WorldWideScience

Sample records for oncogene-dependent acinar cell

  1. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation

    Directory of Open Access Journals (Sweden)

    Elisabeth Hessmann

    2016-01-01

    Full Text Available Acinar transdifferentiation toward a duct-like phenotype constitutes the defining response of acinar cells to external stress signals and is considered to be the initial step in pancreatic carcinogenesis. Despite the requirement for oncogenic Kras in pancreatic cancer (PDAC development, oncogenic Kras is not sufficient to drive pancreatic carcinogenesis beyond the level of premalignancy. Instead, secondary events, such as inflammation-induced signaling activation of the epidermal growth factor (EGFR or induction of Sox9 expression, are required for tumor formation. Herein, we aimed to dissect the mechanism that links EGFR signaling to Sox9 gene expression during acinar-to-ductal metaplasia in pancreatic tissue adaptation and PDAC initiation. We show that the inflammatory transcription factor NFATc4 is highly induced and localizes in the nucleus in response to inflammation-induced EGFR signaling. Moreover, we demonstrate that NFATc4 drives acinar-to-ductal conversion and PDAC initiation through direct transcriptional induction of Sox9. Therefore, strategies designed to disrupt NFATc4 induction might be beneficial in the prevention or therapy of PDAC.

  2. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

    Science.gov (United States)

    Hermann, Patrick C; Sancho, Patricia; Cañamero, Marta; Martinelli, Paola; Madriles, Francesc; Michl, Patrick; Gress, Thomas; de Pascual, Ricardo; Gandia, Luis; Guerra, Carmen; Barbacid, Mariano; Wagner, Martin; Vieira, Catarina R; Aicher, Alexandra; Real, Francisco X; Sainz, Bruno; Heeschen, Christopher

    2014-11-01

    Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting

  3. Adrenoceptor-activated nitric oxide synthesis in salivary acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia; Dissing, Steen; Tritsaris, Katerina

    2000-01-01

    We investigated the cellular regulation of nitric oxide synthase (NOS) activity in isolated acinar cells from rat parotid and human labial salivary glands, using the newly developed fluorescent nitric oxide (NO) indicator, DAF-2. We found that sympathetic stimulation with norepinephrine (NE) caused...... a strong increase in NO synthesis that was not seen after parasympathetic stimulation with acetylcholine. In rat parotid acinar cells, we furthermore investigated to which extent the NOS activity was dependent on the intracellular free Ca2+ concentration ([Ca2+]i) by simultaneously measuring NO synthesis...

  4. Acinar Cell Cystadenocarcinoma of the Pancreas

    Directory of Open Access Journals (Sweden)

    Keita Aoto

    2017-09-01

    Full Text Available Acinar cell cystadenocarcinoma is a rare malignant epithelial neoplasm of the pancreas with a diffusely cystic, gross architecture in which the cysts are lined with neoplastic epithelial cells that demonstrate evidence of pancreatic exocrine enzyme production. This is the 10th case that has been reported in the literature. A 77-year-old male complaining of left hypochondrial pain was referred to our hospital for treatment of a pancreatic tumor. A huge, honeycomb-structured tumor was detected in the pancreatic tail. Distal pancreatectomy with total resection of the residual stomach and partial resection of the transverse colon were performed. Microscopically, there were variably sized cystic lesions in the tumor. Immunohistochemical examinations revealed that tumor cells were positive for alpha 1-antichymotrypsin and alpha 1-trypsin, showing that tumor cells had features of pancreatic acinar cells. Thus, the tumor was diagnosed as acinar cell cystadenocarcinoma. Herein, we report a rare case with acinar cell cystadenocarcinoma, which is the 10th case reported in the literature based on a PubMed search. We managed to resect the tumor completely by distal pancreatectomy with total resection of the residual stomach and partial resection of the transverse colon. The patient is still alive 26 months after surgery without any recurrence after 1 year of adjuvant chemotherapy with S-1.

  5. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells*

    Science.gov (United States)

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S.

    2016-01-01

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca2+] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca2+-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca2+ entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca2+-dependent up-regulation of AQP5. These important findings reveal that the Ca2+-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. PMID:26903518

  6. SOX2 regulates acinar cell development in the salivary gland

    Science.gov (United States)

    Emmerson, Elaine; May, Alison J; Nathan, Sara; Cruz-Pacheco, Noel; Lizama, Carlos O; Maliskova, Lenka; Zovein, Ann C; Shen, Yin; Muench, Marcus O; Knox, Sarah M

    2017-01-01

    Acinar cells play an essential role in the secretory function of exocrine organs. Despite this requirement, how acinar cells are generated during organogenesis is unclear. Using the acini-ductal network of the developing human and murine salivary gland, we demonstrate an unexpected role for SOX2 and parasympathetic nerves in generating the acinar lineage that has broad implications for epithelial morphogenesis. Despite SOX2 being expressed by progenitors that give rise to both acinar and duct cells, genetic ablation of SOX2 results in a failure to establish acini but not ducts. Furthermore, we show that SOX2 targets acinar-specific genes and is essential for the survival of acinar but not ductal cells. Finally, we illustrate an unexpected and novel role for peripheral nerves in the creation of acini throughout development via regulation of SOX2. Thus, SOX2 is a master regulator of the acinar cell lineage essential to the establishment of a functional organ. DOI: http://dx.doi.org/10.7554/eLife.26620.001 PMID:28623666

  7. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells.

    Science.gov (United States)

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S

    2016-04-15

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca(2+)] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca(2+)-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca(2+) entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca(2+)-dependent up-regulation of AQP5. These important findings reveal that the Ca(2+)-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Duct- and Acinar-Derived Pancreatic Ductal Adenocarcinomas Show Distinct Tumor Progression and Marker Expression

    Directory of Open Access Journals (Sweden)

    Rute M.M. Ferreira

    2017-10-01

    Full Text Available The cell of origin of pancreatic ductal adenocarcinoma (PDAC has been controversial. Here, we show that identical oncogenic drivers trigger PDAC originating from both ductal and acinar cells with similar histology but with distinct pathophysiology and marker expression dependent on cell of origin. Whereas acinar-derived tumors exhibited low AGR2 expression and were preceded by pancreatic intraepithelial neoplasias (PanINs, duct-derived tumors displayed high AGR2 and developed independently of a PanIN stage via non-mucinous lesions. Using orthotopic transplantation and chimera experiments, we demonstrate that PanIN-like lesions can be induced by PDAC as bystanders in adjacent healthy tissues, explaining the co-existence of mucinous and non-mucinous lesions and highlighting the need to distinguish between true precursor PanINs and PanIN-like bystander lesions. Our results suggest AGR2 as a tool to stratify PDAC according to cell of origin, highlight that not all PanIN-like lesions are precursors of PDAC, and add an alternative progression route to the current model of PDAC development.

  9. Marked differences in immunocytological localization of [3H]estradiol-binding protein in rat pancreatic acinar tumor cells compared to normal acinar cells

    International Nuclear Information System (INIS)

    Beaudoin, A.R.; Grondin, G.; St Jean, P.; Pettengill, O.; Longnecker, D.S.; Grossman, A.

    1991-01-01

    [ 3 H]Estradiol can bind to a specific protein in normal rat pancreatic acinar cells. Electron microscopic immunocytochemical analysis has shown this protein to be localized primarily in the rough endoplasmic reticulum and mitochondria. Rat exocrine pancreatic tumor cell lines, whether grown in tissue culture (AR42J) or as a tumor mass after sc injection into rats (DSL-2), lacked detectable amounts of this [ 3 H]estradiol-binding protein (EBP), as determined by the dextran-coated charcoal assay. Furthermore, primary exocrine pancreatic neoplasms induced with the carcinogen azaserine contained little or no detectable [ 3 H]estradiol-binding activity. However, electron immunocytochemical studies of transformed cells indicated the presence of material that cross-reacted with antibodies prepared against the [ 3 H]EBP. The immunopositive reaction in transformed cells was localized almost exclusively in lipid granules. Such lipid organelles in normal acinar cells, although present less frequently than in transformed cells, have never been observed to contain EBP-like immunopositive material. Presumably, the aberrant localization of EBP in these acinar tumor cells results in loss of function of this protein, which in normal pancreatic acinar cells appears to exert a modulating influence on zymogen granule formation and the process of secretion

  10. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation

    Directory of Open Access Journals (Sweden)

    Yiannis Drosos

    2016-03-01

    Full Text Available The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.

  11. Using CRISPR/Cas9 to Knock out Amylase in Acinar Cells Decreases Pancreatitis-Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Kohei Yasunaga

    2018-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm that originates from acinar cells. Acinar cells get reprogrammed to become duct cells, resulting in pancreatic cancer. Pancreatitis is an acinar cell inflammation, leading to “impaired autophagy flux”. Pancreatitis promotes acinar-to-ductal transdifferentiation. Expression of amylase gets eliminated during the progression of pancreatic cancer. Amylase is considered as an acinar cell marker; however, its function in cells is not known. Thus, we investigated whether amylase affects the acinar cell autophagy and whether it plays any role in development of pancreatitis. Here, we knocked out ATG12 in a pancreatic cancer cells and acinar cells using CRISPR/Cas9. Autophagy inhibition led to an increase in the expression of duct cell markers and a simultaneous decrease in that of acinar cell markers. It also caused an increase in cell viability and changes in mitochondrial morphology. Next, we knocked out amylase in acinar cells. Amylase deficiency decreased autophagy induced by pancreatitis. Our results suggest that amylase controls pancreatitis-induced autophagy. We found that eliminating amylase expression contributes to pancreatic cancer etiology by decreasing autophagy. Furthermore, our results indicate that amylase plays a role in selective pancreatitis-induced autophagy of pancreatic enzyme vesicles.

  12. Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy.

    Directory of Open Access Journals (Sweden)

    Mona Meyer

    Full Text Available Acute myeloid leukemia (AML is a clonal disease originating from myeloid progenitor cells with a heterogeneous genetic background. High-dose cytarabine is used as the standard consolidation chemotherapy. Oncogenic RAS mutations are frequently observed in AML, and are associated with beneficial response to cytarabine. Why AML-patients with oncogenic RAS benefit most from high-dose cytarabine post-remission therapy is not well understood. Here we used bone marrow cells expressing a conditional MLL-ENL-ER oncogene to investigate the interaction of oncogenic RAS and chemotherapeutic agents. We show that oncogenic RAS synergizes with cytotoxic agents such as cytarabine in activation of DNA damage checkpoints, resulting in a p53-dependent genetic program that reduces clonogenicity and increases myeloid differentiation. Our data can explain the beneficial effects observed for AML patients with oncogenic RAS treated with higher dosages of cytarabine and suggest that induction of p53-dependent differentiation, e.g. by interfering with Mdm2-mediated degradation, may be a rational approach to increase cure rate in response to chemotherapy. The data also support the notion that the therapeutic success of cytotoxic drugs may depend on their ability to promote the differentiation of tumor-initiating cells.

  13. Acinar Cell Cyst adenoma (Acinar Cystic Transformation) of the Pancreas: the Radiologic-Pathologic Features

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, Mehmet; Algin, Oktay; Gundogdu, Haldun [Ataturk Training and Research Hospital, Ankara (Turkmenistan); Ugras, Serdar [Selcuk University, Selcuklu Medical Faculty, Konya (Turkmenistan)

    2011-02-15

    Acinar cystic transformation of the pancreas is also known as acinar cell cystadenoma (ACC), and this is an extremely rare benign lesion that was first described in April 2002. We report here on a case of a previously asymptomatic patient with pancreatic ACC and this was diagnosed by computed tomography (CT) and magnetic resonance imaging (MRI). To the best of our knowledge, there is no previous report concerning the CT or MRI features of ACC in the medical literature. We present here the CT, MRI and pathological findings of pancreatic ACC

  14. Acinar Cell Cyst adenoma (Acinar Cystic Transformation) of the Pancreas: the Radiologic-Pathologic Features

    International Nuclear Information System (INIS)

    Gumus, Mehmet; Algin, Oktay; Gundogdu, Haldun; Ugras, Serdar

    2011-01-01

    Acinar cystic transformation of the pancreas is also known as acinar cell cystadenoma (ACC), and this is an extremely rare benign lesion that was first described in April 2002. We report here on a case of a previously asymptomatic patient with pancreatic ACC and this was diagnosed by computed tomography (CT) and magnetic resonance imaging (MRI). To the best of our knowledge, there is no previous report concerning the CT or MRI features of ACC in the medical literature. We present here the CT, MRI and pathological findings of pancreatic ACC

  15. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  16. Ca2+ signaling in pancreatic acinar cells: physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    O.H. Petersen

    2009-01-01

    Full Text Available The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.

  17. Expression of human cationic trypsinogen (PRSS1) in murine acinar cells promotes pancreatitis and apoptotic cell death

    Science.gov (United States)

    Athwal, T; Huang, W; Mukherjee, R; Latawiec, D; Chvanov, M; Clarke, R; Smith, K; Campbell, F; Merriman, C; Criddle, D; Sutton, R; Neoptolemos, J; Vlatković, N

    2014-01-01

    Hereditary pancreatitis (HP) is an autosomal dominant disease that displays the features of both acute and chronic pancreatitis. Mutations in human cationic trypsinogen (PRSS1) are associated with HP and have provided some insight into the pathogenesis of pancreatitis, but mechanisms responsible for the initiation of pancreatitis have not been elucidated and the role of apoptosis and necrosis has been much debated. However, it has been generally accepted that trypsinogen, prematurely activated within the pancreatic acinar cell, has a major role in the initiation process. Functional studies of HP have been limited by the absence of an experimental system that authentically mimics disease development. We therefore developed a novel transgenic murine model system using wild-type (WT) human PRSS1 or two HP-associated mutants (R122H and N29I) to determine whether expression of human cationic trypsinogen in murine acinar cells promotes pancreatitis. The rat elastase promoter was used to target transgene expression to pancreatic acinar cells in three transgenic strains that were generated: Tg(Ela-PRSS1)NV, Tg(Ela-PRSS1*R122H)NV and Tg(Ela-PRSS1*N29I)NV. Mice were analysed histologically, immunohistochemically and biochemically. We found that transgene expression is restricted to pancreatic acinar cells and transgenic PRSS1 proteins are targeted to the pancreatic secretory pathway. Animals from all transgenic strains developed pancreatitis characterised by acinar cell vacuolisation, inflammatory infiltrates and fibrosis. Transgenic animals also developed more severe pancreatitis upon treatment with low-dose cerulein than controls, displaying significantly higher scores for oedema, inflammation and overall histopathology. Expression of PRSS1, WT or mutant, in acinar cells increased apoptosis in pancreatic tissues and isolated acinar cells. Moreover, studies of isolated acinar cells demonstrated that transgene expression promotes apoptosis rather than necrosis. We therefore

  18. Phosphorylated intermediate of (Ca2+ + K+)-stimulated Mg2+-dependent transport ATPase in endoplasmic reticulum from rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Imamura, K.; Schulz, I.

    1985-01-01

    Formation and decomposition of the phosphorylated intermediate of endoplasmic reticulum (Ca 2+ + Mg 2+ )-ATPase from pancreatic acinar cells have been studied using lithium dodecyl sulfate- and tetradecyltrimethylammonium bromide-polyacrylamide gel electrophoresis. Incorporation of 32 P from [gamma- 32 P]ATP is Ca 2+ -dependent (approximate Km for free [Ca 2+ ] = 2-3 x 10(-8) mol/liter). Formation of the 100-kDa phosphoprotein is rapid, reaching maximal 32 P incorporation within 1 s at room temperature. At 4 degrees C, phosphorylation is slower and dephosphorylation is drastically decreased. For dephosphorylation, Mg 2+ and monovalent cations such as K + or Na + are necessary. Vanadate inhibits both 32 P incorporation and 32 P liberation dose dependently (Km = 3 x 10(-6) mol/liter), whereas mitochondrial inhibitors and ouabain have no effect. The phosphoprotein is stable at pH 2 and destabilizes with increasing pH being completely decomposed at pH 9. Reduction of 32 P incorporation in the presence of high concentrations of cold ATP and hydroxylamine suggests formation of acylphosphate present in the ATPase intermediate. The characteristics of Ca 2+ , cation, and pH dependencies of the ATPase activity are similar to those previously described for MgATP-dependent Ca 2+ transport into rough endoplasmic reticulum from pancreatic acinar cells. The data suggest that the 100-kDa phosphoprotein as described in this study is the intermediate of this Ca2+ transport ATPase

  19. SEC23B is required for pancreatic acinar cell function in adult mice

    Science.gov (United States)

    Khoriaty, Rami; Vogel, Nancy; Hoenerhoff, Mark J.; Sans, M. Dolors; Zhu, Guojing; Everett, Lesley; Nelson, Bradley; Durairaj, Haritha; McKnight, Brooke; Zhang, Bin; Ernst, Stephen A.; Ginsburg, David; Williams, John A.

    2017-01-01

    Mice with germline absence of SEC23B die perinatally, exhibiting massive pancreatic degeneration. We generated mice with tamoxifen-inducible, pancreatic acinar cell–specific Sec23b deletion. Inactivation of Sec23b exclusively in the pancreatic acinar cells of adult mice results in decreased overall pancreatic weights from pancreatic cell loss (decreased pancreatic DNA, RNA, and total protein content), as well as degeneration of exocrine cells, decreased zymogen granules, and alterations in the endoplasmic reticulum (ER), ranging from vesicular ER to markedly expanded cisternae with accumulation of moderate-density content or intracisternal granules. Acinar Sec23b deletion results in induction of ER stress and increased apoptosis in the pancreas, potentially explaining the loss of pancreatic cells and decreased pancreatic weight. These findings demonstrate that SEC23B is required for normal function of pancreatic acinar cells in adult mice. PMID:28539403

  20. Acinar cell-specific knockout of the PTHrP gene decreases the proinflammatory and profibrotic responses in pancreatitis.

    Science.gov (United States)

    Bhatia, Vandanajay; Rastellini, Cristiana; Han, Song; Aronson, Judith F; Greeley, George H; Falzon, Miriam

    2014-09-01

    Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. Here, we show elevated PTHrP levels in mouse models of pancreatitis induced by chronic cerulein administration and pancreatic duct ligation. Because acinar cells play a major role in the pathophysiology of pancreatitis, mice with acinar cell-specific targeted disruption of the Pthrp gene (PTHrP(Δacinar)) were generated to assess the role of acinar cell-secreted PTHrP in pancreatitis. These mice were generated using Cre-LoxP technology and the acinar cell-specific elastase promoter. PTHrP(Δacinar) exerted protective effects in cerulein and pancreatic duct ligation models, evident as decreased edema, histological damage, amylase secretion, pancreatic stellate cell (PSC) activation, and extracellular matrix deposition. Treating acinar cells in vitro with cerulein increased IL-6 expression and NF-κB activity; these effects were attenuated in PTHrP(Δacinar) cells, as were the cerulein- and carbachol-induced elevations in amylase secretion. The cerulein-induced upregulation of procollagen I expression was lost in PSCs from PTHrP(Δacinar) mice. PTHrP immunostaining was elevated in human CP sections. The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7-34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs. Copyright © 2014 the American Physiological Society.

  1. A computer-based automated algorithm for assessing acinar cell loss after experimental pancreatitis.

    Directory of Open Access Journals (Sweden)

    John F Eisses

    Full Text Available The change in exocrine mass is an important parameter to follow in experimental models of pancreatic injury and regeneration. However, at present, the quantitative assessment of exocrine content by histology is tedious and operator-dependent, requiring manual assessment of acinar area on serial pancreatic sections. In this study, we utilized a novel computer-generated learning algorithm to construct an accurate and rapid method of quantifying acinar content. The algorithm works by learning differences in pixel characteristics from input examples provided by human experts. HE-stained pancreatic sections were obtained in mice recovering from a 2-day, hourly caerulein hyperstimulation model of experimental pancreatitis. For training data, a pathologist carefully outlined discrete regions of acinar and non-acinar tissue in 21 sections at various stages of pancreatic injury and recovery (termed the "ground truth". After the expert defined the ground truth, the computer was able to develop a prediction rule that was then applied to a unique set of high-resolution images in order to validate the process. For baseline, non-injured pancreatic sections, the software demonstrated close agreement with the ground truth in identifying baseline acinar tissue area with only a difference of 1% ± 0.05% (p = 0.21. Within regions of injured tissue, the software reported a difference of 2.5% ± 0.04% in acinar area compared with the pathologist (p = 0.47. Surprisingly, on detailed morphological examination, the discrepancy was primarily because the software outlined acini and excluded inter-acinar and luminal white space with greater precision. The findings suggest that the software will be of great potential benefit to both clinicians and researchers in quantifying pancreatic acinar cell flux in the injured and recovering pancreas.

  2. Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRASG12D-driven Pancreatic TumorigenesisSummary

    Directory of Open Access Journals (Sweden)

    Nicolas Chuvin

    2017-09-01

    Full Text Available Background & Aims: Transforming growth factor beta (TGFβ acts either as a tumor suppressor or as an oncogene, depending on the cellular context and time of activation. TGFβ activates the canonical SMAD pathway through its interaction with the serine/threonine kinase type I and II heterotetrameric receptors. Previous studies investigating TGFβ-mediated signaling in the pancreas relied either on loss-of-function approaches or on ligand overexpression, and its effects on acinar cells have so far remained elusive. Methods: We developed a transgenic mouse model allowing tamoxifen-inducible and Cre-mediated conditional activation of a constitutively active type I TGFβ receptor (TβRICA in the pancreatic acinar compartment. Results: We observed that TβRICA expression induced acinar-to-ductal metaplasia (ADM reprogramming, eventually facilitating the onset of KRASG12D-induced pre-cancerous pancreatic intraepithelial neoplasia. This phenotype was characterized by the cellular activation of apoptosis and dedifferentiation, two hallmarks of ADM, whereas at the molecular level, we evidenced a modulation in the expression of transcription factors such as Hnf1β, Sox9, and Hes1. Conclusions: We demonstrate that TGFβ pathway activation plays a crucial role in pancreatic tumor initiation through its capacity to induce ADM, providing a favorable environment for KRASG12D-dependent carcinogenesis. Such findings are highly relevant for the development of early detection markers and of potentially novel treatments for pancreatic cancer patients. Keywords: Pancreas, Cancer, TGFβ, Acinar-to-Ductal Metaplasia, KRASG12D

  3. Internalization and cellular processing of cholecystokinin in rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Izzo, R.S.; Pellecchia, C.; Praissman, M.

    1988-01-01

    To evaluate the internalization of cholecystokinin, monoiodinated imidoester of cholecystokinin octapeptide [ 125 I-(IE)-CCK-8] was bound to dispersed pancreatic acinar cells, and surface-bound and internalized radioligand were differentiated by treating with an acidified glycine buffer. The amount of internalized radioligand was four- and sevenfold greater at 24 and 37 degree C than at 4 degree C between 5 and 60 min of association. Specific binding of radioligand to cell surface receptors was not significantly different at these temperatures. Chloroquine, a lysosomotropic agent that blocks intracellular proteolysis, significantly increased the amount of CCK-8 internalized by 18 and 16% at 30 and 60 min of binding, respectively, compared with control. Dithiothreitol (DTT), a sulfhydryl reducing agent, also augmented the amount of CCK-8 radioligand internalized by 25 and 29% at 30 and 60 min, respectively. The effect of chloroquine and DTT on the processing of internalized radioligand was also considered after an initial 60 min of binding of radioligand to acinar cells. After 180 min of processing, the amount of radioligand internalized was significantly greater in the presence of chloroquine compared with controls, whereas the amount of radioligand declined in acinar cells treated with DTT. Internalized and released radioactivity from acinar cells was rebound to pancreatic membrane homogenates to determine the amount of intact radioligand during intracellular processing. Chloroquine significantly increased the amount of intact 125 I-(IE)-CCK-8 radioligand in released and internalized radioactivity while DTT increased the amount of intact radioligand only in internalized samples. This study shows that pancreatic acinar cells rapidly internalize large amounts of CCK-8 and that chloroquine and DTT inhibit intracellular degradation

  4. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    International Nuclear Information System (INIS)

    Yu, Ge; Wan, Rong; Hu, Yanling; Ni, Jianbo; Yin, Guojian; Xing, Miao; Shen, Jie; Tang, Maochun; Chen, Congying; Fan, Yuting; Xiao, Wenqin; Zhao, Yan; Wang, Xingpeng

    2014-01-01

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway

  5. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ge [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wan, Rong [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Hu, Yanling [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Ni, Jianbo [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Yin, Guojian; Xing, Miao [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Shen, Jie [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Tang, Maochun [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Chen, Congying [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Fan, Yuting; Xiao, Wenqin; Zhao, Yan [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wang, Xingpeng, E-mail: wangxingpeng@hotmail.com [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  6. Activating transcription factor 3 promotes loss of the acinar cell phenotype in response to cerulein-induced pancreatitis in mice.

    Science.gov (United States)

    Fazio, Elena N; Young, Claire C; Toma, Jelena; Levy, Michael; Berger, Kurt R; Johnson, Charis L; Mehmood, Rashid; Swan, Patrick; Chu, Alphonse; Cregan, Sean P; Dilworth, F Jeffrey; Howlett, Christopher J; Pin, Christopher L

    2017-09-01

    Pancreatitis is a debilitating disease of the exocrine pancreas that, under chronic conditions, is a major susceptibility factor for pancreatic ductal adenocarcinoma (PDAC). Although down-regulation of genes that promote the mature acinar cell fate is required to reduce injury associated with pancreatitis, the factors that promote this repression are unknown. Activating transcription factor 3 (ATF3) is a key mediator of the unfolded protein response, a pathway rapidly activated during pancreatic insult. Using chromatin immunoprecipitation followed by next-generation sequencing, we show that ATF3 is bound to the transcriptional regulatory regions of >30% of differentially expressed genes during the initiation of pancreatitis. Of importance, ATF3-dependent regulation of these genes was observed only upon induction of pancreatitis, with pathways involved in inflammation, acinar cell differentiation, and cell junctions being specifically targeted. Characterizing expression of transcription factors that affect acinar cell differentiation suggested that acinar cells lacking ATF3 maintain a mature cell phenotype during pancreatitis, a finding supported by maintenance of junctional proteins and polarity markers. As a result, Atf3 -/- pancreatic tissue displayed increased tissue damage and inflammatory cell infiltration at early time points during injury but, at later time points, showed reduced acinar-to-duct cell metaplasia. Thus our results reveal a critical role for ATF3 as a key regulator of the acinar cell transcriptional response during injury and may provide a link between chronic pancreatitis and PDAC. © 2017 Fazio et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Ultrastructural morphometry of parotid acinar cells following fractionated irradiation

    International Nuclear Information System (INIS)

    Grehn, A.-L.; Gustafsson, H.; Franzen, L.; Thornell, L.-E.; Henriksson, R.

    1997-01-01

    The aim of this study was to evaluate the long term effects on the ultrastructure of parotid glands after fractionated irradiation. The method implemented involved 5 x 6 Gy and 5 x 8 Gy, Monday to Friday 6 MV photons. By unilateral irradiation, the contralateral parotid gland served as a control. Although irradiation diminished the acinar cell density in light microscopic sections from 75 to 32% after 5 x 8 Gy of irradiation, ultrastructural morphometry could not detect any statistically significant differences in acinar cell size, nuclear size, nuclear density, granule area, mean granule size, or granule density. In general, greater differences were seen between rats receiving 30 or 40 Gy, on both the irradiated and the control side, than between the irradiated side and the control side. This was interpreted as due to differences in the nutritional state of the animals. This analysis concluded that individual acinar cells that survive irradiation seem not to be damaged in the long term when evaluated at the ultrastructural level. The study further stresses the importance of adequate sampling sizes and the use of adequate controls. (author)

  8. Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models

    Science.gov (United States)

    Wen, Li; Voronina, Svetlana; Javed, Muhammad A.; Awais, Muhammad; Szatmary, Peter; Latawiec, Diane; Chvanov, Michael; Collier, David; Huang, Wei; Barrett, John; Begg, Malcolm; Stauderman, Ken; Roos, Jack; Grigoryev, Sergey; Ramos, Stephanie; Rogers, Evan; Whitten, Jeff; Velicelebi, Gonul; Dunn, Michael; Tepikin, Alexei V.; Criddle, David N.; Sutton, Robert

    2015-01-01

    Background & Aims Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release–activated calcium modulator ORAI1 is the most abundant Ca2+ entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. Methods Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. Results GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca2+ currents after Ca2+ release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. Conclusions Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed

  9. Transplantable pancreatic acinar carcinoma

    International Nuclear Information System (INIS)

    Warren, J.R.; Reddy, J.K.

    1981-01-01

    Fragments of the nafenopin-induced pancreatic acinar cell carcinoma of rat have been examined in vitro for patterns of intracellular protein transport and carbamylcholine-induced protein discharge. Continuous incubation of the fragments with [3H]-leucine for 60 minutes resulted in labeling of rough endoplasmic reticulum, Golgi cisternae, and mature zymogen granules, revealed by electron microscope autoradiography. This result indicates transport of newly synthesized protein from the rough endoplasmic reticulum to mature zymogen granules in approximately 60 minutes. The secretagogue carbamylcholine induced the discharge of radioactive protein by carcinoma fragments pulse-chase labeled with [3H]-leucine. A maximal effective carbamylcholine concentration of 10(-5) M was determined. The acinar carcinoma resembles normal exocrine pancreas in the observed rate of intracellular protein transport and effective secretagogue concentration. However, the acinar carcinoma fragments demonstrated an apparent low rate of carbamylcholine-induced radioactive protein discharge as compared with normal pancreatic lobules or acinar cells. It is suggested that the apparent low rate of radioactive protein discharge reflects functional immaturity of the acinar carcinoma. Possible relationships of functional differentiation to the heterogeneous cytodifferentiation of the pancreatic acinar carcinoma are discussed

  10. Adipose Stem Cell Therapy Mitigates Chronic Pancreatitis via Differentiation into Acinar-like Cells in Mice.

    Science.gov (United States)

    Sun, Zhen; Gou, Wenyu; Kim, Do-Sung; Dong, Xiao; Strange, Charlie; Tan, Yu; Adams, David B; Wang, Hongjun

    2017-11-01

    The objective of this study was to assess the capacity of adipose-derived mesenchymal stem cells (ASCs) to mitigate disease progression in an experimental chronic pancreatitis mouse model. Chronic pancreatitis (CP) was induced in C57BL/6 mice by repeated ethanol and cerulein injection, and mice were then infused with 4 × 10 5 or 1 × 10 6 GFP + ASCs. Pancreas morphology, fibrosis, inflammation, and presence of GFP + ASCs in pancreases were assessed 2 weeks after treatment. We found that ASC infusion attenuated pancreatic damage, preserved pancreas morphology, and reduced pancreatic fibrosis and cell death. GFP + ASCs migrated to pancreas and differentiated into amylase + cells. In further confirmation of the plasticity of ASCs, ASCs co-cultured with acinar cells in a Transwell system differentiated into amylase + cells with increased expression of acinar cell-specific genes including amylase and chymoB1. Furthermore, culture of acinar or pancreatic stellate cell lines in ASC-conditioned medium attenuated ethanol and cerulein-induced pro-inflammatory cytokine production in vitro. Our data show that a single intravenous injection of ASCs ameliorated CP progression, likely by directly differentiating into acinar-like cells and by suppressing inflammation, fibrosis, and pancreatic tissue damage. These results suggest that ASC cell therapy has the potential to be a valuable treatment for patients with pancreatitis. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  11. ANF and exocrine pancreas: ultrastructural autoradiographic localization in acinar cells

    International Nuclear Information System (INIS)

    Chabot, J.G.; Morel, G.; Belles-Isles, M.; Jeandel, L.; Heisler, S.

    1988-01-01

    Atrial natriuretic factor (ANF) binding sites have been recently demonstrated to be present in exocrine pancreas by an in vitro autoradiographic approach. An autoradiographic study was carried out to identify the exocrine cells containing ANF binding sites and to monitor the fate of 125 I-labeled ANF in acinar cells after removal of pancreas at specific time intervals (1-30 min) after intravenous administration. At the light microscopic level, silver grains were found over acinar and centroacinar cells. Concomitant injection of an excess of unlabeled ANF inhibited the binding of labeled peptide by approximately 60%. At the electron microscopic level, the time-course study in acinar cells has revealed that of the cell compartments examined, plasma membrane, Golgi apparatus, mitochondria, and zymogen granules, the nucleus had distinct labeling patterns. Plasma membrane was maximally labeled 1 and 2 min after injection with 125 I-ANF. Golgi apparatus was significantly labeled from 2 to 30 min after injection, mitochondria from 1 to 30 min after injection, zymogen granules at 1 and 15 min, and the nucleus only at 30 min. The lysosomal compartment was not labeled during the 30-min observation period. These results suggest that after binding to the plasma membrane, ANF is rapidly internalized and distributed to the intracellular organelles as a function of time. Labeling of the zymogen granules suggests that they may bind ANF and that the atrial peptide may be secreted by acinar cells. The significance of association of radioactivity with mitochondria and nuclei remains to be elucidated but may represent intracellular sites of action of ANF complementary to those on plasma membranes

  12. Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia 1

    OpenAIRE

    Pitarresi, Jason R.; Liu, Xin; Sharma, Sudarshana M.; Cuiti?o, Maria C.; Kladney, Raleigh D.; Mace, Thomas A.; Donohue, Sydney; Nayak, Sunayana G.; Qu, Chunjing; Lee, James; Woelke, Sarah A.; Trela, Stefan; LaPak, Kyle; Yu, Lianbo; McElroy, Joseph

    2016-01-01

    Preclinical studies have suggested that the pancreatic tumor microenvironment both inhibits and promotes tumor development and growth. Here we establish the role of stromal fibroblasts during acinar-to-ductal metaplasia (ADM), an initiating event in pancreatic cancer formation. The transcription factor V-Ets avian erythroblastosis virus E26 oncogene homolog 2 (ETS2) was elevated in smooth muscle actin?positive fibroblasts in the stroma of pancreatic ductal adenocarcinoma (PDAC) patient tissue...

  13. Acinar cell ultrastructure after taurine treatment in rat acute necrotizing pancreatitis

    International Nuclear Information System (INIS)

    Ates, Y.; Mas, M. R.; Taski, I.; Comert, B.; Isik, A. T.; Mas, N. M.; Yener, N.

    2006-01-01

    To evaluate the organelle-based changes in acinar cells in experimental acute necrotizing pancreatitis (ANP) after taurine treatment and the association of electron microscopic findings with histopathalogical changes and oxidative stress markers. The study was performed in February 2005at Gulhane School of Medicine and Hacettepe University, Turkey. Forty-five rats were divided into 3 groups. Acute necrotizing pancreatitis was induced in groups II and III. Groups I and II were treated with saline and Group III with taurine 1000mg/kg/day, i.p, for 48 hours. Histopathological and ultrastructural examinations were determined using one-way analysis of variance and Kruskal-Wallis tests. Histopathologic findings improved significantly after taurine treatment. Degree of injury in rough and smooth endoplasmic reticulums, Golgi apparatus, mitochondria and nucleus of acinar cells also decreased with taurine in correlation with biochemical and histological results. Taurine improves acinar cell organelle structure, and ultrastructural recovery in ANP reflects histological improvement. (author)

  14. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer.

    Science.gov (United States)

    Wauters, Elke; Sanchez-Arévalo Lobo, Victor J; Pinho, Andreia V; Mawson, Amanda; Herranz, Daniel; Wu, Jianmin; Cowley, Mark J; Colvin, Emily K; Njicop, Erna Ngwayi; Sutherland, Rob L; Liu, Tao; Serrano, Manuel; Bouwens, Luc; Real, Francisco X; Biankin, Andrew V; Rooman, Ilse

    2013-04-01

    The exocrine pancreas can undergo acinar-to-ductal metaplasia (ADM), as in the case of pancreatitis where precursor lesions of pancreatic ductal adenocarcinoma (PDAC) can arise. The NAD(+)-dependent protein deacetylase Sirtuin-1 (Sirt1) has been implicated in carcinogenesis with dual roles depending on its subcellular localization. In this study, we examined the expression and the role of Sirt1 in different stages of pancreatic carcinogenesis, i.e. ADM models and established PDAC. In addition, we analyzed the expression of KIAA1967, a key mediator of Sirt1 function, along with potential Sirt1 downstream targets. Sirt1 was co-expressed with KIAA1967 in the nuclei of normal pancreatic acinar cells. In ADM, Sirt1 underwent a transient nuclear-to-cytoplasmic shuttling. Experiments where during ADM, we enforced repression of Sirt1 shuttling, inhibition of Sirt1 activity or modulation of its expression, all underscore that the temporary decrease of nuclear and increase of cytoplasmic Sirt1 stimulate ADM. Our results further underscore that important transcriptional regulators of acinar differentiation, that is, Pancreatic transcription factor-1a and β-catenin can be deacetylated by Sirt1. Inhibition of Sirt1 is effective in suppression of ADM and in reducing cell viability in established PDAC tumors. KIAA1967 expression is differentially downregulated in PDAC and impacts on the sensitivity of PDAC cells to the Sirt1/2 inhibitor Tenovin-6. In PDAC, acetylation of β-catenin is not affected, unlike p53, a well-characterized Sirt1-regulated protein in tumor cells. Our results reveal that Sirt1 is an important regulator and potential therapeutic target in pancreatic carcinogenesis. ©2012 AACR.

  15. Targeted Inhibition of Pancreatic Acinar Cell Calcineurin Is a Novel Strategy to Prevent Post-ERCP PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Abrahim I. Orabi

    2017-01-01

    Full Text Available Background & Aims: There is a pressing need to develop effective preventative therapies for post–endoscopic retrograde cholangiopancreatography pancreatitis (PEP. We showed that early PEP events are induced through the calcium-activated phosphatase calcineurin and that global calcineurin deletion abolishes PEP in mice. A crucial question is whether acinar cell calcineurin controls the initiation of PEP in vivo. Methods: We used a mouse model of PEP and examined the effects of in vivo acinar cell-specific calcineurin deletion by either generating a conditional knockout line or infusing a novel adeno-associated virus–pancreatic elastase improved Cre (I–iCre into the pancreatic duct of a calcineurin floxed line. Results: We found that PEP is dependent on acinar cell calcineurin in vivo, and this led us to determine that calcineurin inhibitors, infused within the radiocontrast, largely can prevent PEP. Conclusions: These results provide the impetus for launching clinical trials to test the efficacy of intraductal calcineurin inhibitors to prevent PEP. Keywords: Adeno-Associated Virus, Calcineurin B1, FK506, Cyclosporine A, Intraductal Delivery

  16. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    Science.gov (United States)

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  17. Intracellular mediators of Na+-K+ pump activity in guinea pig pancreatic acinar cells

    International Nuclear Information System (INIS)

    Hootman, S.R.; Ochs, D.L.; Williams, J.A.

    1985-01-01

    The involvement of Ca 2+ and cyclic nucleotides in neurohormonal regulation of Na + -K + -ATPase (Na + -K + pump) activity in guinea pig pancreatic acinar cells was investigated. Changes in Na+-K+ pump activity elicited by secretagogues were assessed by [3H]ouabain binding and by ouabain-sensitive 86 Rb + uptake. Carbachol (CCh) and cholecystokinin octapeptide (CCK-8) each stimulated both ouabain-sensitive 86Rb+ uptake and equilibrium binding of [ 3 H]ouabain by approximately 60%. Secretin increased both indicators of Na+-K+ pump activity by approximately 40% as did forskolin, 8-bromo- and dibutyryl cAMP, theophylline, and isobutylmethylxanthine. Incubation of acinar cells in Ca 2+ -free HEPES-buffered Ringer (HR) with 0.5 mM EGTA reduced the stimulatory effects of CCh and CCK-8 by up to 90% but caused only a small reduction in the effects of secretin, forskolin, and cAMP analogues. In addition, CCh, CCK-8, secretin, and forskolin each stimulated ouabain-insensitive 86Rb+ uptake by acinar cells. The increase elicited by CCh and CCK-8 was greatly reduced in the absence of extracellular Ca 2+ , while that caused by the latter two agents was not substantially altered. The effects of secretagogues on free Ca 2+ levels in pancreatic acinar cells also were investigated with quin-2, a fluorescent Ca 2+ chelator. Basal intracellular Ca 2+ concentration ([Ca 2+ ]i) was 161 nM in resting cells and increased to 713 and 803 nM within 15 s after addition of 100 microM CCh or 10 nM CCK-8, respectively

  18. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    Science.gov (United States)

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na+‐dependent

  19. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.

    Science.gov (United States)

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival.

  20. Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell Apoptosis in Aging.

    Science.gov (United States)

    Xiong, Yuyan; Yepuri, Gautham; Necetin, Sevil; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2017-06-01

    Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L -arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II -/- ) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II -/- ) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice. © 2017 by the American Diabetes Association.

  1. An electron microscopic study on the effects of irradiation on the acinar cells of rat parotid gland

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang Jun; Lee, Sang Rae [Dept. of Oral Radiology, College of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1988-11-15

    The author studies the histopathologic changes according to a single or a split does and the time after irradiation on the acinar cells of rat parotid gland. 99 Sprague Dawley rats, weighing about 120 gm, were divided into control and 3 experimental groups. In experimental groups, Group I and II were delivered a single does of 15 Gy, 18 Gy and Group III and IV were delivered two equal split doses of 9 Gy, 10.5 Gy for a 4 hours interval, respectively. The experimental groups were delivered by a cobalt-60 teletherapy unit with a dose rate of 222 cGy/min, source-skin di stance of 50 cm, depth of 1 cm and a field size of 12 X 5 cm. The animals were sacrificed at 1, 2, 3, 6, 12 hours, 1, 3, 7 days after irradiation and examined by light and electro n microscopy. The results were as follows: 1. As the radiation dose increased and acinar cells delivered a single dose exposure were more damaged, and the change of acinar cells appeared faster than those of a split does exposure. 2. The histopathologic change of acinar cells appeared at 1 hour after irradiation. The recovery from damaged acinar cells appeared at 1 day after irradiation and there was a tendency that the recovery from damage of a split dose exposure was somewhat later than of a single dose exposure. 3. Light microscope showed atrophic change of acinar cells and nucleus, degeneration and vesicle formation of cytoplasm, widening of intercellular space and interlobular space. 4. Electron microscope showed loss of nuclear membrane, degeneration of nucleus and nucleoli, clumping of cytoplasm, widening and degeneration of rough endoplasmic reticulum, loss of cristae of mitochondria, lysosome, autophagosome and lipid droplet. 5. Electron microscopically, the change of rough endoplasmic reticulum was most prominent and this appeared at 1 hour after irradiation as early changes of acinar cells. The nuclear change appeared at 2 hours after irradiation and the loss of cristae of mitochondria was observed at 2 hours after

  2. An electron microscopic study on the effects of irradiation on the acinar cells of rat parotid gland

    International Nuclear Information System (INIS)

    Ko, Kwang Jun; Lee, Sang Rae

    1988-01-01

    The author studies the histopathologic changes according to a single or a split does and the time after irradiation on the acinar cells of rat parotid gland. 99 Sprague Dawley rats, weighing about 120 gm, were divided into control and 3 experimental groups. In experimental groups, Group I and II were delivered a single does of 15 Gy, 18 Gy and Group III and IV were delivered two equal split doses of 9 Gy, 10.5 Gy for a 4 hours interval, respectively. The experimental groups were delivered by a cobalt-60 teletherapy unit with a dose rate of 222 cGy/min, source-skin di stance of 50 cm, depth of 1 cm and a field size of 12 X 5 cm. The animals were sacrificed at 1, 2, 3, 6, 12 hours, 1, 3, 7 days after irradiation and examined by light and electro n microscopy. The results were as follows: 1. As the radiation dose increased and acinar cells delivered a single dose exposure were more damaged, and the change of acinar cells appeared faster than those of a split does exposure. 2. The histopathologic change of acinar cells appeared at 1 hour after irradiation. The recovery from damaged acinar cells appeared at 1 day after irradiation and there was a tendency that the recovery from damage of a split dose exposure was somewhat later than of a single dose exposure. 3. Light microscope showed atrophic change of acinar cells and nucleus, degeneration and vesicle formation of cytoplasm, widening of intercellular space and interlobular space. 4. Electron microscope showed loss of nuclear membrane, degeneration of nucleus and nucleoli, clumping of cytoplasm, widening and degeneration of rough endoplasmic reticulum, loss of cristae of mitochondria, lysosome, autophagosome and lipid droplet. 5. Electron microscopically, the change of rough endoplasmic reticulum was most prominent and this appeared at 1 hour after irradiation as early changes of acinar cells. The nuclear change appeared at 2 hours after irradiation and the loss of cristae of mitochondria was observed at 2 hours after

  3. β-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice

    Directory of Open Access Journals (Sweden)

    Matthew D. Keefe

    2012-07-01

    The size of the pancreas is determined by intrinsic factors, such as the number of progenitor cells, and by extrinsic signals that control the fate and proliferation of those progenitors. Both the exocrine and endocrine compartments of the pancreas undergo dramatic expansion after birth and are capable of at least partial regeneration following injury. Whether the expansion of these lineages relies on similar mechanisms is unknown. Although we have shown that the Wnt signaling component β-catenin is selectively required in mouse embryos for the generation of exocrine acinar cells, this protein has been ascribed various functions in the postnatal pancreas, including proliferation and regeneration of islet as well as acinar cells. To address whether β-catenin remains important for the maintenance and expansion of mature acinar cells, we have established a system to follow the behavior and fate of β-catenin-deficient cells during postnatal growth and regeneration in mice. We find that β-catenin is continuously required for the establishment and maintenance of acinar cell mass, extending from embryonic specification through juvenile and adult self-renewal and regeneration. This requirement is not shared with islet cells, which proliferate and function normally in the absence of β-catenin. These results make distinct predictions for the relative role of Wnt–β-catenin signaling in the etiology of human endocrine and exocrine disease. We suggest that loss of Wnt–β-catenin activity is unlikely to drive islet dysfunction, as occurs in type 2 diabetes, but that β-catenin is likely to promote human acinar cell proliferation following injury, and might therefore contribute to the resolution of acute or chronic pancreatitis.

  4. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology.

    Science.gov (United States)

    Gryshchenko, Oleksiy; Gerasimenko, Julia V; Peng, Shuang; Gerasimenko, Oleg V; Petersen, Ole H

    2018-02-09

    Ca 2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca 2+ signals evoked by K + -induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca 2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca 2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol-related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca 2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation. Physiological Ca 2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca 2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca 2+ signals in the peri-acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca 2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization-evoked Ca 2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca 2+ signals in response to membrane depolarization. The principal agent evoking Ca 2+ signals in the stellate cells is bradykinin, but in experimental alcohol

  5. The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis.

    Science.gov (United States)

    Hale, Michael A; Swift, Galvin H; Hoang, Chinh Q; Deering, Tye G; Masui, Toshi; Lee, Youn-Kyoung; Xue, Jumin; MacDonald, Raymond J

    2014-08-01

    The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype. © 2014. Published by The Company of Biologists Ltd.

  6. ptf1a+, ela3l− cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae

    Science.gov (United States)

    Schmitner, Nicole; Kohno, Kenji

    2017-01-01

    ABSTRACT The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b. In

  7. ptf1a+ , ela3l- cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae.

    Science.gov (United States)

    Schmitner, Nicole; Kohno, Kenji; Meyer, Dirk

    2017-03-01

    The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l- negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l -positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b In conclusion, we

  8. Effect of irradiation on the acinar cells of submandibular gland in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Hwang, Eui Hwan; Lee, Sang Rae

    2003-01-01

    To observe the histologic changes and clusterin expression in the acinar cells of the submandibular gland in streptozotocin-induced diabetic rat following irradiation. Mature Sprague-Dawley rats were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the Sprague-Dawley rats by injecting streptozotocin, while the control rats were injected with citrate buffer only. After 5 days, rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy to the head and neck region. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the submandibular gland were sectioned and observed using histologic and immunohistochemical methods. Morphologic change of acinar cells was remarkable in the diabetic group, but was not observed in the diabetic-irradiated group. Necrotic tissues were observed in the diabetic-irradiated group. Coloring of toluidine blue stain was most increased at 14 days in the diabetic group, however there were no significant change throughout the period of the experiment in the diabetic-irradiated group. Expression of clusterin was most significant at 14 days in the diabetic group, but gradually decreased with time after 7 days in the diabetic-irradiated group. Degeneration of clusterin was observed in the diabetic-irradiated group. This experiment suggests that the acinar cells of submandibular gland in rats are physiologically apoptosis by the induction of diabetes, but that the apoptosis is inhibited and the acinar cells necrotized after irradiation.

  9. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  10. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development.

    Science.gov (United States)

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2012-01-15

    During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3(+) progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3(CreERT/+)) and Neurog3-deficient (Neurog3(CreERT/CreERT)) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition, endocrine progenitor cells arise from bipotent precursors already committed to the duct/endocrine lineages and not from domain of cells having distinct potentialities. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Establishment of functional acinar-like cultures from human salivary glands.

    Science.gov (United States)

    Jang, S I; Ong, H L; Gallo, A; Liu, X; Illei, G; Alevizos, I

    2015-02-01

    Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers-namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients. © International & American Associations for Dental Research 2014.

  12. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis.

    Science.gov (United States)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-11-01

    The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs) in pancreatitis. We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP de-glycosylation and degradation. LAMP cleavage by cathepsin B (CatB) was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger LAMPs' bulk de-glycosylation, but induces their degradation via CatB-mediated cleavage of LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, stimulates the basal and inhibits CCK-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis, and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction.

  13. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Directory of Open Access Journals (Sweden)

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  14. Acinar Cell Carcinoma of the Pancreas with Colon Involvement

    Directory of Open Access Journals (Sweden)

    Naoki Asayama

    2014-01-01

    Full Text Available We report a case of acinar cell carcinoma of the pancreas with colon involvement that was difficult to distinguish from primary colon cancer. A 60-year-old man was admitted with a 1-month history of diarrhea. Contrast-enhanced computed tomography (CT revealed a large tumor (10.6×11.6 cm at the splenic flexure of the colon. Colonoscopy showed completely round ulcerative lesions, and biopsy revealed poorly differentiated adenocarcinoma. Left hemicolectomy, resection of the jejunum and pancreas body and tail, and splenectomy were performed based on a diagnosis of descending colon cancer (cT4N0M0, stage IIB, and surgery was considered to be curative. Diagnosis was subsequently confirmed as moderately differentiated acinar cell carcinoma of the pancreas by immunohistochemical staining (pT3N0M0, stage IIA. Multiple liver metastases with portal thrombosis were found 8 weeks postoperatively. Despite combination chemotherapy with oral S-1 and gemcitabine, the patient died of hepatic failure with no effect of chemotherapy 14 weeks postoperatively. Correct diagnosis was difficult to determine preoperatively from the clinical, CT, and colonoscopy findings. Moreover, the disease was extremely aggressive even after curative resection. Physicians should consider pancreatic cancer in the differential diagnosis of similar cases.

  15. Evidence of a generalized defect of acinar cell function in Shwachman-Diamond syndrome.

    Science.gov (United States)

    Stormon, Michael O; Ip, Wan F; Ellis, Lynda; Schibli, Susanne; Rommens, Johanna M; Durie, Peter R

    2010-07-01

    : Because the acinar cells of the exocrine pancreas in patients with Shwachman-Diamond syndrome (SDS) are severely depleted, we hypothesized that a similar deficiency may be present in acinar cells of the parotid gland. : We determined serum pancreatic isoamylase and parotid amylase activities in 16 patients with SDS, 13 healthy controls, and 13 disease controls (cystic fibrosis or fibrosing pancreatitis). Parotid amylase and electrolyte concentrations were measured in stimulated parotid gland secretions. Starch digestion was assessed by breath hydrogen testing in patients with SDS (with and without enzyme supplements) and healthy controls. : Serum pancreatic and parotid isoamylase values were lower in the patients with SDS than in the healthy controls (P gland amylase concentration (units per milligram of protein) in patients with SDS was lower than that in the healthy controls (P = 0.04), whereas the disease controls were comparable to the healthy subjects (P = 0.09). Secreted parotid chloride concentration was inversely correlated with amylase concentration in the patients with SDS (P = 0.01), but no correlation was seen in the healthy controls or disease controls. When patients with SDS ingested starch without enzyme supplementation, their breath hydrogen excretion was significantly higher than that in the healthy controls (P = 0.009). Following starch ingestion with enzymes, breath hydrogen in the patients with SDS was lower (P functional abnormality of exocrine acinar cells.

  16. Glycogen synthase kinase-3β ablation limits pancreatitis-induced acinar-to-ductal metaplasia.

    Science.gov (United States)

    Ding, Li; Liou, Geou-Yarh; Schmitt, Daniel M; Storz, Peter; Zhang, Jin-San; Billadeau, Daniel D

    2017-09-01

    Acinar-to-ductal metaplasia (ADM) is a reversible epithelial transdifferentiation process that occurs in the pancreas in response to acute inflammation. ADM can rapidly progress towards pre-malignant pancreatic intraepithelial neoplasia (PanIN) lesions in the presence of mutant KRas and ultimately pancreatic adenocarcinoma (PDAC). In the present work, we elucidate the role and related mechanism of glycogen synthase kinase-3beta (GSK-3β) in ADM development using in vitro 3D cultures and genetically engineered mouse models. We show that GSK-3β promotes TGF-α-induced ADM in 3D cultured primary acinar cells, whereas deletion of GSK-3β attenuates caerulein-induced ADM formation and PanIN progression in Kras G12D transgenic mice. Furthermore, we demonstrate that GSK-3β ablation influences ADM formation and PanIN progression by suppressing oncogenic KRas-driven cell proliferation. Mechanistically, we show that GSK-3β regulates proliferation by increasing the activation of S6 kinase. Taken together, these results indicate that GSK-3β participates in early pancreatitis-induced ADM and thus could be a target for the treatment of chronic pancreatitis and the prevention of PDAC progression. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. Pancreatic ductal bicarbonate secretion: challenge of the acinar acid load

    Directory of Open Access Journals (Sweden)

    Peter eHegyi

    2011-07-01

    Full Text Available Acinar and ductal cells of the exocrine pancreas form a close functional unit. Although most studies contain data either on acinar or ductal cells, an increasing number of evidence highlights the importance of the pancreatic acinar-ductal functional unit. One of the best examples for this functional unit is the regulation of luminal pH by both cell types. Protons co-released during exocytosis from acini cause significant acidosis, whereas, bicarbonate secreted by ductal cells cause alkalization in the lumen. This suggests that the first and probably one of the most important role of bicarbonate secretion by pancreatic ductal cells is not only to neutralize the acid chyme entering into the duodenum from the stomach, but to neutralize acidic content secreted by acinar cells. To accomplish this role, it is more than likely that ductal cells have physiological sensing mechanisms which would allow them to regulate luminal pH. To date, four different classes of acid-sensing ion channels have been identified in the gastrointestinal tract (transient receptor potential ion channels, two-pore domain potassium channel, ionotropic purinoceptor and acid-sensing ion channel, however, none of these have been studied in pancreatic ductal cells. In this mini-review, we summarize our current knowledge of these channels and urge scientists to characterize ductal acid-sensing mechanisms and also to investigate the challenge of the acinar acid load on ductal cells.

  18. CT and MRI features of acinar cell carcinoma of the pancreas with pathological correlations

    International Nuclear Information System (INIS)

    Hsu, M.-Y.; Pan, K.-T.; Chu, S.-Y.; Hung, C.-F.; Wu, R.-C.; Tseng, J.-H.

    2010-01-01

    Aim: To document the computed tomography (CT) and magnetic resonance imaging (MRI) features of acinar cell carcinoma of the pancreas and to correlate them with pathological findings to determine the unique imaging manifestations of this rare subtype tumour of the pancreas. Materials and methods: From January 1986 to August 2008, six patients (five men and one woman, mean age 61.3 years) with histologically proven acinar cell carcinoma of the pancreas underwent CT (n = 6) and MRI (n = 4) examinations. The imaging features of each tumour were documented and compared with pathological findings. Results: The tumours were distributed in the head (n = 4), body (n = 1), and tail (n = 1) of the pancreas. Four masses (67%) were uniformly or partially well-defined with thin, enhancing capsules. Central cystic components were found in five tumours (83%). Two tumours (33%) exhibited intratumoural haemorrhage, and one tumour (17%) had amorphous intratumoural calcification. In both CT and MRI, the tumours enhanced less than the adjacent normal pancreatic parenchyma. The signal intensity on MRI was predominantly T1 hypointense and T2 iso- to hyperintense. Conclusion: Acinar cell carcinoma of the pancreas has distinct imaging features, and both CT and MRI are useful and complementary imaging methods.

  19. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc.

    Science.gov (United States)

    Partanen, Johanna I; Nieminen, Anni I; Klefstrom, Juha

    2009-03-01

    Machiavelli wrote, in his famous political treatise Il Principe, about disrupting organization by planting seeds of dissension or by eliminating necessary support elements. Tumor cells do exactly that by disrupting the organized architecture of epithelial cell layers during progression from contained benign tumor to full-blown invasive cancer. However, it is still unclear whether tumor cells primarily break free by activating oncogenes powerful enough to cause chaos or by eliminating tumor suppressor genes guarding the order of the epithelial organization. Studies in Drosophila have exposed genes that encode key regulators of the epithelial apicobasal polarity and which, upon inactivation, cause disorganization of the epithelial layers and promote unscheduled cell proliferation. These polarity regulator/tumor suppressor proteins, which include products of neoplastic tumor suppressor genes (nTSGs), are carefully positioned in polarized epithelial cells to maintain the order of epithelial structures and to impose a restraint on cell proliferation. In this review, we have explored the presence and prevalence of somatic mutations in the human counterparts of Drosophila polarity regulator/tumor suppressor genes across the human cancers. The screen points out LKB1, which is a causal genetic lesion in Peutz-Jeghers cancer syndrome, a gene mutated in certain sporadic cancers and a human homologue of the fly polarity gene par-4. We review the evidence linking Lkb1 protein to polarity regulation in the scope of our recent results suggesting a coupled role for Lkb1 as an architect of organized acinar structures and a suppressor of oncogenic c-Myc. We finally present models to explain how Lkb1-dependent formation of epithelial architecture is coupled to suppression of normal and oncogene-induced proliferation.

  20. The novel cytokine interleukin-33 activates acinar cell proinflammatory pathways and induces acute pancreatic inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    Full Text Available Acute pancreatitis is potentially fatal but treatment options are limited as disease pathogenesis is poorly understood. IL-33, a novel IL-1 cytokine family member, plays a role in various inflammatory conditions but its role in acute pancreatitis is not well understood. Specifically, whether pancreatic acinar cells produce IL-33 when stressed or respond to IL-33 stimulation, and whether IL-33 exacerbates acute pancreatic inflammation is unknown.In duct ligation-induced acute pancreatitis in mice and rats, we found that (a IL-33 concentration was increased in the pancreas; (b mast cells, which secrete and also respond to IL-33, showed degranulation in the pancreas and lung; (c plasma histamine and pancreatic substance P concentrations were increased; and (d pancreatic and pulmonary proinflammatory cytokine concentrations were increased. In isolated mouse pancreatic acinar cells, TNF-α stimulation increased IL-33 release while IL-33 stimulation increased proinflammatory cytokine release, both involving the ERK MAP kinase pathway; the flavonoid luteolin inhibited IL-33-stimulated IL-6 and CCL2/MCP-1 release. In mice without duct ligation, exogenous IL-33 administration induced pancreatic inflammation without mast cell degranulation or jejunal inflammation; pancreatic changes included multifocal edema and perivascular infiltration by neutrophils and some macrophages. ERK MAP kinase (but not p38 or JNK and NF-kB subunit p65 were activated in the pancreas of mice receiving exogenous IL-33, and acinar cells isolated from the pancreas of these mice showed increased spontaneous cytokine release (IL-6, CXCL2/MIP-2α. Also, IL-33 activated ERK in human pancreatic tissue.As exogenous IL-33 does not induce jejunal inflammation in the same mice in which it induces pancreatic inflammation, we have discovered a potential role for an IL-33/acinar cell axis in the recruitment of neutrophils and macrophages and the exacerbation of acute pancreatic inflammation

  1. Label retaining cells (LRCs with myoepithelial characteristic from the proximal acinar region define stem cells in the sweat gland.

    Directory of Open Access Journals (Sweden)

    Yvonne Leung

    Full Text Available Slow cycling is a common feature shared among several stem cells (SCs identified in adult tissues including hair follicle and cornea. Recently, existence of unipotent SCs in basal and lumenal layers of sweat gland (SG has been described and label retaining cells (LRCs have also been localized in SGs; however, whether these LRCs possess SCs characteristic has not been investigated further. Here, we used a H2BGFP LRCs system for in vivo detection of infrequently dividing cells. This system allowed us to specifically localize and isolate SCs with label-retention and myoepithelial characteristics restricted to the SG proximal acinar region. Using an alternative genetic approach, we demonstrated that SG LRCs expressed keratin 15 (K15 in the acinar region and lineage tracing determined that K15 labeled cells contributed long term to the SG structure but not to epidermal homeostasis. Surprisingly, wound healing experiments did not activate proximal acinar SG cells to participate in epidermal healing. Instead, predominantly non-LRCs in the SG duct actively divided, whereas the majority of SG LRCs remained quiescent. However, when we further challenged the system under more favorable isolated wound healing conditions, we were able to trigger normally quiescent acinar LRCs to trans-differentiate into the epidermis and adopt its long term fate. In addition, dissociated SG cells were able to regenerate SGs and, surprisingly, hair follicles demonstrating their in vivo plasticity. By determining the gene expression profile of isolated SG LRCs and non-LRCs in vivo, we identified several Bone Morphogenetic Protein (BMP pathway genes to be up-regulated and confirmed a functional requirement for BMP receptor 1A (BMPR1A-mediated signaling in SG formation. Our data highlight the existence of SG stem cells (SGSCs and their primary importance in SG homeostasis. It also emphasizes SGSCs as an alternative source of cells in wound healing and their plasticity for

  2. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  3. Neutron-energy-dependent cell survival and oncogenic transformation.

    Science.gov (United States)

    Miller, R C; Marino, S A; Martin, S G; Komatsu, K; Geard, C R; Brenner, D J; Hall, E J

    1999-12-01

    Both cell lethality and neoplastic transformation were assessed for C3H10T1/2 cells exposed to neutrons with energies from 0.040 to 13.7 MeV. Monoenergetic neutrons with energies from 0.23 to 13.7 MeV and two neutron energy spectra with average energies of 0.040 and 0.070 MeV were produced with a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) in the Center for Radiological Research of Columbia University. For determination of relative biological effectiveness (RBE), cells were exposed to 250 kVp X rays. With exposures to 250 kVp X rays, both cell survival and radiation-induced oncogenic transformation were curvilinear. Irradiation of cells with neutrons at all energies resulted in linear responses as a function of dose for both biological endpoints. Results indicate a complex relationship between RBEm and neutron energy. For both survival and transformation, RBEm was greatest for cells exposed to 0.35 MeV neutrons. RBEm was significantly less at energies above or below 0.35 MeV. These results are consistent with microdosimetric expectation. These results are also compatible with current assessments of neutron radiation weighting factors for radiation protection purposes. Based on calculations of dose-averaged LET, 0.35 MeV neutrons have the greatest LET and therefore would be expected to be more biologically effective than neutrons of greater or lesser energies.

  4. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells.

    Science.gov (United States)

    Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung

    2017-07-01

    Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.

  5. Oncogenic Notch signaling in T-cell and B-cell lymphoproliferative disorders.

    Science.gov (United States)

    Chiang, Mark Y; Radojcic, Vedran; Maillard, Ivan

    2016-07-01

    This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.

  6. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development

    OpenAIRE

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2011-01-01

    During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends o...

  7. Nitric oxide-induced signalling in rat lacrimal acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    -adrenergic stimulation and not by a rise in [Ca2+]i alone.   We show that in rat lacrimal acinar cells, NO and cGMP induce Ca2+ release from intracellular stores via G kinase activation. However, the changes in [Ca2+]i are relatively small, suggesting that this pathway plays a modulatory role in Ca2+ signalling, thus...... not by itself causing fast transient increases in [Ca2+]i. In addition, we suggest that endogenously produced NO activated by ß-adrenergic receptor stimulation, plays an important role in signalling to the surrounding tissue....

  8. [Inheritable phenotypic normalization of rodent cells transformed by simian adenovirus SA7 E1 oncogenes by singled-stranded oligonucleotides complementary to a long region of integrated oncogenes].

    Science.gov (United States)

    Grineva, N I; Borovkova, T V; Sats, N V; Kurabekova, R M; Rozhitskaia, O S; Solov'ev, G Ia; Pantin, V I

    1995-08-01

    G11 mouse cells and SH2 rat cells transformed with simian adenovirus SA7 DNA showed inheritable oncogen-specific phenotypic normalization when treated with sense and antisense oligonucleotides complementary to long RNA sequences, plus or minus strands of the integrated adenovirus oncogenes E1A and E1B. Transitory treatment of the cells with the oligonucleotides in the absence of serum was shown to cause the appearance of normalized cell lines with fibroblastlike morphology, slower cell proliferation, and lack of ability to form colonies in soft agar. Proliferative activity and adhesion of the normalized cells that established cell lines were found to depend on the concentration of growth factors in the cultural medium. In some of the cell lines, an inhibition of transcription of the E1 oncogenes was observed. The normalization also produced cells that divided 2 - 5 times and died and cells that reverted to a transformed phenotype in 2 - 10 days. The latter appeared predominantly upon the action of the antisense oligonucleotides.

  9. An alpha-adrenergic receptor mechanism controlling potassium permeability in the rat lacrimal gland acinar cell

    International Nuclear Information System (INIS)

    Parod, R.J.; Putney, J.W. Jr.

    1978-01-01

    Rat lacrimal gland slices, incubated in a balanced, buffered salt solution, were found to be physiologically stable for up to 2 hr with respect to 0 2 consumption, extracellular space, and water and ion content. The release of 86 Rb serves as a good substitute for 42 K in monitoring the movement of K through the cell membrane. Adrenaline appears to increase membrane permeability to K as evidenced by an increase in the rate of 86 Rb efflux. This response to adrenaline was blocked by phentolamine but not by propranolol and was mimicked by phenylephrine but not by isoprenaline. The magnitude of the 86 Rb release indicates that it is being released, at least in part, from the lacrimal gland acinar cell. It is concluded that the lacrimal gland acinar cell has an α-adrenergic receptor, activation of which leads to an increase in membrane permeability to K. (author)

  10. New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells.

    Science.gov (United States)

    Almássy, János; Siguenza, Elias; Skaliczki, Marianna; Matesz, Klara; Sneyd, James; Yule, David I; Nánási, Péter P

    2018-04-01

    The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl - efflux and the subsequent paracellular Na + transport. In this model, the Na + -K + pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl - transport via basolateral Na + -K + -2Cl - cotransport is generated by the Na + -K + pump. In addition, the continuous electrochemical gradient for Cl - flow during acinar cell stimulation is maintained by the basolateral K + efflux. However, using a combination of single-cell electrophysiology and Ca 2+ -imaging, we demonstrate that photolysis of Ca 2+ close to the apical membrane of parotid acinar cells triggered significant K + current, indicating that a substantial amount of K + is secreted into the lumen during stimulation. Nevertheless, the K + content of the primary saliva is relatively low, suggesting that K + might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na + -K + pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K + from and secretes Na + to the lumen, which can partially supplement the paracellular Na + pathway.

  11. Oncogenic K-Ras Activates p38 to Maintain Colorectal Cancer Cell Proliferation during MEK Inhibition

    Directory of Open Access Journals (Sweden)

    Winan J. van Houdt

    2010-01-01

    Full Text Available Background: Colon carcinomas frequently contain activating mutations in the K-ras proto-oncogene. K-ras itself is a poor drug target and drug development efforts have mostly focused on components of the classical Ras-activated MEK/ERK pathway. Here we have studied whether endogenous oncogenic K-ras affects the dependency of colorectal tumor cells on MEK/ERK signaling.

  12. Effects of Ghrelin miRNA on Inflammation and Calcium Pathway in Pancreatic Acinar Cells of Acute Pancreatitis.

    Science.gov (United States)

    Tang, Xiping; Tang, Guodu; Liang, Zhihai; Qin, Mengbin; Fang, Chunyun; Zhang, Luyi

    The study investigated the effects of endogenous targeted inhibition of ghrelin gene on inflammation and calcium pathway in an in vitro pancreatic acinar cell model of acute pancreatitis. Lentiviral expression vector against ghrelin gene was constructed and transfected into AR42J cells. The mRNA and protein expression of each gene were detected by reverse transcription polymerase chain reaction, Western blotting, or enzyme-linked immunosorbent assay. The concentration of intracellular calcium ([Ca]i) was determined by calcium fluorescence mark probe combined with laser scanning confocal microscopy. Compared with the control group, cerulein could upregulate mRNA and protein expression of inflammatory factors, calcium pathway, ghrelin, and [Ca]i. mRNA and protein expression of inflammatory factors increased significantly in cells transfected with ghrelin miRNA compared with the other groups. Intracellular calcium and expression of some calcium pathway proteins decreased significantly in cells transfected with ghrelin miRNA compared with the other groups. Targeted inhibition of ghrelin gene in pancreatic acinar cells of acute pancreatitis can upregulate the expression of the intracellular inflammatory factors and alleviate the intracellular calcium overload.

  13. Growth Factor Independence-1 (Gfi1) Is Required for Pancreatic Acinar Unit Formation and Centroacinar Cell Differentiation

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Nyeng, Pia; Xiao, Fan

    2015-01-01

    of granulocytes, inner ear hair cells, and the development of secretory cell types in the intestine. As GFI1/Gfi1 is expressed in human and rodent pancreas, we characterized the potential function of Gfi1 in mouse pancreatic development. METHODS: Gfi1 knockout mice were analyzed at histological and molecular...... levels, including qRT-PCR, in situ hybridization, immunohistochemistry, and electron microscopy. RESULTS: Loss of Gfi1 impacted formation and structure of the pancreatic acinar/centroacinar unit. Histologic and ultrastructural analysis of Gfi1-null pancreas revealed specific defects at the level...... was correlated with an exocrine organ defect. Postnatally, Gfi1 deficiency resulted in severe pancreatic acinar dysplasia, including loss of granulation, autolytic vacuolation, and a proliferative and apoptotic response. CONCLUSIONS: Gfi1 plays an important role in regulating the development of pancreatic CACs...

  14. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    Energy Technology Data Exchange (ETDEWEB)

    Abasolo, Ibane [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Pujal, Judit; Navarro, Pilar [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Rabanal, Rosa M.; Serafin, Anna [Universitat Autonoma de Barcelona, Departament de Medicina i Cirurgia Animals, Barcelona (Spain); Millan, Olga [Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Real, Francisco X. [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Programa de Patologia Molecular, Centro Nacional de Investigaciones Oncologicas, Madrid (Spain)

    2009-07-15

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  15. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    International Nuclear Information System (INIS)

    Abasolo, Ibane; Pujal, Judit; Navarro, Pilar; Rabanal, Rosa M.; Serafin, Anna; Millan, Olga; Real, Francisco X.

    2009-01-01

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  16. Immunocytochemical localization of the [3H]estradiol-binding protein in rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Grossman, A.; Oppenheim, J.; Grondin, G.; St Jean, P.; Beaudoin, A.R.

    1989-01-01

    Significant amounts of an estradiol-binding protein (EBP) are present in pancreatic acinar cells. This protein differs from the one found in female reproductive tissues and secondary sex organs (which is commonly referred to as estrogen receptor). EBP has now been purified from rat pancreas and was used as an antigen to induce polyclonal antibodies in rabbits. The antiserum obtained was purified initially by ammonium sulfate fractionation and then still further by interaction with a protein fraction from pancreas that was devoid of estradiol-binding activity. The latter procedure was used to precipitate nonspecific immunoglobulin Gs. Western blot analysis demonstrated that the anti-EBP antibody reacted specifically with a doublet of protein bands having mol wt of 64K and 66K. When this purified antibody was used as an immunocytochemical probe in conjunction with protein-A-gold, acinar cells were labeled on the surface of the endoplasmic reticulum, on the plasma membrane, and in mitochondria. This specific labeling pattern was not observed when preimmune serum was used. No labeling was observed over the nucleus, Golgi apparatus, or zymogen granules with purified anti-EBP antibodies. The unexpected distribution of EBP in both the endoplasmic reticulum and mitochondria is discussed

  17. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology

    OpenAIRE

    Gryshchenko, Oleksiy; Gerasimenko, Julia V.; Peng, Shuang; Gerasimenko, Oleg V.; Petersen, Ole Holger

    2018-01-01

    Physiological Ca2+ signals in pancreatic acinar cells control fluid and\\ud enzyme secretion, whereas excessive Ca2+ signals induced by pathological agents\\ud induce destructive processes leading to acute pancreatitis. Ca2+ signals in the periacinar\\ud stellate cells may also play a role in the development of acute pancreatitis. In\\ud this study, we have explored Ca2+ signalling in the different cell types to be found in\\ud the acinar environment of the pancreatic tissue. We have, for the firs...

  18. Lysosome-Associated Membrane Proteins (LAMP Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Olga A. Mareninova

    2015-11-01

    Full Text Available Background & Aims: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs in pancreatitis. Methods: We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP deglycosylation and degradation. LAMP cleavage by cathepsin B (CatB was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Results: Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger the LAMPs’ bulk deglycosylation but induces their degradation via CatB-mediated cleavage of the LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, and stimulates the basal and inhibits cholecystokinin-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. Conclusions: The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction. Keywords: Amylase Secretion, Autophagy

  19. Restoration of CFTR Activity in Ducts Rescues Acinar Cell Function and Reduces Inflammation in Pancreatic and Salivary Glands of Mice.

    Science.gov (United States)

    Zeng, Mei; Szymczak, Mitchell; Ahuja, Malini; Zheng, Changyu; Yin, Hongen; Swaim, William; Chiorini, John A; Bridges, Robert J; Muallem, Shmuel

    2017-10-01

    Sjögren's syndrome and autoimmune pancreatitis are disorders with decreased function of salivary, lacrimal glands, and the exocrine pancreas. Nonobese diabetic/ShiLTJ mice and mice transduced with the cytokine BMP6 develop Sjögren's syndrome and chronic pancreatitis and MRL/Mp mice are models of autoimmune pancreatitis. Cystic fibrosis transmembrane conductance regulator (CFTR) is a ductal Cl -  channel essential for ductal fluid and HCO 3 - secretion. We used these models to ask the following questions: is CFTR expression altered in these diseases, does correction of CFTR correct gland function, and most notably, does correcting ductal function correct acinar function? We treated the mice models with the CFTR corrector C18 and the potentiator VX770. Glandular, ductal, and acinar cells damage, infiltration, immune cells and function were measured in vivo and in isolated duct/acini. In the disease models, CFTR expression is markedly reduced. The salivary glands and pancreas are inflamed with increased fibrosis and tissue damage. Treatment with VX770 and, in particular, C18 restored salivation, rescued CFTR expression and localization, and nearly eliminated the inflammation and tissue damage. Transgenic overexpression of CFTR exclusively in the duct had similar effects. Most notably, the markedly reduced acinar cell Ca 2+ signaling, Orai1, inositol triphosphate receptors, Aquaporin 5 expression, and fluid secretion were restored by rescuing ductal CFTR. Our findings reveal that correcting ductal function is sufficient to rescue acinar cell function and suggests that CFTR correctors are strong candidates for the treatment of Sjögren's syndrome and pancreatitis. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Induction of non-apoptotic programmed cell death by oncogenic RAS in human epithelial cells and its suppression by MYC overexpression.

    Science.gov (United States)

    Dendo, Kasumi; Yugawa, Takashi; Nakahara, Tomomi; Ohno, Shin-Ichi; Goshima, Naoki; Arakawa, Hirofumi; Kiyono, Tohru

    2018-02-09

    Oncogenic mutations of RAS genes, found in about 30% of human cancers, are considered to play important roles in cancer development. However, oncogenic RAS can also induce senescence in mouse and human normal fibroblasts. In some cell lines, oncogenic RAS has been reported to induce non-apoptotic programed cell death (PCD). Here, we investigated effects of oncogenic RAS expression in several types of normal human epithelial cells. Oncogenic RAS but not wild-type RAS stimulated macropinocytosis with accumulation of large-phase lucent vacuoles in the cytoplasm, subsequently leading to cell death which was indistinguishable from a recently proposed new type of PCD, methuosis. A RAC1 inhibitor suppressed accumulation of macropinosomes and overexpression of MYC attenuated oncogenic RAS-induced such accumulation, cell cycle arrest and cell death. MYC suppression or rapamycin treatment in some cancer cell lines harbouring oncogenic mutations in RAS genes induced cell death with accumulation of macropinosomes. These results suggest that this type of non-apoptotic PCD is a tumour-suppressing mechanism acting against oncogenic RAS mutations in normal human epithelial cells, which can be overcome by MYC overexpression, raising the possibility that its induction might be a novel approach to treatment of RAS-mutated human cancers. © The Author(s) 2017. Published by Oxford University Press.

  1. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation

    International Nuclear Information System (INIS)

    Tateishi, Yoshihisa; Sasabe, Eri; Ueta, Eisaku; Yamamoto, Tetsuya

    2008-01-01

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by γ-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment

  2. N-myc oncogene amplification is correlated to trace metal concentrations in neuroblastoma cultured cells

    International Nuclear Information System (INIS)

    Gouget, B.; Sergeant, C.; Benard, J.; Llabador, Y.; Simonoff, M.

    2000-01-01

    N-myc oncogene amplification is a powerful predictor of aggressive behavior of neuroblastoma (NB), the most common solid tumor of the early childhood. Since N-myc overexpression - subsequent to amplification - determines a phenotype of invasiveness and metastatic spreading, it is assumed that N-myc amplified neuroblasts synthesize zinc metalloenzymes leading to tumor invasion and formation of metastases. In order to test a possible relation between N-myc oncogene amplification and trace metal contents in human NB cells, Fe, Cu and Zn concentrations have been measured by nuclear microprobe analysis in three human neuroblastoma cell lines with various degrees of N-myc amplification. Elemental determinations show uniform distribution of trace metals within the cells, but variations of intracellular trace metal concentrations with respect to the degree of N-myc amplification are highly dependent on the nature of the element. Zinc concentration is higher in both N-myc amplified cell lines (IMR-32 and IGR-N-91) than in the non-amplified cells (SK-N-SH). In contrast, intracellular iron content is particularly low in N-myc amplified cell lines. Moreover, copper concentrations showed an increase with the degree of N-myc amplification. These results indicate that a relationship exists between intracellular trace metals and N-myc oncogene amplification. They further suggest that trace metals very probably play a determinant role in mechanisms of the neuroblastoma invasiveness

  3. The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology.

    Science.gov (United States)

    Hegyi, Peter; Petersen, Ole H

    2013-01-01

    There are many reviews of pancreatic acinar cell function and also of pancreatic duct function, but there is an almost total absence of synthetic reviews bringing the integrated functions of these two vitally and mutually interdependent cells together. This is what we have attempted to do in this chapter. In the first part, we review the normal integrated function of the acinar-ductal system, with particular emphasis on how regulation of one type of cell also influences the other cell type. In the second part, we review a range of pathological processes, particularly those involved in acute pancreatitis (AP), an often-fatal human disease in which the pancreas digests itself, in order to explore how malfunction of one of the cell types adversely affects the function of the other.

  4. Homer2 protein regulates plasma membrane Ca²⁺-ATPase-mediated Ca²⁺ signaling in mouse parotid gland acinar cells.

    Science.gov (United States)

    Yang, Yu-Mi; Lee, Jiae; Jo, Hae; Park, Soonhong; Chang, Inik; Muallem, Shmuel; Shin, Dong Min

    2014-09-05

    Homer proteins are scaffold molecules with a domain structure consisting of an N-terminal Ena/VASP homology 1 protein-binding domain and a C-terminal leucine zipper/coiled-coil domain. The Ena/VASP homology 1 domain recognizes proline-rich motifs and binds multiple Ca(2+)-signaling proteins, including G protein-coupled receptors, inositol 1,4,5-triphosphate receptors, ryanodine receptors, and transient receptor potential channels. However, their role in Ca(2+) signaling in nonexcitable cells is not well understood. In this study, we investigated the role of Homer2 on Ca(2+) signaling in parotid gland acinar cells using Homer2-deficient (Homer2(-/-)) mice. Homer2 is localized at the apical pole in acinar cells. Deletion of Homer2 did not affect inositol 1,4,5-triphosphate receptor localization or channel activity and did not affect the expression and activity of sarco/endoplasmic reticulum Ca(2+)-ATPase pumps. In contrast, Homer2 deletion markedly increased expression of plasma membrane Ca(2+)-ATPase (PMCA) pumps, in particular PMCA4, at the apical pole. Accordingly, Homer2 deficiency increased Ca(2+) extrusion by acinar cells. These findings were supported by co-immunoprecipitation of Homer2 and PMCA in wild-type parotid cells and transfected human embryonic kidney 293 (HEK293) cells. We identified a Homer-binding PPXXF-like motif in the N terminus of PMCA that is required for interaction with Homer2. Mutation of the PPXXF-like motif did not affect the interaction of PMCA with Homer1 but inhibited its interaction with Homer2 and increased Ca(2+) clearance by PMCA. These findings reveal an important regulation of PMCA by Homer2 that has a central role on PMCA-mediated Ca(2+) signaling in parotid acinar cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  6. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Dina Dikovskaya

    2015-09-01

    Full Text Available Oncogene-induced senescence (OIS is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.

  7. Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice.

    Science.gov (United States)

    Criscimanna, Angela; Coudriet, Gina M; Gittes, George K; Piganelli, Jon D; Esni, Farzad

    2014-11-01

    Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for β-cell generation. Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Solo, a RhoA-targeting guanine nucleotide exchange factor, is critical for hemidesmosome formation and acinar development in epithelial cells.

    Science.gov (United States)

    Fujiwara, Sachiko; Matsui, Tsubasa S; Ohashi, Kazumasa; Deguchi, Shinji; Mizuno, Kensaku

    2018-01-01

    Cell-substrate adhesions are essential for various physiological processes, including embryonic development and maintenance of organ functions. Hemidesmosomes (HDs) are multiprotein complexes that attach epithelial cells to the basement membrane. Formation and remodeling of HDs are dependent on the surrounding mechanical environment; however, the upstream signaling mechanisms are not well understood. We recently reported that Solo (also known as ARHGEF40), a guanine nucleotide exchange factor targeting RhoA, binds to keratin8/18 (K8/K18) intermediate filaments, and that their interaction is important for force-induced actin and keratin cytoskeletal reorganization. In this study, we show that Solo co-precipitates with an HD protein, β4-integrin. Co-precipitation assays revealed that the central region (amino acids 330-1057) of Solo binds to the C-terminal region (1451-1752) of β4-integrin. Knockdown of Solo significantly suppressed HD formation in MCF10A mammary epithelial cells. Similarly, knockdown of K18 or treatment with Y-27632, a specific inhibitor of Rho-associated kinase (ROCK), suppressed HD formation. As Solo knockdown or Y-27632 treatment is known to disorganize K8/K18 filaments, these results suggest that Solo is involved in HD formation by regulating K8/K18 filament organization via the RhoA-ROCK signaling pathway. We also showed that knockdown of Solo impairs acinar formation in MCF10A cells cultured in 3D Matrigel. In addition, Solo accumulated at the site of traction force generation in 2D-cultured MCF10A cells. Taken together, these results suggest that Solo plays a crucial role in HD formation and acinar development in epithelial cells by regulating mechanical force-induced RhoA activation and keratin filament organization.

  9. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    International Nuclear Information System (INIS)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-01-01

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy

  10. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho, E-mail: sangho@snu.ac.kr

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  11. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells.

    Science.gov (United States)

    Fernández-Sánchez, Marcela; del Castillo-Vaquero, Angel; Salido, Ginés M; González, Antonio

    2009-10-30

    A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 microM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.

  12. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells

    Directory of Open Access Journals (Sweden)

    Salido Ginés M

    2009-10-01

    Full Text Available Abstract Background A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Results Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 μM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. Conclusion ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.

  13. Pan-SRC kinase inhibition blocks B-cell receptor oncogenic signaling in non-Hodgkin lymphoma.

    Science.gov (United States)

    Battistello, Elena; Katanayeva, Natalya; Dheilly, Elie; Tavernari, Daniele; Donaldson, Maria C; Bonsignore, Luca; Thome, Margot; Christie, Amanda L; Murakami, Mark A; Michielin, Olivier; Ciriello, Giovanni; Zoete, Vincent; Oricchio, Elisa

    2018-05-24

    In diffuse large B-cell lymphoma (DLBCL), activation of the B-cell receptor (BCR) promotes multiple oncogenic signals, which are essential for tumor proliferation. Inhibition of the Bruton's tyrosine kinase (BTK), a BCR downstream target, is therapeutically effective only in a subgroup of patients with DLBCL. Here, we used lymphoma cells isolated from patients with DLBCL to measure the effects of targeted therapies on BCR signaling and to anticipate response. In lymphomas resistant to BTK inhibition, we show that blocking BTK activity enhanced tumor dependencies from alternative oncogenic signals downstream of the BCR, converging on MYC upregulation. To completely ablate the activity of the BCR, we genetically and pharmacologically repressed the activity of the SRC kinases LYN, FYN, and BLK, which are responsible for the propagation of the BCR signal. Inhibition of these kinases strongly reduced tumor growth in xenografts and cell lines derived from patients with DLBCL independent of their molecular subtype, advancing the possibility to be relevant therapeutic targets in broad and diverse groups of DLBCL patients. © 2018 by The American Society of Hematology.

  14. The Leukemic Stem Cell Niche: Adaptation to “Hypoxia” versus Oncogene Addiction

    Directory of Open Access Journals (Sweden)

    Giulia Cheloni

    2017-01-01

    Full Text Available Previous studies based on low oxygen concentrations in the incubation atmosphere revealed that metabolic factors govern the maintenance of normal hematopoietic or leukemic stem cells (HSC and LSC. The physiological oxygen concentration in tissues ranges between 0.1 and 5.0%. Stem cell niches (SCN are placed in tissue areas at the lower end of this range (“hypoxic” SCN, to which stem cells are metabolically adapted and where they are selectively hosted. The data reported here indicated that driver oncogenic proteins of several leukemias are suppressed following cell incubation at oxygen concentration compatible with SCN physiology. This suppression is likely to represent a key positive regulator of LSC survival and maintenance (self-renewal within the SCN. On the other hand, LSC committed to differentiation, unable to stand suppression because of addiction to oncogenic signalling, would be unfit to home in SCN. The loss of oncogene addiction in SCN-adapted LSC has a consequence of crucial practical relevance: the refractoriness to inhibitors of the biological activity of oncogenic protein due to the lack of their molecular target. Thus, LSC hosted in SCN are suited to sustain the long-term maintenance of therapy-resistant minimal residual disease.

  15. GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth.

    Science.gov (United States)

    Koo, Junghui; Wang, Xuerong; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R; Sun, Shi-Yong

    2015-04-20

    The single-agent activity of rapalogs (rapamycin and its analogues) in most tumor types has been modest at best. The underlying mechanisms are largely unclear. In this report, we have uncovered a critical role of GSK3 in regulating degradation of some oncogenic proteins induced by rapalogs and cell sensitivity to rapalogs. The basal level of GSK3 activity was positively correlated with cell sensitivity of lung cancer cell lines to rapalogs. GSK3 inhibition antagonized rapamycin's growth inhibitory effects both in vitro and in vivo, while enforced activation of GSK3β sensitized cells to rapamycin. GSK3 inhibition rescued rapamcyin-induced reduction of several oncogenic proteins such as cyclin D1, Mcl-1 and c-Myc, without interfering with the ability of rapamycin to suppress mTORC1 signaling and cap binding. Interestingly, rapamycin induces proteasomal degradation of these oncogenic proteins, as evidenced by their decreased stabilities induced by rapamcyin and rescue of their reduction by proteasomal inhibition. Moreover, acute or short-time rapamycin treatment dissociated not only raptor, but also rictor from mTOR in several tested cell lines, suggesting inhibition of both mTORC1 and mTORC2. Thus, induction of GSK3-dependent degradation of these oncogenic proteins is likely secondary to mTORC2 inhibition; this effect should be critical for rapamycin to exert its anticancer activity.

  16. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study

    Directory of Open Access Journals (Sweden)

    Luciana Reis AZEVEDO-ALANIS

    2015-10-01

    Full Text Available Although some morphological investigations on aged human sublingual glands (HSG found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated.Objective The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death.Material and Methods 186 cadavers’ glands were allocated to age groups: I (0–30 years; II (31–60, and III (61–90. Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM. Data were compared using Mann-Whitney U, Spearman’s correlation coefficient, Kruskal-Wallis, and Dunn tests (p<0.05.Results There was correlation between age and acinar autolysis (r=0.38; p=0.0001. However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis.Conclusion Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death.

  17. Oncogene-induced progression of preneoplastic rat tracheal epithelial cells to neoplasia

    International Nuclear Information System (INIS)

    Thomassen, D.G.; Kelly, G.

    1988-01-01

    N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced preneoplastic variants of rat tracheal epithelial (RTE) cells can be neo plastically transformed following transfection with oncogenic DNA. Variants differ with respect to the oncogenes required for neoplastic conversion. Polyma virus DNA transformed each of four variants neo plastically, whereas viral ras DNA only transformed two of four variants. These data demonstrate that preneoplastic variants of RTE cells differ with respect to the changes needed for conversion to neoplastic cells and that the variants tested are either at different stages or on different pathways of progression to neoplasia. (author)

  18. Prostate specific antigen and acinar density: a new dimension, the "Prostatocrit".

    Science.gov (United States)

    Robinson, Simon; Laniado, Marc; Montgomery, Bruce

    2017-01-01

    Prostate-specific antigen densities have limited success in diagnosing prostate cancer. We emphasise the importance of the peripheral zone when considered with its cellular constituents, the "prostatocrit". Using zonal volumes and asymmetry of glandular acini, we generate a peripheral zone acinar volume and density. With the ratio to the whole gland, we can better predict high grade and all grade cancer. We can model the gland into its acinar and stromal elements. This new "prostatocrit" model could offer more accurate nomograms for biopsy. 674 patients underwent TRUS and biopsy. Whole gland and zonal volumes were recorded. We compared ratio and acinar volumes when added to a "clinic" model using traditional PSA density. Univariate logistic regression was used to find significant predictors for all and high grade cancer. Backwards multiple logistic regression was used to generate ROC curves comparing the new model to conventional density and PSA alone. Prediction of all grades of prostate cancer: significant variables revealed four significant "prostatocrit" parameters: log peripheral zone acinar density; peripheral zone acinar volume/whole gland acinar volume; peripheral zone acinar density/whole gland volume; peripheral zone acinar density. Acinar model (AUC 0.774), clinic model (AUC 0.745) (P=0.0105). Prediction of high grade prostate cancer: peripheral zone acinar density ("prostatocrit") was the only significant density predictor. Acinar model (AUC 0.811), clinic model (AUC 0.769) (P=0.0005). There is renewed use for ratio and "prostatocrit" density of the peripheral zone in predicting cancer. This outperforms all traditional density measurements. Copyright® by the International Brazilian Journal of Urology.

  19. Combined drug action of 2-phenylimidazo[2,1-b]benzothiazole derivatives on cancer cells according to their oncogenic molecular signatures.

    Directory of Open Access Journals (Sweden)

    Alessandro Furlan

    Full Text Available The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by "RTK swapping" by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in

  20. Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Ken Kikuchi

    2014-01-01

    Full Text Available Rhabdomyosarcoma is the most commonly occurring soft-tissue sarcoma in childhood. Most rhabdomyosarcoma falls into one of two biologically distinct subgroups represented by alveolar or embryonal histology. The alveolar subtype harbors a translocation-mediated PAX3:FOXO1A fusion gene and has an extremely poor prognosis. However, tumor cells have heterogeneous expression for the fusion gene. Using a conditional genetic mouse model as well as human tumor cell lines, we show that that Pax3:Foxo1a expression is enriched in G2 and triggers a transcriptional program conducive to checkpoint adaptation under stress conditions such as irradiation in vitro and in vivo. Pax3:Foxo1a also tolerizes tumor cells to clinically-established chemotherapy agents and emerging molecularly-targeted agents. Thus, the surprisingly dynamic regulation of the Pax3:Foxo1a locus is a paradigm that has important implications for the way in which oncogenes are modeled in cancer cells.

  1. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas WT cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53. PMID:19047147

  2. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice.

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-12-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here, we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/-Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas wild-type cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53.

  3. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    Science.gov (United States)

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  4. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    International Nuclear Information System (INIS)

    Pauklin, Siim; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-01-01

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, β-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53

  5. Regulation of CCK-induced ERK1/2 activation by PKC epsilon in rat pancreatic acinar cells

    Directory of Open Access Journals (Sweden)

    Chenwei Li

    2017-11-01

    Full Text Available The extracellular signal-regulated kinase ERK1/2 is activated in pancreatic acinar cells by cholecystokinin (CCK and other secretagogues with this activation mediated primarily by protein kinase C (PKC. To identify the responsible PKC isoform, we utilized chemical inhibitors, cell permeant inhibitory peptides and overexpression of individual PKC dominant negative variants by means of adenoviral vectors. While the broad-spectrum PKC inhibitor GF109203X strongly inhibited ERK1/2 activation induced by 100 pM CCK, Go6976 which inhibits the classical PKC isoforms (alpha, beta and gamma, as well as Rottlerin, a specific PKC delta inhibitor, had no inhibitory effect. To test the role of PKC epsilon, we used specific cell permeant peptide inhibitors which block PKC interaction with their intracellular receptors or RACKs. Only PP93 (PKC epsilon peptide inhibitor inhibited CCK-induced ERK1/2 activation, while PP95, PP101 and PP98, which are PKC alpha, delta and zeta peptide inhibitors respectively, had no effect. We also utilized adenovirus to express dominant negative PKC isoforms in pancreatic acini. Only PKC epsilon dominant negative inhibited CCK-induced ERK1/2 activation. Dominant negative PKC epsilon expression similarly blocked the effect of carbachol and bombesin to activate ERK1/2. Immunoprecipitation results demonstrated that CCK can induce an interaction of c-Raf-1 and PKC epsilon, but not that of other isoforms of Raf or PKC. We conclude that PKC epsilon is the isoform of PKC primarily involved with CCK-induced ERK1/2 activation in pancreatic acinar cells.

  6. Cytopathology and exocrine dysfunction induced in ex vivo rabbit lacrimal gland acinar cell models by chronic exposure to histamine or serotonin.

    Science.gov (United States)

    McDonald, Michelle L; Wang, Yanru; Selvam, Shivaram; Nakamura, Tamako; Chow, Robert H; Schechter, Joel E; Yiu, Samuel C; Mircheff, Austin K

    2009-07-01

    Lacrimal immunohistopathology has diverse clinical presentations, suggesting that inflammatory mediators exert diverse influences. Chronic exposure to agonistic acetylcholine receptor autoantibodies has been studied previously; the present work addressed mediators that signal through other G protein-coupled receptors. Acinus-like structures and reconstituted acinar epithelial monolayers from rabbit lacrimal glands were exposed to varying concentrations of histamine or 5-hydroxytryptamine (5-HT) for 20 hours. Net and vectorial beta-hexosaminidase secretion, cytosolic Ca(2+) (Ca(i)) elevation, apical recruitment of p150(Glued), actin microfilament meshwork organization, and ultrastructure were assessed. Histamine and 5-HT acutely stimulated beta-hexosaminidase secretion at lower, but not higher, concentrations. Neither of them acutely elevated Ca(i) levels. Both recruited p150(Glued) at concentrations that failed to induce secretion. Chronic exposure to 10 mM histamine inhibited carbachol (CCh)-induced beta-hexosaminidase secretion and prevented the formation of continuous monolayers; 1 mM 5-HT partially inhibited secretion at the apical medium. Neither altered secretion to the basal medium. Chronic exposure to histamine or 5-HT partially decreased CCh induced Ca(i) elevations and p150(Glued) recruitment, even at concentrations that did not inhibit secretion. Both expanded acinar lumina and thickened microfilament meshworks, and both caused homotypic fusion of secretory vesicles and formation of aqueous vacuoles in the apical and basal cytoplasm. Chronic exposure to forskolin, which activates adenylyl cyclase, induced similar cytopathologic changes but impaired secretion modestly and only at the highest concentration tested. Inflammatory mediators that signal through G protein-coupled receptors cause acinar cell cytopathology and dose-dependent reductions of CCh-induced beta-hexosaminidase secretion. Although agonistic acetylcholine receptor autoantibodies may cause

  7. Role of alveolar topology on acinar flows and convective mixing.

    Science.gov (United States)

    Hofemeier, Philipp; Sznitman, Josué

    2014-06-01

    Due to experimental challenges, computational simulations are often sought to quantify inhaled aerosol transport in the pulmonary acinus. Commonly, these are performed using generic alveolar topologies, including spheres, toroids, and polyhedra, to mimic the complex acinar morphology. Yet, local acinar flows and ensuing particle transport are anticipated to be influenced by the specific morphological structures. We have assessed a range of acinar models under self-similar breathing conditions with respect to alveolar flow patterns, convective flow mixing, and deposition of fine particles (1.3 μm diameter). By tracking passive tracers over cumulative breathing cycles, we find that irreversible flow mixing correlates with the location and strength of the recirculating vortex inside the cavity. Such effects are strongest in proximal acinar generations where the ratio of alveolar to ductal flow rates is low and interalveolar disparities are most apparent. Our results for multi-alveolated acinar ducts highlight that fine 1 μm inhaled particles subject to alveolar flows are sensitive to the alveolar topology, underlining interalveolar disparities in particle deposition patterns. Despite the simplicity of the acinar models investigated, our findings suggest that alveolar topologies influence more significantly local flow patterns and deposition sites of fine particles for upper generations emphasizing the importance of the selected acinar model. In distal acinar generations, however, the alveolar geometry primarily needs to mimic the space-filling alveolar arrangement dictated by lung morphology.

  8. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    International Nuclear Information System (INIS)

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2014-01-01

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells

  9. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Audemard, Eric [McGill University and Genome Quebec Innovation Centre, Montreal, Quebec (Canada); Montermini, Laura; Meehan, Brian [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Rak, Janusz, E-mail: janusz.rak@mcgill.ca [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-08-22

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.

  10. Postmortem acinar autolysis in rat sublingual gland: a morphometric study.

    Science.gov (United States)

    Nery, Leticia Rodrigues; Moreira, Carla Ruffeil; Cestari, Tania Mary; Taga, Rumio; Damante, José Humberto

    2010-01-01

    To analyze and to quantify morphological acinar postmortem changes in rat sublingual glands (SLG). MATERIAL AND METHODSs: Fifty rats were divided into two groups of 25 animals each. Group I was used for morphological and morphometric evaluations and group II for the determination of gland density and processed gland volume. Acinar autolytic changes were studied at 0 (control group), 3, 6, 12 and 24 h postmortem periods. The morphometric analysis of the volume density (Vv) and total volume (Vt) of intact (ia) and autolyzed (aa) acini was performed under light microscopy using a Zeiss II integration grid with 100 symmetrically distributed points. Morphologically, temporal progressive nuclear alterations and gradual loss of the structural architecture of acinar cells were found. Regarding quantitative results, both the Vvaa and the Vvia showed statistically significant differences among all postmortem periods (p0.05), respectively. Vtaa increased from 0.18 mm³ at 0 h to 38.17 mm³ at 12 h, while Vtia showed a decrease from 33.47 mm³ to 0 mm³ between 3-24 h postmortem. Data concerning Vtaa were adjusted by two-variable linear regression, obtaining the equation: y=-3.54+3.38x (r²=0.90). The Vtaa growth rate calculated by this equation was 3.38 mm³/h between 0-12 h. Acinar autolysis on rat SLG demonstrated the most significant signs during the first 6 h postmortem and was widely spread through the gland at 12 h.

  11. Radiosensitivity and ras oncogene expression in preneoplastic rat tracheal epithelial cells

    International Nuclear Information System (INIS)

    Thomassen, D.G.; Wuensch, S.A.; Kelly, G.

    1988-01-01

    The sensitivity of preneoplastic rat tracheal epithelial (RTE) cells to the cytotoxic effects of high- and low-LET radiation, and the modulating effect of the viral ras oncogene on this sensitivity were determined. Two lines of preneoplastic RTE cells have the same responsiveness to high-LET radiation, but differ in their responsiveness to a transfected ras oncogene and in their sensitivities to low-LET radiation. Cells that respond to ras by becoming neoplastic are more resistant to the cytotoxic effects of low-LET radiation than cells that are not transformable by ras. The radiosensitivity of ras-responsive cells was not altered by transfection with ras. However, transfection of ras-non responsive cells with ras decreased their sensitivity to low-LET radiation. These data suggest that the ability of cells to repair radiation damage changes as they progress to neoplasia. (author)

  12. Effects of c-myc oncogene modulation on differentiation of human small cell lung carcinoma cell lines

    NARCIS (Netherlands)

    Van Waardenburg, RCAM; Meijer, C; Pinto-Sietsma, SJ; De Vries, EGE; Timens, W; Mulder, NM

    1998-01-01

    Amplification and over-expression of oncogenes of the myc family are related to the prognosis of certain solid tumors such as small cell lung cancer (SCLC). For SCLC, c-myc is the oncogene most consistently found to correlate with the end stage behaviour of the tumour, in particular with survival

  13. Megamitochondria in the serous acinar cells of the submandibular gland of the neotropical fruit bat, Artibeus obscurus.

    Science.gov (United States)

    Tandler, B; Nagato, T; Phillips, C J

    1997-05-01

    As part of a continuing investigation of the comparative ultrastructure of chiropteran salivary glands, we examined the submandibular glands of eight species of neotropical fruit bats in the genus Artibeus. We previously described secretory granules of unusual substructure in the seromucous demilunar cells of this organ in some species in this genus. In the present study, we turned our attention to the serous acinar cells in the same glands. Specimens of eight species of Artibeus were collected in neotropical localities. Salivary glands were extirpated in the field and thin slices were fixed by immersion in triple aldehyde-DMSO or in modified half-strength Karnovsky's fixative. Tissues were further processed for electron microscopy by conventional means. In contrast to seromucous cells, which exhibit species-specific diversification in bats of this genus, the secretory apparatus and secretory granules in the serous acinar cells are highly conserved across all seven species. The single exception involves the mitochondria in one species. In this instance, some of the serous cell mitochondria in Artibeus obscurus are modified into megamitochondria. Such organelles usually have short, peripheral cristae; a laminar inclusion is present in the matrix compartment of every outsized organelle. Inclusions of this nature never are present in normal-size mitochondria in the serous cells. None of the megamitochondria were observed in the process of degeneration. The giant mitochondria in A. obscurus have a matrical structure that is radically different from that of the only other megamitochondria reported to occur in bat salivary glands. The factors that lead to variation in megamitochondrial substructure in different species, as well as the functional capacities of such giant organelles, are unknown.

  14. Multimodal approach and long-term survival in a patient with recurrent metastatic acinar cell carcinoma of the pancreas: A case report.

    Science.gov (United States)

    Jauch, Sarah F; Morris, Van K; Jensen, Corey T; Kaseb, Ahmed O

    2016-01-01

    Pancreatic acinar cell carcinoma is an uncommon neoplasm of the exocrine pancreas associated with a poor prognosis, especially when found to be metastatic. Since there are a lack of large studies and prospective, randomized data, no consensus treatment guidelines are available. Here, we report a case of a patient with recurrent metastatic acinar cell carcinoma involving the liver who had presented initially with pancreatic panniculitis. She received chemotherapy with capecitabine and oxaliplatin prior to resection of her primary tumor and liver metastases, after which she experienced a 30 months recurrence-free survival. Upon relapse, she was treated with a combination of capecitabine and oxaliplatin followed by maintenance capecitabine. Now, more than seven years after initial diagnosis, the patient remains stable without evidence of active disease. This case highlights the possibility of therapeutic success even for a patient initially deemed unresectable due to a poor performance status who responded to fluoropyrimidine-based therapy. Copyright © 2015 IAP and EPC. Published by Elsevier India Pvt Ltd. All rights reserved.

  15. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzato, Annalisa; Biolatti, Marta [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Delogu, Giuseppe [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Capobianco, Giampiero [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Farace, Cristiano [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Madeddu, Roberto [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); National Institute of Biostructures and Biosystems, Rome (Italy); Olivero, Martina [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Di Renzo, Maria Flavia, E-mail: mariaflavia.direnzo@unito.it [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy)

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

  16. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    International Nuclear Information System (INIS)

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-01-01

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT

  17. Scintigraphic imaging of oncogenes with antisense probes: does it make sense?

    International Nuclear Information System (INIS)

    Urbain, J.L.C.; Shore, S.K.; Vekemans, M.C.; Cosenza, S.C.; DeRiel, K.; Patel, G.V.; Charkes, N.D.; Malmud, L.S.; Reddy, E.P.

    1995-01-01

    The aim of this study was to demonstrate that cells which are expressing a particular mRNA transcript do preferentially and specifically retain the antisense probe targeting that mRNA. Using a mouse plasmacytoma cell line (MOPC315) which produces high levels of IgA heavy chain mRNA, a control mouse pre B cell line (7OZ/3B), a human mammary cell line (MCF7) which expresses the erbB2 or neu oncogene, MOPC315 cells as neu-negative controls, and antisense DNA oligonucleotides complementary to the 5' region of the mRNAs and the sense sequence, we have shown that there is a preferential, specific retention of the IgA and neu antisense sequence in MOPC315 and MCF7 cells, respectively. We have further demonstrated that this retention is time and concentration dependent with a maximum at 24 h. We conclude that cancer cells which express a particular oncogene are suitable targets for radiolabeled antisense deoxyoligonucleotides directed toward the oncogene transcript. (orig.)

  18. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    International Nuclear Information System (INIS)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-01

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription

  19. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun, E-mail: hirayama.dbio@mri.tmd.ac.jp; Nishina, Hiroshi, E-mail: nishina.dbio@mri.tmd.ac.jp

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  20. Early events of secretory granule formation in the rat parotid acinar cell under the influence of isoproterenol. An ultrastructural and lectin cytochemical study

    Directory of Open Access Journals (Sweden)

    F D’Amico

    2009-12-01

    Full Text Available The events involved in the maturation process of acinar secretory granules of rat parotid gland were investigated ultrastructurally and cytochemically by using a battery of four lectins [Triticum vulgaris agglutinin (WGA, Ulex europaeus agglutinin I (UEA-I, Glycine max agglutinin (SBA, Arachys hypogaea agglutinin (PNA]. In order to facilitate the study, parotid glands were chronically stimulated with isoproterenol to induce secretion. Specimens were embedded in the Lowicryl K4M resin. The trans-Golgi network (TGN derived secretory granules, which we refer to as immature secretory granules, were found to be intermediate structures in the biogenesis process of the secretory granules in the rat parotid acinar cell. These early structures do not seem to be the immediate precursor of the mature secretory granules: in fact, a subsequent interaction process between these early immature granule forms and TGN elements seems to occur, leading, finally, to the mature granules. These findings could explain the origin of the polymorphic subpopulations of the secretory granules in the normal acinar cells of the rat parotid gland. The lectin staining patterns were characteristic of each lectin. Immature and mature secretory gran- ules were labelled with WGA, SBA, PNA, and lightly with UEA-I. Cis and intermediate cisternae of the Golgi apparatus were labelled with WGA, and trans cisternae with WGA and SBA.

  1. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    International Nuclear Information System (INIS)

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-01-01

    Highlights: • As 2 O 3 inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As 2 O 3 than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As 2 O 3 than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As 2 O 3 is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As 2 O 3 ) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As 2 O 3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As 2 O 3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As 2 O 3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As 2 O 3 than HPV 16-positive CaSki and SiHa cells. After As 2 O 3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As 2 O 3 is a potential anticancer drug for cervical cancer

  2. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  3. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study

    Directory of Open Access Journals (Sweden)

    Shirasawa Senji

    2011-09-01

    Full Text Available Abstract Background Colorectal cancer is a common disease that involves genetic alterations, such as inactivation of tumour suppressor genes and activation of oncogenes. Among them are RAS and BRAF mutations, which rarely coexist in the same tumour. Individual members of the Rho (Ras homology GTPases contribute with distinct roles in tumour cell morphology, invasion and metastasis. The aim of this study is to dissect cell migration and invasion pathways that are utilised by BRAFV600E as compared to KRASG12V and HRASG12V oncoproteins. In particular, the role of RhoA (Ras homolog gene family, member A, Rac1 (Ras-related C3 botulinum toxin substrate 1 and Cdc42 (cell division cycle 42 in cancer progression induced by each of the three oncogenes is described. Methods Colon adenocarcinoma cells with endogenous as well as ectopically expressed or silenced oncogenic mutations of BRAFV600E, KRASG12V and HRASG12V were employed. Signalling pathways and Rho GTPases were inhibited with specific kinase inhibitors and siRNAs. Cell motility and invasion properties were correlated with cytoskeletal properties and Rho GTPase activities. Results Evidence presented here indicate that BRAFV600E significantly induces cell migration and invasion properties in vitro in colon cancer cells, at least in part through activation of RhoA GTPase. The relationship established between BRAFV600E and RhoA activation is mediated by the MEK-ERK pathway. In parallel, KRASG12V enhances the ability of colon adenocarcinoma cells Caco-2 to migrate and invade through filopodia formation and PI3K-dependent Cdc42 activation. Ultimately increased cell migration and invasion, mediated by Rac1, along with the mesenchymal morphology obtained through the Epithelial-Mesenchymal Transition (EMT were the main characteristics rendered by HRASG12V in Caco-2 cells. Moreover, BRAF and KRAS oncogenes are shown to cooperate with the TGFβ-1 pathway to provide cells with additional transforming

  4. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Directory of Open Access Journals (Sweden)

    Erica L Cain

    2011-04-01

    Full Text Available Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized.To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis.Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  5. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors.

    Science.gov (United States)

    Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James

    2015-12-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.

  6. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study.

    Science.gov (United States)

    Azevedo-Alanis, Luciana Reis; Tolentino, Elen de Souza; de Assis, Gerson Francisco; Cestari, Tânia Mary; Lara, Vanessa Soares; Damante, José Humberto

    2015-10-01

    Although some morphological investigations on aged human sublingual glands (HSG) found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated. The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death. 186 cadavers' glands were allocated to age groups: I (0-30 years); II (31-60), and III (61-90). Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM). Data were compared using Mann-Whitney U, Spearman's correlation coefficient, Kruskal-Wallis, and Dunn tests (pautolysis (r=0.38; p=0.0001). However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis. Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death.

  7. Identifying Breast Cancer Oncogenes

    Science.gov (United States)

    2011-10-01

    cells we observed that it promoted transformation of HMLE cells, suggesting a tumor suppressive role of Merlin in breast cancer (Figure 4B). A...08-1-0767 TITLE: Identifying Breast Cancer Oncogenes PRINCIPAL INVESTIGATOR: Yashaswi Shrestha...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 W81XWH-08-1-0767 Identifying Breast Cancer Oncogenes Yashaswi Shrestha Dana-Farber

  8. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    Science.gov (United States)

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  9. Conditional Selection of Genomic Alterations Dictates Cancer Evolution and Oncogenic Dependencies.

    Science.gov (United States)

    Mina, Marco; Raynaud, Franck; Tavernari, Daniele; Battistello, Elena; Sungalee, Stephanie; Saghafinia, Sadegh; Laessle, Titouan; Sanchez-Vega, Francisco; Schultz, Nikolaus; Oricchio, Elisa; Ciriello, Giovanni

    2017-08-14

    Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear. Here, we designed SELECT, an algorithmic approach to systematically identify evolutionary dependencies from alteration patterns. By analyzing 6,456 genomes from multiple tumor types, we constructed a map of oncogenic dependencies associated with cellular pathways, transcriptional readouts, and therapeutic response. Finally, modeling of cancer evolution shows that alteration dependencies emerge only under conditional selection. These results provide a framework for the design of strategies to predict cancer progression and therapeutic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture

    Science.gov (United States)

    Suszynski, Thomas M.; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.

    2016-01-01

    The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over a 6-9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture; the mean (± standard error) OCR/DNA was 74.0 (±11.7) units higher for acinar (vs. islet) tissue on the day of isolation (n=16, p<0.0001), but 25.7 (±9.4) units lower after 1 day (n=8, p=0.03), 56.6 (±11.5) units lower after 2 days (n=12, p=0.0004), and 65.9 (±28.7) units lower after 8 days (n=4, p=0.2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6-9 days in culture (n=6). DNA recovery decreased to 24±7% for acinar and 75±8% for islets (p=0.002). Similarly, OCR recovery decreased to 16±3% for acinar and remained virtually constant for islets (p=0.005). Differences in the metabolic profile of acinarand islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre-IT culture protocols. PMID:25131082

  11. Effect of ionizing radiation on the biological activity of activated oncogenes and dormant proto-oncogenes

    International Nuclear Information System (INIS)

    Angenent, G.C.; Berg, K.J. van den.

    1984-01-01

    The authors have studied the effect of ionizing radiation on the cloned human activated Ha-ras oncogene, on the Ha-ras gene in integrated form and on the dormant proto-oncogene murine c-mos using the NIH/3T3 transfection system. NIH/3T3 cells were transfected with DNA from the plasmid pT24 carrying the cloned Ha-ras oncogene of the T24 bladder carcinoma cell line. Various individual foci which developed were injected into nude mice. DNA was isolated from tumours, digested with the restriction enzyme Bam HI, electrophoresed on agarose and blotted onto nitrocellulose filter according to Southern. Hybridization with a pT24 probe showed that all the primary foci of transformed cells contained various fragments of the pT24 plasmid indicating that fibroblast transformation had been induced by introduction of the Ha-ras oncogene. (Auth.)

  12. Targeting MET Amplification as a New Oncogenic Driver

    International Nuclear Information System (INIS)

    Kawakami, Hisato; Okamoto, Isamu; Okamoto, Wataru; Tanizaki, Junko; Nakagawa, Kazuhiko; Nishio, Kazuto

    2014-01-01

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy

  13. Targeting MET Amplification as a New Oncogenic Driver

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  14. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient

    Directory of Open Access Journals (Sweden)

    Sarah Pfrommer

    2013-09-01

    Full Text Available Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life.

  15. Oncogenic cancer/testis antigens

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer....../testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...... immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic...

  16. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    Directory of Open Access Journals (Sweden)

    Aljona Gaiko-Shcherbak

    Full Text Available The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  17. Mixed acinar-endocrine carcinoma of the pancreas: new clinical and pathological features in a contemporary series.

    Science.gov (United States)

    Yu, Run; Jih, Lily; Zhai, Jing; Nissen, Nicholas N; Colquhoun, Steven; Wolin, Edward; Dhall, Deepti

    2013-04-01

    The objective of this study was to characterize the novel clinical and pathological features of mixed acinar-endocrine carcinoma of the pancreas. This was a retrospective review of medical records and surgical pathology specimens of patients with a diagnosis of mixed acinar-endocrine carcinoma of the pancreas at Cedars-Sinai Medical Center between 2005 and 2011. Additional immunohistochemistry was performed on the specimens of some patients. Five patients were identified. The median age at presentation was 74 years (range, 59-89 years), and all patients were male. The presenting symptoms were all related to tumor mass effects. The median size of the tumor was 10 cm (range, 3.9-16 cm). Preoperative clinical diagnosis aided by fine-needle aspiration biopsy was incorrect in all 5 cases. Most tumors (3/5) exhibited predominantly endocrine differentiation without hormonal production. Only 10% to 30% of cells were truly amphicrine, whereas most were differentiated into either endocrine or acinar phenotype. The clinical behavior ranged from moderate to aggressive with postoperative survival from 2.5 months to more than 3 years. Four patients received neoadjuvant or adjuvant chemotherapy with variable responses. Mixed acinar-endocrine carcinoma of the pancreas appears to be not uncommon in men, may harbor predominantly endocrine component, is often misdiagnosed by cytology, and exhibits variable clinical behavior. Mixed acinar-endocrine carcinoma of the pancreas should be considered in older patients with sizable pancreatic mass and may warrant aggressive surgical resection and chemotherapy.

  18. Change of mitotic cycle and DNA repair in embryonic cells of rat, immortalized by E1 A oncogene and transformated by E1 A and c-Ha-Ras oncogenes under ionizing radiation action

    International Nuclear Information System (INIS)

    Kirillova, T.V.

    1997-01-01

    Comparison investigation into the repair of mitotic cycle and the reunion of DN single- and double-strand breaks in gamma-ray irradiated initial E1 A oncogene immortalized and E1 A and c-Ha-Ras oncogene transformed (mutant form) lines of rat embryonic fibroblasts was carried out. Possible involvement of Ras gene product in DNA repair speed governing and absence of tumor suppression function of p 53 protein in the embryonic and E1 A oncogene immortalized cells of rat fibroblast, as well as, presence of the mentioned function of p 53 protein in E1 A and c-Ha-Ras oncogene transformed cells were studied [ru

  19. Oncogenes and radiosensitivity: in vitro studies. Potential impact in radiotherapy

    International Nuclear Information System (INIS)

    Alapetite, C.; Moustacchi, E.; Cosset, J.M.

    1992-01-01

    It is of interest to address the question of whether or not activated oncogenes can influence tumorigenic cell response to radiations. Malignant transformation through transfection of oncogenes offers a possibility for in vitro comparison of transformed cells and parental cells. Murin cellular system analysis suggests an acquisition of radioresistance through some oncogenes transfection. In human cells, only a limited number of oncogenes (ras and myc) has been studied so far. To date, no crucial influence could be demonstrated. The extension of the analysis to other oncogenes and suppressor genes could potentially be helpful for the choice and the modalities of cancer treatment

  20. Hypoxic vasoconstriction of partial muscular intra-acinar pulmonary arteries in murine precision cut lung slices

    Directory of Open Access Journals (Sweden)

    Goldenberg Anna

    2006-06-01

    Full Text Available Abstract Background Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV which serves to match lung perfusion to ventilation. The underlying mechanisms are not fully resolved yet. The major vascular segment contributing to HPV, the intra-acinar artery, is mostly located in that part of the lung that cannot be selectively reached by the presently available techniques, e.g. hemodynamic studies of isolated perfused lungs, recordings from dissected proximal arterial segments or analysis of subpleural vessels. The aim of the present study was to establish a model which allows the investigation of HPV and its underlying mechanisms in small intra-acinar arteries. Methods Intra-acinar arteries of the mouse lung were studied in 200 μm thick precision-cut lung slices (PCLS. The organisation of the muscle coat of these vessels was characterized by α-smooth muscle actin immunohistochemistry. Basic features of intra-acinar HPV were characterized, and then the impact of reactive oxygen species (ROS scavengers, inhibitors of the respiratory chain and Krebs cycle metabolites was analysed. Results Intra-acinar arteries are equipped with a discontinuous spiral of α-smooth muscle actin-immunoreactive cells. They exhibit a monophasic HPV (medium gassed with 1% O2 that started to fade after 40 min and was lost after 80 min. This HPV, but not vasoconstriction induced by the thromboxane analogue U46619, was effectively blocked by nitro blue tetrazolium and diphenyleniodonium, indicating the involvement of ROS and flavoproteins. Inhibition of mitochondrial complexes II (3-nitropropionic acid, thenoyltrifluoroacetone and III (antimycin A specifically interfered with HPV, whereas blockade of complex IV (sodium azide unspecifically inhibited both HPV and U46619-induced constriction. Succinate blocked HPV whereas fumarate had minor effects on vasoconstriction. Conclusion This study establishes the first model for investigation of basic characteristics of HPV

  1. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.

    Science.gov (United States)

    Kamerkar, Sushrut; LeBleu, Valerie S; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F; Melo, Sonia A; Lee, J Jack; Kalluri, Raghu

    2017-06-22

    The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes are extracellular vesicles generated by all cells, and are naturally present in the blood. Here we show that enhanced retention of exosomes, compared to liposomes, in the circulation of mice is likely due to CD47-mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry short interfering RNA or short hairpin RNA specific to oncogenic Kras G12D , a common mutation in pancreatic cancer. Compared to liposomes, the engineered exosomes (known as iExosomes) target oncogenic KRAS with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. Treatment with iExosomes suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased overall survival. Our results demonstrate an approach for direct and specific targeting of oncogenic KRAS in tumours using iExosomes.

  2. Engineering CHO cells with an oncogenic KIT improves cells growth, resilience to stress, and productivity.

    Science.gov (United States)

    Mahameed, Mohamed; Tirosh, Boaz

    2017-11-01

    An optimized biomanufacturing process in mammalian cells is contingent on the ability of the producing cells to reach high viable cell densities. In addition, at the peak of growth, cells need to continue producing the biological entity at a consistent quality. Thus, engineering cells with robust growth performance and resilience to variable stress conditions is highly desirable. The tyrosine kinase receptor, KIT, plays a key role in cell differentiation and the survival of several immune cell types. Its oncogenic mutant, D816V, endows cells with high proliferation capacity, and resistance to kinase inhibitors. Importantly, this onco-KIT mutant when introduced into various cell types is arrested in the endoplasmic reticulum in a constitutively active form. Here, we investigated the effect of oncogenic D816V KIT on the performance of CHO-K1 cells under conventional tissue culture growth settings and when adapted, to shaking conditions. The onco-KIT promoted global protein synthesis, elevated the expression of a secretable transgene, enhanced proliferation, and improved the overall titers of a model glycoprotein. Moreover, the expression of the onco-KIT endowed the cells with a remarkable resistance to various stress conditions. Our data suggest that the introduction of onco-KIT can serve as a strategy for improving glycoprotein biomanufacturing. Biotechnol. Bioeng. 2017;114: 2560-2570. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Mutant p53 - heat shock response oncogenic cooperation: a new mechanism of cancer cell survival

    Directory of Open Access Journals (Sweden)

    Evguenia eAlexandrova

    2015-04-01

    Full Text Available The main tumor suppressor function of p53 as a ‘guardian of the genome’ is to respond to cellular stress by transcriptional activation of apoptosis, growth arrest or senescence in damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic alteration in human cancers. Importantly, mutant p53 (mutp53 proteins not only lose their wild-type tumor suppressor activity, but also can actively promote tumor development. Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic activities known as gain-of-function (GOF. Here we discuss a novel mechanism of mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery. This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic stress and provides both, a strong survival advantage to cancer cells and a promising means for therapeutic intervention.

  4. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar CellsSummary

    Directory of Open Access Journals (Sweden)

    Scott W. Messenger

    2015-11-01

    Full Text Available Background & Aims: Pancreatic acinar cells have an expanded apical endosomal system, the physiologic and pathophysiologic significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate [PI(3,5P2] is an essential phospholipid generated by phosphatidylinositol 3-phosphate 5-kinase (PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI3P. PI(3,5P2 is necessary for maturation of early endosomes (EE to late endosomes (LE. Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Methods: Inhibition of EE to LE trafficking was achieved using pharmacologic inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1, and trypsinogen activation in response to supramaximal cholecystokinin (CCK-8, bile acids, and cigarette toxin was determined. Results: PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to supramaximal CCK-8, tobacco toxin, and bile salts in both rodent and human acini. Conclusions: These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular

  5. Cytological and oncogene alterations in radiation-transformed Syrian hamster embryo cells

    International Nuclear Information System (INIS)

    Trutschler, K.; Hieber, L.; Kellerer, A.M.

    1991-01-01

    Syrian hamster embryo (SHE) cells were neoplastically transformed by different types of ionizing radiation (γ-rays, α-particles or carbon ions). Transformed and tumor cell lines (derived from nude mice tumors) were analysed for alterations of the oncogenes c-Ha-ras and c-myc, i.e. RFLPs, gene amplifications, activation by point mutation, gene expression, and for cytological changes. In addition, the chromosome number and the numbers of micronuclei per cell have been determined in a series of cell lines. (author)

  6. The quest for targets executing MYC-dependent cell transformation

    Directory of Open Access Journals (Sweden)

    Markus eHartl

    2016-06-01

    Full Text Available MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than forty upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, for determination which of the known, or yet unidentified targets are responsible for processing the oncogenic MYC program, further systematic and selective approaches are required. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets.Knowledge about essential MYC regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated

  7. Misoprostol-induced radioprotection of Syrian hamster embryo cells in utero from cell death and oncogenic transformation

    International Nuclear Information System (INIS)

    Miller, R.C.; LaNasa, P.; Hanson, W.R.

    1994-01-01

    Misoprostol, a PGE analog, is an effective radioprotector of murine intestine and hematopoietic and hair cell renewal systems. The radioprotective nature of misoprostol was extended to examine its ability to influence clonogenic cell survival and induction of oncogenic transformation in Syrian hamster embryo cells exposed to X rays in utero and assayed in vitro. Hamsters in their 12th day of pregnancy were injected subcutaneously with misoprostal, and 2 h later the pregnant hamsters were exposed to graded doses of X rays. Immediately after irradiation, hamsters were euthanized and embryonic tissue was explanted into culture dishes containing complete growth medium. After a 2-week incubation period, clongenic cell survival and morphologically transformed foci were determined. Survival of misoprostol-treated SHE cells was increased and yielded a dose reduction factor of 1.5 compared to SHE cells treated with X rays alone. In contrast, radiation-induced oncogenic transformation of misoprostol-treated cells was reduced by a factor of 20 compared to cells treated with X rays alone. These studies suggest that misoprostol not only protects normal tissues in vivo from acute radiation injury, but also protects cells, to a large extent, from injury leading to transforming events. 26 refs., 6 figs., 2 tabs

  8. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Jr., Billy W. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  9. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice

    Science.gov (United States)

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C.

    2016-01-01

    ABSTRACT   Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. Importance   Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an

  10. B-cell lymphoma 6 protein stimulates oncogenicity of human breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Qiang; Kong, Xiang-jun; Xu, Xiao-chun; Lobie, Peter E; Zhu, Tao; Wu, Zheng-sheng; Liu, Xue; Yan, Hong; He, Yin-huan; Ye, Shan; Cheng, Xing-wang; Zhu, Gui-lu; Wu, Wen-yong; Wang, Xiao-nan

    2014-01-01

    B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients. Expression of BCL6 protein was assessed using in situ hybridization and immunohistochemistry in 127 breast cancer patients and 50 patients with breast benign disease as well as in breast cell lines. Expression of BCL6 was restored or knocked down in two breast cancer cell lines (MCF-7 and T47D) using BCL6 cDNA and siRNA, respectively. The phenotypic change of these breast cancer cell lines was assessed using cell viability MTT, Transwell invasion, colony formation, and flow cytometry assays and in a xenograft mice model. Luciferase reporter gene, immunoblot, and qRT-PCR were used to investigate the molecular events after manipulated BCL6 expression in breast cancer cells. BCL6 protein was highly expressed in breast cancer cell lines and tissue specimens and expression of BCL6 protein was associated with disease progression and poor survival of breast cancer patients. In vitro, the forced expression of BCL6 results in increased proliferation, anchorage-independent growth, migration, invasion and survival of breast cancer cell lines, whereas knockdown of BCL6 expression reduced these oncogenic properties of breast cancer cells. Moreover, forced expression of BCL6 increased tumor growth and invasiveness in a nude mouse xenograft model. At the gene level, BCL6 was a target gene of miR-339-5p. Expression of BCL6 induced expression of CXCR4 and cyclinD1 proteins. The current study demonstrated the oncogenic property of BCL6 in breast cancer and further study could target BCL6 as a novel potential therapeutic strategy for breast cancer

  11. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    Science.gov (United States)

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line. Copyright © 2015. Published by Elsevier Ltd.

  12. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma

    Science.gov (United States)

    Drier, Yotam; Cotton, Matthew J.; Williamson, Kaylyn E.; Gillespie, Shawn M.; Ryan, Russell J.H.; Kluk, Michael J.; Carey, Christopher D.; Rodig, Scott J.; Sholl, Lynette M; Afrogheh, Amir H.; Faquin, William C.; Queimado, Lurdes; Qi, Jun; Wick, Michael J.; El-Naggar, Adel K.; Bradner, James E.; Moskaluk, Christopher A.; Aster, Jon C.; Knoechel, Birgit; Bernstein, Bradley E.

    2016-01-01

    Translocation events are frequent in cancer and may create chimeric fusions or ‘regulatory rearrangements’ that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps reveal distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in the alternate ACC lineages. PMID:26829750

  13. Multiple fractions of gamma rays do not induce overexpression of c-myc or c-Ki-ras oncogenes in human cervical carcinoma cells

    International Nuclear Information System (INIS)

    Osmak, M.; Soric, J.; Matulic, M.

    1993-01-01

    Multiple fractions of gamma rays (0.5 Gy daily, 30 fractions) had previously been found to change the sensitivity of human cervical carcinoma HeLa cells to anticancer drugs. Preirradiated cells became resistant to cisplatin, methotrexate and vincristine but retained the same sensitivity to gamma rays and ultraviolet light. Some mechanisms involved in the resistance of preirradiated cells to cisplatin and vincristine were determined, i.e. the increased levels of metallothioneins and increased expression of plasma membrane P glycoprotein. As recent reports indicated that the resistance to cisplatin and ionizing radiation may involve the expression of oncogenes, the problem was studied whether multiple fractions of gamma rays can change the expression of c-myc and c-Ki-ras oncogenes in HeLa cells and whether there is a correlation between the expression of these oncogenes and the sensitivity of preirradiated cells to cisplatin and gamma rays. The expression of c-myc and c-Ki-ras oncogenes was examined using the DNA dot blot, the RNA dot blot and Northern blot analysis. The results show that preirradiation induced neither amplification nor elevated expression of c-myc and c-Ki-ras oncogenes. Furthermore, there is no correlation between the expression of c-myc and c-Ki-ras oncogenes and the acquired resistance to cisplatin. (author) 3 figs., 32 refs

  14. c-MYC amplification and c-myc protein expression in pancreatic acinar cell carcinomas. New insights into the molecular signature of these rare cancers.

    Science.gov (United States)

    La Rosa, Stefano; Bernasconi, Barbara; Vanoli, Alessandro; Sciarra, Amedeo; Notohara, Kenji; Albarello, Luca; Casnedi, Selenia; Billo, Paola; Zhang, Lizhi; Tibiletti, Maria Grazia; Sessa, Fausto

    2018-05-02

    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) and mixed acinar-neuroendocrine carcinomas (MANECs) are not completely understood, and the possible role of c-MYC amplification in tumor development, progression, and prognosis is not known. We have investigated c-MYC gene amplification in a series of 35 ACCs and 4 MANECs to evaluate its frequency and a possible prognostic role. Gene amplification was investigated using interphasic fluorescence in situ hybridization analysis simultaneously hybridizing c-MYC and the centromere of chromosome 8 probes. Protein expression was immunohistochemically investigated using a specific monoclonal anti-c-myc antibody. Twenty cases had clones with different polysomies of chromosome 8 in absence of c-MYC amplification, and 5 cases had one amplified clone and other clones with chromosome 8 polysomy, while the remaining 14 cases were diploid for chromosome 8 and lacked c-MYC amplification. All MANECs showed c-MYC amplification and/or polysomy which were observed in 54% pure ACCs. Six cases (15.3%) showed nuclear immunoreactivity for c-myc, but only 4/39 cases showed simultaneous c-MYC amplification/polysomy and nuclear protein expression. c-myc immunoreactivity as well as c-MYC amplification and/or chromosome 8 polysomy was not statistically associated with prognosis. Our study demonstrates that a subset of ACCs shows c-MYC alterations including gene amplification and chromosome 8 polysomy. Although they are not associated with a different prognostic signature, the fact that these alterations are present in all MANECs suggests a role in the acinar-neuroendocrine differentiation possibly involved in the pathogenesis of MANECs.

  15. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG protein in fulminant type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kaoru Aida

    Full Text Available BACKGROUND: Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs, extracellular matrix (ECM, and possible cell clusters, are unclear. PROCEDURES: The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT: Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION: The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.

  16. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  17. THE MYC FAMILY OF ONCOGENES AND THEIR PRESENCE AND IMPORTANCE IN SMALL-CELL LUNG-CARCINOMA AND OTHER TUMOR TYPES

    NARCIS (Netherlands)

    DEVRIES, EGE; MULDER, NH

    1993-01-01

    The myc family of cellular oncogenes, c - myr, N - myc, encodes three highly related, cell cycle specific, nuclear phosphoproteins. All are able to transform primary rat embryo fibroblasts when cotransfected with the c - ras oncogene. Myc family genes am differentially expressed with respect to

  18. COMPUTER-AIDED DETECTION OF ACINAR SHADOWS IN CHEST RADIOGRAPHS

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2013-05-01

    Full Text Available Despite the technological advances in medical diagnosis, accurate detection of infectious tuberculosis (TB still poses challenges due to complex image features and thus infectious TB continues to be a public health problem of global proportions. Currently, the detection of TB is mainly conducted visually by radiologists examining chest radiographs (CXRs. To reduce the backlog of CXR examination and provide more precise quantitative assessment, computer-aided detection (CAD systems for potential lung lesions have been increasingly adopted and commercialized for clinical practice. CADs work as supporting tools to alert radiologists on suspected features that could have easily been neglected. In this paper, an effective CAD system aimed for acinar shadow regions detection in CXRs is proposed. This system exploits textural and photometric features analysis techniques which include local binary pattern (LBP, grey level co-occurrence matrix (GLCM and histogram of oriented gradients (HOG to analyze target regions in CXRs. Classification of acinar shadows using Adaboost is then deployed to verify the performance of a combination of these techniques. Comparative study in different image databases shows that the proposed CAD system delivers consistent high accuracy in detecting acinar shadows.

  19. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation.

    Science.gov (United States)

    Choi, Dongsic; Lee, Tae Hoon; Spinelli, Cristiana; Chennakrishnaiah, Shilpa; D'Asti, Esterina; Rak, Janusz

    2017-07-01

    Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker

  20. Canine mammary minute oncocytomas with neuroendocrine differentiation associated with multifocal acinar cell oncocytic metaplasia.

    Science.gov (United States)

    Nagahara, Rei; Kimura, Masayuki; Itahashi, Megu; Sugahara, Go; Kawashima, Masashi; Murayama, Hirotada; Yoshida, Toshinori; Shibutani, Makoto

    2016-11-01

    Two solitary and minute tumors of 1 and 1.5 mm diameter were identified by microscopy in the left fourth mammary gland of a 13-year-old female Labrador Retriever dog, in addition to multiple mammary gland tumors. The former tumors were well circumscribed and were composed of small-to-large polyhedral neoplastic oncocytes with finely granular eosinophilic cytoplasm, and were arranged in solid nests separated by fine fibrovascular septa. Scattered lumina of variable sizes containing eosinophilic secretory material were evident. Cellular atypia was minimal, and no mitotic figures were visible. One tumor had several oncocytic cellular foci revealing cellular transition, with perivascular pseudorosettes consisting of columnar epithelial cells surrounding the fine vasculature. Scattered foci of mammary acinar cell hyperplasia showing oncocytic metaplasia were also observed. Immunohistochemically, the cytoplasm of neoplastic cells of the 2 microtumors showed diffuse immunoreactivity to anti-cytokeratin antibody AE1/AE3, and finely granular immunoreactivity for 60-kDa heat shock protein, mitochondrial membrane ATP synthase complex V beta subunit, and chromogranin A. One tumor also had oncocytic cellular foci forming perivascular pseudorosettes showing cellular membrane immunoreactivity for neural cell adhesion molecule. The tumors were negative for smooth muscle actin, neuron-specific enolase, vimentin, desmin, S100, and synaptophysin. Ultrastructural observation confirmed the abundant mitochondria in the cytoplasm of both neoplastic and hyperplastic cells, the former cells also having neuroendocrine granule-like electron-dense bodies. From these results, our case was diagnosed with mammary oncocytomas accompanied by neuroendocrine differentiation. Scattered foci of mammary oncocytosis might be related to the multicentric occurrence of these oncocytomas. © 2016 The Author(s).

  1. Effects of Baicalin on inflammatory mediators and pancreatic acinar cell apoptosis in rats with sever acute pancreatitis

    Directory of Open Access Journals (Sweden)

    zhang xiping

    2009-02-01

    Full Text Available

    • BACKGROUND: To investigate the effects of Baicalin and Octreotide on inflammatory mediators and pancreatic acinar cells apoptosis of rats with severe acute pancreatitis (SAP.
    • METHODS: SD rats were randomly divided into sham operated group (I group, model control group (II group, Baicalin treated group (III group and Octreotide treated group (IV group. Each group was also divided into subgroup of 3, 6 and 12 h (n = 15. The mortality rate, ascites/body weight ratio as well as the level of endotoxin, NO and ET-1 in blood were measured. The pathological severity score of pancreas, apoptotic indexes, and expression levels of Bax and Bcl-2 proteins in each group were investigated.
    • RESULTS: The survival rate of III and IV group has a significant difference compared with II group (P12 h < 0.05. The ascites volume, contents of inflammatory mediators in blood and pathological severity score of pancreas of III and IV group declined at different degrees compared to II group (P < 0.05, P < 0.01 or P < 0.001. Apoptotic index in III group was significantly higher than that in II group at 3 and 6 h (P3, 6 h < 0.05. Apoptotic index in IV group was significantly higher than that in II group at pancreatic tail at 6 h (P6 h < 0.05. Expression level of Bax in III group was significantly higher than that in II group (pancreatic head P3 h,6 h < 0.01, pancreatic tail P3 h < 0.001.
    • CONCLUSIONS: Compared with Octreotide in the treatment of SAP, the protective mechanisms of Baicalin include reducing the excessive inflammatory mediators’ release, inducing the pancreatic acinar cells apoptosis.
    • KEY WORDS: Severe acute pancreatitis, baicalin, octreotide, inflammatory mediators, apoptosis, tissue microarrays.

  2. Transformation by Oncogenic Ras Expands the Early Genomic Response to Transforming Growth Factor β in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Carl E. Allen

    2008-10-01

    Full Text Available A substantial body of evidence implicates TGFβ as a tumor promoter in epithelial cells that have become resistant to its tumor suppressor activity. To better understand early, genome-wide TGFβ responses in cells resistant to growth inhibition by TGFβ, we used microarray analysis in a well-defined cell culture system of sensitive and resistant intestinal epithelial cells. TGFβ-regulated gene expression in TGFβ-growth-sensitive, nontransformed rat intestinal epithelial cells (RIE-1 was compared to expression in TGFβ-growth-resistant RIE cells stably transformed by oncogenic Ras(12V. Treatment of RIE-1 cells with 2 ng/ml TGFβ1 for 1 hour increased the expression of eight gene sequences by 2.6-fold or more, whereas eight were down regulated 2.6-fold. In RIE-Ras(12V cells, 42 gene sequences were upregulated and only 3 were down-regulated. Comparison of RIE and RIE-Ras(12V identified 37 gene sequences as unique, Ras-dependent genomic targets of TGFβ1. TGFβ-regulation of connective tissue growth factor and vascular endothelial growth factor, two genes up-regulated in RIE-Ras cells and previously implicated in tumor promotion, was independently confirmed and further characterized by Northern analysis. Our data indicate that overexpression of oncogenic Ras in intestinal epithelial cells confers a significantly expanded repertoire of robust, early transcriptional responses to TGFβ via signaling pathways yet to be fully elucidated but including the canonical Raf-1/MAPK/Erk pathway. Loss of sensitivity to growth inhibition by TGFβ does not abrogate TGFβ signaling and actually expands the early transcriptional response to TGFβ1. Expression of some of these genes may confer to Ras-transformed cells characteristics favorable for tumor promotion.

  3. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2.

    Science.gov (United States)

    Cadet, J L; Ordonez, S V; Ordonez, J V

    1997-02-01

    Methamphetamine (METH) is an amphetamine analog that produces degeneration of the dopaminergic system in mammals. The neurotoxic effects of the drug are thought to be mediated by oxygen-based free radicals. In the present report, we have used immortalized neural cells obtained from rat mesencephalon in order to further assess the role of oxidative stress in METH-induced neurotoxicity. We thus tested if the anti-death proto-oncogene, bcl-2 could protect against METH-induced cytotoxicity. METH caused dose-dependent loss of cellular viability in control cells while bcl-2-expressing cells were protected against these deleterious effects. Using flow cytometry, immunofluorescent staining, and DNA electrophoresis, we also show that METH exposure can cause DNA strand breaks, chromatin condensation, nuclear fragmentation, and DNA laddering. All these changes were prevented by bcl-2 expression. These observations provide further support for the involvement of oxidative stress in the toxic effects of amphetamine analogs. They also document that METH-induced cytotoxicity is secondary to apoptosis. These findings may be of relevance to the cause(s) of Parkinson's disease which involves degeneration of the nigrostriatal dopaminergic pathway.

  5. Water permeability of acinar cell membranes in the isolated perfused rabbit mandibular salivary gland.

    Science.gov (United States)

    Steward, M C; Seo, Y; Rawlings, J M; Case, R M

    1990-01-01

    1. The diffusive water permeability of epithelial cell membranes in the perfused rabbit mandibular salivary gland was measured at 37 degrees C by a 1H nuclear magnetic resonance relaxation method using an extracellular relaxation reagent, gadolinium diethylenetriaminepentaacetic acid (Gd(DTPA)). 2. In glands perfused with a HEPES-buffered solution containing 10 mmol l-1 Gd(DTPA), the spin-lattice (T1) relaxation of the water protons showed two exponential components. The water compartment responsible for the slower component corresponded in magnitude to 71 +/- 5% of the wet weight of the gland, and was attributed to the exchangeable intracellular water of the acinar cells. 3. The rate constant for water efflux from the cells was estimated to be 4.1 +/- 0.1 s-1 which would be consistent with a diffusive membrane permeability (Pd) of approximately 3 x 10(-3) cm s-1. Stimulation with acetylcholine (10(-6) mol l-1) did not cause any detectable change in membrane water permeability. 4. Since the basolateral membrane probably provides the main pathway for water efflux, the osmotic water permeability of this barrier (expressed per gland) was estimated to be less than 6.2 cm3 s-1. This would be insufficient to account for the generation of a near-isosmotic fluid at the flow rates observed during secretion, and suggests that a substantial fraction of the flow of water occurs via a paracellular route. PMID:1966053

  6. Expression of alveolar type II cell markers in acinar adenocarcinomas and adenoid cystic carcinomas arising from segmental bronchi. A study in a heterotopic bronchogenic carcinoma model in dogs.

    Science.gov (United States)

    TenHave-Opbroek, A. A.; Hammond, W. G.; Benfield, J. R.; Teplitz, R. L.; Dijkman, J. H.

    1993-01-01

    The type II alveolar epithelial cell is one of two pluripotential stem cell phenotypes in normal mammalian lung morphogenesis; cells manifesting this phenotype have been found to constitute bronchioloalveolar regions of canine adenocarcinomas. We now studied type II cell expression in canine acinar adenocarcinomas and adenoid cystic (bronchial gland) carcinomas, using the same bronchogenic carcinoma model (subcutaneous bronchial autografts treated with 3-methylcholanthrene). Distinctive features of type II cells are the approximately cuboid cell shape, large and roundish nucleus, immunofluorescent staining of the cytoplasm for the surfactant protein SP-A, and presence of multilamellar bodies or their precursory forms. Cells with these type II cell characteristics were found in the basal epithelial layer of all tumor lesions and in upper layers as far as the lumen, singly or in clusters; they were also found in early invasive carcinomatous lesions but not in bronchial glands or bronchial epithelium before carcinogen exposure. Immunoblots of tumor homogenates showed reactive proteins within size classes of SP-A (28 to 36 kd) or its dimeric form (56 to 72 kd). These findings and those previously reported are consistent with the concept that chemical carcinogenesis in the adult bronchial epithelium may lead to type II cell carcinomas of varying glandular (acinar, adenoidcystic or bronchioloalveolar) growth patterns. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 PMID:8386445

  7. A Network-Based Model of Oncogenic Collaboration for Prediction of Drug Sensitivity

    Directory of Open Access Journals (Sweden)

    Ted G Laderas

    2015-12-01

    Full Text Available Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform cells, resulting in systemic dysregulation that enables proliferation, among other cancer hallmarks. High throughput omics techniques are used in precision medicine, allowing identification of these mutations with the goal of identifying treatments that target them. However, the multiplicity of oncogenes required for transformation, known as oncogenic collaboration, makes assigning effective treatments difficult. Motivated by this observation, we propose a new type of oncogenic collaboration where mutations in genes that interact with an oncogene may contribute to its dysregulation, a new genomic feature that we term surrogate oncogenes. By mapping mutations to a protein/protein interaction network, we can determine significance of the observed distribution using permutation-based methods. For a panel of 38 breast cancer cell lines, we identified significant surrogate oncogenes in oncogenes such as BRCA1 and ESR1. In addition, using Random Forest Classifiers, we show that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that surrogate oncogenes are predictive of survival in patients. The surrogate oncogene framework incorporates unique or rare mutations on an individual level. Our model has the potential for integrating patient-unique mutations in predicting drug-sensitivity, suggesting a potential new direction in precision medicine, as well as a new approach for drug development. Additionally, we show the prevalence of significant surrogate oncogenes in multiple cancers within the Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic feature for guiding pancancer analyses and assigning therapies across many tissue types.

  8. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation

    Science.gov (United States)

    Bettoun, Audrey; Surdez, Didier; Vallerand, David; Gundogdu, Ramazan; Sharif, Ahmad A.D.; Gomez, Marta; Cascone, Ilaria; Meunier, Brigitte; White, Michael A.; Codogno, Patrice; Parrini, Maria Carla; Camonis, Jacques H.; Hergovich, Alexander

    2016-01-01

    Oncogenic Ras signalling occurs frequently in many human cancers. However, no effective targeted therapies are currently available to treat patients suffering from Ras-driven tumours. Therefore, it is imperative to identify downstream effectors of Ras signalling that potentially represent promising new therapeutic options. Particularly, considering that autophagy inhibition can impair the survival of Ras-transformed cells in tissue culture and mouse models, an understanding of factors regulating the balance between autophagy and apoptosis in Ras-transformed human cells is needed. Here, we report critical roles of the STK38 protein kinase in oncogenic Ras transformation. STK38 knockdown impaired anoikis resistance, anchorage-independent soft agar growth, and in vivo xenograft growth of Ras-transformed human cells. Mechanistically, STK38 supports Ras-driven transformation through promoting detachment-induced autophagy. Even more importantly, upon cell detachment STK38 is required to sustain the removal of damaged mitochondria by mitophagy, a selective autophagic process, to prevent excessive mitochondrial reactive oxygen species production that can negatively affect cancer cell survival. Significantly, knockdown of PINK1 or Parkin, two positive regulators of mitophagy, also impaired anoikis resistance and anchorage-independent growth of Ras-transformed human cells, while knockdown of USP30, a negative regulator of PINK1/Parkin-mediated mitophagy, restored anchorage-independent growth of STK38-depleted Ras-transformed human cells. Therefore, our findings collectively reveal novel molecular players that determine whether Ras-transformed human cells die or survive upon cell detachment, which potentially could be exploited for the development of novel strategies to target Ras-transformed cells. PMID:27283898

  9. Rat embryo cells immortalized with transfected oncogenes are transformed by gamma irradiation.

    Science.gov (United States)

    Endlich, B; Salavati, R; Sullivan, T; Ling, C C

    1992-12-01

    Cesium-137 gamma rays were used to transform rat embryo cells (REC) which were first transfected with activated c-myc or c-Ha-ras oncogenes to produce immortal cell lines (REC:myc and REC:ras). When exposed to 6 Gy of 137Cs gamma rays, some cells became morphologically transformed with focus formation frequencies of approximately 3 x 10(-4) for REC:myc and approximately 1 x 10(-4) for REC:ras, respectively. Cells isolated from foci of gamma-ray-transformed REC:myc (REC:myc:gamma) formed anchorage-independent colonies and were tumorigenic in nude mice, but foci from gamma-ray-transformed REC:ras (REC:ras:gamma) did not exhibit either of these criteria of transformation. Similar to the results with gamma irradiation, we observed a sequence-dependent phenomenon when myc and ras were transfected into REC, one at a time. REC immortalized by ras transfection were not converted to a tumorigenic phenotype by secondary transfection with myc, but REC transfected with myc were very susceptible to transformation by subsequent ras transfection. This suggests that myc-immortalized cells are more permissive to transformation via secondary treatments. In sequentially transfected REC, myc expression was high whether it was transfected first or second, whereas ras expression was highest when the ras gene was transfected secondarily into myc-containing REC. Molecular analysis of REC:ras:gamma transformants showed no alterations in structure of the transfected ras or of the endogenous ras, myc, p53, or fos genes. The expression of ras and p53 was increased in some isolates of REC:ras:gamma, but myc and fos expression were not affected. Similarly, REC:myc:gamma transformants did not demonstrate rearrangement or amplification of the transfected or the endogenous myc genes, or of the potentially cooperating Ha-, Ki-, or N-ras genes. Northern hybridization analysis revealed increased expression of N-ras in two isolates, REC:myc:gamma 33 and gamma 41, but no alterations in the expression

  10. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease.

    Science.gov (United States)

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M; Liddicoat, Brian; Russell, Megan R; Walkley, Carl R; Karlsson, Stefan

    2014-04-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.

  11. Oncogenic transformation with radiation and chemicals: review

    International Nuclear Information System (INIS)

    Hall, E.J.; Hei, T.K.

    1985-01-01

    Quantitative in vitro assay systems for oncogenic transformation are a powerful research tool. They may be based on short-term cultures of hamster embryo cells, or established cell lines of mouse origin. While X-ray-induced transformation of human cells has been demonstrated, it has proved difficult to develop quantitative assay systems based on cells of human origin. The presently available quantitative assays have two quite distinct basic uses. First, they may be useful to accumulate data which is essentially pragmatic in nature. For example, they may be used to compare and contrast the oncogenic potential of chemotherapeutic agents or hypoxic cell sensitizers used or proposed in the clinic. They may be used to identify compounds that inhibit or suppress the transformation incidence resulting from known oncogenic agents, or they may be used to demonstrate the interaction between two different agents, such as radiation and asbestos. Second, they may prove to be invaluable in the study of the basic mechanisms of carcinogenesis, inasmuch as they represent models of tumourigenesis in which the various steps can be manipulated and modified more readily and in a controlled way. (author)

  12. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    Science.gov (United States)

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  13. Oncogenes and radiation resistance - a review

    International Nuclear Information System (INIS)

    Dritschilo, A.

    1992-01-01

    Oncogenes exert their effects on the genetic programs of cells by regulating signal transduction pathways, resulting in multi-factorial genetic responses. By such actions, the genetic elements responsible for the cellular responses to ionizing radiation may be affected. Reports implicating the association of oncogene expression with modulation of the radiation response include the ras, raf, and myc genes. Experiments overexpressing H-ras and c-raf-1 using genetically engineered constructs result in enhanced post-radiation cellular survival. Conversely, inhibition of raf gene expression has resulted in relative radiation sensitization and delay of human squamous cell carcinoma tumor growth in nude mice. There appears to be a potential strategy for therapeutic intervention. The identification of genes that confer survival advantage following radiation exposure, and understanding their mechanisms of action, may permit a genetically based intervention for radiation sensitization. One such approach employs oligo-deoxynucleotides complementary to oncogene-encoded in RNA's (antisense DNA). (author)

  14. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells.

    Science.gov (United States)

    van Keimpema, Martine; Grüneberg, Leonie J; Schilder-Tol, Esther J M; Oud, Monique E C M; Beuling, Esther A; Hensbergen, Paul J; de Jong, Johann; Pals, Steven T; Spaargaren, Marcel

    2017-03-01

    The forkhead transcription factor FOXP1 is generally regarded as an oncogene in activated B cell-like diffuse large B-cell lymphoma. Previous studies have suggested that a small isoform of FOXP1 rather than full-length FOXP1, may possess this oncogenic activity. Corroborating those studies, we herein show that activated B cell-like diffuse large B-cell lymphoma cell lines and primary activated B cell-like diffuse large B-cell lymphoma cells predominantly express a small FOXP1 isoform, and that the 5'-end of the Foxp1 gene is a common insertion site in murine lymphomas in leukemia virus- and transposon-mediated insertional mutagenesis screens. By combined mass spectrometry, (quantative) reverse transcription polymerase chain reaction/sequencing, and small interfering ribonucleic acid-mediated gene silencing, we determined that the small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma lacks the N-terminal 100 amino acids of full-length FOXP1. Aberrant overexpression of this FOXP1 isoform (ΔN100) in primary human B cells revealed its oncogenic capacity; it repressed apoptosis and plasma cell differentiation. However, no difference in potency was found between this small FOXP1 isoform and full-length FOXP1. Furthermore, overexpression of full-length FOXP1 or this small FOXP1 isoform in primary B cells and diffuse large B-cell lymphoma cell lines resulted in similar gene regulation. Taken together, our data indicate that this small FOXP1 isoform and full-length FOXP1 have comparable oncogenic and transcriptional activity in human B cells, suggesting that aberrant expression or overexpression of FOXP1, irrespective of the specific isoform, contributes to lymphomagenesis. These novel insights further enhance the value of FOXP1 for the diagnostics, prognostics, and treatment of diffuse large B-cell lymphoma patients. Copyright© Ferrata Storti Foundation.

  15. A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies.

    Science.gov (United States)

    Ortega, M; Bhatnagar, H; Lin, A-P; Wang, L; Aster, J C; Sill, H; Aguiar, R C T

    2015-04-01

    Growing evidence suggests that microRNAs (miRNAs) facilitate the cross-talk between transcriptional modules and signal transduction pathways. MYC and NOTCH1 contribute to the pathogenesis of lymphoid malignancies. NOTCH induces MYC, connecting two signaling programs that enhance oncogenicity. Here we show that this relationship is bidirectional and that MYC, via a miRNA intermediary, modulates NOTCH. MicroRNA-30a (miR-30a), a member of a family of miRNAs that are transcriptionally suppressed by MYC, directly binds to and inhibits NOTCH1 and NOTCH2 expression. Using a murine model and genetically modified human cell lines, we confirmed that miR-30a influences NOTCH expression in a MYC-dependent fashion. In turn, through genetic modulation, we demonstrated that intracellular NOTCH1 and NOTCH2, by inducing MYC, suppressed miR-30a. Conversely, pharmacological inhibition of NOTCH decreased MYC expression and ultimately de-repressed miR-30a. Examination of genetic models of gain and loss of miR-30a in diffuse large B-cell lymphoma (DLBCL) and T-acute lymphoblastic leukemia (T-ALL) cells suggested a tumor-suppressive role for this miRNA. Finally, the activity of the miR-30a-NOTCH-MYC loop was validated in primary DLBCL and T-ALL samples. These data define the presence of a miRNA-mediated regulatory circuitry that may modulate the oncogenic signals originating from NOTCH and MYC.

  16. Characterization of new cell line stably expressing CHI3L1 oncogene

    Directory of Open Access Journals (Sweden)

    Chekhonin V. P.

    2011-06-01

    Full Text Available Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene (CHI3L1. Methods. 293 cells, stably transfected with pcDNA3.1_CHI3L1, and 293 cells, stably transfected with pcDNA3.1 as a negative control, were used throughout all experiments. The clones of CHI3L1-expressing 293 cells and 293 cells, transfected with pcDNA3.1, were analyzed by immunofluorescence and confocal microscopy. Cell proliferation was measured using MTT assay; analyses of ERK1/2 and AKT activation and their cellular localization were performed with anti-phospho-ERK and anti-phospho-AKT antibodies. Specific activation of MAP and PI3 kinases was measured by densitometric analysis of Western-blot signals. Results. The obtained results show quite modest ability of CHI3L1 to stimulate cell growth and reflect rather an improved cellular plating efficiency of the 293 cells stably transfected with pcDNA3.1_CHI3L1 as compared to the 293 cells transfected with an «empty» vector. ERK1/2 and AKT are activated in the 293_CHI3L1 cells. In these cells phosphorylated ERK1/2 were localized in both cell cytoplasm and nuclei while AKT only in cytoplasm. The 293_CHI3L1 cells differed from the 293 cells, transfected with an «empty» vector, in their size and ability to adhere to the culture plates. Conclusions. The overexpression of CHI3L1 is likely to have an important role in tumorigenesis via a mechanism which involves activation of PI3K and ERK1/2 pathways. The tumors which can be induced by orthotopic implantation of the transformed human cells with overexpressed human oncogene CHI3L1 into the rat brain can be used as a target for anticancer drug development.

  17. Prediction of lung cells oncogenic transformation for induced radon progeny alpha particles using sugarscape cellular automata.

    Science.gov (United States)

    Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil

    2014-01-01

    Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. The model results have successfully validated in comparison with "in vitro oncogenic transformation data" for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ.

  18. LMW-E/CDK2 Deregulates Acinar Morphogenesis, Induces Tumorigenesis, and Associates with the Activated b-Raf-ERK1/2-mTOR Pathway in Breast Cancer Patients

    Science.gov (United States)

    Duong, MyLinh T.; Akli, Said; Wei, Caimiao; Wingate, Hannah F.; Liu, Wenbin; Lu, Yiling; Yi, Min; Mills, Gordon B.; Hunt, Kelly K.; Keyomarsi, Khandan

    2012-01-01

    Elastase-mediated cleavage of cyclin E generates low molecular weight cyclin E (LMW-E) isoforms exhibiting enhanced CDK2–associated kinase activity and resistance to inhibition by CDK inhibitors p21 and p27. Approximately 27% of breast cancers express high LMW-E protein levels, which significantly correlates with poor survival. The objective of this study was to identify the signaling pathway(s) deregulated by LMW-E expression in breast cancer patients and to identify pharmaceutical agents to effectively target this pathway. Ectopic LMW-E expression in nontumorigenic human mammary epithelial cells (hMECs) was sufficient to generate xenografts with greater tumorigenic potential than full-length cyclin E, and the tumorigenicity was augmented by in vivo passaging. However, cyclin E mutants unable to interact with CDK2 protected hMECs from tumor development. When hMECs were cultured on Matrigel, LMW-E mediated aberrant acinar morphogenesis, including enlargement of acinar structures and formation of multi-acinar complexes, as denoted by reduced BIM and elevated Ki67 expression. Similarly, inducible expression of LMW-E in transgenic mice generated hyper-proliferative terminal end buds resulting in enhanced mammary tumor development. Reverse-phase protein array assay of 276 breast tumor patient samples and cells cultured on monolayer and in three-dimensional Matrigel demonstrated that, in terms of protein expression profile, hMECs cultured in Matrigel more closely resembled patient tissues than did cells cultured on monolayer. Additionally, the b-Raf-ERK1/2-mTOR pathway was activated in LMW-E–expressing patient samples, and activation of this pathway was associated with poor disease-specific survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (a pan kinase inhibitor targeting b-Raf) effectively prevented aberrant acinar formation in LMW-E–expressing cells by inducing G1/S cell cycle arrest. LMW

  19. The oncogenic potential of three different 7, 12-dimethylbenz (a)anthracene transformed C3H/10T1/2 cell clones at various passages and the importance of the mode of immunosuppression

    International Nuclear Information System (INIS)

    Saxholm, H.J.K.

    1979-01-01

    The oncogenic potential of C3H/10T1/2 cells which were transformed in vitro with 7,12-dimethylbenz(a)anthracene is reported. The ability of the cells to grow as malignant tumors in syngeneic immunosuppressed mice was used as parameter for oncogenic potential. Cells of types I, II and III were assayed at several dosage levels, i.e., 10 4 , 10 5 or 10 6 cells per inoculum, with or without immunosuppression by antithymocyte serum globulin fraction. The studies were performed in several strains of host animals, i.e., male and female syngeneic C3H mice supplied by the National Cancer Institute, C3H mice supplied by Charles River and nude, athymic female mice. Morphological transformation preceded oncological transformation, and type I cells could not be established as tumors. Type II and type III cells developed oncogenic potential only after several passages in culture. Oncogenic potential was pronounced in the type III cells, and less strongly expressed in type II cells. Also tested were different methods of immunosuppression of the animal against the expression of the oncogenic potential of DMBA transformed C3H/10T1/2 cells from type II and III clones. Immunosuppression by antithymocyte serum globulin fraction was an effective method of preparing the syngeneic host so that cells with a low oncogenic potential would grow as tumors, whereas total body irradiation was not effective. For cells with a high oncogenic potential both ways of immunosuppression were sufficient. Admixing lethally irradiated cells in the cell inoculum slightly enhanced the tumor development from cells with low oncogenic potential and such addition was clearly effective for cells with a higher oncogenic potential, both for the antibody-treated and for the irradiated series. The findings were reproducible. The study stresses the importance of immunosuppression by antithymocyte globulins for detecting in vitro transformed weakly oncogenic cells. (author)

  20. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive

    Directory of Open Access Journals (Sweden)

    Yu S

    2017-09-01

    Full Text Available Su Yu,1,2 Yang Zhang,1 Yunjian Pan,1 Chao Cheng,1,3 Yihua Sun,1,3 Haiquan Chen1–4 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; 2Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China; 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; 4Institutes of Biomedical Sciences, Fudan University, Shanghai, China Purpose: To identify novel oncogenic mutations in non-small cell lung cancer patient specimens that lack mutations in known targetable genes (“pan-negative” patients.Methods: Comprehensive mutational analyses were performed on 1,356 lung adenocarcinoma specimens. In this cohort of patients, common lung cancer oncogenic driver mutations were detected in the epidermal growth factor receptor (EGFR kinase domain, the human epidermal growth factor receptor 2 kinase domain, as well as the KRAS, BRAF, ALK, ROS1 and RET genes. A sub-cohort of pan-negative patient specimens was assayed for mutations in the EGFR extracellular domain (ECD. Additionally, EGFR mutant NIH-3T3 stable cell lines were constructed and assessed for protein content, anchorage-independent growth, and tumor formation in xenograft models to identify oncogenic mutations. BaF3 lymphocytes were also used to test sensitivities of the mutations to tyrosine kinase inhibitors.Results: In pan-negative lung adenocarcinoma cases, a novel oncogenic EGFR ECD mutation was identified (M277E. EGFR M277E mutations encoded oncoproteins that transformed NIH-3T3 cells to grow in the absence of exogenous epidermal growth factor. Transformation was further evidenced by anchorage-independent growth and tumor formation in immunocompromised xenograft mouse models. Finally, as seen in the canonical EGFR L858R mutation, the M277E mutation conferred sensitivity to both erlotinib and cetuximab in BaF3 cell lines and to erlotinib in xenograft models.Conclusion: Here, a new EGFR driver mutation, M277E

  1. Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows.

    Science.gov (United States)

    Fishler, Rami; Mulligan, Molly K; Sznitman, Josué

    2013-11-15

    Convective respiratory flows in the pulmonary acinus and their influence on the fate of inhaled particles are typically studied using computational fluid dynamics (CFD) or scaled-up experimental models. However, experiments that replicate several generations of the acinar tree while featuring cyclic wall motion have not yet been realized. Moreover, current experiments generally capture only flow dynamics, without inhaled particle dynamics, due to difficulties in simultaneously matching flow and particle dynamics. In an effort to overcome these limitations, we introduce a novel microfluidic device mimicking acinar flow characteristics directly at the alveolar scale. The model features an anatomically-inspired geometry that expands and contracts periodically with five dichotomously branching airway generations lined with alveolar-like cavities. We use micro-particle image velocimetry with a glycerol solution as the carrying fluid to quantitatively characterize detailed flow patterns within the device and reveal experimentally for the first time a gradual transition of alveolar flow patterns along the acinar tree from recirculating to radial streamlines, in support of hypothesized predictions from past CFD simulations. The current measurements show that our microfluidic system captures the underlying characteristics of the acinar flow environment, including Reynolds and Womersley numbers as well as cyclic wall displacements and alveolar flow patterns at a realistic length scale. With the use of air as the carrying fluid, our miniaturized platform is anticipated to capture both particle and flow dynamics and serve in the near future as a promising in vitro tool for investigating the mechanisms of particle deposition deep in the lung. © 2013 Elsevier Ltd. All rights reserved.

  2. Absence of 60-Hz, 0.1-mT magnetic field-induced changes in oncogene transcription rates or levels in CEM-CM3 cells.

    Science.gov (United States)

    Jahreis, G P; Johnson, P G; Zhao, Y L; Hui, S W

    1998-12-22

    Our objective was to assess the reproducibility of the 60-Hz magnetic field-induced, time-dependent transcription changes of c-fos, c-jun and c-myc oncogenes in CEM-CM3 cells reported by Phillips et al. (Biochim. Biophys. Acta, 1132 (1992) 140-144). Cells were exposed to a 60-Hz magnetic field (MF) at 0.1 mT (rms), generated by a pair of Helmholtz coils energized in a reinforcing (MF) mode, or to a null magnetic field when the coils were energized in a bucking (sham) mode. After MF or sham exposure for 15, 30, 60 or 120 min, nuclei and cytoplasmic RNA were extracted. Transcription rates were measured by a nuclear run-on assay, and values were normalized against either their zero-time exposure values, or against those of the c-G3PDH (housekeeping) gene at the same time points. There was no significant difference, at P=0.05, detected between MF and either sham-exposed or control cells at any time point. Transcript levels of the oncogenes were measured by Northern analysis and normalized as above. No significant difference (P=0.05) in transcript levels between MF and either sham-exposed or control cells was detected.

  3. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Soyeong Park

    2016-05-01

    Full Text Available Fanconi anemia (FA is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC at sites where high-risk human papillomaviruses (HPVs are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative.

  4. Modulating factors in the expression of radiation-induced oncogenic transformation

    International Nuclear Information System (INIS)

    Hall, E.J.; Hei, T.K.

    1990-01-01

    Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitaive are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing α-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene

  5. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    Science.gov (United States)

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  6. Effects of cellular non-protein sulfhydryl depletion in radiation induced oncogenic transformation and genotoxicity in mouse C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Hei, T.K.; Geard, C.R.; Hall, E.J.

    1984-01-01

    A study was made of the effects of cellular non-protein sulfhydryl (NPSH) depletion on cytotoxicity, cell cycle kinetics, oncogenic transformation and sister chromatid exchange (SCE) in C 3 H 10T1/2 cells. Using DL-Buthionine S-R-Sulfoximine (BSO) to deplete thiols, it was found spectrophotometrically that less than 5% of control NPSH level remained in the cells after 24-hour treatment under aerated conditions. Such NPSH depleted cells, when subject to a 3 Gy γ-ray treatment, were found to have no radiosensitizing response either in terms of cell survival or oncogenic transformation. In addition, decreased levels of NPSH had no effect on spontaneous or radiation-induced SCE nor were cell cycle kinetics additionally altered. Therefore, the inability of NPSH depletion to alter γ-ray induced cellular transformation was unrelated to any possible effect of BSO on the cell cycle. These results suggest that such depletion may result in little or no additional oncogenic or genotoxic effects on aerated normal tissues

  7. Ras oncogenes in oral cancer: the past 20 years.

    Science.gov (United States)

    Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Tsuchida, Nobuo

    2012-05-01

    Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Characterization of TRPS1 and ERAS as oncogenes implicated in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Gonzalez, L.

    2015-07-01

    New high throughput technologies have made possible to identify putative oncogenes in breast cancer. In this project we aim to relate and characterise two novel putative oncogenes, ERAS and TRPS1, in their role in human breast cancer. TRPS1, an atypical GATA factor, modulates cell proliferation and controls cell cycle progression through repression of GATA-regulated genes, therefore acting as a tumour suppressor gene. Conversely, TRPS1 expression has been shown to be significantly elevated in luminal and in a lesser extent in basal breast cancer cells, presenting roles both as an oncogene and as a tumour suppressor gene in breast cancer development. The aim of this project is therefore to determine the characteristics of TRPS1 either as a putative novel human oncogene or as a tumour suppressor gene in breast cancer cells. To this aim, we have cloned a novel isoform of TRPS1 and introduced it into several breast cancer cell lines. Our results show that overexpression of this isoform of TRPS1 results in variations in motility in non-carcinogenic cell lines, as well as in a series of EMT-like changes such as the down-regulation of the EMT marker E-cadherin, both of which can be associated to an increase in malignancy, suggesting an oncogenic behaviour for TRPS1. Furthermore, our results suggest that constitutively active members of the RAS protein family induce the expression of TRPS1, establishing a relationship between both genes. We can conclude that the effects of TRPS1 overexpression are moderate, inducing some changes but not fully transforming the cells. Therefore we cannot confirm that TRPS1 is a putative oncogene in breast cancer. (Author)

  9. Progression from productive infection to integration and oncogenic transformation in human papillomavirus type 59-immortalized foreskin keratinocytes.

    Science.gov (United States)

    Spartz, Helena; Lehr, Elizabeth; Zhang, Benyue; Roman, Ann; Brown, Darron R

    2005-05-25

    Studies of changes in the virus and host cell upon progression from human papillomavirus (HPV) episomal infection to integration are critical to understanding HPV-related malignant transformation. However, there exist only a few in vitro models of both productive HPV infection and neoplastic progression on the same host background. We recently described a unique foreskin keratinocyte cell line (ERIN 59) that contains HPV 59 (a close relative of HPV 18). Early passages of ERIN 59 cells (passages 9-13) contained approximately 50 copies of episomes/cell, were feeder cell-dependent, and could be induced to differentiate and produce infectious virus in a simple culture system. We now report that late passage cells (passages greater than 50) were morphologically different from early passage cells, were feeder cell independent, and did not differentiate or produce virus. These late passage cells contained HPV in an integrated form. An integration-derived oncogene transcript was expressed in late passage cells. The E2 open reading frame was interrupted in this transcript at nucleotide 3351. Despite a lower viral genome copy number in late passage ERIN 59 cells, expression of E6/E7 oncogene transcripts was similar to early passage cells. We conclude that ERIN 59 cells are a valuable cell line representing a model of progression from HPV 59 episomal infection and virus production to HPV 59 integration and associated oncogenic transformation on the same host background.

  10. Activation of oncogenes by radon progeny and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  11. Activation of oncogenes by radon progeny and x-rays

    International Nuclear Information System (INIS)

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These ''partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that ''complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs

  12. Radiation-induced transformation in oncogene primed C3H/10T1/2 cells; a new system for analysis of multi-step transformation in vitro

    International Nuclear Information System (INIS)

    Drozdoff, V.V.

    1988-01-01

    Several established rodent cell lines, such as C3H/10T1/2 fibroblasts, have been developed to study radiation and chemically-induced malignant transformation. Most experimental evidence has supported the idea that transformation in 10T1/2 cells involved at least two steps but that the apparent frequency of transformation depends on the density of plated cells. A new approach is presented here for studying radiation-induced transformation. An oncogene primed cell system (C3H-myc) was developed by introducing a constitutively active mouse c-myc gene into 10T1/2 cells. A primary goal was to determine if the introduction of an activated oncogene could substitute for one of the required steps in radiation-induced transformation. Results are presented that show that the expression of the exogenous myc gene significantly increased the frequency of radiation-induced transformation in these cells. Subculture experiments performed to analyze the kinetics of transformation in C3H-myc cells and reconstruction experiments allowing the effects of normal cells on radiation-induced transformants to be determined indicated that transformed cells arose very shortly after irradiation. These results support the conclusion that a radiation-induced event can complement the effect of myc in C3H-myc cells and directly result in transformation. This system thus provides an opportunity to isolate early steps in radiation-induced transformation and should facilitate the identification and analysis of these events

  13. Oncogenes, radiation and cancer; Oncogenes, radiacion y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, S C

    1999-12-31

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) 87 refs., 7 figs., 3 tabs. [Espanol] El descubrimiento de los virus oncogenicos y el analisis de su acido nucleico, junto con el desarrollo de nuevas tecnicas bioquimicas, ha permitido conocer parcialmente los mecanismos moleculares responsables de la transformacion de una celula normal en neoplasica. En este trabajo, ademas de describir el descubrimiento de los primeros virus oncogenicos y las experiencias para demostrar la existencia de los oncogenes, se resumen sus mecanismos de activacion y su intervencion en el metabolismo celular. Entre los agentes expernos que inducen un proceso oncogenico, se encuentran las radiaciones ionizantes. Su participacion en la genesis de este proceso y la contribucion de los oncogenes a la radioresistencia de las celulas tumorales, es otro de los temas a que se hace referencia. Paralelamente al avance del conocimiento teorico, se

  14. Occupation of low-affinity cholecystokinin (CCK) receptors by CCK activates signal transduction and stimulates amylase secretion in pancreatic acinar cells.

    Science.gov (United States)

    Vinayek, R; Patto, R J; Menozzi, D; Gregory, J; Mrozinski, J E; Jensen, R T; Gardner, J D

    1993-03-10

    Based on the effects of monensin on binding of 125I-CCK-8 and its lack of effect on CCK-8-stimulated amylase secretion we previously proposed that pancreatic acinar cells possess three classes of CCK receptors: high-affinity receptors, low-affinity receptors and very low-affinity receptors [1]. In the present study we treated pancreatic acini with carbachol to induce a complete loss of high-affinity CCK receptors and then examined the action of CCK-8 on inositol trisphosphate IP3(1,4,5), cytosolic calcium and amylase secretion in an effort to confirm and extend our previous hypothesis. We found that first incubating pancreatic acini with 10 mM carbachol decreased binding of 125I-CCK-8 measured during a second incubation by causing a complete loss of high-affinity CCK receptors with no change in the low-affinity CCK receptors. Carbachol treatment of acini, however, did not alter the action of CCK-8 on IP3(1,4,5), cytosolic calcium or amylase secretion or the action of CCK-JMV-180 on amylase secretion or on the supramaximal inhibition of amylase secretion caused by CCK-8. The present findings support our previous hypothesis that pancreatic acinar cells possess three classes of CCK receptors and suggest that high-affinity CCK receptors do not mediate the action of CCK-8 on enzyme secretion, that low-affinity CCK receptors may mediate the action of CCK on cytosolic calcium that does not involve IP3(1,4,5) and produce the upstroke of the dose-response curve for CCK-8-stimulated amylase secretion and that very low-affinity CCK receptors mediate the actions of CCK on IP3(1,4,5) and cytosolic calcium and produce the downstroke of the dose-response curve for CCK-8-stimulated amylase secretion. Moreover, CCK-JMV-180 is a full agonist for stimulating amylase secretion by acting at low-affinity CCK receptors and is an antagonist at very low-affinity CCK receptors.

  15. DNA damage and repair in oncogenic transformation by heavy ion radiation

    Science.gov (United States)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  16. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells

    Science.gov (United States)

    Huang, Xu; Spencer, Gary J; Lynch, James T; Ciceri, Filippo; Somerville, Tim D D; Somervaille, Tim C P

    2013-01-01

    Through a targeted knockdown (KD) screen of chromatin regulatory genes we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic co-factors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34+ HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore EPC1 and EPC2 are components of a complex which directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential. PMID:24166297

  17. No Effect of Dietary Aspartame or Stevia on Pancreatic Acinar Carcinoma Development, Growth, or Induced Mortality in a Murine Model

    Science.gov (United States)

    Dooley, James; Lagou, Vasiliki; Dresselaers, Tom; van Dongen, Katinka A.; Himmelreich, Uwe; Liston, Adrian

    2017-01-01

    Pancreatic cancer has an extremely poor prognosis, largely due to a poor record for early detection. Known risk factors for pancreatic cancer include obesity, diet, and diabetes, implicating glucose consumption and regulation as a key player. The role of artificial sweeteners may therefore be pertinent to disease kinetics. The oncogenic impact of artificial sweeteners is a highly controversial area. Aspartame, one of the most studied food additives, is widely recognized as being generally safe, although there are still specific areas where research is incomplete due to study limitations. Stevia, by contrast, has been the subject of relatively few studies, and the potential health benefits are based on extrapolation rather than direct testing. Here, we used longitudinal tracking of pancreatic acinar carcinoma development, growth, and lethality in a sensitized mouse model. Despite exposure to aspartame and stevia from the in utero stage onward, we found no disease modification activity, in either direction. These results contribute to the data on aspartame and stevia safety, while also reducing confidence in several of the purported health benefits. PMID:28232906

  18. STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kopp, Katharina L; Ralfkiaer, Ulrik; Gjerdrum, Lise Mette R

    2013-01-01

    show that malignant T cells constitutively express high levels of miR-155 and its host gene BIC (B cell integration cluster). Using ChIP-seq, we identify BIC as a target of transcription factor STAT5, which is aberrantly activated in malignant T cells and induced by IL-2/IL-15 in non-malignant T cells...... of BIC/miR-155 expression by STAT5 is highly specific. Malignant proliferation is significantly inhibited by an antisense-miR-155 as well as by knockdown of STAT5 and BIC.   In conclusion, we provide the first evidence that STAT5 drives expression of oncogenic BIC/miR-155 in cancer. Moreover, our data...

  19. [Genotyping of oncogenic human papilloma viruses in women with HG SIL diagnosis].

    Science.gov (United States)

    Kedzia, Witold; Pruski, Dominik; Józefiak, Agata; Rokita, Wojciech; Spaczyński, Marek

    2010-10-01

    Development of primary prevention of cervical cancer in other words a vaccination against selected, oncogenic HPV types, entails an increasing importance of epidemiological studies and prevalence of various types of human papilloma virus. The incidence of HPV varies depending on the geographic location of the population. The effectiveness of primary prevention against HPV 16, 18, in the context of reducing the incidence of cervical cancer will depend, among others, on the prevalence of these types in the population and virus-like antigens, which are partially cross-resistant. Identification of the most frequent, oncogenic HPV types in women with HG SIL diagnosis from Central and Western Poland to assess the merits of the development of primary prevention. For the purpose of molecular tests identifying the presence of 13 DNA oncogenic virus types, swabs were taken with the cyto-brush from 76 women diagnosed with CIN 2 or CIN 3 (HG SIL). Patients eligible for the study were diagnosed at the Laboratory of Pathophysiology of Uterine Cervix, Gynecology and Obstetrics Clinical Hospital of Karol Marcinkowski University of Medical Sciences. Patients came from Central and Western parts of Poland. Cell material in which the method of Amplicor HPV (Roche Diagnostics) identified the presence of DNA of oncogenic HPV types was in each case subsequently subjected to genotyping using the molecular test - Linear Array HPV Genotyping (Roche Diagnostics). Five most common oncogenic HPV types in order of detection included: 16, 33, 18, 31, 56. Together these five types of virus comprised 75.86% (88/116) of all detected HPV types. 1. In women from Central and Western Poland, diagnosed with HG SIL, the most common HPV genotypes were HPV 16, HPV33, HPV 18, HPV31, HPV56. 2. Two HPV types 16 and 18, against which vaccinations are directed, belong to the group of three genotypes of HPV most commonly identified in the evolution of CIN 2, CIN 3 diagnosed in women from Central and Western

  20. Oncogenic functions of the cancer-testis antigen SSX on the proliferation, survival, and signaling pathways of cancer cells.

    Directory of Open Access Journals (Sweden)

    Padraig D'Arcy

    Full Text Available SSX is a transcription factor with elusive oncogenic functions expressed in a variety of human tumors of epithelial and mesenchymal origin. It has raised substantial interest as a target for cancer therapy since it elicits humoral responses and displays restricted expression to cancer, spermatogonia and mesenchymal stem cells. Here, we investigated the oncogenic properties of SSX by employing a RNA interference to knock-down the endogenous expression of SSX in melanoma and osteosarcoma cell lines. Depletion of SSX expression resulted in reduced proliferation with cells accumulating in the G1 phase of the cell cycle. We found that the growth promoting and survival properties of SSX are mediated in part though modulation of MAPK/Erk and Wnt signaling pathways, since SSX silencing inhibited Erk-mediated signaling and transcription of cMYC and Akt-1. We also found that SSX forms a transient complex with β-catenin at the G1-S phase boundary resulting in the altered expression of β-catenin target genes such as E-cadherin, snail-2 and vimentin, involved in epithelial-mesenchymal transitions. Importantly the silencing of SSX expression in in vivo significantly impaired the growth of melanoma tumor xenografts. Tumor biopsies from SSX silenced tumors displayed reduced cyclin A staining, indicative of low proliferation and predominantly cycloplasmic β-catenin compared to SSX expressing tumors. The present study demonstrates a previously unknown function of SSX, that as an oncogene and as a tumor target for the development of novel anti-cancer drugs.

  1. A view on EGFR-targeted therapies from the oncogene-addiction perspective.

    Science.gov (United States)

    Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto

    2013-01-01

    Tumor cell growth and survival can often be impaired by inactivating a single oncogen- a phenomenon that has been called as "oncogene addiction." It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the "EGFR addiction" phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  2. A view on EGFR-targeted therapies from the oncogene-addiction perspective

    Directory of Open Access Journals (Sweden)

    Rolando ePerez

    2013-04-01

    Full Text Available Tumor cell growth and survival can often be impaired by inactivating a single oncogen – a phenomenon that has been called as 'oncogene addiction'. It is in such scenarios that molecular targeted therapies may succeed. Among known oncogenes, the epidermal growth factor receptor (EGFR has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. A critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the 'EGFR addiction' phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  3. Oncogene-inducible organoids as a miniature platform to assess cancer characteristics

    NARCIS (Netherlands)

    Mizutani, Tomohiro; Tsukamoto, Yoshiyuki; Clevers, Hans

    2017-01-01

    Direct effects of oncogenic proteins or inhibitor treatments on signaling pathways are difficult to assess in transgenic mice. In this issue, Riemer et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201610058) demonstrate that oncogene-inducible organoids offer the experimental versatility of

  4. Comparison of the oncogenic potential of several chemotherapeutic agents

    International Nuclear Information System (INIS)

    Miller, R.C.; Hall, E.J.; Osmak, R.S.

    1981-01-01

    Several chemotherapeutic drugs that have been routinely used in cancer treatment were tested for their carcinogenic potential. Two antitumor antibiotics (adriamycin and vincristine), an alkalating agent (melphalan), 5-azacytidine and the bifunctional agent cis-platinum that mimics alkylating agents and/or binds Oxygen-6 or Nitrogen-7 atoms of quanine were tested. Cell killing and cancer induction was assessed using in vitro transformation system. C3H/10T 1/2 cells, while normally exhibiting contact inhibition, can undergo transformation from normal contact inhibited cells to tumorgenic cells when exposed to chemical carcinogens. These cells have been used in the past by this laboratory to study oncogenic transformation of cells exposed to ionizing radiation and electron affinic compounds that sensitize hypoxic cells to x-rays. The endpoints of cell killing and oncogenic transformation presented here give an estimate of the carcinogenic potential of these agents

  5. Acinar cell carcinoma of the pancreas presenting as diffuse pancreatic enlargement: Two case reports and literature review.

    Science.gov (United States)

    Luo, Yaping; Hu, Guilan; Ma, Yanru; Guo, Ning; Li, Fang

    2017-09-01

    Pancreatic acinar cell carcinoma (ACC) is a rare malignant tumor of exocrine pancreas. It is typically a well-marginated large solid mass arising in a certain aspect of the pancreas. Diffuse involvement of ACC in the pancreas is very rare, and may simulate pancreatitis in radiological findings. We report 2 cases of ACC presenting as diffuse enlargement of the pancreas due to tumor involvement without formation of a distinct mass. The patients consisted of a 41-year-old man with weight loss and a 77-year-old man who was asymptomatic. Computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT showed diffuse enlargement of the pancreas forming a sausage-like shape with homogenously increased FDG activity. Endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) biopsy of the pancreatic lesion was performed. Histopathology results from the pancreas confirmed the diagnosis of pancreatic ACC. Because diffuse enlargement of the pancreas is a common imaging feature of pancreatitis, recognition of this rare morphologic pattern of ACC is important for radiological diagnosis of this tumor.

  6. NF-κB-Activating Complex Engaged in Response to EGFR Oncogene Inhibition Drives Tumor Cell Survival and Residual Disease in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Collin M. Blakely

    2015-04-01

    Full Text Available Although oncogene-targeted therapy often elicits profound initial tumor responses in patients, responses are generally incomplete because some tumor cells survive initial therapy as residual disease that enables eventual acquired resistance. The mechanisms underlying tumor cell adaptation and survival during initial therapy are incompletely understood. Here, through the study of EGFR mutant lung adenocarcinoma, we show that NF-κB signaling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor cell survival and residual disease. EGFR oncogene inhibition induced an EGFR-TRAF2-RIP1-IKK complex that stimulated an NF-κB-mediated transcriptional survival program. The direct NF-κB inhibitor PBS-1086 suppressed this adaptive survival program and increased the magnitude and duration of initial EGFR inhibitor response in multiple NSCLC models, including a patient-derived xenograft. These findings unveil NF-κB activation as a critical adaptive survival mechanism engaged by EGFR oncogene inhibition and provide rationale for EGFR and NF-κB co-inhibition to eliminate residual disease and enhance patient responses.

  7. MAP17, a ROS-dependent oncogene

    International Nuclear Information System (INIS)

    Carnero, Amancio

    2012-01-01

    MAP17 is a small 17 kDa non-glycosylated membrane protein previously identified as being overexpressed in carcinomas. Breast tumor cells that overexpress MAP17 show an increased tumoral phenotype with enhanced proliferative capabilities both in the presence or the absence of contact inhibition, decreased apoptotic sensitivity, and increased migration. MAP17-expressing clones also grow better in nude mice. The increased malignant cell behavior induced by MAP17 is associated with an increase in reactive oxygen species (ROS) production, and the treatment of MAP17-expressing cells with antioxidants results in a reduction in the tumorigenic properties of these cells. The MAP17-dependent increase in ROS and tumorigenesis relies on its PDZ-binding domain because disruption of this sequence by point mutations abolishes the ability of MAP17 to enhance ROS production and tumorigenesis. MAP17 is overexpressed in a great variety of human carcinomas, including breast tumors. Immunohistochemical analysis of MAP17 during cancer progression demonstrates that overexpression of the protein strongly correlates with tumoral progression. Generalized MAP17 overexpression in human carcinomas indicates that MAP17 can be a good marker for tumorigenesis and, especially, for malignant progression.

  8. The human T-cell leukemia virus type-1 p30II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.

    Science.gov (United States)

    Romeo, Megan; Hutchison, Tetiana; Malu, Aditi; White, Averi; Kim, Janice; Gardner, Rachel; Smith, Katie; Nelson, Katherine; Bergeson, Rachel; McKee, Ryan; Harrod, Carolyn; Ratner, Lee; Lüscher, Bernhard; Martinez, Ernest; Harrod, Robert

    2018-05-01

    In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30 II , associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The oncogenic action of ionizing radiation on rat skin

    International Nuclear Information System (INIS)

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs

  10. Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows

    Science.gov (United States)

    Kumar, Haribalan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan–Carpenter (KC) number. PMID:21580803

  11. The Oncogenic Roles of DICER1 RNase IIIb Domain Mutations in Ovarian Sertoli-Leydig Cell Tumors

    Directory of Open Access Journals (Sweden)

    Yemin Wang

    2015-08-01

    Full Text Available DICER1, an endoribonuclease required for microRNA (miRNA biogenesis, is essential for embryogenesis and the development of many organs including ovaries. We have recently identified somatic hotspot mutations in RNase IIIb domain of DICER1 in half of ovarian Sertoli-Leydig cell tumors, a rare class of sex-cord stromal cell tumors in young women. These hotspot mutations lost IIIb cleavage activity of DICER1 in vitro and failed to produce 5p-derived miRNAs in mouse Dicer1-null ES cells. However, the oncogenic potential of these hotspot DICER1 mutations has not been studied. Here, we further revealed that the global expression of 5p-derived miRNAs was dramatically reduced in ovarian Sertoli-Leydig cell tumors carrying DICER1 hotspot mutations compared with those without DICER1 hotspot mutation. The miRNA production defect was associated with the deregulation of genes controlling cell proliferation and the cell fate. Using an immortalized human granulosa cell line, SVOG3e, we determined that the D1709N-DICER1 hotspot mutation failed to produce 5p-derived miRNAs, deregulated the expression of several genes that control gonadal differentiation and cell proliferation, and promoted cell growth. Re-expression of let-7 significantly inhibited the growth of D1709N-DICER1 SVOG3e cells, accompanied by the suppression of key regulators of cell cycle control and ovarian gonad differentiation. Taken together, our data revealed that DICER1 hotspot mutations cause systemic loss of 5p-miRNAs that can both drive pseudodifferentiation of testicular elements and cause oncogenic transformation in the ovary.

  12. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1

    Directory of Open Access Journals (Sweden)

    Archis Bagati

    2017-09-01

    Full Text Available Lineage-specific regulation of tumor progression by the same transcription factor is understudied. We find that levels of the FOXQ1 transcription factor, an oncogene in carcinomas, are decreased during melanoma progression. Moreover, in contrast to carcinomas, FOXQ1 suppresses epithelial-to-mesenchymal transition, invasion, and metastasis in melanoma cells. We find that these lineage-specific functions of FOXQ1 largely depend on its ability to activate (in carcinomas or repress (in melanoma transcription of the N-cadherin gene (CDH2. We demonstrate that FOXQ1 interacts with nuclear β-catenin and TLE proteins, and the β-catenin/TLE ratio, which is higher in carcinoma than melanoma cells, determines the effect of FOXQ1 on CDH2 transcription. Accordingly, other FOXQ1-dependent phenotypes can be manipulated by altering nuclear β-catenin or TLE proteins levels. Our data identify FOXQ1 as a melanoma suppressor and establish a mechanism underlying its inverse lineage-specific transcriptional regulation of transformed phenotypes.

  13. Fused pyrazine mono-N-oxides as bioreductive drugs. II cytotoxicity in human cells and oncogenicity in a rodent transformation assay

    International Nuclear Information System (INIS)

    Langmuir, Virginia K.; Laderoute, Keith R.; Mendonca, Holly L.; Sutherland, Robert M.; Hei, Tom K.; Liu, S.-X.; Hall, Eric J.; Naylor, Matthew A.; Adams, Gerald E.

    1996-01-01

    Purpose: To determine what structural moieties of the fused pyrazine mono-N-oxides are determining factors in their in vitro cytotoxicity and oncogenicity. Methods and Materials: A new series of experimental bioreductive drugs, fused pyrazine mono-N-oxides, was evaluated in vitro for aerobic and hypoxic cytotoxicity in the HT29 human colon adenocarcinoma cell line by using clonogenic assays. The relative oncogenicities of these compounds were also determined in aerobic cultures of C3H 10T1/2 mouse embryo fibroblasts by using a standard transformation assay. Results: Removal of the 4-methyl piperazine side chain from the parent compound, RB 90740, reduced the potency of the hypoxic cytotoxin. Reduction of the N-oxide function increased the aerobic cytotoxicity and eliminated most of the hypoxic/aerobic cytotoxic differential. The reduced N-oxide also had significant oncogenicity, consistent with a mechanism of genotoxicity following bioreduction of RB 90740. Conclusion: This new series of bioreductive compounds may be effective in cancer therapy, particularly the lead compound RB 90740. The oncogenic potential of these compounds is similar to that for other cancer therapies. Further studies should include evaluation of these compounds in vivo and the development of analogs with reduced oncogenic potential and retention of the hypoxic/aerobic cytotoxicity differential

  14. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  15. Direct Targeting of β-Catenin by a Small Molecule Stimulates Proteasomal Degradation and Suppresses Oncogenic Wnt/β-Catenin Signaling

    Directory of Open Access Journals (Sweden)

    So-Young Hwang

    2016-06-01

    Full Text Available The Wnt/β-catenin signaling pathway plays a major role in tissue homeostasis, and its dysregulation can lead to various human diseases. Aberrant activation of β-catenin is oncogenic and is a critical driver in the development and progression of human cancers. Despite the significant potential of targeting the oncogenic β-catenin pathway for cancer therapy, the development of specific inhibitors remains insufficient. Using a T cell factor (TCF-dependent luciferase-reporter system, we screened for small-molecule compounds that act against Wnt/β-catenin signaling and identified MSAB (methyl 3-{[(4-methylphenylsulfonyl]amino}benzoate as a selective inhibitor of Wnt/β-catenin signaling. MSAB shows potent anti-tumor effects selectively on Wnt-dependent cancer cells in vitro and in mouse cancer models. MSAB binds to β-catenin, promoting its degradation, and specifically downregulates Wnt/β-catenin target genes. Our findings might represent an effective therapeutic strategy for cancers addicted to the Wnt/β-catenin signaling pathway.

  16. Proto-oncogene expression: a predictive assay for radiation biodosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.C.; Luo, L.; Chin, W.K.; Director-Myska, A.E.; Prasanna, P.G.S.; Blakely, W.F

    2002-07-01

    Using a model system of in vitro human peripheral blood lymphocytes, the effect of low-dose (0.25 to 1.50 Gy) 250-kV{sub p} X ray radiation (1 Gy.min{sup -1}) on the expression of several proto-oncogenes was examined (c-Haras, c-src, c-met, c-jun, c-fos, and c-myc) and {beta}-actin from 0.25 to 17 h post-radiation. RNA was extracted from cells harvested at various times after exposure and examined for levels of particular mRNAs by northern blot hybridisation. A progressive time- and dose-dependent increase in mRNA levels was observed for c-Haras mRNA, while the other proto-oncogenes (c-src, c-met, c-fos, c-jun, and c-myc) examined were variable during the same time period. {beta}-actin levels were initially decreased but at 17 h post-radiation had returned to control levels. A comparison of the rate of c-Haras transcription at 5 and 17 h post-irradiation revealed that c-Haras transcription was higher at 5 h than at 17 h. These findings suggest that the level of specific proto-oncogene expression, particularly c-Haras, may be useful early diagnostic molecular biomarkers for biodosimetry applications. The use of real-time PCR technologies to quantify gene expression changes will also be discussed. (author)

  17. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Science.gov (United States)

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells.

  18. Retroviruses Hijack Chromatin Loops to Drive Oncogene Expression and Highlight the Chromatin Architecture around Proto-Oncogenic Loci

    Science.gov (United States)

    Pattison, Jillian M.; Wright, Jason B.; Cole, Michael D.

    2015-01-01

    The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene. PMID:25799187

  19. Reprogramming Antagonizes the Oncogenicity of HOXA13-Long Noncoding RNA HOTTIP Axis in Gastric Cancer Cells.

    Science.gov (United States)

    Wu, Deng-Chyang; Wang, Sophie S W; Liu, Chung-Jung; Wuputra, Kenly; Kato, Kohsuke; Lee, Yen-Liang; Lin, Ying-Chu; Tsai, Ming-Ho; Ku, Chia-Chen; Lin, Wen-Hsin; Wang, Shin-Wei; Kishikawa, Shotaro; Noguchi, Michiya; Wu, Chu-Chieh; Chen, Yi-Ting; Chai, Chee-Yin; Lin, Chen-Lung Steve; Kuo, Kung-Kai; Yang, Ya-Han; Miyoshi, Hiroyuki; Nakamura, Yukio; Saito, Shigeo; Nagata, Kyosuke; Lin, Chang-Shen; Yokoyama, Kazunari K

    2017-10-01

    Reprogramming of cancer cells into induced pluripotent stem cells (iPSCs) is a compelling idea for inhibiting oncogenesis, especially through modulation of homeobox proteins in this reprogramming process. We examined the role of various long noncoding RNAs (lncRNAs)-homeobox protein HOXA13 axis on the switching of the oncogenic function of bone morphogenetic protein 7 (BMP7), which is significantly lost in the gastric cancer cell derived iPS-like cells (iPSLCs). BMP7 promoter activation occurred through the corecruitment of HOXA13, mixed-lineage leukemia 1 lysine N-methyltransferase, WD repeat-containing protein 5, and lncRNA HoxA transcript at the distal tip (HOTTIP) to commit the epigenetic changes to the trimethylation of lysine 4 on histone H3 in cancer cells. By contrast, HOXA13 inhibited BMP7 expression in iPSLCs via the corecruitment of HOXA13, enhancer of zeste homolog 2, Jumonji and AT rich interactive domain 2, and lncRNA HoxA transcript antisense RNA (HOTAIR) to various cis-element of the BMP7 promoter. Knockdown experiments demonstrated that HOTTIP contributed positively, but HOTAIR regulated negatively to HOXA13-mediated BMP7 expression in cancer cells and iPSLCs, respectively. These findings indicate that the recruitment of HOXA13-HOTTIP and HOXA13-HOTAIR to different sites in the BMP7 promoter is crucial for the oncogenic fate of human gastric cells. Reprogramming with octamer-binding protein 4 and Jun dimerization protein 2 can inhibit tumorigenesis by switching off BMP7. Stem Cells 2017;35:2115-2128. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  20. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.

    Science.gov (United States)

    Philip, Bincy; Roland, Christina L; Daniluk, Jaroslaw; Liu, Yan; Chatterjee, Deyali; Gomez, Sobeyda B; Ji, Baoan; Huang, Haojie; Wang, Huamin; Fleming, Jason B; Logsdon, Craig D; Cruz-Monserrate, Zobeida

    2013-12-01

    Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), but it is not clear how obesity contributes to pancreatic carcinogenesis. The oncogenic form of KRAS is expressed during early stages of PDAC development and is detected in almost all of these tumors. However, there is evidence that mutant KRAS requires an additional stimulus to activate its full oncogenic activity and that this stimulus involves the inflammatory response. We investigated whether the inflammation induced by a high-fat diet, and the accompanying up-regulation of cyclooxygenase-2 (COX2), increases Kras activity during pancreatic carcinogenesis in mice. We studied mice with acinar cell-specific expression of KrasG12D (LSL-Kras/Ela-CreERT mice) alone or crossed with COX2 conditional knockout mice (COXKO/LSL-Kras/Ela-CreERT). We also studied LSL-Kras/PDX1-Cre mice. All mice were fed isocaloric diets with different amounts of fat, and a COX2 inhibitor was administered to some LSL-Kras/Ela-CreERT mice. Pancreata were collected from mice and analyzed for Kras activity, levels of phosphorylated extracellular-regulated kinase, inflammation, fibrosis, pancreatic intraepithelial neoplasia (PanIN), and PDACs. Pancreatic tissues from LSL-Kras/Ela-CreERT mice fed high-fat diets (HFDs) had increased Kras activity, fibrotic stroma, and numbers of PanINs and PDACs than LSL-Kras/Ela-CreERT mice fed control diets; the mice fed the HFDs also had shorter survival times than mice fed control diets. Administration of a COX2 inhibitor to LSL-Kras/Ela-CreERT mice prevented these effects of HFDs. We also observed a significant reduction in survival times of mice fed HFDs. COXKO/LSL-Kras/Ela-CreERT mice fed HFDs had no evidence for increased numbers of PanIN lesions, inflammation, or fibrosis, as opposed to the increases observed in LSL-Kras/Ela-CreERT mice fed HFDs. In mice, an HFD can activate oncogenic Kras via COX2, leading to pancreatic inflammation and fibrosis and development of PanINs and PDAC. This

  1. Hypomethylation mediated by decreased DNMTs involves in the activation of proto-oncogene MPL in TK6 cells treated with hydroquinone.

    Science.gov (United States)

    Liu, Linhua; Ling, Xiaoxuan; Liang, Hairong; Gao, Yuting; Yang, Hui; Shao, Junli; Tang, Huanwen

    2012-03-25

    Hydroquinone (HQ), one of the most important metabolites derived from benzene, is known to be associated with acute myelogenous leukemia (AML) risk, however, its carcinogenic mechanism remains unclear. In this study, the epigenetic mechanism of HQ exposure was investigated. We characterized the epigenomic response of TK6 cells to HQ exposure, and examined the mRNA expression of DNA methyltransferases (DNMTs) including DNMT1, DNMT3a and DNMT3b, methyl-CpG-binding domain protein 2 (MBD2) and six proto-oncogenes (MPL, RAF1, MYB, MYC, ERBB2 and BRAF). Compared to the control cells, HQ exposure (2.5, 5.0, 10.0 and 20.0 μM for 48 h) resulted in the decrease of DNMTs and MBD2 expression, the global hypomethylation and increase of MPL at mRNA level. Meanwhile, most of these changes were in dose-dependent manner. Moreover, inhibition of DNMTs induced by 5-aza-2'-deoxycytidine (5-AZA), an identified DNMT inhibitor, caused more induction of MPL expression at mRNA level compared to the HQ (10.0 μM) pre-treated group. Furthermore, treatment of HQ potentially led to MPL itself hypomethylation (10.0 and 20.0 μM reduced by 47% and 44%, respectively), further revealing that the activation of proto-oncogene MPL was related to hypomethylation in its DNA sequences. In conclusion, hypomethylation, including global and specific hypomethylation, might be involved in the activation of MPL, and the hypomethylation could be induced by decreased DNMTs in TK6 cells exposed to HQ. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China); Tian, Yue [Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Yang, Yang; Hu, Fengqing; Xie, Xiao; Mei, Ju [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China); Ding, Fangbao, E-mail: drnail@sina.com [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China)

    2015-05-08

    The histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is an epigenetic modifier and an oncogene that is upregulated in many types of cancer. In non-small cell lung cancer (NSCLC), aberrant expression of USP22 is a predictor of poor survival, as is high expression of cyclooxygenase-2 (COX-2). Despite its oncogenic role, few substrates of USP22 have been identified and its mechanism of action in cancer remains unclear. Here, we identified COX-2 as a direct substrate of USP22 and showed that its levels are modulated by USP22 mediated deubiquitination. Silencing of USP22 downregulated COX-2, decreased its half-life, and inhibited lung carcinoma cell proliferation by directly interacting with and modulating the stability and activity of COX-2 through the regulation of its ubiquitination status. The findings of the present study suggest a potential mechanism underlying the oncogenic role of USP22 mediated by the modulation of the stability and activity of COX-2. - Highlights: • USP22 interacts with COX-2. • USP22 deubiquitinates and stabilizes COX-2. • USP22 is required for COX-2-mediated upregulation of prostaglandin E2.

  3. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  4. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    International Nuclear Information System (INIS)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy

  5. Oncogenic transformation in C3H10T1/2 cells by low-energy neutrons.

    Science.gov (United States)

    Miller, R C; Marino, S A; Napoli, J; Shah, H; Hall, E J; Geard, C R; Brenner, D J

    2000-03-01

    Occupational exposure to neutrons typically includes significant doses of low-energy neutrons, with energies below 100 keV. In addition, the normal-tissue dose from boron neutron capture therapy will largely be from low-energy neutrons. Microdosimetric theory predicts decreasing biological effectiveness for neutrons with energies below about 350 keV compared with that for higher-energy neutrons; based on such considerations, and limited biological data, the current radiation weighting factor (quality factor) for neutrons with energies from 10 keV to 100 keV is less than that for higher-energy neutrons. By contrast, some reports have suggested that the biological effectiveness of low-energy neutrons is similar to that of fast neutrons. The purpose of the current work is to assess the relative biological effectiveness of low-energy neutrons for an endpoint of relevance to carcinogenesis: in vitro oncogenic transformation. Oncogenic transformation induction frequencies were determined for C3H10T1/2 cells exposed to two low-energy neutron beams, respectively, with dose-averaged energies of 40 and 70 keV, and the results were compared with those for higher-energy neutrons and X-rays. These results for oncogenic transformation provide evidence for a significant decrease in biological effectiveness for 40 keV neutrons compared with 350 keV neutrons. The 70 keV neutrons were intermediate in effectiveness between the 70 and 350 keV beams. A decrease in biological effectiveness for low-energy neutrons is in agreement with most (but not all) earlier biological studies, as well as microdosimetric considerations. The results for oncogenic transformation were consistent with the currently recommended decreased values for low-energy neutron radiation weighting factors compared with fast neutrons.

  6. Identification of a Novel Proto-oncogenic Network in Head and Neck Squamous Cell Carcinoma.

    Science.gov (United States)

    Georgy, Smitha R; Cangkrama, Michael; Srivastava, Seema; Partridge, Darren; Auden, Alana; Dworkin, Sebastian; McLean, Catriona A; Jane, Stephen M; Darido, Charbel

    2015-09-01

    The developmental transcription factor Grainyhead-like 3 (GRHL3) plays a critical tumor suppressor role in the mammalian epidermis through direct regulation of PTEN and the PI3K/AKT/mTOR signaling pathway. GRHL3 is highly expressed in all tissues derived from the surface ectoderm, including the oral cavity, raising a question about its potential role in suppression of head and neck squamous cell carcinoma (HNSCC). We explored the tumor suppressor role of Grhl3 in HNSCC using a conditional knockout (Grhl3 (∆/-) /K14Cre (+) ) mouse line (n = 26) exposed to an oral chemical carcinogen. We defined the proto-oncogenic pathway activated in the HNSCC derived from these mice and assessed it in primary human HNSCC samples, normal oral epithelial cell lines carrying shRNA to GRHL3, and human HNSCC cell lines. Data were analyzed with two-sided chi square and Student's t tests. Deletion of Grhl3 in oral epithelium in mice did not perturb PTEN/PI3K/AKT/mTOR signaling, but instead evoked loss of GSK3B expression, resulting in stabilization and accumulation of c-MYC and aggressive HNSCC. This molecular signature was also evident in a subset of primary human HNSCC and HNSCC cell lines. Loss of Gsk3b in mice, independent of Grhl3, predisposed to chemical-induced HNSCC. Restoration of GSK3B expression blocked proliferation of normal oral epithelial cell lines carrying shRNA to GRHL3 (cell no., Day 8: Scramble ctl, 616±21.8 x 10(3) vs GRHL3-kd, 1194±44 X 10(3), P < .001; GRHL3-kd vs GRHL3-kd + GSK3B, 800±98.84 X 10(3), P = .003) and human HNSCC cells. We defined a novel molecular signature in mammalian HNSCC, suggesting new treatment strategies targeting the GRHL3/GSK3B/c-MYC proto-oncogenic network. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    International Nuclear Information System (INIS)

    Sakamoto, C.; Matozaki, T.; Nagao, M.; Baba, S.

    1987-01-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced 125 I-[Tyr 1 ]somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate [Gpp(NH)p]>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg 2+ . When pancreatic acini were treated with 1 μg/ml pertussis toxin for 4 h, subsequent 125 I-[Tyr 1 ]somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor

  8. Interferon-Tau has Antiproliferative effects, Represses the Expression of E6 and E7 Oncogenes, Induces Apoptosis in Cell Lines Transformed with HPV16 and Inhibits Tumor Growth In Vivo

    Science.gov (United States)

    Padilla-Quirarte, Herbey Oswaldo; Trejo-Moreno, Cesar; Fierros-Zarate, Geny; Castañeda, Jhoseline Carnalla; Palma-Irizarry, Marie; Hernández-Márquez, Eva; Burguete-Garcia, Ana Isabel; Peralta-Zaragoza, Oscar; Madrid-Marina, Vicente; Torres-Poveda, Kirvis; Bermúdez-Morales, Victor Hugo

    2016-01-01

    Interferon tau (IFN-τ) is a promising alternative antiviral and immunotherapeutic agent in a wide variety of diseases including infectious, neurodegenerative, autoimmune and cancer due to its low toxicity in comparison with other type I interferon´s. The objective of our study was established the effect of the bovine IFN-τ on human (SiHa) and murine (BMK-16/myc) cells transformed with HPV 16 and evaluates the antitumor effect in a murine tumor model HPV 16 positive. We determine that bovine IFN-τ has antiproliferative effects, pro-apoptotic activity and induces repression of viral E6 and E7 oncogenes (time- and dose-dependent) on human and murine cells transformed with HPV 16 similar to the effects of IFN-β. However, IFN-τ induces greater antiproliferative effect, apoptosis and repression of both oncogenes in BMK-16/myc cells compared to SiHa cells. The differences were explained by the presence and abundance of the type I interferon receptor (IFNAR) in each cell line. On the other hand, we treated groups of tumor-bearing mice (HPV16 positive) with IFN-τ and showed the inhibition tumor growth effect in vivo. Our finding indicates that bovine IFN-τ may be a good candidate for immunotherapy against cervical cancer. PMID:27994659

  9. RBP-Jκ-dependent Notch signaling enhances retinal pigment epithelial cell proliferation in transgenic mice.

    Science.gov (United States)

    Schouwey, K; Aydin, I T; Radtke, F; Beermann, F

    2011-01-20

    The Notch signaling pathway is an ubiquitous cell-cell interaction mechanism, which is essential in controlling processes like cell proliferation, cell fate decision, differentiation or stem cell maintenance. Recent data have shown that Notch signaling is RBP-Jκ-dependent in melanocytes, being required for survival of these pigment cells that are responsible for coloration of the skin and hairs in mammals. In addition, Notch is believed to function as an oncogene in melanoma, whereas it is a tumor suppressor in mouse epidermis. In this study, we addressed the implication of the Notch signaling in the development of another population of pigment cells forming the retinal pigment epithelium (RPE) in mammalian eyes. The constitutive activity of Notch in Tyrp1::NotchIC/° transgenic mice enhanced RPE cell proliferation, and the resulting RPE-derived pigmented tumor severely affected the overall eye structure. This RPE cell proliferation is dependent on the presence of the transcription factor RBP-Jκ, as it is rescued in mice lacking RBP-Jκ in the RPE. In conclusion, Notch signaling in the RPE uses the canonical pathway, which is dependent on the transcription factor RBP-Jκ. In addition, it is of importance for RPE development, and constitutive Notch activity leads to hyperproliferation and benign tumors of these pigment cells.

  10. Risk scaling factors from inactivation to chromosome aberrations, mutations and oncogenic transformations in mammalian cells

    International Nuclear Information System (INIS)

    Alkaharam, A.S.; Watt, D.E.

    1997-01-01

    Analyses of bio-effect mechanisms of damage to mammalian cells in terms of the quality parameter 'mean free path for primary ionisation', for heavy charged particles, strongly suggests that there is a common mechanism for the biological endpoints of chromosome aberrations, mutations and oncogenic transformation. The lethal lesions are identified as unrepaired double-strand breaks in the intracellular DNA. As data for the various endpoints studied can be represented in a unified scheme, for any radiation type, it follows that radiation risk factors can be determined on the basis of simple ratios to the inactivation cross sections. There are intrinsic physical reasons why neutrons can never reach the saturation level of heavier particles for equal fluences. The probabilities of risk with respect to inactivation, for chromosome dicentrics, mutation of the HPRT gene and of oncogenic transformation are respectively 0.24, 5.8 x 10 -5 , and 4.1 x 10 -3 . (author)

  11. The human T-lymphotropic virus type I tax gene can cooperate with the ras oncogene to induce neoplastic transformation of cells.

    Science.gov (United States)

    Pozzatti, R; Vogel, J; Jay, G

    1990-01-01

    Epidemiologic studies have linked infection by the human T-lymphotropic virus type I (HTLV-I) with the development of adult T-cell leukemia. The low penetrance of the virus and the long latency for disease manifestation are factors that obscure the role of HTLV-I infection in oncogenesis. We have used an in vitro transformation assay system to determine directly whether the HTLV-I tax gene has transformation potential. Transfection of the tax gene alone into early-passage rat embryo fibroblasts did not induce morphological alterations. However, cotransfection of tax with the selectable marker plasmid pRSVneo gave rise to G418-resistant colonies that could be established as immortalized cell lines. Cotransfection of tax with the ras oncogene into rat embryo fibroblasts gave rise to foci of transformed cells that were highly tumorigenic in nude mice. These data represent a direct demonstration of the oncogenic potential of the tax gene in nonlymphoid cells and establish HTLV-I as a transforming virus.

  12. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

    Science.gov (United States)

    Grembecka, Jolanta; He, Shihan; Shi, Aibin; Purohit, Trupta; Muntean, Andrew G; Sorenson, Roderick J; Showalter, Hollis D; Murai, Marcelo J; Belcher, Amalia M; Hartley, Thomas; Hess, Jay L; Cierpicki, Tomasz

    2012-01-29

    Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

  13. Clinical Implication of Elevated Human Cervical Cancer Oncogene-1 Expression in Esophageal Squamous Cell Carcinoma

    OpenAIRE

    Liu, Ying; Li, Ke; Ren, Zhonghai; Li, Shenglei; Zhang, Hongyan; Fan, Qingxia

    2012-01-01

    The human cervical cancer oncogene 1 (HCCR-1), a novel human oncoprotein, has been shown to be upregulated in various human tumors and plays a critical role in tumorigenesis and tumor progression. Here, the authors investigated HCCR-1 level in esophageal squamous cell carcinoma (ESCC) tissues and assessed the correlation between HCCR-1 level and prognosis of the patients with ESCC. HCCR-1 levels were investigated by immunohistochemistry, in situ hybridization, real-time quantit...

  14. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells.

    Science.gov (United States)

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. © 2013 Elsevier Inc. All rights reserved.

  15. Dual targeting of wild-type and mutant p53 by small molecule RITA results in the inhibition of N-Myc and key survival oncogenes and kills neuroblastoma cells in vivo and in vitro.

    Science.gov (United States)

    Burmakin, Mikhail; Shi, Yao; Hedström, Elisabeth; Kogner, Per; Selivanova, Galina

    2013-09-15

    Restoration of the p53 function in tumors is a promising therapeutic strategy due to the high potential of p53 as tumor suppressor and the fact that established tumors depend on p53 inactivation for their survival. Here, we addressed the question whether small molecule RITA can reactivate p53 in neuroblastoma and suppress the growth of neuroblastoma cells in vitro and in vivo. The ability of RITA to inhibit growth and to induce apoptosis was shown in seven neuroblastoma cell lines. Mechanistic studies were carried out to determine the p53 dependence and the molecular mechanism of RITA-induced apoptosis in neuroblastoma, using cell viability assays, RNAi silencing, co-immunoprecipitation, qPCR, and Western blotting analysis. In vivo experiments were conducted to study the effect of RITA on human neuroblastoma xenografts in mice. RITA induced p53-dependent apoptosis in a set of seven neuroblastoma cell lines, carrying wild-type or mutant p53; it activated p53 and triggered the expression of proapoptotic p53 target genes. Importantly, p53 activated by RITA inhibited several key oncogenes that are high-priority targets for pharmacologic anticancer strategies in neuroblastoma, including N-Myc, Aurora kinase, Mcl-1, Bcl-2, Wip-1, MDM2, and MDMX. Moreover, RITA had a strong antitumor effect in vivo. Reactivation of wild-type and mutant p53 resulting in the induction of proapoptotic factors along with ablation of key oncogenes by compounds such as RITA may be a highly effective strategy to treat neuroblastoma. ©2013 AACR.

  16. Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product

    DEFF Research Database (Denmark)

    Sap, J; Muñoz, A; Schmitt, J

    1989-01-01

    Several recent observations, such as the identification of the cellular homologue of the v-erb-A oncogene as a thyroid-hormone receptor, have strongly implicated nuclear oncogenes in transcriptional control mechanisms. The v-erb-A oncogene blocks the differentiation of erythroid cells, and changes...

  17. Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Tony Ly

    2018-05-01

    Full Text Available Background: Viral oncogenes and mutated proto-oncogenes are potent drivers of cancer malignancy. Downstream of the oncogenic trigger are alterations in protein properties that give rise to cellular transformation and the acquisition of malignant cellular phenotypes. Developments in mass spectrometry enable large-scale, multidimensional characterisation of proteomes. Such techniques could provide an unprecedented, unbiased view of how oncogene activation remodels a human cell proteome. Methods: Using quantitative MS-based proteomics and cellular assays, we analysed how transformation induced by activating v-Src kinase remodels the proteome and cellular phenotypes of breast epithelial (MCF10A cells. SILAC MS was used to comprehensively characterise the MCF10A proteome and to measure v-Src-induced changes in protein abundance across seven time-points (1-72 hrs. We used pulse-SILAC MS (Boisvert et al., 2012, to compare protein synthesis and turnover in control and transformed cells. Follow-on experiments employed a combination of cellular and functional assays to characterise the roles of selected Src-responsive proteins. Results: Src-induced transformation changed the expression and/or turnover levels of ~3% of proteins, affecting ~1.5% of the total protein molecules in the cell. Transformation increased the average rate of proteome turnover and disrupted protein homeostasis. We identify distinct classes of protein kinetics in response to Src activation. We demonstrate that members of the polycomb repressive complex 1 (PRC1 are important regulators of invasion and migration in MCF10A cells. Many Src-regulated proteins are present in low abundance and some are regulated post-transcriptionally. The signature of Src-responsive proteins is highly predictive of poor patient survival across multiple cancer types. Open access to search and interactively explore all these proteomic data is provided via the EPD database (www.peptracker.com/epd. Conclusions

  18. NF-κB in T-cell Acute Lymphoblastic Leukemia: Oncogenic Functions in Leukemic and in Microenvironmental Cells

    International Nuclear Information System (INIS)

    Santos, Nuno R. dos; Ghezzo, Marinella N.; Silva, Ricardo C. da; Fernandes, Mónica T.

    2010-01-01

    Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL

  19. NF-κB in T-cell Acute Lymphoblastic Leukemia: Oncogenic Functions in Leukemic and in Microenvironmental Cells

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nuno R. dos, E-mail: nrsantos@ualg.pt; Ghezzo, Marinella N.; Silva, Ricardo C. da; Fernandes, Mónica T. [IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-11-05

    Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL.

  20. Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study).

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki; Ewis, Ashraf; Ishikawa, Mitsuru; Shinohara, Yasuo; Baba, Yoshinobu

    2004-07-16

    Short 21-mer double-stranded/small-interfering RNAs (ds/siRNAs) were designed to target bcr-abl mRNA in chronic myelogenous leukemia. The ds/siRNAs were transfected into bcr-abl-positive K-562 (derived from blast crisis chronic myelogenous leukemia), using lipofectamine. Penetrating of ds/siRNAs into the cells was detected by fluorescent confocal microscopy, using fluorescein-labeled ds/siRNAs. The cells were treated with mix of three siRNA sequences (3 x 60 nM) during 6 days with three repetitive transfections. The siRNA-treatment was accompanied with significant reduction of bcr-abl mRNA, p210, protein tyrosine kinase activity and cell proliferation index. Treatment of cells with Glivec (during 8 days with four repetitive doses, 180 nM single dose) resulted in analogous reduction of cell proliferation activity, stronger suppression of protein tyrosine kinase activity, and very low reduction of p210. siRNA-mix and Glivec did not affect significantly the viability of normal lymphocytes. Microarray analysis of siRNA- and Glivec-treated K-562 cells demonstrated that both pathways of bcr-abl suppression were accompanied with overexpression and suppression of many different oncogenes, apoptotic/antiapoptotic and cell proliferation factors. The following genes of interest were found to decrease in relatively equal degree in both siRNA- and Glivec-treated cells: Bcd orf1 and orf2 proto-oncogene, chromatin-specific transcription elongation factor FACT 140-kDa subunit mRNA, gene encoding splicing factor SF1, and mRNA for Tec protein tyrosine kinase. siRNA-mix and Glivec provoked overexpression of the following common genes: c-jun proto-oncogene, protein kinase C-alpha, pvt-1 oncogene homologue (myc activator), interleukin-6, 1-8D gene from interferon-inducible gene family, tumor necrosis factor receptor superfamily (10b), and STAT-induced STAT inhibitor.

  1. DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer.

    Directory of Open Access Journals (Sweden)

    Steven T Lott

    2009-05-01

    Full Text Available Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium-associated RING Chromosome 1, a novel gene encoding a member of the TRIM (tripartite motif subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer.Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS, an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue microarray from a cohort of 123 young

  2. Oncogenes, radiation and cancer

    International Nuclear Information System (INIS)

    Michelin, S.C.

    1998-01-01

    The discovery of the oncogenic virus and the analysis of its nucleic acid, together with the development of new biochemical technology have permitted the partial knowledge of the molecular mechanisms responsible for the cellular neoplastic transformation. This work, besides describing the discovery of the first oncogenic virus and the experiments to demonstrate the existence of the oncogenes, summarizes its activation mechanisms and its intervention in cellular metabolisms. Ionizing radiation is among the external agents that induce the neoplastic process. Its participation in the genesis of this process and the contribution of oncogenes to the cellular radioresistance are among the topics, which are referred to another topic that makes reference. At the same time as the advancement of theoretical knowledge, lines of investigation for the application of the new concepts in diagnosis, prognosis and therapeutical treatment, were developed. An example of this, is the study of the participation of the oncogen c-erbB-2 in human breast cancer and its implications on the anti tumoral therapy. (author) [es

  3. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis.

    Science.gov (United States)

    Darido, Charbel; Georgy, Smitha R; Wilanowski, Tomasz; Dworkin, Sebastian; Auden, Alana; Zhao, Quan; Rank, Gerhard; Srivastava, Seema; Finlay, Moira J; Papenfuss, Anthony T; Pandolfi, Pier Paolo; Pearson, Richard B; Jane, Stephen M

    2011-11-15

    Despite its prevalence, the molecular basis of squamous cell carcinoma (SCC) remains poorly understood. Here, we identify the developmental transcription factor Grhl3 as a potent tumor suppressor of SCC in mice, and demonstrate that targeting of Grhl3 by a miR-21-dependent proto-oncogenic network underpins SCC in humans. Deletion of Grhl3 in adult epidermis evokes loss of expression of PTEN, a direct GRHL3 target, resulting in aggressive SCC induced by activation of PI3K/AKT/mTOR signaling. Restoration of Pten expression completely abrogates SCC formation. Reduced levels of GRHL3 and PTEN are evident in human skin, and head and neck SCC, associated with increased expression of miR-21, which targets both tumor suppressors. Our data define the GRHL3-PTEN axis as a critical tumor suppressor pathway in SCC. 2011 Elsevier Inc. All rights reserved.

  4. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells.

    Science.gov (United States)

    Hu, Kunpeng; Huang, Pinzhu; Luo, Hui; Yao, Zhicheng; Wang, Qingliang; Xiong, Zhiyong; Lin, Jizong; Huang, He; Xu, Shilei; Zhang, Peng; Liu, Bo

    2017-08-01

    Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.

  5. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma

    International Nuclear Information System (INIS)

    Choi, Jieun; Koh, Eunjin; Lee, Yu Shin; Lee, Hyun-Woo; Kang, Hyeok Gu; Yoon, Young Eun; Han, Woong Kyu; Choi, Kyung Hwa; Kim, Kyung-Sup

    2016-01-01

    Clear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types. We show increased Sirt3 expression in the mitochondrial fraction of human RCC tissues. Sirt3 depletion by lentiviral short-hairpin RNA, as well as the stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumor growth in xenograft nude mice, respectively. Furthermore, mitochondrial pyruvate, which was used for oxidation in RCC, might be derived from glutamine, but not from glucose and cytosolic pyruvate, due to depletion of mitochondrial pyruvate carrier and the relatively high expression of malic enzyme 2. Depletion of Sirt3 suppressed glutamate dehydrogenase activity, leading to impaired mitochondrial oxygen consumption. Our findings suggest that Sirt3 plays a tumor-progressive role in human RCC by regulating glutamine-derived mitochondrial respiration, particularly in cells where mitochondrial usage of cytosolic pyruvate is severely compromised. -- Highlights: •Sirt3 is required for the maintenance of RCC cell proliferation. •Mitochondrial usage of cytosolic pyruvate is severely compromised in RCC. •Sirt3 supports glutamine-dependent oxidation in RCC.

  6. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jieun; Koh, Eunjin; Lee, Yu Shin; Lee, Hyun-Woo; Kang, Hyeok Gu [Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Yoon, Young Eun; Han, Woong Kyu [Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Choi, Kyung Hwa [Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 463-712 (Korea, Republic of); Kim, Kyung-Sup, E-mail: KYUNGSUP59@yuhs.ac [Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2016-06-03

    Clear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types. We show increased Sirt3 expression in the mitochondrial fraction of human RCC tissues. Sirt3 depletion by lentiviral short-hairpin RNA, as well as the stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumor growth in xenograft nude mice, respectively. Furthermore, mitochondrial pyruvate, which was used for oxidation in RCC, might be derived from glutamine, but not from glucose and cytosolic pyruvate, due to depletion of mitochondrial pyruvate carrier and the relatively high expression of malic enzyme 2. Depletion of Sirt3 suppressed glutamate dehydrogenase activity, leading to impaired mitochondrial oxygen consumption. Our findings suggest that Sirt3 plays a tumor-progressive role in human RCC by regulating glutamine-derived mitochondrial respiration, particularly in cells where mitochondrial usage of cytosolic pyruvate is severely compromised. -- Highlights: •Sirt3 is required for the maintenance of RCC cell proliferation. •Mitochondrial usage of cytosolic pyruvate is severely compromised in RCC. •Sirt3 supports glutamine-dependent oxidation in RCC.

  7. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2018-04-01

    Full Text Available Background: Human cytomegalovirus (HCMV establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods: The infectivity of primary human mammary epithelial cells (HMECs was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3 was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9 gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results: We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs. CTH cells when injected in NOD/SCID Gamma (NSG mice

  8. Oncogenic N-Ras Stimulates SRF-Mediated Transactivation via H3 Acetylation at Lysine 9

    Directory of Open Access Journals (Sweden)

    Sun-Ju Yi

    2018-01-01

    Full Text Available Signal transduction pathways regulate the gene expression by altering chromatin dynamics in response to mitogens. Ras proteins are key regulators linking extracellular stimuli to a diverse range of biological responses associated with gene regulation. In mammals, the three ras genes encode four Ras protein isoforms: H-Ras, K-Ras4A, K-Ras4B, and N-Ras. Although emerging evidence suggests that Ras isoforms differentially regulate gene expressions and are functionally nonredundant, the mechanisms underlying Ras specificity and Ras signaling effects on gene expression remain unclear. Here, we show that oncogenic N-Ras acts as the most potent regulator of SRF-, NF-κB-, and AP-1-dependent transcription. N-Ras-RGL2 axis is a distinct signaling pathway for SRF target gene expression such as Egr1 and JunB, as RGL2 Ras binding domain (RBD significantly impaired oncogenic N-Ras-induced SRE activation. By monitoring the effect of Ras isoforms upon the change of global histone modifications in oncogenic Ras-overexpressed cells, we discovered that oncogenic N-Ras elevates H3K9ac/H3K23ac levels globally in the chromatin context. Importantly, chromatin immunoprecipitation (ChIP assays revealed that H3K9ac is significantly enriched at the promoter and coding regions of Egr1 and JunB. Collectively, our findings define an undocumented role of N-Ras in modulating of H3 acetylation and in gene regulation.

  9. LIN28 expression in malignant germ cell tumors down-regulates let-7 and increases oncogene levels

    Science.gov (United States)

    Murray, Matthew J.; Saini, Harpreet K.; Siegler, Charlotte A.; Hanning, Jennifer E.; Barker, Emily M.; van Dongen, Stijn; Ward, Dawn M.; Raby, Katie L.; Groves, Ian J.; Scarpini, Cinzia G.; Pett, Mark R.; Thornton, Claire M.; Enright, Anton J.; Nicholson, James C.; Coleman, Nicholas

    2013-01-01

    Despite their clinico-pathologic heterogeneity, malignant germ-cell-tumors (GCTs) share molecular abnormalities that are likely to be functionally important. In this study, we investigated the potential significance of down-regulation of the let-7 family of tumor-suppressor microRNAs in malignant-GCTs. Microarray results from pediatric and adult samples (n=45) showed that LIN28, the negative-regulator of let-7 biogenesis, was abundant in malignant-GCTs, regardless of patient age, tumor site or histologic subtype. Indeed, a strong negative-correlation existed between LIN28 and let-7 levels in specimens with matched datasets. Low let-7 levels were biologically significant, since the sequence complementary to the 2-7nt common let-7 seed ‘GAGGUA’ was enriched in the 3′untranslated regions of mRNAs up-regulated in pediatric and adult malignant-GCTs, compared with normal gonads (a mixture of germ cells and somatic cells). We identified 27 mRNA targets of let-7 that were up-regulated in malignant-GCT cells, confirming significant negative-correlations with let-7 levels. Among 16 mRNAs examined in a largely independent set of specimens by qRT-PCR, we defined negative-associations with let-7e levels for six oncogenes, including MYCN, AURKB, CCNF, RRM2, MKI67 and C12orf5 (when including normal control tissues). Importantly, LIN28 depletion in malignant-GCT cells restored let-7 levels and repressed all of these oncogenic let-7 mRNA targets, with LIN28 levels correlating with cell proliferation and MYCN levels. Conversely, ectopic expression of let-7e was sufficient to reduce proliferation and down-regulate MYCN, AURKB and LIN28, the latter via a double-negative feedback loop. We concluded that the LIN28/let-7 pathway has a critical pathobiological role in malignant-GCTs and therefore offers a promising target for therapeutic intervention. PMID:23774216

  10. Bioinformatics of non small cell lung cancer and the ras proto-oncogene

    CERN Document Server

    Kashyap, Amita; Babu M, Naresh

    2015-01-01

    Cancer is initiated by activation of oncogenes or inactivation of tumor suppressor genes. Mutations in the K-ras proto-oncogene are responsible for 10–30% of adenocarcinomas. Clinical Findings point to a wide variety of other cancers contributing to lung cancer incidence. Such a scenario makes identification of lung cancer difficult and thus identifying its mechanisms can contribute to the society. Identifying unique conserved patterns common to contributing proto-oncogenes may further be a boon to Pharmacogenomics and pharmacoinformatics. This calls for ab initio/de novo drug discovery that in turn will require a comprehensive in silico approach of Sequence, Domain, Phylogenetic and Structural analysis of the receptors, ligand screening and optimization and detailed Docking studies. This brief involves extensive role of the RAS subfamily that includes a set of proteins, which cause an over expression of cancer-causing genes like M-ras and initiate tumour formation in lungs. SNP Studies and Structure based ...

  11. G protein in stimulation of PI hydrolysis by CCK [cholecystokinin] in isolated rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Matozaki, Takashi; Sakamoto, Choitsu; Nagao, Munehiko; Nishizaki, Hogara; Baba, Shigeaki

    1988-01-01

    To clarify the possible role of a guanine nucleotide-binding protein (G protein) in the signal transducing system activated by cholecystokinin (CCK), actions of CCK on rat pancreatic acini were compared with those of fluoride, a well-known activator of stimulatory (G s ) or inhibitory (G i ) G protein. When acini were incubated with increasing concentrations of either CCK-octapeptide (CCK8) or NaF, a maximal stimulation of amylase release from acini occurred at 100 pM CCK8 or 10 mM NaF, respectively; this secretory rate decreased as CCK8 or NaF concentration was increased. NaF caused an increase in cytoplasmic Ca 2+ concentration from the internal Ca 2+ store and stimulated accumulation of inositol phosphates in acini, as observed with CCK. Guanylimidodiphosphate activated the generation of inositol phosphates in the [ 3 H]inositol-labeled pancreatic acinar cell membrane preparation, with half-maximal and maximal stimulation at 1 and 10 μM, respectively. Furthermore, the effects of submaximal CCK concentrations on inositol phosphate accumulation in membranes were markedly potentiated in the presence of 100 μM GTP, which alone was ineffective. Combined findings of the present study strongly suggest that pancreatic CCK receptors are probably coupled to the activation of polyphosphoinositide (PI) breakdown by a G protein, which appears to be fluoride sensitive but is other than G s - or G i -like protein

  12. Cytogenetic damage, oncogenic transformation and p53 induction in human epithelial cells in response to irradiation

    Science.gov (United States)

    Armitage, Mark

    Ionizing radiation can have several different effects on cells, some are almost instantaneous such as the generation of DNA damage, other cellular responses take a matter of minutes or hours - DNA repair protein induction/activation, and others may take months or even years to be manifested - carcinogenesis. Human epithelial cell lines derived from both normal, non-neoplastic tissues and from a malignant source were cultured in order to examine several effects of ionizing radiation on such cell types. Cells not from a malignant source were previously immortalized by viral infection or by transfection with viral sequences. Simian virus 40 immortalised uroepithelial cells (SV-HUC) were found to be approximately a factor of two fold more radioresistant than cells of malignant origin (T24) in terms of unrepaired clastogenic damage i.e. assessment of micronuclei levels following irradiation. SV-HUC lines unlike T24 cells are non-tumourigenic when inoculated into nude athymic mice. SV-HUC lines proved very resistant to full oncogenic transformation using radiation and chemical carcinogens. However, morphological alterations and decreased anchorage dependant growth was observed in post carcinogen treated cells after appropriate cell culture conditions were utilized. The progression from this phenotype to a fully tumourigenic one was not recorded in this study. The ability of ionizing radiation to induce increased levels of the nuclear phosphoprotein p53 was also assessed using several different cell lines. SV- HUC and T24 cell lines failed to exhibit any increased p53 stabilization following irradiation. One cell line, a human papilloma virus transformed line (HPV) did show an approximate two fold increase of the wild type p53 protein after treatment with radiation. Only the cell line HPV showed any cell cycle delay, resulting in accumulation of cells in the G2/M compartment in post irradiation cell cycle analysis. The status of p53 was also assessed i.e. wild type or

  13. An Anti-Oncogenic Role for Decorin in Mammary Carcinoma

    National Research Council Canada - National Science Library

    Iozzo, Renato V

    2004-01-01

    .... In the preliminary data that support the basis of this proposal, we discovered that decorin causes a functional inactivation of the oncogenic ErbB2 protein in mammary carcinoma cells overexpressing ErbB2...

  14. Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos.

    Science.gov (United States)

    Vitale, Ilio; Senovilla, Laura; Jemaà, Mohamed; Michaud, Mickaël; Galluzzi, Lorenzo; Kepp, Oliver; Nanty, Lisa; Criollo, Alfredo; Rello-Varona, Santiago; Manic, Gwenola; Métivier, Didier; Vivet, Sonia; Tajeddine, Nicolas; Joza, Nicholas; Valent, Alexander; Castedo, Maria; Kroemer, Guido

    2010-04-07

    Tetraploidy can constitute a metastable intermediate between normal diploidy and oncogenic aneuploidy. Here, we show that the absence of p53 is not only permissive for the survival but also for multipolar asymmetric divisions of tetraploid cells, which lead to the generation of aneuploid cells with a near-to-diploid chromosome content. Multipolar mitoses (which reduce the tetraploid genome to a sub-tetraploid state) are more frequent when p53 is downregulated and the product of the Mos oncogene is upregulated. Mos inhibits the coalescence of supernumerary centrosomes that allow for normal bipolar mitoses of tetraploid cells. In the absence of p53, Mos knockdown prevents multipolar mitoses and exerts genome-stabilizing effects. These results elucidate the mechanisms through which asymmetric cell division drives chromosomal instability in tetraploid cells.

  15. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells

    International Nuclear Information System (INIS)

    Yang, Liu; Hu, Hsien-Ming; Zielinska-Kwiatkowska, Anna; Chansky, Howard A.

    2010-01-01

    Research highlights: → Inducible and reversible siRNA knockdown of an oncogenic fusion protein such as EWS-Fli1 is feasible and more advantageous than other siRNA methods. → The tumor suppressor gene FOXO1 is a new EWS-Fli1 target. → While trans-activators are known for the FOXO1 gene, there has been no report on negative regulators of FOXO1 transcription. → This study provides first evidence that the EWS-Fli1 oncogenic fusion protein can function as a transcriptional repressor of the FOXO1 gene. -- Abstract: Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusion protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.

  16. Long Intergenic Noncoding RNA 00511 Acts as an Oncogene in Non–small-cell Lung Cancer by Binding to EZH2 and Suppressing p57

    Directory of Open Access Journals (Sweden)

    Cheng-Cao Sun

    2016-01-01

    Full Text Available Long noncoding RNAs (lncRNAs play crucial roles in carcinogenesis. However, the function and mechanism of lncRNAs in human non–small-cell lung cancer (NSCLC are still remaining largely unknown. Long intergenic noncoding RNA 00511 (LINC00511 has been found to be upregulated and acts as an oncogene in breast cancer, but little is known about its expression pattern, biological function and underlying mechanism in NSCLC. Herein, we identified LINC00511 as an oncogenic lncRNA by driving tumorigenesis in NSCLC. We found LINC00511 was upregulated and associated with oncogenesis, tumor size, metastasis, and poor prognosis in NSCLC. Moreover, LINC00511 affected cell proliferation, invasiveness, metastasis, and apoptosis in multiple NSCLC cell lines. Mechanistically, LINC00511 bound histone methyltransferase enhancer of zeste homolog 2 ((EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2, a highly conserved protein complex that regulates gene expression by methylating lysine 27 on histone H3, and acted as a modular scaffold of EZH2/PRC2 complexes, coordinated their localization, and specified the histone modification pattern on the target genes, including p57, and consequently altered NSCLC cell biology. Thus, LINC00511 is mechanistically, functionally, and clinically oncogenic in NSCLC. Targeting LINC00511 and its pathway may be meaningful for treating patients with NSCLC.

  17. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    Science.gov (United States)

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  18. Shared Oncogenic Pathways Implicated in Both Virus-Positive and UV-Induced Merkel Cell Carcinomas.

    Science.gov (United States)

    González-Vela, María Del Carmen; Curiel-Olmo, Soraya; Derdak, Sophia; Beltran, Sergi; Santibañez, Miguel; Martínez, Nerea; Castillo-Trujillo, Alfredo; Gut, Martha; Sánchez-Pacheco, Roxana; Almaraz, Carmen; Cereceda, Laura; Llombart, Beatriz; Agraz-Doblas, Antonio; Revert-Arce, José; López Guerrero, José Antonio; Mollejo, Manuela; Marrón, Pablo Isidro; Ortiz-Romero, Pablo; Fernandez-Cuesta, Lynnette; Varela, Ignacio; Gut, Ivo; Cerroni, Lorenzo; Piris, Miguel Ángel; Vaqué, José Pedro

    2017-01-01

    Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55-90% of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multivariable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    International Nuclear Information System (INIS)

    Walker, C.; Nettesheim, P.; Barrett, J.C.; Gilmer, T.M.

    1987-01-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injected into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of ≅ 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor

  20. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis.

    Science.gov (United States)

    Qian, Jiaying; Niu, Jiangong; Li, Ming; Chiao, Paul J; Tsao, Ming-Sound

    2005-06-15

    Genetic analysis of pancreatic ductal adenocarcinomas and their putative precursor lesions, pancreatic intraepithelial neoplasias (PanIN), has shown a multistep molecular paradigm for duct cell carcinogenesis. Mutational activation or inactivation of the K-ras, p16(INK4A), Smad4, and p53 genes occur at progressive and high frequencies in these lesions. Oncogenic activation of the K-ras gene occurs in >90% of pancreatic ductal carcinoma and is found early in the PanIN-carcinoma sequence, but its functional roles remain poorly understood. We show here that the expression of K-ras(G12V) oncogene in a near diploid HPV16-E6E7 gene immortalized human pancreatic duct epithelial cell line originally derived from normal pancreas induced the formation of carcinoma in 50% of severe combined immunodeficient mice implanted with these cells. A tumor cell line established from one of these tumors formed ductal cancer when implanted orthotopically. These cells also showed increased activation of the mitogen-activated protein kinase, AKT, and nuclear factor-kappaB pathways. Microarray expression profiling studies identified 584 genes whose expression seemed specifically up-regulated by the K-ras oncogene expression. Forty-two of these genes have been reported previously as differentially overexpressed in pancreatic cancer cell lines or primary tumors. Real-time PCR confirmed the overexpression of a large number of these genes. Immunohistochemistry done on tissue microarrays constructed from PanIN and pancreatic cancer samples showed laminin beta3 overexpression starting in high-grade PanINs and occurring in >90% of pancreatic ductal carcinoma. The in vitro modeling of human pancreatic duct epithelial cell transformation may provide mechanistic insights on gene expression changes that occur during multistage pancreatic duct cell carcinogenesis.

  1. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability.

    Science.gov (United States)

    Hassan, Faizule; Ni, Shuisong; Arnett, Tyler C; McKell, Melanie C; Kennedy, Michael A

    2018-03-30

    High mobility group AT-hook 1 (HMGA1) protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%-80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation.

  2. Cyclin K and cyclin D1b are oncogenic in myeloma cells

    Directory of Open Access Journals (Sweden)

    Renoir Jack-Michel

    2010-05-01

    Full Text Available Abstract Background Aberrant expression of cyclin D1 is a common feature in multiple myeloma (MM and always associated with mantle cell lymphoma (MCL. CCND1 gene is alternatively spliced to produce two cyclin D1 mRNA isoforms which are translated in two proteins: cyclin D1a and cyclin D1b. Both isoforms are present in MM cell lines and primary cells but their relative role in the tumorigenic process is still elusive. Results To test the tumorigenic potential of cyclin D1b in vivo, we generated cell clones derived from the non-CCND1 expressing MM LP-1 cell line, synthesizing either cyclin D1b or cyclin K, a structural homolog and viral oncogenic form of cyclin D1a. Immunocompromised mice injected s.c. with LP-1K or LP-1D1b cells develop tumors at the site of injection. Genome-wide analysis of LP-1-derived cells indicated that several cellular processes were altered by cyclin D1b and/or cyclin K expression such as cell metabolism, signal transduction, regulation of transcription and translation. Importantly, cyclin K and cyclin D1b have no major action on cell cycle or apoptosis regulatory genes. Moreover, they impact differently cell functions. Cyclin K-expressing cells have lost their migration properties and display enhanced clonogenic capacities. Cyclin D1b promotes tumorigenesis through the stimulation of angiogenesis. Conclusions Our study indicates that cyclin D1b participates into MM pathogenesis via previously unrevealed actions.

  3. Effects of sodium phenylbutyrate on differentiation and induction of the P21WAF1/CIP1 anti-oncogene in human liver carcinoma cell lines.

    Science.gov (United States)

    Meng, Mei; Jiang, Jun Mei; Liu, Hui; In, Cheng Yong; Zhu, Ju Ren

    2005-01-01

    To explore the effects of sodium phenylbutyrate on the proliferation, differentiation, cell cycle arrest and induction of the P(21WAF1/CIP1) anti-oncogene in human liver carcinoma cell lines Bel-7402 and HepG2. Bel-7402 and HepG2 human liver carcinoma cells were treated with sodium phenylbutyrate at different concentrations. Light microscopy was used to observe morphological changes in the carcinoma cells. Effects on the cell cycle were detected by using flow cytometry. P(21WAF1/CIP1) expression was determined by both reverse transcription-polymerase chain reaction and western blotting. Statistical analysis was performed by using one-way anova and Student's t-test. Sodium phenylbutyrate treatment caused time- and dose-dependent growth inhibition of Bel-7402 and HepG2 cells. This treatment also caused a decline in the proportion of S-phase cells and an increase in the proportion of G(0)/G(1) cells. Sodium phenylbutyrate increased the expression of P(21WAF1/CIP1). Sodium phenylbutyrate inhibits the proliferation of human liver carcinoma cells Bel-7402 and HepG2, induces partial differentiation, and increases the expression of P(21WAF1/CIP1).

  4. Deletion mutants of region E1 a of AD12 E1 plasmids: Effect on oncogenic transformation

    NARCIS (Netherlands)

    Bos, J.L.; Jochemsen, A.G.; Bernards, R.A.; Schrier, P.I.; Ormondt, H. van; Eb, A.J. van der

    1983-01-01

    Plasmids containing the El region of Ad12 DNA can transform certain rodent cells into oncogenic cells. To study the role of the Ela subregion in the process of oncogenic transformation, Ad12 region El mutants carrying deletions in the Ela region were constructed. Deletion mutants pR7 and pR8 affect

  5. Dual paraneoplastic syndromes: small cell lung carcinoma-related oncogenic osteomalacia, and syndrome of inappropriate antidiuretic hormone secretion: report of a case and review of the literature.

    Science.gov (United States)

    Tantisattamo, Ekamol; Ng, Roland C K

    2011-07-01

    Acquired isolated renal phosphate wasting associated with a tumor, known as oncogenic osteomalacia or tumor-induced osteomalacia, is a rare paraneoplastic syndrome caused by overproduction of fibroblast growth factor 23. Oncogenic osteomalacia is usually associated with benign mesenchymal tumors. Syndrome of inappropriate antidiuretic hormone secretion (SIADH), on the other hand, is a common paraneoplastic syndrome caused by small cell carcinoma (SCC). Concomitant oncogenic osteomalacia and SIADH associated with SCC is very rare with only 4 other cases reported in the literature. The authors report a case of small cell lung cancer (SCLC)-related renal wasting hypophosphatemia and concurrent SIADH, and review the literature reporting 9 other cases of SCC associated with oncogenic osteomalacia. Almost half of reported cases of renal phosphate wasting associated with SCC concomitantly presented with SIADH. These cases had initial serum phosphorus level lower and survival periods shorter than those without SIADH. This rare combination of a dual paraneoplastic syndrome and low serum phosphorus may be a poor prognostic sign. In addition, both renal phosphate wasting and SIADH usually occur in a short period of time before identification of SCC. Therefore, renal wasting hypophosphatemia with concomitant SIADH/hyponatremia should prompt a search for SCC rather than a benign mesenchymal tumor.

  6. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    Science.gov (United States)

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  7. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    Science.gov (United States)

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  8. Hepatoma SK Hep-1 cells exhibit characteristics of oncogenic mesenchymal stem cells with highly metastatic capacity.

    Directory of Open Access Journals (Sweden)

    Jong Ryeol Eun

    Full Text Available SK Hep-1 cells (SK cells derived from a patient with liver adenocarcinoma have been considered a human hepatoma cell line with mesenchymal origin characteristics, however, SK cells do not express liver genes and exhibit liver function, thus, we hypothesized whether mesenchymal cells might contribute to human liver primary cancers. Here, we characterized SK cells and its tumourigenicity.We found that classical mesenchymal stem cell (MSC markers were presented on SK cells, but endothelial marker CD31, hematopoietic markers CD34 and CD45 were negative. SK cells are capable of differentiate into adipocytes and osteoblasts as adipose-derived MSC (Ad-MSC and bone marrow-derived MSC (BM-MSC do. Importantly, a single SK cell exhibited a substantial tumourigenicity and metastatic capacity in immunodefficient mice. Metastasis not only occurred in circulating organs such as lung, liver, and kidneys, but also in muscle, outer abdomen, and skin. SK cells presented greater in vitro invasive capacity than those of Ad-MSC and BM-MSC. The xenograft cells from subcutaneous and metastatic tumors exhibited a similar tumourigenicity and metastatic capacity, and showed the same relatively homogenous population with MSC characteristics when compared to parental SK cells. SK cells could unlimitedly expand in vitro without losing MSC characteristics, its tumuorigenicity and metastatic capacity, indicating that SK cells are oncogenic MSC with enhanced self-renewal capacity. We believe that this is the first report that human MSC appear to be transformed into cancer stem cells (CSC, and that their derivatives also function as CSCs.Our findings demonstrate that SK cells represent a transformation mechanism of normal MSC into an enhanced self-renewal CSC with metastasis capacity, SK cells and their xenografts represent a same relative homogeneity of CSC with substantial metastatic capacity. Thus, it represents a novel mechanism of tumor initiation, development and

  9. CT and MR imaging of multilocular acinar cell cystadenoma: comparison with branch duct intraductal papillary mucinous neoplasia (IPMNs)

    Energy Technology Data Exchange (ETDEWEB)

    Delavaud, Christophe; Assignies, Gaspard d' ; Vilgrain, Valerie; Vullierme, Marie-Pierre [Hopital Beaujon, Service de Radiologie, Clichy (France); Cros, Jerome [Hopital Beaujon, Service d' Anatomopathologie, Clichy (France); Ruszniewski, Philippe; Hammel, Pascal; Levy, Philippe [Hopital Beaujon, Service de Pancreato-Gastro-Enterologie, Clichy (France); Couvelard, Anne [Hopital Bichat, Service d' Anatomopathologie, Paris (France); Sauvanet, Alain; Dokmak, Safi [Hopital Beaujon, Service de Chirurgie Hepato-Pancreato-Biliaire, Clichy (France)

    2014-09-15

    To describe CT and MR imaging findings of acinar cell cystadenoma (ACC) of the pancreas and to compare them with those of branch duct intraductal papillary mucinous neoplasia (BD-IPMN) to identify distinctive elements. Five patients with ACC and the 20 consecutive patients with histologically proven BD-IPMN were retrospectively included. Clinical and biological information was collected and histological data reviewed. CT and MR findings were analysed blinded to pathological diagnosis in order to identify imaging diagnostic criteria of ACC. Patients with ACC were symptomatic in all but one case and were younger than those with BD-IPMN (p = 0.006). Four radiological criteria allowed for differentiating ACC from IPMN: five or more cysts, clustered peripheral small cysts, presence of cyst calcifications and absence of communication with the main pancreatic duct (p < 0.05). Presence of at least two or three of these imaging criteria had a strong diagnostic value for ACC with a sensitivity of 100 % and 80 % and a specificity of 85 % and 100 %, respectively. Preoperative differential diagnosis between ACC and BD-IPMN can be achieved using a combination of four CT and/or MR imaging criteria. Recognition of ACC patients could change patient management and lead to more conservative treatment. (orig.)

  10. C/EBPβ represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19Arf

    Science.gov (United States)

    Ewing, SJ; Zhu, S; Zhu, F; House, JS; Smart, RC

    2013-01-01

    CCAAT/enhancer-binding protein-β (C/EBPβ) is a mediator of cell survival and tumorigenesis. When C/EBPβ−/− mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19Arf and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19Arf is dramatically elevated in C/EBPβ−/− epidermis and that C/EBPβ represses a p19Arf promoter reporter. To determine whether p19Arf is responsible for the proapoptotic phenotype in C/EBPβ−/− mice, C/EBPβ−/−;p19Arf−/− mice were generated. C/EBPβ−/−;p19Arf−/− mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19Arf is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPβ−/− epidermis, we generated K14-ER:Ras; C/EBPβ−/− mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPβ−/− mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPβ represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPβ may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents. PMID:18636078

  11. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation

    NARCIS (Netherlands)

    Malta, Tathiane M.; Sokolov, Artem; Gentles, Andrew J.; Burzykowski, Tomasz; Poisson, Laila; Weinstein, John N.; Kamińska, Bożena; Huelsken, Joerg; Omberg, Larsson; Gevaert, Olivier; Colaprico, Antonio; Czerwińska, Patrycja; Mazurek, Sylwia; Mishra, Lopa; Heyn, Holger; Krasnitz, Alex; Godwin, Andrew K.; Lazar, Alexander J.; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Gonzalez, Ana Maria Angulo; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Pinero, Edna M.Mora; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Stuart, Joshua M.; Hoadley, Katherine A.; Laird, Peter W.; Noushmehr, Houtan; Wiznerowicz, Maciej

    2018-01-01

    Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR)

  12. IL-6-induced Bcl6 variant 2 supports IL-6-dependent myeloma cell proliferation and survival through STAT3

    International Nuclear Information System (INIS)

    Tsuyama, Naohiro; Danjoh, Inaho; Otsuyama, Ken-ichiro; Obata, Masanori; Tahara, Hidetoshi; Ohta, Tsutomu; Ishikawa, Hideaki

    2005-01-01

    IL-6 is a growth and survival factor for myeloma cells, although the mechanism by which it induces myeloma cell proliferation through gene expression is largely unknown. Microarray analysis showed that some B-cell lymphoma-associated oncogenes such as Bcl6, which is absent in normal plasma cells, were upregulated by IL-6 in IL-6-dependent myeloma cell lines. We found that Bcl6 variant 2 was upregulated by STAT3. ChIP assay and EMSA showed that STAT3 bound to the upstream region of variant 2 DNA. Expression of p53, a direct target gene of Bcl6, was downregulated in the IL-6-stimulated cells, and this process was impaired by an HDAC inhibitor. Bcl6 was knocked down by introducing small hairpin RNA, resulting in decreased proliferation and increased sensitivity to a DNA damaging agent. Thus, STAT3-inducible Bcl6 variant 2 appears to generate an important IL-6 signal that supports proliferation and survival of IL-6-dependent myeloma cells

  13. Specific oncogenic activity of the Src-family tyrosine kinase c-Yes in colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Florence Sancier

    Full Text Available c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of β-catenin at cell membranes and a reduction of expression of β-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice. Re-introduction of c-Yes, but not c -Src, restores transforming properties of c-Yes depleted cells. Moreover, we found that c-Yes kinase activity is required for its role in β-catenin localisation and growth in soft agar, whereas kinase activity is dispensable for its role in cell migration. We conclude that c-Yes regulates specific oncogenic signalling pathways important for colon cancer progression that is not shared with c-Src.

  14. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  15. Oncogenic HPV among HIV infected female population in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Sengupta Sharmila

    2011-03-01

    Full Text Available Abstract Background Prevalence of both cervical cancer and Human Immunodeficiency Virus (HIV infection are very high in India. Natural history of Human Papilloma Virus (HPV infection is known to be altered in HIV positive women and there is an increased possibility of persistence of HPV infections in this population. Therefore, this study was conducted to understand the epidemiology and circulating genotypes of oncogenic HPV among HIV positive and negative female population in West Bengal, India. Methods In this hospital-based cross-sectional study, 93 known HIV positive females attending a pre-ART registration clinic and 1106 HIV negative females attending a Reproductive and Child Health Care Clinic were subjected to study. Cervical cell samples collected from the study population were tested for the presence of HPV 16, 18 using specific primers. Roche PCR assay was used to detect other specific HPV genotypes in the cervical cells specimens of HIV positive cases only. Results Prevalence of HPV 16, 18 among HIV positive females (32.2%; n = 30 was higher than HIV negative females (9.1%; n = 101. About 53% (23/43 of cases with oncogenic HPV were infected with genotypes other than 16, 18 either as single/multiple infections. HPV 18 and HPV 16 were the predominant genotypes among HIV positive and HIV negative subjects respectively. Oncogenic HPV was not found to be associated with age and duration of sexual exposure. But the presence of HIV was found to a statistically significant predictor oncogenic HPV. Conclusion The currently available HPV vaccines offer protection only against HPV 16 and 18 and some cross- protection to few associated genotypes. These vaccines are therefore less likely to offer protection against cervical cancer in HIV positive women a high percentage of who were infected with non-16 and non-18 oncogenic HPV genotypes. Additionally, there is a lack of sufficient evidence of immunogenicity in HIV infected individuals. Therefore

  16. Cyclophilin B Supports Myc and Mutant p53 Dependent Survival of Glioblastoma Multiforme Cells

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A.; Sarkaria, Jann N.; Bram, Richard J.

    2014-01-01

    Glioblastoma multiforme (GBM) is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in GBM cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human GBM cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of GBM cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-MAPK pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1 and JAK/STAT3 signaling. Elevated reactive oxygen species, ER expansion and abnormal unfolded protein responses in CypB-depleted GBM cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of GBM tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for GBM therapy. PMID:24272483

  17. Leucine Affects α-Amylase Synthesis through PI3K/Akt-mTOR Signaling Pathways in Pancreatic Acinar Cells of Dairy Calves.

    Science.gov (United States)

    Guo, Long; Liang, Ziqi; Zheng, Chen; Liu, Baolong; Yin, Qingyan; Cao, Yangchun; Yao, Junhu

    2018-05-23

    Dietary nutrient utilization, particularly starch, is potentially limited by digestion in dairy cow small intestine because of shortage of α-amylase. Leucine acts as an effective signal molecular in the mTOR signaling pathway, which regulates a series of biological processes, especially protein synthesis. It has been reported that leucine could affect α-amylase synthesis and secretion in ruminant pancreas, but mechanisms have not been elaborated. In this study, pancreatic acinar (PA) cells were used as a model to determine the cellular signal of leucine influence on α-amylase synthesis. PA cells were isolated from newborn Holstein dairy bull calves and cultured in Dulbecco's modifed Eagle's medium/nutrient mixture F12 liquid media containing four leucine treatments (0, 0.23, 0.45, and 0.90 mM, respectively), following α-amylase activity, zymogen granule, and signal pathway factor expression detection. Rapamycin, a specific inhibitor of mTOR, was also applied to PA cells. Results showed that leucine increased ( p synthesis of α-amylase as well as phosphorylation of PI3K, Akt, mTOR, and S6K1 while reduced ( p synthesis. In addition, the extracellular leucine dosage significantly influenced intracellular metabolism of isoleucine ( p synthesis through promoting the PI3K/Akt-mTOR pathway and reducing the GCN2 pathway in PA cells of dairy calves. These pathways form the signaling network that controls the protein synthesis and metabolism. It would be of great interest in future studies to explore the function of leucine in ruminant nutrition.

  18. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability.

    Science.gov (United States)

    Luo, Tuoping; Masson, Kristina; Jaffe, Jacob D; Silkworth, Whitney; Ross, Nathan T; Scherer, Christina A; Scholl, Claudia; Fröhling, Stefan; Carr, Steven A; Stern, Andrew M; Schreiber, Stuart L; Golub, Todd R

    2012-02-21

    Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33's kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33's kinase activity does not represent a promising anti-KRAS therapeutic strategy.

  19. Determination of the transforming activities of adenovirus oncogenes.

    Science.gov (United States)

    Speiseder, Thomas; Nevels, Michael; Dobner, Thomas

    2014-01-01

    The last 50 years of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells, human amniotic fluid cells and athymic nude mice.

  20. Co-chaperone BAG2 Determines the Pro-oncogenic Role of Cathepsin B in Triple-Negative Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kyung-Min Yang

    2017-12-01

    Full Text Available Summary: Triple-negative breast cancer (TNBC is considered incurable with currently available treatments, highlighting the need for therapeutic targets and predictive biomarkers. Here, we report a unique role for Bcl-2-associated athanogene 2 (BAG2, which is significantly overexpressed in TNBC, in regulating the dual functions of cathepsin B as either a pro- or anti-oncogenic enzyme. Silencing BAG2 suppresses tumorigenesis and lung metastasis and induces apoptosis by increasing the intracellular mature form of cathepsin B, whereas BAG2 expression induces metastasis by blocking the auto-cleavage processing of pro-cathepsin B via interaction with the propeptide region. BAG2 regulates pro-cathepsin B/annexin II complex formation and facilitates the trafficking of pro-cathespin-B-containing TGN38-positive vesicles toward the cell periphery, leading to the secretion of pro-cathepsin B, which induces metastasis. Collectively, our results uncover BAG2 as a regulator of the oncogenic function of pro-cathepsin B and a potential diagnostic and therapeutic target that may reduce the burden of metastatic breast cancer. : The mechanisms controlling the pro- and anti-oncogenic roles of cathepsin B are unclear. Yang et al. find that BAG2 is a regulator of the dual functions of its client protein, CTSB, facilitating the progression of TNBC. Keywords: BAG2, cathepsin B, TNBC, tumorigenesis, metastasis, breast cancer, TGN38

  1. Enhancer-Mediated Oncogenic Function of the Menin Tumor Suppressor in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Koen M.A. Dreijerink

    2017-03-01

    Full Text Available While the multiple endocrine neoplasia type 1 (MEN1 gene functions as a tumor suppressor in a variety of cancer types, we explored its oncogenic role in breast tumorigenesis. The MEN1 gene product menin is involved in H3K4 trimethylation and co-activates transcription. We integrated ChIP-seq and RNA-seq data to identify menin target genes. Our analysis revealed that menin-dependent target gene promoters display looping to distal enhancers that are bound by menin, FOXA1 and GATA3. In this fashion, MEN1 co-regulates a proliferative breast cancer-specific gene expression program in ER+ cells. In primary mammary cells, MEN1 exerts an anti-proliferative function by regulating a distinct expression signature. Our findings clarify the cell-type-specific functions of MEN1 and inform the development of menin-directed treatments for breast cancer.

  2. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma

    Directory of Open Access Journals (Sweden)

    Dinesh K. Singh

    2017-01-01

    Full Text Available Efforts to identify and target glioblastoma (GBM drivers have primarily focused on receptor tyrosine kinases (RTKs. Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2 transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2 and zinc-finger E-box binding homeobox 1 (ZEB1, which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  3. The oncogenic properties of EWS/WT1 of desmoplastic small round cell tumors are unmasked by loss of p53 in murine embryonic fibroblasts

    International Nuclear Information System (INIS)

    Bandopadhayay, Pratiti; Thomas, David M; Algar, Elizabeth; Ekert, Paul G; Jabbour, Anissa M; Riffkin, Christopher; Salmanidis, Marika; Gordon, Lavinia; Popovski, Dean; Rigby, Lin; Ashley, David M; Watkins, David N

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is characterized by the presence of a fusion protein EWS/WT1, arising from the t (11;22) (p13;q12) translocation. Here we examine the oncogenic properties of two splice variants of EWS/WT1, EWS/WT1-KTS and EWS/WT1 + KTS. We over-expressed both EWS/WT1 variants in murine embryonic fibroblasts (MEFs) of wild-type, p53 +/- and p53 -/- backgrounds and measured effects on cell-proliferation, anchorage-independent growth, clonogenicity after serum withdrawal, and sensitivity to cytotoxic drugs and gamma irradiation in comparison to control cells. We examined gene expression profiles in cells expressing EWS/WT1. Finally we validated our key findings in a small series of DSRCT. Neither isoform of EWS/WT1 was sufficient to transform wild-type MEFs however the oncogenic potential of both was unmasked by p53 loss. Expression of EWS/WT1 in MEFs lacking at least one allele of p53 enhanced cell-proliferation, clonogenic survival and anchorage-independent growth. EWS/WT1 expression in wild-type MEFs conferred resistance to cell-cycle arrest after irradiation and daunorubicin induced apoptosis. We show DSRCT commonly have nuclear localization of p53, and copy-number amplification of MDM2/MDMX. Expression of either isoform of EWS/WT1 induced characteristic mRNA expression profiles. Gene-set enrichment analysis demonstrated enrichment of WNT pathway signatures in MEFs expressing EWS/WT1 + KTS. Wnt-activation was validated in cell lines with over-expression of EWS/WT1 and in DSRCT. In conclusion, we show both isoforms of EWS/WT1 have oncogenic potential in MEFs with loss of p53. In addition we provide the first link between EWS/WT1 and Wnt-pathway signaling. These data provide novel insights into the function of the EWS/WT1 fusion protein which characterize DSRCT

  4. Oncogene Mimicry as a Mechanism of Primary Resistance to BRAF Inhibitors

    Directory of Open Access Journals (Sweden)

    Martin L. Sos

    2014-08-01

    Full Text Available Despite the development of potent RAF/mitogen-activated protein kinase (MAPK pathway inhibitors, only a fraction of BRAF-mutant patients benefit from treatment with these drugs. Using a combined chemogenomics and chemoproteomics approach, we identify drug-induced RAS-RAF-MEK complex formation in a subset of BRAF-mutant cancer cells characterized by primary resistance to vemurafenib. In these cells, autocrine interleukin-6 (IL-6 secretion may contribute to the primary resistance phenotype via induction of JAK/STAT3 and MAPK signaling. In a subset of cell lines, combined IL-6/MAPK inhibition is able to overcome primary resistance to BRAF-targeted therapy. Overall, we show that the signaling plasticity exerted by primary resistant BRAF-mutant cells is achieved by their ability to mimic signaling features of oncogenic RAS, a strategy that we term “oncogene mimicry.” This model may guide future strategies for overcoming primary resistance observed in these tumors.

  5. Oncogenic transformation systems involving mammalian cells in vitro to determine the relative risks of different treatment modalities

    International Nuclear Information System (INIS)

    Hall, E.J.

    1984-01-01

    An established line of mouse fibroblasts cultured in vitro were used to compare the incidence of oncogenic transformation produced by X-rays, heat, various hypoxid cell radiosensitizers and used chemotherapy agents. A variety of 2 and 5 substituted nitroimidazoles were tested; these included metronidazole, desmethylmisonidazole, misonidazole, SR-2508, SR-2555, Ro-0741, RSU-1047 and RSU-1021. Most of these sensitizers produced a similar level of transformation; for example a three day exposure of aerated cells to a concentration of 1 mM of the drug resulted in a transformation incidence comparable to 1Gy of X-rays. The notable exception was SR-2508 which produced a five-fold higher incidence of transformation. The potential carcinogenicity of sensitizers must be considered in choosing which of the currently available new drugs is to be used in clinical trials as an alternative to misonidazole. A variety of chemotherapy agents were tested at a concentration comparable to those used clinically and matched to produce about the same amount of cell killing. It was found that the incidence of oncogenic transformation varied widely. Some agents, such as Vincristine did not produce transformation at a level that could be detected above background, while others such as cis-Platinum appear to be potent carcinogens and produced transformation at a rate an order of magnitude higher than can be achieved by any dose of X-rays. Hyperthermia in the range of 40 0 C caused no transformation, whether or not the heat treatment was associated with significant cell killing. In addition modest hyperthermia appreciably reduced the transformation frequencies associated with X-ray doses. (orig./MG)

  6. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein

    International Nuclear Information System (INIS)

    Lee, G.; Ronai, Z.A.; Pincus, M.R.; Brandt-Rauf, P.W.; Weinstein, I.B.; Murphy, R.B.; Delohery, T.M.; Nishimura, S.; Yamaizumi, Z.

    1989-01-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with modified p21 protein, the cells were pulsed with [ 35 S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21 - protein complexes. By using this technique, the authors found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. They suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes

  7. Intrinsic and Extrinsic Regulation of PD-L2 Expression in Oncogene-Driven Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Shibahara, Daisuke; Tanaka, Kentaro; Iwama, Eiji; Kubo, Naoki; Ota, Keiichi; Azuma, Koichi; Harada, Taishi; Fujita, Jiro; Nakanishi, Yoichi; Okamoto, Isamu

    2018-03-27

    The interaction of programmed cell death ligand 2 (PD-L2) with programmed cell death 1 is implicated in tumor immune escape. The regulation of PD-L2 expression in tumor cells has remained unclear, however. We here examined intrinsic and extrinsic regulation of PD-L2 expression in NSCLC. PD-L2 expression was evaluated by reverse transcription and real-time polymerase chain reaction analysis and by flow cytometry. BEAS-2B cells stably expressing an activated mutant form of EGFR or the echinoderm microtubule associated protein like 4 (EML4)-ALK receptor tyrosine kinase fusion oncoprotein manifested increased expression of PD-L2 at both the mRNA and protein levels. Furthermore, treatment of NSCLC cell lines that harbor such driver oncogenes with corresponding EGFR or ALK tyrosine kinase inhibitors or depletion of EGFR or ALK by small interfering RNA transfection suppressed expression of PD-L2, demonstrating that activating EGFR mutations or echinoderm microtubule associated protein like 4 gene (EML4)-ALK receptor tyrosine kinase gene (ALK) fusion intrinsically induce PD-L2 expression. We also found that interferon gamma (IFN-γ) extrinsically induced expression of PD-L2 through signal transducer and activator of transcription 1 signaling in NSCLC cells. Oncogene-driven expression of PD-L2 in NSCLC cells was inhibited by knockdown of the transcription factors signal transducer and activator of transcription 3 (STAT3) or c-FOS. IFN-γ also activated STAT3 and c-FOS, suggesting that these proteins may also contribute to the extrinsic induction of PD-L2 expression. Expression of PD-L2 is induced intrinsically by activating EGFR mutations or EML4-ALK fusion and extrinsically by IFN-γ, with STAT3 and c-FOS possibly contributing to both intrinsic and extrinsic pathways. Our results thus provide insight into the complexity of tumor immune escape in NSCLC. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  8. M-COPA suppresses endolysosomal Kit-Akt oncogenic signalling through inhibiting the secretory pathway in neoplastic mast cells.

    Directory of Open Access Journals (Sweden)

    Yasushi Hara

    Full Text Available Gain-of-function mutations in Kit receptor tyrosine kinase result in the development of a variety of cancers, such as mast cell tumours, gastrointestinal stromal tumours (GISTs, acute myeloid leukemia, and melanomas. The drug imatinib, a selective inhibitor of Kit, is used for treatment of mutant Kit-positive cancers. However, mutations in the Kit kinase domain, which are frequently found in neoplastic mast cells, confer an imatinib resistance, and cancers expressing the mutants can proliferate in the presence of imatinib. Recently, we showed that in neoplastic mast cells that endogenously express an imatinib-resistant Kit mutant, Kit causes oncogenic activation of the phosphatidylinositol 3-kinase-Akt (PI3K-Akt pathway and the signal transducer and activator of transcription 5 (STAT5 but only on endolysosomes and on the endoplasmic reticulum (ER, respectively. Here, we show a strategy for inhibition of the Kit-PI3K-Akt pathway in neoplastic mast cells by M-COPA (2-methylcoprophilinamide, an inhibitor of this secretory pathway. In M-COPA-treated cells, Kit localization in the ER is significantly increased, whereas endolysosomal Kit disappears, indicating that M-COPA blocks the biosynthetic transport of Kit from the ER. The drug greatly inhibits oncogenic Akt activation without affecting the association of Kit with PI3K, indicating that ER-localized Kit-PI3K complex is unable to activate Akt. Importantly, M-COPA but not imatinib suppresses neoplastic mast cell proliferation through inhibiting anti-apoptotic Akt activation. Results of our M-COPA treatment assay show that Kit can activate Erk not only on the ER but also on other compartments. Furthermore, Tyr568/570, Tyr703, Tyr721, and Tyr936 in Kit are phosphorylated on the ER, indicating that these five tyrosine residues are all phosphorylated before mutant Kit reaches the plasma membrane (PM. Our study provides evidence that Kit is tyrosine-phosphorylated soon after synthesis on the ER but is

  9. M-COPA suppresses endolysosomal Kit-Akt oncogenic signalling through inhibiting the secretory pathway in neoplastic mast cells.

    Science.gov (United States)

    Hara, Yasushi; Obata, Yuuki; Horikawa, Keita; Tasaki, Yasutaka; Suzuki, Kyohei; Murata, Takatsugu; Shiina, Isamu; Abe, Ryo

    2017-01-01

    Gain-of-function mutations in Kit receptor tyrosine kinase result in the development of a variety of cancers, such as mast cell tumours, gastrointestinal stromal tumours (GISTs), acute myeloid leukemia, and melanomas. The drug imatinib, a selective inhibitor of Kit, is used for treatment of mutant Kit-positive cancers. However, mutations in the Kit kinase domain, which are frequently found in neoplastic mast cells, confer an imatinib resistance, and cancers expressing the mutants can proliferate in the presence of imatinib. Recently, we showed that in neoplastic mast cells that endogenously express an imatinib-resistant Kit mutant, Kit causes oncogenic activation of the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway and the signal transducer and activator of transcription 5 (STAT5) but only on endolysosomes and on the endoplasmic reticulum (ER), respectively. Here, we show a strategy for inhibition of the Kit-PI3K-Akt pathway in neoplastic mast cells by M-COPA (2-methylcoprophilinamide), an inhibitor of this secretory pathway. In M-COPA-treated cells, Kit localization in the ER is significantly increased, whereas endolysosomal Kit disappears, indicating that M-COPA blocks the biosynthetic transport of Kit from the ER. The drug greatly inhibits oncogenic Akt activation without affecting the association of Kit with PI3K, indicating that ER-localized Kit-PI3K complex is unable to activate Akt. Importantly, M-COPA but not imatinib suppresses neoplastic mast cell proliferation through inhibiting anti-apoptotic Akt activation. Results of our M-COPA treatment assay show that Kit can activate Erk not only on the ER but also on other compartments. Furthermore, Tyr568/570, Tyr703, Tyr721, and Tyr936 in Kit are phosphorylated on the ER, indicating that these five tyrosine residues are all phosphorylated before mutant Kit reaches the plasma membrane (PM). Our study provides evidence that Kit is tyrosine-phosphorylated soon after synthesis on the ER but is unable to

  10. The oncogenic action of ionizing radiation on rat skin: Progress report, February 1, 1987-January 31, 1988

    International Nuclear Information System (INIS)

    Burns, F.J.

    1987-01-01

    The work outlined in this report includes: epidermal DNA strand breaks and radiation penetration; activation of oncogenes in radiation induced rat skin tumors; and rat skin carcinogenesis by neon ions. The effect of radiation penetration on DNA single strand breaks has been studied extensively in rat and mouse epidermis. The results show clearly that the number of strand breaks per unit dose in the epidermal DNA is reduced by 50% to 65% when the radiation penetration is reduced from 1.0 mm to 0.2 mm. This penetration effect on DNA strand breaks was not seen in mouse epidermal cell lines growing in plastic dishes. The results imply that DNA strand breakage in superficial cells is partially dependent on the radiation dose to underlying tissue. The phenomenon is not mediated by systemic interactions as it was observed in irradiated explanted skin. The oncogene activation pattern in the radiation-induced skin tumors was found to be tumor dependent. Either K-ras activation or c-myc amplification or both was observed in each tumor analyzed so far. Even benign fibromas exhibited c-myc amplification. The carcinogenicity of high penetration electrons (2.0 MeV) was determined in preparation for similar studies with a neon ion beam at the Berkeley Bevelac. The principal finding so far is a large excess of connective tissue tumors, fibromas (benign) and sarcomas (malignant). 59 refs., 1 tab

  11. MicroRNA-205 suppresses the oral carcinoma oncogenic activity via down-regulation of Axin-2 in KB human oral cancer cell.

    Science.gov (United States)

    Kim, Jae-Sung; Park, Sun-Young; Lee, Seul Ah; Park, Min-Gyeong; Yu, Sun-Kyoung; Lee, Myoung-Hwa; Park, Mi-Ra; Kim, Su-Gwan; Oh, Ji-Su; Lee, Sook-Young; Kim, Chun Sung; Kim, Heung-Joong; Chun, Hong Sung; Kim, Jin-Soo; Moon, Sung-Min; Kim, Do Kyung

    2014-02-01

    MicroRNA (miRNA) is a small noncoding RNA molecule, 19-25 nucleotides in length, which regulates several pathways including cell development, cell proliferation, carcinogenesis, apoptosis, etc. In this study, the over-expression of microRNA-205 (miR-205) increased the number of apoptotic cells by at least 4 times compared to the control. In addition, over-expressed miRNA in KB oral cancer cells triggered apoptosis via the caspase cascade, including the cleavage of caspase-9, caspase-7, caspase-3, and PARP. Flow cytometry showed that apoptotic cell death was increased significantly by 35.33% in KB oral cancer cells with over-expressed miR-205 compared to the control. The microarray data showed that axis inhibitor protein 2 (Axin2) was down-regulated in KB oral cancer cells transfected with miR-205. In addition, Axin2 was down-regulated by approximately 50% by over-expressed miR-205 at both the mRNA and protein levels. Interestingly, Axin2 was up-regulated in KB oral cancer compared to human normal oral keratinocytes. Furthermore, the cell cytotoxicity and apoptotic population of KB oral cancer cells were increased significantly after Axin2 siRNA transfection. These results suggest that Axin2 is might be as potential oncogene in KB oral cancer cells. The luciferase assay showed that over-expressed miR-205 in KB oral cancer cells suppressed AXIN2 expression through an interaction with its own binding site at AXIN2 3'UTR (64-92). These results suggest that miR-205 is a novel anti-oncogenic miRNA in KB oral cancer cells, and may have potential applications in oral cancer therapy.

  12. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    Brook T Chernet

    2015-01-01

    Full Text Available In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions – key mediators of cell-cell communication – in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors – significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host’s physiological parameters.

  13. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  14. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine

    Directory of Open Access Journals (Sweden)

    Mary Ann S. Crissey

    2008-01-01

    Full Text Available The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.

  15. Aubergine and piRNAs promote germline stem cell self-renewal by repressing the proto-oncogene Cbl.

    Science.gov (United States)

    Rojas-Ríos, Patricia; Chartier, Aymeric; Pierson, Stéphanie; Simonelig, Martine

    2017-11-02

    PIWI proteins play essential roles in germ cells and stem cell lineages. In Drosophila , Piwi is required in somatic niche cells and germline stem cells (GSCs) to support GSC self-renewal and differentiation. Whether and how other PIWI proteins are involved in GSC biology remains unknown. Here, we show that Aubergine (Aub), another PIWI protein, is intrinsically required in GSCs for their self-renewal and differentiation. Aub needs to be loaded with piRNAs to control GSC self-renewal and acts through direct mRNA regulation. We identify the Cbl proto-oncogene, a regulator of mammalian hematopoietic stem cells, as a novel GSC differentiation factor. Aub stimulates GSC self-renewal by repressing Cbl mRNA translation and does so in part through recruitment of the CCR4-NOT complex. This study reveals the role of piRNAs and PIWI proteins in controlling stem cell homeostasis via translational repression and highlights piRNAs as major post-transcriptional regulators in key developmental decisions. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Y-box Binding Protein-1 Enhances Oncogenic Transforming Growth Factor β Signaling in Breast Cancer Cells via Triggering Phospho-Activation of Smad2.

    Science.gov (United States)

    Stope, Matthias B; Weiss, Martin; Koensgen, Dominique; Popp, Simone L; Joffroy, Christian; Mustea, Alexander; Buck, Miriam B; Knabbe, Cornelius

    2017-12-01

    Transforming growth factor β (TGFβ) plays a role in diverse oncogenic pathways including cell proliferation and cell motility and is regulated by the pleiotropic factor Y-box binding protein-1 (YB-1). In breast cancer, Sma/Mad related protein 2 (Smad2) represents the most common downstream transducer in TGFβ signaling. Here, YB-1's impact on Smad2 phospho-activation was characterized by incubation of the breast cancer cell line MCF-7 with or without TGFβ1 in the absence or presence of overexpressed YB-1 protein. The phospho-status of Smad2 was assessed via western blotting. Analysis of MCF-7 cells revealed no induction of total Smad2 neither in the presence of TGFβ1, nor during YB-1 overexpression. In contrast, incubation with TGFβ1 led to an increase of phosphorylated Smad2 forms which was significantly amplified by simultaneously overexpressed YB-1 (2.8±0.2-fold). Oncogenic YB-1 indirectly enhances TGFβ signaling cascades via Smad2 phospho-activation and may represent a promising factor for future diagnosis and therapy of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Jin [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Lee, Dong-Hyung [Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Busan (Korea, Republic of); Park, Seong-Hwan; Kim, Juil; Do, Kee Hun [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); An, Tae Jin; Ahn, Young Sup; Park, Chung Berm [Department of Herbal Crop Research, NIHHS, RDA, Eumseong (Korea, Republic of); Moon, Yuseok, E-mail: moon@pnu.edu [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Medical Research Institute and Research Institute for Basic Sciences, Pusan National University, Busan (Korea, Republic of)

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  18. Akt2 and nucleophosmin/B23 function as an oncogenic unit in human lung cancer cells

    International Nuclear Information System (INIS)

    Kim, Chung Kwon; Nguyen, Truong L.X.; Lee, Sang Bae; Park, Sang Bum; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2011-01-01

    The signaling network of protein kinase B(PKB)/Akt has been implicated in survival of lung cancer cells. However, understanding the relative contribution of the different isoform of Akt network is nontrival. Here, we report that Akt2 is highly expressed in human lung adenocarcinoma cell line A549 cells. Suppression of Akt2 expression in A549 cells results in notable inhibition of cell poliferation, soft agar growth, and invasion, accompanying by a decrease of nucleophosmin/B23 protein. Overexpression of Akt1 restores cancerous growth of A549 cells in B23-knockdown (KD) cells while Akt2 overexpression did not restore proliferating potential in cells with downregulated B23, thus suggesting Akt2 requires B23 to drive proliferation of lung cancer cell. Loss of functional Akt2 and B23 has similar defects on cell proliferation, apoptotic resistance and cell cycle regulation, while loss of Akt1 has less defects on cell proliferation, survial and cell cycle progression in A549 cells. Moreover, overexpression of B23 rescues the proliferative block induced as a consequence of loss of Akt2. Thus our data suggest that Akt2/B23 functions as an oncogenic unit to drive tumorigenesis of A549 lung cancer cells.

  19. Systems biology modeling reveals a possible mechanism of the tumor cell death upon oncogene inactivation in EGFR addicted cancers.

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhou

    Full Text Available Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK and phosphoinositol-3 kinase (PI3K/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential due to the elevated level of reactive oxygen species (ROS is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

  20. [High oncogenic risk human papillomavirus and urinary bladder cancer].

    Science.gov (United States)

    Loran, O B; Sinyakova, L A; Gundorova, L V; Kosov, V A; Kosova, I V; Pogodina, I E; Kolbasov, D N

    2017-07-01

    To determine the role of human papillomavirus (HPV) of high oncogenic risk in the development of urinary bladder cancer. 100 patients (72 men and 28 women) aged 38 to 90 years (mean age 65+/-10 years) diagnosed with bladder cancer were examined and underwent treatment. Clinical assessment was complemented by enzyme-linked immunosorbent assays for the presence of antiviral antibodies to herpes simplex virus (HSV) type 1 and type 2, cytomegalovirus (CMV), Epstein-Barr virus (EBV), urethra scraping for detecting high oncogenic risk HPV. Tumor tissue was sampled for PCR virus detection. Semi-quantitative analysis was used to evaluate the components of lymphocyte-plasmocyte and leukocyte infiltrates and cytopathic changes in tumor tissue. There were positive correlations between cytopathic cell changes (koylocytosis and intranuclear inclusions, as manifestations of HPV) and the level of antiviral antibodies, the presence of viruses in the tumor, as well as with the components of the lymphoid-plasmocyte infiltrate. Negative correlations were found between the presence of papillomatosis and the above changes. Human papillomavirus is believed to be a trigger for the initiation of a tumor in young patients with a latent infection (CMV and EBV, HSV, HPV). Cytopathic changes (kylocytosis and intranuclear inclusions) were associated with the activity and morphological features of herpes-viral infections. Their degree varied depending on the stage of the process, but not on the anaplasia degree. Papillomatosis is associated with a more favorable course of the tumor process.

  1. The FOX and the mutants in mature human B cells and DLBCL: The role of FOXP1 in mature human B cell biology and lymphomagenesis & prevalence of oncogenic MyD88 and CD79B mutations in diffuse large B cell lymphoma

    NARCIS (Netherlands)

    van Keimpema, M.

    2015-01-01

    The transcription factor FOXP1 is prominently expressed in mature B cells and is a potential oncogene in B cell non-Hodgkin lymphomas; however, the functions of FOXP1 in mature B cells and B cell lymphomagenesis have not yet been fully explored. In the first part of this thesis, the roles of FOXP1

  2. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    Full Text Available Oncogene induced senescence (OIS is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR, senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs. We showed here that hypoxia prevents execution of oncogene induced senescence (OIS, through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α. In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.

  3. Identification of domains of the v-crk oncogene product sufficient for association with phosphotyrosine-containing proteins.

    OpenAIRE

    Matsuda, M; Mayer, B J; Hanafusa, H

    1991-01-01

    The oncogene product of the avian sarcoma virus CT10, P47gag-crk, contains the SH2, SH2', and SH3 domains and binds proteins in a phosphotyrosine (ptyr)-dependent manner. In this study, we have determined the region of P47gag-crk essential for binding to ptyr-containing proteins. Mutant P47gag-crk proteins expressed in Escherichia coli that have the intact SH2 and SH2' regions retained the capacity to bind ptyr-containing proteins obtained from cells transformed by crk and src. The deletion o...

  4. RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Directory of Open Access Journals (Sweden)

    Singh Tej P

    2011-07-01

    Full Text Available Abstract Background The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site. Description We have developed the RAS Oncogene Database (RASOnD as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i browse the data (ii search any field through a simple or advance search interface and (iii perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD. Conclusions This database is a resource and search tool dedicated to Ras oncogenes. It has

  5. The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.

    Science.gov (United States)

    Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, Wenyi

    2017-04-01

    BRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APC FZR1 , APC FZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APC FZR1 , leading to elevation of a cohort of oncogenic APC FZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APC FZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis. Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APC FZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR. See related commentary by Zhang and Bollag, p. 356 This article is highlighted in the In This Issue feature, p. 339 . ©2017 American Association for Cancer Research.

  6. The inhibitory NKR-P1B:Clr-b recognition axis facilitates detection of oncogenic transformation and cancer immunosurveillance

    DEFF Research Database (Denmark)

    Tanaka, M; Fine, Jason; Kirkham, Christina

    2018-01-01

    Natural killer (NK) cells express receptors specific for MHC class I (MHC-I) molecules involved in "missing-self" recognition of cancer and virus-infected cells. Here we elucidate the role of MHC-I-independent NKR-P1B:Clr-b interactions in the detection of oncogenic transformation by NK cells. Ras......-b protein, in turn promoting missing-self recognition via the NKR-P1B inhibitory receptor. Both Ras- and c-Myc-mediated Clr-b loss selectively augmented cytotoxicity of oncogene-transformed leukemia cells by NKR-P1B+ NK cells in vitro and enhanced rejection by WT mice in vivo. Interestingly, genetic...

  7. Characterization of ERAS, a putative novel human oncogene, in skin and breast

    Energy Technology Data Exchange (ETDEWEB)

    Peña Avalos, B.L. de la

    2014-07-01

    Most human tumors have mutations in genes of the RAS small GTPase protein family. RAS works as a molecular switch for signaling pathways that modulate many aspects of cell behavior, including proliferation, differentiation, motility and death. Oncogenic mutations in RAS prevent GTP hydrolysis, locking RAS in a permanently active state, being the most common mutations in HRAS, KRAS and NRAS. The human RAS family consists of at least 36 different genes, many of which have been scarcely studied. One of these relatively unknown genes is ERAS (ES cell-expressed RAS), which is a constitutively active RAS protein, localized in chromosome X and expressed only in embryonic cells, being undetectable in adult tissues. New high throughput technologies have made it possible to screen complete cancer genomes for identification of mutations associated to cancer. Using the Sleeping Beauty (SB) transposon system, ERAS was identified as a putative novel oncogene in non-melanoma skin and breast cancers. The major aim of this project is to determine the general characteristics of ERAS as a putative novel human oncogene in skin and breast cells. Forced expression of ERAS results in drastic changes in cell shape, proliferation and motility. When ERAS is overexpressed in skin and breast human cells it is mainly localized in the cytoplasmic membrane. ERAS activates the phosphatidylinositol-3-OH kinase (PI3K) pathway but not the mitogen-activated protein kinase (MAPK) pathway. ERAS-expressing cells suffer spontaneous morphologic and phenotypic EMT-like changes, including cytoskeleton reorganization, vimentin and N-cadherin up-regulation and down-regulation of E-cadherin, which can be associated with increased malignancy, and invasive and metastatic potential. Our results suggest that inappropriate expression of ERAS lead to transformation of human cells. (Author)

  8. Macrophage colony-stimulating factor, CSF-1, and its proto-oncogene-encoded receptor

    International Nuclear Information System (INIS)

    Sherr, C.J.; Rettenmier, C.W.; Roussel, M.F.

    1988-01-01

    The macrophage colony-stimulating factor, CSF-1, or M-CSF, is one of a family of hematopoietic growth factors that stimulates the proliferation of monocytes, macrophages, and their committed bone marrow progenitors. Unlike pluripotent hemopoietins such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3 or multi-CSF), which affect the growth of myeloid cells of several different hematopoietic lineages, CSF-1 acts only on cells of the mononuclear phagocyte series to stimulate their growth and enhance their survival. Retroviral transduction of the feline c-fms gene in the Susan McDonough and Hardy Zuckerman-5 (HZ-5) strains of feline sarcoma virus (FeSV) led to genetic alterations that endowed the recombined viral oncogene (v-fms) with the ability to transform cells in culture morphologically and to induce firbrosarcomas and hematopoietic neoplasms in susceptible animals. The v-fms oncogene product differs from the normal CSF-1 receptor in certain of its cardinal biochemical properties, most notably in exhibiting constitutively high basal levels of tyrosine kinase activity in the absence of its ligand. Comparative studies of the c-fms and v-fms genes coupled with analyses of engineered mutants and receptor chimeras have begun to pinpoint pertinent genetic alterations in the normal receptor gene that unmask its latent oncogenic potential. In addition, the availability of biologically active c-fms, v-fms, and CSF-1 cDNAs has allowed these genes to be mobilized and expressed in naive cells, thereby facilitating assays for receptor coupling with downstream components of the mitogenic pathway in diverse cell types

  9. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    Science.gov (United States)

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-11-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes.

  10. Role of trace metals in cell proliferation in the human neuroblastoma: relations with the oncogene N-myc

    International Nuclear Information System (INIS)

    Moretto, Ph.; Michelet, C.; Gouget, B.; Ortega, R.; Sergiant, C.; Llabador, Y.; Simonoff, M.; Benard, J.

    1997-01-01

    Neuroblastoma is one of the most common tumors in young children. Iron is known to be necessary for cellular proliferation. Several studies have suggested that neuroblastoma cells appear to be relatively sensitive to growth inhibition by specific Fe chelators, in vitro. In addition, it appeared that an increased serum ferritin level at diagnosis was associated with a poorer outcome than a normal level. On the other hand it was reported that untreated primary neuroblastoma had multiple copies of the N-myc oncogene. A significant association between genomic amplification and rapid tumor progression after diagnosis has been demonstrated. In order to study the relationship between iron N-myc amplification, we propose to determine the trace metal content of neuroblastoma cells. Preliminary results obtained with two distinct cell lines: SK-N-SH, a neuroblastoma cell line with a single copy of N-myc and IGR-N-91, a metastatic cell line exhibiting 60 copies of N-myc are presented. (authors)

  11. Glioma-Associated Oncogene Homolog Inhibitors Have the Potential of Suppressing Cancer Stem Cells of Breast Cancer.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Sheen, I-Shyan; Wu, Szu-Hua; Lu, Ssu-Jung; Wang, Chih-Hsuan; Chang, Chiung-Fang

    2018-05-05

    Overexpression of Sonic Hedgehog signaling (Shh) pathway molecules is associated with invasiveness and recurrence in breast carcinoma. Therefore, inhibition of the Shh pathway downstream molecule Glioma-associated Oncogene Homolog (Gli) was investigated for its ability to reduce progression and invasiveness of patient-derived breast cancer cells and cell lines. Human primary breast cancer T2 cells with high expression of Shh signaling pathway molecules were compared with breast cancer line MDA-MB-231 cells. The therapeutic effects of Gli inhibitors were examined in terms of the cell proliferation, apoptosis, cancer stem cells, cell migration and gene expression. Blockade of the Shh signaling pathway could reduce cell proliferation and migration only in MDA-MB-231 cells. Hh pathway inhibitor-1 (HPI-1) increased the percentages of late apoptotic cells in MDA-MB-231 cells and early apoptotic cells in T2 cells. It reduced Bcl2 expression for cell proliferation and increased Bim expression for apoptosis. In addition, Gli inhibitor HPI-1 decreased significantly the percentages of cancer stem cells in T2 cells. HPI-1 worked more effectively than GANT-58 against breast carcinoma cells. In conclusion, HPI-1 could inhibit cell proliferation, reduce cell invasion and decrease cancer stem cell population in breast cancer cells. To target Gli-1 could be a potential strategy to suppress breast cancer stem cells.

  12. Influence of x-rays and UV-light on the presence of oncogene proteins in spleen cells of leukemic mice

    International Nuclear Information System (INIS)

    Popovic Hadzija, M.; Poljak Blazi, M.

    1996-01-01

    Proto-oncogenes are involved in growth, defferentiation and proliferation of normal cells, and in process of neoplastic transformation. In genome of normal cells, exist also tumor-suppressor genes, which contribute to cancer when they are inactivated. Those genes are target for carcinogenesis provoked by radiation. However, species specific genetic factors are important in determing which, if any, gene will be transformed by radiation. It is possible to presume that oncogenes are involved in the development of radioresistant phenotype of ML. Because of that, we examined the presence of c-myc protein in ML cells during the growth of ML and after the irradiation of these cells. Also, we examined the presence of tumor-suppressor protein p53, because inactivation or loss of p53 gene is in connection with transformation of cells. ML is strain specific for RFM mice. Spleen cells were tested 9 (nonterminal phase NTP) or 12 days (terminal phase TP) after inoculation of ML. Cells from NTP were also irradiate with x-rays or UV-light. C-myc protein expresse 74.98% spleen cells of healthy RFM mice. Wild type of p53 protein was detected in 60% of these cells, but mp53 was found in only 5.3% of cells. These results could be explained by the role of c-myc and p53 proteins in regulation of biologic processes. A few spleen cells of NTP expressed c-myc (15%) and mp53 (9.6%) proteins. But, in the same phase higher expressions of wp53 protein (30.5%) was found. On the other hand, the number of c-myc positive cells in TP of leukemia explanation lies in connection of c-myc protein and process of programmed cell death (apoptosis). During growth of ML the number of mp53 positive cells increased (to 47.8%), but wp53 positive cells decreased (to13.4%9). Both types of irradiation provoked strong activation of cellular c-myc gene in ML cells of NTP. We found about 95% c-myc positive cells after x-rays and 93% after UV-light

  13. Gene expression profiling analysis of CRTC1-MAML2 fusion oncogene-induced transcriptional program in human mucoepidermoid carcinoma cells

    International Nuclear Information System (INIS)

    Chen, Jie; Li, Jian-Liang; Chen, Zirong; Griffin, James D.; Wu, Lizi

    2015-01-01

    1-MAML2-regulated and CREB-regulated transcriptional profiles revealed common and distinct genes regulated by CRTC1-MAML2 and CREB, respectively. This study identified a specific CRTC1-MAML2-induced transcriptional program in human MEC cells and demonstrated that CRTC1-MAML2 regulates gene expression in CREB-dependent and independent manners. Our data provide the molecular basis underlying CRTC1-MAML2 oncogenic functions and lay a foundation for further functional investigation of CRTC1-MAML2-induced signaling in MEC initiation and maintenance. The online version of this article (doi:10.1186/s12885-015-1827-3) contains supplementary material, which is available to authorized users

  14. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency.

    Directory of Open Access Journals (Sweden)

    Marina E Tourlakis

    2015-06-01

    Full Text Available Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis

  15. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency

    Science.gov (United States)

    Tourlakis, Marina E.; Zhang, Siyi; Ball, Heather L.; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S.; Guidos, Cynthia J.; Durie, Peter R.; Rommens, Johanna M.

    2015-01-01

    Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to

  16. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway.

    Science.gov (United States)

    Werner, Haim; Meisel-Sharon, Shilhav; Bruchim, Ilan

    2018-02-19

    The insulin-like growth factor-1 receptor (IGF1R) has been identified as a potent anti-apoptotic, pro-survival tyrosine kinase-containing receptor. Overexpression of the IGF1R gene constitutes a typical feature of most human cancers. Consistent with these biological roles, cells expressing high levels of IGF1R are expected not to die, a quintessential feature of cancer cells. Tumor specific chromosomal translocations that disrupt the architecture of transcription factors are a common theme in carcinogenesis. Increasing evidence gathered over the past fifteen years demonstrate that this type of genomic rearrangements is common not only among pediatric and hematological malignancies, as classically thought, but may also provide a molecular and cytogenetic foundation for an ever-increasing portion of adult epithelial tumors. In this review article we provide evidence that the mechanism of action of oncogenic fusion proteins associated with both pediatric and adult malignancies involves transactivation of the IGF1R gene, with ensuing increases in IGF1R levels and ligand-mediated receptor phosphorylation. Disrupted transcription factors adopt the IGF1R signaling pathway and elicit their oncogenic activities via activation of this critical regulatory network. Combined targeting of oncogenic fusion proteins along with the IGF1R may constitute a promising therapeutic approach.

  17. Identification and targeting of a TACE-dependent autocrine loopwhich predicts poor prognosis in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Paraic A.; Bissell, Mina J.

    2005-06-15

    The ability to proliferate independently of signals from other cell types is a fundamental characteristic of tumor cells. Using a 3D culture model of human breast cancer progression, we have delineated a protease-dependent autocrine loop which provides an oncogenic stimulus in the absence of proto-oncogene mutation. Inhibition of this protease, TACE/ADAM17, reverts the malignant phenotype by preventing mobilization of two crucial growth factors, Amphiregulin and TGF{alpha}. We show further that the efficacy of EGFR inhibitors is overcome by physiological levels of growth factors and that successful EGFR inhibition is dependent on reducing ligand bioavailability. Using existing patient outcome data, we demonstrate a strong correlation between TACE and TGF{alpha} expression in human breast cancers that is predictive of poor prognosis.

  18. The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1

    Science.gov (United States)

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635

  19. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  20. The Expression, Purification, and Characterization of a Ras Oncogene (Bras2 in Silkworm (Bombyx mori

    Directory of Open Access Journals (Sweden)

    Zhengbing Lv

    2013-01-01

    Full Text Available The Ras oncogene of silkworm pupae (Bras2 may belong to the Ras superfamily. It shares 77% of its amino acid identity with teratocarcinoma oncogene 21 (TC21 related ras viral oncogene homolog-2 (R-Ras2 and possesses an identical core effector region. The mRNA of Bombyx mori Bras2 has 1412 bp. The open reading frame contains 603 bp, which encodes 200 amino acid residues. This recombinant BmBras2 protein was subsequently used as an antigen to raise a rabbit polyclonal antibody. Western blotting and real-time PCR analyses showed that BmBras2 was expressed during four developmental stages. The BmBras2 expression level was the highest in the pupae and was low in other life cycle stages. BmBras2 was expressed in all eight tested tissues, and it was highly expressed in the head, intestine, and epidermis. Subcellular localization studies indicated that BmBras2 was predominantly localized in the nuclei of Bm5 cells, although cytoplasmic staining was also observed to a lesser extent. A cell proliferation assay showed that rBmBras2 could stimulate the proliferation of hepatoma cells. The higher BmBras2 expression levels in the pupal stage, tissue expression patterns, and a cell proliferation assay indicated that BmBras2 promotes cell division and proliferation, most likely by influencing cell signal transduction.

  1. The Expression, Purification, and Characterization of a Ras Oncogene (Bras2) in Silkworm (Bombyx mori).

    Science.gov (United States)

    Lv, Zhengbing; Wang, Tao; Zhuang, Wenhua; Wang, Dan; Chen, Jian; Nie, Zuoming; Liu, Lili; Zhang, Wenping; Wang, Lisha; Wang, Deming; Wu, Xiangfu; Li, Jun; Qian, Lian; Zhang, Yaozhou

    2013-01-01

    The Ras oncogene of silkworm pupae (Bras2) may belong to the Ras superfamily. It shares 77% of its amino acid identity with teratocarcinoma oncogene 21 (TC21) related ras viral oncogene homolog-2 (R-Ras2) and possesses an identical core effector region. The mRNA of Bombyx mori Bras2 has 1412 bp. The open reading frame contains 603 bp, which encodes 200 amino acid residues. This recombinant BmBras2 protein was subsequently used as an antigen to raise a rabbit polyclonal antibody. Western blotting and real-time PCR analyses showed that BmBras2 was expressed during four developmental stages. The BmBras2 expression level was the highest in the pupae and was low in other life cycle stages. BmBras2 was expressed in all eight tested tissues, and it was highly expressed in the head, intestine, and epidermis. Subcellular localization studies indicated that BmBras2 was predominantly localized in the nuclei of Bm5 cells, although cytoplasmic staining was also observed to a lesser extent. A cell proliferation assay showed that rBmBras2 could stimulate the proliferation of hepatoma cells. The higher BmBras2 expression levels in the pupal stage, tissue expression patterns, and a cell proliferation assay indicated that BmBras2 promotes cell division and proliferation, most likely by influencing cell signal transduction.

  2. V-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas

    International Nuclear Information System (INIS)

    Langdon, W.Y.; Klinken, S.P.; Hartley, J.W.; Morse, H.C. III; Ruscetti, S.K.

    1989-01-01

    Cas NS-1 is an acutely transforming murine retrovirus that induces pre-B and pro-B cell lymphomas. Molecular cloning showed it was generated from the ecotropic Cas-Br-M virus by sequential recombinations with endogenous retroviral sequences and a cellular oncogene. The oncogene sequence shows no homology with known oncogenes but some similarity to the yeast transcriptional activator GCN4. A 100-kDa gag-cbl fusion protein, with no detectable kinase activity, is responsible for the cellular transformation. The cellular homologue of v-cbl, present in mouse and human DNA, is expressed in a range of hemopoietic lineages

  3. Oncogenic LINE-1 Retroelements Sustain Prostate Tumor Cells and Promote Metastatic Progression

    Science.gov (United States)

    2015-10-01

    limit to 20 words ). 3. ACCOMPLISHMENTS: The PI is reminded that the recipient organization is required to obtain prior written approval...activating novel oncogenic transcriptional pathways and by acting as a telomerase thereby contributing to immortalization of the metastases. We also

  4. Lipoprotein internalisation induced by oncogenic AMPK activation is essential to maintain glioblastoma cell growth.

    Science.gov (United States)

    Ríos, M; Foretz, M; Viollet, B; Prieto, A; Fraga, M; García-Caballero, T; Costoya, J A; Señarís, R

    2014-12-01

    Metabolic adaptations are essential during tumour growth to maintain the high proliferation levels exhibited by cancer cells. In this study, we examined the transformations that occurred in the lipid metabolism in astrocytic tumours, and the possible role of the fuel-sensing enzyme AMPK. Metabolic targets might help design new and effective drugs for cancer. To accomplish this objective, we studied both mice and human astrocytic tumours. We first used a mouse model of astrocytoma driven by oncogenic H-RasV12 and/or with PTEN deletion based on the common constitutive activation of the Raf/MEK/ERK and PI3K/AKT cascades in human astrocytomas. We then confirmed the results in human glioblastoma cell lines and in glioblastoma tissue samples from patients. We show that the high levels of activated AMPK, observed in astrocytic tumours, increase extracellular lipid internalisation and reduce energy expenditure by inhibiting 'de novo' fatty acid (FA) synthesis, which allows tumour cells to obtain building blocks and energy to be able to create new organelles and new cells. Our findings demonstrate that AMPK plays a crucial role in glioblastoma cell growth and suggest that blocking lipoprotein receptors could potentially be used as a plausible therapeutic approach for these and other type of tumours with high levels of AMPK. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    OpenAIRE

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To ove...

  6. Expression of proto-oncogenes in non-Hodgkin's lymphomas by in situ hybridization with biotinylated DNA probes

    International Nuclear Information System (INIS)

    Hamatani, Kiyohiro; Yoshida, Kuniko; Abe, Masumi; Shimaoka, Katsutaro; Shiku, Hiroshi; Akiyama, Mitoshi; Kondo, Hisayoshi.

    1989-11-01

    Expression of six proto-oncogenes (fos, myc, myb, Ki-ras, Ha-ras, and N-ras) in 43 cases of non-Hodgkin's lymphoma was analyzed by means of in situ hybridization. Biotinylated DNA probes of the six oncogenes and those of the immunoglobulin H-chain (IgH) gene and the T cell receptor β-chain (TCRβ) gene were used. The results of in situ hybridization performed under blind conditions by IgH and TCRβ gene probes were compatible with those of typing by cell surface markers. The nuclear protein-related proto-oncogenes, fos myc, and myb, were expressed in about 70 % - 80 % of all cases regardless of phenotypes, histology or histologic grade. On the contrary, genes of the ras family were expressed in fewer cases except for the Ki-ras gene which was more frequently expressed by cases of the T cell immunophenotype with a high malignancy grade. The results of dot hybridization with RNA extracted from some cases were compatible with those of in situ hybridization, further demonstrating the specificity of in situ hybridization. (author)

  7. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    International Nuclear Information System (INIS)

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-01-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1 +/− ) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1 +/− and Cx43 +/− mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1 +/− mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases

  8. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Mariateresa, E-mail: mariateresa.mancuso@enea.it [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Leonardi, Simona [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Giardullo, Paola; Pasquali, Emanuela [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Tanori, Mirella [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); De Stefano, Ilaria [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Casciati, Arianna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Naus, Christian C. [Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (Canada); Pazzaglia, Simonetta; Saran, Anna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy)

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  9. Two-dimensional electrophoretic analysis of transformation-sensitive polypeptides during chemically, spontaneously, and oncogene-induced transformation of rat liver epithelial cells

    DEFF Research Database (Denmark)

    Wirth, P J; Luo, L D; Fujimoto, Y

    1992-01-01

    ; AFB), spontaneously, and oncogene (v-Ha-ras, v-raf, and v-myc/v-raf)-induced transformation of RLE cells. Two-dimensional mapping of [35S]methionine-labeled whole cell lysate, cell-free in vitro translation products and [32P]orthophosphate-labeled polypeptides revealed subsets of polypeptides specific...... for each transformation modality. A search of the RLE protein database indicated the specific subcellular location for the majority of these transformation-sensitive proteins. Significant alterations in the expression of the extracellular matrix protein, fibronectin, as well as tropomyosin......- and intermediate filament-related polypeptides (vimentin, beta-tubulin, the cytokeratins, and actin) were observed among the various transformant cell lines. Immunoprecipitation and Western immunoblot analysis of tropomyosin expression in four individual AFB-, as well as four spontaneously induced, and each...

  10. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait?

    Science.gov (United States)

    James, Claire D; Roberts, Sally

    2016-01-18

    Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.

  11. Viral Interactions with PDZ Domain-Containing Proteins—An Oncogenic Trait?

    Directory of Open Access Journals (Sweden)

    Claire D. James

    2016-01-01

    Full Text Available Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9, encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ interaction modules. In many cases (but not always, the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.

  12. MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma.

    Directory of Open Access Journals (Sweden)

    Lu-Kai Wang

    Full Text Available Non-small cell lung cancers (NSCLCs cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. This study demonstrates that miR-133a expression negatively correlates with cell invasiveness in both transformed normal bronchial epithelial cells and lung cancer cell lines. The oncogenic receptors in lung cancer cells, including insulin-like growth factor 1 receptor (IGF-1R, TGF-beta receptor type-1 (TGFBR1, and epidermal growth factor receptor (EGFR, are direct targets of miR-133a. MiR-133a can inhibit cell invasiveness and cell growth through suppressing the expressions of IGF-1R, TGFBR1 and EGFR, which then influences the downstream signaling in lung cancer cell lines. The cell invasive ability is suppressed in IGF-1R- and TGFBR1-repressed cells and this phenomenon is mediated through AKT signaling in highly invasive cell lines. In addition, by using the in vivo animal model, we find that ectopically-expressing miR-133a dramatically suppresses the metastatic ability of lung cancer cells. Accordingly, patients with NSCLCs who have higher expression levels of miR-133a have longer survival rates compared with those who have lower miR-133a expression levels. In summary, we identified the tumor suppressor role of miR-133a in lung cancer outcome prognosis, and we demonstrated that it targets several membrane receptors, which generally produce an activating signaling network during the progression of lung cancer.

  13. Expression of the Pokemon proto-oncogene in nasopharyngeal carcinoma cell lines and tissues.

    Science.gov (United States)

    Jiao, Wei; Liu, Fei; Tang, Feng-Zhu; Lan, Jiao; Xiao, Rui-Ping; Chen, Xing-Zhou; Ye, Hui-Lan; Cai, Yong-Lin

    2013-01-01

    To study the differentiated expression of the proto-oncogene Pokemon in nasopharyngeal carcinoma (NPC) cell lines and tissues, mRNA and protein expression levels of CNE1, CNE2, CNE3 and C666-1 were detected separately by reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and Western-blotting. The immortalized nasopharyngeal epithelial cell line NP69 was used as a control. The Pokemon protein expression level in biopsy specimens from chronic rhinitis patients and undifferentiated non keratinizing NPC patients was determined by Western-blotting and arranged from high to low: C666-1>CNE1>CNE2> CNE3>NP69. The Pokemon mRNA expression level was also arranged from high to low: CNE1>CNE2>NP69>C666-1>CNE3. Pokemon expression of NP69 and C666-1 obviously varied from mRNA to protein. The Pokemon protein level of NPC biopsy specimens was obviously higher than in chronic rhinitis. The data suggest that high Pokemon protein expression is closely associated with undifferentiated non-keratinizing NPC and may provide useful information for NPC molecular target therapy.

  14. Epidermal growth factor inhibits rat pancreatic cell proliferation, causes acinar cell hypertrophy, and prevents caerulein-induced desensitization of amylase release.

    Science.gov (United States)

    Morisset, J; Larose, L; Korc, M

    1989-06-01

    The in vivo effects of epidermal growth factor (EGF) on pancreatic growth and digestive enzyme concentrations were compared with the actions of the pancreatic secretagogue caerulein in the adult rat. EGF (10 micrograms/kg BW) did not alter pancreatic weight or protein content. However, this concentration of EGF inhibited [3H]thymidine incorporation into DNA by 44%, decreased DNA content by 20%, and increased the concentrations of amylase, chymotrypsinogen, and protein by 106%, 232%, and 42%, respectively. Pancreatic acini prepared from EGF-treated rats exhibited a characteristic secretory response to caerulein that was superimposable to that obtained in acini from saline-treated rats. In both groups of acini half-maximal and maximal stimulation of amylase release occurred at approximately 5 pM and 50 pM caerulein, respectively. In contrast to EGF, caerulein (1 microgram/kg BW) increased pancreatic weight by 29% and protein content by 59%, and enhanced [3H]thymidine incorporation into DNA by 70%. Although caerulein increased the concentrations of pancreatic amylase and chymotrypsinogen by 38% and 297%, respectively, pancreatic acini prepared from caerulein-treated rats were less sensitive to the actions of caerulein in vitro when compared with acini from control rats. Indeed, the EC50 was shift from 4.8 pM to 9.8 pM after 4 days of treatment. EGF potentiated the actions of caerulein on pancreatic weight, protein content, and chymotrypsinogen concentration, and prevented the caerulein-induced alteration in the secretory responsiveness of the acinar cell. Conversely, caerulein reversed the inhibitory effect of EGF on thymidine incorporation. These findings suggest that EGF may modulate the trophic effects of certain gastrointestinal hormones, and may participate in the regulation of pancreatic exocrine function in vivo.

  15. EZH2 Protects Glioma Stem Cells from Radiation-Induced Cell Death in a MELK/FOXM1-Dependent Manner

    DEFF Research Database (Denmark)

    Kim, Sung-Hak; Joshi, Kaushal; Ezhilarasan, Ravesanker

    2015-01-01

    Glioblastoma (GBM)-derived tumorigenic stem-like cells (GSCs) may play a key role in therapy resistance. Previously, we reported that the mitotic kinase MELK binds and phosphorylates the oncogenic transcription factor FOXM1 in GSCs. Here, we demonstrate that the catalytic subunit of Polycomb repr...

  16. Amplification of oncogenes and integrated SV40 sequences in mammalian cells by the decay of incorporated iodine-125

    International Nuclear Information System (INIS)

    Ehrfeld, A.; Planas-Bohne, F.; Luecke-Huhle, C.

    1986-01-01

    Iodine-125, in the form of 5-[ 125 I]iododeoxyuridine (I-UdR), was incorporated into the DNA of SV40 transformed Chinese hamster embryo cells. Disintegration of the 125 I led to increased cell killing with increasing dose as measured by the colony-forming ability of single cells. The D37 (the dose at which 37% of the cells survive) amounts to 95 decays per cell, corresponding to 0.66 Gy. Variations in the copy number of specific DNA sequences was measured by using dispersed cell blotting with sensitive DNA hybridizations. A 13-fold amplification of the viral DNA sequences (SV40) and a twofold amplification of two cellular oncogenes of the ras-family (Ki-ras and Ha-ras) were found. Other cellular genes, like the alpha-actin gene, were not amplified, and no variation in gene copy number was detected after incubation of cells with cold I-UdR. We suggest the observed gene amplifications are induced by the densely ionizing radiation emitted by the decay of the incorporated 125 I atoms

  17. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S.

    Directory of Open Access Journals (Sweden)

    Lu Huang

    Full Text Available In many different human cancers, one of the HRAS, NRAS, or KRAS genes in the RAS family of small GTPases acquires an oncogenic mutation that renders the encoded protein constitutively GTP-bound and thereby active, which is well established to promote tumorigenesis. In addition to oncogenic mutations, accumulating evidence suggests that the wild-type isoforms may also be activated and contribute to oncogenic RAS-driven tumorigenesis. In this regard, redox-dependent reactions with cysteine 118 (C118 have been found to promote activation of wild-type HRAS and NRAS. We sought to determine if this residue is also important for the activation of wild-type KRAS and promotion of tumorigenesis. Thus, we mutated C118 to serine (C118S in wild-type KRAS to block redox-dependent reactions at this site. We now report that this mutation reduced the level of GTP-bound KRAS and impaired RAS signaling stimulated by the growth factor EGF. With regards to tumorigenesis, we also report that oncogenic HRAS-transformed human cells in which endogenous KRAS was knocked down and replaced with KRASC118S exhibited reduced xenograft tumor growth, as did oncogenic HRAS-transformed KrasC118S/C118S murine cells in which the C118S mutation was knocked into the endogenous Kras gene. Taken together, these data suggest a role for redox-dependent activation of wild-type KRAS through C118 in oncogenic HRAS-driven tumorigenesis.

  18. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia

    OpenAIRE

    Mets, E; Van der Meulen, J; Van Peer, G; Boice, M; Mestdagh, P; Van de Walle, I; Lammens, T; Goossens, S; De Moerloose, B; Benoit, Y; Van Roy, N; Clappier, E; Poppe, B; Vandesompele, J; Wendel, H-G

    2014-01-01

    The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3′untranslated region–microRNA (miRNA) library screen and identified 33 p...

  19. A germline RET proto-oncogene mutation in multiple members of an ...

    African Journals Online (AJOL)

    Background: Multiple endocrine neoplasia type 2A (MEN2A) is a rare cancer associated-syndrome, inherited in an autosomal dominant fashion and caused by germline mutation in RET proto-oncogene. Clinical diagnosis depends on the manifestation of two or more certain endocrine tumors in an individual, such as ...

  20. Development of Novel Therapeutic Agents by Inhibition of Oncogenic MicroRNAs

    Directory of Open Access Journals (Sweden)

    Dinh-Duc Nguyen

    2017-12-01

    Full Text Available MicroRNAs (miRs, miRNAs are regulatory small noncoding RNAs, with their roles already confirmed to be important for post-transcriptional regulation of gene expression affecting cell physiology and disease development. Upregulation of a cancer-causing miRNA, known as oncogenic miRNA, has been found in many types of cancers and, therefore, represents a potential new class of targets for therapeutic inhibition. Several strategies have been developed in recent years to inhibit oncogenic miRNAs. Among them is a direct approach that targets mature oncogenic miRNA with an antisense sequence known as antimiR, which could be an oligonucleotide or miRNA sponge. In contrast, an indirect approach is to block the biogenesis of miRNA by genome editing using the CRISPR/Cas9 system or a small molecule inhibitor. The development of these inhibitors is straightforward but involves significant scientific and therapeutic challenges that need to be resolved. In this review, we summarize recent relevant studies on the development of miRNA inhibitors against cancer.

  1. Coomassie Brilliant Blue G is a more potent antagonist of P2 purinergic responses than Reactive Blue 2 (Cibacron Blue 3GA) in rat parotid acinar cells

    International Nuclear Information System (INIS)

    Soltoff, S.P.; McMillian, M.K.; Talamo, B.R.

    1989-01-01

    The ability of Brilliant Blue G (Coomassie Brilliant Blue G) and Reactive Blue 2 (Cibacron Blue 3GA) to block the effects of extracellular ATP on rat parotid acinar cells was examined by evaluating their effects on ATP-stimulated 45Ca 2+ entry and the elevation of [Ca 2+ ]i (Fura 2 fluorescence). ATP (300 microM) increased the rate of Ca 2+ entry to more than 25-times the basal rate and elevated [Ca 2+ ]i to levels more than three times the basal value. Brilliant Blue G and Reactive Blue 2 greatly reduced the entry of 45 Ca 2+ into parotid cells, but the potency of Brilliant Blue G (IC50 approximately 0.4 microM) was about 100-times that of Reactive Blue 2. Fura 2 studies demonstrated that inhibitory concentrations of these compounds did not block the cholinergic response of these cells, thus demonstrating the selectivity of the dye compounds for purinergic receptors. Unlike Reactive Blue 2, effective concentrations of Brilliant Blue G did not substantially quench Fura 2 fluorescence. The greater potency of Brilliant Blue G suggests that it may be very useful in identifying P2-type purinergic receptors, especially in studies which utilize fluorescent probes

  2. Human Mut T Homolog 1 (MTH1): a roadblock for the tumor-suppressive effects of oncogenic RAS-induced ROS.

    Science.gov (United States)

    Rai, Priyamvada

    2012-01-01

    Oncogenic RAS-induced reactive oxygen species (ROS) trigger barriers to cell transformation and cancer progression through tumor-suppressive responses such as cellular senescence or cell death. We have recently shown that oncogenic RAS-induced DNA damage and attendant premature senescence can be prevented by overexpressing human MutT Homolog 1 (MTH1), the major mammalian detoxifier of the oxidized DNA precursor, 8-oxo-dGTP. Paradoxically, RAS-induced ROS are also able to participate in tumor progression via transformative processes such as mitogenic signaling, the epithelial-mesenchymal transition (EMT), anoikis inhibition, and PI3K/Akt-mediated survival signaling. Here we provide a preliminary insight into the influence of MTH1 levels on the EMT phenotype and Akt activation in RAS-transformed HMLE breast epithelial cells. Within this context, we will discuss the implications of MTH1 upregulation in oncogenic RAS-sustaining cells as a beneficial adaptive change that inhibits ROS-mediated cell senescence and participates in the maintenance of ROS-associated tumor-promoting mechanisms. Accordingly, targeting MTH1 in RAS-transformed tumor cells will not only induce proliferative defects but also potentially enhance therapeutic cytotoxicity by shifting cellular response away from pro-survival mechanisms.

  3. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63.

    Science.gov (United States)

    Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu

    2016-11-01

    Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations.

  4. Characterization of IKBKE as a Breast Cancer Oncogene

    Science.gov (United States)

    2011-10-01

    HMLE -MEKDD cells stably expressing either pWZL or MF-IKKε. Immunoblot analysis by IKKε antibody. (D) IP with an IKK antibody from MCF-7 breast cancer ...summary is presented of research performed during three years of a project to further characterize the breast cancer oncogene IKKε. Two specific aims...constitutive IKKε transgenic mouse model to study the role of IKKε in breast cancer initiation and maintenance. The long term goals of this research

  5. Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells.

    Science.gov (United States)

    Kato, Taigo; Inoue, Hiroyuki; Imoto, Seiya; Tamada, Yoshinori; Miyamoto, Takashi; Matsuo, Yo; Nakamura, Yusuke; Park, Jae-Hyun

    2016-04-05

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) and maternal embryonic leucine zipper kinase (MELK) have been reported to play critical roles in cancer cell proliferation and maintenance of stemness. In this study, we investigated possible roles of TOPK and MELK in kidney cancer cells and found their growth promotive effect as well as some feedback mechanism between these two molecules. Interestingly, the blockade of either of these two kinases effectively caused downregulation of forkhead box protein M1 (FOXM1) activity which is known as an oncogenic transcriptional factor in various types of cancer cells. Small molecular compound inhibitors against TOPK (OTS514) and MELK (OTS167) effectively suppressed the kidney cancer cell growth, and the combination of these two compounds additively worked and showed the very strong growth suppressive effect on kidney cancer cells. Collectively, our results suggest that both TOPK and MELK are promising molecular targets for kidney cancer treatment and that dual blockade of OTS514 and OTS167 may bring additive anti-tumor effects with low risk of side effects.

  6. An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer.

    Science.gov (United States)

    Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R; Budka, Justin A; Plotnik, Joshua P; Jerde, Travis J; Hollenhorst, Peter C

    2016-10-25

    More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    Science.gov (United States)

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  8. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    OpenAIRE

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the ...

  9. Oncogenicity by adenovirus is not determined by the transforming region only

    NARCIS (Netherlands)

    Bernards, R.A.; Leeuw, M.G.W. de; Vaessen, M.J.; Houweling, A.; Eb, A.J. van der

    1984-01-01

    We have constructed a nondefective recombinant virus between the nononcogenic adenovirus 5 (Ad5) and the highly oncogenic Ad12. The recombinant genome consists essentially of Ad5 sequences, with the exception of the transforming early region 1 (E1) which is derived from Ad12. HeLa cells infected

  10. Interaction of x-rays and food pyrolysis products in producing oncogenic transformation in vitro

    International Nuclear Information System (INIS)

    Borek, C.; Ong, A.

    1981-01-01

    In recent years it has become evident from epidemiological and experimental data that a large number of environmental factors, including diet, play a role in modifying the incidence of cancer. Cell culture systems in which oncogenic transformation serves as an end point are powerful tools for evaluating these questions. Using such systems it has been shown recently that pyrolysis products from charred surfaces of broiled meat and fish can transform hamster embryo cells in vitro as well as produce tumors in the animal. Our studies in vitro have demonstrated the oncogenic potential of ionizing radiation in both hamster and human cells and have established in hamster cells the dose response relationship at doses ranging from 1 to 600 rad for x-rays and 0.1 to 150 rad for neutrons. The present work was aimed at evaluating whether there exists a cocarcinogenic interaction between a pyrolysis product and x-rays in their ability to transform hamster embryo cells in vitro. We have found that when cells are exposed to x-rays prior to treatment with the pyrolysis product there appears to be a synergistic interaction between the two agents in their ability to transform the cells

  11. Mixed acinar-neuroendocrine-ductal carcinoma of the pancreas: a tale of three lineages.

    Science.gov (United States)

    Anderson, Mark J; Kwong, Christina A; Atieh, Mohammed; Pappas, Sam G

    2016-06-02

    Most pancreatic cancers arise from a single cell type, although mixed pancreatic carcinomas represent a rare exception. The rarity of these aggressive malignancies and the limitations of fine-needle aspiration (FNA) pose significant barriers to diagnosis and appropriate management. We report a case of a 54-year-old man presenting with abdominal pain, jaundice and a hypodense lesion within the uncinate process on CT. FNA suggested poorly differentiated adenocarcinoma, which was subsequently resected via pancreaticoduodenectomy. Pathological analysis yielded diagnosis of invasive mixed acinar-neuroendocrine-ductal pancreatic carcinoma. Given the rare and deadly nature of these tumours, clinicians must be aware of their pathophysiology and do practice with a high degree of clinical suspicion, when appropriate. Surgical resection and thorough pathological analysis with immunohistochemical staining and electron microscopy remain the standards of care for mixed pancreatic tumours without gross evidence of metastasis. Diligent characterisation of the presentation and histological findings associated with these neoplasms should continue in order to promote optimal diagnostic and therapeutic strategies. 2016 BMJ Publishing Group Ltd.

  12. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  13. Malignant transformation of diploid human fibroblasts by transfection of oncogenes. Part 2, Progress report, July 1989--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-12-31

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  14. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    Science.gov (United States)

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  15. Sonic Hedgehog promotes the survival of neural crest cells by limiting apoptosis induced by the dependence receptor CDON during branchial arch development.

    Science.gov (United States)

    Delloye-Bourgeois, Céline; Rama, Nicolas; Brito, José; Le Douarin, Nicole; Mehlen, Patrick

    2014-09-26

    Cell-adhesion molecule-related/Downregulated by Oncogenes (CDO or CDON) was identified as a receptor for the classic morphogen Sonic Hedgehog (SHH). It has been shown that, in cell culture, CDO also behaves as a SHH dependence receptor: CDO actively triggers apoptosis in absence of SHH via a proteolytic cleavage in CDO intracellular domain. We present evidence that CDO is also pro-apoptotic in the developing neural tube where SHH is known to act as a survival factor. SHH, produced by the ventral foregut endoderm, was shown to promote survival of facial neural crest cells (NCCs) that colonize the first branchial arch (BA1). We show here that the survival activity of SHH on neural crest cells is due to SHH-mediated inhibition of CDO pro-apoptotic activity. Silencing of CDO rescued NCCs from apoptosis observed upon SHH inhibition in the ventral foregut endoderm. Thus, the pair SHH/dependence receptor CDO may play an important role in neural crest cell survival during the formation of the first branchial arch. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Oncogenic programmes and Notch activity: an 'organized crime'?

    Science.gov (United States)

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Oncogenic p95HER2 regulates Na+-HCO3- cotransporter NBCn1 mRNA stability in breast cancer cells via 3'UTR-dependent processes.

    Science.gov (United States)

    Gorbatenko, Andrej; Olesen, Christina W; Loebl, Nathalie; Sigurdsson, Haraldur H; Bianchi, Carolina; Pedraz-Cuesta, Elena; Christiansen, Jan; Pedersen, Stine Falsig

    2016-11-01

    The Na + -HCO 3 - cotransporter NBCn1 (SLC4A7) is up-regulated in breast cancer, important for tumor growth, and a single nucleotide polymorphism (SNP), rs4973768, in its 3' untranslated region (3'UTR) correlates with increased breast cancer risk. We previously demonstrated that NBCn1 expression and promoter activity are strongly increased in breast cancer cells expressing a constitutively active oncogenic human epidermal growth factor receptor 2 (HER2) (p95HER2). Here, we address the roles of p95HER2 in regulating NBCn1 expression via post-transcriptional mechanisms. p95HER2 expression in MCF-7 cells reduced the rate of NBCn1 mRNA degradation. The NBCn1 3'UTR down-regulated luciferase reporter expression in control cells, and this was reversed by p95HER2, suggesting that p95HER2 counteracts 3'UTR-mediated suppression of NBCn1 expression. Truncation analyses identified three NBCn1 3'UTR regions of regulatory importance. Mutation of putative miRNA-binding sites (miR-374a/b, miR-200b/c, miR-29a/b/c, miR-488) in these regions did not have significant impact on 3'UTR activity. The NBCn1 3'UTR interacted directly with the RNA-binding protein human antigen R (HuR), and HuR knockdown reduced NBCn1 expression. Conversely, ablation of a distal AU-rich element increased 3'UTR-driven reporter activity, suggesting complex regulatory roles of these sites. The cancer-associated SNP variant decreased reporter expression in T-47D breast cancer cells, yet not in MCF-7, MDA-MB-231 and SK-BR-3 cells, arguing against a general role in regulating NBCn1 expression. Finally, p95HER2 expression increased total and plasma membrane NBCn1 protein levels and decreased the rate of NBCn1 protein degradation. Collectively, this is the first work to demonstrate 3'UTR-mediated NBCn1 regulation, shows that p95HER2 regulates NBCn1 expression at multiple levels, and substantiates the central position of p95HER2-NBCn1 signaling in breast cancer. © 2016 The Author(s); published by Portland Press

  18. The c-Myc target glycoprotein1balpha links cytokinesis failure to oncogenic signal transduction pathways in cultured human cells.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    2010-05-01

    Full Text Available An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbalpha, a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbalpha in a p53-deficient background. GpIbalpha was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbalpha.

  19. Nicotine-mediated suppression of the retinoic acid metabolizing enzyme CYP26A1 limits the oncogenic potential of breast cancer.

    Science.gov (United States)

    Osanai, Makoto; Lee, Gang-Hong

    2011-06-01

    Tobacco smoke influences cancer development in tissues that are not directly exposed, and epidemiological studies have indicated that smoking women might experience decreased risk of breast cancer as a result of antiestrogenic effects. However, it remains to be clarified whether nicotine, one of the major addictive and best-investigated constituents of tobacco smoke, has any effect on breast cancer. Our recent work demonstrated that the retinoic acid metabolizing enzyme CYP26A1 enhances oncogenic and cell survival properties of breast carcinoma cells, implying a role as an oncogene. Here, we present evidence that nicotine significantly suppresses constitutive expression of CYP26A1, and that cells treated with nicotine exhibit enhanced sensitivity to apoptosis. In addition, nicotine may inhibit anchorage independent growth, cellular invasiveness and motility. These data show that nicotine can limit CYP26A1-mediated oncogenic characteristics, and suggest mechanisms by which nicotine might inhibit breast cancer development. © 2011 Japanese Cancer Association.

  20. Inhibitor of CDK interacting with cyclin A1 (INCA1) regulates proliferation and is repressed by oncogenic signaling

    DEFF Research Database (Denmark)

    Baumer, Nicole; Tickenbrock, Lara; Tschanter, Petra

    2011-01-01

    The cell cycle is driven by the kinase activity of cyclin/CDK complexes which is negatively regulated by CDK inhibitor proteins. Recently, we identified INCA1 as interaction partner and substrate of cyclin A1 in complex with CDK2. On a functional level, we identified a novel cyclin binding site...... in the INCA1 protein. INCA1 inhibited CDK2 activity and cell proliferation. The inihibitory effects depended on the cyclin-interacting domain. Mitogenic and oncogenic signals suppressed INCA1 expression, while it was induced by cell cycle arrest. We established a deletional mouse model that showed increased...... CDK2 activity in spleen with altered spleen architecture in Inca1-/- mice. Inca1-/- embryonic fibroblasts showed an increase in the fraction of S-phase cells. Furthermore, blasts from ALL and AML patients expressed significantly reduced INCA1 levels highlighting its relevance for growth control...

  1. Pancreatic growth and cell turnover in the rat fed raw soya flour

    International Nuclear Information System (INIS)

    Oates, P.S.; Morgan, R.G.

    1982-01-01

    Growth and differentiation of the pancreatic acinar cell was studied in rats fed raw soya flour (RSF) for up to a year. A second group of rats were fed a control diet. After 1 week of RSF feeding there was a 200% increase in tissue RNA and weight, indicating initial hypertrophy, which was maintained for the 1-year study period. By the second week and over the remainder of the period studied there was also a marked increase in total DNA, suggesting hyperplasia. Cell turnover, as measured by the rate of incorporation of 3H-thymidine into pancreatic DNA, was significantly higher in RSF-fed animals only from the second to fourth weeks; it then returned to control values. Autoradiography showed an 18-fold increase in duct cell labeling at the end of the first week and an 11-fold increase by the end of the second week. Acinar cell labeling doubled from the second to the twelfth week. These studies confirm previous reports that RSF produces pancreatic hypertrophy and hyperplasia. They furthermore show that there is initially marked stimulation of DNA synthesis in the duct cell compartment. The results suggest that cells with the morphologic characteristics of duct cells may be the precursors of acinar cells in hyperplastic pancreatic tissue

  2. Quantitation of multiple myeloma oncogene 1/interferon-regulatory factor 4 gene expression in malignant B-cell proliferations and normal leukocytes.

    Science.gov (United States)

    Yamada, M; Asanuma, K; Kobayashi, D; Moriai, R; Yajima, T; Yagihashi, A; Yamamori, S; Watanabe, N

    2001-01-01

    We studied multiple myeloma oncogene 1/interferon-regulatory factor 4 (MUM1/IRF4) mRNA expression in various malignant human hematopoietic cell lines and normal leukocyte fractions. A quantitative reverse transcription-polymerase chain reaction was used to assess expression and chromosomes were examined for anomalies by fluorescent in situ hybridization. Among 12 cell lines examined, mRNA transcripts were expressed only in B-lymphoblastic and myeloma cell lines. Myeloma cells and malignant cell lines derived from mature B cells expressed more transcript than cell lines derived from immature B cells. Transcript levels, however, showed no association with chromosomal translocations. Expression in B-cell fractions from healthy donors was much less than in the malignant cells. In addition, MUM1/IRF4 mRNA expressed in samples from patients with acute lymphoblastic leukemia derived from B cells but not T cells. Our results suggested that MUM1/IRF4 gene expression is related to stage of differentiation of malignant B cells and they indicated the possibility that the quantitative analysis of MUM1/IRF4 gene is a useful tool for detection of malignant B-cell proliferations in clinical laboratory tests.

  3. Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin Uptake by Pancreatic Acinar Cells.

    Directory of Open Access Journals (Sweden)

    Padmanabhan Srinivasan

    Full Text Available Thiamin (vitamin B1, a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively. The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase, was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s affecting the SLC19A2 and SLC19A3 genes.

  4. Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness.

    Science.gov (United States)

    Li, Qing; Bohin, Natacha; Wen, Tiffany; Ng, Victor; Magee, Jeffrey; Chen, Shann-Ching; Shannon, Kevin; Morrison, Sean J

    2013-12-05

    'Pre-leukaemic' mutations are thought to promote clonal expansion of haematopoietic stem cells (HSCs) by increasing self-renewal and competitiveness; however, mutations that increase HSC proliferation tend to reduce competitiveness and self-renewal potential, raising the question of how a mutant HSC can sustainably outcompete wild-type HSCs. Activating mutations in NRAS are prevalent in human myeloproliferative neoplasms and leukaemia. Here we show that a single allele of oncogenic Nras(G12D) increases HSC proliferation but also increases reconstituting and self-renewal potential upon serial transplantation in irradiated mice, all prior to leukaemia initiation. Nras(G12D) also confers long-term self-renewal potential to multipotent progenitors. To explore the mechanism by which Nras(G12D) promotes HSC proliferation and self-renewal, we assessed cell-cycle kinetics using H2B-GFP label retention and 5-bromodeoxyuridine (BrdU) incorporation. Nras(G12D) had a bimodal effect on HSCs, increasing the frequency with which some HSCs divide and reducing the frequency with which others divide. This mirrored bimodal effects on reconstituting potential, as rarely dividing Nras(G12D) HSCs outcompeted wild-type HSCs, whereas frequently dividing Nras(G12D) HSCs did not. Nras(G12D) caused these effects by promoting STAT5 signalling, inducing different transcriptional responses in different subsets of HSCs. One signal can therefore increase HSC proliferation, competitiveness and self-renewal through bimodal effects on HSC gene expression, cycling and reconstituting potential.

  5. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis

    Science.gov (United States)

    Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.

    2017-01-01

    The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019

  6. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.

    Directory of Open Access Journals (Sweden)

    Marie C Matrka

    Full Text Available The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos. To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.

  7. Mode of cell death induced by the HSP90 inhibitor 17-AAG (tanespimycin) is dependent on the expression of pro-apoptotic BAX.

    Science.gov (United States)

    Powers, Marissa V; Valenti, Melanie; Miranda, Susana; Maloney, Alison; Eccles, Suzanne A; Thomas, George; Clarke, Paul A; Workman, Paul

    2013-11-01

    Inhibitors of the molecular chaperone heat shock protein 90 (HSP90) are of considerable current interest as targeted cancer therapeutic agents because of the ability to destabilize multiple oncogenic client proteins. Despite their resulting pleiotropic effects on multiple oncogenic pathways and hallmark traits of cancer, resistance to HSP90 inhibitors is possible and their ability to induce apoptosis is less than might be expected. Using an isogenic model for BAX knockout in HCT116 human colon carcinoma cells, we demonstrate the induction of BAX-dependent apoptosis at pharmacologically relevant concentrations of the HSP90 inhibitor 17-AAG both in vitro and in tumor xenografts in vivo. Removal of BAX expression by homologous recombination reduces apoptosis in vitro and in vivo but allows a lower level of cell death via a predominantly necrotic mechanism. Despite reducing apoptosis, the loss of BAX does not alter the overall sensitivity to 17-AAG in vitro or in vivo. The results indicate that 17-AAG acts predominantly to cause a cytostatic antiproliferative effect rather than cell death and further suggest that BAX status may not alter the overall clinical response to HSP90 inhibitors. Other agents may be required in combination to enhance tumor-selective killing by these promising drugs. In addition, there are implications for the use of apoptotic endpoints in the assessment of the activity of molecularly targeted agents.

  8. Expression of the c-Met oncogene by tumor cells predicts a favorable outcome in classical Hodgkin's lymphoma.

    Science.gov (United States)

    Xu, Chuanhui; Plattel, Wouter; van den Berg, Anke; Rüther, Nele; Huang, Xin; Wang, Miao; de Jong, Debora; Vos, Hans; van Imhoff, Gustaaf; Viardot, Andreas; Möller, Peter; Poppema, Sibrand; Diepstra, Arjan; Visser, Lydia

    2012-04-01

    The c-Met signaling pathway regulates a variety of biological processes, including proliferation, survival and migration. Deregulated c-Met activation has been implicated in the pathogenesis and prognosis of many human malignancies. We studied the function and prognostic significance of c-Met and hepatocyte growth factor protein expression in patients with classical Hodgkin's lymphoma. Expression of c-Met and its ligand, hepatocyte growth factor, were determined by immunohistochemistry. Prognostic values were defined in cohorts of German and Dutch patients with classical Hodgkin's lymphoma. Functional studies were performed on Hodgkin's lymphoma cell lines. Expression of c-Met was detected in the tumor cells of 52% (80/153) of the patients and expression of its ligand, hepatocyte growth factor, in 8% (10/121) of the patients. c-Met expression correlated with a 5-year freedom from tumor progression of 94%, whereas lack of expression correlated with a 5-year freedom from tumor progression of 73% (Pfreedom from tumor progression. In functional studies activation with hepatocyte growth factor did not affect cell growth, while the c-Met inhibitor SU11274 suppressed cell growth by inducing G2/M cell cycle arrest. Although functional studies showed an oncogenic role of the hepatocyte growth factor/c-Met signaling pathway in cell cycle progression, expression of c-Met in tumor cells from patients with classical Hodgkin's lymphoma strongly correlated with a favorable prognosis in two independent cohorts.

  9. BCR/ABL downregulates DNA-PK(CS)-dependent and upregulates backup non-homologous end joining in leukemic cells.

    Science.gov (United States)

    Poplawski, Tomasz; Blasiak, Janusz

    2010-06-01

    Non-homologous end joining (NHEJ) and homologous recombination repair (HRR) are the main mechanisms involved in the processing of DNA double strand breaks (DSBs) in humans. We showed previously that the oncogenic tyrosine kinase BCR/ABL stimulated DSBs repair by HRR. To evaluate the role of BCR/ABL in DSBs repair by NHEJ we examined the ability of leukemic BCR/ABL-expressing cell line BV173 to repair DNA damage induced by two DNA topoisomerase II inhibitors: etoposide and sobuzoxane. DNA lesions induced by sobuzoxane are repaired by a NHEJ pathway which is dependent on the catalytic subunit of protein kinase dependent on DNA (DNA-PK(CS); D-NHEJ), whereas damage evoked by etoposide are repaired by two distinct NHEJ pathways, dependent on or independent of DNA-PK(CS) (backup NHEJ, B-NHEJ). Cells incubated with STI571, a highly specific inhibitor of BCR/ABL, displayed resistance to these agents associated with an accelerated kinetics of DSBs repair, as measured by the neutral comet assay and pulsed field gel electrophoresis. However, in a functional NHEJ assay, cells preincubated with STI571 repaired DSBs induced by a restriction enzyme with a lower efficacy than without the preincubation and addition of wortmannin, a specific inhibitor of DNA-PK(CS), did not change efficacy of the NHEJ reaction. We suggest that BCR/ABL switch on B-NHEJ which is more error-prone then D-NHEJ and in such manner contribute to the increase of the genomic instability of leukemic cells.

  10. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation

    International Nuclear Information System (INIS)

    Murooka, Thomas T.; Rahbar, Ramtin; Fish, Eleanor N.

    2009-01-01

    The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.

  11. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice.

    Science.gov (United States)

    He, Ping; Yang, Jong Won; Yang, Vincent W; Bialkowska, Agnieszka B

    2018-04-01

    Activating mutations in KRAS are detected in most pancreatic ductal adenocarcinomas (PDACs). Expression of an activated form of KRAS (KrasG12D) in pancreata of mice is sufficient to induce formation of pancreatic intraepithelial neoplasia (PanINs)-a precursor of PDAC. Pancreatitis increases formation of PanINs in mice that express KrasG12D by promoting acinar-to-ductal metaplasia (ADM). We investigated the role of the transcription factor Krüppel-like factor 5 (KLF5) in ADM and KRAS-mediated formation of PanINs. We performed studies in adult mice with conditional disruption of Klf5 (Klf5 fl/fl ) and/or expression of Kras G12D (LSL-Kras G12D ) via Cre ERTM recombinase regulated by an acinar cell-specific promoter (Ptf1a). Activation of Kras G12D and loss of KLF5 was achieved by administration of tamoxifen. Pancreatitis was induced in mice by administration of cerulein; pancreatic tissues were collected, analyzed by histology and immunohistochemistry, and transcriptomes were compared between mice that did or did not express KLF5. We performed immunohistochemical analyses of human tissue microarrays, comparing levels of KLF5 among 96 human samples of PDAC. UN-KC-6141 cells (pancreatic cancer cells derived from Pdx1-Cre;LSL-Kras G12D mice) were incubated with inhibitors of different kinases and analyzed in proliferation assays and by immunoblots. Expression of KLF5 was knocked down with small hairpin RNAs or CRISPR/Cas9 strategies; cells were analyzed in proliferation and gene expression assays, and compared with cells expressing control vectors. Cells were subcutaneously injected into flanks of syngeneic mice and tumor growth was assessed. Of the 96 PDAC samples analyzed, 73% were positive for KLF5 (defined as nuclear staining in more than 5% of tumor cells). Pancreata from Ptf1a-Cre ERTM ;LSL-Kras G12D mice contained ADM and PanIN lesions, which contained high levels of nuclear KLF5 within these structures. In contrast, Ptf1a-Cre ERTM ;LSL-Kras G12D ;Klf5 fl

  12. Immunodetection of rasP21 and c-myc oncogenes in oral mucosal swab preparation from clove cigarette smokers

    Directory of Open Access Journals (Sweden)

    Silvi Kintawati

    2008-12-01

    Full Text Available Background: Smoking is the biggest factor for oral cavity malignancy. Some carcinogens found in cigar will stimulate epithel cell in oral cavity and cause mechanism disturbance on tissue resistance and produce abnormal genes (oncogenes. Oncogenes ras and myc are found on malignant tumor in oral cavity which are associated with smoking. Purpose: This research is to find the expression of oncogenes rasP21 and c-myc in oral mucosa epithelial of smoker with immunocytochemistry reaction. Methods: An oral mucosal swab was performed to 30 smokers categorized as light, moderate, and chain, and 10 non smokers which was followed by immunocytochemistry reaction using antibody towards oncogene rasP21 and c-myc is reacted to identify the influence of smoking towards malignant tumor in oral cavity. The result is statistically analyzed using Kruskal-Wallis test. Result: Based on the observation result of oncogene rasP21reaction, it shows that there is significant difference between non smoker group and light smoker, compared to moderate and chain smoker group (p < 0.01. On the other side, the observation result of oncogene c-myc indicates that there is no significant difference between the group of non smokers and the group of light, moderate, and chain smokers (p > 0.05. Conclusion: The higher the possibility of oral cavity malignancy and that the antibody for rasP21 oncogene can be used as a marker for early detection of oral cavity malignancy caused by smoking.

  13. A Potent and Selective Quinoxalinone-Based STK33 Inhibitor Does Not Show Synthetic Lethality in KRAS-Dependent Cells

    Science.gov (United States)

    2012-01-01

    The KRAS oncogene is found in up to 30% of all human tumors. In 2009, RNAi experiments revealed that lowering mRNA levels of a transcript encoding the serine/threonine kinase STK33 was selectively toxic to KRAS-dependent cancer cell lines, suggesting that small-molecule inhibitors of STK33 might selectively target KRAS-dependent cancers. To test this hypothesis, we initiated a high-throughput screen using compounds in the Molecular Libraries Small Molecule Repository (MLSMR). Several hits were identified, and one of these, a quinoxalinone derivative, was optimized. Extensive SAR studies were performed and led to the chemical probe ML281 that showed low nanomolar inhibition of purified recombinant STK33 and a distinct selectivity profile as compared to other STK33 inhibitors that were reported in the course of these studies. Even at the highest concentration tested (10 μM), ML281 had no effect on the viability of KRAS-dependent cancer cells. These results are consistent with other recent reports using small-molecule STK33 inhibitors. Small molecules having different chemical structures and kinase-selectivity profiles are needed to fully understand the role of STK33 in KRAS-dependent cancers. In this regard, ML281 is a valuable addition to small-molecule probes of STK33. PMID:23256033

  14. Oncogene mutational profile in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZC

    2014-03-01

    Full Text Available Zi-Chen Zhang,1,* Sha Fu,1,* Fang Wang,1 Hai-Yun Wang,1 Yi-Xin Zeng,2 Jian-Yong Shao11Department of Molecular Diagnostics, 2Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Nasopharyngeal carcinoma (NPC is a common tumor in Southern China, but the oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The relationships between mutational status and clinical data were assessed with a χ2 or Fisher's exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank test. In 123 patients, 21 (17.1% NPC tumors were positive for mutations in eight oncogenes: six patients had PIK3CA mutations (4.9%, five NRAS mutations (4.1%, four KIT mutations (3.3%, two PDGFRA mutations (1.6%, two ABL mutations (1.6%, and one with simultaneous mutations in HRAS, EGFR, and BRAF (1%. Patients with mutations were more likely to relapse or develop metastasis than those with wild-type alleles (P=0.019. No differences or correlations were found in other clinical characteristics or in patient survival. No mutations were detected in oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, PDGFRA, and ABL, which are associated with patient relapse and metastasis. Keywords: NPC, oncogene, mutation

  15. Expression of Mitochondrial Non-coding RNAs (ncRNAs) Is Modulated by High Risk Human Papillomavirus (HPV) Oncogenes*

    Science.gov (United States)

    Villota, Claudio; Campos, América; Vidaurre, Soledad; Oliveira-Cruz, Luciana; Boccardo, Enrique; Burzio, Verónica A.; Varas, Manuel; Villegas, Jaime; Villa, Luisa L.; Valenzuela, Pablo D. T.; Socías, Miguel; Roberts, Sally; Burzio, Luis O.

    2012-01-01

    The study of RNA and DNA oncogenic viruses has proved invaluable in the discovery of key cellular pathways that are rendered dysfunctional during cancer progression. An example is high risk human papillomavirus (HPV), the etiological agent of cervical cancer. The role of HPV oncogenes in cellular immortalization and transformation has been extensively investigated. We reported the differential expression of a family of human mitochondrial non-coding RNAs (ncRNAs) between normal and cancer cells. Normal cells express a sense mitochondrial ncRNA (SncmtRNA) that seems to be required for cell proliferation and two antisense transcripts (ASncmtRNAs). In contrast, the ASncmtRNAs are down-regulated in cancer cells. To shed some light on the mechanisms that trigger down-regulation of the ASncmtRNAs, we studied human keratinocytes (HFK) immortalized with HPV. Here we show that immortalization of HFK with HPV-16 or 18 causes down-regulation of the ASncmtRNAs and induces the expression of a new sense transcript named SncmtRNA-2. Transduction of HFK with both E6 and E7 is sufficient to induce expression of SncmtRNA-2. Moreover, E2 oncogene is involved in down-regulation of the ASncmtRNAs. Knockdown of E2 in immortalized cells reestablishes in a reversible manner the expression of the ASncmtRNAs, suggesting that endogenous cellular factors(s) could play functions analogous to E2 during non-HPV-induced oncogenesis. PMID:22539350

  16. Expression of mitochondrial non-coding RNAs (ncRNAs) is modulated by high risk human papillomavirus (HPV) oncogenes.

    Science.gov (United States)

    Villota, Claudio; Campos, América; Vidaurre, Soledad; Oliveira-Cruz, Luciana; Boccardo, Enrique; Burzio, Verónica A; Varas, Manuel; Villegas, Jaime; Villa, Luisa L; Valenzuela, Pablo D T; Socías, Miguel; Roberts, Sally; Burzio, Luis O

    2012-06-15

    The study of RNA and DNA oncogenic viruses has proved invaluable in the discovery of key cellular pathways that are rendered dysfunctional during cancer progression. An example is high risk human papillomavirus (HPV), the etiological agent of cervical cancer. The role of HPV oncogenes in cellular immortalization and transformation has been extensively investigated. We reported the differential expression of a family of human mitochondrial non-coding RNAs (ncRNAs) between normal and cancer cells. Normal cells express a sense mitochondrial ncRNA (SncmtRNA) that seems to be required for cell proliferation and two antisense transcripts (ASncmtRNAs). In contrast, the ASncmtRNAs are down-regulated in cancer cells. To shed some light on the mechanisms that trigger down-regulation of the ASncmtRNAs, we studied human keratinocytes (HFK) immortalized with HPV. Here we show that immortalization of HFK with HPV-16 or 18 causes down-regulation of the ASncmtRNAs and induces the expression of a new sense transcript named SncmtRNA-2. Transduction of HFK with both E6 and E7 is sufficient to induce expression of SncmtRNA-2. Moreover, E2 oncogene is involved in down-regulation of the ASncmtRNAs. Knockdown of E2 in immortalized cells reestablishes in a reversible manner the expression of the ASncmtRNAs, suggesting that endogenous cellular factors(s) could play functions analogous to E2 during non-HPV-induced oncogenesis.

  17. Oncogenic Human Papillomavirus: Application of CRISPR/Cas9 Therapeutic Strategies for Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Shuai Zhen

    2017-12-01

    Full Text Available Oncogenic human papillomaviruses (HPVs cause different types of cancer especially cervical cancer. HPV-associated carcinogenesis provides a classical model system for clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 based cancer therapies since the viral oncogenes E6 and E7 are exclusively expressed in cancerous cells. Sequence-specific gene knockdown/knockout using CRISPR/Cas9 shows promise as a novel therapeutic approach for the treatment of a variety of diseases that currently lack effective treatments. However, CRISPR/Cas9-based targeting therapy requires further validation of its efficacy in vitro and in vivo to eliminate the potential off-target effects, necessitates verification of the delivery vehicles and the combinatory use of conventional therapies with CRISPR/Cas9 to ensure the feasibility and safety. In this review we discuss the potential of combining CRISPR/Cas9 with other treatment options as therapies for oncogenic HPVs-associated carcinogenesis. and present our assessment of the promising path to the development of CRISPR/Cas9 therapeutic strategies for clinical settings.

  18. SCD1 Expression is dispensable for hepatocarcinogenesis induced by AKT and Ras oncogenes in mice.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available Increased de novo lipogenesis is one of the major metabolic events in cancer. In human hepatocellular carcinoma (HCC, de novo lipogenesis has been found to be increased and associated with the activation of AKT/mTOR signaling. In mice, overexpression of an activated form of AKT results in increased lipogenesis and hepatic steatosis, ultimately leading to liver tumor development. Hepatocarcinogenesis is dramatically accelerated when AKT is co-expressed with an oncogenic form of N-Ras. SCD1, the major isoform of stearoyl-CoA desaturases, catalyzing the conversion of saturated fatty acids (SFA into monounsaturated fatty acids (MUFA, is a key enzyme involved in de novo lipogenesis. While many studies demonstrated the requirement of SCD1 for tumor cell growth in vitro, whether SCD1 is necessary for tumor development in vivo has not been previously investigated. Here, we show that genetic ablation of SCD1 neither inhibits lipogenesis and hepatic steatosis in AKT-overexpressing mice nor affects liver tumor development in mice co-expressing AKT and Ras oncogenes. Molecular analysis showed that SCD2 was strongly upregulated in liver tumors from AKT/Ras injected SCD1(-/- mice. Noticeably, concomitant silencing of SCD1 and SCD2 genes was highly detrimental for the growth of AKT/Ras cells in vitro. Altogether, our study provides the evidence, for the first time, that SCD1 expression is dispensable for AKT/mTOR-dependent hepatic steatosis and AKT/Ras-induced hepatocarcinogenesis in mice. Complete inhibition of stearoyl-CoA desaturase activity may be required to efficiently suppress liver tumor development.

  19. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    International Nuclear Information System (INIS)

    Lee, Kiwon; Liu, Yin; Mo, Jun Qin; Zhang, Jinsong; Dong, Zhongyun; Lu, Shan

    2008-01-01

    Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα)-mediated signaling axis. Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis. We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation. Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression

  20. Cell Secretion: Current Structural and Biochemical Insights

    Directory of Open Access Journals (Sweden)

    Saurabh Trikha

    2010-01-01

    Full Text Available Essential physiological functions in eukaryotic cells, such as release of hormones and digestive enzymes, neurotransmission, and intercellular signaling, are all achieved by cell secretion. In regulated (calcium-dependent secretion, membrane-bound secretory vesicles dock and transiently fuse with specialized, permanent, plasma membrane structures, called porosomes or fusion pores. Porosomes are supramolecular, cup-shaped lipoprotein structures at the cell plasma membrane that mediate and control the release of vesicle cargo to the outside of the cell. The sizes of porosomes range from 150nm in diameter in acinar cells of the exocrine pancreas to 12nm in neurons. In recent years, significant progress has been made in our understanding of the porosome and the cellular activities required for cell secretion, such as membrane fusion and swelling of secretory vesicles. The discovery of the porosome complex and the molecular mechanism of cell secretion are summarized in this article.

  1. ERBB oncogene proteins as targets for monoclonal antibodies.

    Science.gov (United States)

    Polanovski, O L; Lebedenko, E N; Deyev, S M

    2012-03-01

    General properties of the family of tyrosine kinase ERBB receptors are considered in connection with their role in the generation of cascades of signal transduction in normal and tumor cells. Causes of acquisition of oncogene features by genes encoding these receptors and their role in tumorigenesis are analyzed. Anti-ERBB monoclonal antibodies approved for therapy are described in detail, and mechanisms of their antitumor activity and development of resistance to them are reviewed. The existing and the most promising strategies for creating and using monoclonal antibodies and their derivatives for therapy of cancer are discussed.

  2. Expression and role of oncogenic miRNA-224 in esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    He, Xiaoyan; Zhang, Zhimei; Li, Ming; Li, Shuo; Ren, Lihua; Zhu, Hong; Xiao, Bin; Shi, Ruihua

    2015-01-01

    Aberrant expression of miR-224 is associated with tumor development and progression. This study investigated the role of miR-224 in esophageal squamous cell carcinoma (ESCC) ex vivo and in vitro. A total of 103 esophageal intraepithelial neoplasia, ESCC tissue specimens, and their matched distant normal tissues were collected to test miR-224 expression using qRT-PCR analysis. Western blot was used to quantify the level of PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and PHLPP2 in ESCC tissues. Cell viability, apoptosis, invasion, and colony formation assays were used to assess the altered phenotypes of esophageal cancer cell lines after miR-224 expression or inhibition. A luciferase reporter assay was used to confirm miR-224 binding to PHLPP1 and PHLPP2 mRNA. miR-224 was significantly overexpressed in esophageal intraepithelial neoplasia and ESCC tissues, while the expression of PHLPP1 and PHLPP2 proteins, the target genes of miR-224, was downregulated in ESCC tissues. miR-224 expression was associated with advanced clinical TNM stage, pathologic grade, and the level of PHLPP1 and PHLPP2 proteins in ESCC tissues. Ectopic overexpression of miR-224 promoted proliferation, migration, and invasion, but suppressed apoptosis of ESCC cells. miR-224 was able to bind to the 3′ untranslated region (3′-UTR) of PHLPP1 and PHLPP2 mRNA to suppress their expression. The current study demonstrated that miR-224 acts as an oncogenic miRNA in ESCC, possibly by targeting PHLPP1 and PHLPP2. The online version of this article (doi:10.1186/s12885-015-1581-6) contains supplementary material, which is available to authorized users

  3. WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation

    Science.gov (United States)

    Kim, Jung Jin; Lee, Seung Baek; Yi, Sang-Yeop; Han, Sang-Ah; Kim, Sun-Hyun; Lee, Jong-Min; Tong, Seo-Yun; Yin, Ping; Gao, Bowen; Zhang, Jun; Lou, Zhenkun

    2017-01-01

    Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions. PMID:27958289

  4. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Science.gov (United States)

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  5. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  6. Tyrosine kinase receptor c-ros-oncogene 1 inhibition alleviates aberrant bone formation of TWIST-1 haploinsufficient calvarial cells from Saethre-Chotzen syndrome patients.

    Science.gov (United States)

    Camp, Esther; Anderson, Peter J; Zannettino, Andrew C W; Glackin, Carlotta A; Gronthos, Stan

    2018-09-01

    Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1 del/+ mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls. Knock-down of C-ROS-1 expression in TWIST-1 haploinsufficient calvarial cells derived from SCS patients was associated with decreased capacity for osteogenic differentiation in vitro. Furthermore, treatment of human SCS calvarial cells with the tyrosine kinase chemical inhibitor, Crizotinib, resulted in reduced C-ROS-1 activity and the osteogenic potential of human SCS calvarial cells with minor effects on cell viability or proliferation. Cultured human SCS calvarial cells treated with Crizotinib exhibited a dose-dependent decrease in alkaline phosphatase activity and mineral deposition, with an associated decrease in expression levels of Runt-related transcription factor 2 and OSTEOPONTIN, with reduced PI3K/Akt signalling in vitro. Furthermore, Crizotinib treatment resulted in reduced BMP-2 mediated bone formation potential of whole Twist-1 del/+ mutant mouse calvaria organotypic cultures. Collectively, these results suggest that C-ROS-1 promotes osteogenic differentiation of TWIST-1 haploinsufficient calvarial osteogenic progenitor cells. Furthermore, the aberrant osteogenic potential of these cells is inhibited by the reduction of C-ROS-1. Therefore, targeting C-ROS-1 with a pharmacological agent, such as Crizotinib, may serve as a novel therapeutic strategy to alleviate craniosynostosis associated with aberrant TWIST-1 function. © 2018 Wiley Periodicals, Inc.

  7. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells

    OpenAIRE

    Ravacci, Graziela Rosa; Brentani, Maria Mitzi; Tortelli, Tharcisio Citrângulo; Torrinhas, Raquel Suzana M. M.; Santos, Jéssica Reis; Logullo, Angela Flávia; Waitzberg, Dan Linetzky

    2015-01-01

    In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expressi...

  8. mTORC1 is a critical mediator of oncogenic Semaphorin3A signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Daisuke; Kawahara, Kohichi; Maeda, Takehiko, E-mail: maeda@nupals.ac.jp

    2016-08-05

    Aberration of signaling pathways by genetic mutations or alterations in the surrounding tissue environments can result in tumor development or metastasis. However, signaling molecules responsible for these processes have not been completely elucidated. Here, we used mouse Lewis lung carcinoma cells (LLC) to explore the mechanism by which the oncogenic activity of Semaphorin3A (Sema3A) signaling is regulated. Sema3A knockdown by shRNA did not affect apoptosis, but decreased cell proliferation in LLCs; both the mammalian target of rapamycin complex 1 (mTORC1) level and glycolytic activity were also decreased. In addition, Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation by oligomycin, but conferred resistance to decreased cell viability induced by glucose starvation. Furthermore, recombinant SEMA3A rescued the attenuation of cell proliferation and glycolytic activity in LLCs after Sema3A knockdown, whereas mTORC1 inhibition by rapamycin completely counteracted this effect. These results demonstrate that Sema3A signaling exerts its oncogenic effect by promoting an mTORC1-mediated metabolic shift from oxidative phosphorylation to aerobic glycolysis. -- Highlights: •Sema3A knockdown decreased proliferation of Lewis lung carcinoma cells (LLCs). •Sema3A knockdown decreased mTORC1 levels and glycolytic activity in LLCs. •Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation. •Sema3A promotes shift from oxidative phosphorylation to aerobic glycolysis via mTORC1.

  9. A Screen Identifies the Oncogenic Micro-RNA miR-378a-5p as a Negative Regulator of Oncogene-Induced Senescence

    DEFF Research Database (Denmark)

    Kooistra, Susanne Marije; Rudkjær, Lise Christine; Lees, Michael James

    2014-01-01

    Oncogene-induced senescence (OIS) can occur in response to hyperactive oncogenic signals and is believed to be a fail-safe mechanism protecting against tumorigenesis. To identify new factors involved in OIS, we performed a screen for microRNAs that can overcome or inhibit OIS in human diploid fib...

  10. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo

    Science.gov (United States)

    Lobikin, Maria; Chernet, Brook; Lobo, Daniel; Levin, Michael

    2012-12-01

    Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (Vmem) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by ‘instructor’ cells—a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting

  11. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer.

    Directory of Open Access Journals (Sweden)

    Kevin A Kwei

    2008-05-01

    Full Text Available Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46% primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.

  12. Sequence analysis of the MYC oncogene involved in the t(8;14)(q24;q11) chromosome translocation in a human leukemia T-cell line indicates that putative regulatory regions are not altered

    International Nuclear Information System (INIS)

    Finver, S.N.; Nishikura, K.; Finger, L.R.; Haluska, F.G.; Finan, J.; Nowell, P.C.; Croce, C.M.

    1988-01-01

    The authors cloned the translocation-associated and homologous normal MYC alleles from SKW-3, a leukemia T-cell line with the t(8; 14)(q24; q11) translocation, and determined the sequence of the MYC oncogene first exon and flanking 5' putative regulatory regions. S1 nuclease protection experiments utilizing a MYC first exon probe demonstrated transcriptional deregulation of the MYC gene associated with the T-cell receptor α locus on the 8q + chromosome of SKW-3 cells. Nucleotide sequence analysis of the translocation-associated (8q +) MYC allele identified a single base substitution within the upstream flanking region; the homologous nontranslocated allele contained an additional substitution and a two-base deletion. None of the deletions or substitutions localized to putative 5' regulatory regions. The MYC first exon sequence was germ line in both alleles. These results demonstrate that alterations within the putative 5' MYC regulatory regions are not necessarily involved in MYC deregulation in T-cell leukemias, and they show that juxtaposition of the T-cell receptor α locus to a germ-line MYC oncogene results in MYC deregulation

  13. Growth rate of late passage sarcoma cells is independent of epigenetic events but dependent on the amount of chromosomal aberrations

    International Nuclear Information System (INIS)

    Becerikli, Mustafa; Jacobsen, Frank; Rittig, Andrea; Köhne, Wiebke; Nambiar, Sandeep; Mirmohammadsadegh, Alireza; Stricker, Ingo; Tannapfel, Andrea; Wieczorek, Stefan; Epplen, Joerg Thomas; Tilkorn, Daniel; Steinstraesser, Lars

    2013-01-01

    Soft tissue sarcomas (STS) are characterized by co-participation of several epigenetic and genetic events during tumorigenesis. Having bypassed cellular senescence barriers during oncogenic transformation, the factors further affecting growth rate of STS cells remain poorly understood. Therefore, we investigated the role of gene silencing (DNA promoter methylation of LINE-1, PTEN), genetic aberrations (karyotype, KRAS and BRAF mutations) as well as their contribution to the proliferation rate and migratory potential that underlies “initial” and “final” passage sarcoma cells. Three different cell lines were used, SW982 (synovial sarcoma), U2197 (malignant fibrous histiocytoma (MFH)) and HT1080 (fibrosarcoma). Increased proliferative potential of final passage STS cells was not associated with significant differences in methylation (LINE-1, PTEN) and mutation status (KRAS, BRAF), but it was dependent on the amount of chromosomal aberrations. Collectively, our data demonstrate that these fairly differentiated/advanced cancer cell lines have still the potential to gain an additional spontaneous growth benefit without external influences and that maintenance of increased proliferative potential towards longevity of STS cells (having crossed senescence barriers) may be independent of overt epigenetic alterations. -- Highlights: Increased proliferative potential of late passage STS cells was: • Not associated with epigenetic changes (methylation changes at LINE-1, PTEN). • Not associated with mutation status of KRAS, BRAF. • Dependent on presence/absence of chromosomal aberrations

  14. What is the origin of pancreatic adenocarcinoma?

    Directory of Open Access Journals (Sweden)

    Pandey Krishan K

    2003-01-01

    Full Text Available Abstract The concept of pancreatic cancer origin is controversial. Acinar, ductal or islet cells have been hypothesized as the cell of origin. The pros and cons of each of these hypotheses are discussed. Based on the world literature and recent observations, pancreatic cells seem to have potential for phenotypical transdifferentiation, i.e ductal-islet, ductal-acinar, acinar-ductal, acinar-islet, islet-acinar and islet-ductal cells. Although the possibility is discussed that cancer may arise from either islet, ductal or acinar cells, the circumstances favoring the islet cells as the tumor cell origin include their greater transdifferentiation potency into both pancreatic and extrapancreatic cells, the presence of a variety of carcinogen-metabolizing enzymes, some of which are present exclusively in islet cells and the growth factor-rich environment of islets.

  15. Localisation of lung cancer by a radiolabelled monoclonal antibody against the c-myc oncogene product

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S Y.T.; Evan, G I; Ritson, A; Watson, J; Wraight, P; Sikora, K

    1986-11-01

    A set of mouse monoclonal antibodies against the c-myc oncogene product, a 62,000 dalton nuclear binding protein involved in cell cycle control, has been constructed by immunisation with synthetic peptide fragments. One such antibody, CT14, was radiolabelled with /sup 131/I and administered to 20 patients with different malignant diseases. Good tumour localisation was observed in 12 out of 14 patients with primary bronchial carcinoma but not in patients with pulmonary metastases from primary tumours elsewhere. Successfully localised tumours were all 3 cm or more in diameter. Monoclonal antibodies against oncogene products may provide novel selective tools for the diagnosis and therapy of cancer.

  16. Rapid internalization of the oncogenic K+ channel K(V10.1.

    Directory of Open Access Journals (Sweden)

    Tobias Kohl

    Full Text Available K(V10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V10.1 intracellular distribution and life cycle. To follow plasma membrane K(V10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V10.1 surface levels. Brief K(V10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V10.1 on tumor cells.

  17. The promotion on cell growth of androgen-dependent prostate cancer by antimony via mimicking androgen activity.

    Science.gov (United States)

    Zhang, Changwen; Li, Penghao; Wen, Yingwu; Feng, Guowei; Liu, Yu; Zhang, Yangyi; Xu, Yong; Zhang, Zhihong

    2018-05-15

    Antimony is a widely used heavier pnictogens in industry, and its toxicity has been a matter of concern. Although previous studies have suggested that antimony may have the function as either a tumor suppressor or an oncogene in several cancers, the molecular basis underlying antimony-mediated transformation is still unclear. In the current study, we attempt to elucidate the potential role of antimony in the development of prostate cancer. Our results showed that the concentration of antimony was much higher in serum of prostate cancer patients, and was closely associated with poor outcome of patients who underwent radical prostatectomy. Additionally, low dose of antimony could promote proliferation and invasion of androgen-dependent prostate cancer cell line LNCaP cells in vitro and in vivo. The mechanistic studies demonstrated that exposure to antimony triggered the phosphorylation of androgen receptor (AR), which transcriptionally regulates the expression of androgen-related targets, including PSA and NKX3.1. Overall, our results unearthed that antimony could promote tumor growth by mimicking androgen activity in androgen-dependent prostate cancer cells. Therefore, these findings expanded our understanding on the molecular mechanism of antimony in tumorigenesis and tumor progression of prostate cancer, and it appears to be an inspiring strategy to restrain prostate cancer by inhibiting antimony-induced androgen-like effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation.

    Directory of Open Access Journals (Sweden)

    Jamie G Bates

    Full Text Available To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML and Acute Lymphoblastic Leukemia (ALL. Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.

  19. Tumor-Promoting Circuits That Regulate a Cancer-Related Chemokine Cluster: Dominance of Inflammatory Mediators Over Oncogenic Alterations

    International Nuclear Information System (INIS)

    Leibovich-Rivkin, Tal; Buganim, Yosef; Solomon, Hilla; Meshel, Tsipi; Rotter, Varda; Ben-Baruch, Adit

    2012-01-01

    Here, we investigated the relative contribution of genetic/signaling components versus microenvironmental factors to the malignancy phenotype. In this system, we took advantage of non-transformed fibroblasts that carried defined oncogenic modifications in Ras and/or p53. These cells were exposed to microenvironmental pressures, and the expression of a cancer-related chemokine cluster was used as readout for the malignancy potential (CCL2, CCL5, CXCL8, CXCL10). In cells kept in-culture, synergism between Ras hyper-activation and p53 dysfunction was required to up-regulate the expression of the chemokine cluster. The in vivo passage of Ras High /p53 Low -modified cells has led to tumor formation, accompanied by potentiation of chemokine release, implicating a powerful role for the tumor microenvironment in up-regulating the chemokine cluster. Indeed, we found that inflammatory mediators which are prevalent in tumor sites, such as TNFα and IL-1β, had a predominant impact on the release of the chemokines, which was substantially higher than that obtained by the oncogenic modifications alone, possibly acting through the transcription factors AP-1 and NF-κB. Together, our results propose that in the unbiased model system that we were using, inflammatory mediators of the tumor milieu have dominating roles over oncogenic modifications in dictating the expression of a pro-malignancy chemokine readout

  20. Oncogenic MYC Activates a Feedforward Regulatory Loop Promoting Essential Amino Acid Metabolism and Tumorigenesis.

    Science.gov (United States)

    Yue, Ming; Jiang, Jue; Gao, Peng; Liu, Hudan; Qing, Guoliang

    2017-12-26

    Most tumor cells exhibit obligatory demands for essential amino acids (EAAs), but the regulatory mechanisms whereby tumor cells take up EAAs and EAAs promote malignant transformation remain to be determined. Here, we show that oncogenic MYC, solute carrier family (SLC) 7 member 5 (SLC7A5), and SLC43A1 constitute a feedforward activation loop to promote EAA transport and tumorigenesis. MYC selectively activates Slc7a5 and Slc43a1 transcription through direct binding to specific E box elements within both genes, enabling effective EAA import. Elevated EAAs, in turn, stimulate Myc mRNA translation, in part through attenuation of the GCN2-eIF2α-ATF4 amino acid stress response pathway, leading to MYC-dependent transcriptional amplification. SLC7A5/SLC43A1 depletion inhibits MYC expression, metabolic reprogramming, and tumor cell growth in vitro and in vivo. These findings thus reveal a MYC-SLC7A5/SLC43A1 signaling circuit that underlies EAA metabolism, MYC deregulation, and tumorigenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Alteration in gene expression profile and oncogenicity of esophageal squamous cell carcinoma by RIZ1 upregulation.

    Science.gov (United States)

    Dong, Shang-Wen; Li, Dong; Xu, Cong; Sun, Pei; Wang, Yuan-Guo; Zhang, Peng

    2013-10-07

    To investigate the effect of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) upregulation in gene expression profile and oncogenicity of human esophageal squamous cell carcinoma (ESCC) cell line TE13. TE13 cells were transfected with pcDNA3.1(+)/RIZ1 and pcDNA3.1(+). Changes in gene expression profile were screened and the microarray results were confirmed by reverse transcription-polymerase chain reaction (RT-PCR). Nude mice were inoculated with TE13 cells to establish ESCC xenografts. After two weeks, the inoculated mice were randomly divided into three groups. Tumors were injected with normal saline, transfection reagent pcDNA3.1(+) and transfection reagent pcDNA3.1(+)/RIZ1, respectively. Tumor development was quantified, and changes in gene expression of RIZ1 transfected tumors were detected by RT-PCR and Western blotting. DNA microarray data showed that RIZ1 transfection induced widespread changes in gene expression profile of cell line TE13, with 960 genes upregulated and 1163 downregulated. Treatment of tumor xenografts with RIZ1 recombinant plasmid significantly inhibited tumor growth, decreased tumor size, and increased expression of RIZ1 mRNA compared to control groups. The changes in gene expression profile were also observed in vivo after RIZ1 transfection. Most of the differentially expressed genes were associated with cell development, supervision of viral replication, lymphocyte costimulatory and immune system development in esophageal cells. RIZ1 gene may be involved in multiple cancer pathways, such as cytokine receptor interaction and transforming growth factor beta signaling. The development and progression of esophageal cancer are related to the inactivation of RIZ1. Virus infection may also be an important factor.

  2. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    Science.gov (United States)

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  3. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Mets, E; Van der Meulen, J; Van Peer, G; Boice, M; Mestdagh, P; Van de Walle, I; Lammens, T; Goossens, S; De Moerloose, B; Benoit, Y; Van Roy, N; Clappier, E; Poppe, B; Vandesompele, J; Wendel, H-G; Taghon, T; Rondou, P; Soulier, J; Van Vlierberghe, P; Speleman, F

    2015-04-01

    The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3'untranslated region-microRNA (miRNA) library screen and identified 33 putative MYB-targeting miRNAs. Subsequently, transcriptome data from two independent T-ALL cohorts and different subsets of normal T-cells were used to select miRNAs with relevance in the context of normal and malignant T-cell transformation. Hereby, miR-193b-3p was identified as a novel bona fide tumor-suppressor miRNA that targets MYB during malignant T-cell transformation thereby offering an entry point for efficient MYB targeting-oriented therapies for human T-ALL.

  4. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L., E-mail: rodney.rouse@fda.hhs.gov

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  5. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    International Nuclear Information System (INIS)

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L.

    2012-01-01

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  6. HTLV-1 tax stabilizes MCL-1 via TRAF6-dependent K63-linked polyubiquitination to promote cell survival and transformation.

    Directory of Open Access Journals (Sweden)

    Young Bong Choi

    2014-10-01

    Full Text Available The human T-cell leukemia virus type 1 (HTLV-1 Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner. Tax was found to promote the nondegradative lysine 63 (K63-linked polyubiquitination of MCL-1 that was dependent on the E3 ubiquitin ligase TRAF6 and the IKK complex. Tax interacted with and activated TRAF6, and triggered its mitochondrial localization, where it conjugated four carboxyl-terminal lysine residues of MCL-1 with K63-linked polyubiquitin chains, which stabilized and protected MCL-1 from genotoxic stress-induced degradation. TRAF6 and MCL-1 played essential roles in the survival of HTLV-1 transformed cells and the immortalization of primary T cells by HTLV-1. Therefore, K63-linked polyubiquitination represents a novel regulatory mechanism controlling MCL-1 stability that has been usurped by a viral oncogene to precipitate cell survival and transformation.

  7. HTLV-1 Tax Stabilizes MCL-1 via TRAF6-Dependent K63-Linked Polyubiquitination to Promote Cell Survival and Transformation

    Science.gov (United States)

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs) and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner. Tax was found to promote the nondegradative lysine 63 (K63)-linked polyubiquitination of MCL-1 that was dependent on the E3 ubiquitin ligase TRAF6 and the IKK complex. Tax interacted with and activated TRAF6, and triggered its mitochondrial localization, where it conjugated four carboxyl-terminal lysine residues of MCL-1 with K63-linked polyubiquitin chains, which stabilized and protected MCL-1 from genotoxic stress-induced degradation. TRAF6 and MCL-1 played essential roles in the survival of HTLV-1 transformed cells and the immortalization of primary T cells by HTLV-1. Therefore, K63-linked polyubiquitination represents a novel regulatory mechanism controlling MCL-1 stability that has been usurped by a viral oncogene to precipitate cell survival and transformation. PMID:25340740

  8. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    International Nuclear Information System (INIS)

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D.

    1991-01-01

    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using [3H]dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor

  9. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia

    NARCIS (Netherlands)

    Gröschel, Stefan; Sanders, Mathijs A; Hoogenboezem, Remco; de Wit, Elzo; Bouwman, Britta A M; Erpelinck, Claudia; van der Velden, Vincent H J; Havermans, Marije; Avellino, Roberto; van Lom, Kirsten; Rombouts, Elwin J; van Duin, Mark; Döhner, Konstanze; Beverloo, H Berna; Bradner, James E; Döhner, Hartmut; Löwenberg, Bob; Valk, Peter J M; Bindels, Eric M J; de Laat, Wouter; Delwel, Ruud

    2014-01-01

    Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional

  10. An Oncogenic Role for Alternative NF-κB Signaling in DLBCL Revealed upon Deregulated BCL6 Expression

    Directory of Open Access Journals (Sweden)

    Baochun Zhang

    2015-05-01

    Full Text Available Diffuse large B cell lymphoma (DLBCL is a complex disease comprising diverse subtypes and genetic profiles. Possibly because of the prevalence of genetic alterations activating canonical NF-κB activity, a role for oncogenic lesions that activate the alternative NF-κB pathway in DLBCL has remained elusive. Here, we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-κB pathway, occurs in ∼15% of DLBCLs and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-κB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-κB pathway in DLBCL development.

  11. Apoptosis of acinar cells in pancreas allograft rejection

    NARCIS (Netherlands)

    Boonstra, J. G.; Wever, P. C.; Laterveer, J. C.; Bruijn, J. A.; van der Woude, F. J.; ten Berge, I. J.; Daha, M. R.

    1997-01-01

    BACKGROUND: Recently it has been recognized that apoptosis of target cells may occur during liver and kidney allograft rejection and is probably induced by infiltrating cells. Pancreas rejection is also characterized by a cellular infiltrate, however, the occurrence of apoptosis has not been

  12. Understanding personal risk of oropharyngeal cancer: risk-groups for oncogenic oral HPV infection and oropharyngeal cancer.

    Science.gov (United States)

    D'Souza, G; McNeel, T S; Fakhry, C

    2017-12-01

    Incidence of human papillomavirus (HPV)-related oropharyngeal cancer is increasing. There is interest in identifying healthy individuals most at risk for development of oropharyngeal cancer to inform screening strategies. All data are from 2009 to 2014, including 13 089 people ages 20-69 in the National Health and Nutrition Examination Survey (NHANES), oropharyngeal cancer cases from the Surveillance, Epidemiology, and End Results (SEER 18) registries (representing ∼28% of the US population), and oropharyngeal cancer mortality from National Center for Health Statistics (NCHS). Primary study outcomes are (i) prevalence of oncogenic HPV DNA in an oral rinse and gargle sample, and (ii) incident oropharyngeal squamous cell cancer. Oncogenic oral HPV DNA is detected in 3.5% of all adults age 20-69 years; however, the lifetime risk of oropharyngeal cancer is low (37 per 10 000). Among men 50-59 years old, 8.1% have an oncogenic oral HPV infection, 2.1% have an oral HPV16 infection, yet only 0.7% will 'ever' develop oropharyngeal cancer in their lifetime. Oncogenic oral HPV prevalence was higher in men than women, and increased with number of lifetime oral sexual partners and tobacco use. Men who currently smoked and had ≥5 lifetime oral sexual partners had 'elevated risk' (prevalence = 14.9%). Men with only one of these risk factors (i.e. either smoked and had 2-4 partners or did not smoke and had ≥5 partners) had 'medium risk' (7.3%). Regardless of what other risk factors participants had, oncogenic oral HPV prevalence was 'low' among those with only ≤1 lifetime oral sexual partner (women = 0.7% and men = 1.7%). Screening based upon oncogenic oral HPV detection would be challenging. Most groups have low oncogenic oral HPV prevalence. In addition to the large numbers of individuals who would need to be screened to identify prevalent oncogenic oral HPV, the lifetime risk of developing oropharyngeal caner among those with infection remains

  13. WIP-YAP/TAZ as A New Pro-Oncogenic Pathway in Glioma

    Directory of Open Access Journals (Sweden)

    Sergio Rivas

    2018-06-01

    Full Text Available Wild-type p53 (wtp53 is described as a tumour suppressor gene, and mutations in p53 occur in many human cancers. Indeed, in high-grade malignant glioma, numerous molecular genetics studies have established central roles of RTK-PI3K-PTEN and ARF-MDM2-p53 INK4a-RB pathways in promoting oncogenic capacity. Deregulation of these signalling pathways, among others, drives changes in the glial/stem cell state and environment that permit autonomous growth. The initially transformed cell may undergo subsequent modifications, acquiring a more complete tumour-initiating phenotype responsible for disease advancement to stages that are more aggressive. We recently established that the oncogenic activity of mutant p53 (mtp53 is driven by the actin cytoskeleton-associated protein WIP (WASP-interacting protein, correlated with tumour growth, and more importantly that both proteins are responsible for the tumour-initiating cell phenotype. We reported that WIP knockdown in mtp53-expressing glioblastoma greatly reduced proliferation and growth capacity of cancer stem cell (CSC-like cells and decreased CSC-like markers, such as hyaluronic acid receptor (CD44, prominin-1 (CD133, yes-associated protein (YAP and transcriptional co-activator with PDZ-binding motif (TAZ. We thus propose a new CSC signalling pathway downstream of mtp53 in which Akt regulates WIP and controls YAP/TAZ stability. WIP drives a mechanism that stimulates growth signals, promoting YAP/TAZ and β-catenin stability in a Hippo-independent fashion, which allows cells to coordinate processes such as proliferation, stemness and invasiveness, which are key factors in cancer progression. Based on this multistep tumourigenic model, it is tantalizing to propose that WIP inhibitors may be applied as an effective anti-cancer therapy.

  14. Inhibition of the H3K9 methyltransferase G9A attenuates oncogenicity and activates the hypoxia signaling pathway.

    Directory of Open Access Journals (Sweden)

    Jolene Caifeng Ho

    Full Text Available Epigenetic mechanisms play important roles in the regulation of tumorigenesis, and hypoxia-induced epigenetic changes may be critical for the adaptation of cancer cells to the hypoxic microenvironment of solid tumors. Previously, we showed that loss-of-function of the hypoxia-regulated H3K9 methyltransferase G9A attenuates tumor growth. However, the mechanisms by which blockade of G9A leads to a tumor suppressive effect remain poorly understood. We show that G9A is highly expressed in breast cancer and is associated with poor patient prognosis, where it may function as a potent oncogenic driver. In agreement with this, G9A inhibition by the small molecule inhibitor, BIX-01294, leads to increased cell death and impaired cell migration, cell cycle and anchorage-independent growth. Interestingly, whole transcriptome analysis revealed that genes involved in diverse cancer cell functions become hypoxia-responsive upon G9A inhibition. This was accompanied by the upregulation of the hypoxia inducible factors HIF1α and HIF2α during BIX-01294 treatment even in normoxia that may facilitate the tumor suppressive effects of BIX-01294. HIF inhibition was able to reverse some of the transcriptional changes induced by BIX-01294 in hypoxia, indicating that the HIFs may be important drivers of these derepressed target genes. Therefore, we show that G9A is a key mediator of oncogenic processes in breast cancer cells and G9A inhibition by BIX-01294 can successfully attenuate oncogenicity even in hypoxia.

  15. Inhibition of the H3K9 methyltransferase G9A attenuates oncogenicity and activates the hypoxia signaling pathway

    Science.gov (United States)

    Ho, Jolene Caifeng; Abdullah, Lissa Nurrul; Pang, Qing You; Jha, Sudhakar; Chow, Edward Kai-Hua; Yang, Henry; Kato, Hiroyuki; Ueda, Jun

    2017-01-01

    Epigenetic mechanisms play important roles in the regulation of tumorigenesis, and hypoxia-induced epigenetic changes may be critical for the adaptation of cancer cells to the hypoxic microenvironment of solid tumors. Previously, we showed that loss-of-function of the hypoxia-regulated H3K9 methyltransferase G9A attenuates tumor growth. However, the mechanisms by which blockade of G9A leads to a tumor suppressive effect remain poorly understood. We show that G9A is highly expressed in breast cancer and is associated with poor patient prognosis, where it may function as a potent oncogenic driver. In agreement with this, G9A inhibition by the small molecule inhibitor, BIX-01294, leads to increased cell death and impaired cell migration, cell cycle and anchorage-independent growth. Interestingly, whole transcriptome analysis revealed that genes involved in diverse cancer cell functions become hypoxia-responsive upon G9A inhibition. This was accompanied by the upregulation of the hypoxia inducible factors HIF1α and HIF2α during BIX-01294 treatment even in normoxia that may facilitate the tumor suppressive effects of BIX-01294. HIF inhibition was able to reverse some of the transcriptional changes induced by BIX-01294 in hypoxia, indicating that the HIFs may be important drivers of these derepressed target genes. Therefore, we show that G9A is a key mediator of oncogenic processes in breast cancer cells and G9A inhibition by BIX-01294 can successfully attenuate oncogenicity even in hypoxia. PMID:29145444

  16. HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression

    Science.gov (United States)

    Redmond, Catherine J.; Dooley, Katharine E.; Fu, Haiqing; Gillison, Maura L.; Akagi, Keiko; Symer, David E.; Aladjem, Mirit I.

    2018-01-01

    Integration of human papillomavirus (HPV) genomes into cellular chromatin is common in HPV-associated cancers. Integration is random, and each site is unique depending on how and where the virus integrates. We recently showed that tandemly integrated HPV16 could result in the formation of a super-enhancer-like element that drives transcription of the viral oncogenes. Here, we characterize the chromatin landscape and genomic architecture of this integration locus to elucidate the mechanisms that promoted de novo super-enhancer formation. Using next-generation sequencing and molecular combing/fiber-FISH, we show that ~26 copies of HPV16 are integrated into an intergenic region of chromosome 2p23.2, interspersed with 25 kb of amplified, flanking cellular DNA. This interspersed, co-amplified viral-host pattern is frequent in HPV-associated cancers and here we designate it as Type III integration. An abundant viral-cellular fusion transcript encoding the viral E6/E7 oncogenes is expressed from the integration locus and the chromatin encompassing both the viral enhancer and a region in the adjacent amplified cellular sequences is strongly enriched in the super-enhancer markers H3K27ac and Brd4. Notably, the peak in the amplified cellular sequence corresponds to an epithelial-cell-type specific enhancer. Thus, HPV16 integration generated a super-enhancer-like element composed of tandem interspersed copies of the viral upstream regulatory region and a cellular enhancer, to drive high levels of oncogene expression. PMID:29364907

  17. A novel oncogenic BTK isoform is overexpressed in colon cancers and required for RAS-mediated transformation

    DEFF Research Database (Denmark)

    Grassilli, E; Pisano, F; Cialdella, A

    2016-01-01

    Bruton's tyrosine kinase (BTK) is essential for B-cell proliferation/differentiation and it is generally believed that its expression and function are limited to bone marrow-derived cells. Here, we report the identification and characterization of p65BTK, a novel isoform abundantly expressed in c...... therapeutic approach.Oncogene advance online publication, 25 January 2016; doi:10.1038/onc.2015.504....

  18. New advances in cell physiology and pathophysiology of the exocrine pancreas.

    Science.gov (United States)

    Mössner, Joachim

    2010-01-01

    This review provides some aspects on the physiology of stimulation and inhibition of pancreatic digestive enzyme secretion and the pathophysiology of pancreatic acinar cell function leading to pancreatitis. Cholecystokinin (CCK) stimulates both directly via CCK-A receptors on acinar cells and indirectly via CCK-B receptors on nerves, followed by acetylcholine release, pancreatic enzyme secretion. It is still not known whether CCK-A receptors exist in human acinar cells, in contrast to acinar cells of rodents where CCK-A receptors have been well described. CCK has numerous actions both in the periphery and in the central nervous systems. CCK inhibits gastric motility and regulates satiety. Another major function of CCK is stimulation of gallbladder contraction. This function enables that bile acids act simultaneously with pancreatic lipolytic enzymes. Secretin is a major stimulator of bicarbonate secretion. Trypsinogen is activated by the gut mucosal enzyme enterokinase. The other pancreatic proenzymes are activated by trypsin. Termination of enzyme secretion may be regulated by negative feedback mechanisms via destruction of CCK-releasing peptides by trypsin. Furthermore, the ileum may act as a brake by release of inhibitory hormones such as PYY and somatostatin. In the pathophysiology of acute pancreatitis, fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen is regarded as an initiation step. This activation of trypsinogen may be caused by the lysosomal enzyme cathepsin B. However, autoactivation of trypsinogen itself may be a possibility in pathogenesis. Autoactivation is enhanced in certain mutations of trypsinogen. Furthermore, an imbalance of protease inhibitors and active proteases may be involved. The role of pancreatic lipolytic enzymes, the role of bicarbonate secretion, and toxic Ca(2+) signals by excessive liberation from the endoplasmic reticulum have to be discussed in the pathogenesis of acute pancreatitis

  19. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene

    DEFF Research Database (Denmark)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R

    2017-01-01

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain......-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic...... cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation....

  20. The Wnt Signaling Landscape of Mammary Stem Cells and Breast Tumors.

    Science.gov (United States)

    Alexander, Caroline M

    2018-01-01

    Attention has been focused on Wnt signaling in the mouse mammary gland for several decades, firstly by the discovery of several Wnt loci among the oncogenes revealed by MMTV-based insertional mutagenesis screening of mouse mammary gland, and then by the remarkable visualization of Wnt-dependent specification of mammary placodes in embryonic skin. This review aims to summarize the impact of recent data for our understanding of the roles of Wnt signaling in these roles. The amount and identity of both familiar and novel Wnt signaling components is examined for mouse mammary epithelial cells. The hierarchical arrangement of mammary epithelial cell progenitors and stem cells inferred from the study of isolated cells is reinterpreted in an era that has demonstrated almost limitless cellular plasticity. Functional definitions of stem and progenitor activities are reevaluated with the discovery of novel stem cell activities and regulators, and we draw parallels with the arrangement of replication-competent cells in other tissues. Although Wnt signaling is highly oncogenic for mouse mammary epithelia, the data supporting Wnt signaling as a tumor driver for human breast cancer are still flimsy, and there is little support for the recruitment of normal Wnt-dependent breast stem cells as tumor precursor cells for either mouse or human. We discuss possible explanations for this paradox and questions still unanswered, including the potential impact of recent discoveries of Wnt-secreting microenvironments, oncogenic changes in the Rspo/Lgr/Ubiquitin ligase amplifier complex, as they could apply to breast tissues, and the feedback suppression of Wnt signaling that characterizes its developmental activity and may hide Wnt signatures in tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    International Nuclear Information System (INIS)

    Park, Jeong Mi; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-01-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D 3 . It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman

  2. The 5T mouse multiple myeloma model: Absence of c-myc oncogene rearrangement in early transplant generations

    NARCIS (Netherlands)

    Radl, J.; Punt, Y.A.; Enden-Vieveen, M.H.M. van den; Bentvelzen, P.A.J.; Bakkus, M.H.C.; Akker T., W. van den; Benner, R.

    1990-01-01

    Consistent chromosomal translocations involving the c-myc cellular oncogene and one of the three immunoglobulin loci are typical for human Burkitt's lymphoma, induced mouse plasmacytoma (MPC) and spontaneously arising rat immunocytoma (RIC). Another plasma cell malignancy, multiple myeloma (MM),

  3. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression

    OpenAIRE

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-01-01

    Introduction Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Methods Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Po...

  4. A case report of mixed acinar-endocrine carcinoma of the pancreas treated with S-1 chemotherapy: Does it work or induce endocrine differentiation?

    Science.gov (United States)

    Yokode, Masataka; Itai, Ryosuke; Yamashita, Yukimasa; Zen, Yoh

    2017-11-01

    Acinar cell carcinomas (ACCs) and mixed acinar-endocrine carcinomas (MAECs) of the pancreas are rare, accounting for only 1% of pancreatic tumors. Although both typically present at an advanced stage, chemotherapeutic regimes have not yet been standardized. A 65-year-old man presented with a large mass in the pancreatic tail with multiple liver metastases. He was initially treated with gemcitabine for suspected ductal carcinoma of the pancreas, but no response was observed. S-1, administered as second-line chemotherapy, showed an approximately 38% reduction in the size of the primary tumor and metastatic deposits with therapeutic effects being maintained for 12 months. When the tumor progressed again, he underwent a percutaneous liver biopsy, which led to the diagnosis of MAEC. Combination therapy with cisplatin and etoposide targeting the endocrine component was administered, and this was based on the endocrine component potentially being less sensitive to S-1 than the ACC element. However, therapy was stopped due to the development of neutropenia, and the patient is currently receiving best supportive care. Given the previous studies suggested that S-1 is more effective for ACCs than gemcitabine, MAECs may also respond to S-1 chemotherapy, similar to ACCs. Another potential interpretation is that S-1 was effective when the condition was ACC, and eventually showed decreased effectiveness when the condition shifted to MAEC. Future studies are needed to conclude whether S-1 chemotherapy truly works against MAECs or induces endocrine differentiation in ACCs as a part of the drug-resistance process.

  5. Oncogenic osteomalacia associated with soft tissue chondromyxoid fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Mi E-mail: jmpark@cmc.cuk.ac.kr; Woo, Young Kyun; Kang, Moo Il; Kang, Chang Suk; Hahn, Seong Tae

    2001-08-01

    Oncogenic osteomalacia is a rarely described clinical entity characterized by hypophosphatemia, phosphaturia, and a low concentration of 1,25-dihydroxyvitamin D{sub 3}. It is most often associated with benign mesenchymal tumor and can be cured with surgical removal of the tumor. In this paper, we present a case of oncogenic osteomalacia caused by chondromyxoid fibroma in the soft tissue of the sole of the foot in a 56-year-old woman.

  6. TAD disruption as oncogenic driver.

    Science.gov (United States)

    Valton, Anne-Laure; Dekker, Job

    2016-02-01

    Topologically Associating Domains (TADs) are conserved during evolution and play roles in guiding and constraining long-range regulation of gene expression. Disruption of TAD boundaries results in aberrant gene expression by exposing genes to inappropriate regulatory elements. Recent studies have shown that TAD disruption is often found in cancer cells and contributes to oncogenesis through two mechanisms. One mechanism locally disrupts domains by deleting or mutating a TAD boundary leading to fusion of the two adjacent TADs. The other mechanism involves genomic rearrangements that break up TADs and creates new ones without directly affecting TAD boundaries. Understanding the mechanisms by which TADs form and control long-range chromatin interactions will therefore not only provide insights into the mechanism of gene regulation in general, but will also reveal how genomic rearrangements and mutations in cancer genomes can lead to misregulation of oncogenes and tumor suppressors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    International Nuclear Information System (INIS)

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-01-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors

  8. The WIP1 oncogene promotes progression and invasion of aggressive medulloblastoma variants.

    Science.gov (United States)

    Buss, M C; Remke, M; Lee, J; Gandhi, K; Schniederjan, M J; Kool, M; Northcott, P A; Pfister, S M; Taylor, M D; Castellino, R C

    2015-02-26

    Recent studies suggest that medulloblastoma, the most common malignant brain tumor of childhood, is comprised of four disease variants. The WIP1 oncogene is overexpressed in Group 3 and 4 tumors, which contain medulloblastomas with the most aggressive clinical behavior. Our data demonstrate increased WIP1 expression in metastatic medulloblastomas, and inferior progression-free and overall survival of patients with WIP1 high-expressing medulloblastoma. Microarray analysis identified upregulation of genes involved in tumor metastasis, including the G protein-coupled receptor CXCR4, in medulloblastoma cells with high WIP1 expression. Stimulation with the CXCR4 ligand SDF1α activated PI-3 kinase signaling, and promoted growth and invasion of WIP1 high-expressing medulloblastoma cells in a p53-dependent manner. When xenografted into the cerebellum of immunodeficient mice, medulloblastoma cells with stable or endogenous high WIP1 expression exhibited strong expression of CXCR4 and activated AKT in primary and invasive tumor cells. WIP1 or CXCR4 knockdown inhibited medulloblastoma growth and invasion. WIP1 knockdown also improved the survival of mice xenografted with WIP1 high-expressing medulloblastoma cells. WIP1 knockdown inhibited cell surface localization of CXCR4 by suppressing expression of the G protein receptor kinase 5, GRK5. Restoration of wild-type GRK5 promoted Ser339 phosphorylation of CXCR4 and inhibited the growth of WIP1-stable medulloblastoma cells. Conversely, GRK5 knockdown inhibited Ser339 phosphorylation of CXCR4, increased cell surface localization of CXCR4 and promoted the growth of medulloblastoma cells with low WIP1 expression. These results demonstrate crosstalk among WIP1, CXCR4 and GRK5, which may be important for the aggressive phenotype of a subclass of medulloblastomas in children.

  9. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling.

    Science.gov (United States)

    Shrestha, Y; Schafer, E J; Boehm, J S; Thomas, S R; He, F; Du, J; Wang, S; Barretina, J; Weir, B A; Zhao, J J; Polyak, K; Golub, T R; Beroukhim, R; Hahn, W C

    2012-07-19

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK MAPK pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified p21-activated kinase 1 (PAK1) as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 30--33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation.

  10. Cyclin-dependent kinase inhibitor 3 is overexpressed in hepatocellular carcinoma and promotes tumor cell proliferation

    International Nuclear Information System (INIS)

    Xing, Chunyang; Xie, Haiyang; Zhou, Lin; Zhou, Wuhua; Zhang, Wu; Ding, Songming; Wei, Bajin; Yu, Xiaobo; Su, Rong; Zheng, Shusen

    2012-01-01

    Highlights: ► CDKN3 is commonly overexpressed in HCC and is associated with poor clinical outcome. ► Overexpression of CDKN3 could stimulate the proliferation of HCC cells by promoting G1/S transition. ► CDKN3 could inhibit the expression of p21 in HCC cells. ► Overexpression of CDKN3 has no effect on apoptosis and invasion of HCC cells. ► We identified 61 genes co-expressed with CDKN3, and BIRC5 was located at the center of the co-expression network. -- Abstract: Cyclin-dependent kinase inhibitor 3 (CDKN3) belongs to the protein phosphatases family and has a dual function in cell cycling. The function of this gene has been studied in several kinds of cancers, but its role in human hepatocellular carcinoma (HCC) remains to be elucidated. In this study, we found that CDKN3 was frequently overexpressed in both HCC cell lines and clinical samples, and this overexpression was correlated with poor tumor differentiation and advanced tumor stage. Functional studies showed that overexpression of CDKN3 could promote cell proliferation by stimulating G1-S transition but has no impact on cell apoptosis and invasion. Microarray-based co-expression analysis identified a total of 61 genes co-expressed with CDKN3, with most of them involved in cell proliferation, and BIRC5 was located at the center of CDKN3 co-expression network. These results suggest that CDKN3 acts as an oncogene in human hepatocellular carcinoma and antagonism of CDKN3 may be of interest for the treatment of HCC.

  11. Malignant transformation of diploid human fibroblasts by transfection of oncogenes: Progress report, July 1986--June 1989

    International Nuclear Information System (INIS)

    McCormick, J.J.; Maher, V.M.

    1989-01-01

    Although there is good evidence that carcinogen exposure is a major cause of human cancer, it has proven impossible to transform normal human fibroblasts or epithelial cells in culture into malignant cells by treating them with carcinogens. This failure may reflect an inability to identify and isolate cells containing one or more premalignant changes so that these can be expanded and exposed to carcinogens a second time to induce additional required changes. A second serious roadblock to the sequential introduction of changes and expansion of clonally-derived cells containing such premalignant changes in the finite life span of human cells in culture. Using transfection of specific human oncogenes in a series of specially-selected vectors, we have overcome these obstacles and have recently succeeded in generating an infinite life span diploid human cell strain MSU-1.0, which appears to be normal in all other characteristics. From that cell a second cell strain, MSU-1.1, was generated which we have been able to transform into a malignant state not only by transfecting the cells with oncogenes but also by treating them with chemical carcinogens. We now have evidence that there is not just a single linear process which results in malignant transformation. Rather, cells appear to progress to malignancy on a series of parallel, sometimes overlapping tracks. We now propose to carry out detailed studies of the specific mechanisms of malignant cell transformation using the cell strains available in this laboratory to achieve the goal of building relevant quantitative models of carcinogenesis. 29 refs

  12. SAJS SAJS

    African Journals Online (AJOL)

    The acinar cells constitute most of the mass of the pancreas. Acinar cell carcinoma is a rare malignant tumour of the pancreatic exocrine cells; it comprises approximately 1% of malignant pancreatic tumours.1 The majority are pure acinar cell cancers; however, a minor endocrine component may occur. If the endocrine ...

  13. Double demonstration of oncogenic high risk human papilloma virus DNA and HPV-E7 protein in oral cancers.

    Science.gov (United States)

    Pannone, G; Santoro, A; Carinci, F; Bufo, P; Papagerakis, S M; Rubini, C; Campisi, G; Giovannelli, L; Contaldo, M; Serpico, R; Mazzotta, M; Lo Muzio, L

    2011-01-01

    Oncogenic HPVs are necessarily involved in cervical cancer but their role in oral carcinogenesis is debated. To detect HPV in oral cancer, 38 cases of formalin fixed-paraffin embedded OSCC were studied by both DNA genotyping (MY09/11 L1 consensus primers in combination with GP5-GP6 primer pair followed by sequencing) and immunohistochemistry (monoclonal Abs against capsid protein and HPV-E7 protein, K1H8 DAKO and clone 8C9 INVITROGEN, respectively). HPV-16 tonsil cancer was used as positive control. The overall prevalence of HPV infection in OSCCs was 10.5%. Amplification of DNA samples showed single HPV DNA infection in 3 cases (HPV16; HPV53; HPV70) and double infection in one case of cheek cancer (HPV31/HPV44). The overall HR-HPV prevalence was 7.5%. E-7 antigen was immunohistochemically detected in all HPV-positive cases. HPV+ OSCC cases showed an overall better outcome than HPV negative oral cancers, as evaluated by Kaplan-Meier curves. HPVs exert their oncogenic role after DNA integration, gene expression of E5, E6 and E7 loci and p53/pRb host proteins suppression. This study showed that HPV-E7 protein inactivating pRb is expressed in oral cancer cells infected by oncogenic HPV other than classical HR-HPV-16/18. Interestingly HPV-70, considered a low risk virus with no definite collocation in oncogenic type category, gives rise to the expression of HPV-E7 protein and inactivate pRb in oral cancer. HPV-70, as proved in current literature, is able to inactivates also p53 protein, promoting cell immortalization. HPV-53, classified as a possible high risk virus, expresses E7 protein in OSCC, contributing to oral carcinogenesis. We have identified among OSCCs, a subgroup characterized by HPV infection (10.5%). Finally, we have proved the oncogenic potential of some HPV virus types, not well known in literature.

  14. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1)

    DEFF Research Database (Denmark)

    Marzec, Michal; Zhang, Qian; Goradia, Ami

    2008-01-01

    The mechanisms of malignant cell transformation caused by the oncogenic, chimeric nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) remain only partially understood, with most of the previous studies focusing mainly on the impact of NPM/ALK on cell survival and proliferation. Here we report th...

  15. Transformation and oncogenicity by Adenoviruses

    NARCIS (Netherlands)

    Bernards, R.A.; Eb, A.J. van der

    1984-01-01

    Adenoviruses have attracted considerable attention since it was discovered by TRENTIN et all. and HUEBNER et al. that certain species (formerly called serotypes) are oncogenic when injected into newborn hamsters. Since then, adenoviruses have been used extensively as a model for studies on tumor

  16. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    International Nuclear Information System (INIS)

    Talhouk, Rabih S.; Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania; El-Sabban, Marwan E.

    2013-01-01

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  17. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    Energy Technology Data Exchange (ETDEWEB)

    Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); El-Sabban, Marwan E., E-mail: me00@aub.edu.lb [Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon)

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  18. The Effect of Coexistence of a Pair of Mutated Oncogenes on the Survival Rate of Invasive Breast Carcinoma Patients

    Science.gov (United States)

    Nair, D. R.

    2017-12-01

    The purpose of this project was to determine the effect of two mutated oncogenes on the survival rate from invasive breast carcinoma when in comparison to the mutation of a single oncogene on the survival rate. An oncogene is defined as a gene, that when mutated, can lead to cancer. The two oncogenes used in this project were human epidermal growth factor receptor 2 (HER2) and c-myc (MYC). HER2 and MYC are both oncogenes that contribute to the formation of cancer. HER2 proteins are receptors on breast cells, and when the HER2 gene is mutated, there is an overexpression of HER2 protein on the breast cell. This makes the breast cells proliferate uncontrollably. MYC is a gene that codes for a transcription factor that plays a role in cell cycle progression. The overexpression of MYC also leads to the proliferation of cells. I hypothesized that if there is a mutation in both the MYC and HER2 genes, then the survival rate of invasive breast carcinoma patients will be lower compared to patients with the mutations of only MYC or HER2. To test this hypothesis, we conducted individual gene searches in CBioPortal for HER2 in the datasets from the studies titled TCGA Nature 2012, TCGA Cell 2015, and TCGA Provisional. We conducted individual gene searches in CBioPortal for MYC in the same datasets. The survival rate data was then exported and analyzed for patients with mutations of either HER2 or MYC and with mutations of both genes. To determine the cases that had both HER2 and MYC mutations, we found the overlapping cases in both HER2 and MYC groups for all three datasets. We calculated the median of the survival data for cases where either HER2 or MYC was mutated and cases where both MYC and HER2 were mutated. From the first dataset, the median of MYC data was 95.53, HER2 data was 95.83, and both HER2 and MYC data was 91.24. In the second dataset, the median of MYC data was 92.17 , HER2 data was 93.5, and both HER2 and MYC data was 87.95 . In the third dataset, the median

  19. Oncogene expression in primary lung tumors in dogs that inhaled 239PuO2

    International Nuclear Information System (INIS)

    Kelly, G.; Kerkof, P.R.; Haley, P.J.

    1988-01-01

    Ten radiation-induced and three spontaneous lung tumors were analyzed for aberrant expression of known oncogenes. In 12 of 13 tumors tested, sequences hybridizing to the c-myc oncogene were expressed at levels 1.5 times higher than sequences hybridizing to β-actin. This level of oncogene expression was also observed in 9 of 13 tumors for 1 or more members of the ras family of oncogenes. Seven of thirteen tumors examined express sequences that hybridize with clones of v-ros or c-met. The ros and met clones both code for oncogenes whose normal homologues are transmembrane proteins related to the insulin receptor. (author)

  20. EWS-FLI1 inhibits TNFα-induced NFκB-dependent transcription in Ewing sarcoma cells

    International Nuclear Information System (INIS)

    Lagirand-Cantaloube, Julie; Laud, Karine; Lilienbaum, Alain; Tirode, Franck; Delattre, Olivier; Auclair, Christian; Kryszke, Marie-Helene

    2010-01-01

    Research highlights: → EWS-FLI1 interferes with TNF-induced activation of NFκB in Ewing sarcoma cells. → EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NFκB binding to DNA. → EWS-FLI1 reduces TNF-stimulated NFκB-dependent transcriptional activation. → Constitutive NFκB activity is not affected by EWS-FLI1. → EWS-FLI1 physically interacts with NFκB p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NFκB) is a tightly regulated transcription factor controlling cell survival, proliferation and differentiation, as well as tumorigenesis. NFκB activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NFκB activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NFκB basal activity, but impairs TNF-induced NFκB-driven transcription, at least in part through inhibition of NFκB binding to DNA. We detected an in vivo physical interaction between the fusion protein and NFκB p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NFκB.

  1. Orphan nuclear receptor TLX functions as a potent suppressor of oncogene-induced senescence in prostate cancer via its transcriptional co-regulation of the CDKN1A (p21(WAF1) (/) (CIP1) ) and SIRT1 genes.

    Science.gov (United States)

    Wu, Dinglan; Yu, Shan; Jia, Lin; Zou, Chang; Xu, Zhenyu; Xiao, Lijia; Wong, Kam-Bo; Ng, Chi-Fai; Chan, Franky L

    2015-05-01

    Oncogene-induced senescence is an important tumour-suppressing mechanism to prevent both premalignant transformation and cancer progression. Overcoming this process is a critical step in early cancer development. The druggable orphan nuclear receptor TLX (NR2E1) is characterized as an important regulator of neural stem cells and is also implicated in the development of some brain tumours. However, its exact functional roles in cancer growth regulation still remain unclear. Here we report that TLX can act as a promoter of tumourigenesis in prostate cancer by suppressing oncogene-induced senescence. We determined that TLX exhibited an increased expression in high-grade prostate cancer tissues and many prostate cancer cell lines. Functional studies revealed that TLX could perform an oncogenic function in prostate cancer cells, as its knockdown triggered cellular senescence and cell growth arrest in vitro and in vivo, whereas its over-expression promoted the malignant growth of prostate cancer cells. Furthermore, enhancement of TLX activity, by either ectopic expression or ligand stimulation, could potently prevent doxorubicin-induced senescence in prostate cancer cells and also allow prostatic epithelial cells to escape oncogene-induced senescence induced either by activated oncogene H-Ras(G12V) or knockdown of tumour suppressor PTEN, via a mechanism of direct but differential transcriptional regulation of two senescence-associated genes, repression of CDKN1A and transactivation of SIRT1. Together, our present study shows, for the first time, that TLX may play an important role in prostate carcinogenesis through its suppression of oncogene-induced senescence, and also suggests that targeting the senescence-regulatory TLX is of potential therapeutic significance in prostate cancer. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Targeting oncogenic Myc as a strategy for cancer treatment.

    Science.gov (United States)

    Chen, Hui; Liu, Hudan; Qing, Guoliang

    2018-01-01

    The MYC family oncogene is deregulated in >50% of human cancers, and this deregulation is frequently associated with poor prognosis and unfavorable patient survival. Myc has a central role in almost every aspect of the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. Although Myc inhibition would be a powerful approach for the treatment of many types of cancers, direct targeting of Myc has been a challenge for decades owing to its "undruggable" protein structure. Hence, alternatives to Myc blockade have been widely explored to achieve desirable anti-tumor effects, including Myc/Max complex disruption, MYC transcription and/or translation inhibition, and Myc destabilization as well as the synthetic lethality associated with Myc overexpression. In this review, we summarize the latest advances in targeting oncogenic Myc, particularly for cancer therapeutic purposes.

  3. Trefoil factor 3 is required for differentiation of thyroid follicular cells and acts as a context-dependent tumor suppressor.

    Science.gov (United States)

    Abols, A; Ducena, K; Andrejeva, D; Sadovska, L; Zandberga, E; Vilmanis, J; Narbuts, Z; Tars, J; Eglitis, J; Pirags, V; Line, A

    2015-01-01

    Trefoil factor 3 (TFF3) is overexpressed in a variety of solid epithelial cancers, where it has been shown to promote migration, invasion, proliferation, survival and angiogenesis. On the contrary, in the majority of thyroid tumors, it is downregulated, yet its role in the development of thyroid cancer remains unknown. Here we show that TFF3 exhibits strong cytoplasmic staining of normal thyroid follicular cells and colloid and the staining is increased in hyperfunctioning thyroid nodules, while it is decreased in all thyroid cancers of follicular cell origin. By meta-analysis of gene expression datasets, we found that in the thyroid cancer, conversely to the breast cancer, the expression of TFF3 mRNA was downregulated by estrogen signaling and confirmed this by treating thyroid cancer cells with estradiol. Forced expression of TFF3 in anaplastic thyroid cancer cells resulted in decreased cell proliferation, clonal spheroid formation and entry into the S phase. Furthermore, it induced acquisition of epithelial-like cell morphology and expression of the differentiation markers of thyroid follicular cells and transcription factors implicated in the thyroid morphogenesis and function. Taken together, this study provides the first evidence that TFF3 may act as a tumor suppressor or an oncogene depending on the cellular context.

  4. High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis.

    Science.gov (United States)

    Yeo-Teh, Nicole S L; Ito, Yoshiaki; Jha, Sudhakar

    2018-06-08

    Infection with high-risk human papillomavirus (HPV) has been linked to several human cancers, the most prominent of which is cervical cancer. The integration of the viral genome into the host genome is one of the manners in which the viral oncogenes E6 and E7 achieve persistent expression. The most well-studied cellular targets of the viral oncogenes E6 and E7 are p53 and pRb, respectively. However, recent research has demonstrated the ability of these two viral factors to target many more cellular factors, including proteins which regulate epigenetic marks and splicing changes in the cell. These have the ability to exert a global change, which eventually culminates to uncontrolled proliferation and carcinogenesis.

  5. Oncogenic osteomalacia diagnosed by blood pool scintigraphy

    International Nuclear Information System (INIS)

    Palaniswamy, Shanmuga Sundaram; Subramanyam, Padma; Kumar, Harish

    2011-01-01

    Oncogenic osteomalacia is a rare metabolic bone disease characterized by phosphaturia and hypophosphatemia. Certain tumors secrete a phosphaturic factor, which results in this metabolic abnormality; this factor called as phosphatonin, is in fact a fibroblast growth factor 23 (FGF-23) involved closely in phosphate homeostasis and skeletogenesis. Complete excision of these tumors facilitates reversal of the problem. We have reported here the case of a patient who was crippled with this disease and on thorough investigation revealed an oncogenic osteomalacia with tumor focus in the right tibia. The tumor was identified as a mesenchymal tumor, i.e., hemangiopericytoma. Tumor excision alleviated patient symptoms with rapid symptomatic and biochemical improvement

  6. Mechanisms of radiation-induced neoplastic cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  7. Mechanisms of radiation-induced neoplastic cell transformation

    International Nuclear Information System (INIS)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table

  8. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp transcription factors

    Directory of Open Access Journals (Sweden)

    Pathi Satya

    2011-08-01

    Full Text Available Abstract Background Betulinic acid (BA inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. Methods The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a and ZBTB10 mRNA expression. Results BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS, ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. Conclusions These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.

  9. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

    International Nuclear Information System (INIS)

    Chintharlapalli, Sudhakar; Papineni, Sabitha; Lei, Ping; Pathi, Satya; Safe, Stephen

    2011-01-01

    Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression. BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent

  10. TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRα gene expression.

    Science.gov (United States)

    Dadi, Saïda; Le Noir, Sandrine; Payet-Bornet, Dominique; Lhermitte, Ludovic; Zacarias-Cabeza, Joaquin; Bergeron, Julie; Villarèse, Patrick; Vachez, Elodie; Dik, Willem A; Millien, Corinne; Radford, Isabelle; Verhoeyen, Els; Cosset, François-Loïc; Petit, Arnaud; Ifrah, Norbert; Dombret, Hervé; Hermine, Olivier; Spicuglia, Salvatore; Langerak, Anton W; Macintyre, Elizabeth A; Nadel, Bertrand; Ferrier, Pierre; Asnafi, Vahid

    2012-04-17

    Acute lymphoblastic leukemias (ALLs) are characterized by multistep oncogenic processes leading to cell-differentiation arrest and proliferation. Specific abrogation of maturation blockage constitutes a promising therapeutic option in cancer, which requires precise understanding of the underlying molecular mechanisms. We show that the cortical thymic maturation arrest in T-lineage ALLs that overexpress TLX1 or TLX3 is due to binding of TLX1/TLX3 to ETS1, leading to repression of T cell receptor (TCR) α enhanceosome activity and blocked TCR-Jα rearrangement. TLX1/TLX3 abrogation or enforced TCRαβ expression leads to TCRα rearrangement and apoptosis. Importantly, the autoextinction of clones carrying TCRα-driven TLX1 expression supports TLX "addiction" in TLX-positive leukemias and provides further rationale for targeted therapy based on disruption of TLX1/TLX3. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2.

    Science.gov (United States)

    Zuo, Tao; Liu, Runhua; Zhang, Huiming; Chang, Xing; Liu, Yan; Wang, Lizhong; Zheng, Pan; Liu, Yang

    2007-12-01

    S-phase kinase-associated protein 2 (SKP2) is a component of the E3 ubiquitin ligase SKP1-Cul1-Fbox complex. Overexpression of SKP2 results in cell cycle dysregulation and carcinogenesis; however, the genetic lesions that cause this upregulation are poorly understood. We recently demonstrated that forkhead box P3 (FOXP3) is an X-linked breast cancer suppressor and an important repressor of the oncogene ERBB2/HER2. Since FOXP3 suppresses tumor growth regardless of whether the tumors overexpress ERBB2/HER2, additional FOXP3 targets may be involved in its tumor suppressor activity. Here, we show that mammary carcinomas from mice heterozygous for a Foxp3 mutation exhibited increased Skp2 expression. Ectopic expression of FOXP3 in mouse mammary cancer cells repressed SKP2 expression with a corresponding increase in p27 and polyploidy. Conversely, siRNA silencing of the FOXP3 gene in human mammary epithelial cells increased SKP2 expression. We also show that Foxp3 directly interacted with and repressed the Skp2 promoter. Moreover, the analysis of over 200 primary breast cancer samples revealed an inverse correlation between FOXP3 and SKP2 levels. Finally, we demonstrated that downregulation of SKP2 was critical for FOXP3-mediated growth inhibition in breast cancer cells that do not overexpress ERBB2/HER2. Our data provide genetic, biochemical, and functional evidence that FOXP3 is a novel transcriptional repressor for the oncogene SKP2.

  12. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30{sup II} accessory protein and the induction of oncogenic cellular transformation by p30{sup II}/c-MYC

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C.; He, Jeffrey; Harrod, Carolyn K.; Barnett, Braden [Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275-0376 (United States); Ratner, Lee [Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Lairmore, Michael D. [University of California-Davis, School of Veterinary Medicine, One Shields Avenue, Davis, CA 95618 (United States); Martinez, Ernest [Department of Biochemistry, University of California, Riverside, CA 92521 (United States); Lüscher, Bernhard [Institute of Biochemistry, Klinikum, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen (Germany); Robson, Craig N. [Northern Institute for Cancer Research, Newcastle University, The Medical School, Newcastle upon Tyne, NE2 4HH (United Kingdom); Henriksson, Marie [Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Stockholm (Sweden); Harrod, Robert, E-mail: rharrod@smu.edu [Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275-0376 (United States)

    2015-02-15

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30{sup II} protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30{sup II} interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30{sup II} and c-MYC remain to be completely understood. Herein we demonstrate that p30{sup II} induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30{sup II} in c-myc{sup −/−} HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30{sup II} is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30{sup II} inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30{sup II}/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. - Highlights: • Acetylation of c-MYC is required for oncogenic transformation by HTLV-1 p30{sup II}/c-MYC. • Acetylation-defective c-MYC mutants are impaired for foci-formation by p30{sup II}/c-MYC. • The HTLV-1 p30{sup II} protein induces lysine-acetylation of c-MYC. • p30{sup II} is present in c-MYC nucleoprotein complexes in HTLV-1-transformed T-cells. • HTLV-1 p30{sup II} inhibits apoptosis in c-MYC-expressing proliferating cells.

  13. Secretory vesicles in live cells are not free-floating but tethered to filamentous structures: A study using photonic force microscopy

    International Nuclear Information System (INIS)

    Abu-Hamdah, Rania; Cho, Won Jin; Hoerber, J.K.H.; Jena, Bhanu P.

    2006-01-01

    It is well established that actin and microtubule cytoskeletal systems are involved in organelle transport and membrane trafficking in cells. This is also true for the transport of secretory vesicles in neuroendocrine cells and neurons. It was however unclear whether secretory vesicles remain free-floating, only to associate with such cytoskeletal systems when needing transport. This hypothesis was tested using live pancreatic acinar cells in physiological buffer solutions, using the photonic force microscope (PFM). When membrane-bound secretory vesicles (0.2-1.2 μm in diameter) in live pancreatic acinar cells were trapped at the laser focus of the PFM and pulled, they were all found tethered to filamentous structures. Mild exposure of cells to nocodazole and cytochalasin B, disrupts the tether. Immunoblot analysis of isolated secretory vesicles, further demonstrated the association of actin, myosin V, and kinesin. These studies demonstrate for the first time that secretory vesicles in live pancreatic acinar cells are tethered and not free-floating, suggesting that following vesicle biogenesis, they are placed on their own railroad track, ready to be transported to their final destination within the cell when required. This makes sense, since precision and regulation are the hallmarks of all cellular process, and therefore would hold true for the transport and localization of subcellular organelles such as secretory vesicles

  14. Secretory vesicles in live cells are not free-floating but tethered to filamentous structures: A study using photonic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Hamdah, Rania [Department of Physiology, Wayne State University School of Medicine, 5245 Scott Hall, 540 E. Canfield, Detroit, MI 48201 (United States); Cho, Won Jin [Department of Physiology, Wayne State University School of Medicine, 5245 Scott Hall, 540 E. Canfield, Detroit, MI 48201 (United States); Hoerber, J.K.H. [Department of Physics, University of Bristol, Bristol BS8 1TD (United Kingdom); Jena, Bhanu P. [Department of Physiology, Wayne State University School of Medicine, 5245 Scott Hall, 540 E. Canfield, Detroit, MI 48201 (United States)]. E-mail: bjena@med.wayne.edu

    2006-06-15

    It is well established that actin and microtubule cytoskeletal systems are involved in organelle transport and membrane trafficking in cells. This is also true for the transport of secretory vesicles in neuroendocrine cells and neurons. It was however unclear whether secretory vesicles remain free-floating, only to associate with such cytoskeletal systems when needing transport. This hypothesis was tested using live pancreatic acinar cells in physiological buffer solutions, using the photonic force microscope (PFM). When membrane-bound secretory vesicles (0.2-1.2 {mu}m in diameter) in live pancreatic acinar cells were trapped at the laser focus of the PFM and pulled, they were all found tethered to filamentous structures. Mild exposure of cells to nocodazole and cytochalasin B, disrupts the tether. Immunoblot analysis of isolated secretory vesicles, further demonstrated the association of actin, myosin V, and kinesin. These studies demonstrate for the first time that secretory vesicles in live pancreatic acinar cells are tethered and not free-floating, suggesting that following vesicle biogenesis, they are placed on their own railroad track, ready to be transported to their final destination within the cell when required. This makes sense, since precision and regulation are the hallmarks of all cellular process, and therefore would hold true for the transport and localization of subcellular organelles such as secretory vesicles.

  15. Binomial mitotic segregation of MYCN-carrying double minutes in neuroblastoma illustrates the role of randomness in oncogene amplification.

    Directory of Open Access Journals (Sweden)

    Gisela Lundberg

    2008-08-01

    Full Text Available Amplification of the oncogene MYCN in double minutes (DMs is a common finding in neuroblastoma (NB. Because DMs lack centromeric sequences it has been unclear how NB cells retain and amplify extrachromosomal MYCN copies during tumour development.We show that MYCN-carrying DMs in NB cells translocate from the nuclear interior to the periphery of the condensing chromatin at transition from interphase to prophase and are preferentially located adjacent to the telomere repeat sequences of the chromosomes throughout cell division. However, DM segregation was not affected by disruption of the telosome nucleoprotein complex and DMs readily migrated from human to murine chromatin in human/mouse cell hybrids, indicating that they do not bind to specific positional elements in human chromosomes. Scoring DM copy-numbers in ana/telophase cells revealed that DM segregation could be closely approximated by a binomial random distribution. Colony-forming assay demonstrated a strong growth-advantage for NB cells with high DM (MYCN copy-numbers, compared to NB cells with lower copy-numbers. In fact, the overall distribution of DMs in growing NB cell populations could be readily reproduced by a mathematical model assuming binomial segregation at cell division combined with a proliferative advantage for cells with high DM copy-numbers.Binomial segregation at cell division explains the high degree of MYCN copy-number variability in NB. Our findings also provide a proof-of-principle for oncogene amplification through creation of genetic diversity by random events followed by Darwinian selection.

  16. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  17. Oncogenic osteomalacia due to FGF23-expressing colon adenocarcinoma.

    Science.gov (United States)

    Leaf, David E; Pereira, Renata C; Bazari, Hasan; Jüppner, Harald

    2013-03-01

    Oncogenic osteomalacia, a paraneoplastic syndrome associated with hypophosphatemia due to increased urinary phosphate excretion, is caused by excessive synthesis and secretion of fibroblast growth factor 23 (FGF23), a phosphaturic hormone that is normally produced by osteocytes. Most cases of oncogenic osteomalacia have been associated with benign tumors of bone or soft tissue; however, whether malignant neoplasms can also produce and secrete FGF23 is currently unknown. The aim was to determine whether a malignant neoplasm could cause oncogenic osteomalacia through excessive production and secretion of FGF23. We describe an 80-year-old woman with stage IV colon adenocarcinoma who presented with severe hypophosphatemia (0.4 mg/dL; reference, 2.6-4.5 mg/dL). Fractional excretion of phosphate was 34% (reference, osteomalacia should be considered in the differential diagnosis for patients with a malignant tumor who present with hypophosphatemia.

  18. Former smokers with non-small-cell lung cancers: a comprehensive investigation of clinicopathologic characteristics, oncogenic drivers, and prognosis.

    Science.gov (United States)

    Zheng, Shanbo; Wang, Rui; Zhang, Yang; Pan, Yunjian; Cheng, Chao; Zheng, Difan; Sun, Yihua; Chen, Haiquan

    2016-08-01

    The aim of this present investigation was to evaluate the clinicopathologic characteristics, oncogenic drivers, and prognosis of former smokers with non-small-cell lung cancer (NSCLC), and to compare them with those of the current and never smokers. This investigation was a single-institution retrospective study of 2289 NSCLC patients, who were classified as former, current, or never smokers. A collection was made of the clinicopathological characteristics, spectra of well-identified driver genes and survival rates. The survival rates were compared using log-rank test, and independent prognostic factors, identified using Cox regression analysis. Of 2289 NSCLC patients, 257 (11.2%) were former smokers; 868 (37.9%), current smokers; and 1164 (50.9%), never smokers. Compared with the current, the former were characterized by older age at diagnosis (64.3y vs. 59.9y; P vs. 39.5%; P = 0.017), fewer solid predominance in adenocarcinomas (16.2% vs. 29.5%; P = 0.005), and more EGFR mutation (33.2% vs. 20.7%; P vs. 11.9%, P = 0.041). No statistically significant survival differences were observed between the former and current. However, the light former smokers presented favorable overall survival when compared with the light current and heavy former or current (the light former vs. the heavy former, P = 0.028; the light former vs. the light current, P = 0.048; and the light former vs. the heavy current, P = 0.048). Our findings suggest that the former smokers with NSCLCs can have distinctive clinicopathologic characteristics, oncogenic drivers, and prognosis, and they, especially the light former, can benefit from smoking cessation. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  19. Expression of Wnt-1, TGF-β and related cell–cell adhesion components following radiotherapy in salivary glands of patients with manifested radiogenic xerostomia

    International Nuclear Information System (INIS)

    Hakim, Samer George; Ribbat, Julika; Berndt, Alexander; Richter, Petra; Kosmehl, Hartwig; Benedek, Geza A.; Jacobsen, Hans Christian; Trenkle, Thomas; Sieg, Peter; Rades, Dirk

    2011-01-01

    Background: Radiation-induced xerostomia still represents a common symptom following radiotherapy of head and neck malignancies, which significantly impairs the patient’s quality of life. In this cross-sectional study, human salivary glands were investigated to assess the role of Wnt/β-catenin and TGF-β pathways in the pathogenic process of radiogenic impairment of salivary function. Methods: Irradiated human salivary glands were investigated in patients with manifested xerostomia. Alteration of Wnt-1 and cell–cell adhesion was evaluated immunohistologically as well as changes in the expression of TGF-β were assessed in salivary gland tissue. Results: We assessed two alteration patterns in which Wnt-1 expression represents one change along with up-regulation of β-catenin and E-cadherin in irradiated but viable acinar cells. Increased expression of tenascin-C was observed in sites of epithelial–mesenchymal interaction and loss of cell–cell adhesion was assessed in translocated epithelial cells in the stroma. Conclusion: Increased transdifferentiation and remodeling of acinar structures was associated with decrease of viable acinar structures. The role of Wnt and TGF signaling may provide a potential therapeutic approach to prevent radiation-induced damage to salivary glands during radiotherapy for head and neck cancer.

  20. Transforming properties of Felis catus papillomavirus type 2 E6 and E7 putative oncogenes in vitro and their transcriptional activity in feline squamous cell carcinoma in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Altamura, Gennaro, E-mail: gennaro.altamura@unina.it [Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples (Italy); Corteggio, Annunziata, E-mail: ancorteg@unina.it [Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples (Italy); Pacini, Laura, E-mail: PaciniL@students.iarc.fr [Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon (France); Conte, Andrea, E-mail: andreaconte88@hotmail.it [Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples (Italy); Pierantoni, Giovanna Maria, E-mail: gmpieran@unina.it [Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples (Italy); Tommasino, Massimo, E-mail: tommasinom@iarc.fr [Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon (France); Accardi, Rosita, E-mail: accardir@iarc.fr [Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon (France); Borzacchiello, Giuseppe, E-mail: borzacch@unina.it [Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples (Italy)

    2016-09-15

    Felis catus papillomavirus type 2 (FcaPV2) DNA is found in feline cutaneous squamous cell carcinomas (SCCs); however, its biological properties are still uncharacterized. In this study, we successfully expressed FcaPV2 E6 and E7 putative oncogenes in feline epithelial cells and demonstrated that FcaPV2 E6 binds to p53, impairing its protein level. In addition, E6 and E7 inhibited ultraviolet B (UVB)-triggered accumulation of p53, p21 and pro-apoptotic markers such as Cleaved Caspase3, Bax and Bak, suggesting a synergistic action of the virus with UV exposure in tumour pathogenesis. Furthermore, FcaPV2 E7 bound to feline pRb and impaired pRb levels, resulting in upregulation of the downstream pro-proliferative genes Cyclin A and Cdc2. Importantly, we demonstrated mRNA expression of FcaPV2 E2, E6 and E7 in feline SCC samples, strengthening the hypothesis of a causative role in the development of feline SCC. - Highlights: • FcaPV2 E6 binds to and deregulates feline p53 protein. • FcaPV2 E7 binds to and deregulates feline pRb protein. • FcaPV2 oncogenes inhibit UVB-induced apoptosis. • FcaPV2 E6E7 and E7 increase the lifespan of primary cells. • FcaPV2 E2, E6 and E7 are expressed at the mRNA level in feline SCC in vivo.

  1. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment

    Science.gov (United States)

    Willis, Rudolph E.

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  2. Chemo-elastic modeling of invasive carcinoma development accompanied by oncogenic epithelial-mesenchymal transition

    Science.gov (United States)

    Bratsun, D. A.; Krasnyakov, I. V.; Pismen, L.

    2017-09-01

    We present a further development of a multiscale chemo-mechanical model of carcinoma growth in the epithelium tissue proposed earlier. The epithelium is represented by an elastic 2D array of polygonal cells, each with its own gene regulation dynamics. The model allows the simulation of evolution of multiple cells interacting via the chemical signaling or mechanically induced strain. The algorithm takes into account the division and intercalation of cells. The latter is most important since, first of all, carcinoma cells lose cell-cell adhesion and polarity via the oncogenic variant of the epithelial-mesenchymal transition (EMT) at which cells gain migratory and invasive properties. This process is mediated by E-cadherin repression and requires the differentiation of tumor cells with respect to the edge of the tumor that means that front cells should be most mobile. Taking into account this suggestion, we present the results of simulations demonstrating different patterns of carcinoma invasion. The comparison of our results with recent experimental observations is given and discussed.

  3. Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene.

    Science.gov (United States)

    Takahashi, C; Akiyama, N; Matsuzaki, T; Takai, S; Kitayama, H; Noda, M

    1996-05-16

    A cDNA (termed CT124) encoding a carboxyl-terminal fragment of the human homeobox protein MSX-2 was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in NIH3T3 cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a near full-length human MSX-2 cDNA and tested its activities in two cell systems, i.e. fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated CT124 cDNA interfered with the transforming activities of v-Ki-ras oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and CT124 was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that CT124 may act as a dominant suppressor of MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  4. EphrinB1 expression is dysregulated and promotes oncogenic signaling in medulloblastoma.

    Science.gov (United States)

    McKinney, Nicole; Yuan, Liangping; Zhang, Hongying; Liu, Jingbo; Cho, Yoon-Jae; Rushing, Elisabeth; Schniederjan, Matthew; MacDonald, Tobey J

    2015-01-01

    Eph receptors and ephrin ligands are master regulators of oncogenic signaling required for proliferation, migration, and metastasis. Yet, Eph/ephrin expression and activity in medulloblastoma (MB), the most common malignant brain tumor of childhood, remains poorly defined. We hypothesized that Eph/ephrins are differentially expressed by sonic hedgehog (SHH) and non-SHH MB and that specific members contribute to the aggressive phenotype. Affymetrix gene expression profiling of 29 childhood MB, separated into SHH (N = 11) and non-SHH (N = 18), was performed followed by protein validation of selected Eph/ephrins in another 60 MB and two MB cell lines (DAOY, D556). Functional assays were performed using MB cells overexpressing or deleted for selected ephrins. We found EPHB4 and EFNA4 almost exclusively expressed by SHH MB, whereas EPHA2, EPHA8, EFNA1 and EFNA3 are predominantly expressed by non-SHH MB. The remaining family members, except EFNB1, are ubiquitously expressed by over 70-90 % MB, irrespective of subgroup. EFNB1 is the only member differentially expressed by 28 % of SHH and non-SHH MB. Corresponding protein expression for EphB/ephrinB1 and B2 was validated in MB. Only ephrinB2 was also detected in fetal cerebellum, indicating that EphB/ephrinB1 expression is MB-specific. EphrinB1 immunopositivity localizes to tumor cells within MB with the highest proliferative index. EphrinB1 overexpression promotes EphB activation, alters F-actin distribution and morphology, decreases adhesion, and significantly promotes proliferation. Either silencing or overexpression of ephrinB1 impairs migration. These results indicate that EphrinB1 is uniquely dysregulated in MB and promotes oncogenic responses in MB cells, implicating ephrinB1 as a potential target.

  5. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma.

    Science.gov (United States)

    Mario Gonzalez-Meljem, Jose; Haston, Scott; Carreno, Gabriela; Apps, John R; Pozzi, Sara; Stache, Christina; Kaushal, Grace; Virasami, Alex; Panousopoulos, Leonidas; Neda Mousavy-Gharavy, Seyedeh; Guerrero, Ana; Rashid, Mamunur; Jani, Nital; Goding, Colin R; Jacques, Thomas S; Adams, David J; Gil, Jesus; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro

    2017-11-28

    Senescent cells may promote tumour progression through the activation of a senescence-associated secretory phenotype (SASP), whether these cells are capable of initiating tumourigenesis in vivo is not known. Expression of oncogenic β-catenin in Sox2+ young adult pituitary stem cells leads to formation of clusters of stem cells and induction of tumours resembling human adamantinomatous craniopharyngioma (ACP), derived from Sox2- cells in a paracrine manner. Here, we uncover the mechanisms underlying this paracrine tumourigenesis. We show that expression of oncogenic β-catenin in Hesx1+ embryonic precursors also results in stem cell clusters and paracrine tumours. We reveal that human and mouse clusters are analogous and share a common signature of senescence and SASP. Finally, we show that mice with reduced senescence and SASP responses exhibit decreased tumour-inducing potential. Together, we provide evidence that senescence and a stem cell-associated SASP drive cell transformation and tumour initiation in vivo in an age-dependent fashion.

  6. Identification of Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function

    Science.gov (United States)

    2017-09-01

    Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function September 2017 x 1Sep2016...31Aug2017 Email: mbirrer@partners.org 6 Identification of Novel Ovarian Cancer Oncogenes that Function by Regulating Exosome Function xx

  7. The Oncogenic Risks of Diagnostic CT Scam Studies in Children

    International Nuclear Information System (INIS)

    Brent, R.

    2004-01-01

    Brenner et al (2001) reported that estimates of the exposure to children from CT scans indicates that the exposures are both higher than from conventional radiographic studies and higher than is necessary to obtain quality examinations. utilizing the oncogenic risk data from the RERF study in Japan, Brenner et al estimated that the oncogenic risk in this population of CT exposed children exposed each year would result in an additional 500 cases of cancer. This risk estimate is supported by the RERF epidemiological data obtained from the populations exposed in Hiroshima and Nagasaki. the increased risks associated with the increased exposure from CT scans have raised concern and stimulated discussion. Although there is little doubt about the benefits of CT scans in improving the health care of children, there is concern about the estimated oncogenic risk, especially since the frequency of CT studies has been increasing. Applying the oncogenic risks of ionizing radiation from the RERF data may not be appropriate for all types of radiation exposure for accurately predicting the incidence of cancer in exposed children because of the impact of 1) partial versus whole-body irradiation, and 2) the protraction of the exposure. Other population of children who have been exposed to radiation and whose incidence of cancer has been studied will be presented and those studies indicate that the risk of cancer is much lower or not increased at all with exposures in the diagnostic range. finally, the dramatic impact of the use of CT scans in clinical pediatric practice saves lives and improves diagnostic accuracy. Therefore, it is crucial that a scholarly evaluation of the risks and benefits should be initiated. The radiology community and the manufacturers have already initiated programs to decrease the exposure significantly. But it is essential that well-planned, retrospective and prospective epidemiology studies should be initiated to study the oncogenic risks. If you want to

  8. Tyr phosphatase-mediated P-ERK inhibition suppresses senescence in EIA + v-raf transformed cells, which, paradoxically, are apoptosis-protected in a MEK-dependent manner.

    Science.gov (United States)

    De Vitis, Stefania; Sonia Treglia, Antonella; Ulianich, Luca; Turco, Stefano; Terrazzano, Giuseppe; Lombardi, Angela; Miele, Claudia; Garbi, Corrado; Beguinot, Francesco; Di Jeso, Bruno

    2011-02-01

    Activation of the Ras-Raf-extracellular signal-regulated kinase (ERK) pathway causes not only proliferation and suppression of apoptosis but also the antioncogenic response of senescence. How these contrasting effects are reconciled to achieve cell transformation and cancer formation is poorly understood. In a system of two-step carcinogenesis (dedifferentiated PC EIA, transformed PC EIA-polyoma-middle T [PC EIA + Py] and PC EIA-v-raf [PC EIA + raf] cells], v-raf cooperated with EIA by virtue of a strong prosurvival effect, not elicited by Py-middle T, evident toward serum-deprivation-and H(2)O(2)-induced apoptosis. Apoptosis was detected by DNA fragmentation and annexin V staining. The prosurvival function of v-raf was, in part, mitogen-activated protein kinase/ERK kinase (MEK)-dependent, as shown by pharmacological MEK inhibition. The MEK-dependent antiapoptotic effect of v-raf was exerted despite a lower level of P-ERK1/2 in EIA + raf cells with respect to EIA + Py/EIA cells, which was dependent on a high tyrosine phosphatase activity, as shown by orthovanadate blockade. An ERK1/2 tyrosine phosphatase was likely involved. The high tyrosine phosphatase activity was instrumental to the complete suppression of senescence, detected by β-galactosidase activity, because tyrosine phosphatase blockade induced senescence in EIA + raf but not in EIA + Py cells. High tyrosine phosphatase activity and evasion from senescence were confirmed in an anaplastic thyroid cancer cell line. Therefore, besides EIA, EIA + raf cells suppress senescence through a new mechanism, namely, phosphatase-mediated P-ERK1/2 inhibition, but, paradoxically, retain the oncogenic effects of the Raf-ERK pathway. We propose that the survival effect of Raf is not a function of absolute P-ERK1/2 levels at a given time but is rather dynamically dependent on greater variations after an apoptotic stimulus.

  9. Tyr Phosphatase-Mediated P-ERK Inhibition Suppresses Senescence in EIA + v-raf Transformed Cells, Which, Paradoxically, Are Apoptosis-Protected in a MEK-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Stefania De Vitis

    2011-02-01

    Full Text Available Activation of the Ras-Raf-extracellular signal-regulated kinase (ERK pathway causes not only proliferation and suppression of apoptosis but also the antioncogenic response of senescence. How these contrasting effects are reconciled to achieve cell transformation and cancer formation is poorly understood. In a system of two-step carcinogenesis (dedifferentiated PC EIA, transformed PC EIA-polyoma-middle T [PC EIA + Py] and PC EIA-v-raf [PC EIA + raf] cells], v-raf cooperated with EIA by virtue of a strong prosurvival effect, not elicited by Py-middle T, evident toward serum-deprivation-and H2O2-induced apoptosis. Apoptosis was detected by DNA fragmentation and annexin V staining. The prosurvival function of v-raf was, in part, mitogen-activated protein kinase/ERK kinase (MEK-dependent, as shown by pharmacological MEK inhibition. The MEK-dependent antiapoptotic effect of v-raf was exerted despite a lower level of P-ERK1/2 in EIA + raf cells with respect to EIA + Py/EIA cells, which was dependent on a high tyrosine phosphatase activity, as shown by orthovanadate blockade. An ERK1/2 tyrosine phosphatase was likely involved. The high tyrosine phosphatase activity was instrumental to the complete suppression of senescence, detected by β-galactosidase activity, because tyrosine phosphatase blockade induced senescence in EIA + raf but not in EIA + Py cells. High tyrosine phosphatase activity and evasion from senescence were confirmed in an anaplastic thyroid cancer cell line. Therefore, besides EIA, EIA + raf cells suppress senescence through a new mechanism, namely, phosphatase-mediated P-ERK1/2 inhibition, but, paradoxically, retain the oncogenic effects of the Raf-ERK pathway. We propose that the survival effect of Raf is not a function of absolute P-ERK1/2 levels at a given time but is rather dynamically dependent on greater variations after an apoptotic stimulus.

  10. Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy.

    Science.gov (United States)

    Basilico, Cristina; Modica, Chiara; Maione, Federica; Vigna, Elisa; Comoglio, Paolo M

    2018-04-25

    MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and subsequent neutralization-we identified a single aminoacid in the extracellular domain of MET-lysine 842-that is critical for MvDN30 binding and engineered the corresponding recombinant decoyMET (K842E). DecoyMET K842E retains the ability to bind HGF with high affinity and inhibits HGF-induced MET phosphorylation. In HGF-dependent cellular models, MvDN30 antibody and decoyMET K842E used in combination cooperate in restraining invasive growth, and synergize in blocking cancer cell "scattering." The antibody and the decoy unbridle apoptosis of colon cancer stem cells grown in vitro as spheroids. In a preclinical model, built by orthotopic transplantation of a human pancreatic carcinoma in SCID mice engineered to express human HGF, concomitant treatment with antibody and decoy significantly reduces metastatic spread. The data reported indicate that vertical targeting of the MET/HGF axis results in powerful inhibition of ligand-dependent MET activation, providing proof of concept in favor of combined target therapy of MET "expedience." © 2018 UICC.

  11. Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish.

    Directory of Open Access Journals (Sweden)

    Cristina Santoriello

    2010-12-01

    Full Text Available Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed.Using the combinatorial Gal4-UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2-4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1-3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period.This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens.

  12. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations.

    Science.gov (United States)

    Viktorinová, Ivana; Henry, Ian; Tomancak, Pavel

    2017-11-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.

  13. Major salivary gland hypertrophy model in immature rats: morphometric and histochemical epithelial cell characteristics

    Directory of Open Access Journals (Sweden)

    Vera V. Ivanova

    2017-01-01

    Full Text Available The purpose of the study is to estimate the functional state of epithelial cells of acini and ducts of major salivary glands with hypertrophy caused by repeated incisor amputations in immature rats.Materials and methods. The experiment was carried out on immature (20 days, white male rats, divided into 3 groups: intact, control and group of rats with repeated incisor amputations. Animals were taken out in 2d, 3d, 4th, 6th, 8th, 10th and 12th weeks after the first incisor amputation. Morphofunctional state of rat major salivary glands was assessed by histological (hematoxylin and eosin, histochemistrical (Alcian blue, PAS-reaction, Brachet method and morphometrical (acini area, intralobular ducts volume methods.Results. Repeated incisor amputations led to the increase of acini area and the decrease of intralobular duct volume in submandibular glands in 2nd–4th weeks of the experiment. Cytoplasm pyroninophilia of submandibular gland acinar cells was less pronounced and intensity of PAS-reaction was more pronounced than in intact animals in 3rd week of the experiment. Morphological and functional changes of parotid and sublingual gland epithelial cells were not observed after repeated amputations of incisors in immature rats.Conclusion. Repeated incisor amputations in immature male rats lead to submandibular gland acinar cell hypertrophy in the early stages of the experiment (2d–4th weeks with accumulation of glycoproteins and protein synthesis weakening in these cells. Hypertrophy of acinar cells are accompanied by retardation in the development of granular convoluted tubule cells which are the source of synthesis and secretion of the endocrine biologically active factors of submandibular glands.

  14. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.

    Science.gov (United States)

    Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C; Sedivy, John M; Adams, Peter D

    2014-06-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.

  15. JNK Promotes Epithelial Cell Anoikis by Transcriptional and Post-translational Regulation of BH3-Only Proteins

    Directory of Open Access Journals (Sweden)

    Nomeda Girnius

    2017-11-01

    Full Text Available Summary: Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis. While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that JNK acts through a BAK/BAX-dependent apoptotic pathway by increasing BIM expression and phosphorylating BMF, leading to death of detached epithelial cells. : Developmental morphogenesis, tissue injury, and oncogenic transformation can cause epithelial cell detachment. These cells are eliminated by a specialized form of apoptosis termed anoikis. Girnius and Davis show that anoikis is mediated by the cJUN NH2-terminal kinase (JNK, which increases BIM expression and phosphorylates BMF to engage BAK/BAX-dependent apoptosis. Keywords: apoptosis, anoikis, epithelial cell, mammary gland, JNK, BAX, BAK, BH3-only protein, BIM, BMF

  16. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  17. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    Science.gov (United States)

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  18. Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance.

    Science.gov (United States)

    Galambos, A; Zok, A; Kuczmog, A; Oláh, R; Putnoky, P; Ream, W; Szegedi, E

    2013-11-01

    Grapevine rootstock transformed with an Agrobacterium oncogene-silencing transgene was resistant to certain Agrobacterium strains but sensitive to others. Thus, genetic diversity of Agrobacterium oncogenes may limit engineering crown gall resistance. Crown gall disease of grapevine induced by Agrobacterium vitis or Agrobacterium tumefaciens causes serious economic losses in viticulture. To establish crown gall-resistant lines, somatic proembryos of Vitis berlandieri × V. rupestris cv. 'Richter 110' rootstock were transformed with an oncogene-silencing transgene based on iaaM and ipt oncogene sequences from octopine-type, tumor-inducing (Ti) plasmid pTiA6. Twenty-one transgenic lines were selected, and their transgenic nature was confirmed by polymerase chain reaction (PCR). These lines were inoculated with two A. tumefaciens and three A. vitis strains. Eight lines showed resistance to octopine-type A. tumefaciens A348. Resistance correlated with the expression of the silencing genes. However, oncogene silencing was mostly sequence specific because these lines did not abolish tumorigenesis by A. vitis strains or nopaline-type A. tumefaciens C58.

  19. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yu-Qin; Xiao, Chuan-Xing; Lin, Bi-Yun; Shi, Ying; Liu, Yun-Peng; Liu, Jing-Jing; Guleng, Bayasi; Ren, Jian-Lin

    2013-01-01

    The role of Pokemon (POK erythroid myeloid ontogenic actor), a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC) and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma) as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy.

  20. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yu-Qin Zhang

    Full Text Available The role of Pokemon (POK erythroid myeloid ontogenic actor, a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy.

  1. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Rezaei, Nousin; Liontos, Michalis

    2006-01-01

    Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest...... and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression....

  2. bcr-abl oncogene activation in Philadelphia chromosome-positive acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Hermans, A.; Gow, J.; Selleri, L.; von Lindern, M.; Hagemeijer, A.; Wiedemann, L. M.; Grosveld, G.

    1988-01-01

    Tumor-specific alterations in oncogenes are thought to play a central role in the development of cancer. An example is the consistent fusion of the bcr gene to the c-abl oncogene on the Ph chromosome in CML. The Ph chromosome can also be observed in ALL. About 50% of Ph+ ALL cases, in contrast to

  3. Oncogenic osteomalacia: a clinicopathologic study of 17 bone lesions.

    Science.gov (United States)

    Park, Y. K.; Unni, K. K.; Beabout, J. W.; Hodgson, S. F.

    1994-01-01

    Oncogenic osteomalacia is an unusual and rare clinicopathologic syndrome characterized by mesenchymal tumors that apparently produce osteomalacia and biochemical abnormalities consisting of hypophosphatemia, normocalcemia, and increased levels of alkaline phosphatase. We collected from the Mayo Clinic files and from our consultation files the records for 17 cases of osteomalacia associated with bone lesions. There were five cases of fibrous dysplasia, three of hemangiopericytoma, and two of phosphaturic mesenchymal tumor. There was one case each of osteosarcoma, chondroblastoma, chondromyxoid fibroma, malignant fibrous histiocytoma, giant cell tumor, metaphyseal fibrous defect, and hemangioma. In this study we can figure out that the most common characteristic histologic features of our cases were hemangiopericytomatous vascular proliferation, fine lace-like stromal calcification, and stromal giant cells. In most of the cases, the clinical and biochemical symptoms and signs resolved soon after complete resection of the lesion. When the lesion recurred or metastasized, the symptoms and signs also recurred. PMID:7848576

  4. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations

    Directory of Open Access Journals (Sweden)

    Jingrui Jiang

    2018-04-01

    Full Text Available Oncogenic epidermal growth factor receptors (EGFRs can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC. The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors, and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  5. Oncogenic Signaling by Leukemia-Associated Mutant Cbl Proteins

    Science.gov (United States)

    Nadeau, Scott; An, Wei; Palermo, Nick; Feng, Dan; Ahmad, Gulzar; Dong, Lin; Borgstahl, Gloria E. O.; Natarajan, Amarnath; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2013-01-01

    Members of the Cbl protein family (Cbl, Cbl-b, and Cbl-c) are E3 ubiquitin ligases that have emerged as critical negative regulators of protein tyrosine kinase (PTK) signaling. This function reflects their ability to directly interact with activated PTKs and to target them as well as their associated signaling components for ubiquitination. Given the critical roles of PTK signaling in driving oncogenesis, recent studies in animal models and genetic analyses in human cancer have firmly established that Cbl proteins function as tumor suppressors. Missense mutations or small in-frame deletions within the regions of Cbl protein that are essential for its E3 activity have been identified in nearly 5% of leukemia patients with myelodysplastic/myeloproliferative disorders. Based on evidence from cell culture studies, in vivo models and clinical data, we discuss the potential signaling mechanisms of mutant Cbl-driven oncogenesis. Mechanistic insights into oncogenic Cbl mutants and associated animal models are likely to enhance our understanding of normal hematopoietic stem cell homeostasis and provide avenues for targeted therapy of mutant Cbl-driven cancers. PMID:23997989

  6. Bivalent promoter marks and a latent enhancer may prime the leukaemia oncogene LMO1 for ectopic expression in T-cell leukaemia.

    Science.gov (United States)

    Oram, S H; Thoms, J; Sive, J I; Calero-Nieto, F J; Kinston, S J; Schütte, J; Knezevic, K; Lock, R B; Pimanda, J E; Göttgens, B

    2013-06-01

    LMO1 is a transcriptional regulator and a T-acute lymphoblastic leukaemia (T-ALL) oncogene. Although first identified in association with a chromosomal translocation in T-ALL, the ectopic expression of LMO1 occurs far more frequently in the absence of any known mutation involving its locus. Given that LMO1 is barely expressed in any haematopoietic lineage, and activation of transcriptional drivers in leukaemic cells is not well described, we investigated the regulation of this gene in normal haematopoietic and leukaemic cells. We show that LMO1 has two promoters that drive reporter gene expression in transgenic mice to neural tissues known to express endogenous LMO1. The LMO1 promoters display bivalent histone marks in multiple blood lineages including T-cells, and a 3' flanking region at LMO1 +57 contains a transcriptional enhancer that is active in developing blood cells in transgenic mouse embryos. The LMO1 promoters become activated in T-ALL together with the 3' enhancer, which is bound in primary T-ALL cells by SCL/TAL1 and GATA3. Taken together, our results show that LMO1 is poised for expression in normal progenitors, where activation of SCL/TAL1 together with a breakdown of epigenetic repression of LMO1 regulatory elements induces ectopic LMO1 expression that contributes to the development and maintenance of T-ALL.

  7. Oncogene expression in primary lung tumors in dogs that inhaled {sup 239}PuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, G; Kerkof, P R; Haley, P J

    1988-12-01

    Ten radiation-induced and three spontaneous lung tumors were analyzed for aberrant expression of known oncogenes. In 12 of 13 tumors tested, sequences hybridizing to the c-myc oncogene were expressed at levels 1.5 times higher than sequences hybridizing to {beta}-actin. This level of oncogene expression was also observed in 9 of 13 tumors for 1 or more members of the ras family of oncogenes. Seven of thirteen tumors examined express sequences that hybridize with clones of v-ros or c-met. The ros and met clones both code for oncogenes whose normal homologues are transmembrane proteins related to the insulin receptor. (author)

  8. Clinical implication of elevated human cervical cancer oncogene-1 expression in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Liu, Ying; Li, Ke; Ren, Zhonghai; Li, Shenglei; Zhang, Hongyan; Fan, Qingxia

    2012-07-01

    The human cervical cancer oncogene 1 (HCCR-1), a novel human oncoprotein, has been shown to be upregulated in various human tumors and plays a critical role in tumorigenesis and tumor progression. Here, the authors investigated HCCR-1 level in esophageal squamous cell carcinoma (ESCC) tissues and assessed the correlation between HCCR-1 level and prognosis of the patients with ESCC. HCCR-1 levels were investigated by immunohistochemistry, in situ hybridization, real-time quantitative RT-PCR and Western blotting methods; Kaplan-Meier curve was used to evaluate the prognostic value of HCCR-1 level in patients with ESCC using log-rank test. HCCR-1 displayed high levels in ESCC tissues compared to squamous dysplasia tissues and normal esophageal epithelial tissues. No significant correlation was observed between the levels of HCCR-1 mRNA and protein and gender and age (all p>0.05) but obviously related to histological grade, clinical stage, and lymph node metastasis (all p<0.001). Moreover, the survival rate of the patients with low HCCR-1 levels was higher than that of the patients with high HCCR-1 levels (both p<0.05). These data demonstrate that HCCR-1 may be used as a novel predictor for the prognosis of the patients with ESCC.

  9. Early bichemical markers of effects: Enzyme induction, oncogene activation and markers of oxidative damage

    DEFF Research Database (Denmark)

    Poulsen, Henrik E.; Loft, Steffen

    1995-01-01

    Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein......Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein...

  10. Gene activated by growth factors is related to the oncogene v-jun

    International Nuclear Information System (INIS)

    Ryder, K.; Lau, L.F.; Nathans, D.

    1988-01-01

    The authors have recently identified by cDNA cloning a set of genes that are rapidly activated in cultured mouse cells by protein growth factors. Here they report that the nucleotide sequence of a cDNA (clone 465) derived from one of these immediate early genes (hereafter called jun-B) encodes a protein homologous to that encoded by the avian sarcoma virus 17 oncogene v-jun. Homology between the jun-B and v-jun proteins is in two regions: one near the N terminus and the other at the C terminus. The latter sequence was shown to have regions of sequence similarity to the DNA-binding domain of the yeast transcriptional regulatory protein GCN4 and to the oncogenic protein fos. Southern blots of human, mouse, and chicken DNA demonstrate that jun-B and c-jun are different genes and that there may be other vertebrate genes related to jun-B and c-jun. These findings suggest that there is a jun family of genes encoding related transcriptional regulatory proteins. The jun-B protein, and perhaps other members of the jun family, may play a role in regulating the genomic response to growth factors

  11. Insulin receptor substrate-1 prevents autophagy-dependent cell death caused by oxidative stress in mouse NIH/3T3 cells

    Directory of Open Access Journals (Sweden)

    Chan Shih-Hung

    2012-07-01

    Full Text Available Abstract Background Insulin receptor substrate (IRS-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels. Methods and results In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3, aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress

  12. Targeting Trypsin-Inflammation Axis for Pancreatitis Therapy in a Humanized Pancreatitis Model

    Science.gov (United States)

    2016-10-01

    foster mothers , confirming genotype of new pups using standard genotyping techniques, and weaning and delivering of SPF R122H mice to the Principal...present The activities in this part of the project involve the use of freshly isolated pancreatic acini (clusters of acinar cells ) obtained from wild...acinar cells . However, when use experimentally at supra-physiological concentrations, CCK induces acinar cell damage and pancreatitis responses

  13. Pancreatic β-cell regeneration: Facultative or dedicated progenitors?

    Science.gov (United States)

    Afelik, Solomon; Rovira, Meritxell

    2017-04-15

    The adult pancreas is only capable of limited regeneration. Unlike highly regenerative tissues such as the skin, intestinal crypts and hematopoietic system, no dedicated adult stem cells or stem cell niche have so far been identified within the adult pancreas. New β cells have been shown to form in the adult pancreas, in response to high physiological demand or experimental β-cell ablation, mostly by replication of existing β cells. The possibility that new β cells are formed from other sources is currently a point of major controversy. Under particular injury conditions, fully differentiated pancreatic duct and acinar cells have been shown to dedifferentiate into a progenitor-like state, however the extent, to which ductal, acinar or other endocrine cells contribute to restoring pancreatic β-cell mass remains to be resolved. In this review we focus on regenerative events in the pancreas with emphasis on the restoration of β-cell mass. We present an overview of regenerative responses noted within the different pancreatic lineages, following injury. We also highlight the intrinsic plasticity of the adult pancreas that allows for inter-conversion of fully differentiated pancreatic lineages through manipulation of few genes or growth factors. Taken together, evidence from a number of studies suggest that differentiated pancreatic lineages could act as facultative progenitor cells, but the extent to which these contribute to β-cell regeneration in vivo is still a matter of contention. Copyright © 2016. Published by Elsevier B.V.

  14. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis

    DEFF Research Database (Denmark)

    Evangelou, K.; Bartkova, J.; Kotsinas, A.

    2013-01-01

    oncogenes showed that the delayed upregulation of ARF reflected a requirement for a higher, transcriptionally based threshold of oncogenic stress, elicited by at least two oncogenic 'hits', compared with lower activation threshold for DDR. We propose that relative to DDR activation, ARF provides...

  15. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physiology, Nankai University School of Medicine, Tianjin 300071 (China); Carr, Aprell L. [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Ping; Lee, Jessica; McGregor, Mary [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Lei, E-mail: Li.78@nd.edu [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.

  16. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry.

    Science.gov (United States)

    Feng, Xiaodong; Degese, Maria Sol; Iglesias-Bartolome, Ramiro; Vaque, Jose P; Molinolo, Alfredo A; Rodrigues, Murilo; Zaidi, M Raza; Ksander, Bruce R; Merlino, Glenn; Sodhi, Akrit; Chen, Qianming; Gutkind, J Silvio

    2014-06-16

    Mutually exclusive activating mutations in the GNAQ and GNA11 oncogenes, encoding heterotrimeric Gαq family members, have been identified in ∼ 83% and ∼ 6% of uveal and skin melanomas, respectively. However, the molecular events underlying these GNAQ-driven malignancies are not yet defined, thus limiting the ability to develop cancer-targeted therapies. Here, we focused on the transcriptional coactivator YAP, a critical component of the Hippo signaling pathway that controls organ size. We found that Gαq stimulates YAP through a Trio-Rho/Rac signaling circuitry promoting actin polymerization, independently of phospholipase Cβ and the canonical Hippo pathway. Furthermore, we show that Gαq promotes the YAP-dependent growth of uveal melanoma cells, thereby identifying YAP as a suitable therapeutic target in uveal melanoma, a GNAQ/GNA11-initiated human malignancy. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Role of micro-RNAs in LRF and BCL6 oncogenes regulation

    International Nuclear Information System (INIS)

    Rainaldi, G.

    2009-01-01

    Micro RNAs (miRNAs) are short 20-22 nucleotide RNA molecules with an important role in the regulation of gene expression at the post-transcriptional level. MiRNA levels have been shown to change markedly in tumors and their expression profile is currently used to classify and diagnose some tumours. MiRNAs have been classified either as oncogenes (overespressed in tumors) or as tumor suppressor (down regulated), and in certain cases they can behave as both depending on the type of tumor. In many cases miRNAs and transcription factors interact directly so that transcriptional and post-transcriptional regulation of gene expression are finely regulated

  18. OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells

    Directory of Open Access Journals (Sweden)

    Ravinder Kaur

    2015-10-01

    Full Text Available Medulloblastoma (MB is the most common malignant primary pediatric brain tumor and is currently divided into four subtypes based on different genomic alterations, gene expression profiles and response to treatment: WNT, Sonic Hedgehog (SHH, Group 3 and Group 4. This extensive heterogeneity has made it difficult to assess the functional relevance of genes to malignant progression. For example, expression of the transcription factor Orthodenticle homeobox2 (OTX2 is frequently dysregulated in multiple MB variants; however, its role may be subtype specific. We recently demonstrated that neural precursors derived from transformed human embryonic stem cells (trans-hENs, but not their normal counterparts (hENs, resemble Groups 3 and 4 MB in vitro and in vivo. Here, we tested the utility of this model system as a means of dissecting the role of OTX2 in MB using gain- and loss-of-function studies in hENs and trans-hENs, respectively. Parallel experiments with MB cells revealed that OTX2 exerts inhibitory effects on hEN and SHH MB cells by regulating growth, self-renewal and migration in vitro and tumor growth in vivo. This was accompanied by decreased expression of pluripotent genes, such as SOX2, and was supported by overexpression of SOX2 in OTX2+ SHH MB and hENs that resulted in significant rescue of self-renewal and cell migration. By contrast, OTX2 is oncogenic and promotes self-renewal of trans-hENs and Groups 3 and 4 MB independent of pluripotent gene expression. Our results demonstrate a novel role for OTX2 in self-renewal and migration of hENs and MB cells and reveal a cell-context-dependent link between OTX2 and pluripotent genes. Our study underscores the value of human embryonic stem cell derivatives as alternatives to cell lines and heterogeneous patient samples for investigating the contribution of key developmental regulators to MB progression.

  19. Imaging manifestations and its clinical significance in patients with oncogenic osteomalacia

    International Nuclear Information System (INIS)

    Yu Wei; Lin Qiang; Zhang Yunqing; Jiang Bo; Jin Jin; Jiang Yan; Li Mei; Li Fang

    2006-01-01

    Objective: To compare images from different modality for detecting lesions in patients with oncogenic osteomalacia. Methods: Eight patients with oncogenic osteomalacia were recruited in this study. The age ranged from 28 to 69 years (mean age 44.1, 5 men and 3 women). All patients were diagnosed as osteomalacia according to their clinical and radiographic manifestations. Main laboratory tests included serum calcium, phosphorus, alkaline phosphatase activity, parathyroid hormone, urinary phosphorus as well as liver and renal functions. Octreotide scans were performed for all patients according to clinical request for confirming the oncogenic osteomalacia. Further examinations of MR imaging in 8 patients, spiral CT in four patients and conventional radiography in four patients were obtained after the octreotide scans respectively. All patients had operation for their tumor resections and for the pathologic diagnostic findings. Results: Abnormal laboratory findings in all patients included low serum phosphorus level (ranged from 0.29 to 0.65 mmol·L -1 ), elevated alkaline phosphatase activity (ranged from 36. 6 to 310.6 μmol·s -1 ·L -1 ) as well as urinary phosphorus level (ranged from 11.5 to 40. 9 mmol·L -1 ). Normal results included parathyroid hormone level, liver and renal functions. Pathology confirmed the diagnosis of 4 soft tissue tumors including 1 hemangiomas, 1 giant-cell tumor of tendon sheath, 1 hemangiopericytoma and 1 mesenchymal tumor, as well as 4 bone tumors including 1 malignant neurofibroma, 2 mesenchymal tumors and 1 fibroblastoma. All lesions were shown abnormal region of increasing uptake tracer on octreotide scans. However, the octreotide scans could not determine where (bone or soft tissues) the lesions located. MR imaging could differentiate the lesions within the bone or within the soft tissues in all patients. All lesions had hypo- or iso- signal intensity on T 1 WI and high signal intensity on T 2 WI with heterogeneous in 6 tumors and

  20. Regulation of Breast Cancer Stem Cells by Tissue Rigidity

    Science.gov (United States)

    2015-06-01

    of acini having no1mal aspect ratios. as determined in panel (C). ***P<O.OOl. mamma1y acinar structme desensitize mammaty epithelial cells to...mechanics. Nat Commun. 2012;3:792. 4. Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006;63(19...predicted as a potential phosphorylation site. This provided a very attractive potential mechanism by which increased matrix stiffness activates