid progenitor cells FDC-P1; transduced FDC-P1 cells ectopically expressing mutated human KIT N822K oncogene and/or human AML1-ETO oncogene; and human leukemia Kasumi-1 cells expressing both of these oncogenes. Expression of both KIT and AML1-ETO oncogenes makes FDC-P1 cells sensitive to the toxic effects of binase. Kasumi-1 cells were the most responsive to the toxic actions of binase among the cell lines used in this work with an IC50 value of 0.56 µM. Either blocking the functional activity of the KIT protein with imatinib or knocking-down oncogene expression using lentiviral vectors producing shRNA against AML1-ETO or KIT eliminated the sensitivity of Kasumi-1 cells to binase toxic action and promoted their survival, even in the absence of KIT-dependent proliferation and antiapoptotic pathways. Here we provide evidence that the cooperative effect of the expression of mutated KIT and AML1-ETO oncogenes is crucial for selective toxic action of binase on malignant cells. These findings can facilitate clinical applications of binase providing a useful screen based on the presence of the corresponding target oncogenes in malignant cells.

  7. Polymerase chain reaction-single strand conformational polymorphism analysis of rearranged during transfection proto-oncogene in Chinese familial hirschsprung's disease

    Institute of Scientific and Technical Information of China (English)

    Tao Guan; Ji-Cheng Li; Min-Ju Li; Jin-Fa Tou

    2005-01-01

    AIM: To investigate the relationship between mutations of rearranged during transfection (RET) proto-oncogene and Chinese patients with Hirschsprung's disease (HD), and to elucidate the genetic mechanism of familial HD patient at the molecular level.METHODS: Genomic DNA was extracted from venous blood of probands and their relatives in two genealogies.Polymerase chain reaction (PCR) products, which were amplified using specific primers (RET, exons 11, 13, 15and 17), were electrophoresed to analyze the single-strand conformational polymorphism (SSCP) patterns. The positive amplified products were sequenced. Forty-eight sporadic HD patients and 30 normal children were screened for mutations of RET proto-oncogene simultaneously.RESULTS: Three cases with HD in one family were found to have a G heterozygous insertion at nucleotide 18 974 in exon 13 of RET cDNA (18 974insG), which resulted in a frameshift mutation. In another family, a heterozygosity for T to G transition at nucleotide 18 888 in the same exon which resulted in a synonymous mutation of Leu at codon 745 was detected in the proband and his father. Eight RET mutations were confirmed in 48 sporadic HD patients.CONCLUSION: Mutations of RET proto-oncogene may play an important role in the pathogenesis of Chinese patients with HD. Detection of mutated RET proto-oncogene carriers may be used for genetic counseling of potential risk for HD in the affected families.

  8. Comprehensive molecular characterization of gastric adenocarcinoma

    Science.gov (United States)

    Bass, Adam J.; Thorsson, Vesteinn; Shmulevich, Ilya; Reynolds, Sheila M.; Miller, Michael; Bernard, Brady; Hinoue, Toshinori; Laird, Peter W.; Curtis, Christina; Shen, Hui; Weisenberger, Daniel J.; Schultz, Nikolaus; Shen, Ronglai; Weinhold, Nils; Kelsen, David P.; Bowlby, Reanne; Chu, Andy; Kasaian, Katayoon; Mungall, Andrew J.; Robertson, A. Gordon; Sipahimalani, Payal; Cherniack, Andrew; Getz, Gad; Liu, Yingchun; Noble, Michael S.; Pedamallu, Chandra; Sougnez, Carrie; Taylor-Weiner, Amaro; Akbani, Rehan; Lee, Ju-Seog; Liu, Wenbin; Mills, Gordon B.; Yang, Da; Zhang, Wei; Pantazi, Angeliki; Parfenov, Michael; Gulley, Margaret; Piazuelo, M. Blanca; Schneider, Barbara G.; Kim, Jihun; Boussioutas, Alex; Sheth, Margi; Demchok, John A.; Rabkin, Charles S.; Willis, Joseph E.; Ng, Sam; Garman, Katherine; Beer, David G.; Pennathur, Arjun; Raphael, Benjamin J.; Wu, Hsin-Ta; Odze, Robert; Kim, Hark K.; Bowen, Jay; Leraas, Kristen M.; Lichtenberg, Tara M.; Weaver, Stephanie; McLellan, Michael; Wiznerowicz, Maciej; Sakai, Ryo; Getz, Gad; Sougnez, Carrie; Lawrence, Michael S.; Cibulskis, Kristian; Lichtenstein, Lee; Fisher, Sheila; Gabriel, Stacey B.; Lander, Eric S.; Ding, Li; Niu, Beifang; Ally, Adrian; Balasundaram, Miruna; Birol, Inanc; Bowlby, Reanne; Brooks, Denise; Butterfield, Yaron S. N.; Carlsen, Rebecca; Chu, Andy; Chu, Justin; Chuah, Eric; Chun, Hye-Jung E.; Clarke, Amanda; Dhalla, Noreen; Guin, Ranabir; Holt, Robert A.; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Li, Haiyan A.; Lim, Emilia; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen L.; Nip, Ka Ming; Robertson, A. Gordon; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Beroukhim, Rameen; Carter, Scott L.; Cherniack, Andrew D.; Cho, Juok; Cibulskis, Kristian; DiCara, Daniel; Frazer, Scott; Fisher, Sheila; Gabriel, Stacey B.; Gehlenborg, Nils; Heiman, David I.; Jung, Joonil; Kim, Jaegil; Lander, Eric S.; Lawrence, Michael S.; Lichtenstein, Lee; Lin, Pei; Meyerson, Matthew; Ojesina, Akinyemi I.; Pedamallu, Chandra Sekhar; Saksena, Gordon; Schumacher, Steven E.; Sougnez, Carrie; Stojanov, Petar; Tabak, Barbara; Taylor-Weiner, Amaro; Voet, Doug; Rosenberg, Mara; Zack, Travis I.; Zhang, Hailei; Zou, Lihua; Protopopov, Alexei; Santoso, Netty; Parfenov, Michael; Lee, Semin; Zhang, Jianhua; Mahadeshwar, Harshad S.; Tang, Jiabin; Ren, Xiaojia; Seth, Sahil; Yang, Lixing; Xu, Andrew W.; Song, Xingzhi; Pantazi, Angeliki; Xi, Ruibin; Bristow, Christopher A.; Hadjipanayis, Angela; Seidman, Jonathan; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Akbani, Rehan; Ling, Shiyun; Liu, Wenbin; Rao, Arvind; Weinstein, John N.; Kim, Sang-Bae; Lee, Ju-Seog; Lu, Yiling; Mills, Gordon; Laird, Peter W.; Hinoue, Toshinori; Weisenberger, Daniel J.; Bootwalla, Moiz S.; Lai, Phillip H.; Shen, Hui; Triche, Timothy; Van Den Berg, David J.; Baylin, Stephen B.; Herman, James G.; Getz, Gad; Chin, Lynda; Liu, Yingchun; Murray, Bradley A.; Noble, Michael S.; Askoy, B. Arman; Ciriello, Giovanni; Dresdner, Gideon; Gao, Jianjiong; Gross, Benjamin; Jacobsen, Anders; Lee, William; Ramirez, Ricardo; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Sinha, Rileen; Sumer, S. Onur; Sun, Yichao; Weinhold, Nils; Thorsson, Vésteinn; Bernard, Brady; Iype, Lisa; Kramer, Roger W.; Kreisberg, Richard; Miller, Michael; Reynolds, Sheila M.; Rovira, Hector; Tasman, Natalie; Shmulevich, Ilya; Ng, Santa Cruz Sam; Haussler, David; Stuart, Josh M.; Akbani, Rehan; Ling, Shiyun; Liu, Wenbin; Rao, Arvind; Weinstein, John N.; Verhaak, Roeland G.W.; Mills, Gordon B.; Leiserson, Mark D. M.; Raphael, Benjamin J.; Wu, Hsin-Ta; Taylor, Barry S.; Black, Aaron D.; Bowen, Jay; Carney, Julie Ann; Gastier-Foster, Julie M.; Helsel, Carmen; Leraas, Kristen M.; Lichtenberg, Tara M.; McAllister, Cynthia; Ramirez, Nilsa C.; Tabler, Teresa R.; Wise, Lisa; Zmuda, Erik; Penny, Robert; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Curely, Erin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Shelton, Troy; Shelton, Candace; Sherman, Mark; Benz, Christopher; Lee, Jae-Hyuk; Fedosenko, Konstantin; Manikhas, Georgy; Potapova, Olga; Voronina, Olga; Belyaev, Smitry; Dolzhansky, Oleg; Rathmell, W. Kimryn; Brzezinski, Jakub; Ibbs, Matthew; Korski, Konstanty; Kycler, Witold; ŁaŸniak, Radoslaw; Leporowska, Ewa; Mackiewicz, Andrzej; Murawa, Dawid; Murawa, Pawel; Spychała, Arkadiusz; Suchorska, Wiktoria M.; Tatka, Honorata; Teresiak, Marek; Wiznerowicz, Maciej; Abdel-Misih, Raafat; Bennett, Joseph; Brown, Jennifer; Iacocca, Mary; Rabeno, Brenda; Kwon, Sun-Young; Penny, Robert; Gardner, Johanna; Kemkes, Ariane; Mallery, David; Morris, Scott; Shelton, Troy; Shelton, Candace; Curley, Erin; Alexopoulou, Iakovina; Engel, Jay; Bartlett, John; Albert, Monique; Park, Do-Youn; Dhir, Rajiv; Luketich, James; Landreneau, Rodney; Janjigian, Yelena Y.; Kelsen, David P.; Cho, Eunjung; Ladanyi, Marc; Tang, Laura; McCall, Shannon J.; Park, Young S.; Cheong, Jae-Ho; Ajani, Jaffer; Camargo, M. Constanza; Alonso, Shelley; Ayala, Brenda; Jensen, Mark A.; Pihl, Todd; Raman, Rohini; Walton, Jessica; Wan, Yunhu; Demchok, John A.; Eley, Greg; Mills Shaw, Kenna R.; Sheth, Margi; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Davidsen, Tanja; Hutter, Carolyn M.; Sofia, Heidi J.; Burton, Robert; Chudamani, Sudha; Liu, Jia

    2014-01-01

    Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein–Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also knownasPD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies. PMID:25079317

  9. Identification of recurrent SMO and BRAF mutations in ameloblastomas

    OpenAIRE

    2014-01-01

    Here we report the discovery of oncogenic mutations in the Hedgehog and mitogen-activated protein kinase (MAPK) pathways in over 80% of ameloblastomas, locally destructive odontogenic tumors of the jaw, by genomic analysis of archival material. Mutations in SMO (encoding Smoothened, SMO) are common in ameloblastomas of the maxilla, whereas BRAF mutations are predominant in tumors of the mandible. We show that a frequently occurring SMO alteration encoding p.Leu412Phe is an activating mutation...

  10. HUMAN PAPILLOMA VIRUS — ONCOGENIC VIRUS

    Directory of Open Access Journals (Sweden)

    A.N. Mayansky

    2010-01-01

    Full Text Available The lecture is devoted to oncogenic viruses, particularly human papilloma virus. Papilloma viral infection is found in all parts of the globe and highly contagious. In addition to exhaustive current data on classification, specifics of papilloma viruses composition and epidemiology, the author describes in great detail the malignization mechanisms of papilloma viruses pockets. Also, issues of diagnostics and specific prevention and treatment of diseases caused by this virus are illustrated. Key words: oncogenic viruses, papilloma viruses, prevention, vaccination. (Pediatric Pharmacology. – 2010; 7(4:48-55

  11. Septin mutations in human cancers

    Directory of Open Access Journals (Sweden)

    Elias T Spiliotis

    2016-11-01

    Full Text Available Septins are GTP-binding proteins that are evolutionarily and structurally related to the RAS oncogenes. Septin expression levels are altered in many cancers and new advances point to how abnormal septin expression may contribute to the progression of cancer. In contrast to the RAS GTPases, which are frequently mutated and actively promote tumorigenesis, little is known about the occurrence and role of septin mutations in human cancers. Here, we review septin missense mutations that are currently in the Catalog of Somatic Mutations in Cancer (COSMIC database. The majority of septin mutations occur in tumors of the large intestine, skin, endometrium and stomach. Over 25% of the annotated mutations in SEPT2, SEPT4 and SEPT9 belong to large intestine tumors. From all septins, SEPT9 and SEPT14 exhibit the highest mutation frequencies in skin, stomach and large intestine cancers. While septin mutations occur with frequencies lower than 3%, recurring mutations in several invariant and highly conserved amino acids are found across different septin paralogs and tumor types. Interestingly, a significant number of these mutations occur in the GTP-binding pocket and septin dimerization interfaces. Future studies may determine how these somatic mutations affect septin structure and function, whether they contribute to the progression of specific cancers and if they could serve as tumor-specific biomarkers.

  12. Oncogene v-jun modulates DNA replication.

    Science.gov (United States)

    Wasylyk, C; Schneikert, J; Wasylyk, B

    1990-07-01

    Cell transformation leads to alterations in both transcription and DNA replication. Activation of transcription by the expression of a number of transforming oncogenes is mediated by the transcription factor AP1 (Herrlich & Ponta, 1989; Imler & Wasylyk, 1989). AP1 is a composite transcription factor, consisting of members of the jun and fos gene-families. c-jun and c-fos are progenitors of oncogenes, suggestion that an important transcriptional event in cell transformation is altered activity of AP1, which may arise either indirectly by oncogene expression or directly by structural modification of AP1. We report here that the v-jun oncogene and its progenitor c-jun, as fusion proteins with the lex-A-repressor DNA binding domain, can activate DNA replication from the Polyoma virus (Py) origin of replication, linked to the lex-A operator. The transcription-activation region of v-jun is required for activation of replication. When excess v-jun is expressed in the cell, replication is inhibited or 'squelched'. These results suggest that one consequence of deregulated jun activity could be altered DNA replication and that there are similarities in the way v-jun activates replication and transcription.

  13. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    Science.gov (United States)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  14. The contribution of tumor and host tissue factor expression to oncogene-driven gliomagenesis.

    Science.gov (United States)

    Magnus, Nathalie; Meehan, Brian; Garnier, Delphine; Hashemi, Maryam; Montermini, Laura; Lee, Tae Hoon; Milsom, Chloe; Pawlinski, Rafal; Ohlfest, John; Anderson, Mark; Mackman, Nigel; Rak, Janusz

    2014-11-14

    Glioblastoma multiforme (GBM) is an aggressive form of glial brain tumors, associated with angiogenesis, thrombosis, and upregulation of tissue factor (TF), the key cellular trigger of coagulation and signaling. Since TF is upregulated by oncogenic mutations occurring in different subsets of human brain tumors we investigated whether TF contributes to tumourigenesis driven by oncogenic activation of EGFR (EGFRvIII) and RAS pathways in the brain. Here we show that TF expression correlates with poor prognosis in glioma, but not in GBM. In situ, the TF protein expression is heterogeneously expressed in adult and pediatric gliomas. GBM cells harboring EGFRvIII (U373vIII) grow aggressively as xenografts in SCID mice and their progression is delayed by administration of monoclonal antibodies blocking coagulant (CNTO 859) and signaling (10H10) effects of TF in vivo. Mice in which TF gene is disrupted in the neuroectodermal lineage exhibit delayed progression of spontaneous brain tumors driven by oncogenic N-ras and SV40 large T antigen (SV40LT) expressed under the control of sleeping beauty transposase. Reduced host TF levels in low-TF/SCID hypomorphic mice mitigated growth of glioma subcutaneously but not in the brain. Thus, we suggest that tumor-associated TF may serve as therapeutic target in the context of oncogene-driven disease progression in a subset of glioma.

  15. Src-like-adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling.

    Science.gov (United States)

    Kazi, Julhash U; Agarwal, Shruti; Sun, Jianmin; Bracco, Enrico; Rönnstrand, Lars

    2014-02-01

    The Src-like-adaptor protein (SLAP) is an adaptor protein sharing considerable structural homology with Src. SLAP is expressed in a variety of cells and regulates receptor tyrosine kinase signaling by direct association. In this report, we show that SLAP associates with both wild-type and oncogenic c-Kit (c-Kit-D816V). The association involves the SLAP SH2 domain and receptor phosphotyrosine residues different from those mediating Src interaction. Association of SLAP triggers c-Kit ubiquitylation which, in turn, is followed by receptor degradation. Although SLAP depletion potentiates c-Kit downstream signaling by stabilizing the receptor, it remains non-functional in c-Kit-D816V signaling. Ligand-stimulated c-Kit or c-Kit-D816V did not alter membrane localization of SLAP. Interestingly oncogenic c-Kit-D816V, but not wild-type c-Kit, phosphorylates SLAP on residues Y120, Y258 and Y273. Physical interaction between c-Kit-D816V and SLAP is mandatory for the phosphorylation to take place. Although tyrosine-phosphorylated SLAP does not affect c-Kit-D816V signaling, mutation of these tyrosine sites to phenylalanine can restore SLAP activity. Taken together the data demonstrate that SLAP negatively regulates wild-type c-Kit signaling, but not its oncogenic counterpart, indicating a possible mechanism by which the oncogenic c-Kit bypasses the normal cellular negative feedback control.

  16. Cell fate decisions in malignant hematopoiesis: leukemia phenotype is determined by distinct functional domains of the MN1 oncogene.

    Directory of Open Access Journals (Sweden)

    Courteney K Lai

    Full Text Available Extensive molecular profiling of leukemias and preleukemic diseases has revealed that distinct clinical entities, like acute myeloid (AML and T-lymphoblastic leukemia (T-ALL, share similar pathogenetic mutations. It is not well understood how the cell of origin, accompanying mutations, extracellular signals or structural differences in a mutated gene determine the phenotypic identity of leukemias. We dissected the functional aspects of different protein regions of the MN1 oncogene and their effect on the leukemic phenotype, building on the ability of MN1 to induce leukemia without accompanying mutations. We found that the most C-terminal region of MN1 was required to block myeloid differentiation at an early stage, and deletion of an extended C-terminal region resulted in loss of myeloid identity and cell differentiation along the T-cell lineage in vivo. Megakaryocytic/erythroid lineage differentiation was blocked by the N-terminal region. In addition, the N-terminus was required for proliferation and leukemogenesis in vitro and in vivo through upregulation of HoxA9, HoxA10 and Meis2. Our results provide evidence that a single oncogene can modulate cellular identity of leukemic cells based on its active gene regions. It is therefore likely that different mutations in the same oncogene may impact cell fate decisions and phenotypic appearance of malignant diseases.

  17. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity.

    Science.gov (United States)

    Riemer, P; Sreekumar, A; Reinke, S; Rad, R; Schäfer, R; Sers, C; Bläker, H; Herrmann, B G; Morkel, M

    2015-06-11

    Colon cancer cells frequently carry mutations that activate the β-catenin and mitogen-activated protein kinase (MAPK) signaling cascades. Yet how oncogenic alterations interact to control cellular hierarchies during tumor initiation and progression is largely unknown. We found that oncogenic BRAF modulates gene expression associated with cell differentiation in colon cancer cells. We therefore engineered a mouse with an inducible oncogenic BRAF transgene, and analyzed BRAF effects on cellular hierarchies in the intestinal epithelium in vivo and in primary organotypic culture. We demonstrate that transgenic expression of oncogenic BRAF in the mouse strongly activated MAPK signal transduction, resulted in the rapid development of generalized serrated dysplasia, but unexpectedly also induced depletion of the intestinal stem cell (ISC) pool. Histological and gene expression analyses indicate that ISCs collectively converted to short-lived progenitor cells after BRAF activation. As Wnt/β-catenin signals encourage ISC identity, we asked whether β-catenin activity could counteract oncogenic BRAF. Indeed, we found that intestinal organoids could be partially protected from deleterious oncogenic BRAF effects by Wnt3a or by small-molecule inhibition of GSK3β. Similarly, transgenic expression of stabilized β-catenin in addition to oncogenic BRAF partially prevented loss of stem cells in the mouse intestine. We also used BRAF(V637E) knock-in mice to follow changes in the stem cell pool during serrated tumor progression and found ISC marker expression reduced in serrated hyperplasia forming after BRAF activation, but intensified in progressive dysplastic foci characterized by additional mutations that activate the Wnt/β-catenin pathway. Our study suggests that oncogenic alterations activating the MAPK and Wnt/β-catenin pathways must be consecutively and coordinately selected to assure stem cell maintenance during colon cancer initiation and progression. Notably, loss of

  18. Risk profile of the RET A883F germline mutation

    DEFF Research Database (Denmark)

    Mathiesen, Jes Sloth; Habra, Mouhammed Amir; Bassett, John Howard Duncan

    2017-01-01

    Context: The A883F germline mutation of the REarranged during Transfection proto-oncogene causes multiple endocrine neoplasia 2B. In the revised American Thyroid Association (ATA) guidelines for the management of medullary thyroid carcinoma (MTC) the A883F mutation has been reclassified from...

  19. Use of multivariate analysis to suggest a new molecular classification of colorectal cancer

    Science.gov (United States)

    Domingo, Enric; Ramamoorthy, Rajarajan; Oukrif, Dahmane; Rosmarin, Daniel; Presz, Michal; Wang, Haitao; Pulker, Hannah; Lockstone, Helen; Hveem, Tarjei; Cranston, Treena; Danielsen, Havard; Novelli, Marco; Davidson, Brian; Xu, Zheng-Zhou; Molloy, Peter; Johnstone, Elaine; Holmes, Christopher; Midgley, Rachel; Kerr, David; Sieber, Oliver; Tomlinson, Ian

    2013-01-01

    Abstract Molecular classification of colorectal cancer (CRC) is currently based on microsatellite instability (MSI), KRAS or BRAF mutation and, occasionally, chromosomal instability (CIN). Whilst useful, these categories may not fully represent the underlying molecular subgroups. We screened 906 stage II/III CRCs from the VICTOR clinical trial for somatic mutations. Multivariate analyses (logistic regression, clustering, Bayesian networks) identified the primary molecular associations. Positive associations occurred between: CIN and TP53 mutation; MSI and BRAF mutation; and KRAS and PIK3CA mutations. Negative associations occurred between: MSI and CIN; MSI and NRAS mutation; and KRAS mutation, and each of NRAS, TP53 and BRAF mutations. Some complex relationships were elucidated: KRAS and TP53 mutations had both a direct negative association and a weaker, confounding, positive association via TP53–CIN–MSI–BRAF–KRAS. Our results suggested a new molecular classification of CRCs: (1) MSI+ and/or BRAF-mutant; (2) CIN+ and/or TP53– mutant, with wild-type KRAS and PIK3CA; (3) KRAS- and/or PIK3CA-mutant, CIN+, TP53-wild-type; (4) KRAS– and/or PIK3CA-mutant, CIN–, TP53-wild-type; (5) NRAS-mutant; (6) no mutations; (7) others. As expected, group 1 cancers were mostly proximal and poorly differentiated, usually occurring in women. Unexpectedly, two different types of CIN+ CRC were found: group 2 cancers were usually distal and occurred in men, whereas group 3 showed neither of these associations but were of higher stage. CIN+ cancers have conventionally been associated with all three of these variables, because they have been tested en masse. Our classification also showed potentially improved prognostic capabilities, with group 3, and possibly group 1, independently predicting disease-free survival. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:23165447

  20. Molecular profiling of patients with colorectal cancer and matched targeted therapy in phase I clinical trials.

    Science.gov (United States)

    Dienstmann, Rodrigo; Serpico, Danila; Rodon, Jordi; Saura, Cristina; Macarulla, Teresa; Elez, Elena; Alsina, Maria; Capdevila, Jaume; Perez-Garcia, Jose; Sánchez-Ollé, Gessamí; Aura, Claudia; Prudkin, Ludmila; Landolfi, Stefania; Hernández-Losa, Javier; Vivancos, Ana; Tabernero, Josep

    2012-09-01

    Clinical experience increasingly suggests that molecular prescreening and biomarker enrichment strategies in phase I trials with targeted therapies will improve the outcomes of patients with cancer. In keeping with the exigencies of a personalized oncology program, tumors from patients with advanced chemorefractory colorectal cancer were analyzed for specific aberrations (KRAS/BRAF/PIK3CA mutations, PTEN and pMET expression). Patients were subsequently offered phase I trials with matched targeted agents (MTA) directed at the identified anomalies. During 2010 and 2011, tumor molecular analysis was conducted in 254 patients: KRAS mutations (80 of 254, 31.5%), BRAF mutations (24 of 196, 12.2%), PIK3CA mutations (15 of 114, 13.2%), KRAS and PIK3CA mutations (9 of 114, 7.9%), low PTEN expression (97 of 183, 53.0%), and high pMET expression (38 of 64, 59.4%). In total, 68 patients received 82 different MTAs: phosphoinositide 3-kinase (PI3K) pathway inhibitor (if PIK3CA mutation, n = 10; or low PTEN, n = 32), PI3K pathway inhibitor plus MEK inhibitor (if KRAS mutation, n = 10; or BRAF mutation, n = 1), second-generation anti-EGF receptor monoclonal antibodies (if wild-type KRAS, n = 11), anti-hepatocyte growth factor monoclonal antibody (if high pMET, n = 10), mTOR inhibitor plus anti-insulin-like growth factor-1 receptor monoclonal antibody (if low PTEN, n = 5), and BRAF inhibitor (if BRAF mutation, n = 3). Median time-to-treatment failure on MTA was 7.9 versus 16.3 weeks for their prior systemic antitumor therapy (P 16 weeks in 10 cases (12.2%). These results suggest that matching chemorefractory patients with colorectal cancer with targeted agents in phase I trials based on the current molecular profile does not confer a significant clinical benefit.

  1. Characterization of ERAS, a putative novel human oncogene, in skin and breast

    Energy Technology Data Exchange (ETDEWEB)

    Peña Avalos, B.L. de la

    2014-07-01

    Most human tumors have mutations in genes of the RAS small GTPase protein family. RAS works as a molecular switch for signaling pathways that modulate many aspects of cell behavior, including proliferation, differentiation, motility and death. Oncogenic mutations in RAS prevent GTP hydrolysis, locking RAS in a permanently active state, being the most common mutations in HRAS, KRAS and NRAS. The human RAS family consists of at least 36 different genes, many of which have been scarcely studied. One of these relatively unknown genes is ERAS (ES cell-expressed RAS), which is a constitutively active RAS protein, localized in chromosome X and expressed only in embryonic cells, being undetectable in adult tissues. New high throughput technologies have made it possible to screen complete cancer genomes for identification of mutations associated to cancer. Using the Sleeping Beauty (SB) transposon system, ERAS was identified as a putative novel oncogene in non-melanoma skin and breast cancers. The major aim of this project is to determine the general characteristics of ERAS as a putative novel human oncogene in skin and breast cells. Forced expression of ERAS results in drastic changes in cell shape, proliferation and motility. When ERAS is overexpressed in skin and breast human cells it is mainly localized in the cytoplasmic membrane. ERAS activates the phosphatidylinositol-3-OH kinase (PI3K) pathway but not the mitogen-activated protein kinase (MAPK) pathway. ERAS-expressing cells suffer spontaneous morphologic and phenotypic EMT-like changes, including cytoskeleton reorganization, vimentin and N-cadherin up-regulation and down-regulation of E-cadherin, which can be associated with increased malignancy, and invasive and metastatic potential. Our results suggest that inappropriate expression of ERAS lead to transformation of human cells. (Author)

  2. Diet, lifestyle and risk of K-ras mutation-positive and -negative colorectal adenomas.

    NARCIS (Netherlands)

    Wark, P.A.; Kuil, W. van der; Ploemacher, J.; Muijen, G.N.P. van; Mulder, C.J.J.; Weijenberg, M.P.; Kok, F.J.; Kampman, E.

    2006-01-01

    K-ras mutation-positive (K-ras+) and -negative (K-ras-) colorectal adenomas may differ clinically and pathologically. As environmental compounds may cause mutations in the growth-related K-ras oncogene or affect clonal selection depending on mutational status, we evaluated whether the aetiology of K

  3. Diet, Lifestyle and risk of K-ras mutation-positive and -negative colorectal adenomas

    NARCIS (Netherlands)

    Wark, P.A.; Kuil, van der W.; Ploemacher, J.; Muijen, van G.N.P.; Mulder, Ch.J.J.; Weijenberg, M.P.; Kok, F.J.; Kampman, E.

    2006-01-01

    K-ras mutation-positive (K-ras+) and -negative (K-ras-) colorectal adenomas may differ clinically and pathologically. As environmental compounds may cause mutations in the growth-related K-ras oncogene or affect clonal selection depending on mutational status, we evaluated whether the aetiology of K

  4. B-Raf mutation: a key player in molecular biology of cancer.

    Science.gov (United States)

    Rahman, M A; Salajegheh, A; Smith, R A; Lam, A K-Y

    2013-12-01

    B-Raf is one of the more commonly mutated proto-oncogenes implicated in the development of cancers. In this review, we consider the mechanisms and clinical impacts of B-Raf mutations in cancer and discuss the implications for the patient in melanoma, thyroid cancer and colorectal cancer, where B-Raf mutations are particularly common.

  5. Molecular Subgroup Analysis of Clinical Outcomes in a Phase 3 Study of Gemcitabine and Oxaliplatin with or without Erlotinib in Advanced Biliary Tract Cancer

    Directory of Open Access Journals (Sweden)

    Seung Tae Kim

    2015-02-01

    Full Text Available BACKGROUND: We previously reported that the addition of erlotinib to gemcitabine and oxaliplatin (GEMOX resulted in greater antitumor activity and might be a treatment option for patients with biliary tract cancers (BTCs. Molecular subgroup analysis of treatment outcomes in patients who had specimens available for analysis was undertaken. METHODS: Epidermal growth factor receptor (EGFR, KRAS, and PIK3CA mutations were evaluated using peptide nucleic acid–locked nucleic acid polymerase chain reaction clamp reactions. Survival and response rates (RRs were analyzed according to the mutational status. Sixty-four patients (48.1% were available for mutational analysis in the chemotherapy alone group and 61 (45.1% in the chemotherapy plus erlotinib group. RESULTS: 1.6% (2/116 harbored an EGFR mutation (2 patients; exon 20, 9.6% (12/121 harbored a KRAS mutation (12 patients; exon 2, and 9.6% (12/118 harbored a PIK3CA mutation (10 patients, exon 9 and 2 patients, exon 20. The addition of erlotinib to GEMOX in patients with KRAS wild-type disease (n = 109 resulted in significant improvements in overall response compared with GEMOX alone (30.2% vs 12.5%, P = .024. In 95 patients with both wild-type KRAS and PIK3CA, there was evidence of a benefit associated with the addition of erlotinib to GEMOX with respect to RR as compared with GEMOX alone (P = .04. CONCLUSION: This study demonstrates that KRAS mutational status might be considered a predictive biomarker for the response to erlotinib in BTCs. Additionally, the mutation status of PIK3CA may be a determinant for adding erlotinib to chemotherapy in KRAS wild-type BTCs.

  6. Oncogenic KRAS sensitizes premalignant, but not malignant cells, to Noxa-dependent apoptosis through the activation of the MEK/ERK pathway.

    Science.gov (United States)

    Conti, Annalisa; Majorini, Maria Teresa; Elliott, Richard; Ashworth, Alan; Lord, Christopher J; Cancelliere, Carlotta; Bardelli, Alberto; Seneci, Pierfausto; Walczak, Henning; Delia, Domenico; Lecis, Daniele

    2015-05-10

    KRAS is mutated in about 20-25% of all human cancers and especially in pancreatic, lung and colorectal tumors. Oncogenic KRAS stimulates several pro-survival pathways, but it also triggers the trans-activation of pro-apoptotic genes. In our work, we show that G13D mutations of KRAS activate the MAPK pathway, and ERK2, but not ERK1, up-regulates Noxa basal levels. Accordingly, premalignant epithelial cells are sensitized to various cytotoxic compounds in a Noxa-dependent manner. In contrast to these findings, colorectal cancer cell sensitivity to treatment is independent of KRAS status and Noxa levels are not up-regulated in the presence of mutated KRAS despite the fact that ERK2 still promotes Noxa expression. We therefore speculated that other survival pathways are counteracting the pro-apoptotic effect of mutated KRAS and found that the inhibition of AKT restores sensitivity to treatment, especially in presence of oncogenic KRAS. In conclusion, our work suggests that the pharmacological inhibition of the pathways triggered by mutated KRAS could also switch off its oncogene-activated pro-apoptotic stimulation. On the contrary, the combination of chemotherapy to inhibitors of specific pro-survival pathways, such as the one controlled by AKT, could enhance treatment efficacy by exploiting the pro-death stimulation derived by oncogene activation.

  7. Radiosensitivity of tumor cells. Oncogenes and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Peltenburg, L. T. C. [Leiden Univ., Leiden (Netherlands). Dept. of Clinical Oncology

    2000-12-01

    The success of treatment of cancer patients by radiotherapy largely depends on tumor radiosensitivity. Several molecular factors that determine the sensitivity of tumor cells to ionizing radiation have been identified during the last couple of years. Some of these factors are known as oncogenes and tumor suppressor genes. This review focuses on the influence of some of these molecular factors on a major determinant of radiosensitivity: i. e. programmed cell death or apoptosis. The crucial molecular step in ionizing radiation-induced apoptosis is the release of mitochondrial cytochrome c into the cell's cytosol. The ways the tumor suppressor protein p53, as well as the oncogenes ras and raf, c-myc and Bcl-2 can influence this process at different stages are presented. As will be discussed, the result of activation of an oncoprotein on tumor radiosensitivity depends on its mechanism of action and on the presence of other (oncogenic) factors, since complex interactions among many molecular factors determine the delicate balance between cell proliferation and cell death. The ongoing identification and characterization of factors influencing apoptosis will eventually make it possible to predict tumor radiosensitivity and thereby improve cancer treatment.

  8. Next generation sequencing identifies ‘interactome’ signatures in relapsed and refractory metastatic colorectal cancer

    Science.gov (United States)

    Cooke, Laurence; Mahadevan, Daruka

    2017-01-01

    Background In the management of metastatic colorectal cancer (mCRC), KRAS, NRAS and BRAF mutational status individualizes therapeutic options and identify a cohort of patients (pts) with an aggressive clinical course. We hypothesized that relapsed and refractory mCRC pts develop unique mutational signatures that may guide therapy, predict for a response and highlight key signaling pathways important for clinical decision making. Methods Relapsed and refractory mCRC pts (N=32) were molecularly profiled utilizing commercially available next generation sequencing (NGS) platforms. Web-based bioinformatics tools (Reactome/Enrichr) were utilized to elucidate mutational profile linked pathways-networks that have the potential to guide therapy. Results Pts had progressed on fluoropyrimidines, oxaliplatin, irinotecan, bevacizumab, cetuximab and/or panitumumab. Most common histology was adenocarcinoma (colon N=29; rectal N=3). Of the mutations TP53 was the most common, followed by APC, KRAS, PIK3CA, BRAF, SMAD4, SPTA1, FAT1, PDGFRA, ATM, ROS1, ALK, CDKN2A, FBXW7, TGFBR2, NOTCH1 and HER3. Pts had on average had ≥5 unique mutations. The most frequent activated signaling pathways were: HER2, fibroblast growth factor receptor (FGFR), p38 through BRAF-MEK cascade via RIT and RIN, ARMS-mediated activation of MAPK cascade, and VEGFR2. Conclusions Dominant driver oncogene mutations do not always equate to oncogenic dependence, hence understanding pathogenic ‘interactome(s)’ in individual pts is key to both clinically relevant targets and in choosing the next best therapy. Mutational signatures derived from corresponding ‘pathway-networks’ represent a meaningful tool to (I) evaluate functional investigation in the laboratory; (II) predict response to drug therapy; and (III) guide rational drug combinations in relapsed and refractory mCRC pts. PMID:28280605

  9. Blocking of p53-Snail Binding, Promoted by Oncogenic K-Ras, Recovers p53 Expression and function

    Directory of Open Access Journals (Sweden)

    Sun-Hye Lee

    2009-01-01

    Full Text Available Differentially from other kinds of Ras, oncogenic K-Ras, which is mutated approximately 30% of human cancer, does not induce apoptosis and senescence. Here, we provide the evidence that oncogenic K-Ras abrogates p53 function and expression through induction of Ataxia telangiectasia-mutated and Rad3-related mediated Snail stabilization. Snail directly binds to DNA binding domain of p53 and diminishes the tumor-suppressive function of p53. Thus, elimination of Snail through si-RNA can induce p53 in K-Ras-mutated cells, whereas Snail and mutant K-Ras can suppress p53 in regardless of K-Ras status. Chemicals, isolated from inhibitor screening of p53-Snail binding, can block the Snail-mediated p53 suppression and enhance the expression of p53 as well as the transcriptional activity of p53 in an oncogenic K-Ras-dependent manner. Among the chemicals, two are very similar in structure. These results can answer why K-Ras can coexist with wild type p53 and propose the Snail-p53 binding as the new therapeutic target for K-Ras-mutated cancers including pancreatic, lung, and colon cancers.

  10. The inositide signaling pathway as a target for treating gastric cancer and colorectal cancer

    Directory of Open Access Journals (Sweden)

    HongJun eKim

    2016-05-01

    Full Text Available Gastric cancer and colorectal cancer are the leading cause of cancer mortality and have a dismal prognosis. The introduction of biological agents to treat these cancers has resulted in improved outcomes, and combination chemotherapy with targeted agents and conventional chemotherapeutic agents is regarded as standard therapy. Additional newly clarified mechanisms of oncogenesis and resistance to targeted agents require the development of new biologic agents. Aberrantly activation of the inositide signaling pathway by a loss of function PTEN mutation or gain of function mutation/amplification of PIK3CA is an oncogenic mechanism in gastric cancer and colorectal cancer. Clinical trials with biologic agents that target the inositide signaling pathway are being performed to further improve treatment outcomes of patients with advanced gastric cancer and metastatic colorectal cancer (CRC. In this review we summarize the inositide signaling pathway and introduce targeted agents that inhibit abnormal activation of this signaling pathway and clinical trials currently being performed in patients with advanced or metastatic gastric cancer and metastatic CRC using molecular target agents.

  11. Oncogenic KRAS triggers MAPK-dependent errors in mitosis and MYC-dependent sensitivity to anti-mitotic agents.

    Science.gov (United States)

    Perera, David; Venkitaraman, Ashok R

    2016-07-14

    Oncogenic KRAS induces cell proliferation and transformation, but little is known about its effects on cell division. Functional genetic screens have recently revealed that cancer cell lines expressing oncogenic KRAS are sensitive to interference with mitosis, but neither the mechanism nor the uniformity of anti-mitotic drug sensitivity connected with mutant KRAS expression are yet clear. Here, we report that acute expression of oncogenic KRAS in HeLa cells induces mitotic delay and defects in chromosome segregation through mitogen-activated protein kinase (MAPK) pathway activation and de-regulated expression of several mitosis-related genes. These anomalies are accompanied by increased sensitivity to anti-mitotic agents, a phenotype dependent on the transcription factor MYC and its downstream target anti-apoptotic protein BCL-XL. Unexpectedly, we find no correlation between KRAS mutational status or MYC expression levels and anti-mitotic drug sensitivity when surveying a large database of anti-cancer drug responses. However, we report that the co-existence of KRAS mutations and high MYC expression predicts anti-mitotic drug sensitivity. Our findings reveal a novel function of oncogenic KRAS in regulating accurate mitotic progression and suggest new avenues to therapeutically target KRAS-mutant tumours and stratify patients in ongoing clinical trials of anti-mitotic drugs.

  12. The ret/ptc1 oncogene is activated in familial adenomatous polyposis-associated thyroid papillary carcinomas.

    Science.gov (United States)

    Cetta, F; Chiappetta, G; Melillo, R M; Petracci, M; Montalto, G; Santoro, M; Fusco, A

    1998-03-01

    Familial adenomatous polyposis (FAP) is caused by germ-line mutations of the apc gene, and it is associated with an increased risk of developing papillary thyroid carcinomas. We have previously reported that a significant fraction of sporadic human papillary thyroid carcinomas is characterized by gene rearrangements affecting the ret protooncogene. These rearrangements generate chimeric transforming oncogenes designated ret/ptc. By a combined immunohistochemical and RT-PCR approach, we analyzed, for ret/ptc oncogene activation, papillary thyroid carcinomas occurred in two FAP kindreds, both showing typical apc gene mutations. Kindred 1 had seven members affected by FAP, and among these, three patients showed papillary thyroid carcinomas. Kindred 2 had two patients, mother and daughter, affected by colonic polyposis; the 20-yr-old daughter showed also a papillary carcinoma. Here we report that ret/ptc1 oncogene was activated in two of the three papillary carcinomas of FAP kindred 1 and in the papillary carcinoma of FAP kindred 2. These findings document that loss of function of apc coexists with gain of function of ret in some papillary thyroid carcinomas, suggesting that ret/ptc1 oncogene activation could be a progression step in the development of FAP-associated thyroid tumors.

  13. [Clinical relevance of the K-ras oncogene in colorectal cancer: experience in a Mexican population].

    Science.gov (United States)

    Cabrera-Mendoza, F; Gainza-Lagunes, S; Castañeda-Andrade, I; Castro-Zárate, A

    2014-01-01

    Colorectal cancer is frequent in the developed countries, with a cancer-specific mortality rate of 33%. Different biomarkers are associated with overall survival and the prediction of monoclonal treatment effectiveness. The presence of mutations in the K-ras oncogene alters the response to target therapy with cetuximab and could be an independent prognostic factor. To analyze the difference in survival between patients with mutated K-ras and those with K-ras wild-type status. Thirty-one clinical records were retrospectively analyzed of patients presenting with colorectal cancer that underwent K-ras sequencing through real-time polymerase chain reaction within the time frame of 2009 to 2012 at the Hospital de Alta Especialidad de Veracruz of the Instituto para la Salud y Seguridad Social de los Trabajadores del Estado (HAEV-ISSSTE). Survival analysis for patients with and without K-ras mutation was performed using the Kaplan Meier method. Contrast of covariates was performed using logarithmic transformations. No statistically significant difference was found in relation to survival in the patients with mutated K-ras vs. those with K-ras wild-type (P=.416), nor were significant differences found when analyzing the covariants and survival in the patients with mutated K-ras: ECOG scale (P=.221); age (less than, equal to or greater than 65years, P=.441); clinical stage according to the AJCC (P=.057), and primary lesion site (P=.614). No relation was found between the K-ras oncogene mutation and reduced survival, in contrast to what has been established in the international medical literature. Further studies that include both a larger number of patients and those receiving monoclonal treatment, need to be conducted. There were only 5 patients in the present study that received cetuximab, resulting in a misleading analysis. Copyright © 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  14. Distinct effects of alcohol consumption and smoking on genetic alterations in head and neck carcinoma.

    Science.gov (United States)

    Urashima, Mitsuyoshi; Hama, Takanori; Suda, Toshihito; Suzuki, Yutaka; Ikegami, Masahiro; Sakanashi, Chikako; Akutsu, Taisuke; Amagaya, Suguru; Horiuchi, Kazuhumi; Imai, Yu; Mezawa, Hidetoshi; Noya, Miki; Nakashima, Akio; Mafune, Aki; Kato, Takakuni; Kojima, Hiromi

    2013-01-01

    Tobacco and alcohol consumption are risk factors for head and neck squamous cell carcinoma (HNSCC). Recently, whole-exome sequencing clarified that smoking increased TP53 and other mutations in HNSCC; however, the effects of alcohol consumption on these genetic alterations remain unknown. We explored the association between alcohol consumption and somatic copy-number alterations (SCNAs) across the whole genome in human papillomavirus (HPV)-negative HNSCCs, and compared with the effects of smoking on genetic alterations. SCNA and TP53 mutations in tumor samples were examined by high-resolution comparative genomic hybridization microarray 180K and by direct sequencing, respectively, and statistically analyzed for associations with alcohol consumption and smoking during the 20 years preceding diagnosis of HNSCC. Probes with a corrected p-value (=q-value) less than 0.05 and fold change greater than 1.2 or less than -1.2 were considered statistically significant. A total of 248 patients with HNSCC were enrolled. In the HPV-negative patients (n=221), heavy alcohol consumption was significantly associated with SCNAs of oncogenes/oncosuppressors that were previously reported to occur frequently in HNSCCs: CDKN2A (q=0.005), FHIT (q=0.005), 11q13 region including CCND1, FADD and CTTN (q=0.005), ERBB2 (HER2) (q=0.009), 3q25-qter including CCNL1, TP63, DCUN1D1 and PIK3CA (q=0.014), and CSMD1 (q=0.019). But, TP53 mutations were not affected. In contrast, smoking was associated with increased risk of TP53 mutations, but did not induce any significant SCNAs of oncogenes/oncosuppressors. These results suggest that both alcohol consumption and smoking had distinct effects on genetic alterations in HNSCCs. Heavy alcohol consumption may trigger previously known and unknown SCNAs, but may not induce TP53 mutation. In contrast, smoking may induce TP53 mutation, but may not trigger any SCNAs.

  15. Activated leukemic oncogenes AML1-ETO and c-kit: role in development of acute myeloid leukemia and current approaches for their inhibition.

    Science.gov (United States)

    Rulina, A V; Spirin, P V; Prassolov, V S

    2010-12-01

    Acute myeloid leukemia (AML) is a malignant blood disease caused by different mutations that enhance the proliferative activity and survival of blood cells and affect their differentiation and apoptosis. The most frequent disorders in AML are translocations between chromosomes 21 and 8 leading to production of a chimeric oncogene, AML1-ETO, and hyperexpression of the receptor tyrosine kinase KIT. Mutations in these genes often occur jointly. The presence in cells of two activated oncogenes is likely to trigger their malignization. The current approaches for treatment of oncologic diseases (bone marrow transplantation, radiotherapy, and chemotherapy) have significant shortcomings, and thus many laboratories are intensively developing new approaches against leukemias. Inhibiting expression of activated leukemic oncogenes based on the principle of RNA interference seems to be a promising approach in this field.

  16. Impact of RET proto-oncogene analysis on the clinical management of multiple endocrine neoplasia type 2

    Directory of Open Access Journals (Sweden)

    Toledo Sergio Pereira de Almeida

    2006-01-01

    Full Text Available Multiple endocrine neoplasia type 2 (MEN2 is an autosomal dominant disease characterized by the presence of medullary thyroid carcinoma, primary hyperparathyroidism, and pheochromocytoma. Multiple endocrine neoplasia type 2 is still an underdiagnosed, or late-diagnosed condition in many areas of the world. Since 1993, when the first missense RET proto-oncogene (RET mutations were reported in MEN2, up to 46 different RET-causing disease mutations have been described. Since a strong genotype-phenotype correlation exists for MEN2, the detection of RET mutations has produced a major impact in early recognition and treatment of MTC and MEN2. Presently, RET mutation analysis should be performed for all MEN2 cases and their at-risk familial relatives. Further, prophylactic total thyroidectomy is indicated in all cases harboring activating gametic RET mutations. In most RET mutation carriers, prophylactic total thyroidectomy is indicated at ages as early as a few months to 4 years of age, promoting longer survival and improvement of quality of life or even definitive cure. We discuss the large impact of RET proto-oncogene analysis on the clinical management of MEN2 and the role of early RET molecular DNA diagnosis in providing clinicians and surgeons with valuable information that enables them to indicate early total thyroidectomy.

  17. Impairment of alternative splice sites defining a novel gammaretroviral exon within gag modifies the oncogenic properties of Akv murine leukemia virus

    DEFF Research Database (Denmark)

    Sørensen, Annette Balle; Lund, Anders H; Kunder, Sandra

    2007-01-01

    to be associated with specific tumor diagnoses or individual viral mutants. CONCLUSION: We present here the first example of a doubly spliced transcript within the group of gammaretroviruses, and we show that mutation of the alternative splice sites that define this novel RNA product change the oncogenic potential......BACKGROUND: Mutations of an alternative splice donor site located within the gag region has previously been shown to broaden the pathogenic potential of the T-lymphomagenic gammaretrovirus Moloney murine leukemia virus, while the equivalent mutations in the erythroleukemia inducing Friend murine...... leukemia virus seem to have no influence on the disease-inducing potential of this virus. In the present study we investigate the splice pattern as well as the possible effects of mutating the alternative splice sites on the oncogenic properties of the B-lymphomagenic Akv murine leukemia virus. RESULTS...

  18. FOXM1 is an oncogenic mediator in Ewing Sarcoma.

    Directory of Open Access Journals (Sweden)

    Laura Christensen

    Full Text Available Ewing Family Tumors (Ewing Sarcoma and peripheral Primitive Neuroectodermal Tumor are common bone and soft tissue malignancies of childhood, adolescence and young adulthood. Chromosomal translocation in these tumors produces fusion oncogenes of the EWS/ETS class, with EWS/FLI1 being by far the most common. EWS/ETS chimera are the only well established driver mutations in these tumors and they function as aberrant transcription factors. Understanding the downstream genes whose expression is modified has been a central approach to the study of these tumors. FOXM1 is a proliferation associated transcription factor which has increasingly been found to play a role in the pathogenesis of a wide range of human cancers. Here we demonstrate that FOXM1 is expressed in Ewing primary tumors and cell lines. Reduction in FOXM1 expression in Ewing cell lines results in diminished potential for anchorage independent growth. FOXM1 expression is enhanced by EWS/FLI1, though, unlike other tumor systems, it is not driven by expression of the EWS/FLI1 target GLI1. Thiostrepton is a compound known to inhibit FOXM1 by direct binding. We show that Thiostrepton diminishes FOXM1 expression in Ewing cell lines and this reduction reduces cell viability through an apoptotic mechanism. FOXM1 is involved in Ewing tumor pathogenesis and may prove to be a useful therapeutic target in Ewing tumors.

  19. RECQL4 helicase has oncogenic potential in sporadic breast cancers.

    Science.gov (United States)

    Arora, Arvind; Agarwal, Devika; Abdel-Fatah, Tarek Ma; Lu, Huiming; Croteau, Deborah L; Moseley, Paul; Aleskandarany, Mohammed A; Green, Andrew R; Ball, Graham; Rakha, Emad A; Chan, Stephen Yt; Ellis, Ian O; Wang, Lisa L; Zhao, Yongliang; Balajee, Adayabalam S; Bohr, Vilhelm A; Madhusudan, Srinivasan

    2016-03-01

    RECQL4 helicase is a molecular motor that unwinds DNA, a process essential during DNA replication and DNA repair. Germ-line mutations in RECQL4 cause type II Rothmund-Thomson syndrome (RTS), characterized by a premature ageing phenotype and cancer predisposition. RECQL4 is widely considered to be a tumour suppressor, although its role in human breast cancer is largely unknown. As the RECQL4 gene is localized to chromosome 8q24, a site frequently amplified in sporadic breast cancers, we hypothesized that it may play an oncogenic role in breast tumourigenesis. To address this, we analysed large cohorts for gene copy number changes (n = 1977), mRNA expression (n = 1977) and protein level (n = 1902). Breast cancer incidence was also explored in 58 patients with type II RTS. DNA replication dynamics and chemosensitivity was evaluated in RECQL4-depleted breast cancer cells in vitro. Amplification or gain in gene copy number (30.6%), high-level mRNA expression (51%) and high levels of protein (23%) significantly associated with aggressive tumour behaviour, including lymph node positivity, larger tumour size, HER2 overexpression, ER-negativity, triple-negative phenotypes and poor survival. RECQL4 depletion impaired the DNA replication rate and increased chemosensitivity in cultured breast cancer cells. Thus, although recognized as a 'safe guardian of the genome', our data provide compelling evidence that RECQL4 is tumour promoting in established breast cancers. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Kaposi Sarcoma of Childhood: Inborn or Acquired Immunodeficiency to Oncogenic HHV-8.

    Science.gov (United States)

    Jackson, Carolyn C; Dickson, Mark A; Sadjadi, Mahan; Gessain, Antoine; Abel, Laurent; Jouanguy, Emmanuelle; Casanova, Jean-Laurent

    2016-03-01

    Kaposi sarcoma (KS) is an endothelial malignancy caused by human herpes virus-8 (HHV-8) infection. The epidemic and iatrogenic forms of childhood KS result from a profound and acquired T cell deficiency. Recent studies have shown that classic KS of childhood can result from rare single-gene inborn errors of immunity, with mutations in WAS, IFNGR1, STIM1, and TNFRSF4. The pathogenesis of the endemic form of childhood KS has remained elusive. We review childhood KS pathogenesis and its relationship to inherited and acquired immunodeficiency to oncogenic HHV-8.

  1. JAC, a direct target of oncogenic transcription factor Jun, is involved in cell transformation and tumorigenesis.

    Science.gov (United States)

    Hartl, M; Reiter, F; Bader, A G; Castellazzi, M; Bister, K

    2001-11-20

    Using subtractive hybridization techniques, we have isolated a gene termed JAC that is strongly and specifically activated in avian fibroblasts transformed by the v-jun oncogene of avian sarcoma virus 17 (ASV17), but not in cells transformed by other oncogenic agents. Furthermore, JAC is highly expressed in cell lines derived from jun-induced avian fibrosarcomas. Kinetic analysis using a doxycycline-controlled conditional cell transformation system showed that expression of the 0.8-kb JAC mRNA is induced rapidly upon activation of the oncogenic v-jun allele. Nucleotide sequence analysis and transcriptional mapping revealed that the JAC gene contains two exons, with the longest ORF confined to exon 2. The deduced 68-amino acid chicken JAC protein is rich in cysteine residues and displays 37% sequence identity to mammalian high-sulfur keratin-associated proteins. The promoter region of JAC contains a consensus (5'-TGACTCA-3') and a nonconsensus (5'-TGAGTAA-3') AP-1 binding site in tandem, which are both specifically bound by the Gag-Jun hybrid protein encoded by ASV17. Mutational analysis revealed that the two AP-1 sites confer strong transcriptional activation by Gag-Jun in a synergistic manner. Ectopic expression of JAC in avian fibroblasts leads to anchorage-independent growth, strongly suggesting that deregulation of JAC is an essential event in jun-induced cell transformation and tumorigenesis.

  2. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Hirohashi, Setsuo [Pathology Division, National Cancer Center Research Institute, Tokyo (Japan); Shimoda, Tadakazu [Clinical Laboratory Division, National Cancer Center Hospital, Tokyo (Japan); Yokoyama, Ryohei; Beppu, Yasuo [Orthopedic Division, National Cancer Center Hospital, Tokyo (Japan); Maeda, Shotaro [Department of Pathology, Nippon Medical School Hospital, Tokyo (Japan)

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.) With 8 figs., 25 refs.

  3. Mutations and epimutations in the origin of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Peltomaeki, Paeivi, E-mail: Paivi.Peltomaki@Helsinki.Fi

    2012-02-15

    Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivation of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.

  4. Clinical Grade “SNaPshot” Genetic Mutation Profiling in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Elizabeth O'Donnell

    2015-01-01

    Full Text Available Whole genome sequencing studies have identified several oncogenic mutations in multiple myeloma (MM. As MM progresses, it evolves genetically underscoring the need to have tools for rapid detection of targetable mutations to optimize individualized treatment. Massachusetts General Hospital (MGH has developed a Clinical Laboratory Improvement Amendments (CLIA-approved, high-throughput, genotyping platform to determine the mutation status of a panel of known oncogenes. Sequence analysis using SNaPshot on DNA extracted from bone marrow and extramedullary plasmacytomas is feasible and leads to the detection of potentially druggable mutations. Screening MM patients for somatic mutations in oncogenes may provide novel targets leading to additional therapies for this patient population.

  5. Targeting CK2-driven non-oncogene addiction in B-cell tumors.

    Science.gov (United States)

    Mandato, E; Manni, S; Zaffino, F; Semenzato, G; Piazza, F

    2016-11-24

    Genetic mutations of oncogenes often underlie deranged cell growth and altered differentiation pathways leading to malignant transformation of B-lymphocytes. However, addiction to oncogenes is not the only drive to lymphoid tumor pathogenesis. Dependence on non-oncogenes, which act by propelling basic mechanisms of cell proliferation and survival, has also been recognized in the pathobiology of lymphoid leukemias, lymphomas and multiple myeloma. Among the growing number of molecules that may uphold non-oncogene addiction, a key place is increasingly being recognized to the serine-threonine kinase CK2. This enzyme is overexpressed and overactive in B-acute lymphoblastic leukemia, multiple myeloma, chronic lymphocytic leukemia and non-Hodgkin lymphomas, such as mantle cell, follicular, Burkitt's and diffuse large B-cell lymphomas. In these tumors, CK2 may serve the activity of oncogenes, similar to BCR-ABL and c-MYC, control the activation of critical signaling cascades, such as NF-κB (nuclear factor-κB), STAT3 (signal transducer and activator of transcription 3) and PTEN/PI3K/AKT (phosphatase and tensin homolog protein/phosphoinositide 3-kinase/AKR thymoma), and sustain multiple cellular stress-elicited pathways, such as the proteotoxic stress, unfolded protein and DNA-damage responses. CK2 has also been shown to have an essential role in tuning signals derived from the stromal tumor microenvironment. Not surprisingly, targeting CK2 in lymphoid tumor cell lines or mouse xenograft models can boost the cytotoxic effects of both conventional chemotherapeutics and novel agents, similar to heat-shock protein 90, proteasome and tyrosine kinases inhibitors. In this review, we summarize the evidence indicating how CK2 embodies most of the features of a cancer growth-promoting non-oncogene, focusing on lymphoid tumors. We further discuss the preclinical data of the use of small ATP-competitive CK2 inhibitors, which hold the promise to be additional options in novel drug

  6. Prognostic factors in the myoepithelial-like spindle cell type of metaplastic breast cancer.

    Science.gov (United States)

    Leo, Fabian; Bartels, Stephan; Mägel, Lavinia; Framke, Theodor; Büsche, Guntram; Jonigk, Danny; Christgen, Matthias; Lehmann, Ulrich; Kreipe, Hans

    2016-08-01

    Metaplastic breast carcinoma (MBC) comprises a heterogeneous group of tumors with difficult to predict biological behavior. A subset of MBC, characterized by spindle-shaped tumor cells with a myoepithelial-like immunophenotype, was entered into a retrospective study (n = 42, median follow-up time 43 months). Molecular parameters (DNA sequences of mutation hot spots in AKT1, ALK, APC, BRAF, CDH1, CTNNB1, EGFR, ERBB2, FBXW7, FGFR2, FOXL2, GNAQ, GNAS, KIT, KRAS, MAP2K1, MET, MSH6, NRAS, PDGFRA, PIK3CA, PTEN, SF3B1, SMAD4, SRC, SRSF2, STK11, TP53, and U2AF1; copy numbers for EGFR, c-myc, FGFR, PLAG, c-met) were assessed. None of the patients had axillary lymph node involvement. In 13 cases, local recurrence developed after surgery (30.9 %). Distant metastasis occurred in seven patients (17 %; four after local recurrence). The most frequent genetic alteration was PIK3CA mutation (50 % of cases). None of the pathological parameters (size, grade, stage, Ki-67 labeling index) was significantly associated with disease-free survival (DFS) or overall survival (OS). PIK3CA mutation, especially the H1047R type, tended to adversely affect OS. Type of resection (mastectomy vs. breast-conserving therapy, width of margins) or adjuvant radiotherapy had no influence on DFS or OS, whereas in the group treated with radio-/chemotherapy, no local recurrence or metastasis and no death occurred. We conclude that the spindle cell type of MBC with myoepithelial features exhibits a higher frequency of PIK3CA mutation than other types of metaplastic or basal-like breast cancer and may benefit from combined radio-/chemotherapy. Classical pathological parameters are not helpful in identifying the high-risk tumors among this subgroup of MBC.

  7. Molecular-Genetic Aspects of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Krasteva M.

    2014-12-01

    Full Text Available Breast cancer is the most frequent malignancy among women. Advances in breast cancer knowledge have deciphered the involvement of a number of tumor suppressor genes and proto-oncogenes in disease pathogenesis. These genes are part of the complex biochemical pathways, which enable cell cycle control and maintenance of genome integrity. Their function may be disrupted as a result of alterations in gene sequence or misregulation of gene expression including alterations in DNA methylation pattern. The present review summarizes the main findings on major breast cancer related genes BRCA1/2, p53, ATM, CHEK2, HER2, PIK3CA and their tumorigenic inactivation/activation. The potential clinical importance of these genes with respect to patients’ prognosis and therapy are also discussed. The possible implication of other putative breast cancer related genes is also outlined. The first elaborate data on the genetic and epigenetic status of the above mentioned genes concerning Bulgarian patients with the sporadic form of the disease are presented. The studies indicate for a characteristic mutational spectrum in some of the genes for the Bulgarian patients and specific correlation between the status of different genes and clinicopathological characteristics.

  8. Characterization of Leukemia-Inducing Genes Using a Proto-Oncogene/Homeobox Gene Retroviral Human cDNA Library in a Mouse In Vivo Model.

    Directory of Open Access Journals (Sweden)

    Su Hwa Jang

    Full Text Available The purpose of this research is to develop a method to screen a large number of potential driver mutations of acute myeloid leukemia (AML using a retroviral cDNA library and murine bone marrow transduction-transplantation system. As a proof-of-concept, murine bone marrow (BM cells were transduced with a retroviral cDNA library encoding well-characterized oncogenes and homeobox genes, and the virus-transduced cells were transplanted into lethally irradiated mice. The proto-oncogenes responsible for leukemia initiation were identified by PCR amplification of cDNA inserts from genomic DNA isolated from leukemic cells. In an initial screen of ten leukemic mice, the MYC proto-oncogene was detected in all the leukemic mice. Of ten leukemic mice, 3 (30% had MYC as the only transgene, and seven mice (70% had additional proto-oncogene inserts. We repeated the same experiment after removing MYC-related genes from the library to characterize additional leukemia-inducing gene combinations. Our second screen using the MYC-deleted proto-oncogene library confirmed MEIS1and the HOX family as cooperating oncogenes in leukemia pathogenesis. The model system we introduced in this study will be valuable in functionally screening novel combinations of genes for leukemogenic potential in vivo, and the system will help in the discovery of new targets for leukemia therapy.

  9. Characterization of Leukemia-Inducing Genes Using a Proto-Oncogene/Homeobox Gene Retroviral Human cDNA Library in a Mouse In Vivo Model.

    Science.gov (United States)

    Jang, Su Hwa; Lee, Sohyun; Chung, Hee Yong

    2015-01-01

    The purpose of this research is to develop a method to screen a large number of potential driver mutations of acute myeloid leukemia (AML) using a retroviral cDNA library and murine bone marrow transduction-transplantation system. As a proof-of-concept, murine bone marrow (BM) cells were transduced with a retroviral cDNA library encoding well-characterized oncogenes and homeobox genes, and the virus-transduced cells were transplanted into lethally irradiated mice. The proto-oncogenes responsible for leukemia initiation were identified by PCR amplification of cDNA inserts from genomic DNA isolated from leukemic cells. In an initial screen of ten leukemic mice, the MYC proto-oncogene was detected in all the leukemic mice. Of ten leukemic mice, 3 (30%) had MYC as the only transgene, and seven mice (70%) had additional proto-oncogene inserts. We repeated the same experiment after removing MYC-related genes from the library to characterize additional leukemia-inducing gene combinations. Our second screen using the MYC-deleted proto-oncogene library confirmed MEIS1and the HOX family as cooperating oncogenes in leukemia pathogenesis. The model system we introduced in this study will be valuable in functionally screening novel combinations of genes for leukemogenic potential in vivo, and the system will help in the discovery of new targets for leukemia therapy.

  10. TERT promoter mutations in thyroid cancer.

    Science.gov (United States)

    Liu, Rengyun; Xing, Mingzhao

    2016-03-01

    The 2013 discovery of Telomerase reverse transcriptase (TERT) promoter mutations chr5, 1,295,228 C>T (C228T) and 1,295,250 C>T (C250T) in thyroid cancer represents an important event in the thyroid cancer field and much progress has occurred since then. This article provides a comprehensive review of this exciting new thyroid cancer field. The oncogenic role of TERT promoter mutations involves their creation of consensus binding sites for E-twenty-six transcriptional factors. TERT C228T is far more common than TERT C250T and their collective prevalence is, on average, 0, 11.3, 17.1, 43.2 and 40.1% in benign thyroid tumors, papillary thyroid cancer (PTC), follicular thyroid cancer, poorly differentiated thyroid cancer and anaplastic thyroid cancer, respectively, displaying an association with aggressive types of thyroid cancer. TERT promoter mutations are associated with aggressive thyroid tumor characteristics, tumor recurrence and patient mortality as well as BRAF V600E mutation. Coexisting BRAF V600E and TERT promoter mutations have a robust synergistic impact on the aggressiveness of PTC, including a sharply increased tumor recurrence and patient mortality, while either mutation alone has a modest impact. Thus, TERT with promoter mutations represents a prominent new oncogene in thyroid cancer and the mutations are promising new diagnostic and prognostic genetic markers for thyroid cancer, which, in combination with BRAF V600E mutation or other genetic markers (e.g. RAS mutations), are proving to be clinically useful for the management of thyroid cancer. Future studies will specifically define such clinical utilities, elucidate the biological mechanisms and explore the potential as therapeutic targets of TERT promoter mutations in thyroid cancer.

  11. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Olsen, Jesper V; Brandts, Christian

    2009-01-01

    Inappropriate activation of oncogenic kinases at intracellular locations is frequently observed in human cancers, but its effects on global signaling are incompletely understood. Here, we show that the oncogenic mutant of Flt3 (Flt3-ITD), when localized at the endoplasmic reticulum (ER), aberrant...

  12. Oncogenic Transformation of Human-Derived Gastric Organoids.

    Science.gov (United States)

    Bertaux-Skeirik, Nina; Centeno, Jomaris; Gao, Jian; Gabre, Joel; Zavros, Yana

    2016-08-19

    The culture of organoids has represented a significant advancement in the gastrointestinal research field. Previous research studies have described the oncogenic transformation of human intestinal and mouse gastric organoids. Here we detail the protocol for the oncogenic transformation and orthotopic transplantation of human-derived gastric organoids.

  13. Oncogenic pathways implicated in ovarian epithelial cancer.

    Science.gov (United States)

    Nicosia, Santo V; Bai, Wenlong; Cheng, Jin Q; Coppola, Domenico; Kruk, Patricia A

    2003-08-01

    Characterization of intracellular signaling pathways should lead to a better understanding of ovarian epithelial carcinogenesis and provide an opportunity to interfere with signal transduction targets involved in ovarian tumor cell growth, survival, and progression. Challenges toward such an effort are significant because many of these signals are part of cascades within an intricate and likely redundant intracellular signaling network (Fig.1). For instance, a given signal may activate a dual intracellular pathway (ie, MEK1-MAPK and PI3K/Akt required for fibronectin-dependent activation of matrix metalloproteinase 9). A single pathway also may transduce more than one biologic or oncogenic signal (ie, PI3K signaling in epithelial and endothelial cell growth and sprouting of neovessels). Despite these challenges, evidence for therapeutic targeting of signal transduction pathways is accumulating in human cancer. For instance, the EGF-specific tyrosine kinase inhibitor ZD 1839 (Iressa) may have a beneficial therapeutic effect on ovarian epithelial cancer. Therapy of this cancer may include inhibitors of PI kinase (quercetin), ezrin and PIP kinase (genistein). The G protein-coupled family of receptors, including LPA, also is an attractive target to drugs, although their frequent pleiotropic functions may be at times toxic and lack specificity. Because of the lack of notable toxicity, PI3K/Akt pathway inhibitors such as FTIs are a promising targeted therapy of ovarian epithelial cancer. Increasing insight into the oncogenic pathways involved in ovarian epithelial cancer also is helping clinicians to understand better the phenomenon of chemoresistance in this malignancy. Oncogenic activation of gamma-synuclein promotes cell survival and provides resistance to paclitaxel, but such a resistance is partially overcome by an MEK inhibitor that suppresses ERK activity. Ovarian epithelial cancer is a complex group of neoplasms with an overall poor prognosis. Comprehension of

  14. Oncogenic BRAF(V600E Induces Clastogenesis and UVB Hypersensitivity

    Directory of Open Access Journals (Sweden)

    Dennis A. Simpson

    2015-06-01

    Full Text Available The oncogenic BRAF(V600E mutation is common in melanomas as well as moles. The roles that this mutation plays in the early events in the development of melanoma are poorly understood. This study demonstrates that expression of BRAF(V600E is not only clastogenic, but synergizes for clastogenesis caused by exposure to ultraviolet radiation in the 300 to 320 nM (UVB range. Expression of BRAF(V600E was associated with induction of Chk1 pS280 and a reduction in chromatin remodeling factors BRG1 and BAF180. These alterations in the Chk1 signaling pathway and SWI/SNF chromatin remodeling pathway may contribute to the clastogenesis and UVB sensitivity. These results emphasize the importance of preventing sunburns in children with developing moles.

  15. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.

    Science.gov (United States)

    Northcott, Paul A; Lee, Catherine; Zichner, Thomas; Stütz, Adrian M; Erkek, Serap; Kawauchi, Daisuke; Shih, David J H; Hovestadt, Volker; Zapatka, Marc; Sturm, Dominik; Jones, David T W; Kool, Marcel; Remke, Marc; Cavalli, Florence M G; Zuyderduyn, Scott; Bader, Gary D; VandenBerg, Scott; Esparza, Lourdes Adriana; Ryzhova, Marina; Wang, Wei; Wittmann, Andrea; Stark, Sebastian; Sieber, Laura; Seker-Cin, Huriye; Linke, Linda; Kratochwil, Fabian; Jäger, Natalie; Buchhalter, Ivo; Imbusch, Charles D; Zipprich, Gideon; Raeder, Benjamin; Schmidt, Sabine; Diessl, Nicolle; Wolf, Stephan; Wiemann, Stefan; Brors, Benedikt; Lawerenz, Chris; Eils, Jürgen; Warnatz, Hans-Jörg; Risch, Thomas; Yaspo, Marie-Laure; Weber, Ursula D; Bartholomae, Cynthia C; von Kalle, Christof; Turányi, Eszter; Hauser, Peter; Sanden, Emma; Darabi, Anna; Siesjö, Peter; Sterba, Jaroslav; Zitterbart, Karel; Sumerauer, David; van Sluis, Peter; Versteeg, Rogier; Volckmann, Richard; Koster, Jan; Schuhmann, Martin U; Ebinger, Martin; Grimes, H Leighton; Robinson, Giles W; Gajjar, Amar; Mynarek, Martin; von Hoff, Katja; Rutkowski, Stefan; Pietsch, Torsten; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Kulozik, Andreas E; von Deimling, Andreas; Witt, Olaf; Eils, Roland; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Korbel, Jan O; Wechsler-Reya, Robert J; Pfister, Stefan M

    2014-07-24

    Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.

  16. [Genetic tests in oncology practice with emphasis on the RET oncogene and VHL tumor suppressor gene].

    Science.gov (United States)

    Nesković, Gorana; Stanojević, Boban; Palmar, Ivan; Dimitrijević, Bogomir

    2002-07-01

    Molecular oncogenetics is the study of two distinct gene classes participating in the pathogenesis of malignant diseases: proto-oncogenes and tumour suppressors genes. Stepwise alterations in their structure are the basis of malignancy. Structural abnormalities range widely: gross genetic rearrangements including insertions, deletions, gene amplifications and single nucleotide deleotide deletions and substitutions. These gene alterations are determined by gene testing that increasingly are part of clinical diagnosis. Among many applications of oncogene testing is detection of hereditary forms of malignant disease with outstanding prophylactic and therapeutic importance. Along this line, gene testing provided for effective prevention of specific hereditary tumour types. Analysis of hereditary pheochromocytoma two gene tests are established: detection of multiple endocrine neoplasia type 2 (MEN 2) using mutational analysis of RET gene and detection of von Hippel-Lindau syndrome using mutational analysis of VHL gene. These genes were characterized about a decade ago and their structure determined in detail. Numerous studies focus on expression of these genes in different tissues and the function of respective proteins. In extensive epidemiology the following facts are established: hereditary mutations in the RET gene in > 92% of cases with MEN 2 syndrome while in patients with von Hippel-Lindau syndrome hereditary mutations were detected in VHL gene in > 95% of cases. Such a high genotype--phenotype correlation forms the basis for clinical applications. Gene testing in oncology offers numerous advantages. If a patient with pheochromocytoma presents with hereditary mutation in the RET or VHL gene, family gene testing is recommended. Family member with hereditary gene mutation is indicative of the risk level of nearly 100% for MEN 2 or von Hippel-Lindau syndrome. In such cases surgery is warranted (e.g. in MEN 2 total thyroidectomy by the age of (6). Negative findings

  17. The Exceptional Oncogenicity of HTLV-1.

    Science.gov (United States)

    Tagaya, Yutaka; Gallo, Robert C

    2017-01-01

    Human T-cell leukemia virus-1 (HTLV-1) is the first pathogenic human retrovirus identified in 1979 by the Gallo group. HTLV-1 causes fatal T-cell leukemia (adult T cell leukemia) and a progressive myelopahy (HTLV-1-associated myelopathy/ tropical spastic paraparesis, HAM/TSP) and other disorders. Since the discovery of HTLV-1, several other microorganisms are demonstrated to cause cancer in humans. In this article, we investigated the oncogenic capacity of HTLV-1, in comparison with those of other oncoviruses and one oncobacterium (Helicobacter pylori, H. Pylori) based on published literature. We conclude here that HTLV-1 is one of the most and may be the most carcinogenic among them and arguably one of the most potent of the known human carcinogens. This fact has not been noted before and is particularly important to justify why we need to study HTLV-1 as an important model of human viral oncogenesis.

  18. Glycerophospholipid profile in oncogene-induced senescence.

    Science.gov (United States)

    Cadenas, Cristina; Vosbeck, Sonja; Hein, Eva-Maria; Hellwig, Birte; Langer, Alice; Hayen, Heiko; Franckenstein, Dennis; Büttner, Bettina; Hammad, Seddik; Marchan, Rosemarie; Hermes, Matthias; Selinski, Silvia; Rahnenführer, Jörg; Peksel, Begüm; Török, Zsolt; Vígh, László; Hengstler, Jan G

    2012-09-01

    Alterations in lipid metabolism and in the lipid composition of cellular membranes are linked to the pathology of numerous diseases including cancer. However, the influence of oncogene expression on cellular lipid profile is currently unknown. In this work we analyzed changes in lipid profiles that are induced in the course of ERBB2-expression mediated premature senescence. As a model system we used MCF-7 breast cancer cells with doxycycline-inducible expression of NeuT, an oncogenic ERBB2 variant. Affymetrix gene array data showed NeuT-induced alterations in the transcription of many enzymes involved in lipid metabolism, several of which (ACSL3, CHPT1, PLD1, LIPG, MGLL, LDL and NPC1) could be confirmed by quantitative realtime PCR. A study of the glycerophospholipid and lyso-glycerophospholipid profiles, obtained by high performance liquid chromatography coupled to Fourier-transform ion cyclotron resonance-mass spectrometry revealed senescence-associated changes in numerous lipid species, including mitochondrial lipids. The most prominent changes were found in PG(34:1), PG(36:1) (increased) and LPE(18:1), PG(40:7) and PI(36:1) (decreased). Statistical analysis revealed a general trend towards shortened phospholipid acyl chains in senescence and a significant trend to more saturated acyl chains in the class of phosphatidylglycerol. Additionally, the cellular cholesterol content was elevated and accumulated in vacuoles in senescent cells. These changes were accompanied by increased membrane fluidity. In mitochondria, loss of membrane potential along with altered intracellular distribution was observed. In conclusion, we present a comprehensive overview of altered cholesterol and glycerophospholipid patterns in senescence, showing that predominantly mitochondrial lipids are affected and lipid species less susceptible to peroxidation are increased.

  19. The Mitochondrial Genome Is a “Genetic Sanctuary” during the Oncogenic Process

    Science.gov (United States)

    Gonzalez, Teresa; Fraga, Maximo; Salas, Antonio; Costoya, Jose A.

    2011-01-01

    Since Otto Warburg linked mitochondrial physiology and oncogenesis in the 1930s, a number of studies have focused on the analysis of the genetic basis for the presence of aerobic glycolysis in cancer cells. However, little or no evidence exists today to indicate that mtDNA mutations are directly responsible for the initiation of tumor onset. Based on a model of gliomagenesis in the mouse, we aimed to explore whether or not mtDNA mutations are associated with the initiation of tumor formation, maintenance and aggressiveness. We reproduced the different molecular events that lead from tumor initiation to progression in the mouse glioma. In human gliomas, most of the genetic alterations that have been previously identified result in the aberrant activation of different signaling pathways and deregulation of the cell cycle. Our data indicates that mitochondrial dysfunction is associated with reactive oxygen species (ROS) generation, leading to increased nuclear DNA (nDNA) mutagenesis, but maintaining the integrity of the mitochondrial genome. In addition, mutational stability has been observed in entire mtDNA of human gliomas; this is in full agreement with the results obtained in the cancer mouse model. We use this model as a paradigm of oncogenic transformation due to the fact that mutations commonly found in gliomas appear to be the most common molecular alterations leading to tumor development in most types of human cancer. Our results indicate that the mtDNA genome is kept by the cell as a “genetic sanctuary” during tumor development in the mouse and humans. This is compatible with the hypothesis that the mtDNA molecule plays an essential role in the control of the cellular adaptive survival response to tumor-induced oxidative stress. The integrity of mtDNA seems to be a necessary element for responding to the increased ROS production associated with the oncogenic process. PMID:21858071

  20. The mitochondrial genome is a "genetic sanctuary" during the oncogenic process.

    Directory of Open Access Journals (Sweden)

    Marcos Seoane

    Full Text Available Since Otto Warburg linked mitochondrial physiology and oncogenesis in the 1930s, a number of studies have focused on the analysis of the genetic basis for the presence of aerobic glycolysis in cancer cells. However, little or no evidence exists today to indicate that mtDNA mutations are directly responsible for the initiation of tumor onset. Based on a model of gliomagenesis in the mouse, we aimed to explore whether or not mtDNA mutations are associated with the initiation of tumor formation, maintenance and aggressiveness. We reproduced the different molecular events that lead from tumor initiation to progression in the mouse glioma. In human gliomas, most of the genetic alterations that have been previously identified result in the aberrant activation of different signaling pathways and deregulation of the cell cycle. Our data indicates that mitochondrial dysfunction is associated with reactive oxygen species (ROS generation, leading to increased nuclear DNA (nDNA mutagenesis, but maintaining the integrity of the mitochondrial genome. In addition, mutational stability has been observed in entire mtDNA of human gliomas; this is in full agreement with the results obtained in the cancer mouse model. We use this model as a paradigm of oncogenic transformation due to the fact that mutations commonly found in gliomas appear to be the most common molecular alterations leading to tumor development in most types of human cancer. Our results indicate that the mtDNA genome is kept by the cell as a "genetic sanctuary" during tumor development in the mouse and humans. This is compatible with the hypothesis that the mtDNA molecule plays an essential role in the control of the cellular adaptive survival response to tumor-induced oxidative stress. The integrity of mtDNA seems to be a necessary element for responding to the increased ROS production associated with the oncogenic process.

  1. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    Science.gov (United States)

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  2. Oncogene Mdm2 takes part in hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective:To investigate the role of Mdm2 expression in hepatocellular carcinoma.Methods: Streptavidin-peroxidase conjugation method (SP)was used to observe the expression of Mdm2 and p53 proteins in 61 cases of hepatocellular carcinoma(HCC)and 59 cases of corresponding paracancerous tissues,among which p53 mutations in exons 5~8 were detected in 21 cases by PCR-SSCP.Results:Positive nuclear P53 and Mdm2 immunostains were demonstrated in 57.38% and 26.23% of HCC,1.69% and 3.39% of corresponding paracancerous tissues respectively.The expression of p53 and Mdm2 proteins in hepatocellular carcinoma was significantly higher than that in paracancerous tissues(P<0.01).The expression of P53 and Mdm2 was not significantly correlated.42.86% of hepatocellualr carcinomas showed mutations in exon 7 of p53 gene,and no mutation was found in exons 5,6,8 and paracancerous tissues. 66.67% of mutational cases had P53 overexpression and 11.11%(1/9)showed overexpression of both P53 and Mdm2,Mdm2 overexpression also appeared in 25% of cases without mutations.Conclusions:Mdm2-induced p53 inactivation and p53 gene mutation play an important role in carcinogenesis of hepatocellular carcinoma.Tumorigenic property of Mdm2 itself,together with p53 mutation,may take part in hepatocarcinogenesis.

  3. Transformation with Oncogenic Ras and the Simian Virus 40 T Antigens Induces Caspase-Dependent Sensitivity to Fatty Acid Biosynthetic Inhibition

    Science.gov (United States)

    Xu, Shihao; Spencer, Cody M.

    2015-01-01

    ABSTRACT Oncogenesis is frequently accompanied by the activation of specific metabolic pathways. One such pathway is fatty acid biosynthesis, whose induction is observed upon transformation of a wide variety of cell types. Here, we explored how defined oncogenic alleles, specifically the simian virus 40 (SV40) T antigens and oncogenic Ras12V, affect fatty acid metabolism. Our results indicate that SV40/Ras12V-mediated transformation of fibroblasts induces fatty acid biosynthesis in the absence of significant changes in the concentration of fatty acid biosynthetic enzymes. This oncogene-induced activation of fatty acid biosynthesis was found to be mammalian target of rapamycin (mTOR) dependent, as it was attenuated by rapamycin treatment. Furthermore, SV40/Ras12V-mediated transformation induced sensitivity to treatment with fatty acid biosynthetic inhibitors. Pharmaceutical inhibition of acetyl-coenzyme A (CoA) carboxylase (ACC), a key fatty acid biosynthetic enzyme, induced caspase-dependent cell death in oncogene-transduced cells. In contrast, isogenic nontransformed cells were resistant to fatty acid biosynthetic inhibition. This oncogene-induced sensitivity to fatty acid biosynthetic inhibition was independent of the cells' growth rates and could be attenuated by supplementing the medium with unsaturated fatty acids. Both the activation of fatty acid biosynthesis and the sensitivity to fatty acid biosynthetic inhibition could be conveyed to nontransformed breast epithelial cells through transduction with oncogenic Ras12V. Similar to what was observed in the transformed fibroblasts, the Ras12V-induced sensitivity to fatty acid biosynthetic inhibition was independent of the proliferative status and could be attenuated by supplementing the medium with unsaturated fatty acids. Combined, our results indicate that specific oncogenic alleles can directly confer sensitivity to inhibitors of fatty acid biosynthesis. IMPORTANCE Viral oncoproteins and cellular mutations

  4. [TP53 mutations and molecular epidemiology].

    Science.gov (United States)

    Otsuka, Kazunori; Ishioka, Chikashi

    2007-05-01

    Tumor suppressor p53 protein is activated by a variety of cellular stresses through several pathways and transactivates its downstream genes, including regulators of cell cycle, apoptosis and DNA repair. The loss of p53 function by TP53 gene mutations therefore fails to activate these genes and is thought to be a critical cause of carcinogenesis and/or tumor progression. TP53 is one of the most frequently mutated genes in human cancer. TP53 mutations are found in about 50% of human cancers, although the frequency of TP53 mutations differs among tumor types. However, the degree of functional disorder of mutant p53 varies according to the type of TP53 mutation. And the effects of p53 on cancer formation and/or progression are influenced by the degree of p53 dysfunction. So it is important to analyze the effects of TP53 mutations carefully according to the oncogenicity of each mutation from the molecular epidemiological point of view. Here, together with some cautions needed for analyzing and interpreting the significance of TP53 gene mutations, we present some examples of the identified specific mutation spectrum and the correlation between the prognosis and TP53 mutation in some cancers.

  5. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    DEFF Research Database (Denmark)

    Hartung, Anne-Mette; Swensen, Jeff; Uriz, Inaki E

    2016-01-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We ident...

  6. Novel E6 and E7 oncogenes variants of human papillomavirus type 31 in Brazilian women with abnormal cervical cytology.

    Science.gov (United States)

    Chagas, Bárbara Simas; Batista, Marcus Vinicius de Aragão; Crovella, Sergio; Gurgel, Ana Pavla Almeida Diniz; Silva Neto, Jacinto da Costa; Serra, Ivi Gonçalves Soares Santos; Amaral, Carolina Maria Medeiros; Balbino, Valdir Queiroz; Muniz, Maria Tereza Cartaxo; Freitas, Antonio Carlos

    2013-06-01

    HPV-31 has been widely described as an important oncogenic type, showing high incidence in worldwide and especially in Northeastern Brazil. We sought to identify the presence of specific mutations in HPV-31 E6 and E7 oncogenes in women with abnormal cervical smear. We enrolled 150 gynecological patients from Sergipe State, Northeastern Brazil. HPV screening was carried out by polymerase chain reaction (MY09/11). E6 and E7 oncogenes were amplified with specific primers and sequenced. The sequences obtained were aligned with the GenBank reference sequences in order to search for genetic variants. We identified genetic variants in E6 and E7 sequences from HPV-31. Two new nucleotide changes in E6 and E7 were described for the first time in this study. A novel mutation in E6 resulted in amino acid change in a site belonging to T-cell epitope with MHC II binding activity. There was no significant difference in the distribution of HPV-31 E6 and E7 variants when compared to all selected clinical/epidemiological characteristics. HPV-31 isolates have been clustered into three main groups called lineages A, B and C. We describe new HPV-31 variants in Brazil, contributing to better understand the genomic diversity of these viruses. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors.

    Science.gov (United States)

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-06-15

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

  8. The oncogenic action of ionizing radiation on rat skin

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs.

  9. A one-mutation mathematical model can explain the age incidence of acute myeloid leukemia with mutated nucleophosmin (NPM1)

    NARCIS (Netherlands)

    A. Liso (Arcangelo); F. Castiglione (Filippo); A. Cappuccio (Antonio); F. Stracci (Fabrizio); R.F. Schlenk (Richard); S. Amadori (Sergio); C. Thiede (Christian); S. Schnittger (Susanne); P.J.M. Valk (Peter); K. Döhner (Konstanze); M.F. Martelli (Massimo F.); M. Schaich (Markus); J. Krauter; A. Ganser (Arnold); N. Bolli (Niccolò); B. Löwenberg (Bob); T. Haferlach (Torsten); G. Ehninger (Gerhard); F. Mandelli (Franco); F. Michor (Franziska); B. Falini

    2008-01-01

    textabstractAcute myeloid leukemia with mutated NPM1 gene and aberrant cytoplasmic expression of nucleophosmin (NPMc+acute myeloid leukemia) shows distinctive biological and clinical features. Experimental evidence of the oncogenic potential of the nucleophosmin mutant is, however, still lacking, an

  10. RUNX1 is required for oncogenic Myb and Myc enhancer activity in T cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Choi, AHyun; Illendula, Anuradha; Pulikkan, John A; Roderick, Justine E; Tesell, Jessica; Yu, Jun; Hermance, Nicole; Zhu, Lihua Julie; Castilla, Lucio H; Bushweller, John H; Kelliher, Michelle A

    2017-08-08

    The gene encoding the RUNX1 transcription factor is mutated in a subset of T cell acute lymphoblastic leukemia (T-ALL) patients and RUNX1 mutations are associated with a poor prognosis. These mutations cluster in the DNA binding Runt domain, are thought to represent loss-of-function mutations, indicating that RUNX1 suppresses T cell transformation. RUNX1 has been proposed to have tumor suppressor roles in TLX1/3 transformed human T-ALL cell lines and NOTCH1 T-ALL mouse models. Yet retroviral insertional mutagenesis screens identify RUNX genes as collaborating oncogenes in MYC-driven leukemia mouse models. To elucidate RUNX1 function(s) in leukemogenesis, we generated Tal1/Lmo2/Rosa26-CreER(T2)Runx1(f/f) mice and examined leukemia progression in the presence of vehicle or tamoxifen. We found that Runx1 deletion inhibits mouse leukemic growth in vivo and that RUNX silencing in human T-ALL cells triggers apoptosis. We demonstrate that a small molecule inhibitor, designed to interfere with CBFβ binding to RUNX proteins, impairs the growth of human T-ALL cell lines and primary patient samples. We demonstrate that a RUNX1 deficiency alters the expression of a crucial subset of TAL1- and NOTCH1-regulated genes including the MYB and MYC oncogenes, respectively. These studies provide genetic and pharmacologic evidence that RUNX1 has oncogenic roles and reveal RUNX1 as a novel therapeutic target in T-ALL. Copyright © 2017 American Society of Hematology.

  11. GNA11 Mutation in a Patient With Cutaneous Origin Melanoma

    Science.gov (United States)

    Patel, Sapna P.; Kim, Dae Won; Lacey, Carol L.; Hwu, Patrick

    2016-01-01

    Abstract The rapid advances in the molecular biology and genetics have improved the understanding of molecular pathogenesis of v-Raf murine sarcoma viral oncogene homolog B (BRAF), feline sarcoma viral oncogene v-kit (KIT), and neuroblastoma v-Ras oncogene homolog (NRAS) mutant melanomas with the subsequent development of targeted therapeutic agents. However, only limited data are available for melanoma harboring other somatic than BRAF, KIT, and NRAS mutations. Mutations in guanine nucleotide-binding protein Q polypeptide (GNAQ) and guanine nucleotide-binding protein alpha-11 (GNA11), alpha subunits of heterotrimeric G proteins, constitutively activate mitogen-activated protein kinase (MAPK) pathway in uveal melanoma. However, there are no reports of GNA11 mutations in cutaneous melanomas. A 48-year-old woman was diagnosed with cutaneous nodular melanoma on the left scalp. Mutation analysis of the tumor revealed a GNA11 Q209L mutation. There was no evidence of uveal melanoma or malignant blue nevus in ophthalmologic exam, imaging studies, and pathology review. To our knowledge, this is the first case report to demonstrate cutaneous origin melanoma harboring a GNA11 Q209L mutation. PMID:26825879

  12. An Oncogenic Role for Alternative NF-κB Signaling in DLBCL Revealed upon Deregulated BCL6 Expression

    Directory of Open Access Journals (Sweden)

    Baochun Zhang

    2015-05-01

    Full Text Available Diffuse large B cell lymphoma (DLBCL is a complex disease comprising diverse subtypes and genetic profiles. Possibly because of the prevalence of genetic alterations activating canonical NF-κB activity, a role for oncogenic lesions that activate the alternative NF-κB pathway in DLBCL has remained elusive. Here, we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-κB pathway, occurs in ∼15% of DLBCLs and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-κB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-κB pathway in DLBCL development.

  13. Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia.

    Science.gov (United States)

    Park, Jung Eun; Yuen, Hiu Fung; Zhou, Jian Biao; Al-Aidaroos, Abdul Qader O; Guo, Ke; Valk, Peter J; Zhang, Shu Dong; Chng, Wee Joo; Hong, Cheng William; Mills, Ken; Zeng, Qi

    2013-09-01

    FLT3-ITD mutations are prevalent mutations in acute myeloid leukaemia (AML). PRL-3, a metastasis-associated phosphatase, is a downstream target of FLT3-ITD. This study investigates the regulation and function of PRL-3 in leukaemia cell lines and AML patients associated with FLT3-ITD mutations. PRL-3 expression is upregulated by the FLT3-STAT5 signalling pathway in leukaemia cells, leading an activation of AP-1 transcription factors via ERK and JNK pathways. PRL-3-depleted AML cells showed a significant decrease in cell growth. Clinically, high PRL-3 mRNA expression was associated with FLT3-ITD mutations in four independent AML datasets with 1158 patients. Multivariable Cox-regression analysis on our Cohort 1 with 221 patients identified PRL-3 as a novel prognostic marker independent of other clinical parameters. Kaplan-Meier analysis showed high PRL-3 mRNA expression was significantly associated with poorer survival among 491 patients with normal karyotype. Targeting PRL-3 reversed the oncogenic effects in FLT3-ITD AML models in vitro and in vivo. Herein, we suggest that PRL-3 could serve as a prognostic marker to predict poorer survival and as a promising novel therapeutic target for AML patients.

  14. Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression.

    Science.gov (United States)

    Klampfer, Lidija; Huang, Jie; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard

    2004-08-27

    Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.

  15. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Mi E-mail: jmpark@cmc.cuk.ac.kr; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-08-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D{sub 3}. It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman.

  16. Extracellular Matrix/Integrin Signaling Promotes Resistance to Combined Inhibition of HER2 and PI3K in HER2(+) Breast Cancer.

    Science.gov (United States)

    Hanker, Ariella B; Estrada, Mónica Valeria; Bianchini, Giampaolo; Moore, Preston D; Zhao, Junfei; Cheng, Feixiong; Koch, James P; Gianni, Luca; Tyson, Darren R; Sánchez, Violeta; Rexer, Brent N; Sanders, Melinda E; Zhao, Zhongming; Stricker, Thomas P; Arteaga, Carlos L

    2017-06-15

    PIK3CA mutations are associated with resistance to HER2-targeted therapies. We previously showed that HER2(+)/PIK3CA(H1047R) transgenic mammary tumors are resistant to the HER2 antibodies trastuzumab and pertuzumab but respond to PI3K inhibitor buparlisib (TPB). In this study, we identified mechanisms of resistance to combined inhibition of HER2 and PI3K. TPB-resistant tumors were generated by treating HER2(+)/PIK3CA(H1047R) tumor-bearing mice long term with the drug combination. RNA sequencing of TPB-resistant tumors revealed that extracellular matrix and cell adhesion genes, including collagen II (Col2a1), were markedly upregulated, accompanied by activation of integrin β1/Src. Cells derived from drug-resistant tumors were sensitive to TBP when grown in vitro, but exhibited resistance when plated on collagen or when reintroduced into mice. Drug resistance was partially reversed by the collagen synthesis inhibitor ethyl-3,4-dihydroxybenzoate. Inhibition of integrin β1/Src blocked collagen-induced resistance to TPB and inhibited growth of drug-resistant tumors. High collagen II expression was associated with significantly lower clinical response to neoadjuvant anti-HER2 therapy in HER2(+) breast cancer patients. Overall, these data suggest that upregulation of collagen/integrin/Src signaling contributes to resistance to combinatorial HER2 and PI3K inhibition. Cancer Res; 77(12); 3280-92. ©2017 AACR. ©2017 American Association for Cancer Research.

  17. A Novel PTEN/Mutant p53/c-Myc/Bcl-XL Axis Mediates Context-Dependent Oncogenic Effects of PTEN with Implications for Cancer Prognosis and Therapy

    Directory of Open Access Journals (Sweden)

    Xiaoping Huang

    2013-08-01

    Full Text Available Phosphatase and tensin homolog located on chromosome 10 (PTEN is one of the most frequently mutated tumor suppressors in human cancer including in glioblastoma. Here, we show that PTEN exerts unconventional oncogenic effects in glioblastoma through a novel PTEN/mutant p53/c-Myc/Bcl-XL molecular and functional axis. Using a wide array of molecular, genetic, and functional approaches, we demonstrate that PTEN enhances a transcriptional complex containing gain-of-function mutant p53, CBP, and NFY in human glioblastoma cells and tumor tissues. The mutant p53/CBP/NFY complex transcriptionally activates the oncogenes c-Myc and Bcl-XL, leading to increased cell proliferation, survival, invasion, and clonogenicity. Disruption of the mutant p53/c-Myc/Bcl-XL axis or mutant p53/CBP/NFY complex reverses the transcriptional and oncogenic effects of PTEN and unmasks its tumor-suppressive function. Consistent with these data, we find that PTEN expression is associated with worse patient survival than PTEN loss in tumors harboring mutant p53 and that a small molecule modulator of p53 exerts greater antitumor effects in PTEN-expressing cancer cells. Altogether, our study describes a new signaling pathway that mediates context-dependent oncogenic/tumor-suppressive role of PTEN. The data also indicate that the combined mutational status of PTEN and p53 influences cancer prognosis and anticancer therapies that target PTEN and p53.

  18. Combining immunotherapy with oncogene-targeted therapy: a new road for melanoma treatment

    Directory of Open Access Journals (Sweden)

    Mariana eAris

    2015-02-01

    Full Text Available Cutaneous melanoma arises from the malignant transformation of skin melanocytes; its incidence and mortality have been increasing steadily over the last fifty-years, now representing 3% of total tumors. Once melanoma metastasizes, prognosis is somber and therapeutic options are limited. However, the discovery of prevalent BRAF mutations in at least 50% of melanoma tumors led to development of BRAF inhibitors, and other drugs targeting the MAPK pathway including MEK inhibitors, are changing this reality. These recently approved treatments for metastatic melanoma have made a significant impact on patient survival; though the results are shadowed by the appearance of drug-resistance. Combination therapies provide a rational strategy to potentiate efficacy and potentially overcome resistance. Undoubtedly, the last decade has also born an renaissance of immunotherapy, and encouraging advances in metastatic melanoma treatment are illuminating the road. Immune checkpoint blockades, such as CTLA-4 antagonist-antibodies, and multiple cancer vaccines are now invaluable arms of anti-tumor therapy. Recent work has brought to light the delicate relationship between tumor biology and the immune system. Host immunity contributes to the antitumor activity of oncogene-targeted inhibitors within a complex network of cytokines and chemokines. Therefore, combining immunotherapy with oncogene-targeted drugs may be the key to melanoma control. Here we review ongoing clinical studies of combination therapies using both oncogene inhibitors and immunotherapeutic strategies in melanoma patients. We will revisit the preclinical evidence that tested sequential and concurrent schemes in suitable animal models and formed the basis for the current trials. Finally, we will discuss potential future directions of the field.

  19. The Plasticity of Oncogene Addiction: Implications for Targeted Therapies Directed to Receptor Tyrosine Kinases

    Directory of Open Access Journals (Sweden)

    Vinochani Pillay

    2009-05-01

    Full Text Available A common mutation of the epidermal growth factor receptor (EGFR in glioblastoma multiforme (GBM is an extracellular truncation known as the de2-7 EGFR (or EGFRvIII. Hepatocyte growth factor (HGF is the ligand for the receptor tyrosine kinase (RTK c-Met, and this signaling axis is often active in GBM. The expression of the HGF/c-Met axis or de2-7 EGFR independently enhances GBMgrowth and invasiveness, particularly through the phosphatidylinositol-3 kinase/pAkt pathway. Using RTK arrays, we show that expression of de2-7 EGFR in U87MG GBM cells leads to the coactivation of several RTKs, including platelet-derived growth factor receptor β and c-Met. A neutralizing antibody to HGF (AMG102 did not inhibit de2-7 EGFR-mediated activation of c-Met, demonstrating that it is ligand-independent. Therapy for parental U87MG xenografts with AMG 102 resulted in significant inhibition of tumor growth, whereas U87MG.Δ2-7 xenografts were profoundly resistant. Treatment of U87MG.Δ2-7 xenografts with panitumumab, an anti-EGFR antibody, only partially inhibited tumor growth as xenografts rapidly reverted to the HGF/c-Met signaling pathway. Cotreatment with panitumumab and AMG 102 prevented this escape leading to significant tumor inhibition through an apoptotic mechanism, consistent with the induction of oncogenic shock. This observation provides a rationale for using panitumumab and AMG 102 in combination for the treatment of GBM patients. These results illustrate that GBM cells can rapidly change the RTK driving their oncogene addiction if the alternate RTK signals through the same downstream pathway. Consequently, inhibition of a dominant oncogene by targeted therapy can alter the hierarchy of RTKs resulting in rapid therapeutic resistance.

  20. Relationship between the high-risk HPV infection and the expression of oncogenes, anti-oncogenes in cervical dysplasia

    Institute of Scientific and Technical Information of China (English)

    Li-Ping Shi; Xiu-Jie Sheng

    2017-01-01

    Objective:To study the relationship between the infection of high-risk HPV in cervical precancerous lesion and the expression of oncogene, anti-oncogene.Methods:218 cases ofcervical intraepithelial neoplasia patients in our hospital during May 2014–May 2016 were chosed and divided into high-risk HPV group (n=107), low-risk HPV group (n=111) according to cervical tissue HPV test; another 100 cases of patients received cervical biopsy and confirmed as benign lesions were enrolled in the control group. RT-PCR method was used to detect the mRNA expression of proto-oncogene and anti-oncogene in three groups, Western-blot method was used to detect the protein expression of Sox-2 and Wnt/β-catenin signal pathway.Results: mRNA expression of oncogene DEK, Bmi-1, c-fos, K-ras, Prdx4 in high-risk HPV group were higher than low-risk HPV group and control group (P<0.05); mRNA expression of anti-oncogene P27, P16, DAPK, PTEN, eIF4E3 in high-risk HPV group were lower than low-risk HPV group and control group (P<0.05); expression of Sox-2 and Wnt/β-catenin signaling pathway protein Sox-2,β-catenin, wnt-1, wnt-3a in high-risk HPV group were higher than low-risk HPV group and control group (P<0.05).Conclusions:High-risk HPV infection can increase the expression of oncogenes and reduce the expression of anti-oncogenes in cervical dysplasia tissues on Sox-2- and Wnt/β-catenin signaling pathway manners.

  1. Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4.

    Science.gov (United States)

    Ren, Yin; Cheung, Hiu Wing; von Maltzhan, Geoffrey; Agrawal, Amit; Cowley, Glenn S; Weir, Barbara A; Boehm, Jesse S; Tamayo, Pablo; Karst, Alison M; Liu, Joyce F; Hirsch, Michelle S; Mesirov, Jill P; Drapkin, Ronny; Root, David E; Lo, Justin; Fogal, Valentina; Ruoslahti, Erkki; Hahn, William C; Bhatia, Sangeeta N

    2012-08-15

    The comprehensive characterization of a large number of cancer genomes will eventually lead to a compendium of genetic alterations in specific cancers. Unfortunately, the number and complexity of identified alterations complicate endeavors to identify biologically relevant mutations critical for tumor maintenance because many of these targets are not amenable to manipulation by small molecules or antibodies. RNA interference provides a direct way to study putative cancer targets; however, specific delivery of therapeutics to the tumor parenchyma remains an intractable problem. We describe a platform for the discovery and initial validation of cancer targets, composed of a systematic effort to identify amplified and essential genes in human cancer cell lines and tumors partnered with a novel modular delivery technology. We developed a tumor-penetrating nanocomplex (TPN) that comprised small interfering RNA (siRNA) complexed with a tandem tumor-penetrating and membrane-translocating peptide, which enabled the specific delivery of siRNA deep into the tumor parenchyma. We used TPN in vivo to evaluate inhibitor of DNA binding 4 (ID4) as a novel oncogene. Treatment of ovarian tumor-bearing mice with ID4-specific TPN suppressed growth of established tumors and significantly improved survival. These observations not only credential ID4 as an oncogene in 32% of high-grade ovarian cancers but also provide a framework for the identification, validation, and understanding of potential therapeutic cancer targets.

  2. Drosophila PRL-1 is a growth inhibitor that counteracts the function of the Src oncogene.

    Science.gov (United States)

    Pagarigan, Krystle T; Bunn, Bryce W; Goodchild, Jake; Rahe, Travis K; Weis, Julie F; Saucedo, Leslie J

    2013-01-01

    Phosphatase of Regenerating Liver (PRL) family members have emerged as molecular markers that significantly correlate to the ability of many cancers to metastasize. However, contradictory cellular responses to PRL expression have been reported, including the inhibition of cell cycle progression. An obvious culprit for the discrepancy is the use of dozens of different cell lines, including many isolated from tumors or cultured cells selected for immortalization which may have missing or mutated modulators of PRL function. We created transgenic Drosophila to study the effects of PRL overexpression in a genetically controlled, organismal model. Our data support the paradigm that the normal cellular response to high levels of PRL is growth suppression and furthermore, that PRL can counter oncogenic activity of Src. The ability of PRL to inhibit growth under normal conditions is dependent on a CAAX motif that is required to localize PRL to the apical edge of the lateral membrane. However, PRL lacking the CAAX motif can still associate indiscriminately with the plasma membrane and retains its ability to inhibit Src function. We propose that PRL binds to other membrane-localized proteins that are effectors of Src or to Src itself. This first examination of PRL in a model organism demonstrates that PRL performs as a tumor suppressor and underscores the necessity of identifying the conditions that enable it to transform into an oncogene in cancer.

  3. mTORC1 is a critical mediator of oncogenic Semaphorin3A signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Daisuke; Kawahara, Kohichi; Maeda, Takehiko, E-mail: maeda@nupals.ac.jp

    2016-08-05

    Aberration of signaling pathways by genetic mutations or alterations in the surrounding tissue environments can result in tumor development or metastasis. However, signaling molecules responsible for these processes have not been completely elucidated. Here, we used mouse Lewis lung carcinoma cells (LLC) to explore the mechanism by which the oncogenic activity of Semaphorin3A (Sema3A) signaling is regulated. Sema3A knockdown by shRNA did not affect apoptosis, but decreased cell proliferation in LLCs; both the mammalian target of rapamycin complex 1 (mTORC1) level and glycolytic activity were also decreased. In addition, Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation by oligomycin, but conferred resistance to decreased cell viability induced by glucose starvation. Furthermore, recombinant SEMA3A rescued the attenuation of cell proliferation and glycolytic activity in LLCs after Sema3A knockdown, whereas mTORC1 inhibition by rapamycin completely counteracted this effect. These results demonstrate that Sema3A signaling exerts its oncogenic effect by promoting an mTORC1-mediated metabolic shift from oxidative phosphorylation to aerobic glycolysis. -- Highlights: •Sema3A knockdown decreased proliferation of Lewis lung carcinoma cells (LLCs). •Sema3A knockdown decreased mTORC1 levels and glycolytic activity in LLCs. •Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation. •Sema3A promotes shift from oxidative phosphorylation to aerobic glycolysis via mTORC1.

  4. RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer.

    Science.gov (United States)

    Qiao, Y; Lin, S J; Chen, Y; Voon, D C-C; Zhu, F; Chuang, L S H; Wang, T; Tan, P; Lee, S C; Yeoh, K G; Sudol, M; Ito, Y

    2016-05-19

    Runt-related transcription factor 3 (RUNX3) is a well-documented tumour suppressor that is frequently inactivated in gastric cancer. Here, we define a novel mechanism by which RUNX3 exerts its tumour suppressor activity involving the TEAD-YAP complex, a potent positive regulator of proliferative genes. We report that the TEAD-YAP complex is not only frequently hyperactivated in liver and breast cancer, but also confers a strong oncogenic activity in gastric epithelial cells. The increased expression of TEAD-YAP in tumour tissues significantly correlates with poorer overall survival of gastric cancer patients. Strikingly, RUNX3 physically interacts with the N-terminal region of TEAD through its Runt domain. This interaction markedly reduces the DNA-binding ability of TEAD that attenuates the downstream signalling of TEAD-YAP complex. Mutation of RUNX3 at Arginine 122 to Cysteine, which was previously identified in gastric cancer, impairs the interaction between RUNX3 and TEAD. Our data reveal that RUNX3 acts as a tumour suppressor by negatively regulating the TEAD-YAP oncogenic complex in gastric carcinogenesis.

  5. The non-coding oncogene: a case of missing DNA evidence?

    Directory of Open Access Journals (Sweden)

    Puja eShahrouki

    2012-09-01

    Full Text Available The evidence that links classical protein-coding proto-oncogenes and tumor suppressors, such as MYC, RAS, P53, and RB, to carcinogenesis is indisputable. Multiple lines of proof show how random somatic genomic alteration of such genes (e.g. mutation, deletion or amplification, followed by selection and clonal expansion, forms the main molecular basis of tumor development. Many important cancer genes were discovered using low-throughput approaches in the pre-genomic era, and this knowledge is today solidified and expanded upon by modern genome-scale methodologies. In several recent studies, non-coding RNAs (ncRNAs, such as microRNAs and long non-coding RNAs (lncRNAs, have been shown to contribute to tumor development. However, in comparison with coding cancer genes, the genomic (DNA-level evidence is sparse for ncRNAs. The coding proto-oncogenes and tumor suppressors that we know of today are major molecular hubs in both normal and malignant cells. The search for non-coding RNAs with tumor driver or suppressor roles therefore holds the additional promise of pinpointing important, biologically active, ncRNAs in a vast and largely uncharacterized non-coding transcriptome. Here, we assess the available DNA-level data that links non-coding genes to tumor development. We further consider historical, methodological and biological aspects, and discuss future prospects of ncRNAs in cancer.

  6. Molecular Alterations of KIT Oncogene in Gliomas

    Directory of Open Access Journals (Sweden)

    Ana L. Gomes

    2007-01-01

    Full Text Available Gliomas are the most common and devastating primary brain tumours. Despite therapeutic advances, the majority of gliomas do not respond either to chemo or radiotherapy. KIT, a class III receptor tyrosine kinase (RTK, is frequently involved in tumourigenic processes. Currently, KIT constitutes an attractive therapeutic target. In the present study we assessed the frequency of KIT overexpression in gliomas and investigated the genetic mechanisms underlying KIT overexpression. KIT (CD117 immunohistochemistry was performed in a series of 179 gliomas of various grades. KIT activating gene mutations (exons 9, 11, 13 and 17 and gene amplification analysis, as defined by chromogenic in situ hybridization (CISH and quantitative real-time PCR (qRT-PCR were performed in CD117 positive cases. Tumour cell immunopositivity was detected in 15.6% (28/179 of cases, namely in 25% (1/4 of pilocytic astrocytomas, 25% (5/20 of diffuse astrocytomas, 20% (1/5 of anaplastic astrocytomas, 19.5% (15/77 of glioblastomas and one third (3/9 of anaplastic oligoastrocytomas. Only 5.7% (2/35 of anaplastic oligodendrogliomas showed CD117 immunoreactivity. No association was found between tumour CD117 overexpression and patient survival. In addition, we also observed CD117 overexpression in endothelial cells, which varied from 0–22.2% of cases, being more frequent in high-grade lesions. No KIT activating mutations were identified. Interestingly, CISH and/or qRT-PCR analysis revealed the presence of KIT gene amplification in 6 glioblastomas and 2 anaplastic oligoastrocytomas, corresponding to 33% (8/24 of CD117 positive cases. In conclusion, our results demonstrate that KIT gene amplification rather than gene mutation is a common genetic mechanism underlying KIT expression in subset of malignant gliomas. Further studies are warranted to determine whether glioma patients exhibiting KIT overexpression and KIT gene amplification may benefit from therapy with anti-KIT RTK

  7. Colorectal carcinomas with submucosal invasion (pT1): analysis of histopathological and molecular factors predicting lymph node metastasis.

    Science.gov (United States)

    Pai, Reetesh K; Chen, Yuwei; Jakubowski, Maureen A; Shadrach, Bonnie L; Plesec, Thomas P; Pai, Rish K

    2017-01-01

    Submucosally invasive colorectal carcinoma (pT1) has the potential to be cured by local excision. In US surgical intervention is reserved for tumors with high-grade morphology, lymphvascular invasion, and close/positive margin. In other countries, particularly Japan, surgical therapy is also recommended for mucinous tumors, tumors with >1000 μm of submucosal invasion, and those with high tumor budding. These histological features have not been well evaluated in a western cohort of pT1 carcinomas. In a cohort of 116 surgically resected pT1 colorectal carcinomas, high tumor budding (P1000 μm (P=0.04), and high-grade morphology (P=0.04) were significantly associated with lymph node metastasis on univariate analysis. Mucinous differentiation, tumor location, tumor growth pattern, and size of invasive component were not significant. On multivariate analysis, only high tumor budding was associated with lymph node metastasis with an odds ratio of 4.3 (P=0.004). A subset of 48 tumors (22 node-positive and 26 node-negative) was analyzed for mutations in 50 oncogenes and tumor suppressors. No statistically significant molecular alterations in these 50 genes were associated with lymph node status. However, lymphatic invasion was associated with BRAF mutations (P=0.01). Furthermore, high tumor budding was associated with mutations in TP53 (P=0.03) and inversely associated with mutations in the mTOR pathway (PIK3CA and AKT, P=0.02). In conclusion, this study demonstrates the importance of identifying high tumor budding in pT1 carcinomas when considering additional surgical resection. Molecular alterations associated with adverse histological features are identified.

  8. The contrived mutant p53 oncogene – beyond loss of functions

    Directory of Open Access Journals (Sweden)

    Kanaga eSabapathy

    2015-12-01

    Full Text Available Mutations in p53 are almost synonymous with cancer - be it susceptibility to the disease or response to treatment - and therefore, are a critical determinant of overall survival. As most of these mutations occur in the DNA-binding domain of p53, many of the clinical correlations with mutant p53 have been initially relegated to the loss of its transcription-dependent activities as a tumor suppressor. However, significant efforts over the last two decades have led to the vast knowledge on the potential functions of the mutated p53 protein, that have been attributed to the physical presence of the mutant protein rather than the loss of its wild-type functions. Beyond the inhibitory effects of mutant p53 on the remaining wild-type protein that leads to the dominant-negative effect in the heterozygous state, mutant p53’s presence has also been significantly attributed to novel gain-of-functions that lead to addiction of cancer cells to its presence for survival, as well as for their ability to invade and metastasize, elevating it to a contrived oncogene that drives the cancer cells forward. This review will summarize the functional consequences of the presence of mutant p53 protein on cellular and organismal physiology.

  9. New strategies in metastatic melanoma: oncogene-defined taxonomy leads to therapeutic advances.

    Science.gov (United States)

    Flaherty, Keith T; Fisher, David E

    2011-08-01

    The discovery of BRAF and KIT mutations provided the first basis for a molecular classification of cutaneous melanoma on therapeutic grounds. As BRAF-targeted therapy quickly moves toward regulatory approval and incorporation as standard therapy for patients with metastatic disease, proof of concept has also been established for targeting mutated KIT in melanoma. NRAS mutations have long been known to be present in a subset of melanomas and represent an elusive subgroup for targeted therapies. Matching patient subgroups defined by genetic aberrations in the phosphoinositide 3-kinase and p16/cyclin dependent kinase 4 (CDK4) pathways with appropriate targeted therapies has not yet been realized. And, an increasing understanding of lineage-specific transcriptional regulators, most notably MITF, and how they may play a role in melanoma pathophysiology, has provided another axis to approach with therapies. The foundation has been established for individual oncogene targeting, and current investigations seek to understand the intersection of these susceptibilities and other described potential targets and pathways. The melanoma field stands poised to take the lead among cancer subtypes in advancing combination therapy strategies that simultaneously target multiple biologic underpinnings of the disease.

  10. Comparative sequence analysis of a highly oncogenic but horizontal spread-defective clone of Marek's disease virus.

    Science.gov (United States)

    Spatz, Stephen J; Zhao, Yuguang; Petherbridge, Lawrence; Smith, Lorraine P; Baigent, Susan J; Nair, Venugopal

    2007-12-01

    Marek's disease virus (MDV) is a cell-associated alphaherpesvirus that induces rapid-onset T-cell lymphomas in poultry. MDV isolates vary greatly in pathogenicity. While some of the strains such as CVI988 are non-pathogenic and are used as vaccines, others such as RB-1B are highly oncogenic. Molecular determinants associated with differences in pathogenicity are not completely understood. Comparison of the genome sequences of phenotypically different strains could help to identify molecular determinants of pathogenicity. We have previously reported the construction of bacterial artificial chromosome (BAC) clones of RB-1B from which fully infectious viruses could be reconstituted upon DNA transfection into chicken cells. MDV reconstituted from one of these clones (pRB-1B-5) showed similar in vitro and in vivo replication kinetics and oncogenicity as the parental virus. However, unlike the parental RB-1B virus, the BAC-derived virus showed inability to spread between birds. In order to identify the unique determinants for oncogenicity and the ''non-spreading phenotype'' of MDV derived from this clone, we determined the full-length sequence of pRB-1B-5. Comparative sequence analysis with the published sequences of strains such as Md5, Md11, and CVI988 identified frameshift mutations in RLORF1, protein kinase (UL13), and glycoproteins C (UL44) and D (US6). Comparison of the sequences of these genes with the parental virus indicated that the RLORF1, UL44, and US6 mutations were also present in the parental RB-1B stock of the virus. However with regard to UL13 mutation, the parental RB-1B stock appeared to be a mixture of wild type and mutant viruses, indicating that the BAC cloning has selected a mutant clone. Although further studies are needed to evaluate the role of these genes in the horizontal-spreading defective phenotype, our data clearly indicate that mutations in these genes do not affect the oncogenicity of MDV.

  11. Multi-Center Evaluation of the Fully Automated PCR-Based Idylla™ KRAS Mutation Assay for Rapid KRAS Mutation Status Determination on Formalin-Fixed Paraffin-Embedded Tissue of Human Colorectal Cancer

    DEFF Research Database (Denmark)

    Solassol, Jérôme; Vendrell, Julie; Märkl, Bruno

    2016-01-01

    sample-to-result solution. This test enables qualitative detection of 21 mutations in codons 12, 13, 59, 61, 117, and 146 of the KRAS oncogene being clinically relevant according to the latest clinical guidelines. Here, the performance of the Idylla™ KRAS Mutation Assay, for Research Use Only...

  12. Stable oncogenic transformation induced by microcell-mediated gene transfer

    Institute of Scientific and Technical Information of China (English)

    吕有勇; Donald G.Blair

    1995-01-01

    Oncogenes have been identified using DNA-mediated transfection, but the size of the transferable and unrearranged DNA, gene rearrangement and amplification which occur during the transfection process limit the use of the techniques. We have evaluated microcell-mediated gene transfer techniques for the transfer and analysis of dominant oncogenes. MNNG-HOS, a transformed human cell line which contained the met oncogene mapping to human chromosome 7 was infected with retroviruses carrying drug resistance markers and used to optimize microcell preparation and transfer. Stable and drug-resistant hybrids containing single human chromosomes as well as the foci of the transformed cells containing the activated met oncogene and intact hitman chromosomes were obtained. Hybridization analysis with probes (i.e. collA2, pJ3.11) mapping up to 1 Mb away from met shows that the cells from the individual focr contain different amounts of apparently unrearranged human DNA associated with the oncogene, and the microcell-g

  13. Oncogenes and RNA splicing of human tumor viruses.

    Science.gov (United States)

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.

  14. P53 suppresses expression of the 14-3-3gamma oncogene