WorldWideScience

Sample records for once-through cooling systems

  1. Global Freshwater Thermal Pollution from Steam-Electric Power Plants with Once-Through Cooling Systems

    Science.gov (United States)

    Raptis, C. E.; van Vliet, M. T. H.; Pfister, S.

    2015-12-01

    Thermoelectric power generation requires large amounts of cooling water. In facilities employing once-through cooling systems the heat removed in the power cycle is rejected directly into a water body. Several studies have focused on the impacts of power-related thermal emissions in Europe and the U.S., in terms of river temperature increase and the capacity for power production, especially in the light of legislative measures designed to protect freshwater bodies from excessive temperature. In this work we present a comprehensive, global analysis of current freshwater thermal pollution by thermoelectric facilities. The Platts World Electric Power Plant (WEPP) database was the principal data source. Data gaps in the principal parameters of the steam-electric power cycle were filled in by regression relationships developed in this work. Some 2400 steam-electric units using once-through freshwater cooling systems, amounting to 19% of the global installed capacity of thermoelectric units, were identified and georeferenced, and a global view of thermal emission rates was achieved by systematically solving the Rankine cycle on a power generating unit level. The rejected heat rates are linearly proportional to the steam flow rate, which in turn is directly proportional to the power produced. By applying the appropriate capacity factors, the rejected heat rate can be estimated for each unit or agglomeration of units at the desired temporal resolution. We coupled mean annual emission rates with the global gridded hydrological-river temperature model VIC-RBM to obtain a first view of river temperature increases resulting from power generation. The results show that in many cases, even on a mean annual emission rate basis and a relatively large spatial resolution of 0.5 x 0.5 degrees, the local limits for temperature increase are often exceeded, especially in the U.S. and Europe.

  2. Fuel cycle analysis of once-through nuclear systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium

  3. Fuel cycle analysis of once-through nuclear systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium

  4. Selective analysis of power plant operation on the Hudson River with emphasis on the Bowline Point Generating Station. Volume 2. [Multiple impact of power plant once-through cooling systems on fish populations

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L. W.; Cannon, J. B.; Christensen, S. G.

    1977-07-01

    Because of the location of the Bowline, Roseton, and Indian Point power generating facilities in the low-salinity zone of the Hudson estuary, operation of these plants with the present once-through cooling systems will adversely influence the fish populations that use the area for spawning and initial periods of growth and development. Recruitment rates and standing crops of several fish species may be lowered in response to the increased mortality caused by entrainment of nonscreenable eggs and larvae and by impingement of screenable young of the year. Entrainment and impingement data are particularly relevant for assessing which fish species have the greatest potential for being adversely affected by operation of Bowline, Roseton, and Indian Point with once-through cooling. These data from each of these three plants suggest that the six species that merit the greatest consideration are striped bass, white perch, tomcod, alewife, blueback herring, and bay anchovy. Two points of view are available for assessing the relative importance of the fish species in the Hudson River. From the fisheries point of view, the only two species of major importance are striped bass and shad. From the fish-community and ecosystem point of view, the dominant species, as determined by seasonal and regional standing crops (in numbers and biomass per hectare), are the six species most commonly entrained and impinged, namely, striped bass, white perch, tomcod, alewife, blueback herring, and anchovy.

  5. Temperature Control via Affine Nonlinear Systems for Intermediate Point of Supercritical Once-Through Boiler Units

    Directory of Open Access Journals (Sweden)

    Hong Zhou

    2014-01-01

    the PID control. The feed-water flow disturbances are considered in simulations of both of the two control methods. The comparison shows the new method has a better performance with a quicker response time and a smaller overshoot, which demonstrates the potential improvement for the supercritical once-through boiler generation unit control.

  6. Temperature Control via Affine Nonlinear Systems for Intermediate Point of Supercritical Once-Through Boiler Units

    OpenAIRE

    Hong Zhou; Changkun Liu; Zhi-Wei Liu; Wenshan Hu

    2014-01-01

    For the operation of the supercritical once-through boiler generation units, the control of the temperature at intermediate point (IPT) is highly significant. IPT is the steam temperature at the outlet of the separator. Currently, PID control algorithms are widely adopted for the IPT control. However, PID cannot achieve the optimal performances as the units’ dynamic characteristic changes at different working points due to the severe nonlinearity. To address the problem, a new control algorit...

  7. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, W.E. Jr. [Alabama Power Co./GSC No. 8, Birmingham, AL (United States); Laylor, M.M. [Univ. of Alabama, Birmingham, AL (United States)

    1995-06-01

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water.

  8. 高温气冷堆螺旋管直流蒸汽发生器时域模型%Time domain model for once-through helical coil steam generator for high-temperature gas-cooled reactors

    Institute of Scientific and Technical Information of China (English)

    朱宏晔; 居怀明; 段日强; 薄涵亮

    2012-01-01

    The once-through helical coil steam generator(SG) is one of the key parts of high-temperature gas-cooled reactor systems.A time domain model was developed for the steam generator to investigate the dynamic heat transfer and flow processes in both the helium and water/steam sides.A drift-flux model was used for the water/steam two-phase flow,while the helium flow was described by a one-dimensional compressible flow model.The heat transfer and flow resistance were computed by correlations.To improve convergence,a pressure-correction method capable of solving low-speed compressible flows was used for both the helium and water/steam flows.The predicted steady state temperature fields in the steam generator agree well with THTR-300 SG experiments.Typical two-phase flow oscillations can also be captured.%螺旋管直流蒸汽发生器(SG)是高温气冷堆核电站的关键部件。为研究SG内氦气、水/蒸汽流动和换热的动态过程,该文建立了SG时域模型并编制了计算程序。其中,水/蒸汽两相流采用一维漂移流模型描述;氦气采用一维、可压缩流动模型描述;两侧流体与管壁的换热系数和流动阻力系数采用经验关系式计算。求解方法采用适用于动态、低速、可压缩流动的压力修正算法,以克服低Mach数造成的数值不稳定。采用此模型计算了THTR-300SG温度分布,计算结果与实验结果相比平均温度误差小于10℃。动态计算结果表明,此模型可以捕捉到规律的两相流脉动。利用此模型可以进行SG热工设计、不稳定性分析以及电站系统的工艺设计。

  9. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  10. Data center cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  11. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  12. Hydronic rooftop cooling systems

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  13. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  14. Alternative Room Cooling System

    Directory of Open Access Journals (Sweden)

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available The rapidly growing population results in an increasing demand for much more residential and commercial buildings, which leads to vertical growth of the buildings and needs proper ventilation of those buildings. Natural air ventilation system is not sufficient for conventional building structures. Hence fans and air-conditioners are must to meet the requirement of proper ventilation as well as space conditioning. Globally building sector consumes largest energy in heating, cooling, ventilation and space conditioning. This load can be minimized by the application of solar chimney and modification in building structure for heating, cooling, ventilation and space conditioning. Passive solar cooling is a subject of interest to provide cooling by using the sun, a powerful energy source. This is done for ensuring human comfort in hot climates. ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers defines Comfort as ‘that state of mind which expresses satisfaction with the thermal environment.’ The present paper describes the development of a solar passive cooling system, which can provide thermal cooling throughout the summer season in hot and humid climates. The constructed passive system works on natural convection mode of air. Such system reduces the inside temperature of up to 5°C from the atmospheric temperature. Temperature can further be reduced by the judicious use of night ventilation.

  15. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  16. Waveguide cooling system

    Science.gov (United States)

    Chen, B. C. J.; Hartop, R. W.

    1981-04-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  17. Analysis of once-through steam generator instability

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Yoon, Ju Hyeon [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-03-01

    KAERI is carrying out a development of the design for a new type of integral reactor named SMART (System-integrated Modular Advanced Reactor). Two models, the frequency domain-linear model and the time domain-nonlinear model, are developed for the analysis of once-through helical steam generator flow instability. The linear model is used for easy determination of critical point with constant heat flux condition. The nonlinear model is for the analysis of oscillation characteristics beyond the critical point as well as determination of the point with real primary boundary conditions. The developed linear model is utilized to evaluate the effect of several nondimensional parameters on flow stability for the wide range of input conditions. The results from the developed nonlinear model are compared with the existing experimental data including steady state values and critical conditions. The calculated lengths of each region and pressure drops in the steady show almost same trends with Nariai's experimental results. Two developed models can be utilized to analyze the steam generator flow instabilities and to design the inlet orifices are to prevent flow instabilities. (author). 118 refs., 32 figs., 1 tab.

  18. ATLAS - Liquid Cooling Systems

    CERN Multimedia

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  19. Cooling Floor AC Systems

    Science.gov (United States)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  20. Constrained control of a once-through boiler with recirculation

    DEFF Research Database (Denmark)

    Trangbæk, K

    2008-01-01

    There is an increasing need to operate power plants at low load for longer periods of time. When a once-through boiler operates at a sufficiently low load, recirculation is introduced, significantly altering the control structure. This paper illustrates the possibilities for using constrained con...

  1. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  2. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  3. Low Load Model of a Once-through Boiler with Recirculation

    DEFF Research Database (Denmark)

    Trangbæk, Klaus

    2006-01-01

    A dynamic simulation model of a once-through boiler in low to medium load is developed. When the system is in low load, water from the evaporator is recirculated through a bottle. This recirculation system is included in the model, which is then shown to fit closed-loop data from a real plant...

  4. Process integration: Cooling water systems design

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-10-01

    Full Text Available This paper presents a technique for grassroot design of cooling water system for wastewater minimization which incorporates the performances of the cooling towers involved. The study focuses mainly on cooling systems consisting of multiple cooling...

  5. Radiative cooling for thermophotovoltaic systems

    Science.gov (United States)

    Zhou, Zhiguang; Sun, Xingshu; Bermel, Peter

    2016-09-01

    Radiative cooling has recently garnered a great deal of attention for its potential as an alternative method for photovoltaic thermal management. Here, we will consider the limits of radiative cooling for thermal management of electronics broadly, as well as a specific application to thermal power generation. We show that radiative cooling power can increase rapidly with temperature, and is particularly beneficial in systems lacking standard convective cooling. This finding indicates that systems previously operating at elevated temperatures (e.g., 80°C) can be passively cooled close to ambient under appropriate conditions with a reasonable cooling area. To examine these general principles for a previously unexplored application, we consider the problem of thermophotovoltaic (TPV) conversion of heat to electricity via thermal radiation illuminating a photovoltaic diode. Since TPV systems generally operate in vacuum, convective cooling is sharply limited, but radiative cooling can be implemented with proper choice of materials and structures. In this work, realistic simulations of system performance are performed using the rigorous coupled wave analysis (RCWA) techniques to capture thermal emitter radiation, PV diode absorption, and radiative cooling. We subsequently optimize the structural geometry within realistic design constraints to find the best configurations to minimize operating temperature. It is found that low-iron soda-lime glass can potentially cool the PV diode by a substantial amount, even to below ambient temperatures. The cooling effect can be further improved by adding 2D-periodic photonic crystal structures. We find that the improvement of efficiency can be as much as an 18% relative increase, relative to the non-radiatively cooled baseline, as well as a potentially significant improvement in PV diode lifetime.

  6. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  7. Multi-pipe once-through type boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinari, Yuji; Shiraishi, Hitoshi; Tanaka, Osamu; Kawahito, Akiyoshi; Kayahara, Toshihiro; Takeda, Satoru; Yamada, Takashi; Kawakami, Akinon.

    1990-08-21

    An objective of this invention is to provide a multi-pipe once-through-type of boiler having a small volume, such as those used in domestic heating devices, capable of enhancing the efficiency of heat transfer between the combustion gas in the tubular combustion gas passageway and the fluid to be heated in the pipes. The boiler of the invention has at least one row of circumferentially arranged pipes on which a plurality of fins are arranged in such a manner that the fins are in contact with the flow of combustion gas in a substantially parallel manner. Elements are provided for increasing the heat transfer effect, such as slits in the fins, or an inclined arrangement of the fins, or pipes without fins at the region near to the inlet of the combustion gas passageway. A heat insulating member for decreasing operational noise, as well as a cleaner device for blow-cleaning the combustion gas passageway, are also provided. 22 figs.

  8. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  9. Temperature initiated passive cooling system

    Science.gov (United States)

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  10. Turbine Blade Cooling System Optimization

    OpenAIRE

    GIRARDEAU, Julian; PAILHES, Jérôme; SEBASTIAN, Patrick; PARDO, Frédéric; Nadeau, Jean-Pierre

    2013-01-01

    The authors wish to thank turbine designers from TURBOMECA SAFRAN Group.; International audience; Designing high performance cooling systems suitable for preserving the service lifetime of nozzle guide vanes of turboshaft engines leads to significant aerodynamic losses. These losses jeopardize the performance of the whole engine. In the same time, a low efficiency cooling system may affect the costs of maintenance repair and overhaul of the engine as component life decreases. Consequently, de...

  11. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  12. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  13. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  14. Solar-powered cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  15. Compressor bleed cooling fluid feed system

    Science.gov (United States)

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  16. Fuel utilization improvements in a once-through PWR fuel cycle. Final report on Task 6

    Energy Technology Data Exchange (ETDEWEB)

    Dabby, D.

    1979-06-01

    In studying the position of the United States Department of Energy, Non-proliferation Alternative Systems Assessment Program, this report determines the uranium saving associated with various improvement concepts applicable to a once-through fuel cycle of a standard four-loop Westinghouse Pressurized Water Reactor. Increased discharged fuel burnup from 33,000 to 45,000 MWD/MTM could achieve a 12% U/sub 3/O/sub 8/ saving by 1990. Improved fuel management schemes combined with coastdown to 60% power, could result in U/sub 3/O/sub 8/ savings of 6%.

  17. Cooling system for electronic components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  18. Cooling system for electronic components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  19. System for cooling a cabinet

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a cooling system comprising an active magnetic regenerator having a cold side and a hot side, a hot side heat exchanger connected to the hot side of the magnetic regenerator, one or more cold side heat exchangers, and a cold store reservoir comprising a volume...

  20. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  1. Comparative analysis of cooling systems for energy equipment of combined heat and power plants and nuclear power plants

    Science.gov (United States)

    Reutov, B. F.; Lazarev, M. V.; Ermakova, S. V.; Zisman, S. L.; Kaplanovich, L. S.; Svetushkov, V. V.

    2016-07-01

    In the 20th century, the thermal power engineering in this country was oriented toward oncethrough cooling systems. More than 50% of the CHPP and NPP capacities with once-through cooling systems put into operation before the 1990s were large-scale water consumers but with minimum irretrievable water consumption. In 1995, the Water Code of the Russian Federation was adopted in which restrictions on application of once-through cooling systems for newly designed combined heat and power plants (CHPPs) were introduced for the first time. A ban on application of once-through systems was imposed by the current Water Code of the Russian Federation (Federal law no. 74-FZ, Art. 60 Cl. 4) not only for new CHPPs but also for those to be modified. Clause 4 of Article 60 of the Water Code of the Russian Federation contravenes law no. 7-FZ "On Protection of the Environment" that has priority significance, since the water environment is only part of the natural environment and those articles of the Water Code of the Russian Federation that are related directly to electric power engineering, viz., Articles 46 and 62. In recent decades, the search for means to increase revenue charges and the economic pressure on the thermal power industry caused introduction by law of charges for use of water by cooling systems irrespective of the latter's impact on the water quality of the source, the environment, the economic efficiency of the power production, and the living conditions of the people. The long-range annual increase in the water use charges forces the power generating companies to switch transfer once-through service water supply installations to recirculating water supply systems and once-through-recirculating systems with multiple reuse of warm water, which drastically reduces the technical, economic, and ecological characteristic of the power plant operation and also results in increasing power rates for the population. This work comprehensively substantiates the demands of

  2. Transient validation of RELAP5 model with the DISS facility in once through operation mode

    Science.gov (United States)

    Serrano-Aguilera, J. J.; Valenzuela, L.

    2016-05-01

    Thermal-hydraulic code RELAP5 has been used to model a Solar Direct Steam Generation (DSG) system. Experimental data from the DISS facility located at Plataforma Solar de Almería is compared to the numerical results of the RELAP5 model in order to validate it. Both the model and the experimental set-up are in once through operation mode where no injection or active control is regarded. Time dependent boundary conditions are taken into account. This work is a preliminary study of further research that will be carried out in order to achieve a thorough validation of RELAP5 models in the context of DSG in line-focus solar collectors.

  3. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  4. 直流式海水冷却系统生物防污剂的应用试验%Application of Anti-biofouling Agent on Once-through Seawater Cooling System

    Institute of Scientific and Technical Information of China (English)

    黄奇然; 栾安博; 张声强; 张富峰; 陈庆辉

    2015-01-01

    滨海电厂基本上都采用海水直流冷却系统,不可避免的出现海生物污损问题.文章研究一种复合有机胺的海生物防污剂产品,经20个月的电厂应用试验,与其他海生物杀生剂配合使用,可有效提高海生物控制效果,减少污堵情况发生.

  5. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    Science.gov (United States)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  6. Solar-powered cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  7. High temperature cooling system and method

    Science.gov (United States)

    Loewen, Eric P.

    2006-12-12

    A method for cooling a heat source, a method for preventing chemical interaction between a vessel and a cooling composition therein, and a cooling system. The method for cooling employs a containment vessel with an oxidizable interior wall. The interior wall is oxidized to form an oxide barrier layer thereon, the cooling composition is monitored for excess oxidizing agent, and a reducing agent is provided to eliminate excess oxidation. The method for preventing chemical interaction between a vessel and a cooling composition involves introducing a sufficient quantity of a reactant which is reactive with the vessel in order to produce a barrier layer therein that is non-reactive with the cooling composition. The cooling system includes a containment vessel with oxidizing agent and reducing agent delivery conveyances and a monitor of oxidation and reduction states so that proper maintenance of a vessel wall oxidation layer occurs.

  8. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  9. Floor cooling and air-cooling, the effects on thermal comfort or different cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Sijpheer, N.C.; Bakker, E.J.; Ligthart, F.A.T.M.; Opstelten, I.J. [ECN Energie in de Gebouwde Omgeving en Netten, Petten (Netherlands)

    2007-09-15

    One of the research areas of the Energy research Centre of the Netherlands (ECN) concerns the built environment. Several facilities to conduct research activities are at ECN's disposal. One of these facilities, are five research dwellings located on the premises of ECN. Measured data from these facilities together with weather data and computer models are used to evaluate innovative energy concepts and components in energy systems. Experiments with different cooling systems in ECN's research dwellings are executed to evaluate their effective influence on both energy use and thermal comfort. Influence of inhabitants' behaviour is taken into account in these experiments. The thermal comfort is indicated by the Predicted Mean Vote (PMV) as defined by P.O. Fanger. For this paper, the results of measurements with a floor cooling and air cooling system are assessed. Effects on the PMV measured during experiments with the two different cooling systems will be presented.

  10. Advances in Solar Heating and Cooling Systems

    Science.gov (United States)

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  11. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  12. Scale formation in deluged dry cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, D.R.

    1976-05-01

    Deluging of air-cooled heat exchangers with water during warm periods holds the promise of increasing heat rejection capability and reducing the cost of dry cooling. One of the principal uncertainties in the use of the deluge concept is the tendency toward deposition of solids from the delugate. Small amounts of calcium carbonate scale may significantly reduce the cooling efficiency of a deluged system by reducing the heat transfer coefficient and interfering with delugate flow. Thus the question of delugate water quality is of major importance in evaluating scale formation and its effect on heat transfer in the deluged dry cooling system. The paper discusses, in relation to the deluged dry cooling system, the importance of scale prevention, the theory of scale formation and application of this theory to the deluged system, the problems of delugate evaporation, and delugate treatment required to prevent scaling.

  13. A way to reduce pressure drop in once-through micro-evaporators

    NARCIS (Netherlands)

    Rops, C.; Oosterbaan, G.; Geld, C. van der

    2014-01-01

    This investigation explores the possibilities to reduce the pressure drop of a single-channel micro-evaporator. The availability of micro-technology to create three-dimensional structures at a micro-meter scale opens opportunities to better control process conditions in once-through boilers. However

  14. Once-through steam generator (OTSG) materials and water chemistry. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Pocock, F.J.; Levstek, D.F.

    1974-01-01

    Materials and water chemistry research results associated with the development of the Oconee-1 Reactor steam generator are presented. A summary of water chemistry data acquired during preoperational testing and power operation to date is also included. These data confirm the operational practicality of the nuclear once-through concept using volatile water treatment and high purity condensate demineralized feedwater.

  15. Study on Highly Active Catalysts and a Once-Through Process for Methanol Synthesis from Syngas

    Institute of Scientific and Technical Information of China (English)

    Xin Dong; Bingshun Shen; Hongbin Zhang; Guodong Lin; Youzhu Yuan

    2003-01-01

    Highly active CNT-promoted co-precipitated Cu-ZnO-Al2O3 catalysts, symbolized asCuiZnjAlk-x%CNTs, were prepared, and their catalytic activity for once-through methanol synthesis fromsyngas was investigated. The results illustrated that, under the reaction conditions (at 493 K, 5.0 MPa, thevolume ratio of H2/CO/CO2/N2= 62/30/5/3, GHSV= 4000 h-1), the observed single-pass CO-conversionand methanol-STY over a Cu6Zn3Al1-12.5%CNTs catalyst reached 64% and 1210 mg/(h@g), which wasabout 68% and 66% higher than those (38% and 730 mg/(h@g)) over the corresponding CNT-free catalyst,Cu6Zn3Al1, respectively. The characteristic studies of the catalysts revealed that appropriate incorporationof a minor amount of the CNTs into the CuiZnjAlk brought about little change in the apparent activationenergy of the methanol synthesis reaction, however, led to a considerable increase in the catalyst's active Cusurface area and pronouncedly enhanced the stationary-state concentration of active hydrogen-adspecieson the surface of the functioning catalyst, which would be favorable to increasing the rate of the CO hydro-genation reactions. Moreover, the operation temperature for methanol synthesis over the CNT-promotedcatalysts can be 10-20 degrees lower than that over the corresponding CNT-free contrast system, whichwould contribute considerably to an increase in equilibrium CO-conversion and CH3OH-yield.

  16. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  17. Effectiveness-weighted control method for a cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  18. Effectiveness-weighted control of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  19. A nonlinear dynamic model of a once-through, helical-coil steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, M.A. [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-07-01

    A dynamic model of a once-through, helical-coil steam generator is presented. The model simulates the advanced liquid metal reactor superheated cycle steam generator with a four-region, moving-boundary, drift-flux model. The model is described by a set of nonlinear differential equations derived from the fundamental equations of conversation of mass, energy, and momentum. Sample results of steady-state and transient calculations are presented.

  20. Cooling system with automated seasonal freeze protection

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  1. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  2. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  3. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  4. Prototype solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    A collection of quarterly reports from the AiResearch Manufacturing Company covering the period July 12, 1976, through December 31, 1977, is presented. AiResearch Manufacturing Company is developing eight prototype solar heating and cooling systems. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25 and 75-ton size units.

  5. Cavity Cooling for Ensemble Spin Systems

    Science.gov (United States)

    Cory, David

    2015-03-01

    Recently there has been a surge of interest in exploring thermodynamics in quantum systems where dissipative effects can be exploited to perform useful work. One such example is quantum state engineering where a quantum state of high purity may be prepared by dissipative coupling through a cold thermal bath. This has been used to great effect in many quantum systems where cavity cooling has been used to cool mechanical modes to their quantum ground state through coupling to the resolved sidebands of a high-Q resonator. In this talk we explore how these techniques may be applied to an ensemble spin system. This is an attractive process as it potentially allows for parallel remove of entropy from a large number of quantum systems, enabling an ensemble to achieve a polarization greater than thermal equilibrium, and potentially on a time scale much shorter than thermal relaxation processes. This is achieved by the coupled angular momentum subspaces of the ensemble behaving as larger effective spins, overcoming the weak individual coupling of individual spins to a microwave resonator. Cavity cooling is shown to cool each of these subspaces to their respective ground state, however an additional algorithmic step or dissipative process is required to couple between these subspaces and enable cooling to the full ground state of the joint system.

  6. The ATLAS IBL CO2 cooling system

    Science.gov (United States)

    Verlaat, B.; Ostrega, M.; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-02-01

    The ATLAS Pixel detector has been equipped with an extra pixel layer in the space obtained by a smaller radius beam pipe. This new pixel layer called the Insertable B-Layer (IBL) was installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the expected high radiation dose received at an integrated luminosity of 550 fb1. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  7. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  8. Performance testing of engineered corium cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S., E-mail: lomperski@anl.gov [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States); Farmer, M.T. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Experiments tested two engineered corium cooling systems. Black-Right-Pointing-Pointer The systems passively inject water into corium from below. Black-Right-Pointing-Pointer These systems cool corium much faster than top flooding. - Abstract: The coolability of ex-vessel core debris continues to be an issue of concern in the realm of light water reactor safety. Extensive research into corium/concrete interaction phenomena has been unable to establish the certainty of melt quench and stabilization within the containment boundary for all credible cases of cooling restricted to top flooding. As a result, there has been continuing interest in engineered systems that can augment cooling. This paper describes the testing of two passive cooling concepts that inject water into corium from below via nozzles embedded within the basemat: one with porous concrete nozzles and the other with a type of composite nozzle. The latter supplements water injection with noncondensable gas to stabilize flow and suppress vapor explosions. Each test involved a 136 kg melt composed of 56/23/14 wt% UO{sub 2}/ZrO{sub 2}/siliceous concrete at an initial depth of 30 cm. The setup with the porous concrete nozzles successfully injected water into the melt at heads as low as 2.3 m. The composite nozzle test was partially successful, with three nozzles delivering coolant while a fourth was damaged by the melt and failed to inject water. The melts cooled twice as fast as similar ones tested in a top flooding configuration. These experiments confirmed earlier work at Forschungszentrum Karlsruhe and elsewhere indicating that cooling via bottom water injection is a particularly effective method for quenching ex-vessel corium melts.

  9. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  10. Once-through CANDU reactor models for the ORIGEN2 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Bjerke, M.A.

    1980-11-01

    Reactor physics calculations have led to the development of two CANDU reactor models for the ORIGEN2 computer code. The model CANDUs are based on (1) the existing once-through fuel cycle with feed comprised of natural uranium and (2) a projected slightly enriched (1.2 wt % /sup 235/U) fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models, as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST, are given.

  11. Heat and momentum transfer model studies applicable to once-through, forced convection potassium boiling

    Science.gov (United States)

    Sabin, C. M.; Poppendiek, H. F.

    1971-01-01

    A number of heat transfer and fluid flow mechanisms that control once-through, forced convection potassium boiling are studied analytically. The topics discussed are: (1) flow through tubes containing helical wire inserts, (2) motion of droplets entrained in vapor flow, (3) liquid phase distribution in boilers, (4) temperature distributions in boiler tube walls, (5) mechanisms of heat transfer regime change, and (6) heat transfer in boiler tubes. Whenever possible, comparisons of predicted and actual performances are made. The model work presented aids in the prediction of operating characteristics of actual boilers.

  12. Engine room cooling system using jet pump

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J.W.; Lee, S.H. [Daewoo Heavy Industries Ltd. (Korea)

    2000-04-01

    Construction machinery includes an engine enclosure separated from a cooling system enclosure by a wall to reduce noise and advance cooling system performance. For this structure, however, the axial fan cannot be of benefit to the engine room, and so the temperature rise in the engine room makes several bad conditions. This paper proposes that hot air in engine room is evacuated by secondary pipe using jet pump. This paper demonstrates the structure and the effect of jet pump and useful guideline on design of area, length, and shape of secondary pipe to maximize the effect of jet pump. (author). 4 refs., 7 figs., 5 tabs.

  13. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  14. Gemini helium closed cycle cooling system

    Science.gov (United States)

    Lazo, Manuel; Galvez, Ramon; Rogers, Rolando; Solis, Hernan; Tapia, Eduardo; Maltes, Diego; Collins, Paul; White, John; Cavedoni, Chas; Yamasaki, Chris; Sheehan, Michael P.; Walls, Brian

    2008-07-01

    The Gemini Observatory presents the Helium Closed Cycle Cooling System that provides cooling capacity at cryogenic temperatures for instruments and detectors. It is implemented by running three independent helium closed cycle cooling circuits with several banks of compressors in parallel to continuously supply high purity helium gas to cryocoolers located about 100-120 meters apart. This poster describes how the system has been implemented, the required helium pressures and gas flow to reach cryogenic temperature, the performance it has achieved, the helium compressors and cryocoolers in use and the level of vibration the cryocoolers produce in the telescope environment. The poster also describes the new technology for cryocoolers that Gemini is considering in the development of new instruments.

  15. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  16. for an Internal Cooling Air System

    Directory of Open Access Journals (Sweden)

    Tadaharu Kishibe

    2000-01-01

    Full Text Available The swirling flow field in an internal cooling air system in which the fluid passes through an inducer, a hollow turbine shaft, and a cavity between two disks (referred to as a wheel space is solved using computational fluid dynamics and the pressure fluctuations on the hollow shaft wall surface are measured.

  17. A Differential-Algebraic Model for the Once-Through Steam Generator of MHTGR-Based Multimodular Nuclear Plants

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2015-01-01

    Full Text Available Small modular reactors (SMRs are those fission reactors whose electrical output power is no more than 300 MWe. SMRs usually have the inherent safety feature that can be applicable to power plants of any desired power rating by applying the multimodular operation scheme. Due to its strong inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR, which uses helium as coolant and graphite as moderator and structural material, is a typical SMR for building the next generation of nuclear plants (NGNPs. The once-through steam generator (OTSG is the basis of realizing the multimodular scheme, and modeling of the OTSG is meaningful to study the dynamic behavior of the multimodular plants and to design the operation and control strategy. In this paper, based upon the conservation laws of mass, energy, and momentum, a new differential-algebraic model for the OTSGs of the MHTGR-based multimodular nuclear plants is given. This newly-built model can describe the dynamic behavior of the OTSG in both the cases of providing superheated steam and generating saturated steam. Numerical simulation results show the feasibility and satisfactory performance of this model. Moreover, this model has been applied to develop the real-time simulation software for the operation and regulation features of the world first underconstructed MHTGR-based commercial nuclear plant—HTR-PM.

  18. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  19. On synthesis and optimization of cooling water systems with multiple cooling towers

    CSIR Research Space (South Africa)

    Gololo, KV

    2011-01-01

    Full Text Available research on cooling water systems has focused mainly on heat exchanger network thus excluding the interaction between heat exchanger network and the cooling towers. This paper presents a technique for grassroot design of cooling water system for wastewater...

  20. Development of a Program for Predicting Flow Instability in a Once-through Sodium- Heated Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Kwang; Kim, Dehee; Kim, Jong Bum; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A SG selected for PGSFR is of a once-through integrated type. It is a vertical counter flow shell and tube heat exchanger with sodium on the shell side and water-steam in the tubes. The phenomenon of two-phase flow instability has been observed in many industrial domains such as boiling systems and steam generators. In this paper, a computer program developed for predicting two-phase flow instability in a steam generator under axial non-uniform heat flux is presented, and analysis results for verification are presented. A computer code was developed for investigating the two-phase flow stability under sodium-heated conditions in the shell-side of a SG. A solution algorithm for the sodium flow field and tube conduction has been developed for application to sodium-heated SG.

  1. Cooling Efficiency of Laminar Cooling System for Plate Mill

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dian-hua; WANG Bing-xing; ZHOU Na; YU Ming; WANG Jun

    2008-01-01

    Heat transfer was researched from a perspective of the industry application.On the basis of the first law of thermodynamics,the cooling efficiency was deduced from the change of enthalpy inside hot plate.The relationship between the cooling efficiency and its influencing parameters was regressed from plenty of data collected from the worksite and discussed in detail.The temperature profiles resulting from the online model and the model modified by regressed formulas were presented and compared.The results indicated that the control accuracy of the modified model was increased obviously.

  2. Optimum thermal sizing and operating conditions for once through steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Ju, Kyongin; Im, Inyoung; Kim, Eunkee [KEPCO Engineering and Construction Company., Inc., Daejeon (Korea, Republic of)

    2014-10-15

    The steam generator is designed to be optimized so as to remove heat and to produce steam vapor. Because of its importance, theoretical and experimental researches have been performed on forced convection boiling heat transfer. The purpose of this study is to predict the thermal behavior and to perform optimum thermal sizing of once through steam generator. To estimate the tube thermal sizing and operating conditions of the steam generator, the analytical modeling is employed on the basis of the empirical correlation equations and theory. The optimized algorithm model, Non-dominated Sorting Genetic Algorithm (NSGA)-II, uses for this analysis. This research is focused on the design of in-vessel steam generator. An one dimensional analysis code is developed to evaluate previous researches and to optimize steam generator design parameters. The results of one-dimensional analysis need to be verified with experimental data. Goals of multi-objective optimization are to minimize tube length, pressure drop and tube number. Feedwater flow rate up to 115.425kg/s is selected so as to have margin of feedwater temperature 20 ..deg. C. For the design of 200MWth once through steam generator, it is evaluated that the tube length shall be over 12.0m for the number of tubes, 2500ea, and the length of the tube shall be over 8.0m for the number of tubes, 4500ea. The parallel coordinates chart can be provided to determine the optimal combination of number of tube, pressure drop, tube diameter and length.

  3. Cooling system having dual suction port compressor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guolian

    2017-08-29

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  4. A study on cooling efficiency using 1-d analysis code suitable for cooling system of thermoforming

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen Zhe; Heo, Kwang Su; Xuan, Dong Ji; Seol, Seoung Yun [Chonnam National University, Gwangju (Korea, Republic of)

    2009-03-15

    Thermoforming is one of the most versatile and economical processes available for polymer products, but cycle time and production cost must be continuously reduced in order to improve the competitive power of products. In this study, water spray cooling was simulated to apply to a cooling system instead of compressed air cooling in order to shorten the cycle time and reduce the cost of compressed air used in the cooling process. At first, cooling time using compressed air was predicted in order to check the state of mass production. In the following step, the ratio of removed energy by air cooling or water spray cooling among the total removed energy was found by using 1-D analysis code of the cooling system under the condition of checking the possibility of conversion from 2-D to 1-D problem. The analysis results using water spray cooling show that cycle time can be reduced because of high cooling efficiency of water spray, and cost of production caused by using compressed air can be reduced by decreasing the amount of the used compressed air. The 1-D analysis code can be widely used in the design of a thermoforming cooling system, and parameters of the thermoforming process can be modified based on the recommended data suitable for a cooling system of thermoforming

  5. Simulation on Cooling System of Automotive Waste Heat Thermoelectric Generator

    Directory of Open Access Journals (Sweden)

    Xiaohong Yuan

    2013-06-01

    Full Text Available The cooling system of automobile waste heat Thermoelectric Generator (TEG is researched in the study. Integrated model of cooling system and vehicle is built based on GT-Cool, analysis of the different cooling ways shows that when using independent cooling system, the ratio between power consumption and output is high and system performance is poor; By using integrated cooling system, the expectation of keep constant engine warm up time and synchronous change of water temperature between different tanks is realized after water tanks are improved.

  6. Progress of the Water Cooling System for CYCIAE-100

    Institute of Scientific and Technical Information of China (English)

    LI; Zhen-guo; WU; Long-cheng; LIU; Geng-guo

    2013-01-01

    The water cooling system for CYCIAE-100 has achieved a significant progress in 2013,its progress can be summarized as follows:1)The deionized water production equipment and the main circulating water cooling unit are installed and tested.2)The circulating water cooling unit for high power target and circulating water cooling unit for vacuum helium compressor are installed and tested.

  7. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  8. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-05-17

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  9. Controlled cooling of an electronic system based on projected conditions

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  10. Open cycle cooling systems using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Sovrano, M.

    Open cycle cooling systems are particularly suitable for utilizing solar energy. In all these systems the adsorption and absorption phenomena are very important, hence they are described separately. The cycles used are essentially two: the Baum-Kakabaev cycle using liquid absorbers and the dehumidification/humidification cycle where also adsorbent substances can be utilized. Solar energy is used in the regeneration process of dehumidifying substances. Reactivation modes can be various: suitability of one mode or the other can depend on the climate of the site where the system is installed.

  11. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant...... heating and cooling with pipes embedded in room surfaces (floor, wall, and ceiling), the application increased significantly worldwide. Earlier application of radiant heating systems was mainly for residential buildings because of its comfort and free use of floor space without any obstruction from...

  12. Evaluation of geothermal cooling systems for Arizona

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    Arizona consumes nearly 50 percent more electricity during the peak summer season of May through part of October, due to the high cooling load met by electrical-driven air conditioning units. This study evaluates two geothermal-driven cooling systems that consume less electricity, namely, absorption cooling and heat pumps. Adsorption cooling requires a geothermal resource above 105{sup 0}C (220{sup 0}F) in order to operate at a reasonable efficiency and capacity. Geothermal resources at these temperatures or above are believed existing in the Phoenix and Tucson areas, but at such depths that geothermal-driven absorption systems have high capital investments. Such capital investments are uneconomical when paid out over only five months of operation each year, but become economical when cascaded with other geothermal uses. There may be other regions of the state, where geothermal resources exist at 105{sup 0}C (220{sup 0}F) or higher at much less depth, such as the Casa Grande/Coolidge or Hyder areas, which might be attractive locations for future plants of the high-technology industries. Geothermal assisted heat pumps have been shown in this study to be economical for nearly all areas of Arizona. They are more economical and reliable than air-to-air heat pumps. Such systems in Arizona depend upon a low-temperature geothermal resource in the narrow range of 15.5 to 26.6{sup 0}C (60 to 80{sup 0}F), and are widely available in Arizona. The state has over 3000 known (existing) thermal wells, out of a total of about 30,000 irrigation wells.

  13. Study on the structure optimization scheme design of a double-tube once-through steam

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xinyu; Wu, Shifa; Wang, Pengfei; Zhao, Fuyu [Dept. of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an (China)

    2016-08-15

    A double-tube once-through steam generator (DOTSG) consisting of an outer straight tube and an inner helical tube is studied in this work. First, the structure of the DOTSG is optimized by considering two different objective functions. The tube length and the total pressure drop are considered as the first and second objective functions, respectively. Because the DOTSG is divided into the subcooled, boiling, and superheated sections according to the different secondary fluid states, the pitches in the three sections are defined as the optimization variables. A multi-objective optimization model is established and solved by particle swarm optimization. The optimization pitch is small in the subcooled region and superheated region, and large in the boiling region. Considering the availability of the optimum structure at power levels below 100% full power, we propose a new operating scheme that can fix the boundaries between the three heat-transfer sections. The operation scheme is proposed on the basis of data for full power, and the operation parameters are calculated at low power level. The primary inlet and outlet temperatures, as well as flow rate and secondary outlet temperature are changed according to the operation procedure.

  14. The Selection of Cooling Systems of Giant Hydro-Generators

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The selection of cooling system for hydro-generator in Ertan Hydropower Station is reviewed in this paper. The new viewpoint on air-cooled system of hydraulic generator of recent years is analyzed and described. That is, "Full air-cooled system is always preferred to inner

  15. Review of recent technical information concerning the adverse effects of once-through cooling on Lake Michigan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The 1970 report showed clearly that the potential for damage to this shallow water ecosystem by the electric power generating industry, which is the major user of...

  16. Recent trends in solar thermal sorption cooling system technology

    Directory of Open Access Journals (Sweden)

    Khaled M Bataineh

    2015-05-01

    Full Text Available Solar thermal cooling is the best alternative solution to overcome the problems associated with using nonrenewable resources. There are several thermal cooling methods developed differing from each other according to the thermodynamic cycle and type of refrigerant used. Recent developments in absorption and adsorption solar cooling systems are presented. Summarized thermodynamic modeling for both absorption and adsorption solar cooling systems is given. Brief thermal analysis among the types of solar collectors is presented. System efficiencies and optimization analysis are presented. The influences of geometrical, system configurations, and physical parameters on the performance of solar thermal sorption cooling system are investigated. The basis for the design of absorption and adsorption solar cooling systems is provided. Several case studies in different climatic conditions are presented. Economic feasibility for both systems is discussed. Comparison between the absorption and adsorption solar cooling system is summarized.

  17. Legionnaires' Disease Bacterium in power-plant cooling systems: Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, S.W.; Solomon, J.A.; Gough, S.B.; Tyndall, R.L.; Fliermans, C.B.

    1983-06-01

    A survey was undertaken of the distribution, density, viability, and infectivity of Legionnaires' Disease Bacteria (Legionella) in power plant cooling systems. Water samples were collected during each of the four seasons at various locations within each of nine power plants and from ambient waters at each site. Measurements of a number of physical and chemical characteristics were made, and Legionella profiles (density, viability, and infectivity for guinea pigs) were obtained. Legionella were detected in nearly all samples. Water from closed-cycle cooling systems frequently had lower densities of Legionella than the ambient water. Nonetheless, infectious Legionella, as defined by their isolation from inoculated guinea pigs, were significantly more likely to be found in samples from the plant-exposed water of closed-cycle plants than in samples from once-through plants or in ambient samples. A new species (L. oakridgensis) was initially isolated from two of the sites, and it has since been found to have a widespread distribution. Two other organisms found to cause illness in guinea pigs may also be new species. Phase II of the project involves investigating possible cause/effect relationships between physicochemical variables and Legionella. This work may contribute toward eventual control techniques for this pathogen.

  18. mathematical model for direct evaporative space cooling systems

    African Journals Online (AJOL)

    eobe

    MATHEMATICAL MODEL FOR DIRECT EVAPORATIVE SPACE COOLING. SYSTEMS ... Water is the working fluid in evaporative cooling thus it is ..... co o lin g efficien cy (%. ) Time (hrs) predicted experimental. 0. 10. 20. 30. 40. 50. 60. 70. 80.

  19. Electromechanically cooled germanium radiation detector system

    Science.gov (United States)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  20. Preliminary analysis of the PreFlexMS molten salt once-through steam generator dynamics and control strategy

    Science.gov (United States)

    Trabucchi, Stefano; Casella, Francesco; Maioli, Tommaso; Elsido, Cristina; Franzini, Davide; Ramond, Mathieu

    2017-06-01

    Concentrated Solar Power plants (CSP) coupled with thermal storage have the potential to guarantee both flexible and continuous energy production, thus being competitive with conventional fossil fuel and hydro power plants, in terms of dispatchability and provision of ancillary services. Hence, the plant equipment and control design have to be focused on flexible operation on one hand, and on plant safety concerning the molten salt freezing on the other hand. The PreFlexMS European project aims to introduce a molten salt Once-Through Steam Generator (OTSG) within a Rankine cycle based power unit, a technology that has greater flexibility potential if compared to steam drum boilers, currently used in CSP plants. The dynamic modelling and simulation from the early design stages is, thus, of paramount importance, to assess the plant dynamic behavior and controllability, and to predict the achievable closed-loop dynamic performance, potentially saving money and time during the detailed design, construction and commissioning phases. The present paper reports the main results of the analysis carried out during the first part of the project, regarding the system analysis and control design. In particular, two different control systems have been studied and tested with the plant dynamic model: a decentralized control strategy based on PI controllers and a Linear Model Predictive Control (LMPC).

  1. Experimental study on a transpiration cooling thermal protection system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Transpiration cooling thermal protection systems (TPS) are investigated for potential applications in hypersonic and re-entry vehicles,which are subjected to the severe aerodynamic heating environment. In this paper a transpiration cooling thermal protection system was designed and manufactured,and an experiment platform with radiant heating at the bottom as heat source was developed. The cooling capacity of the transpiration cooling TPS was experimentally investigated. By combining transpiration cooling method with traditional TPS,the heat load capability of the TPS can be improved. The structure temperature with active cooling applied was much lower than that without active cooling applied under the same heat load as well as the heat load increased with active cooling than the one without active cooling for the same structure temperature. The experimental results showed that at 5800 s,the temperature of inner structure was 100°C with active cooling applied compared to 500°C without active cooling applied,then the temperature increased and reached to 360°C at 8300 s. Heat load of this transpiration cooling TPS can be increased by over 70% as compared to the passion one and the cooling capability of the transpiration TPS was about 1700 kJ/kg. The results can provide fundamental data for developing the transpiration cooling TPS.

  2. Load calculations of radiant cooling systems for sizing the plant

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50% of t...

  3. Economics of heat pump systems for simultaneous heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.; Devotta, S.; Patwardhan, V.S.

    1987-01-01

    Heat pumps can be incorporated advantageously into processes which require simultaneously both cooling and heating. The economics of heat pumps in India for simultaneous heat and cooling is assessed with respect to process, design and economic parameters. For the typical conditions of various parameters in India, a heat pump system for simultaneous heating and cooling is very attractive.

  4. Load calculations of radiant cooling systems for sizing the plant

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50...

  5. CoolPack – Simulation tools for refrigeration systems

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal

    1999-01-01

    CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...

  6. Progress of the stochastic cooling system of the Collector Ring

    CERN Document Server

    Dimopoulou, C; Bohm, R; Dolinskyy, O; Franzke, B; Hettrich, R; Maier, W; Menges, R; Nolden, F; Peschke, C; Petri, P; Steck, M; Thorndahl, L

    2013-01-01

    An overview of the recent achievements and ongoing developments for the stochastic cooling system of the Collector Ring is given. In focus are the hardware developments as well as the progress in predicting the system performance. The system operates in the frequency band 1-2 GHz, it has to provide fast 3D cooling of antiproton, rare isotope and stable heavy ion beams. The main challenges are (i) the cooling of antiprotons by means of cryogenic movable pick-up electrodes and (ii) the fast two-stage cooling (pre-cooling by the Palmer method, followed by the notch filter method) of the hot rare isotope beams (RIBs). Recently, a novel code for simulating the cooling process in the time domain has been developed at CERN. First results for the momentum cooling for heavy ions in the CR will be shown in comparison with results obtained in the frequency domain with the Fokker-Planck approach.

  7. The Selection of Cooling systems of Giant Hydro-Generators

    Institute of Scientific and Technical Information of China (English)

    Li Dingzhong

    2010-01-01

    @@ The selection of cooling system for hydro-generator in Ertan Hydropower Station is reviewed in this pap(ar) The new viewpoint on air-cooled system of hydraul(is)generator of recent years is analyzed and described. That is, "Full air-cooled system is always preferred to inner water cooling system in hydro-generator." Moreov() the decision process and corresponding actions of aircooled system design for hydro-generator in Longtan Hydropower Station, Xiaowan Hydropower Station and Laxiwa Hydropower Station are introduced.

  8. Desiccant Cooling System for Thermal Comfort: A Review

    Directory of Open Access Journals (Sweden)

    HEMANT PARMAR,

    2011-05-01

    Full Text Available Desiccant cooling system (DCS is alternate suitable option against conventional cooling system in humid climates. A typical system combines a dehumidifier that uses dry desiccant wheel, with direct or indirect evaporative systems and a sensible cooling system. DCS is the environmental protection technique for cooling purpose of the building. This system reduces the CFC level in the environment because it restricts the use of conventional refrigerant. In this paper, all the working principles and expected research areashave been discussed. Through detailed literature survey it has been observed that a desiccant cooling system may be a suitable option for thermal comfort in the climate where the humidity is higher. Thedesiccant cooling system (DCS has proven their feasibility and cost saving in the field of air conditioning. This review provides a brief overview on the development of desiccant cooling system in different fields. Finally, concluding remarks regarding further development of desiccant cooling for thermal comfort are also provided. This technology is economically feasible and optimizes with low cost. This review is useful for making opportunities to further research in different areas of desiccant cooling system.

  9. GOTHIC Simulation of Passive Containment Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Kim, Hangon [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2013-05-15

    The performance of this system depends on the condensation of steam moving downward inside externally cooled vertical tubes. AES-2006: During a DBA, heat is removed by internally cooled vertical tubes, which are located in containment. We are currently developing the conceptual design of Innovative PWR, which is will be equipped with various passive safety features, including PCCS. We have plan to use internal heat exchanger (HX) type PCCS with concrete containment. In this case, the elevation of HXs is important to ensure the heat removal during accidents. In general, steam is lighter than air mixture in containment. So, steam may be collected at the upper side of containment. It means that higher elevation of HXs, larger heat removal efficiency of those. So, the aim of the present paper is to give preliminary study on variation of heat removal performance according to elevation of HXs. With reference to the design specification of the current reactors including APR+, we had determined conceptual design of PCCS. Using it, we developed a GOTHIC model of the APR1400 containment was adopted PCCS. This calculation model is described herein and representative results of calculation are presented. APR 1400 GOTHIC model was developed for PCCS performance calculation and sensitivity test according to installation elevation of PCCXs. Calculation results confirm that PCCS is working properly. It is found that the difference due to the installation elevation of PCCXs is insignificant at this preliminary analysis, however, further studies should be performed to confirm final performance of PCCS according to the installation elevation. These insights are important for developing the PCCS of Innovative PWR.

  10. Solar space heating and cooling by selective use of the components of a desiccant cooling system

    Science.gov (United States)

    Abbud, Ihsan Aladdin

    The economic advantages of by-passing various components of a desiccant cooling system under conditions not requiring their use are estimated by evaluating the annual costs of heating and cooling a commercial building in three representative U.S. cities. Life-cycle costs of systems employing solar heat for space heating and desiccant regeneration are compared with those using electric heat. The costs of purchasing and operating heating and desiccant cooling systems, with and without solar heat supply, are compared with those employing conventional heating and vapor compression cooling. The conditions under which commercial buildings can be cooled with desiccant systems at costs competitive with conventional systems are identified. A commercially available vapor compression air conditioner is used as a standard of comparison for energy consumption and room comfort. Heating and cooling requirements of the building are determined by use of the BLAST computer model in a simulation of long term system operation. Performance of the desiccant cooling system and life cycle savings obtained by its use are determined by simulation employing the TRNSYS computer model. TRNSYS compatible subroutines are developed to simulate operation of the desiccant equipment, the building, and the controllers that operate and monitor the system components. The results are presented in tabular and graphical form. This study shows that in the widely different climates represented in Los Angeles, New York, and Miami, by-passing various components in the desiccant cooling system when they are not needed is economically advantageous. Operation cost of the complete system decreased by 47.3% in Los Angeles, by 30.9% in New York City, and by 23.9% in Miami by not operating the desiccant wheel and other elements. The ventilation desiccant cooling system has major economic advantage over conventional systems under conditions of moderate humidity, as in Los Angeles and New York City. In Miami, however

  11. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  12. Electric drive systems including smoothing capacitor cooling devices and systems

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan Mehmet; Zhou, Feng

    2017-02-28

    An electric drive system includes a smoothing capacitor including at least one terminal, a bus bar electrically coupled to the at least one terminal, a thermoelectric device including a first side and a second side positioned opposite the first side, where the first side is thermally coupled to at least one of the at least one terminal and the bus bar, and a cooling element thermally coupled to the second side of the thermoelectric device, where the cooling element dissipates heat from the thermoelectric device.

  13. Cooling factor for magnetic refrigeration systems

    Directory of Open Access Journals (Sweden)

    Mohammadreza Ghahremani

    2014-12-01

    Full Text Available The adiabatic temperature change (ΔTad during the magnetization process of polycrystalline gadolinium and Ni51Mn33.4In15.6 Heusler alloy is directly measured near the Curie temperature. The cooling factor (CF is introduced as the area under the curve of adiabatic temperature change versus ambient temperature. The CF provides more representative measure of cooling performance in the operational temperature range. Selecting different temperature abscissas qualitatively changes the interpretation of the cooling performance of a magnetocaloric material. In particular, plotting ΔTad versus initial temperature gives a measurably different CF compared to that given by plotting ΔTad versus average temperature.

  14. Computational Fluid Dynamics Analysis of an Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Kapilan N.

    2016-11-01

    Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.

  15. Corrosion inhibitors for intermediate cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Falk, I.; Suhr, L.

    1985-04-01

    The selected inhibitors were tested for heat and radiation stability and corrosion protection on the bench scale. Based on the results from these tests two of the products were selected, Bycoguard 81 and Bycoguard MP4S for continuing corrosion tests in an autoclave loop at 90 degrees C and 120 degrees C. Oxygen saturated deionized water with an addition of 1 ppm chloride was recirculated in the loop. Samples of copper and carbon steel were exposed to the water in the autoclave for periods up to 10 weeks. The purpose of this project was to find a substitute for hydrazine and chromates. Besides good corrosion protection qualities the toxic and environmental effect of the inhibitors should be minimal. The investigation has shown that the copper inhibitor BTA (benzotriazole) loses its corrosion protection qualities at a water temperature of 120 degrees C. The protection effects at 90 degrees C were satisfactory for both of the materials. The corrosion rates measured were 0.01 mm/y or less for the copper and carbon steel samples. The environment in the autoclave during the testing was more corrosive than is to be found in intermediate cooling systems. Due to the low corrosion rates measured the two inhibitors are to be recommended as alternatives to hydrazine and chromates.

  16. Venus Surface Power and Cooling System Design

    Science.gov (United States)

    Landis, Geoffrey A.; Mellott, Kenneth D.

    2004-01-01

    A radioisotope power and cooling system is designed to provide electrical power for the a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors simply cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep certain components at a temperature below ambient. The fundamental cooling requirements are comprised of the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus. Assuming 5 cm radial thickness of ceramic blanket insulation, the ambient heat load was estimated at approximately 77 watts. With an estimated quantity of 10 watts of heat generation from electronics and sensors, and to accommodate some level of uncertainty, the total heat load requirement was rounded up to an even 100 watts. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. The maximum theoretically obtainable efficiency is 47.52 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500 watt power

  17. Solar Cooling System Using Solar-Driven Hybrid Chiller

    OpenAIRE

    Hirai, Akira

    2012-01-01

    We developed an appropriate Absorption chiller to "Solar cooling system" in 2010. In addition, we added the improvement to the machine. "Solar cooling system" can be easily constructed with the machine. and, we constructed the demonstration plant, and verified the utility

  18. Simulation analysis of static and dynamic characteristics of once-through steam generator in concentric annuli tube

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; BIAN Xin-qian; XIA Guo-qing

    2006-01-01

    The once-through steam generator (OTSG) in concentric annuli tube is a new type of steam generator which applies double side to transfer heat. The heat flux between the water of centric tube, outside annuli tube and that of annulus channel is assumed to be equal, and then the steam generator's model is built by lumped parameters with moving boundary. In the basis of the built model, static and dynamic characteristics are analyzed.The static characteristics are proved by experiment results in a 19-tube once-through steam generator of Babcock & Wilcox. The characteristics that the lengths of three regions (subcooled region, nucleate boiling region, superheat region) change with power can be explained by theory analysis. The dynamic characteristics accord with the heat and hydraulics and the results of analysis according to the mechanism.

  19. The role of absorption cooling for reaching sustainable energy systems

    OpenAIRE

    Lindmark, Susanne

    2005-01-01

    The energy consumption is continuous to increase around the world and with that follows the demand for sustainable solutions for future energy systems. With growing energy consumption from fossil based fuels the threat of global warming through release of CO2 to the atmosphere increases. The demand for cooling is also growing which would result in an increased consumption of electricity if the cooling demand was to be fulfilled by electrically driven cooling technology. A more sustainable sol...

  20. Cooling systems for ultra-high temperature turbines.

    Science.gov (United States)

    Yoshida, T

    2001-05-01

    This paper describes an introduction of research and development activities on steam cooling in gas turbines at elevated temperature of 1500 C and 1700 C level, partially including those on water cooling. Descriptions of a new cooling system that employs heat pipes are also made. From the view point of heat transfer, its promising applicability is shown with experimental data and engine performance numerical evaluation.

  1. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  2. Study of the circulation theory of the cooling system in vertical evaporative cooling generator

    Institute of Scientific and Technical Information of China (English)

    YU; Shunzhou; CAI; Jing; GUO; Chaohong

    2006-01-01

    The article briefly states the current development of evaporative cooling generator and its advantages comparing with generators of traditional cooling. Vertical evaporative cooling generator, which adopts Close-Loop-Self-Cycle with no-pump and free convection boil in the hollow stator bar, is one of the great developments in generator design. This article emphasizes the importance of cooling system in generator; expatiates the circulation theory in two aspects, energy and flow; and analyzes the essential reason,motivity and stability of Close-Loop-Self-Cycle. The article points out that the motivity of the circulation is the heat absorbed by coolant. After absorbing heat the coolant will have the ability of doing work because of the phase change. In another words, it is the buoyancy causing by density difference leads to the Close-Loop-Self-Cycle. This conclusion is validated by experimental data.

  3. Prototype solar heating and combined heating cooling systems

    Science.gov (United States)

    1978-01-01

    The design and development of eight prototype solar heating and combined heating and cooling systems is discussed. The program management and systems engineering are reported, and operational test sites are identified.

  4. RAMI analysis for DEMO HCPB blanket concept cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  5. Evaluation of two cooling systems under a firefighter coverall

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Wang, L.C.; Chou, S.N.; Huang, C.; Jou, G.T.; Daanen, H.A.M.

    2014-01-01

    Firemen often suffer from heat strain. This study investigated two chest cooling systems for use under a firefighting suit. In nine male subjects, a vest with water soaked cooling pads and a vest with water perfused tubes were compared to a control condition. Subjects performed 30 min walking and 10

  6. Application of Hastelloy X in Gas-Cooled Reactor Systems

    DEFF Research Database (Denmark)

    Brinkman, C. R.; Rittenhouse, P. L.; Corwin, W.R.

    1976-01-01

    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data...

  7. Development of a cooling system for superconducting wind turbine generator

    Science.gov (United States)

    Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Natori, Naotake; Yamasaki, Hirofumi

    2016-12-01

    This paper deals with the cooling system for high-Tc superconducting (HTS) generators for large capacity wind turbines. We have proposed a cooling system with a heat exchanger and circulation pumps to cool HTS field windings designed for 10 MW-class superconducting generators. In the cooling system, the refrigerants in the stationary and rotational systems are completely separated; heat between the two systems exchanges using a rotational-stationary heat exchanger. The refrigerant in rotational system is circulated by highly reliable pumps. We designed the rotational-stationary heat exchanger based on a conventional shell-and tube type heat exchanger. We also demonstrated that heat exchange in cryogenic temperature is possible with a commercially available heat exchanger. We devised a novel and highly reliable cryogenic helium circulation pump with magnetic reciprocating rotation system and verified its underlying principle with a small-scale model.

  8. Justifying plans to improve performance of an existing cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J. [Stone & Webster Engineering Corp., Boston, MA (United States); Godard, D.; Randall, R. [Niagara-Mohawk Power Company, Syracuse, NY (United States); Cooper, J. [Cooper & Associates, P.A., Tampa, FL (United States)

    1996-08-01

    This paper discusses the kinds of quantitative justification needed to convince today`s cost-conscious, informed utility management that proposed improvements to the cooling system are feasible and will be of strong economic benefit to the station. It summarizes the evaluations developed during the review of circulating water system improvement candidates that accompanied the recent 4.5% power uprate of an existing large station with a closed cycle cooling system which utilizes a natural draft cooling tower. Presented in the paper are the capital costs and turbine performance improvements related to: air blanketing reduction by baffle plate additions to the condenser air coolers; minimizing costs of waterbox/bundle cleaning programs; cooling system performance monitoring enhancements; the prudency of tube staking after uprate; the benefits of a circulating water flow increase; better cooling tower hot water distribution; adding a layer of fill to the cooling tower; and finally the value of a helper tower. Considered too in this paper are the performance test surveys of both the condenser and cooling tower that identified the cause and/or performance deficiencies. The general principles to be discussed will be applicable to all sizes and types of power plant cooling systems. The paper however, will focus on the 1994-1995 case study of a 675,000 GPM closed cooling system with a 537 ft. counterflow natural draft cooling tower and a 670,000 sq. ft. six bundle single pass condenser which serves the six flow low pressure (LP) turbine of an 1100 MW nuclear plant. One example of the outcome of the program was an approximate 20% increase in condenser cleanliness from 55% to 75%. 9 refs., 7 figs.

  9. Multi-Destination Beaming: Apparently Being in Three Places at Once Through Robotic and Virtual Embodiment

    Directory of Open Access Journals (Sweden)

    Sameer Kishore

    2016-11-01

    Full Text Available It has been shown that an illusion of ownership over an artificial limb or even an entire body can be induced in people through multisensory stimulation providing evidence that the surrogate body is the person’s actual body. Such body ownership illusions have been shown to occur with virtual bodies, mannequins, as well as humanoid robots. In this study, we show the possibility of eliciting a full body ownership illusion over not one, but multiple artificial bodies concurrently. We demonstrate this by describing a system that allowed a participant to inhabit and fully control two different humanoid robots located in two distinct places and a virtual body in immersive virtual reality, using real-time full-body tracking and two-way audio communication, thereby giving them the illusion of ownership over each of them. We implemented this by allowing the participant be embodied in any one surrogate body at a given moment, and letting them instantaneously switch between them. While the participant was embodied in one of the bodies, a proxy system would track the locations currently unoccupied, and would control their remote representation in order to continue performing the tasks in those locations in a logical fashion. To test the efficacy of this system, an exploratory study was carried out with a fully functioning setup with three destinations and a simplified version of the proxy for use in a social interaction. The results indicate that the system was physically and psychologically comfortable, and was rated highly by participants in terms of usability. Additionally, feelings of body ownership illusion and agency were reported, which were not influenced by the robot type. The results provide us with clues regarding body ownership illusion with humanoid robots of different dimensions, along with insight about self-localization and multilocation.

  10. Low temperature heating and high temperature cooling embedded water based surface heating and cooling systems

    CERN Document Server

    Babiak, Jan; Petras, Dusan

    2009-01-01

    This Guidebook describes the systems that use water as heat-carrier and when the heat exchange within the conditioned space is more than 50% radiant. Embedded systems insulated from the main building structure (floor, wall and ceiling) are used in all types of buildings and work with heat carriers at low temperatures for heating and relatively high temperature for cooling.

  11. Mathematic modeling on flexible cooling system in hot strip mill

    Institute of Scientific and Technical Information of China (English)

    彭良贵; 刘相华; 赵宪明; 吴迪

    2014-01-01

    A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated. Based on the different cooling mechanisms, a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers. Model parameters were validated by measured data. Heat transfer models including air convection model, heat radiation model and water cooling capacity model were detailedly introduced. In addition, effects on cooling capacity by water temperature and different valve patterns were also presented. Finally, the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm. Since online application of the sophisticated CTC process control system based on these models, run-out table cooling control system has been running stably and reliably to produce resource-saving, low-cost steels with smaller grain size.

  12. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    high costs. However heat sinks are unavoidable from a system perspective and there are potential cost savings since a low-pressure steam turbines will not be required if heat driven cooling is implemented. The fuel utilization for some technologies (not necessarily the best technology) was evaluated in two different scenarios: 1) with electricity production from coal; and 2) with electricity production from natural gas. It is shown in the scenarios that the heat driven cooling technologies give lower fuel consumption as compared producing electricity as an intermediate product before cooling is produced. Further it should be noted that electricity is produced, not consumed, if heat is used directly for the production of cooling. We claim that cost effective solutions for district heat driven chillers and/or combined production of electricity and district cooling can be found in all climates with high enough density of heating and cooling demands. It was found that district heat driven chillers can be very energy efficient in warm and humid climates since desiccant systems are an effective way of handling latent cooling loads. In dry climates, with low latent loads, water distributed cooling has a large potential and absorption cooling will give high fuel utilization seen from a system perspective. In climates where water shortage is a problem it is possible that the temperature lift of the conventional absorption chiller has to be increased in order to be able to use dry cooling towers. The temperature lift can be increased by changing the chiller design or by using a different working pair. Heat driven cooling can be integrated into an energy system in different ways. In USA and Japan, district heating is not well developed. Instead small, distributed combined heat and power (CHP) plants with high exhaust temperatures are widespread. Cooling is often produced, in these regions, through absorption cooling (using heat from CHP) or compression chillers depending on

  13. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  14. Preoperational test report, primary ventilation condenser cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  15. Cavity cooling of an ensemble spin system.

    Science.gov (United States)

    Wood, Christopher J; Borneman, Troy W; Cory, David G

    2014-02-07

    We describe how sideband cooling techniques may be applied to large spin ensembles in magnetic resonance. Using the Tavis-Cummings model in the presence of a Rabi drive, we solve a Markovian master equation describing the joint spin-cavity dynamics to derive cooling rates as a function of ensemble size. Our calculations indicate that the coupled angular momentum subspaces of a spin ensemble containing roughly 10(11) electron spins may be polarized in a time many orders of magnitude shorter than the typical thermal relaxation time. The described techniques should permit efficient removal of entropy for spin-based quantum information processors and fast polarization of spin samples. The proposed application of a standard technique in quantum optics to magnetic resonance also serves to reinforce the connection between the two fields, which has recently begun to be explored in further detail due to the development of hybrid designs for manufacturing noise-resilient quantum devices.

  16. Microscale Waste Heat Driven Cooling System

    Science.gov (United States)

    2012-05-02

    to the Inter-Agency Power Group Mechanical Working Group Meeting 2012 about the ammonia-water absorption chiller technology demonstrator developed by...Development and Engineering Center is provided. 15. SUBJECT TERMS absorption ; heat actuated cooling 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...for a Sustainable Future Sustainable Products for a Sustainable Future Acknowledgments US Army - CERDEC Smaller Lighter Co-Generation & Absorption

  17. Study of Natural Convection Passive Cooling System for Nuclear Reactors

    Science.gov (United States)

    Abdillah, Habibi; Saputra, Geby; Novitrian; Permana, Sidik

    2017-07-01

    Fukushima nuclear reactor accident occurred due to the reactor cooling pumps and followed by all emergencies cooling systems could not work. Therefore, the system which has a passive safety system that rely on natural laws such as natural convection passive cooling system. In natural convection, the cooling material can flow due to the different density of the material due to the temperature difference. To analyze such investigation, a simple apparatus was set up and explains the study of natural convection in a vertical closed-loop system. It was set up that, in the closed loop, there is a heater at the bottom which is representing heat source system from the reactor core and cooler at the top which is showing the cooling system performance in room temperature to make a temperature difference for convection process. The study aims to find some loop configurations and some natural convection performances that can produce an optimum flow of cooling process. The study was done and focused on experimental approach and simulation. The obtained results are showing and analyzing in temperature profile data and the speed of coolant flow at some point on the closed-loop system.

  18. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  19. Active cooling system for Tokamak in-vessel operation manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jianjun, E-mail: yuanjj@sjtu.edu.cn; Chen, Tan; Li, Fashe; Zhang, Weijun; Du, Liang

    2015-10-15

    Highlights: • We summarized most of the challenges of fusion devices to robot systems. • Propose an active cooling system to protect all of the necessary components. • Trial design test and theoretical analysis were conducted. • Overall implementation of the active cooling system was demonstrated. - Abstract: In-vessel operation/inspection is an indispensable task for Tokamak experimental reactor, for a robot/manipulator is more capable in doing this than human being with more precise motion and less risk of damaging the ambient equipment. Considering the demanding conditions of Tokamak, the manipulator should be adaptable to rapid response in the extreme conditions such as high temperature, vacuum and so on. In this paper, we propose an active cooling system embedded into such manipulator. Cameras, motors, gearboxes, sensors, and other mechanical/electrical components could then be designed under ordinary conditions. The cooling system cannot only be a thermal shield since the components are also heat sources in dynamics. We carry out a trial test to verify our proposal, and analyze the active cooling system theoretically, which gives a direction on the optimization by varying design parameters, components and distribution. And based on thermal sensors monitoring and water flow adjusting a closed-loop feedback control of temperature is added to the system. With the preliminary results, we believe that the proposal gives a way to robust and inexpensive design in extreme environment. Further work will concentrate on overall implementation and evaluation of this cooling system with the whole inspection manipulator.

  20. Preliminary design package for prototype solar heating and cooling systems

    Science.gov (United States)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.

  1. Costs and cost algorithms for dry cooling tower systems

    Energy Technology Data Exchange (ETDEWEB)

    Ard, P.A.; Henager, C.H.; Pratt, D.R.; Wiles, L.E.

    1976-09-01

    Costs were obtained and cast models prepared for the major components beyond the turbine exhaust flange of a dry cooling system using either water or ammonia as the intermediate heat exchange fluid. (LCL)

  2. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  3. Liquid cooling system for the vibro-tactile threshold device.

    Science.gov (United States)

    Parsons, Erin M; Redd, Christian; Gandhi, Minu S; Tuckett, Robert P; Bamberg, Stacy J Morris

    2011-01-01

    Vibrotactile threshold testing has been used to investigate activation of human somatosensory pathways. A portable vibrotactile threshold testing device called the Vibrotactile Threshold Evaluator for the Workplace (VTEW) was designed for screening of carpal tunnel syndrome in the workplace, and initially contained a small fan for cooling. During subject testing, the device is operated intermittently, which causes the linear actuator to warm the tactile probe. The probe causes discomfort for some subjects. During testing, the probe heated to 42 °C within 90 seconds of continuous operation. A liquid cooling system was implemented to dissipate heat from the probe. The liquid cooling system maintains a steady state temperature of 36 °C for continuous actuation of the probe. The liquid cooling system is capable of maintaining a safe operating temperature, without adding erroneous vibrations to the device. However, the cooling system deters the portability of the device. Further research will investigate how to make the liquid cooling system portable and implements vibrotactile threshold testing in the workplace to quickly evaluate whether or not a person has early symptoms of carpal tunnel syndrome.

  4. Simulation of an active cooling system for photovoltaic modules

    Science.gov (United States)

    Abdelhakim, Lotfi

    2016-06-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  5. Simulation of an active cooling system for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhakim, Lotfi [Széchenyi István University of Applied Sciences, Department of Mathematics, P.O.Box 701, H-9007 Győr (Hungary)

    2016-06-08

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  6. Solar heating and cooling system design and development

    Science.gov (United States)

    1979-01-01

    The design and development of marketable solar heating and cooling systems for single family and commercial applications is described. The delivery, installation, and monitoring of the prototype systems are discussed. Seven operational test sites are discussed in terms of system performance. Problems encountered with equipment and installation were usually due to lack of skills required for solar system installation.

  7. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  8. Integrated numerical methods for hypersonic aircraft cooling systems analysis

    Science.gov (United States)

    Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.

    1992-01-01

    Numerical methods have been developed for the analysis of hypersonic aircraft cooling systems. A general purpose finite difference thermal analysis code is used to determine areas which must be cooled. Complex cooling networks of series and parallel flow can be analyzed using a finite difference computer program. Both internal fluid flow and heat transfer are analyzed, because increased heat flow causes a decrease in the flow of the coolant. The steady state solution is a successive point iterative method. The transient analysis uses implicit forward-backward differencing. Several examples of the use of the program in studies of hypersonic aircraft and rockets are provided.

  9. Progress of the Water Cooling System for CYCIAE-100

    Institute of Scientific and Technical Information of China (English)

    LI; Zhen-guo; WU; Long-cheng; LIU; Geng-guo

    2012-01-01

    <正>According to the general construction schedule of the BRIF project, the water cooling system for CYCIAE-100 has achieved a significant progress in 2012, its progress can be summarized as follows. 1) Inside wiring of 7 water distribution cabinets were completed. 2) Manufacturer selection of circulating water cooling unit and deionized water production equipment was decided after market survey and bidding process. The contracts were formally signed in February. The deionized water production equipment was ready in May and the circulating water cooling

  10. Cooling and shielding systems for infrared detectors - requirements and limits.

    Science.gov (United States)

    Wiecek, B

    2005-01-01

    This paper presents three main cooling systems used for infrared detectors. At first thermoelectric devices are discussed. They allow cooling down the detector with low efficiency and not to the very low temperature. They do not generate any vibrations and therefore are suitable for thermal detectors, where the microphone effect can decrease their performance. Photon detectors need to be cooled down even to 77K or better. The only way to have such deep cooling is to use the cooler based on thermodynamic cycle such as Stirling one. With the high efficiency one can easily obtain cryogenic temperature for a detector. The electromagnetic noise and vibration generation are the main disadvantages of using such devices. Joule-Thomson effect during gas expansion is 3rdcooling system discussed in the paper. It is highly effective process, used for gas liquefaction too. The working gas is being removed during cooling into the atmosphere, so the need of continuous supplying with compressed one, what makes this system very difficult for remote applications. In the paper, simple calculations are presented to illustrate the advantages and disadvantages of the different cooling systems.

  11. Studies and Design of the ECAL (CMS) Cooling System

    CERN Document Server

    Gasser, D

    2000-01-01

    The Electromagnetic CALorimeter (ECAL) sub-detector for the CMS experiment has to achieve very tight requirements in terms of temperature stability. The CV group is now involved in the design of a cooling system for ECAL. The status and the content of the work which has been done will be explained. The theoretical studies which helped to understand the ECAL thermal behaviour and the efficiency of the hydraulic network in charge of the cooling will first be briefly presented. Moreover, it will be shown how these studies helped to improve the cooling design inside ECAL. A proposal for an external cooling system of ECAL will be presented as well. Finally, experimental thermal tests, which are planned for April 2000 on a prototype corresponding to a part of ECAL, will be described. These tests aim to check the technical solutions which can be applied in the context of the real ECAL detector.

  12. Effect of input power on cooling property of a thermoacoustic cooling system with diameter-expanded prime movers

    Science.gov (United States)

    Ueno, So; Sakamoto, Shin-ichi; Orino, Yuichiro; Wada, Takahiro; Inui, Yoshitaka; Watanabe, Yoshiaki

    2016-07-01

    We studied a thermoacoustic cooling system driven at low temperatures to make practical use of the system. Aiming to reduce the driving temperature of the thermoacoustic system, we developed a loop-tube-type thermoacoustic system with diameter-expanded two-stage prime movers, i.e., a heat-to-sound transducer. The system drove at 67 °C. Additionally, we developed a prototype for a thermoacoustic cooling system with a diameter-expanded two-stage prime mover. In the experiment, the cooling point temperature was decreased by 4.4 °C from room temperature, i.e., 20 °C. To improve the cooling performance of the prototype thermoacoustic cooling system, we experimentally investigated the effect of increasing the input power on the cooling performance.

  13. Desiccant dehumidification and cooling systems assessment and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Collier, R.K. Jr. [Collier Engineering, Reno, NV (United States)

    1997-09-01

    The objective of this report is to provide a preliminary analysis of the principles, sensitivities, and potential for national energy savings of desiccant cooling and dehumidification systems. The report is divided into four sections. Section I deals with the maximum theoretical performance of ideal desiccant cooling systems. Section II looks at the performance effects of non-ideal behavior of system components. Section III examines the effects of outdoor air properties on desiccant cooling system performance. Section IV analyzes the applicability of desiccant cooling systems to reduce primary energy requirements for providing space conditioning in buildings. A basic desiccation process performs no useful work (cooling). That is, a desiccant material drying air is close to an isenthalpic process. Latent energy is merely converted to sensible energy. Only when heat exchange is applied to the desiccated air is any cooling accomplished. This characteristic is generic to all desiccant cycles and critical to understanding their operation. The analyses of Section I show that desiccant cooling cycles can theoretically achieve extremely high thermal CoP`s (>2). The general conclusion from Section II is that ventilation air processing is the most viable application for the solid desiccant equipment analyzed. The results from the seasonal simulations performed in Section III indicate that, generally, the seasonal performance of the desiccant system does not change significantly from that predicted for outdoor conditions. Results from Section IV show that all of the candidate desiccant systems can save energy relative to standard vapor-compression systems. The largest energy savings are achieved by the enthalpy exchange devise.

  14. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  15. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  16. Modeling and energy simulation of the variable refrigerant flow air conditioning system with water-cooled condenser under cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueming; Wu, Jingyi [Shanghai Jiao Tong University, Institute of Refrigeration and Cryogenics (China); Shiochi, Sumio [Daikin Industries Ltd. (Japan)

    2009-09-15

    As a new system, variable refrigerant flow system with water-cooled condenser (water-cooled VRF) can offer several interesting characteristics for potential users. However, at present, its dynamic simulation simultaneously in association with building and other equipments is not yet included in the energy simulation programs. Based on the EnergyPlus's codes, and using manufacturer's performance parameters and data, the special simulation module for water-cooled VRF is developed and embedded in the software of EnergyPlus. After modeling and testing the new module, on the basis of a typical office building in Shanghai with water-cooled VRF system, the monthly and seasonal cooling energy consumption and the breakdown of the total power consumption are analyzed. The simulation results show that, during the whole cooling period, the fan-coil plus fresh air (FPFA) system consumes about 20% more power than the water-cooled VRF system does. The power comparison between the water-cooled VRF system and the air-cooled VRF system is performed too. All of these can provide designers some ideas to analyze the energy features of this new system and then to determine a better scheme of the air conditioning system. (author)

  17. The Straw Cooling System in the ATLAS TRT

    CERN Document Server

    Godlewski, J

    2002-01-01

    This technical note deals with the straw cooling system for the TRT End-caps in the ATLAS detector. The combination of a high gas flow requirement and small gas volumes yield unfavourable properties in terms of control stability. Early experiments on a prototype of the final cooling system, showed that pressure losses in the gas distribution lines must be decreased to fulfil the pressure control requirements. One part of this note is devoted to a cfd analysis of a critical component, an elbow duct, in the gas distribution line. To enable analyses of the overall cooling system dynamics, generic simulation components were created and applied in a simulation of the prototype cooling system. The simulation was verified by an equivalent experiment on the prototype cooling system. The manifolds that distribute and collect the gas in the group-of-wheels are dealt with in the last chapter where results from a fluid mechanical model implemented in Matlab are compared to values obtained by experiments

  18. Simulations and economic analyses of desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Shelpuk, B. C.; Hooker, D. W.; Jorgensen, G. J.; Bingham, C. E.

    1979-06-01

    The progress to date in the development and analysis of computer simulations of solar-powered desiccant cooling using an axial-flow disc-type dehumidifier wheel, solar-powered space heating, and electrically driven, standard vapor-compression air-conditioning systems for residential use is documented. Computer simulations for both solar and conventional heating and cooling systems were performed for 12-month heating and cooling seasons. Annual thermal performance and the resulting life cycle costs for both types of systems were analyzed and compared. The heating/cooling season simulations were run for five U.S. cities representing a wide range of climatic conditions and insolation. With the informaion resulting from these simulations, the optimum air-conditioning system was chosen to maximize the conservation of fossil fuels and minimize operating costs. Because of the increasing use of residential air conditioning employing electrically driven vapor-compression coolers, the five locations were studied to determine if it would be beneficial (in terms of both economics and fossil fuel displacement) to displace fossil-fuel-powered vapor-compression coolers and natural gas space heaters with solar-powered heating and desiccant cooling systems.

  19. The convection cooling system of the Yakutsk permafrost seed repository

    Institute of Scientific and Technical Information of China (English)

    Vladimir N.Panin; Georgii P.Kuzmin

    2014-01-01

    Temperature is critical to maintaining seed viability under long term storage conditions. It has been common practice to use refrigeration systems to maintain required storage temperatures. A seed repository constructed in permafrost in Ya kutsk, Russia is the first seed storage facility that relies solely on natural cold. This paper describes the design and per formance of the cooling system of the repository. An innovative aspect of the cooling system is that it utilizes the patterns of temperature wave propagation in permafrost. Predicted and measured ground temperatures for the first year of operation are presented and analyzed. Results indicate that convection air cooling systems can be used to control the temperature regime in underground facilities in permafrost.

  20. The Evaporative Cooling System for the ATLAS Inner Detector

    CERN Document Server

    Aitree, D; Anderssen, E C; Akhnazarov, V; Apsimon, R J; Barclay, P; Batchelor, L E; Bates, R L; Battistin, M; Bendotti, J; Berry, S; Bitadze, A; Bizzel, J P; Bonneau, P; Bosteels, Michel; Butterworth, J M; Butterworth, S; Carter, A A; Carter, J R; Catinaccio, A; Corbaz, F; Danielsson, H O; Danilevich, E; Dixon, N; Dixon, S D; Doherty, F; Dorholt, O; Doubrava, M; Egorov, I; Egorov, K; Einsweiler, K; Falou, A C; Feraudet, P; Ferrari, P; Fowler, K; Fraser, J T; French, R S; Galuska, M; Gannaway, F; Gariano, G; Gibson, M D; Gilchriese, M G D; Giugni, D; Godlewski, J; Gousakov, I; Górski, B; Hallewell, G D; Hartman, N; Hawkings, R J; Haywood, S J; Hessey, N P; Infante, S; Jackson, J N; Jones, T J; Kaplon, J; Katunin, S; Lindsay, S; Luisa, L; Massol, N; McEwan, F; McMahon, S J; Menot, C; Mistry, J; Morris, J; Muskett, D M; Nagai, K; Nichols, A; Nicholson, R; Nickerson, R B; Nielsen, S L; Nordahl, P E; Olcese, M; Parodi, M; Pérez-Gómez, F; Pernegger, H; Perrin, E; Rossi, L P; Rovani, A; Ruscino, E; Sandaker, H; Smith, A; Sopko, V; Stapnes, S; Stodulski, M; Tarrant, J; Thadome, J; Tovey, D; Turala, M; Tyndel, M; Vacek, V; van der Kraaij, E; Viehhauser, G H A; Vigeolas, E; Wells, P S; Wenig, S; Werneke, P

    2008-01-01

    This paper describes the evaporative system used to cool the silicon detector structures of the inner detector sub-detectors of the ATLAS experiment at the CERN Large Hadron Collider. The motivation for an evaporative system, its design and construction are discussed. In detail the particular requirements of the ATLAS inner detector, technical choices and the qualification and manufacture of final components are addressed. Finally results of initial operational tests are reported. Although the entire system described, the paper focuses on the on-detector aspects. Details of the evaporative cooling plant will be discussed elsewhere.

  1. Cooling system optimization analysis for hot forming processes

    Science.gov (United States)

    Ghoo, Bonyoung; Umezu, Yasuyoshi; Watanabe, Yuko

    2013-12-01

    Hot forming technology was developed to produce automotive panels having ultra-high tensile stress over 1500MPa. The elevated temperature corresponds with decreased flow stress and increased ductility. Furthermore, hot forming products have almost zero springback amounts. This advanced forming technology accelerates the needs for numerical simulations coupling with thermal-mechanical formulations. In the present study, 3-dimensional finite element analyses for hot forming processes are conducted using JSTAMP/NV and LS-DYNA considering cooling system. Special attention is paid to the optimization of cooling system using thermo-mechanical finite element analysis through the influence of various cooling parameters. The presented work shows an adequate cooling system functions and microstructural phase transformation material model together with a proper set of numerical parameters can give both efficient and accurate design insight in hot forming manufacturing process. JSTAMP/NV and LS-DYNA can become a robust combination set for complex hot forming analysis which needs thermo-mechanical and microstructural material modeling and various process modeling. The use of the new JSTAMP/NV function for multishot manufacturing process is shown good capabilities in cooling system evaluation. And the use of the advanced LS-DYNA microstructural phase transformation model is shown good evaluation results in martensite amount and Vickers hardness after quenching.

  2. Thermotunneling Based Cooling Systems for High Efficiency Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aimi, Marco; Arik, Mehmet; Bray, James; Gorczyca, Thomas; Michael, Darryl; Weaver, Stan

    2007-09-30

    GE Global Research's overall objective was to develop a novel thermotunneling-cooling device. The end use for these devices is the replacement of vapor cycle compression (VCC) units in residential and commercial cooling and refrigeration systems. Thermotunneling devices offer many advantages over vapor cycle compression cooling units. These include quiet, reliable, non-moving parts operation without refrigerant gases. Additionally theoretical calculations suggest that the efficiency of thermotunneling devices can be 1.5-2x that of VCC units. Given these attributes it can be seen that thermotunneling devices have the potential for dramatic energy savings and are environmentally friendly. A thermotunneling device consists of two low work function electrodes separated by a sub 10 nanometer-sized gap. Cooling by thermotunneling refers to the transport of hot electrons across the gap, from the object to be cooled (cathode) to the heat rejection electrode (anode), by an applied potential. GE Global Research's goal was to model, design, fabricate devices and demonstrate cooling base on the thermotunneling technology.

  3. A data acquisition system for water heating and cooling experiments

    Science.gov (United States)

    Perea Martins, J. E. M.

    2017-01-01

    This work presents a simple analogue waterproof temperature probe design and its electronic interfacing with a computer to compose a data acquisition system for water temperature measurement. It also demonstrates the system usage through an experiment to verify the water heating period with an electric heater and another to verify the Newton’s law of cooling

  4. Design and Control of Hydronic Radiant Cooling Systems

    Science.gov (United States)

    Feng, Jingjuan

    Improving energy efficiency in the Heating Ventilation and Air conditioning (HVAC) systems in buildings is critical to achieve the energy reduction in the building sector, which consumes 41% of all primary energy produced in the United States, and was responsible for nearly half of U.S. CO2 emissions. Based on a report by the New Building Institute (NBI), when HVAC systems are used, about half of the zero net energy (ZNE) buildings report using a radiant cooling/heating system, often in conjunction with ground source heat pumps. Radiant systems differ from air systems in the main heat transfer mechanism used to remove heat from a space, and in their control characteristics when responding to changes in control signals and room thermal conditions. This dissertation investigates three related design and control topics: cooling load calculations, cooling capacity estimation, and control for the heavyweight radiant systems. These three issues are fundamental to the development of accurate design/modeling tools, relevant performance testing methods, and ultimately the realization of the potential energy benefits of radiant systems. Cooling load calculations are a crucial step in designing any HVAC system. In the current standards, cooling load is defined and calculated independent of HVAC system type. In this dissertation, I present research evidence that sensible zone cooling loads for radiant systems are different from cooling loads for traditional air systems. Energy simulations, in EnergyPlus, and laboratory experiments were conducted to investigate the heat transfer dynamics in spaces conditioned by radiant and air systems. The results show that the magnitude of the cooling load difference between the two systems ranges from 7-85%, and radiant systems remove heat faster than air systems. For the experimental tested conditions, 75-82% of total heat gain was removed by radiant system during the period when the heater (simulating the heat gain) was on, while for air

  5. The development of a solar residential heating and cooling system

    Science.gov (United States)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  6. Wind turbine generators having wind assisted cooling systems and cooling methods

    Science.gov (United States)

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  7. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from the ...... to the desiccant dew-point system without water recovery, the required regeneration temperature increases and the system thermal efficiency decreases.......This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from...... the air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...

  8. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    J. Williamson and S. Puttagunta

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems, this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  9. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems,this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  10. Liquid Cooling System for CPU by Electroconjugate Fluid

    Directory of Open Access Journals (Sweden)

    Yasuo Sakurai

    2014-06-01

    Full Text Available The dissipated power of CPU for personal computer has been increased because the performance of personal computer becomes higher. Therefore, a liquid cooling system has been employed in some personal computers in order to improve their cooling performance. Electroconjugate fluid (ECF is one of the functional fluids. ECF has a remarkable property that a strong jet flow is generated between electrodes when a high voltage is applied to ECF through the electrodes. By using this strong jet flow, an ECF-pump with simple structure, no sliding portion, no noise, and no vibration seems to be able to be developed. And then, by the use of the ECF-pump, a new liquid cooling system by ECF seems to be realized. In this study, to realize this system, an ECF-pump is proposed and fabricated to investigate the basic characteristics of the ECF-pump experimentally. Next, by utilizing the ECF-pump, a model of a liquid cooling system by ECF is manufactured and some experiments are carried out to investigate the performance of this system. As a result, by using this system, the temperature of heat source of 50 W is kept at 60°C or less. In general, CPU is usually used at this temperature or less.

  11. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  12. Desiccant aging and its effect on desiccant cooling system performance

    Energy Technology Data Exchange (ETDEWEB)

    Belding, W.A. [Innovative Research Enterprises, Danville, CA (United States); Delmas, M.P.F.; Holeman, W.D. [LaRoche Industries Inc., Baton Rouge, LA (United States)

    1996-05-01

    Desiccants used for the purpose of space conditioning or enthalpy transfer can be subjected to hundreds of thousands of adsorption/regeneration cycles over their useful life. Studying the loss of a desiccant`s equilibrium water adsorption capacity after exposure to thermal cycling is a common method for quantifying desiccant aging. Since isotherm shape and desiccant capacity can be related to overall cooling-system performance, system cooling capacity and coefficients of performance over time can be predicted. Adsorption isotherms for several different desiccants have been determined after subjecting the materials to varying numbers of thermal cycles in a specially designed test unit capable of adsorption/desorption cycling every 10 min. Aging curves for a new Type 1M desiccant developed specifically for desiccant cooling applications by LaRoche Industries Inc. are compared to other commonly used desiccants. (author)

  13. Experimental study on solar desiccant cooling system. 2nd Report; Taiyonetsu kudo desiccant cooling system no jikkenteki kento. 2

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H.; Funato, H. [Fukuoka Institute of Technology, Fukuoka (Japan); Kuma, T. [Seibu Giken Co. Ltd., Fukuoka (Japan)

    1996-10-27

    Study has been made about a desiccant cleaning system using solar heated water for regenerating the dehumidifier. A dehumidifier and evaporation coolers are combined to attain a synergistic effect in dehumidifying and cooling the air in the house. The simultaneous control of humidity and temperature, however, is quite difficult. Under the circumstances, an evaporation cooler was removed from the outdoor air intake side, to leave a humidifier alone for the control of humidity only. In addition, the length of the dehumidifier was reduced into half for saving fan driving power and for downscaling the model. With only one evaporation cooler in operation that is installed at the exhaust side, the cooling effect is diminished by half. For dealing with the situation, ultrasonic atomization is performed at the exhaust side evaporation cooler for the improvement of the air cooling effect for the next sensible heat exchanger (intake side). The return air is heated by the solar heater water (approximately 60{degree}C hot), regenerates the dehumidifier, and then exhausted. The atomization process elevates the cooling effect, and the resultant cooling effect was as high as that expected from a 2-cooler setup. The dehumidification effect, however, lowers a little. Exclusion of the atomization process will enhance the dehumidification effect, but will reduce the cooling effect as well. 3 refs., 8 figs., 3 tabs.

  14. Cooling the intact loop of primary heat transport system using Shutdown Cooling System in case of LOCA events

    Directory of Open Access Journals (Sweden)

    Icleanu Diana Laura

    2015-01-01

    Full Text Available The purpose of this paper is to model the operation of the Shutdown Cooling System (SDCS for CANDU 6 nuclear power plants in case of LOCA accidents, using Flowmaster calculation code, by delimiting models and setting calculation assumptions, input data for hydraulic analysis and input data for calculating thermal performance check for heat exchangers that are part of this system.

  15. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  16. France uses the sun to cool its wine: the Banyuls winery solar cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-12-01

    The engineering consultancy Tecsol was asked to design a cooling system for a winery that would limit the variations in temperature during the year. Tecsol proposed a solar system. The total investment cost amounted to nearly two million French Francs (300,000 euros), almost double the cost of a conventional air-conditioning system. However, because the solar system reduced the conventional energy needs of the warehouse by about 40%, the French Agency for Environment and Energy Management (ADEME) provided a 37% subsidy for its rational use of energy. The 'Solarclim' solar installation has three functions: it produces hot water via 693 vacuum tube collectors with a useful surface of 130 m{sup 2}. The collectors are fixed to the roof of the wine cellar, which has an angle of 15 deg. Heat from the collectors is transferred to a 1000-litre hot water storage tank; it produces chilled water using a lithium bromide absorption plant with a nominal cooling capacity of 52 kW. This is housed in the technical premises on the lowest level and is used in conjunction with a 180 kW open-circuit cooling tower on the north facade; and the third function combines air-conditioning and, when necessary, space heating. The installation has been operating for 12 years with no particular problems. The equipment is environmentally friendly. The solar heat source avoids CO{sub 2} emissions, the absorption machine does not use CFCs or HCFCs, and the system is totally silent. (UK)

  17. Prototype solar heating and cooling systems

    Science.gov (United States)

    1979-01-01

    A combination of monthly progress reports are presented. It contains a summary of activities and progress made from November 1, 1978, to February 28, 1979. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation.

  18. Cool gas micropropulsion system for cubesats

    NARCIS (Netherlands)

    Breukelen, E. van; Sanders, B.H.; Schuurbiers, C.A.H.

    2009-01-01

    CubeSats are becoming more mature and many capabilities previously associated with microsatellites and bigger platforms are coming to the CubeSat. Moreover, they are becoming available as commercial off the shelf systems with standardized interfaces. TNO Defence and Security of the Netherlands is in

  19. Cool gas micropropulsion system for cubesats

    NARCIS (Netherlands)

    Breukelen, E. van; Sanders, B.H.; Schuurbiers, C.A.H.

    2009-01-01

    CubeSats are becoming more mature and many capabilities previously associated with microsatellites and bigger platforms are coming to the CubeSat. Moreover, they are becoming available as commercial off the shelf systems with standardized interfaces. TNO Defence and Security of the Netherlands is in

  20. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.

    2001-01-01

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  1. Development of cooling and cleaning systems for enhanced gas ...

    African Journals Online (AJOL)

    Development of cooling and cleaning systems for enhanced gas quality for 3.7 ... The pollutants generated from gasification include particulate matter, tars, ... Air and gas flow rates were measured to be 18.8 m3/h and 20.12 kg/h respectively.

  2. Energy conservation in cooling systems. Blowers; Energiebesparing in koelsystemen. Ventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Huijgens, G.

    2009-03-15

    On the role of blowers with regard to the options to save energy with cooling systems. In particular attention is paid to so-called Electronically Commutated (EC) Motors. [Dutch] Over de rol van ventilatoren in de mogelijkheden om energie te besparen met koelsystemen. In het bijzonder wordt aandacht besteed aan de zogenaamde Electronically Commutated (EC) Motors.

  3. Thermohydraulic safety issues for liquid metal cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, Gunter; Stefani, Frank [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Eckert, Sven

    2016-05-15

    In this paper recent developments of various techniques for single-phase and two-phase flow measurements with relevance to liquid metal cooled systems will be presented. Further, the status of the DRESDYN platform for large-scale experiments with liquid sodium is sketched.

  4. Development of cooling and cleaning systems for enhanced gas ...

    African Journals Online (AJOL)

    DR OKE

    The temperature of the gas after developed cooling and cleaning system ... conventional energy sources with renewable energy sources used in hybrid mode .... dry filters 1 and 2) and for air flow across orifice plate. ... Technologies Pvt. Ltd., ... allow the gas to pass through various porous media collecting the particulates of.

  5. Performance test of solar-assisted ejector cooling system

    KAUST Repository

    Huang, Bin-Juine

    2014-03-01

    A solar-assisted ejector cooling/heating system (SACH-2k) is built and test result is reported. The solar-driven ejector cooling system (ECS) is connected in series with an inverter-type air conditioner (IAC). Several advanced technologies are developed in SACH-k2, including generator liquid level control in ECS, the ECS evaporator temperature control, and optimal control of fan power in cooling tower of ECS. From the field test results, the generator liquid level control performs quite well and keeps stable performance of ejector. The ECS evaporator temperature control also performs satisfactorily to keep ejector performance normally under low or fluctuating solar radiation. The fan power control system cooling tower performs stably and reduces the power consumption dramatically without affecting the ECS performance. The test results show that the overall system COPo including power consumptions of peripheral increases from 2.94-3.3 (IAC alone) to 4.06-4.5 (SACH-k2), about 33-43%. The highest COPo is 4.5. © 2013 Elsevier Ltd and IIR. All rights reserved.

  6. Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Frisani, Angelo; Hassan, Yassin A; Ugaz, Victor M

    2010-11-02

    The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the

  7. Solar heating and cooling system installed at Leavenworth, Kansas

    Science.gov (United States)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  8. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller

    Science.gov (United States)

    Lof, G. O.; Westhoff, M. A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House 3 at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 80-gal hot water tank. A schematic of the system is given. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort Collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several U.S. climates by use of the model.

  9. System design package for a solar heating and cooling system installed at Akron, Ohio

    Science.gov (United States)

    1979-01-01

    Information used to evaluate the design of a solar heating, cooling, and domestic hot water system is given. A conventional heat pump provides summer cooling items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

  10. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  11. Performance of Upgraded Cooling System for Lhd Helical Coils

    Science.gov (United States)

    Hamaguchi, S.; Imagawa, S.; Obana, T.; Yanagi, N.; Moriuchi, S.; Sekiguchi, H.; Oba, K.; Mito, T.; Motojima, O.; Okamura, T.; Semba, T.; Yoshinaga, S.; Wakisaka, H.

    2008-03-01

    Helical coils of the Large Helical Device (LHD) are large scale superconducting magnets for heliotron plasma experiments. The helical coils had been cooled by saturated helium at 4.4 K, 120 kPa until 2005. An upgrade of the cooling system was carried out in 2006 in order to improve the cryogenic stability of the helical coils and then it has been possible to supply the coils with subcooled helium at 3.2 K, 120 kPa. A designed mass flow of the supplied subcooled helium is 50 g/s. The subcooled helium is generated at a heat exchanger in a saturated helium bath. A series of two centrifugal cold compressors with gas foil bearing is utilized to lower the helium pressure in the bath. The supplied helium temperature is regulated by rotational speed of the cold compressors and power of a heater in the bath. The mass flow of the supplied helium is also controlled manually by a supply valve and its surplus is evaporated by ten heaters at the outlet above the coils. In the present study, the performance of the cooling system has been investigated and a stable operating method has also developed. As the result, it was confirmed that the performance of the upgraded cooling system satisfies the requirements.

  12. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  13. Comparison of Air Cooled and Evaporatively Cooled Refrigerartion Systems – A Review Paper

    Directory of Open Access Journals (Sweden)

    V. V. Birangane

    2014-06-01

    Full Text Available The air cooled condensers are widely used as they are less costly and give satisfactory performance. But their performance is greatly affected by the temperature of cooling media which is ambient air. To deal this problem we can use water cooled condenser. But their cost and maintenance limit their use. The performance improvement of Air cooled condensers can be achieved by using evaporative cooling. This method may prove quiet effective and less costly. There are researchers working on the above issue. Few of them have successfully implemented the research in practice. The paper deals with a few papers using the evaporative cooling. The applications include domestic as well as industrial.

  14. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  15. Preliminary Study of Solar Chimney Assisted Cooling System for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Il; Park, Seong Jun; Lee, Young Hyeon; Park, Hyo Chan; Park, Youn Won [BEES Inc., KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, the possibility of application for a complete passive final heat removal system using a solar chimney power plant for SMART NPP was estimated. Additionally the size of the cooling system was approximately calculated under the some assumptions. In order to estimate the applicability of SCPP as a complete passive secondary cooling system for SMART, we try to calculate the size of heat exchanger and simulate SCPP performance. As a result, it was found that SCPP could be coupled with SMART and some of waste heat could be recovered into electricity without any change in SCPP size. The related all parameters satisfying the constraint of the final heat removal system for SMART were calculated. Using the constraint of the amount of heat to be removed from SMART, two kinds of SCPP performances were analyzed; one for a stand alone SCPP in Fig 8(a) and second for SCPP with SMART in Fig 8(b)

  16. Method and system for powering and cooling semiconductor lasers

    Science.gov (United States)

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  17. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  18. CARMENES ultra-stable cooling system: very promising results

    Science.gov (United States)

    Mirabet, E.; Carvas, P.; Lizon, J.-L.; Becerril, S.; Rodríguez, E.; Abril, M.; Cárdenas, M. C.; Morales, R.; Pérez, D.; Sánchez Carrasco, M. A.; Amado, P. J.; Seifert, W.; Quirrenbach, A.; Caballero, J. A.; Ribas, I.; Reiners, A.; Dreizler, S.

    2014-07-01

    CARMENES is a high resolution spectrograph to detect planets through the variation of radial velocity, destined for the Calar Alto Observatory in Almeria, Spain. The optical bench has a working temperature of 140K with a 24 hours stability of ±0,1K; goal ±0,01K. It is enclosed with a radiation shield actively cooled with thermalized nitrogen gas that flows through strategically positioned heat exchangers to remove its radiative load. The cooling system has an external preparation unit (N2GPU), which provides the nitrogen gas through actively vaporizing liquid nitrogen with heating resistances and a three stage circuit flow, each one controlled by an independent PID. Since CARMENES is still in the construction phase, a dedicated test facility has been built in order to simulate the instrument and correctly establish the N2GPU parameters. Furthermore, the test facility allows a wide range of configurations set-ups, which enables a full characterization of the N2GPU and the cooling system. The N2GPU has been designed to offer a wide temperature range of thermally stabilized nitrogen gas flow, which apart from CARMENES could also be used to provide ultra-high thermal stability in other cryogenic instruments. The present paper shows the testing of the cooling performance, the hardware used and the very promising results obtained.

  19. Ten questions about radiant heating and cooling systems

    DEFF Research Database (Denmark)

    Rhee, Kyu-Nam; Olesen, Bjarne W.; Kim, Kwang Woo

    2017-01-01

    Radiant heating and cooling (RHC) systems are being increasingly applied not only in residential but also in non-residential buildings such as commercial buildings, education facilities, and even large scale buildings such as airport terminals. Furthermore, with the combined ventilation system used...... studies on RHC systems in terms of comfort, heat transfer analysis, energy simulation, control strategy, system configurations and so on. Many studies have demonstrated that the RHC system is a good solution to improve indoor environmental quality while reducing building energy consumption for heating...

  20. Analysis of advanced solar hybrid desiccant cooling systems for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Schlepp, D.; Schultz, K.

    1984-10-01

    This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

  1. Operational aspects of the VELO cooling system of LHCb

    CERN Document Server

    Jans, E

    2014-01-01

    The VELO is a silicon strip detector that is positioned around the interaction region of LHCb. It is placed inside a secondary vacuum with respect to that of the LHC. The cooling system of the VELO is based on the bi-phase accumulator controlled method, using CO$_2$ as coolant. The main objective is the removal of the heat produced by the front-end electronics. Moreover, the leakage currents of the sensors are strongly reduced and thermal runaway is prevented. Since the sensors have been irradiated in Run 1 they should always be cooled to below $^-$5 $^{\\rm{o}}$C. The operational principle and main characteristics of the system are described, as well as the warning and safety systems that guarantee the safe operation of the detector. The few problems that have been encountered during the four years of continuous operation are discussed together with the solutions that have been implemented.

  2. Experimental validation of the simulation module of the water-cooled variable refrigerant flow system under cooling operation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yue Ming; Wu, Jing Yi [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai (China); Shiochi, Sumio [Daikin Industries, Ltd., 1304 Kanaoka-cho, Kita-ku, Sakai, Osaka 591-8511 (Japan)

    2010-05-15

    On the basis of EnergyPlus's codes, the catalogue and performance parameters from some related companies, a special simulation module for variable refrigerant flow system with a water-cooled condenser (water-cooled VRF) was developed and embedded in the software of EnergyPlus, the building energy simulation program. To evaluate the energy performance of the system and the accuracy of the simulation module, the measurement of the water-cooled VRF is built in Dalian, China. After simulation and comparison, some conclusions can be drawn. The mean of the absolute value of the daily error in the 9 days is 11.3% for cooling capacity while the one for compressor power is 15.7%. At the same time, the accuracy of the power simulation strongly depends on the accuracy of the cooling capacity simulation. (author)

  3. Development of Personalized Radiant Cooling System for an Office Room

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Vaibhav [Malaviya National Institute of Technology (MNIT), Jaipur, India; Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    The building industry nowadays is facing two major challenges increased concern for energy reduction and growing need for thermal comfort. These challenges have led many researchers to develop Radiant Cooling Systems that show a large potential for energy savings. This study aims to develop a personalized cooling system using the principle of radiant cooling integrated with conventional all-air system to achieve better thermal environment at the workspace. Personalized conditioning aims to create a microclimatic zone around a single workspace. In this way, the energy is deployed only where it is actually needed, and the individual s needs for thermal comfort are fulfilled. To study the effect of air temperature along with air temperature distribution for workspace, air temperature near the vicinity of the occupant has been obtained as a result of Computational Fluid Dynamics (CFD) simulation using FLUENT. The analysis showed that personalized radiant system improves thermal environment near the workspace and allows all-air systems to work at higher thermostat temperature without compromising the thermal comfort, which in turn reduces its energy consumption.

  4. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    Science.gov (United States)

    Harber, H.

    1981-01-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  5. A recirculating cooling system for improved topical cardiac hypothermia.

    Science.gov (United States)

    Rosenfeldt, F L; Fambiatos, A; Pastoriza-Pinol, J; Stirling, G R

    1981-10-01

    A simple system is described that recirculates cooling fluid for topical cardiac hypothermia. This disposable system can produce a flow of 1,500 ml/min at 2 degrees to 4 degrees C. The recirculating cooler produced significantly lower myocardial temperatures than a conventional fluid-discard system in 22 patients having coronary operation. This system has been used as part of the technique of hypothermic cardioplegia in more than 600 patients. During various cardiac procedures, septal temperatures were maintained well below 20 degrees C for 60 minutes or more without the need to reinfuse the cardioplegic solution.

  6. Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature. [Once-through Cycle and Plutonium Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    1982-10-01

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.

  7. Method and system for providing cooling for turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Victor John; Lacy, Benjamin Paul

    2016-08-16

    A system for providing cooling for a turbine component that includes an outer surface exposed to combustion gases is provided. A component base includes at least one fluid supply passage coupleable to a source of cooling fluid. At least one feed passage communicates with the at least one fluid supply passage. At least one delivery channel communicates with the at least one feed passage. At least one cover layer covers the at least one feed passage and the at least one delivery channel, defining at least in part the component outer surface. At least one discharge passage extends to the outer surface. A diffuser section is defined in at least one of the at least one delivery channel and the at least one discharge passage, such that a fluid channeled through the system is diffused prior to discharge adjacent the outer surface.

  8. How to measure thermal effects of personal cooling systems : Human, thermal manikin and human simulator study

    NARCIS (Netherlands)

    Bogerd, N.; Psikuta, A.; Daanen, H.A.M.; Rossi, R.M.

    2010-01-01

    Thermal effects, such as cooling power and thermophysiological responses initiated upon application of a personal cooling system, can be assessed with (i) humans, (ii) a thermal manikin and (iii) a thermophysiological human simulator. In order to compare these methods, a cooling shirt (mild cooling)

  9. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and

  10. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    Science.gov (United States)

    2010-06-18

    radiator #7. The fan blades and shroud were formed using stereo lithography; the fan motor was a brushless DC motor with motor controller. These...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--10-9253 Cooling System Design for PEM Fuel Cell Powered Air Vehicles June 18, 2010...Stroman, Michael W. Schuette,* and Gregory S. Page† Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5342 NRL/MR/6110--10-9253

  11. Cathode Stalk Cooling System for the MK 1 Quarterwave Gun

    Science.gov (United States)

    2012-06-01

    of electrons can occur for strong fields, a π≥ . In this case, the electrons are shifted from the proper phase for gain to one for absorption ...better representing the pressure rise and decrease. The cooling system was then tested with a water chiller , which was easier to establish basic... chiller was set up in the evening, with the stalk temperatures at a room temperature of 293 K, and left on overnight to ensure a steady temperature

  12. Evaluation of battery packs for liquid microclimate cooling systems

    Science.gov (United States)

    Teal, Walter B., Jr.; Avellini, Barbara A.

    1995-05-01

    The Navy clothing and Textile Research Facility conducted a literature and industry survey to determine the best commercially available battery technology for use with liquid microclimate cooling systems (MCS), and a laboratory evaluation of a battery pack utilizing that technology. Nickel/cadmium batteries were determined to be the best battery technology commercially available at the present time. However, several other battery technologies are nearing commercialization and may be available in the near future.

  13. Solar heating and cooling system installed at Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The Solar Energy System was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4,096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5,000 gallon steel tank below ground storage system. Hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building.

  14. Heat exchange and hydraulic resistance of compact laser mirror cooling systems

    Science.gov (United States)

    Shanin, Yu. I.; Shanin, O. I.

    2013-07-01

    The hydraulic resistance of cooling systems for laser mirrors and the heat exchange in them have been investigated experimentally. The data obtained have been generalized for several cooling systems with different porous elements.

  15. D0 Silicon Upgrad: D0 Silicon Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Squires, B.; /Fermilab

    1998-07-14

    The cooling system design is not complete. This paper lays out the general design and some of the design calculations that have been performed up to this date. Further refinement will be performed. This is especially true in the piping layout, piping insulation and detector manifold areas. The silicon detector is cooled by means of a coolant in the beryllium channels that also act as the primary supporting device for the silicon ladders and wedges. The coolant is water with ethylene glycol added as a freezing point depressant. The glycol concentration in the coolant is 30% by weight resulting in a freezing point of approximately -15 C. If the water/glycol is not sufficient for maintaining the desired detector temperature the concentration of the water/glycol may be changed or an alternative coolant may be used.

  16. District cooling pipes. Pipes and components in district cooling systems. Technical recommendations

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-15

    Euroheat and Power (EHP) draws up technical recommendations for pipes and components in district heating and district cooling systems. Through references to these requirements, the quality of products and systems is ensured and procurement and installation are facilitated. The recommendations are based on experiences, standards, development and research results. These recommendations cover only the type of pipes and materials listed in the table of content. Material such as reinforced plastic AP, glass fibre, reinforced plastic GAP or nodular iron can be used but they are not in the scope of this recommendation. These recommendations are meant for DC systems using treated water with quality values comparable to DH water. As these requirements include different materials and solutions, the customer should make active selections when procuring a system. Full column wide text in these technical recommendations includes requirements, while indented text is informative. The tables presented in this set of recommendations are based on Swedish experience. The Task Force Transport and Distribution at Euroheat and Power has drawn up these technical recommendations

  17. New Type Regulating Valve Applied in Cooling System of Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    HE Sheng-ping; ZOU De-yu; XU Gang; LU De-chang

    2004-01-01

    A new type regulating valve with the cooling mode of constant temperature difference water supply, temperature difference self-operated regulating valve, was introduced into blast furnace cooling system to overcome shortcomings of the cooling mode of constant flow rate water supply. The results show that the temperature difference between inlet and outlet water of cooling wall can be decreased greatly and steadily, and the water supply for blast furnace cooling can be reduced considerably.

  18. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  19. Simulation Analysis of the Four Configurations of Solar Desiccant Cooling System Using Evaporative Cooling in Tropical Weather in Malaysia

    Directory of Open Access Journals (Sweden)

    M. M. S. Dezfouli

    2014-01-01

    Full Text Available A high demand for air conditioning systems exists in hot and humid regions because of the warm climate during the year. The high energy consumption of conventional air conditioning system is the reason for our investigation of the solar desiccant cooling system as an energy-efficient cooling system. Four model configurations were considered to determine the best configuration of a solar desiccant cooling system: one-stage ventilation, one-stage recirculation, two-stage ventilation, and two-stage recirculation. These models were stimulated for 8,760 hr of operation under hot and humid weather in Malaysia. Several parameters (i.e., coefficient of performance or COP, room temperature and humidity ratio, and the solar fraction of each system were evaluated by detecting the temperature and humidity ratio of the different points of each configuration by TRNSYS simulation. The latent and sensible loads of the test room were 0.875 kW and 2.625 kW, respectively. By investigating the simulation results of the four systems, the ventilation modes were found to be higher than the recirculation modes in the one- and two-stage solar desiccant cooling systems. The isothermal dehumidification COP of the two-stage ventilation was higher than that of the two-stage recirculation. Hence, the two-stage ventilation mode desiccant cooling system in a hot and humid area has higher efficiency than the other configurations.

  20. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs). DATES...

  1. System Study: Reactor Core Isolation Cooling 1998–2012

    Energy Technology Data Exchange (ETDEWEB)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trend was identified in the HPCI results. Statistically significant decreasing trends were identified for RCIC start-only and 8-hour trends.

  2. System Study: Reactor Core Isolation Cooling 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  3. Passive-solar directional-radiating cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  4. System Study: Reactor Core Isolation Cooling 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-01-31

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  5. A gas-cooled reactor surface power system

    Science.gov (United States)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  6. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2011-11-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling load to reduce the energy consumption of the air conditioner installed as the base-load cooler. A standard SACH-2 system for cooling load 3.5. kW (1. RT) and daily cooling time 10 h is used for case study. The cooling performance is assumed only in summer seasons from May to October. In winter season from November to April, only heat is supplied. Two installation locations (Taipei and Tainan) were examined.It was found from the cooling performance simulation that in order to save 50% energy of the air conditioner, the required solar collector area is 40m2 in Taipei and 31m2 in Tainan, for COPj=0.2. If the solar collector area is designed as 20m2, the solar ejector cooling system will supply about 17-26% cooling load in Taipei in summer season and about 21-27% cooling load in Tainan. Simulation for long-term performance including cooling in summer (May-October) and hot water supply in winter (November-April) was carried out to determine the monthly-average energy savings. The corresponding daily hot water supply (with 40°C temperature rise of water) for 20m2 solar collector area is 616-858L/day in Tainan and 304-533L/day in Taipei.The economic analysis shows that the payback time of SACH-2 decreases with increasing cooling capacity. The payback time is 4.8. years in Tainan and 6.2. years in Taipei when the cooling capacity >10. RT. If the ECS is treated as an additional device used as a protective equipment to avoid overheating of solar collectors and to convert the excess solar heat in summer into cooling to reduce the energy consumption of air conditioner, the payback time is less than 3 years for cooling capacity larger than 3. RT. © 2011 Elsevier Ltd.

  7. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  8. Development of a water-mist cooling system: A 12,500 Kcal/h air-cooled chiller

    Directory of Open Access Journals (Sweden)

    Chung-Neng Huang

    2015-11-01

    Full Text Available Global warming and energy exhaustion problems are becoming a severe problems, of which energy conservation and carbon reduction are the most critical. Between 40% and 48% of the total electricity used in a building is consumed by air conditioning systems. The development of a supersonic water-misting cooling system with a fuzzy control system is proposed to optimize existing condenser noise, space, and energy consumption, as well as to address problems with cooling capacity resulting from improper control between compressors and condensers. An experimental platform was established for conducting tests, observing cooling efficiencies, and calculating power saving statuses. Comparing the observed cooling efficiency, a temperature difference of 5.4 °C was determined before and after the application; this is significant regarding efficiency. The method produces no pollution or water accumulation. When compared with fixed frequency air-cooled water chillers, an exceptional energy saving of 25% was observed. The newly developed supersonic mist-cooled chiller is an excellent solution to increasing water and electricity fees.

  9. System design package for the solar heating and cooling central data processing system

    Science.gov (United States)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  10. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...... and exergy consumption for auxiliary components (pumps and fans). The effects of the auxiliary components on whole system energy and exergy performance were identified. Water-based heating systems required 68% lower auxiliary exergy input than the warm-air heating system with heat recovery, and floor cooling...

  11. Model Based Control of Single-Phase Marine Cooling Systems

    DEFF Research Database (Denmark)

    Hansen, Michael

    2014-01-01

    ”, it is shown that the part of the proposed model relating to the thermodynamics is dynamically accurate and with relatively small steady state deviations. The same is shown for a linear version of the part of the model governing the hydraulics of the cooling system. On the subject of control, the main focus...... in this work is on the development of a nonlinear robust control design. The design is based on principles from feedback. linearization to compensate for nonlinearities as well as transport delays by including a delay estimate in the feedback law. To deal with the uncertainties that emerged from the feedback...

  12. System and method for cooling a superconducting rotary machine

    Science.gov (United States)

    Ackermann, Robert Adolf; Laskaris, Evangelos Trifon; Huang, Xianrui; Bray, James William

    2011-08-09

    A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

  13. Model Predictive Control for the Operation of Building Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  14. Thermal design of lithium bromide-water solution vapor absorption cooling system for indirect evaporative cooling for IT pod

    Science.gov (United States)

    Sawant, Digvijay Ramkrishna

    Nowadays with increase use of internet, mobile there is increase in heat which ultimately increases the efficient cooling system of server room or IT POD. Use of traditional ways of cooling system has ultimately increased CO2 emission and depletion of CFC's are serious environmental issues which led scientific people to improve cooling techniques and eliminate use of CFC's. To reduce dependency on fossil fuels and 4environmental friendly system needed to be design. For being utilizing low grade energy source such as solar collector and reducing dependency on fossil fuel vapour absorption cooling system has shown a great driving force in today's refrigeration systems. This LiBr-water aabsorption cooling consists of five heat exchanger namely: Evaporator, Absorber, Solution Heat Exchanger, Generator, Condenser. The thermal design was done for a load of 23 kW and the procedure was described in the thesis. There are 120 servers in the IT POD emitting 196 W of heat each on full load and some of the heat was generated by the computer placed inside the IT POD. A detailed procedure has been discussed. A excel spreadsheet was to prepared with varying tube sizes to see the effect on flows and ultimately overall heat transfer coefficient.

  15. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-04-05

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  16. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-08-09

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  17. Reliability and Maintainability Data for Liquid Metal Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles [Idaho National Laboratory

    2015-05-01

    One of the coolants of interest for future fusion breeding blankets is lead-lithium. As a liquid metal it offers the advantages of high temperature operation for good station efficiency, low pressure, and moderate flow rate. This coolant is also under examination for use in test blanket modules to be used in the ITER international project. To perform reliability, availability, maintainability and inspectability (RAMI) assessment as well as probabilistic safety assessment (PSA) of lead-lithium cooling systems, component failure rate data are needed to quantify the system models. RAMI assessment also requires repair time data and inspection time data. This paper presents a new survey of the data sets that are available at present to support RAMI and PSA quantification. Recommendations are given for the best data values to use when quantifying system models.

  18. Evaporative Cooling and Dehumidification Garment for Portable Life Support Systems

    Science.gov (United States)

    Izenson, Michael; Chen, Weibo; Bue, Grant

    2013-01-01

    This paper describes the design and development of an innovative thermal and humidity control system for future space suits. The system comprises an evaporation cooling and dehumidification garment (ECDG) and a lithium chloride absorber radiator (LCAR). The ECDG absorbs heat and water vapor from inside the suit pressure garment, while the LCAR rejects heat to space without venting water vapor. The ECDG is built from thin, flexible patches with coversheets made of non-porous, water-permeable membranes that -enclose arrays of vapor flow passages. Water vapor from inside the spacesuit diffuses across the water permeable membranes, enters the vapor flow channels, and then flows to the LCAR, thus dehumidifying the internal volume of the space suit pressure garment. Additional water evaporation inside the ECDG provides cooling for sensible heat loads. -The heat released from condensation and absorption in the LCAR is rejected to the environment by thermal radiation. We have assembled lightweight and flexible ECDG pouches from prototypical materials and measured their performance in a series of separate effects tests under well-controlled, prototypical conditions. Sweating hot plate tests at typical space suit pressures show that ECDG pouches can absorb over 60 W/ft of latent heat and 20 W/ft of sensible heat from the pressure garment environment. These results are in good agreement with the predictions of our analysis models.

  19. Application of Hastelloy X in gas-cooled reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, C.R.; Rittenhouse, P.L.; Corwin, W.R.; Strizak, J.P.; Lystrup, A.; DiStefano, J.R.

    1976-10-01

    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data are reported. Properties of concern include tensile, creep, creep-rupture, fatigue, creep-fatigue interaction, subcritical crack growth, thermal stability, and the influence of helium environments with controlled amounts of impurities on these properties. In order to develop these properties in helium environments that are expected to be prototypic of HTGR operating conditions, it was necessary to construct special environmental test systems. Details of construction and operating parameters are described. Interim results from tests designed to determine the above properties are presented. To date a fairly extensive amount of information has been generated on this material at Oak Ridge National Laboratory and elsewhere concerning behavior in air, which is reviewed. However, only limited data are available from tests conducted in helium. Comparisons of the fatigue and subcritical growth behavior in air between Hastelloy X and a number of other structural alloys are given.

  20. Capillary Action may Cool Systems and Precisely balance Chemical Reactions

    Science.gov (United States)

    Kriske, Richard

    2011-10-01

    It is well known that it takes no work for Water to rise in a Capillary tube against the force of Gravity. There is a precise balance in this system that resembles Robert Millikan's ``Oil Drop'' experiment, where mass was balanced against the electrostatic force. If at the top of the capillary tube there is evaporation, one can see that the system is cooled as another water molecule has room to move up the column. Furthermore, if the evaporation process can be controlled one photon at a time, a precise balance is created between a photon, and the height/mass of the column. If other molecules are place in the column, they can be moved up and down the column, in a chromatograph way, in a fairly precise manner, by controlling evaporation and molecular weight. If in addition to all of this, the interface of the solution against the walls of the column have Fermi levels, it can be seen as a very precise Electrochemical Device. In the situation of nanotubes, as opposed to trees and plants, these properties can be used to create measure environmental properties and to Balance Chemical Reactions. Forests, and Plants may cool themselves and their environment using this process, and using this process coupled with more energetic photons through photosynthesis.

  1. An experimental comparison between a novel and a conventional cooling system for the blown film process

    Science.gov (United States)

    Janas, M.; Andretzky, M.; Neubert, B.; Kracht, F.; Wortberg, J.

    2016-03-01

    The blown film extrusion is a significant manufacturing process of plastic films. Compared to other extrusion processes, the productivity is limited by the cooling of the extrudate. A conventional cooling system for the blown film application provides the cooling air tangentially, homogeneous over the whole circumference of the bubble, using a single or dual lip cooling ring. In prior works, major effects could be identified that are responsible for a bad heat transfer. Besides the formation of a boundary sublayer on the film surface due to the fast flowing cooling air, there is the interaction between the cooling jet and the ambient air. In order to intensify the cooling of a tubular film, a new cooling approach was developed, called Multi-Jet. This system guides the air vertically on the film surface, using several slit nozzles over the whole tube formation zone. Hence, the jets penetrate the sublayer. To avoid the interaction with the ambient air, the bubble expansion zone is surrounded by a housing. By means of a numeric investigation, the novel cooling approach and the efficiency of the cooling system could be proved. Thereby, a four times higher local heat transfer coefficient is achieved compared to a conventional cooling device. In this paper, the Multi-Jet cooling system is experimentally tested for several different process conditions. To identify a worth considering cooling configuration of the novel cooling system for the experiment, a simulation tool presets the optimal process parameters. The comparison between the results of the new and a conventional system shows that the novel cooling method is able to gain the same frost line height using a 40% lower cooling air volume flow. Due to the housing of the tube formation zone, a heat recovery can be achieved.

  2. Dechlorination Technology Manual. Final report. [Utility cooling water discharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Aschoff, A.F.; Chiesa, R.J.; Jacobs, M.H.; Lee, Y.H.; Mehta, S.C.; Meko, A.C.; Musil, R.R.; Sopocy, D.M.; Wilson, J.A.

    1984-11-01

    On November 19, 1982, the United States Environmental Protection Agency (EPA) promulgated regulations severely restricting chlorination practices as they relate to utility cooling water discharge systems. EPRI authorized the preparation of a manual on dechlorination technology to assist utilities in evaluating the various alternatives available to them to meet these new requirements. The Dechlorination Technology Manual emphasizes the engineering aspects involved in the selection and design of dechlorination systems. However, background information is included concerning chemistry, regulatory requirements, environmental considerations and aquatic impacts. There is also a brief discussion of the various alternatives to dechlorination. Case studies are given to acquaint the user with the use of the manual for the design of chlorination facilities given various site-related characteristics, such as salt versus fresh waters. Numerous graphs and tables are presented to facilitate the selection and design process. 207 references, 66 figures, 60 tables.

  3. Thermoelectric generator cooling system and method of control

    Science.gov (United States)

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  4. Installation and Commissioning of the Resonant Frequency Control Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeokjung; Seol, Kyungtae; Kim, Hansung; Jang, Jiho; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Total 11 sets of Resonant Frequency Control Cooling System (RCCS) are used to control the resonance frequency of the 100-MeV DTL. The specifications of the RCCS are summarized. The RCCS should cover the temperature from 21 .deg. C to 33 .deg. C, heat load from magnet power only to full RF power in addition to the magnet power. The stability of the temperature control is less than 0.1 .deg. C. The control input variable comes from the resonance frequency error from the low level RF (LLRF) system. All RCCSs were installed and tested. In this paper, the installation and initial test results of the RCCS are presented. The standalone test of the RCCS for 100-MeV DTL was carried out. The results showed that the chiller temperature fluctuated above the specification mainly because the chiller controller was not properly tuned, but the RCCS with two independent control valves could be operated to give the required stability.

  5. Increasing the Efficiency of a Thermoelectric Generator Using an Evaporative Cooling System

    Science.gov (United States)

    Boonyasri, M.; Jamradloedluk, J.; Lertsatitthanakorn, C.; Therdyothin, A.; Soponronnarit, S.

    2016-11-01

    A system for reducing heat from the cold side of a thermoelectric (TE) power generator, based on the principle of evaporative cooling, is presented. An evaporative cooling system could increase the conversion efficiency of a TE generator. To this end, two sets of TE generators were constructed. Both TE generators were composed of five TE power modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The hot side heat sinks were inserted in a hot gas duct. The cold side of one set was cooled by the cooling air from a counter flow evaporative cooling system, whereas the other set was cooled by the parallel flow evaporative cooling system. The counter flow pattern had better performance than the parallel flow pattern. A comparison between the TE generator with and without an evaporative cooling system was made. Experimental results show that the power output increased by using the evaporative cooling system. This can significantly increase the TE conversion efficiency. The evaporative cooling system increased the power output of the TE generator from 22.9 W of ambient air flowing through the heat sinks to 28.6 W at the hot gas temperature of 350°C (an increase of about 24.8%). The present study shows the promising potential of using TE generators with evaporative cooling for waste heat recovery.

  6. Supercritical Once-through Boiler Main Steam Temperature Control%超临界直流锅炉主汽温的控制

    Institute of Scientific and Technical Information of China (English)

    丁超

    2014-01-01

    在超临界直流锅炉的运行过程中,主蒸汽温度是一个重要的参数,其控制方法与汽包锅炉不同。通过分析超临界直流锅炉主汽温控制的基本方法,以期对现场主汽温的控制起到理论指导的作用。%In the process of running a supercritical once-through boiler, the main steam temperature is an important parameter, which controls the different methods and drum boiler. This paper analyzes the basic method of supercritical once-through boiler main steam temperature control;with a view of the main steam temperature control of the scene plays the role of theoretical guidance.

  7. Optimization and Model of Laminar Cooling Control System for Hot Strip Mills

    Institute of Scientific and Technical Information of China (English)

    XIE Hai-bo; LIU Xiang-hua; WANG Guo-dong; ZHANG Zhong-ping

    2006-01-01

    The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15 ℃.

  8. Optimal design of passive containment cooling system for innovative PWR

    Directory of Open Access Journals (Sweden)

    Huiun Ha

    2017-08-01

    Full Text Available Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS of an innovative pressurized water reactor (PWR. A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT geometry, PCCS heat exchanger (PCCX location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

  9. Chemical treatment of slime in industrial cooling water systems

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Noriyuki

    1987-07-01

    Chemical suppression test was made for slime produced in pipes of the industrial water cooling systems. The 3 month chemical slime treatment test in 1984 proved to be effective, and the test has been carried out since July, 1985. The objective was to suppress the generation of slime by decreasing the number of general bacteria by slime treatment agent (fungicide of chloride group). The number of bacteria in the supplied water was compared for the time and day of the week when samples were collected. It was found that there was no regular rule in the variation of the number of bacteria, with measured result of 30-10/sup 6/ variation range. From the variation in the number of bacteria and the sticking conditions of slime on the test board, it became clear that suppression was possible by drastically decreasing the bacteria number in cooling water in the early stage of chemical supply, followed by resupply of treatment agent in a week when the bacteria would be restored to its original amount by supplied water. However, the method is to suppress the slime generation, and is unable to stop the generation completely. (9 figs, 3 tabs)

  10. High perveance electron gun for the electron cooling system

    CERN Document Server

    Korotaev, Yu V; Petrov, A; Sidorin, A; Smirnov, A; Syresin, E M; Titkova, I

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 mu A/V sup 3 sup / sup 2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual).

  11. System design package for the solar heating and cooling central data processing system

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    This system design package for the Central Data Processing System consists of the Software Performance Specification, Hardware Performance Specification, Software Verification Plan, CDPS Development Program, Qualification and Acceptance Test Procedures, Qualification Test and Analysis Report, and Qualification and Acceptance Test Review. The Central Data Processing System, located at IBM's Federal System Division facility in Huntsville, Alabama, provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications.

  12. Influence of cooling medium on rat hemostatic system

    Directory of Open Access Journals (Sweden)

    N. A. Lycheva

    2017-01-01

    Full Text Available The purpose of the article is to study the effect of air and water-immersion cooling media on the hemostatic system in the pre-active period of cold trauma.Material and methods. The study was performed on 43 laboratory Wistar rats. Single air hypothermia was modeled by placing animals in individual cells into a cooling chamber at a temperature –25 °С. The animals were in the chamber until the rectal temperature reached 30 °C, which corresponded to a moderate degree of hypothermia in rats. Water immersion hypothermia was modeled by placing animals in individual cells into water with a temperature 5 °C and air 7 °C. The criterion for cessation of exposure was a rectal temperature of 27–30 °C, which also corresponded to a moderate degree of hypothermia. We assessed the state of vascularplatelet and plasma hemostasis, as well as the physiological state of anticoagulant and fibrinolytic systems. The study was performed by using routine techniques and an integral method - thromboelastography.Results. It was established that during water immersion cooling, experimental animals developed thrombocytosis and activated their aggregation function. Laboratory indicators characterizing the initial stages of plasma hemostasis, and external and internal ways of activation did not change at this intensity of hypothermic exposure. At the same time, at the final stage of coagulation, pronounced thrombinemia was recorded, which was confirmed by a significant increase in the concentration of soluble fibrin-monomer complexes and a decrease in the time of their self-assembly. In addition, inhibition of fibrinolytic activity of plasma associated with a decrease in the concentration of antithrombin III was observed. In this case, single air hypothermia, accompanied by the rise in a rectal temperature up to 30 ° C, also caused significant changes in the hemostatic system. Vascular-platelet hemostasis responded to a significant decrease in aggregation activity

  13. Effect of façade systems on the performance of cooling ceilings: In situ measurements

    Directory of Open Access Journals (Sweden)

    Katharina Eder

    2015-03-01

    Full Text Available This article presents an innovative façade system designed to increase the thermal comfort inside an office room and to enhance the cooling capacity of the suspended cooling ceiling. A series of measurements is conducted in an existing office building with different façade systems (i.e., a combination of glazing and shading. An innovative façade system is developed based on this intensive set of measurements. The new system enhances the thermal comfort and cooling capacity of the suspended cooling ceiling. The main usage of the new system is the refurbishment and improvement of existing façade systems.

  14. Photometric Study of the Possible Cool Quadruple System PY Virginis

    Science.gov (United States)

    Zhu, L. Y.; Qian, S. B.; Liu, N. P.; Liu, L.; Jiang, L. Q.

    2013-02-01

    Complete CCD photometric light curves in BV(RI)c bands obtained in 2012 for the short-period close binary system PY Virginis are presented. A new photometric analysis with the Wilson—Van Hamme code shows that PY Vir is an A-type marginal contact binary system. The absolute parameters of PY Vir are derived using spectroscopic and photometric solutions. Combining new determined times of minimum light with others published in the literature, the O - C diagram of the binary star is investigated. A periodic variation, with a period of 5.22(±0.05) years and an amplitude of 0.0075(±0.0004) days, was discovered. Since the spectrum of a third component has been detected by Rucinski et al., we consider this cyclic period oscillation to be the result of the light-time effect due to the presence of a third body. This third component may also be a binary itself. Therefore, PY Vir should be a quadruple system composed of two cool-type binary systems. This system is a good astrophysical laboratory to study the formation and evolution of close binaries and multiple systems.

  15. Steam-Electric Power-Plant-Cooling Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  16. Effect of Mixed Corrosion Inhibitors in Cooling Water System

    Directory of Open Access Journals (Sweden)

    Dina Raheem

    2011-01-01

    Full Text Available The effect of mixed corrosion inhibitors in cooling system was evaluated by using carbon steel specimens and weight loss analysis. The carbon steel specimens immersed in mixture of sodium phosphate (Na2 HPO4 used as corrosion inhibitor and sodium glocunate (C6 H11 NaO7 as a scale dispersant at different concentrations (20,40, 60, 80 ppm and at different temperature (25,50,75 and 100ºC for (1-5 days. The corrosion inhibitors efficiency was calculated by using uninhibited and inhibited water to give 98.1%. The result of these investigations indicate that the corrosion rate decreases with the increase the corrosion inhibitors concentration at 80 ppm and at 100ºC for 5 days, (i.e, corrosion rate= 0.014gmd.

  17. RF System for the MICE Demonstration of Ionisation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ronald, K.; et al.

    2017-04-01

    Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of neutrinos for fundamental physics experiments investigating the physics of flavor. The method of production of muon beams results in high beam emittance which must be reduced for efficient acceleration. Conventional emittance control schemes take too long, given the very short (2.2 microsecond) rest lifetime of the muon. Ionisation cooling offers a much faster approach to reducing particle emittance, and the international MICE collaboration aims to demonstrate this technique for the first time. This paper will present the MICE RF system and its role in the context of the overall experiment.

  18. R&D on The Cooling Systems Using Natural Refrigerants

    Science.gov (United States)

    Yanagi, Hideharu

    The use of waste heat of low temperatures is an important problem from the environmental considerations. Notice that adsorption cycles have a distinct advantage over other systems of their ability to produce cooling by using low waste heat as 60 to 80°C and also being absolutely benign for the environment. However the present available adsorption chillers are still heavier and larger in size. Hence their compactness and cost reduction as well as higher efficiency are urgent tasks for wider use. This review discusses recent development on adsorption heat pumps as well as forthcoming applications. The sources are mainly papers and discussions at the IEA Annex 24 Workshop in Turin, Italy (1999), FOA6 (Fundamental of Adsorption) Conference in Presquile de Giens, France (1998) and ISHPC (International Sorption Heat Pump Conference) in Munich, Germany (1999).

  19. CFD Analysis of the Primary Cooling System for the Small Modular Natural Circulation Lead Cooled Fast Reactor SNRLFR-100

    OpenAIRE

    Pengcheng Zhao; Kangli Shi; Shuzhou Li; Jingchao Feng; Hongli Chen

    2016-01-01

    Small modular reactor (SMR) has drawn wide attention in the past decades, and Lead cooled fast reactor (LFR) is one of the most promising advanced reactors which are able to meet the safety economic goals of Gen-IV nuclear energy systems. A small modular natural circulation lead cooled fast reactor-100 MWth (SNRLFR-100) is being developed by University of Science and Technology of China (USTC). In the present work, a 3D CFD model, primary heat exchanger model, fuel pin model, and point kineti...

  20. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  1. Optimization of a solar cooling system with interior energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuan, C.; Soutullo, S.; Heras, M.R. [Department of Energy, Energy Efficiency in Buildings Unit, CIEMAT, Madrid E-28040 (Spain)

    2010-07-15

    This paper focuses on the optimization of the performance of a solar absorption cooling system composed by four units with interior energy storage. A full dynamic simulation model that includes the solar collector field, the absorption heat pump system and the building load calculation has been developed. It has been applied to optimize the coupling of a system based on this new technology of solar powered absorption heat pump, to a bioclimatic building recently constructed in the Plataforma Solar de Almeria (PSA) in Spain. The absorption heat pump system considered is composed by four heat pumps that store energy in the form of crystallized salts so that no external storage capacity is required. Each heat pump is composed of two separate barrels that can charge (store energy from the solar field) and discharge (deliver heat or cold to the building) independently. Different configurations of the four units have been analysed taking into account the storage possibilities of the system and its capacity to respond to the building loads. It has been shown how strong the influence of the control strategies in the overall performance is, and the importance of using hourly simulations models when looking for highly efficient buildings. (author)

  2. Cryogenic cooling with cryocooler on a rotating system.

    Science.gov (United States)

    Oguri, S; Choi, J; Kawai, M; Tajima, O

    2013-05-01

    We developed a system that continuously maintains a cryocooler for long periods on a rotating table. A cryostat that holds the cryocooler is set on the table. A compressor is located on the ground and supplies high-purity (>99.999%) and high-pressure (1.7 MPa) helium gas and electricity to the cryocooler. The operation of the cryocooler and other instruments requires the development of interface components between the ground and rotating table. A combination of access holes at the center of the table and two rotary joints allows simultaneous circulation of electricity and helium gas. The developed system provides two innovative functions under the rotating condition, cooling from room temperature and the maintenance of a cold condition for long periods. We have confirmed these abilities as well as temperature stability under a condition of continuous rotation at 20 rpm. The developed system can be applied in various fields, e.g., in tests of Lorentz invariance, searches for axion, radio astronomy, and cosmology, and application of radar systems. In particular, there is a plan to use this system for a radio telescope observing cosmic microwave background radiation.

  3. Cryogenic cooling with cryocooler on a rotating system

    Science.gov (United States)

    Oguri, S.; Choi, J.; Kawai, M.; Tajima, O.

    2013-05-01

    We developed a system that continuously maintains a cryocooler for long periods on a rotating table. A cryostat that holds the cryocooler is set on the table. A compressor is located on the ground and supplies high-purity (>99.999%) and high-pressure (1.7 MPa) helium gas and electricity to the cryocooler. The operation of the cryocooler and other instruments requires the development of interface components between the ground and rotating table. A combination of access holes at the center of the table and two rotary joints allows simultaneous circulation of electricity and helium gas. The developed system provides two innovative functions under the rotating condition, cooling from room temperature and the maintenance of a cold condition for long periods. We have confirmed these abilities as well as temperature stability under a condition of continuous rotation at 20 rpm. The developed system can be applied in various fields, e.g., in tests of Lorentz invariance, searches for axion, radio astronomy, and cosmology, and application of radar systems. In particular, there is a plan to use this system for a radio telescope observing cosmic microwave background radiation.

  4. Experimental study and modeling of cooling ceiling systems using steady-state analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca Diaz, Nestor [Thermodynamic Laboratory, University of Liege Belgium, Campus du Sart Tilman, Bat: B49 - P33, B-4000 Liege (Belgium); Universidad Tecnologica de Pereira, Facultad de Ingenieria Mecuanica, AA. 97 Pereira (Colombia); Lebrun, Jean [Thermodynamic Laboratory, University of Liege Belgium, Campus du Sart Tilman, Bat: B49 - P33, B-4000 Liege (Belgium); Andre, Philippe [Departement Sciences et Gestion de l' Environnement, University of Liege Belgium, 185, Avenue de Longwy, B-6700 Arlon (Belgium)

    2010-06-15

    This article presents the results of an experimental study performed to develop a computational model of cooling ceiling systems. The model considers the cooling ceiling as a fin. Only the dry regime is considered. From ceiling and room dimensions, material description of the cooling ceiling and measurement of supply water mass flow rate and air and water temperatures, the model calculates the cooling ceiling capacity, ceiling surface average temperature and water exhaust temperature. Fin efficiency, mixed convection close to the cooling ceiling (generated by the ventilation system) and panel perforations influence are studied. The theoretical approach gives to the user an appropriate tool for preliminary calculation, design and diagnosis in commissioning processes in order to determine the main operating conditions of the system in cooling mode. A series of experimental results got on four types of cooling ceilings are used in order to validate the model. (author)

  5. Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  6. Overview of Cooling Water System for the KSTAR 1{sup st} Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. J.; Kim, S. T.; Im, D. S.; Joung, N. Y.; Kim, Y. S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The KSTAR cooling water system (CWS) consists of a primary cooling water system (PCWS), a secondary cooling water system (SCWS), and a de-mineralizing and de-ionized water system (DIWS). The PCWS cooling loops have been made for the poloidal field (PF) and toroidal field (TF) magnet power supplies (MPS), vacuum vessel (VV), electron cyclotron heating (ECH), ion cyclotron heating (ICRH), vacuum pumps, diagnostics, helium facility, etc. The CWS had been done individual commissioning of each system to confirm the design specifications by the end of 2006 and had gradually begun operation for the KSTAR ancillary devices by March 2008.

  7. Consideration of sub-cooled LN2 circulation system for HTS power machines

    Science.gov (United States)

    Yoshida, Shigeru; Hirai, Hirokazu; Nara, N.; Nagasaka, T.; Hirokawa, M.; Okamoto, H.; Hayashi, H.; Shiohara, Y.

    2012-06-01

    We consider a sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The planned circulation system consists of a sub-cool heat exchanger (subcooler) and a circulation pump. The sub-cooler will be connected to a neon turbo- Brayton cycle refrigerator with a cooling power of 2 kW at 65 K. Sub-cooled LN will be delivered into the sub-cooler by the pump and cooled within it. Sub-cooled LN is adequate fluid for cooling HTS power equipment, because its dielectric strength is high and it supports a large critical current. However, a possibility of LN solidification in the sub-cooler is a considerable issue. The refrigerator will produce cold neon gas of about 60 K, which is lower than the nitrogen freezing temperature of 63 K. Therefore, we designed two-stage heat exchangers which are based on a plate-fin type and a tube-intube type. Process simulations of those heat exchangers indicate that sub-cooled LN is not frozen in either sub-cooler. The plate-fin type sub-cooler is consequently adopted for its reliability and compactness. Furthermore, we found that a cooling system with a Brayton refrigerator has the same total cooling efficiency as a cooling system with a Stirling refrigerator.

  8. Application of Heat Pump in Cooling Water System of HIRFL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Accelerator generates a lot of heat when it is working.It must be cooled by the circulating cooling water.Generally the heat was released to atimosphere by the cooling water tower.Because the heat energy is very huge(about 2M watts for HIRFL),it is big waste and the machine can’t be cooled to appropriate temperature when ambient temperature is high in summer.In order to solve the problems,the heat pump has been used

  9. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Science.gov (United States)

    Sulaiman, S. A.; Dominguez-Ontiveros, E. E.; Alhashimi, T.; Budd, J. L.; Matos, M. D.; Hassan, Y. A.

    2015-04-01

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A&M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  10. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  11. Cooling system having reduced mass pin fins for components in a gas turbine engine

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  12. Fast cooling for a system of stochastic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongxin, E-mail: chen2468@umn.edu; Georgiou, Tryphon T., E-mail: tryphon@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, Minnesota 55455 (United States); Pavon, Michele, E-mail: pavon@math.unipd.it [Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova (Italy)

    2015-11-15

    We study feedback control of coupled nonlinear stochastic oscillators in a force field. We first consider the problem of asymptotically driving the system to a desired steady state corresponding to reduced thermal noise. Among the feedback controls achieving the desired asymptotic transfer, we find that the most efficient one from an energy point of view is characterized by time-reversibility. We also extend the theory of Schrödinger bridges to this model, thereby steering the system in finite time and with minimum effort to a target steady-state distribution. The system can then be maintained in this state through the optimal steady-state feedback control. The solution, in the finite-horizon case, involves a space-time harmonic function φ, and −logφ plays the role of an artificial, time-varying potential in which the desired evolution occurs. This framework appears extremely general and flexible and can be viewed as a considerable generalization of existing active control strategies such as macromolecular cooling. In the case of a quadratic potential, the results assume a form particularly attractive from the algorithmic viewpoint as the optimal control can be computed via deterministic matricial differential equations. An example involving inertial particles illustrates both transient and steady state optimal feedback control.

  13. Cryogenic cooling with cryocooler on a rotating system

    CERN Document Server

    Oguri, Shugo; Kawai, Masanori; Tajima, Osamu

    2013-01-01

    We developed a system that continuously maintains a cryocooler for long periods on a rotating table. A cryostat that holds the cryocooler is set on the table. A compressor is located on the ground and supplies high-purity (> 99.999%) and high-pressure (1.7 MPa) helium gas and electricity to the cryocooler. The operation of the cryocooler and other instruments requires the development of interface components between the ground and rotating table. A combination of access holes at the center of the table and two rotary joints allows simultaneous circulation of electricity and helium gas. The developed system provides two innovative functions under the rotating condition; cooling from room temperature and the maintenance of a cold condition for long periods. We have confirmed these abilities as well as temperature stability under a condition of continuous rotation at 20 revolutions per minute. The developed system can be applied in various fields; e.g., in tests of Lorentz invariance, searches for axion, radio as...

  14. Fast cooling for a system of stochastic oscillators

    Science.gov (United States)

    Chen, Yongxin; Georgiou, Tryphon T.; Pavon, Michele

    2015-11-01

    We study feedback control of coupled nonlinear stochastic oscillators in a force field. We first consider the problem of asymptotically driving the system to a desired steady state corresponding to reduced thermal noise. Among the feedback controls achieving the desired asymptotic transfer, we find that the most efficient one from an energy point of view is characterized by time-reversibility. We also extend the theory of Schrödinger bridges to this model, thereby steering the system in finite time and with minimum effort to a target steady-state distribution. The system can then be maintained in this state through the optimal steady-state feedback control. The solution, in the finite-horizon case, involves a space-time harmonic function φ, and -logφ plays the role of an artificial, time-varying potential in which the desired evolution occurs. This framework appears extremely general and flexible and can be viewed as a considerable generalization of existing active control strategies such as macromolecular cooling. In the case of a quadratic potential, the results assume a form particularly attractive from the algorithmic viewpoint as the optimal control can be computed via deterministic matricial differential equations. An example involving inertial particles illustrates both transient and steady state optimal feedback control.

  15. The application of three different evaporative cooling strategies to a quick service restaurant

    Energy Technology Data Exchange (ETDEWEB)

    Waterbury, S.S.; Allen, T.E.; Young, R.

    1999-07-01

    This paper describes the application of evaporative cooling strategies to the kitchen HVAC outdoor air intake, dining area HVAC condensers, and to the total cooling of a large, separate play area in a quick service restaurant (QSR). The paper includes a discussion of the types of evaporative coolers used, including media and once-through water flow, as well as the benefits and shortcomings of evaporative cooling in a quick service restaurant application. Measured data were used to determine the performance of the systems and to develop models used to predict cooling season performance. The performance of all evaporative cooling strategies reduced energy consumption, but they all required adjustments and modifications during the evaluation period. Proper commissioning after installation would have ensured peak performance sooner.

  16. Air cooled turbine component having an internal filtration system

    Science.gov (United States)

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  17. Evaluating two different evaporative cooling management systems for dairy cows in a hot, dry climate.

    Science.gov (United States)

    Ryan, D P; Boland, M P; Kopel, E; Armstrong, D; Munyakazi, L; Godke, R A; Ingraham, R H

    1992-04-01

    Milk production, rectal temperature, live weight gain, reproductive performance, and weather data were obtained on 150 Holstein cows managed under two cooling systems on a large dairy farm in Saudi Arabia during the summer months. Cows were paired at the onset of the trial according to days postpartum, lactation number, and current milk production. Females were then allocated either to a system that forced air, precooled by evaporative cooling, over the cows or to a system that alternately showered a fine mist onto the surface of the cows and then forced air at ambient temperature over them. The cows receiving evaporative cooling and those with spray and fan cooling were on sand and on slatted concrete floor, respectively, during the periods of cooling. The onset of estrus was observed during the night when the cows preferred the unshaded corral. For the 120-d trial period, 84% (62 of 75) of the cows receiving evaporative cooling and 60% (44 of 75) of the cows receiving spray and fan cooling became pregnant. In the evaporative cooling system, the pregnancy rate per insemination was 35.2% (179 inseminations) versus 23.2% (194 inseminations) for spray and fan cooling. The mean postpartum interval to pregnancy was 117.6 d for the evaporative cooling cows and 146.7 d for spray and fan cooling cows. The evaporative cooling system, with its open shades and sand bedding, enhanced reproductive performance and milk production compared with that of cows cooled with a spray and fan system with slatted flooring in this hot climate.

  18. Conceptual design of a passive moderator cooling system for a pressure tube type natural circulation boiling water cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Pal, Eshita, E-mail: eshi.pal@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Nayak, Arun K.; Vijayan, Pallipattu K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-09-15

    Highlights: • Passive moderator cooling system is designed to cool moderator passively during SBO. • PMCS is a system of two natural circulation loops, coupled via a heat exchanger. • RELAP5 analyses show that PMCS maintains moderator within safe limits for 7 days. - Abstract: The recent Fukushima accident has raised strong concern and apprehensions about the safety of reactors in case of a prolonged Station Black Out (SBO) continuing for several days. In view of this, a detailed study was performed simulating this condition in Advanced Heavy Water Reactor. In this study, a novel concept of moderator cooling by passive means has been introduced in the reactor design. The Passive Moderator Cooling System (PMCS) consists of a shell and tube heat exchanger designed to remove 2 MW heat from the moderator inside Calandria. The heat exchanger is located at a suitable elevation from the Calandria of the reactor, such that the hot moderator rises due to buoyancy into the heat exchanger and upon cooling from shell side water returns to Calandria forming a natural circulation loop. The shell side of the heat exchanger is also a natural circulation loop connected to an overhead large water reservoir, namely the GDWP. The objective of the PMCS is to remove the heat from the moderator in case of an SBO and maintaining its temperature below the permissible safe limit (100 °C) for at least 7 days. The paper first describes the concept of the PMCS. The concept has been assessed considering a prolonged SBO for at least 7 days, through an integrated analysis performed using the code RELAP5/MOD3.2 considering all the major components of the reactor. The analysis shows that the PMCS is able to maintain the moderator temperature below boiling conditions for 7 days.

  19. Thermal modeling in an engine cooling system to control coolant flow for fuel consumption improvement

    Science.gov (United States)

    Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung

    2016-09-01

    The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.

  20. Analysis of a New Dissipation System for a Solar Cooling Installation

    Directory of Open Access Journals (Sweden)

    Carlos Monné Bailo

    2010-01-01

    Full Text Available This paper describes a solar absorption cooling installation located at the University of Zaragoza (Spain. The installation is based on the performance of an absorption chiller. The solar cooling system consists of 37,5 m2 of flat plate collector, a 4.5 kW, single-effect LiBr-H2O absorption chiller, and a dry cooling tower. The installation provides cooling to a gymnasium belonging to the sports center of the university. To carry out the installation analysis, the system was continuously monitored. In 2007, 2008 and 2009, several studies have been performed in order to analyze the full system operation. The measured data showed the strong influence of the cooling water temperature and the generator driving temperature on the COP. Due to the experimental evidence of the influence of the cooling water temperature, a new heat rejection system based on a geothermal heat sink has been installed and studied.

  1. COOLING FAN AND SYSTEM PERFORMANCE AND EFFICIENCY IMPROVEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Dupree

    2005-07-31

    Upcoming emissions regulations (Tiers 3, 4a and 4b) are imposing significantly higher heat loads on the cooling system than lesser regulated machines. This work was a suite of tasks aimed at reducing the parasitic losses of the cooling system, or improving the design process through six distinct tasks: 1. Develop an axial fan that will provide more airflow, with less input power and less noise. The initial plan was to use Genetic Algorithms to do an automated fan design, incorporating forward sweep for low noise. First and second generation concepts could not meet either performance or sound goals. An experienced turbomachinery designer, using a specialized CFD analysis program has taken over the design and has been able to demonstrate a 5% flow improvement (vs 10% goal) and 10% efficiency improvement (vs 10% goal) using blade twist only. 2. Fan shroud developments, using an 'aeroshroud' concept developed at Michigan State University. Performance testing at Michigan State University showed the design is capable of meeting the goal of a 10% increase in flow, but over a very narrow operating range of fan performance. The goal of 10% increase in fan efficiency was not met. Fan noise was reduced from 0 to 2dB, vs. a goal of 5dB at constant airflow. The narrow range of fan operating conditions affected by the aeroshroud makes this concept unattractive for further development at this time 3. Improved axial fan system modeling is needed to accommodate the numbers of cooling systems to be redesigned to meet lower emissions requirements. A CFD fan system modeling guide has been completed and transferred to design engineers. Current, uncontrolled modeling practices produce flow estimates in some cases within 5% of measured values, and in some cases within 25% of measured values. The techniques in the modeling guide reduced variability to the goal of + 5% for the case under study. 4. Demonstrate the performance and design versatility of a high performance fan. A

  2. COOLING FAN AND SYSTEM PERFORMANCE AND EFFICIENCY IMPROVEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Dupree

    2005-07-31

    Upcoming emissions regulations (Tiers 3, 4a and 4b) are imposing significantly higher heat loads on the cooling system than lesser regulated machines. This work was a suite of tasks aimed at reducing the parasitic losses of the cooling system, or improving the design process through six distinct tasks: 1. Develop an axial fan that will provide more airflow, with less input power and less noise. The initial plan was to use Genetic Algorithms to do an automated fan design, incorporating forward sweep for low noise. First and second generation concepts could not meet either performance or sound goals. An experienced turbomachinery designer, using a specialized CFD analysis program has taken over the design and has been able to demonstrate a 5% flow improvement (vs 10% goal) and 10% efficiency improvement (vs 10% goal) using blade twist only. 2. Fan shroud developments, using an 'aeroshroud' concept developed at Michigan State University. Performance testing at Michigan State University showed the design is capable of meeting the goal of a 10% increase in flow, but over a very narrow operating range of fan performance. The goal of 10% increase in fan efficiency was not met. Fan noise was reduced from 0 to 2dB, vs. a goal of 5dB at constant airflow. The narrow range of fan operating conditions affected by the aeroshroud makes this concept unattractive for further development at this time 3. Improved axial fan system modeling is needed to accommodate the numbers of cooling systems to be redesigned to meet lower emissions requirements. A CFD fan system modeling guide has been completed and transferred to design engineers. Current, uncontrolled modeling practices produce flow estimates in some cases within 5% of measured values, and in some cases within 25% of measured values. The techniques in the modeling guide reduced variability to the goal of + 5% for the case under study. 4. Demonstrate the performance and design versatility of a high performance fan. A

  3. System and method for regulating EGR cooling using a rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Morris, Dave

    2015-12-22

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  4. Micro-Stirling Active Cooling Module (MS/ACM) for DoD Electronics Systems

    Science.gov (United States)

    2012-03-01

    Micro- Stirling Active Cooling Module (MS/ACM) for DoD Electronics Systems Douglas S. Beck Beck Engineering, Inc. 1490 Lumsden Road, Port Orchard...refrigerator. We are developing for DARPA a cm-scale Micro- Stirling Active Cooling Module (MS/ACM) micro- refrigerator to benefit the DoD systems. Under...a DARPA contract, we are designing, building, and demonstrating a breadboard MS/ACM. Keywords: Stirling ; cooler; active cooling module; micro

  5. System and method for regulating EGR cooling using a Rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Morris, Dave

    2017-08-29

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  6. Design for micro-combined cooling, heating and power systems stirling engines and renewable power systems

    CERN Document Server

    2015-01-01

    ‘Design for Micro-Combined Cooling, Heating & Power Systems’ provides a manual for the technical and structural design of systems for supplying decentralised energy in residential buildings. It presents the micro-combined cooling, heating & power systems Stirling engines & renewable energy sources (mCCHP-SE-RES) systems in an accessible manner both for the public at large, and for professionals who conceive, design or commercialise such systems or their components.  The high performance levels of these systems are demonstrated within the final chapter by the results of an experiment in which a house is equipped with a mCCHP-SE-RES system. The reader is also familiarized with the conceptual, technical and legal aspects of modern domestic energy systems; the components that constitute these systems; and advanced algorithms for achieving the structural and technical design of such systems. In residential buildings, satisfying demands of durable development has gradually evolved from necessity to...

  7. Non-Cooled Power System for Venus Lander

    Science.gov (United States)

    Salazar, Denise; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The Planetary Science Decadal Survey of 2013-2022 stated that the exploration of Venus is of significant interest. Studying the seismic activity of the planet is of particular importance because the findings can be compared to the seismic activity of Earth. Further, the geological and atmospheric properties of Venus will shed light into the past and future of Earth. This paper presents a radioisotope power system (RPS) design for a small low-power Venus lander. The feasibility of the new power system is then compared to that of primary batteries. A requirement for the power source system is to avoid moving parts in order to not interfere with the primary objective of the mission - to collect data about the seismic activity of Venus using a seismometer. The target mission duration of the lander is 117 days, a significant leap from Venera 13, the longest-lived lander on the surface of Venus, which survived for 2 hours. One major assumption for this mission design is that the power source system will not provide cooling to the other components of the lander. This assumption is based on high-temperature electronics technology that will enable the electronics and components of the lander to operate at Venus surface temperature. For the proposed RPS, a customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHSRTG) is designed and analyzed. The GPHS-RTG is chosen primarily because it has no moving parts and it is capable of operating for long duration missions on the order of years. This power system is modeled as a spherical structure for a fundamental thermal analysis. The total mass and electrical output of the system are calculated to be 24 kilograms and 26 Watts, respectively. An alternative design for a battery-based power system uses Sodium Sulfur batteries. To deliver a similar electrical output for 117 days, the battery mass is calculated to be 234 kilograms. Reducing mission duration or power required will reduce the required battery mass

  8. Experimental study on temperature distribution of membrane water wall in an ultra-supercritical pressure once-through boiler burning zhundong coal

    Science.gov (United States)

    He, Honghao; Li, Wenjun; Zeng, Jun; Xie, Guohong; Peng, Min; Duan, Xuenong

    2017-05-01

    Taking an ultra-supercritical pressure once-through boiler as an example, the temperature distribution of the lower membrane water wall is investigated experimentally, the conclusion reveals that increasing the proportion of Zhundong coal can effectively reduce the district heat load, which benefits the temperature uniformity in the lower membrane water wall. When the boiler being operated at middle load, the temperature deviation in lower membrane water wall increase simultaneously, one of the reasons is that the restriction orifice could not adjust the flow rate of working fluid as expected. By adjusting boiler performance, the temperature uniformity of lower membrane water wall can be improved to a certain degree.

  9. Thermo Active Building Systems – Using Building Mass To Heat and Cool

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2014-01-01

    Using the thermal storage capacity of the concrete slabs between each floor in multistory buildings to heat or cool is a trend that began in the early 1990s in Switzerland.1,2 Pipes carrying water for heating and cooling are embedded in the center of the concrete slab. In central Europe (Germany......, Austria, Netherlands, etc.), this type of system has been installed in a significant number of new office buildings since the late 1990s. The trend is spreading to other parts of the world (the rest of Europe, North America and Asia). Thermo active building systems (TABS) are primarily used for cooling...... multistory buildings. By activating the building mass, there is a direct heating-cooling effect. Also, because of the thermal mass, the peak load will be reduced and some of the cooling load will be transferred beyond the time of occupancy. Because these systems for cooling operate at water temperatures...

  10. Heat exchanger. [rocket combustion chambers and cooling systems

    Science.gov (United States)

    Sokolowski, D. E. (Inventor)

    1978-01-01

    A heat exchanger, as exemplified by a rocket combustion chamber, is constructed by stacking thin metal rings having microsized openings therein at selective locations to form cooling passages defined by an inner wall, an outer wall and fins. Suitable manifolds are provided at each end of the rocket chamber. In addition to the cooling channel openings, coolant feed openings may be formed in each of rings. The coolant feed openings may be nested or positioned within generally U-shaped cooling channel openings. Compression on the stacked rings may be maintained by welds or the like or by bolts extending through the stacked rings.

  11. Description and cost analysis of a deluge dry/wet cooling system.

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; Bamberger, J.A.; Braun, D.J.; Braun, D.J.; Faletti, D.W.; Willingham, C.E.

    1978-06-01

    The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heat exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)

  12. Better Duct Systems for Home Heating and Cooling; Building Technologies Program (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Duct systems used in forced-air space-conditioning systems are a vital element in home energy efficiency. How well a system works makes a big difference in the cost and the effectiveness of heating and cooling a home.

  13. System Design and Installation for RS600 Programmable Control System for Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This document contains the installation, operation and maintenance manual, the system design drawings, installation drawings and the system design data brochure. It provides detailed information necessary for the building/ purchase and installation of the RS600 Programmable Control System for solar heating, combined heating and cooling and/ or hot water systems. Included are such item as general specifications, user configuration and options, displays, theory of operation, trouble-shooting procedures, parts lists, drawings, diagrams, wiring lists and warranty assistance.

  14. Thermal Analysis of a Solar Powered Absorption Cooling System with Fully Mixed Thermal Storage at Startup

    Directory of Open Access Journals (Sweden)

    Camelia Stanciu

    2017-01-01

    Full Text Available A simple effect one stage ammonia-water absorption cooling system fueled by solar energy is analyzed. The considered system is composed by a parabolic trough collector concentrating solar energy into a tubular receiver for heating water. This is stored in a fully mixed thermal storage tank and used in the vapor generator of the absorption cooling system. Time dependent cooling load is considered for the air conditioning of a residential two-storey house. A parametric study is performed to analyze the operation stability of the cooling system with respect to solar collector and storage tank dimensions. The results emphasized that there is a specific storage tank dimension associated to a specific solar collector dimension that could ensure the longest continuous startup operation of the cooling system when constant mass flow rates inside the system are assumed.

  15. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  16. Improved cooling design for high power waveguide system

    Science.gov (United States)

    Chen, W. C. J.; Hartop, R.

    1981-06-01

    Testing of X band high power components in a traveling wave resonator indicates that this improved cooling design reduces temperature in the waveguide and flange. The waveguide power handling capability and power transmission reliability is increased substantially.

  17. RF system concepts for a muon cooling experiment

    Energy Technology Data Exchange (ETDEWEB)

    Turner, W.C.; Corlett, J.N.; Li, D. [Lawrence Berkeley National Lab., CA (United States); Moretti, A. [Fermi National Accelerator Lab., Batavia, IL (United States); Kirk, H.G.; Palmer, R.B.; Zhao, Y. [Brookhaven National Lab., Upton, NY (United States)

    1998-06-01

    The feasibility of muon colliders for high energy physics experiments has been under intensive study for the past few years and recent activity has focused on defining an R and D program that would answer the critical issues. An especially critical issue is developing practical means of cooling the phase space of the muons once they have been produced and captured in a solenoidal magnetic transport channel. Concepts for the rf accelerating cavities of a muon cooling experiment are discussed.

  18. Performance Evaluation of a Software Engineering Tool for Automated Design of Cooling Systems in Injection Moulding

    DEFF Research Database (Denmark)

    Jauregui-Becker, Juan M.; Tosello, Guido; van Houten, Fred J.A.M.

    2013-01-01

    This paper presents a software tool for automating the design of cooling systems for injection moulding and a validation of its performance. Cooling system designs were automatically generated by the proposed software tool and by applying a best practice tool engineering design approach. The two...

  19. Heat management of a cooling system based on the heat pipe for LED lighting fixtures

    Directory of Open Access Journals (Sweden)

    Rassamakin A. B.

    2013-10-01

    Full Text Available The authors have investigated a LED lamp cooling system that operates on a heat pipe basis. The paper describes the experimental stand, methods and results of the tests carried out for the different positions of the lamp at energy consumption of 196 W. It is shown that the considered cooling system ensures proper temperature of LEDs.

  20. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hexavalent chromium-based water treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and Cooling Systems § 749.68 Hexavalent...

  1. Cooling the largest events hall in the Benelux with an ATES system

    Energy Technology Data Exchange (ETDEWEB)

    Bakema, G. [IF Technology bv, Arnheim (Netherlands); Hengel, P.P.M. van den [BV Technical Management, Amersfoort (Netherlands)

    1994-12-31

    The cold storage to cool the new `De Prins van Oranje` hall of the Royal Netherlands Industries Fair in Utrecht, was started up early 1994. This system, with a cooling capacity of 2600 kW is the largest cold storage in an aquifer in the Netherlands. In the winter of 1994, this system stored 160 MWh cold energy. (orig.)

  2. Optimization Tool for Direct Water Cooling System of High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Blaabjerg, Frede

    2016-01-01

    important issue for thermal design engineers. This paper aims to present a user friendly optimization tool for direct water cooling system of a high power module which enables the cooling system designer to identify the optimized solution depending on customer load profiles and available pump power. CFD...

  3. Closed-cycle gas flow system for cooling of high Tc d.c. SQUID magnetometers

    NARCIS (Netherlands)

    Bosch, van den P.J.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    1995-01-01

    A high Tc.d.c SQUID based magnetometer for magnetocardiography is currently under development at the University of Twente. Since such a magnetometer should be simple to use, the cooling of the system can be realized most practically by means of a cryocooler. A closed-cycle gas flow cooling system in

  4. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  5. Model-based fault detection for generator cooling system in wind turbines using SCADA data

    DEFF Research Database (Denmark)

    Borchersen, Anders Bech; Kinnaert, Michel

    2016-01-01

    In this work, an early fault detection system for the generator cooling of wind turbines is presented and tested. It relies on a hybrid model of the cooling system. The parameters of the generator model are estimated by an extended Kalman filter. The estimated parameters are then processed by an ...

  6. An Experimental and Analytical Study of a Radiative Cooling System with Unglazed Flat Plate Collectors

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Taherian, Hessam

    2012-01-01

    On an average about 40% of world energy is used in residential buildings and the largest energy consumption is allocated to the cooling and air-conditioning systems. So every attempt to economize energy consumption is very valuable. In this research a nocturnal radiative cooling system with flat...... as a guideline to derive the governing equations of a night sky radiator. Then, a cooling loop, including a storage tank, pump, connecting pipes, and a radiator has been studied experimentally. The water is circulated through the unglazed flat-plate radiator having 4 m2 of collector area at night to be cooled...

  7. CFD Analysis of the Primary Cooling System for the Small Modular Natural Circulation Lead Cooled Fast Reactor SNRLFR-100

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhao

    2016-01-01

    Full Text Available Small modular reactor (SMR has drawn wide attention in the past decades, and Lead cooled fast reactor (LFR is one of the most promising advanced reactors which are able to meet the safety economic goals of Gen-IV nuclear energy systems. A small modular natural circulation lead cooled fast reactor-100 MWth (SNRLFR-100 is being developed by University of Science and Technology of China (USTC. In the present work, a 3D CFD model, primary heat exchanger model, fuel pin model, and point kinetic model were established based on some reasonable simplifications and assumptions, the steady-state natural circulation characteristics of SNCLFR-100 primary cooling system were discussed and illustrated, and some reasonable suggestions were proposed for the reactor’s thermal-hydraulic and structural design. Moreover, in order to have a first evaluation of the system behavior in accident conditions, an unprotected loss of heat sink (ULOHS transient simulation at beginning of the reactor cycle (BOC has been analyzed and discussed based on the steady-state simulation results. The key temperatures of the reactor core are all under the safety limits at transient state; the reactor has excellent thermal-hydraulic performance.

  8. District heating system cools new hotel; Fernwaerme aus KVA kuehlt neues Ibis-Hotel

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W.

    2009-07-01

    This article takes a look at how an absorption cooling system provides cooling for a new hotel in Basel, Switzerland. The driving energy for the absorption cooling system is provided by the local district heating system. Cheap, summertime heat is provided by the local utility IWB from the city's waste incineration plant to drive the system. Details are presented on the installation and figures are given on cooling power and energy prices. The energy-relevant construction details of the new hotel are examined and the air-conditioning installations are described. The special planning competence involved is commented on. The control of the absorption refrigeration system is looked at in detail and the particular finesse involved in its operation is commented on. The quiet, roof-mounted cooling units are also described and a schematic diagram of the installation is presented.

  9. Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine

    Energy Technology Data Exchange (ETDEWEB)

    Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

    2005-04-01

    Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

  10. Comparison of solar panel cooling system by using dc brushless fan and dc water

    Science.gov (United States)

    Irwan, Y. M.; Leow, W. Z.; Irwanto, M.; M, Fareq; Hassan, S. I. S.; Safwati, I.; Amelia, A. R.

    2015-06-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer.

  11. Thermal behaviour analysis on ITER component cooling water system loop 2B

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin, E-mail: guobin@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Fu, Peng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dell’Orco, Giovanni; Liliana, Teodoros; Tao, Jun [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Yang, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-11-15

    Highlights: • Thermal hydraulic analysis model has been developed to perform thermal analysis on the component cooling water system loop 2B. • The cooling water temperature profile at client inlet and outlet during one cycle of the most demanding plasma operation scenario was obtained. • Operation behaviour of the main heat exchanger for CCWS-2B has been depicted. - Abstract: ITER cooling water system is composed by several cooling loops, the primary heat transfer loops that form the Tokamak Cooling Water System (TCWS), the secondary heat transfer loops that form the Component Cooling Water System (CCWS) and the Chilled Water System (CHWS) and a tertiary heat transfer loop which is the Heat Rejection System (HRS). The CCWS is further divided into CCWS-1, CCWS-2A, CCWS-2B, CCWS-2C, CCWS-2D depending on the water chemistry needs of clients and wetted area material. The component cooling water system loop 2B (CCWS-2B) has the function to remove heat load from coil power supply component, Neutral Beam Injectors (NBIs) system component and diagnostic system which are located in different buildings. As the total number of the client connections for the loop is a few hundreds, simplified thermal hydraulic analysis model has been developed to perform thermal analysis on the component cooling water system loop 2B. The curve of the cooling water temperature at client inlet and outlet during one cycle of the most demanding plasma operation scenario was obtained and the cooling water flow rate can meet the thermal removal requirement of client was also confirmed from this analysis. In addition, operation behaviour of the main heat exchanger for CCWS-2B in this thermal analysis was depicted for main heat exchanger selection purposes. This study has been carried out with the AFT Fathom code.

  12. Cooling water system thermal performance analysis using the COCO computer code

    Energy Technology Data Exchange (ETDEWEB)

    Hom, J.; Jakub, R.M.; Durkosh, D.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Energy Systems Business Unit

    1996-10-01

    Westinghouse Energy Systems Business Unit (ESBU) has worked with electric utility personnel to analyze the thermal performance of essential cooling water systems at nuclear generating stations. The primary goal of these analyses has been to demonstrate the operability of the cooling water systems during postulated limiting post-accident operation. In previous cooling water system thermal analyses, peak containment operating conditions were generally used as input assuming steady-state conditions. This approach is conservative as it does not take into account the improvement in containment conditions and cooling water system temperatures over time. This approach can, also, lead to an inconsistent set of assumptions between the two distinct analyses which may result in overly conservative calculated system operating conditions. These conditions inevitably impose unnecessary restrictions on cooling water system operation. Over the last few years, Westinghouse ESBU has coupled both the containment integrity and the cooling water system thermal calculations into an integrated analysis. This allows the use of a consistent set of input parameters and assumptions in the calculation of limiting cooling water system operating conditions. This approach has been successfully used to increase system operating margins. This paper provides an overview of this coupled thermal analysis along with examples of where increased operating margins can be applied.

  13. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran;

    2013-01-01

    advantage of renewable energy. The results showed that the energy consumption was 3% less in the 2-pipe chilled beam system in comparison with the conventional 4-pipe system when moving cooled and heated water through the building, transferring the energy to where it is needed. Using free cooling (taking...... consumption and hence energy savings in the 2-pipe chilled beam system in comparison with the 4-pipe system. The 2-pipe chilled beam system used high temperature cooling and low temperature heating with a water temperature of 20°C to 23°C, available for free most of the year. The system can thus take......Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings...

  14. Performance analysis of a combined cycle gas turbine power plant by using various inlet air cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Murad A. [Department of Mechanical Engineering, Gazi University (Turkey)], e-mail: mrahim@gazi.edu.tr

    2011-07-01

    In recent years, the use of gas turbines in combined cycle power plants has increased. Turbine inlet air cooling appears to be the best solution for maximizing both production and efficiency, particularly in a hot climate. The aim of this study is to determine the impact of different air cooling systems on the gas turbine's performance and carbon dioxide emissions. Computer simulations were carried out, using the THERMOFLEX program, on fogging, evaporative cooling, adsorption cooling, and electrical chiller cooling systems as well as on a base case without cooling system. Results showed that inlet air cooling systems are effective in increasing the efficiency of gas turbine power plants. In addition it was found that absorption chillers are the best system for increasing power generation but that economic and source analyses should be conducted before installing a cooling system. This paper demonstrated that inlet air cooling systems have the ability to increase net power generation of gas turbine power plants.

  15. Optimal Environmental Performance of Water-cooled Chiller System with All Variable Speed Configurations

    Science.gov (United States)

    Yu, Fu Wing; Chan, Kwok Tai

    This study investigates how the environmental performance of water-cooled chiller systems can be optimized by applying load-based speed control to all the system components. New chiller and cooling tower models were developed using a transient systems simulation program called TRNSYS 15 in order to assess the electricity and water consumption of a chiller plant operating for a building cooling load profile. The chiller model was calibrated using manufacturer's performance data and used to analyze the coefficient of performance when the design and control of chiller components are changed. The NTU-effectiveness approach was used for the cooling tower model to consider the heat transfer effectiveness at various air-to-water flow ratios and to identify the makeup water rate. Applying load-based speed control to the cooling tower fans and pumps could save an annual plant operating cost by around 15% relative to an equivalent system with constant speed configurations.

  16. Performance analysis on utilization of sky radiation cooling energy for space cooling. Part 2; Hosha reikyaku riyo reibo system ni kansuru kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Marushima, S.; Saito, T. [Tohoku University, Sendai (Japan)

    1996-10-27

    Studies have been made about a heat accumulation tank type cooling system making use of radiation cooling that is a kind of natural energy. The daily operating cycle of the cooling system is described below. A heat pump air conditioner performs cooling during the daytime and the exhaust heat is stored in a latent heat accumulation tank; the heat is then used for the bath and tapwater in the evening; at night radiation cooling is utilized to remove the heat remnant in the tank for the solidification of the phase change material (PCM); the solidified PCM serves as the cold heat source for the heat pump air conditioner to perform cooling. The new system decelerates urban area warming because it emits the cooler-generated waste heat not into the atmosphere but into space taking advantage of radiation cooling. Again, the cooler-generated waste heat may be utilized for energy saving and power levelling. For the examination of nighttime radiation cooling characteristics, CaCl2-5H2O and Na2HPO4-12H2O were tested as the PCM. Water was used as the heating medium. In the case of a PCM high in latent heat capacity, some work has to be done for insuring sufficient heat exchange for it by, for instance, rendering the flow rate low. The coefficient of performance of the system discussed here is three times higher than that of the air-cooled type heat pump system. 8 refs., 5 figs., 4 tabs.

  17. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    Science.gov (United States)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  18. Cooling system in a rotary piston internal combustion engine. Kuehlsystem einer Rotationskolbenbrennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Eiermann, D.; Nuber, R.

    1991-05-23

    Cooling system of a trochoid-type rotary piston internal combustion engine with a liquid-cooled casing. First the coolant is conducted isochronically and in parallel through cooling chambers of the jacket and a side part of the casing from where it is transported by a cooling pump through the cooling chambers of the other side part, on past a thermostat and into a cooler positioned on this other side part. The cooler consists of a parallel connected pipe bundle whose finned pipes follow the radial outer contours of the casing of the machine. From the cooler the coolant is conducted back into the cooling chambers of the first side part and the jacket. A blower fitted on the eccentric shaft of the internal combustion engine inside the cooler takes in fresh air axially and discharges it radially through the finned pipes.

  19. A Novel Pre-cooling System for a Cryogenic Pulsating Heat Pipe

    Science.gov (United States)

    Xu, Dong; Liu, Huiming; Gong, Linghui; Xu, Xiangdong; Li, Laifeng

    To reduce the influence of the pipe material on the measurement of effective thermal conductivity, the pipe of a cryogenic pulsating heat pipe is generally made of stainless steel. Because of the low thermal conductivity of stainless steel, the pre-cooling of the evaporator in cryogenic pulsating heat pipe using helium as working fluid at 4.2 K is a problem. We designed a mechanical-thermal switch between the cryocooler and the evaporator, which was on during the pre-cooling process and off during the test process. By using the pre-cooling system, the cool down time of the cryogenic pulsating heat pipe was reduced significantly.

  20. Development of an Anti-Vibration Controller for Magnetic Bearing Cooling Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a program to develop a vibration-free reverse-Brayton cycle cooling system using specially-tuned magnetic bearings. Such a system is critical...

  1. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  2. Demonstration of a Passive Thermal Management System for Cooling Electronics in Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Extended operation of exploratory systems on the surface of planets like Venus, means that techniques to cool system electronics to essentially room temperature...

  3. Experimental investigation of cooling performance of a novel HVAC system combining natural ventilation with diffuse ceiling inlet and TABS

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per Kvols; Lei, Bo;

    2015-01-01

    Highlights •An experimental investigation of cooling performance of a combined HVAC system is carried out. •Cooling performance of TABS with and without the influence of diffuse ceiling is analyzed. •Radiant and convective heat transfer coefficients of TABS cooling are studied. •Cooling components...

  4. Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

    CERN Document Server

    International Organization for Standardization. Geneva

    2006-01-01

    Corrosion of metals and alloys - Corrosion and fouling in industrial cooling water systems - Part 1: Guidelines for conducting pilot-scale evaluation of corrosion and fouling control additives for open recirculating cooling water systems

  5. Field evaluation of performance of radiant heating/cooling ceiling panel system

    DEFF Research Database (Denmark)

    Li, Rongling; Yoshidomi, Togo; Ooka, Ryozo;

    2015-01-01

    heating/coolingceiling panel system is used. However, no standard exists for the in situ performance evaluation of radiantheating/cooling ceiling systems; furthermore, no published database is available for comparison. Thus,this study aims to not only clarify the system performance but also to share our...... experience and our resultsfor them to serve as a reference for other similar projects. Here, the system performance in relation toits heating/cooling capacity and thermal comfort has been evaluated. The heat transfer coefficient fromwater to room was 3.7 W/(m2K) and 4.8 W/(m2K) for heating and cooling cases...

  6. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles

    OpenAIRE

    Ho-Seong Lee; Moo-Yeon Lee

    2013-01-01

    This study investigates the cooling performance characteristics of the mobile air-conditioning system using R744 (CO2) for the hybrid electric vehicle as an alternative to both the R-134a and the conventional air-conditioning system. The developed air-conditioning system is operated with an electric driven compressor in the battery driving mode and a belt driven compressor in the engine driving mode. The cooling performance characteristics of the developed system have been analyzed by experim...

  7. Ground-Coupled Heating-Cooling Systems in Urban Areas: How Sustainable Are They?

    Science.gov (United States)

    Younger, Paul L.

    2008-01-01

    Ground-coupled heating-cooling systems (GCHCSs) exchange heat between the built environment and the subsurface using pipework buried in trenches or boreholes. If heat pumps in GCHCSs are powered by "green electricity," they offer genuine carbon-free heating-cooling; for this reason, there has been a surge in the technology in recent years.…

  8. Fan and Pad Evaporative Cooling System for Greenhouses: Evaluation of a Numerical and Analytical Model

    NARCIS (Netherlands)

    Sapounas, A.; Nikita-Martzopoulou, Ch.; Bartzanas, T.; Kittas, C.

    2008-01-01

    An experimental greenhouse equipped with fan and pad evaporative cooling is analysed using two different models. The first one consists of a numerical simulation approach applying a commercial CFD code. The main aspects of evaporative cooling systems, in terms of heat and mass transfer and both the

  9. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  10. Greenhouse with an Integrated NIR Filter and a Solar Cooling System

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Kempkes, F.L.K.; Campen, J.B.; Bot, G.P.A.

    2006-01-01

    The scope of this paper is a new greenhouse design that incorporates both a filter for rejecting near infrared radiation (NIR) and a solar cooling system. Cooled greenhouses are an important issue for the combination of high global radiation and high outdoor temperatures. As a first measure, this

  11. Performance test of the cryogenic cooling system for the superconducting fault current limiter

    Science.gov (United States)

    Hong, Yong-Ju; In, Sehwan; Yeom, Han-Kil; Kim, Heesun; Kim, Hye-Rim

    2015-12-01

    A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

  12. Construction and test of a cryocooler-cooled low-Tc SQUID gradiometer system

    NARCIS (Netherlands)

    Rijpma, A.P.; Krooshoop, H.J.G.; Lefevere, M.W.; Leeuwen, van E.P.; Holland, H.J.; Haken, ten B.; Brake, ter H.J.M.

    2008-01-01

    A cryocooler-cooled low-Tc SQUID gradiometer system was designed and constructed. It is based on a 4 K GM-cooler that is positioned several meters from the measuring head containing the SQUID sensors. The cooling power is transported by means of a circulating helium flow. Thus, there are three main

  13. Improvements on cool gas generators and their application in space propulsion systems

    NARCIS (Netherlands)

    Sanders, H.M.; Schuurbiers, C.A.H.; Vandeberg, R.J.

    2014-01-01

    Cool Gas Generators are an innovative means to store gas which can be used in propulsion and pressurization systems but also for inflatable structures and terrestrial applications. In Cool Gas Generators, the gas is stored chemically, without pressure or leakage and with a long life time without mai

  14. Applicability of a desiccant dew-point cooling system independent of external water sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2015-01-01

    The applicability of a technical solution for making desiccant cooling systems independent of external water sources is investigated. Water is produced by condensing the desorbed water vapour in a closed regeneration circuit. Desorbed water recovery is applied to a desiccant dew-point cooling...

  15. Greenhouse with an Integrated NIR Filter and a Solar Cooling System

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Kempkes, F.L.K.; Campen, J.B.; Bot, G.P.A.

    2006-01-01

    The scope of this paper is a new greenhouse design that incorporates both a filter for rejecting near infrared radiation (NIR) and a solar cooling system. Cooled greenhouses are an important issue for the combination of high global radiation and high outdoor temperatures. As a first measure, this st

  16. Ground-Coupled Heating-Cooling Systems in Urban Areas: How Sustainable Are They?

    Science.gov (United States)

    Younger, Paul L.

    2008-01-01

    Ground-coupled heating-cooling systems (GCHCSs) exchange heat between the built environment and the subsurface using pipework buried in trenches or boreholes. If heat pumps in GCHCSs are powered by "green electricity," they offer genuine carbon-free heating-cooling; for this reason, there has been a surge in the technology in recent…

  17. Cooling Systems Design in Hot Stamping Tools by a Thermal-Fluid-Mechanical Coupled Approach

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2014-06-01

    Full Text Available Hot stamping tools with cooling systems are the key facilities for hot stamping process of Ultrahigh strength steels (UHSS in automotive industry. Hot stamping tools have significant influence on the final microstructure and properties of the hot stamped parts. In serials production, the tools should be rapidly cooled by cooling water. Hence, design of hot stamping tools with cooling systems is important not only for workpieces of good quality but also for the tools with good cooling performance and long life. In this paper, a new multifield simulation method was proposed for the design of hot stamping tools with cooling system. The deformation of the tools was also analyzed by this method. Based on MpCCI (Mesh-based parallel Code Coupling Interface, thermal-fluid simulation and thermal-fluid-mechanical coupled simulation were performed. Subsequently, the geometrical parameters of the cooling system are investigated for the design. The results show that, both the distance between the ducts and the distance between the ducts and the tools loaded contour have significant influence on the quenching effect. And better quenching effect can be achieved with the shorter distance from the tool surface and with smaller distance between ducts. It is also shown that, thermal expansion is the main reason for deformation of the hot forming tools, which causes the distortion of the cooling ducts, and the stress concentration at corner of the ducts.

  18. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2013-01-01

    Full Text Available This study investigates the cooling performance characteristics of the mobile air-conditioning system using R744 (CO2 for the hybrid electric vehicle as an alternative to both the R-134a and the conventional air-conditioning system. The developed air-conditioning system is operated with an electric driven compressor in the battery driving mode and a belt driven compressor in the engine driving mode. The cooling performance characteristics of the developed system have been analyzed by experiments under various operating conditions of inlet air temperature, air flow rates for the gas cooler side and evaporator side, and electric compressor revolution respectively. As a result, cooling performances of the tested air-conditioning system for the EDC driving mode (electricity driven compressor were better than those for the BDC driving mode (belt driven compressor. The cooling capacity and cooling COP of the tested air-conditioning system for both driving modes were over 5.0 kW and 2.0, respectively. The observed cooling performance of the tested air-conditioning system may be sufficient for the cabin cooling of hybrid electric vehicles.

  19. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...

  20. Fluidized bed ice slurry generator for enhanced secondary cooling systems

    NARCIS (Netherlands)

    Meewisse, J.W.

    2004-01-01

    Ice slurries are liquid solutions of a freezing point depressant in water, in which small ice crystals are present. Ice slurries are efficient secondary cooling fluids because they utilize the latent heat effect involved with the ice/water phase change. A high heat capacity is available at relativel

  1. Fluidized bed ice slurry generator for enhanced secondary cooling systems

    NARCIS (Netherlands)

    Meewisse, J.W.

    2004-01-01

    Ice slurries are liquid solutions of a freezing point depressant in water, in which small ice crystals are present. Ice slurries are efficient secondary cooling fluids because they utilize the latent heat effect involved with the ice/water phase change. A high heat capacity is available at

  2. Complex cooling water systems optimization with pressure drop consideration

    CSIR Research Space (South Africa)

    Gololo, KV

    2012-12-01

    Full Text Available Pressure drop consideration has shown to be an essential requirement for the synthesis of a cooling water network where reuse/recycle philosophy is employed. This is due to an increased network pressure drop associated with additional reuse...

  3. Fluidized bed ice slurry generator for enhanced secondary cooling systems

    NARCIS (Netherlands)

    Meewisse, J.W.

    2004-01-01

    Ice slurries are liquid solutions of a freezing point depressant in water, in which small ice crystals are present. Ice slurries are efficient secondary cooling fluids because they utilize the latent heat effect involved with the ice/water phase change. A high heat capacity is available at relativel

  4. Modelling and analysis of a desiccant cooling system using the regenerative indirect evaporative cooling process

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    2013-01-01

    in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of energy costs...

  5. Influence of thermal flow field of cooling tower on recirculation ratio of a direct air-cooled system for a power plant

    Institute of Scientific and Technical Information of China (English)

    Zhao Wanli; Liu Peiqing

    2008-01-01

    In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC).The particle image velocimetery(PIV)experiments were carried out to get thermal flow field of a ACC under different conditions in low velocity wind tunnel,at the same time,the recirculation ratio at cooling tower was measured,so the relationship between flow field characteristics and recirculation ratio of cooling tower can be discussed.From the results we can see that the flow field configuration around cooling tower has great effects on average recirculation ratio under cooling tower.The eddy formed around cooling tower is a key reason that recireulation pro-duces.The eddy intensity relates to velocity magnitude and direction angle,and the configuration of eddy lies on the ge-ometry size of cooling tower.So changing the flow field configuration around cooling tower reasonably can decrease recir-culation ratio under cooling tower,and heat dispel effect of ACC can also be improved.

  6. Passive-solar-cooling system concepts for small office buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Whiddon, W.I.; Hart, G.K.

    1983-02-01

    This report summarizes the efforts of a small group of building design professionals and energy analysis experts to develop passive solar cooling concepts including first cost estimates for small office buildings. Two design teams were brought together at each of two workshops held in the fall of 1982. Each team included an architect, mechanical engineer, structural engineer, and energy analysis expert. This report presents the passive cooling system concepts resulting from the workshops. It summarizes the design problems, solutions and first-cost estimates relating to each technology considered, and documents the research needs identified by the participants in attempting to implement the various technologies in an actual building design. Each design problem presented at the workshops was based on the reference (base case) small office building analyzed as part of LBL's Cooling Assessment. Chapter II summarizes the thermal performance, physical specifications and estimated first-costs of the base case design developed for this work. Chapters III - VI describe the passive cooling system concepts developed for each technology: beam daylighting; mass with night ventilation; evaporative cooling; and integrated passive cooling systems. The final Chapters, VII and VIII present the preliminary implications for economics of passive cooling technologies (based on review of the design concepts) and recommendations of workshop participants for future research in passive cooling for commercial buildings. Appendices provide backup information on each chapter as indicated.

  7. Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production

    Energy Technology Data Exchange (ETDEWEB)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi; Takaki, Rie [Faculty of Engineering, Tohoku University, Sendai 980-8579 (Japan); Satake, Akira [Technical Research Institute, Maeda Corporation, Tokyo 179-8914 (Japan); Yoshie, Ryuichiro [Faculty of Engineering, Tokyo Polytechnic University, Atsugi 243-0297 (Japan); Baba, Seizo [Earth Clean Tohoku Co. Ltd., Sendai 984-0038 (Japan)

    2010-02-15

    This paper reports the development and construction of the novel solar cooling and heating system. The system consists of the thermal energy subsystem and the desiccant cooling subsystem. The system utilizes both the cheaper nighttime electric energy and the free daytime solar energy. The system is conceptualized to produce both cooling during summer daytime and hot water production during winter. Testing and evaluation of the system had been done to determine its operational procedure and performance. Based on the results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage. The desiccant cooling subsystem reduced both the temperature and the humidity content of the air using solar energy with a minimal amount of back-up electric energy. The system however, needs further investigation under real conditions. (author)

  8. Multicriteria aided design of integrated heating-cooling energy systems in buildings.

    Science.gov (United States)

    Mróz, Tomasz M

    2010-08-01

    This paper presents an analysis of the possible application of integrated heating-cooling systems in buildings. The general algorithm of integrated heating-cooling system design aid was formulated. The evaluation criteria of technically acceptable variants were defined. Fossil fuel energy consumption, carbon dioxide emission, investment, and total exploitation cost were identified as the most important factors describing the considered decision problem. The multicriteria decision aid method ELECTRE III was proposed as the decision tool for the choice of the most compromised variant. The proposed method was used for a case study calculation-the choice of an integrated heating-cooling system for an office building.

  9. Study on Effects of Diesel Engine Cooling System Parameters on Water Temperature

    Institute of Scientific and Technical Information of China (English)

    骆清国; 冯建涛; 刘国夫; 桂勇

    2011-01-01

    A simulation model for a certain diesel engine cooling system is set up by using GT-COOL. The backwater tem- perature response in different operating conditions is simulated numerically. The effects of single or multiple system parameters on the water temperature are analyzed. The results show that, changing different single parameters, the time taken for the steady backwater temperature is different, but relatively short; and if multiple parameters are changed, the time will be longer. Referred to the thermal balance test, the simulation results are validated and provide a basis for the intelligent con- trol of the cooling system.

  10. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  11. Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.;

    This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme and determ......This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme...... and determines the steady state working conditions for the component. A sensitivity analysis of the DPC performance is carried out based on the air inlet conditions, air flow rate and recirculation fraction. A recirculation fraction around 0.3 maximizes the DPC net cooling capacity. The supply temperature...

  12. Evaluation of Process Cooling in Subsea Separation, Boosting and Injection Systems (SSBI)

    OpenAIRE

    Gyllenhammar, Svenn Emil

    2012-01-01

    The next generation of subsea process systems will combine the subsea gas compression technology currently under qualification with the previously developed subsea processing technologies, including separation, multiphase pumping and produced water re-injection. These systems will benefit from process cooling. This paper is an evaluation of the use of process cooling in subsea separation, boosting and injection (SSBI) systems including compression. Fouling is the biggest uncertainty, and pote...

  13. Construction and initial operation of the combined solar thermal and electric desiccant cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi; Takaki, Rie [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Satake, Akira [Technical Research Institute, Maeda Corporation, Tokyo 179-8914 (Japan); Yoshie, Ryuichiro [Faculty of Engineering, Tokyo Polytechnic University, Atsugi 243-0297 (Japan); Mitamura, Teruaki [Faculty of Engineering, Ashikaga Institute of Technology, Ashikaga 326-8558 (Japan); Baba, Seizo [Earth Clean Tohoku Co., Ltd., Sendai 984-0038 (Japan)

    2009-08-15

    This paper reports the constructed combined solar thermal and electric desiccant cooling system - its initial operation and operational procedures. The system, as designed, can be operated during nighttime and daytime. The nighttime operation is for thermal energy storage using the auxiliary electric heater, while the daytime operation is for solar energy collection and desiccant cooling. Ongoing experimental evaluation is being undertaken to observe and determine the long-term performance of the system. (author)

  14. Demonstration of Solar Heating and Cooling System using Sorption Integrated Solar Thermal Collectors

    OpenAIRE

    Blackman, Corey; Bales, Chris; Hallström, Olof

    2014-01-01

    Producing cost-competitive small and medium-sized solar cooling systems is currently a significant challenge. Due to system complexity, extensive engineering, design and equipment costs; the installation costs of solar thermal cooling systems are prohibitively high. In efforts to overcome these limitations, a novel sorption heat pump module has been developed and directly integrated into a solar thermal collector. The module comprises a fully encapsulated sorption tube containing hygroscopic ...

  15. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    Science.gov (United States)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module

  16. Nutrient solution cooling and its effect on temperature of leaf lettuce in hydroponic system.

    Science.gov (United States)

    Nam, S W; Kim, M K; Son, J E

    1996-12-01

    The heat transfer characteristics of a hydroponic system were experimentally verified after theoretical establishment and the effect of nutrient solution cooling on the plant temperature was investigated. About 96 percent of the total heat flow transferred from culture bed to nutrient solution was the conductive heat through planting board and partitioning materials. The average and maximum temperatures of the leaf lettuce decreased 0.6 and 1.5 degrees C., respectively, with cooling of nutrient solution by 6 degrees C. A numerical model for prediction of cooling load of nutrient solution in a hydroponic greenhouse was developed, and the results from the simulation model showed a good agreement with those from experiments. A mechanical cooling system using the counter flow type with double pipes was developed for cooling the nutrient solution. Also the heat transfer characteristics of the system were analyzed experimentally and theoretically, and compared with the other existing cooling systems of nutrient solution. The cooling capacities of three different systems, which used polyethylene tube in solution tank, stainless tube in solution tank, and the counter flow type with double pipes, were comparatively evaluated.

  17. Engineering and cost comparison of three different all-dry cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, B.C.; Braun, D.J.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1976-09-01

    Results of a detailed engineering and cost study of three different all-dry cooling systems to assess the potential for reducing the cost of all-dry cooling for steam electric power plants are described. The three types of cooling systems considered were: state-of-the-art (SOA) dry cooling system; with a conventional surface condenser, and water used to condense the steam is passed through an induced mechanical draft, metal finned tube cooling tower; an advanced dry cooling system (PLASTIC) utilizing heat exchangers made of bare plastic tubes in the cooling tower; and an advanced dry cooling system utilizing ammonia as the coolant (NH/sub 3/). The NH/sub 3/ system differs from the SOA system in that ammonia is substituted for water as the intermediate fluid. Steam from the turbine is condensed by boiling ammonia in a condenser/reboiler; the ammonia vapor is condensed in an induced draft, metal finned tube heat exchanger and returned to the condenser/reboiler. The major conclusions drawn from this study are that: SOA systems offered by vendors are so near optimum in terms of heat exchanger unit geometry and configuration that there is little, if any, cost advantage to be gained by further study of SOA systems using wrap-on or extruded finned tubes other than in the selection of tube materials, materials compatibility, water quality control, or fin manufacturing methods; significant savings (34 percent) in incremental power production costs appear to be obtainable using NH/sub 3/ systems; and considerable savings (22 percent) can also be obtained with PLASTIC systems.

  18. Development of multiple laser frequency control system for Ca{sup +} isotope ion cooling

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyunghun, E-mail: jung@lyman.q.t.u-tokyo.ac.jp [The University of Tokyo, Nuclear Professional School (Japan); Yamamoto, Yuta, E-mail: yamamoto@lyman.q.t.u-tokyo.ac.jp [The University of Tokyo, Department of Nuclear Engineering and Management (Japan); Hasegawa, Shuichi, E-mail: hasegawa@tokai.t.u-tokyo.ac.jp [The University of Tokyo, Nuclear Professional School (Japan)

    2015-11-15

    We here developed and evaluated a laser frequency control system which synchronizes the laser frequency to the resonance of target Ca {sup +} isotope ion whose having more than 8 GHz of isotope shift based on the Fringe Offset Lock method for simple operation of ICPMS-ILECS (Inductively Coupled Plasma Mass Spectrometry - Ion trap Laser Cooling Spectroscopy) The system fulfilled the minimum requirements of four slave lasers stability for Doppler cooling of Ca {sup +} ions. A performance of the system was evaluated by cooling {sup 40}Ca {sup +} ions with the stabilized slave lasers. All the stable even Ca {sup +} isotope ions were trapped and their fluorescence was observed by switching laser frequencies using the system. An odd calcium isotope {sup 43}Ca {sup +}cooling was also succeeded by the control system.

  19. A cooling system for buildings using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Daiyan, H. [Islamic Azad Univ., Semnan Branch (Iran)

    2007-05-15

    In Iranian historical architecture wind towers are used for cooling and ventilation. A wind tower is a tall structure that stands on the building. A wind tower is used in dray land, and only uses wind energy for conditioning. Its technology dates back over 1000 years. Wind towers were designed according to several parameters, some of the most important of which were building type, cooling space volume, wind direction and velocity and ambient temperature. This paper studies wind towers and characterizes airflow route and explains how to decrease temperature. To confirm the quality of the wind tower, some experiments in a case study shows it can decrease room temperature on comfort range and room temperature is almost constant on during day. (au)

  20. Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2015-03-01

    Full Text Available In recent years there has been a growing interest in the development and thermal-energy analysis of passive solutions for reducing building cooling needs and thus improving indoor thermal comfort conditions. In this view, several studies were carried out about cool roofs and cool coatings, producing acknowledged mitigation effects on urban heat island phenomenon. The purpose of this work is to investigate the thermal-energy performance of cool louvers of shutters, usually installed in residential buildings, compared to dark color traditional shading systems. To this aim, two full-scale prototype buildings were continuously monitored under summer conditions and the role of the cool shutter in reducing the overheating of the shading system and the energy requirements for cooling was analyzed. After an in-lab optical analysis of the cool coating, showing a huge solar reflectance increase with respect to the traditional configuration, i.e., by about 75%, field monitoring results showed that the cool shutter is able to decrease the indoor air temperature up to 2 °C under free floating conditions. The corresponding energy saving was about 25%, with even much higher peaks during very hot summer conditions.

  1. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors AGENCY... Cooling Systems for New Boiling-Water Reactors.'' This RG describes testing methods the NRC staff considers acceptable for demonstrating the operability of emergency core cooling systems (ECCSs) for boiling...

  2. Physical installation of Pelletron and electron cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Hurh, P.

    1997-09-01

    Bremsstrahlung of 5 MeV electrons at a loss current of 50 microamp in the acceleration region is estimated to produce X-ray intensities of 7 Rad/sec. Radiation losses due to a misteer or sudden obstruction will of course be much higher still (estimated at 87,500 Rad/hr for a 0.5 mA beam current). It is estimated that 1.8 meters of concrete will be necessary to adequately shield the surrounding building areas at any possible Pelletron installation site. To satisfy our present electron cooling development plan, two Pelletron installations are required, the first at our development lab in the Lab B/NEF Enclosure area and the second at the operational Main Injector service building, MI-30, in the main Injector ring. The same actual Pelletron and electron beam-line components will be used at both locations. The Lab B installation will allow experimentation with actual high energy electron beam to develop the optics necessary for the cooling straight while Main Injector/Recycler commissioning is taking place. The MI-30 installation is obviously the permanent home for the Pelletron when electron cooling becomes operational. Construction plans for both installations will be discussed here.

  3. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  4. Personal Ice Cooling System (PICS). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE`s Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDPs) in which developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE`s projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. As buildings are demolished as part of the DOE Fernald Environmental Management Project`s (FEMP`s) D and D Plan, many of the activities are performed in hot weather and usually require use of various types and layers of personal protective equipment (PPE). While PPE is designed to protect the worker from contamination, it also significantly compromises the body`s ability to cool itself, leading to potentially serious heat stress situations. This report describes a comparative demonstration between the methodology currently used for heat stress management (i.e., limited stay times and cool-down rooms) and an alternative personal ice cooling suit technology. The baseline methodology for heat stress management is limited stay times when working in hot conditions. The FEMP`s Safety Performance Requirements outline the procedures and stay times to be followed and consider the temperature of the working environment, work load, and the type and amount of PPE required for the job. While these common criteria for determining stay times, other sites may have different requirements. This demonstration investigates the feasibility of using the personal ice cooling suite as a tool for managing heat stress in workers at the FEMP. This report provides a comparative analysis of

  5. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  6. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  7. The development of a solar-powered residential heating and cooling system

    Science.gov (United States)

    1974-01-01

    Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.

  8. Control of modiolid mussels in cooling water systems by continuous chlorination.

    NARCIS (Netherlands)

    Rajagopal, S.; Venugopalan, V.P.; Velde, G. van der; Jenner, H.A.

    2006-01-01

    Abstract. Modiolid mussels such as Modiolus philippinarum and Modiolus metcalfei constitute a numerically significant group in fouling communities, especially in tropical and subtropical industrial cooling water systems. Nevertheless, there are hardly any published reports on the tolerance of these

  9. Control of modiolid mussels in cooling water systems by continuous chlorination.

    NARCIS (Netherlands)

    Rajagopal, S.; Venugopalan, V.P.; Velde, G. van der; Jenner, H.A.

    2006-01-01

    Abstract. Modiolid mussels such as Modiolus philippinarum and Modiolus metcalfei constitute a numerically significant group in fouling communities, especially in tropical and subtropical industrial cooling water systems. Nevertheless, there are hardly any published reports on the tolerance of these

  10. Emergency Core Cooling Performance of the Safety System of SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. H.; Bae, K. H.; Kim, H. C.; Zee, S. Q. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    SMART-P is an integral-type PWR producing a maximum thermal power of 65.5 MW, which is a 1/5 scaled-down pilot plant of the 330 MWt SMART (System-integrated Modular Advanced ReacTor). Different from the loop type commercial PWRs, SMART-P contains the reactor coolant and the major primary circuit components, such as the core, two Main Coolant Pumps (MCPs), twelve SG cassettes, and the PZR in a single Reactor Pressure Vessel (RPV). Due to this integral arrangement of the primary system the possibility of a large pipe break is inherently eliminated and only a small branch line break or leak through a component penetrating the RPV is postulated. Also, SMART-P adopts inherent safety improving features such as a large volume of primary coolant (volume/unit power), substantially large negative moderator temperature coefficients, a low core power density, a large self-controlled N2 gas PZR, a canned motor MCP without a pump seal, and a modular helically coiled once-through SG cassette. In addition, SMART-P enhances its safety and reliability by adopting the Passive Residual Heat Removal System (PRHRS) and the Reactor Overpressure Protection System (ROPS) equipped with a Pilot Operated Safety Relief Valve (POSRV). Also, four mechanically separated trains of a Safety Injection System (SIS) are adopted in SMART-P design.

  11. Optimization Tool for Direct Water Cooling System of High Power IGBT Modules

    OpenAIRE

    Bahman, Amir Sajjad; Blaabjerg, Frede

    2016-01-01

    Thermal management of power electronic devices is essential for reliable system performance especially at high power levels. Since even the most efficient electronic circuit becomes hot because of ohmic losses, it is clear that cooling is needed in electronics and even more as the power increases. One of the most important activities in the thermal management and reliability improvement is the cooling system design. As industries are developing smaller power devices with higher power densitie...

  12. Real-time temperature estimation in a multiple device power electronics system subject to dynamic cooling

    OpenAIRE

    Davidson, J. N.; Stone, D. A.; Foster, M. P.; Gladwin, D.T.

    2016-01-01

    This paper presents a technique to estimate the temperature of each power electronic device in a thermally coupled, multiple device system subject to dynamic cooling. Using a demonstrator system, the thermal transfer impedance between pairs of devices is determined in the frequency domain for a quantised range of active cooling levels using a technique based on pseudorandom binary sequences. The technique is illustrated by application to the case temperatures of power devices. For each coolin...

  13. COOLING SYSTEMS OF MILK, FRUIT AND VEGETABLES STORAGE WITH LOW CONSUMPTION OF ENERGY

    Directory of Open Access Journals (Sweden)

    Volkonovich L.

    2007-04-01

    Full Text Available Article is devoted to use of a natural cold for cooling milk and fruit and vegetables storage. The analysis of the block diagrams, description of storehouses and the curves of temperature and air humidity changes for various types of cooling systems are given; the analysis of quality of vegetables and fruit and energy expenses per unit of production are done, which prove the efficiency of the offered systems.

  14. A dynamic model of an innovative high-temperature solar heating and cooling system

    OpenAIRE

    Buonomano Annamaria; Calise Francesco; Vicidomini Maria

    2016-01-01

    In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the ...

  15. A magnetic resonance (MR) microscopy system using a microfluidically cryo-cooled planar coil.

    Science.gov (United States)

    Koo, Chiwan; Godley, Richard F; Park, Jaewon; McDougall, Mary P; Wright, Steven M; Han, Arum

    2011-07-07

    We present the development of a microfluidically cryo-cooled planar coil for magnetic resonance (MR) microscopy. Cryogenically cooling radiofrequency (RF) coils for magnetic resonance imaging (MRI) can improve the signal to noise ratio (SNR) of the experiment. Conventional cryostats typically use a vacuum gap to keep samples to be imaged, especially biological samples, at or near room temperature during cryo-cooling. This limits how close a cryo-cooled coil can be placed to the sample. At the same time, a small coil-to-sample distance significantly improves the MR imaging capability due to the limited imaging depth of planar MR microcoils. These two conflicting requirements pose challenges to the use of cryo-cooling in MR microcoils. The use of a microfluidic based cryostat for localized cryo-cooling of MR microcoils is a step towards eliminating these constraints. The system presented here consists of planar receive-only coils with integrated cryo-cooling microfluidic channels underneath, and an imaging surface on top of the planar coils separated by a thin nitrogen gas gap. Polymer microfluidic channel structures fabricated through soft lithography processes were used to flow liquid nitrogen under the coils in order to cryo-cool the planar coils to liquid nitrogen temperature (-196 °C). Two unique features of the cryo-cooling system minimize the distance between the coil and the sample: (1) the small dimension of the polymer microfluidic channel enables localized cooling of the planar coils, while minimizing thermal effects on the nearby imaging surface. (2) The imaging surface is separated from the cryo-cooled planar coil by a thin gap through which nitrogen gas flows to thermally insulate the imaging surface, keeping it above 0 °C and preventing potential damage to biological samples. The localized cooling effect was validated by simulations, bench testing, and MR imaging experiments. Using this cryo-cooled planar coil system inside a 4.7 Tesla MR system

  16. Adhesion in egg lecithin multilayer systems produced by cooling

    OpenAIRE

    Harbich, W.; Helfrich, W.

    1990-01-01

    Slightly hydrated egg lecithin was aligned mostly parallel to the glass plates of the sample cells by squeezing it to a thickness of 20 μm. The rest of the cell was filled with water and the lipid was left to swell at elevated temperatures to bilayer mean spacings between 3 and 17 nm. Cooling by a few °C gave rise to induced adhesion in the semicylindrical border (and myelin cylinders) where the mean spacing was larger than in the bulk. From the contact roundings of membranes adhering to stac...

  17. A pump driving liquid cooling circuit method for the aperture of an infrared cold optical system

    Science.gov (United States)

    Xie, RongJian

    2017-06-01

    To enhance the optical recognition and wavelength filtering of an infrared cold optical system, some lens need to be maintained within a certain temperature range, which requires specific thermal management of the aperture. A 250K liquid cooling circuit designed for this purpose is introduced, and the experimental results established and operated in a vacuum environmental simulation chamber is carried out and analyzed. A practical cooling power source of radiation cooling equipment is adopted and the sun exposure heat load is imitated by array of planar membrane heaters attached on the specific designed structure of the aperture. Controlling the aperture temperature and improving the optical system performance are proved effective. Numerical optimization of the cooling circuit and simulation of the aperture are performed , and the factors affect the optical system performance in the mean time are also investigated.

  18. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    ventilation (MVRC). CB was based on convection cooling while the remaining three systems (CBR, CCMV and MVRC) on combined radiant and convective cooling. Measurements were performed in design (64 W/m2) and usual (38 W/m2) cooling conditions. Air temperature, operative temperature, radiant asymmetry, air......The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...... velocity and turbulent intensity were measured and draft rate levels calculated in the room. Manikin-based equivalent temperature (MBET) was determined by two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants’ thermal comfort. The results...

  19. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Directory of Open Access Journals (Sweden)

    Hakan GÜRÜN

    2009-02-01

    Full Text Available The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement into the mold cores. The program which was developed by using Visual LISP language and the VBA (Visual BASIC for Application modules, was applicated in the AutoCAD software domain. Trial studies were presented that the solid model design of plastic injection molds and the cooling systems increased the reliability, the flexibility and the speed of the design.

  20. The Effect of Using a Modified A/C System on the Cooling System Temperature of an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Mukhtar M.A. Morad

    2017-05-01

    Full Text Available This study investigates the effect of using A/C refrigerant to reduce the temperature of the coolant in a vehicle cooling system. An increase in coolant temperature due to harsh working conditions increases fuel consumption and leads to a reduction in engine power. Modifying vehicle air-conditioning by passing the suction line of the A/C system through the heat exchanger located in the lower part of the radiator (down flow type can significantly improve the performance of the engine cooling system. The results show a reduction in the temperature of coolant within the cooling system, thus maintaining a controlled working temperature within the allowable limits

  1. Numerical optimization of a multi-jet cooling system for the blown film extrusion

    Science.gov (United States)

    Janas, M.; Wortberg, J.

    2015-05-01

    The limiting factor for every extrusion process is the cooling. For the blown film process, this task is usually done by means of a single or dual lip air ring. Prior work has shown that two major effects are responsible for a bad heat transfer. The first one is the interaction between the jet and the ambient air. It reduces the velocity of the jet and enlarges the straight flow. The other one is the formation of a laminar boundary layer on the film surface due to the fast flowing cooling air. In this case, the boundary layer isolates the film and prevents an efficient heat transfer. To improve the heat exchange, a novel cooling approach is developed, called Multi-Jet. The new cooling system uses several slit nozzles over the whole tube formation zone for cooling the film. In contrast to a conventional system, the cooling air is guided vertically on the film surface in different heights to penetrate the boundary sublayer. Simultaneously, a housing of the tube formation zone is practically obtained to reduce the interaction with the ambient air. For the numerical optimization of the Multi-Jet system, a new procedure is developed. First, a prediction model identifies a worth considering cooling configuration. Therefore, the prediction model computes a film curve using the formulation from Zatloukal-Vlcek and the energy balance for the film temperature. Thereafter, the optimized cooling geometry is investigated in detail using a process model for the blown film extrusion that is able to compute a realistic bubble behavior depending on the cooling situation. In this paper, the Multi-Jet cooling system is numerically optimized for several different process states, like mass throughputs and blow-up ratios using one slit nozzle setting. For each process condition, the best cooling result has to be achieved. Therefore, the height of any nozzle over the tube formation zone is adjustable. The other geometrical parameters of the cooling system like the nozzle diameter or the

  2. Automatic control system of brain temperature by air-surface cooling for therapeutic hypothermia.

    Science.gov (United States)

    Utsuki, T

    2013-01-01

    An automatic control system of brain temperature by air-surface cooling was developed for therapeutic hypothermia, which is increasingly recommended for hypoxic-ischemic encephalopathy after cardiac arrest and neonatal asphyxia in several guidelines pertinent to resuscitation. Currently, water-surface cooling is the most widespread cooling method in therapeutic hypothermia. However, it requires large electric power for precise control and also needs water-cooling blankets which have potential for compression of patients by its own weight and for water leakage in ICU. Air-surface cooling does not have such problems and is more suitable for clinical use than water-surface cooling, because air has lower specific heat and density as well as the impossibility of the contamination in ICU by its leakage. In the present system, brain temperature of patients is automatically controlled by suitable adjustment of the temperature of the air blowing into the cooling blankets. This adjustment is carried out by the regulation of mixing cool and warm air using proportional control valves. The computer in the developed control apparatus suitably calculates the air temperature and rotation angle of the valves every sampling time on the basis of the optimal-adaptive control algorithm. Thus, the proposed system actualizes automatic control of brain temperature by the inputting only the clinically desired temperature of brain. The control performance of the suggested system was verified by the examination using the mannequin in substitution for an adult patient. In the result, the control error of the head temperature of the mannequin was 0.12 °C on average in spite of the lack of the production capacity of warm air after the re-warming period. Thus, this system serves as a model for the clinically applied system.

  3. 'Consolidation' of HVAC and cooling systems at CERN

    CERN Document Server

    Inigo-Golfin, J; Pepinster, P; CERN. Geneva. TS Department

    2008-01-01

    A â€ワconsolidation” of installations after they have reached the end of their predetermined life-time is part of the life cycle of industrial installations, regardless how well maintained they are. The â€ワconsolidation” plan might cover the replacement of obsolete equipment, partial refurbishment, the work requested to comply with new standards and applicable rules (environmental aspects) until the complete replacement of the whole installation. This â€ワconsolidation” process is all the more critical since the installation dates of the existing cooling and HVAC equipment at CERN spans over a period of 50 years and â€ワconsolidation” in the past has been not been systematic, being most of the time associated with new projects. This paper describes the reasons behind the recent â€ワconsolidation” requests for cooling and HVAC equipment both for the accelerators backbone and in tertiary buildings. A criticality analysis is given, based on the criteria laid down in the p...

  4. Biofouling reduction in recirculating cooling systems through biofiltration of process water.

    Science.gov (United States)

    Meesters, K P H; Van Groenestijn, J W; Gerritse, J

    2003-02-01

    Biofouling is a serious problem in industrial recirculating cooling systems. It damages equipment, through biocorrosion, and causes clogging and increased energy consumption, through decreased heat transfer. In this research a fixed-bed biofilter was developed which removed assimilable organic carbon (AOC) from process water, thus limiting the major substrate for the growth of biofouling. The biofilter was tested in a laboratory model recirculating cooling water system, including a heat exchanger and a cooling tower. A second identical model system without a biofilter served as a reference. Both installations were challenged with organic carbon (sucrose and yeast extract) to provoke biofouling. The biofilter improved the quality of the recirculating cooling water by reducing the AOC content, the ATP concentration, bacterial numbers (30-40 fold) and the turbidity (OD660). The process of biofouling in the heat exchangers, the process water pipelines and the cooling towers, was monitored by protein increase, heat transfer resistance, and chlorine demanded for maintenance. This revealed that biofouling was lower in the system with the biofilter compared to the reference installation. It was concluded that AOC removal through biofiltration provides an attractive, environmental-friendly means to reduce biofouling in industrial cooling systems.

  5. A novel system solution for cooling and ventilation in office buildings

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per Kvols; Lei, Bo;

    2015-01-01

    As a response to new energy policies in the building sector, office buildings have become well-insulated and highly-airtight, resulting in an increasing cooling need both in summer and in winter. In order to effectively save energy, new interests in cooling concepts using passive cooling technolo......As a response to new energy policies in the building sector, office buildings have become well-insulated and highly-airtight, resulting in an increasing cooling need both in summer and in winter. In order to effectively save energy, new interests in cooling concepts using passive cooling...... technologies and renewable energy sources have risen. Based on a literature review of natural ventilation, building thermal mass activation and diffuse ceiling ventilation, this paper proposes a new system solution combining these three technologies for cooling and ventilation in office buildings. This new...... solution has the special function of using natural ventilation all the year around without draught risk, even in very cold seasons. A case study of a typical office room using this solution and other traditional HVAC systems is carried out by energy simulation. The results show that there is a large energy...

  6. Cooling parameters for fruits and vegetables of different sizes in a hydrocooling system

    Directory of Open Access Journals (Sweden)

    Teruel Bárbara

    2004-01-01

    Full Text Available The cooling of fruits and vegetables in hydrocooling system can be a suitable technique. This work aimed to define cooling time for fruits and vegetables of different sizes, presenting practical indexes that could be used to estimate cooling time for produce with similar characteristics. Fruits (orange melon-Cucumis melo, mango-Mangifera indica, guava-Psidium guajava, orange-Citrus sinensis Osbeck, plum-Prunus domestica, lime-Citrus limon, and acerola-Prunus cerasus and vegetables (cucumber-Cucumis sativus, carrot-Daucus carota, and green bean-Phaseolus vulgaris, were cooled in a hydrocooling system at 1°C. The volume of fruits and vegetables ranged between 8.18 cm³ and 1,150.35 cm³, and between 13.06 cm³ and 438.4 cm³, respectively. Cooling time varied proportionally to produce volume (from 8.5 to 124 min for fruits, and from 1.5 to 55 min, for vegetables. The relationship between volume and time needed to cool fruits (from 1.03 min cm-3 to 0.107 min cm-3 and vegetables (from 0.06 min cm-3 to 0.12 min cm-3 is an index that could be used to estimate cooling time for fruits and vegetables with similar dimensions as those presented in this work.

  7. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  8. Innovative two-pipe active chilled beam system for simultaneous heating and cooling of office buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Afshari, Alireza; Bergsøe, Niels Christian;

    2014-01-01

    energy between zones with one hydronic circuit, operating with a water temperature between 20°C and 23°C. To calculate the energy performance of the system, simulation-based research was developed. The two-pipe system was modelled by using EnergyPlus, a whole building energy simulation program. Hourly......The aim of this paper was to investigate the energy savings potential of an innovative two-pipe system in an active chilled beam application for heating and cooling of office buildings. The characteristic of the system is its ability to provide simultaneous heating and cooling by transferring...... heating, cooling and ventilation loads were calculated by the program and an annual energy consumption evaluation of the system was made. Simulation results showed that the innovative two-pipe active chilled beam system used approximately 5% less energy than a conventional four-pipe system....

  9. A simple counter-flow cooling system for a supersonic free-jet beam source assembly.

    Science.gov (United States)

    Barr, M; Fahy, A; Martens, J; Dastoor, P C

    2016-05-01

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  10. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    Energy Technology Data Exchange (ETDEWEB)

    Barr, M.; Fahy, A.; Martens, J.; Dastoor, P. C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-05-15

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  11. Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems

    Science.gov (United States)

    1993-01-01

    This program includes six tasks. The tasks are as follows: (1) a project measuring the performance of unique solar system components; (2) a project to develop a methodology for determining annual performance ratings of solar domestic hot water systems; (3) a project that will identify, analyze, design, build, and experimentally evaluate SDHW systems incorporating advanced concepts and components; (4) a liquid desiccant cooling system development project; (5) a project that will perform TRNSYS simulations to determine potential energy savings for desiccant cooling systems, especially in humid climates; and (6) a management task. The objectives and progress in each task are described.

  12. Infrared Thermographic Assessment of Cooling Effectiveness in Selected Dental Implant Systems

    Directory of Open Access Journals (Sweden)

    Karol Kirstein

    2016-01-01

    Full Text Available The excessive temperature fluctuations during dental implant site preparation may affect the process of bone-implant osseointegration. In the presented studies, we aimed to assess the quality of cooling during the use of 3 different dental implant systems (BEGO®, NEO BIOTECH®, and BIOMET 3i®. The swine rib was chosen as a study model. The preparation of dental implant site was performed with the use of 3 different speeds of rotation (800, 1,200, and 1,500 rpm and three types of cooling: with saline solution at room temperature, with saline solution cooled down to 3°C, and without cooling. A statistically significant difference in temperature fluctuations was observed between BEGO and NEO BIOTECH dental systems when cooling with saline solution at 3°C was used (22.3°C versus 21.8°C. In case of all three evaluated dental implant systems, the highest temperature fluctuations occurred when pilot drills were used for implant site preparation. The critical temperature, defined in the available literature, was exceeded only in case of pilot drills (of all 3 systems used at rotation speed of 1,500 rpm without cooling.

  13. Asymmetric crystallization during cooling and heating in model glass-forming systems.

    Science.gov (United States)

    Wang, Minglei; Zhang, Kai; Li, Zhusong; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2015-03-01

    We perform molecular dynamics (MD) simulations of the crystallization process in binary Lennard-Jones systems during heating and cooling to investigate atomic-scale crystallization kinetics in glass-forming materials. For the cooling protocol, we prepared equilibrated liquids above the liquidus temperature Tl and cooled each sample to zero temperature at rate Rc. For the heating protocol, we first cooled equilibrated liquids to zero temperature at rate Rp and then heated the samples to temperature T>Tl at rate Rh. We measured the critical heating and cooling rates Rh* and Rc*, below which the systems begin to form a substantial fraction of crystalline clusters during the heating and cooling protocols. We show that Rh*>Rc* and that the asymmetry ratio Rh*/Rc* includes an intrinsic contribution that increases with the glass-forming ability (GFA) of the system and a preparation-rate dependent contribution that increases strongly as Rp→Rc* from above. We also show that the predictions from classical nucleation theory (CNT) can qualitatively describe the dependence of the asymmetry ratio on the GFA and preparation rate Rp from the MD simulations and results for the asymmetry ratio measured in Zr- and Au-based bulk metallic glasses (BMG). This work emphasizes the need for and benefits of an improved understanding of crystallization processes in BMGs and other glass-forming systems.

  14. Experimental study of high-temperature superconductor shield for electron cooling system

    Science.gov (United States)

    Smirnov, A.; Dorofeev, G.; Drobin, V.; Kulikov, E.; Malinovski, H.

    2016-12-01

    The NICA project includes a system of electron cooling for charged particle beams for total ion energy of 4.5 GeV/n. To achieve the required cooling time, the magnetic field homogeneity in the cooling section should be at least 10-5 for a solenoid length in the cooling system of about 6 m. The cost of such solenoid, however, is very high due to the complexity of high-precision winding. The application of the superconducting shield could help to resolve this problem. In this study we present the results of an experimental investigation of the prototype of the shield manufactured from high-temperature superconductor (HTS) tapes. The measurements were performed at different quasistationary operating conditions. The requirements for the HTS shield and solenoid parameters are formulated.

  15. On the influence of the alternation of two different cooling systems on dairy cow daily activities

    Directory of Open Access Journals (Sweden)

    Simona M.C. Porto

    2017-02-01

    Full Text Available Among the causes that influence cow welfare, heat stress induced by microclimatic conditions is one of the most relevant and many studies have investigated the efficacy of different cooling systems on animal health status. Nevertheless, the direct influence of the cooling systems on possible modifications of dairy cow behaviour has been addressed in a few studies and the related results were affected by the presence of a paddock, which gave a refuge from hot temperature. Since an alteration of the daily time budget spent by dairy cows in their usual activities can be associated with changes in their health status, this study investigated the effects of the alternation of two different cooling systems on lying, standing, and feeding behaviour of a group of dairy cows bred in a free-stall dairy house where animals had no access to a paddock. The barn was equipped with a fogging system associated with forced ventilation installed in the resting area and a sprinkler system associated with forced ventilation installed in the feeding area. The two systems were activated alternately. The results demonstrated that the management of the two cooling systems affected the analysed behaviours. Though the activation of the cooling system installed in the resting area encouraged the decubitus of animals in the stalls, the activation of that one of the feeding alley could not be able to influence the standing behaviour and had only a moderate positive influence on the feeding activity.

  16. Asymmetric crystallization upon heating and cooling in model glass-forming systems

    Science.gov (United States)

    Wang, Minglei; Zhang, Kai; Liu, Yanhui; Schroers, Jan; Shattuck, Mark; O'Hern, Corey

    2014-03-01

    We perform molecular dynamics simulations of binary Lennard-Jones (LJ) and hard-sphere (HS) systems to understand the asymmetry in the critical cooling and heating rates for crystallization observed in experiments on bulk metallic glasses, where much faster heating rates are required to prevent crystallization. For the LJ systems, we cool the systems at different rates (above the critical cooling rate Rc) to temperatures below the glass transition, and subsequently begin heating the samples at different rates to measure the critical heating rate Rh below which the system crystallizes. We perform companion studies of HS systems, except we measure the asymmetry in the critical compression and dilation rates to enhance the asymmetry. We show that the asymmetry increases with the glass-formability of the binary mixtures and explain this result by characterizing the structural order of the systems.

  17. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    OpenAIRE

    Galvez, Cristhian

    2011-01-01

    The Pebble Bed Advanced High Temperature Reactor (PB-AHTR) is a pebble fueled, liquid salt cooled, high temperature nuclear reactor design that can be used for electricity generation or other applications requiring the availability of heat at elevated temperatures. A stage in the design evolution of this plant requires the analysis of the plant during a variety of potential transients to understand the primary and safety cooling system response. This study focuses on the performance of the pa...

  18. geo:build - System optimisation of the cooling modus; geo:build. Systemoptimierung des Kuehlfalls von erdgekoppelter Waerme- und Kaelteversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, Franziska; Fisch, M. Norbert [Technische Univ. Braunschweig (Germany). IGS - Inst. fuer Gebaeude- und Solartechnik; Kuehl, Lars; Petruszek, Tim [Ostfalia Hochschule fuer angewandte Wissenschaften, Wolfenbuettel (Germany). Fakultaet Versorgungstechnik; Nuessle, Fritz [Zent-Frenger GmbH, Heppenheim (Germany); Sanner, Burkhard [UbeG GbR, Wetzlar (Germany)

    2012-10-16

    The authors of the contribution under consideration report on the analysis of ground-source systems for the heating and cooling supply and especially on the optimization of the cooling trap - chiller operation and free cooling. Two main operating points are integrated in the project. Firstly, the coordination and the alternating operation between free cooling and chillers in cooling operation are considered. Secondly, there is the development of energetically as well as economically meaningful possibilities of combination of this technology. The project investigates five non-residential buildings (office buildings and hotels) metrological. First results for the cooling mode could be analysed for two buildings.

  19. Improving of the photovoltaic / thermal system performance using water cooling technique

    Science.gov (United States)

    Hussien, Hashim A.; Numan, Ali H.; Abdulmunem, Abdulmunem R.

    2015-04-01

    This work is devoted to improving the electrical efficiency by reducing the rate of thermal energy of a photovoltaic/thermal system (PV/T).This is achieved by design cooling technique which consists of a heat exchanger and water circulating pipes placed at PV module rear surface to solve the problem of the high heat stored inside the PV cells during the operation. An experimental rig is designed to investigate and evaluate PV module performance with the proposed cooling technique. This cooling technique is the first work in Iraq to dissipate the heat from PV module. The experimental results indicated that due to the heat loss by convection between water and the PV panel's upper surface, an increase of output power is achieved. It was found that without active cooling, the temperature of the PV module was high and solar cells could only achieve a conversion efficiency of about 8%. However, when the PV module was operated under active water cooling condition, the temperature was dropped from 76.8°C without cooling to 70.1°C with active cooling. This temperature dropping led to increase in the electrical efficiency of solar panel to 9.8% at optimum mass flow rate (0.2L/s) and thermal efficiency to (12.3%).

  20. Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model

    Science.gov (United States)

    Zhang, J.; Ban-Weiss, G. A.; Zhang, K.; Liu, J.

    2016-12-01

    Solar reflective "cool roofs" absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11±0.10 K) and the United States (-0.14±0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air

  1. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    Science.gov (United States)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean

  2. HVAC cable systems with forced water cooling for wind energy transmission

    Energy Technology Data Exchange (ETDEWEB)

    Brakelmann, Heinrich; Zhang, Dongping [Duisburg-Essen Univ., Duisburg (DE). Dept. Energy Transport and Storage (ETS)

    2008-07-01

    This paper presents a solution for an efficient wind energy transmission onshore: HVAC cable system with forced water cooling, which provides a substantial increase of the cable ampacity without any modification of the cable construction and design. This work shows the projecting and planning of such HVAC cable systems in combination with a cooling system, especially considering the faulty (n-1)-case. The efficiency utilizing the short-term load capacity of the cable systems transmitting wind energy is shown by computations provided by specialized and adapted FEM (Finite Element Method) software. (orig.)

  3. Linear-optical simulation of the cooling of a cluster-state Hamiltonian system.

    Science.gov (United States)

    Aguilar, G H; Kolb, T; Cavalcanti, D; Aolita, L; Chaves, R; Walborn, S P; Souto Ribeiro, P H

    2014-04-25

    A measurement-based quantum computer could consist of a local-gapped Hamiltonian system, whose thermal states-at sufficiently low temperature-are universal resources for the computation. Initialization of the computer would correspond to cooling the system. We perform an experimental quantum simulation of such a cooling process with entangled photons. We prepare three-qubit thermal cluster states exploiting the equivalence between local dephasing and thermalization for these states. This allows us to tune the system's temperature by changing the dephasing strength. We monitor the entanglement as the system cools down and observe the transitions from separability to bound entanglement, and then to free entanglement. We also analyze the performance of the system for measurement-based single-qubit state preparation. These studies constitute a basic characterization of experimental cluster-state computation under imperfect conditions.

  4. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    Science.gov (United States)

    Hoadley, A. W.; Porter, A. J.

    1992-01-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  5. Design, Fabrication, and Testing of an Auxiliary Cooling System for Jet Engines

    Science.gov (United States)

    Leamy, Kevin; Griffiths, Jim; Andersen, Paul; Joco, Fidel; Laski, Mark; Balser, Jeffrey (Technical Monitor)

    2001-01-01

    This report summarizes the technical effort of the Active Cooling for Enhanced Performance (ACEP) program sponsored by NASA. It covers the design, fabrication, and integrated systems testing of a jet engine auxiliary cooling system, or turbocooler, that significantly extends the use of conventional jet fuel as a heat sink. The turbocooler is designed to provide subcooled cooling air to the engine exhaust nozzle system or engine hot section. The turbocooler consists of three primary components: (1) a high-temperature air cycle machine driven by engine compressor discharge air, (2) a fuel/ air heat exchanger that transfers energy from the hot air to the fuel and uses a coating to mitigate fuel deposits, and (3) a high-temperature fuel injection system. The details of the turbocooler component designs and results of the integrated systems testing are documented. Industry Version-Data and information deemed subject to Limited Rights restrictions are omitted from this document.

  6. Solar Multi-stage Refrigeration Systems on the Basis of Absorber with the Internal Evaporative Cooling

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-08-01

    Full Text Available In the article, the developed schematics are presented for the alternative refrigeration systems and air-conditioning systems, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution. Multi-stage principle of construction of drying and cool contours of solar systems is used with growth of concentration of absorbent on the stages of cooler. An absorber with internal evaporative cooling, allowing to remove the separate evaporated cooler, usually included after the absorber of the proper stage, is developed. Heat-mass-transfer apparatus of film-type, entering in the complement of drying and cool contours compatible and executed on the basis of multichannel compositions from polymeric materials. The preliminary comparative analysis of possibilities of the solar refrigeration systems and air-conditioning systems is executed.

  7. Preliminary design review package for the solar heating and cooling central data processing system

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-25

    This preliminary design review package, consisting of the Software Performance Specification, Hardware Performance Specification, and the Verification Plan for the Central Data Processing System (CDPS), was prepared by the IBM Corporation. The Central Data Processing System, located at IBM's FSD facility in Huntsville, Alabama, provides the resources required to assess the performance of solar heating and cooling systems at remote sites. These sites include residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications.

  8. Thermo-economic Optimization of Solar Assisted Heating and Cooling (SAHC System

    Directory of Open Access Journals (Sweden)

    A. Ghafoor

    2014-12-01

    Full Text Available The energy demand for cooling is continuously increasing due to growing thermal loads, changing architectural modes of building, and especially due to occupants indoor comfort requirements resulting higher electricity demand notably during peak load hours. This increasing electricity demand is resulting higher primary energy consumption and emission of green house gases (GHG due to electricity generation from fossil fuels. An exciting alternative to reduce the peak electricity consumption is the possible utilization of solar heat to run thermally driven cooling machines instead of vapor compression machines utilizing high amount of electricity. In order to widen the use of solar collectors, they should also be used to contribute for sanitary hot water production and space heating. Pakistan lying on solar belt has a huge potential to utilize solar thermal heat for heating and cooling requirement because cooling is dominant throughout the year and the enormous amount of radiation availability provides an opportunity to use it for solar thermal driven cooling systems. The sensitivity analysis of solar assisted heating and cooling system has been carried out under climatic conditions of Faisalabad (Pakistan and its economic feasibility has been calculated using maximization of NPV. Both storage size and collector area has been optimized using different economic boundary conditions. Results show that optimum area of collector lies between 0.26m2 to 0.36m2 of collector area per m2 of conditioned area for ieff values of 4.5% to 0.5%. The optimum area of collector increases by decreasing effective interest rate resulting higher solar fraction. The NPV was found to be negative for all ieff values which shows that some incentives/subsidies are needed to be provided to make the system cost beneficial. Results also show that solar fraction space heating varies between 87 and 100% during heating season and solar fraction cooling between 55 and 100% during

  9. Heat Reduction FromIc Engine By Using Al2o3Nanofluid In Engine Cooling System

    OpenAIRE

    Vikas Sharma; R.Nirmal Kumar; K.Thamilarasan; G. Vijay Bhaskar; Bhavesh Devra

    2016-01-01

    Cooling system plays important roles to control the temperature of car‟s engine. One of the important elements in the car cooling system is cooling fluid. The usage of wrong cooling fluid can give negatives impact to the car‟s engine and shorten engine life. An efficient cooling system can prevent engine from overheating and assists the vehicle running at its optimal performance. With the development of new technology in the fields of „nano-materials‟ and „nano-fluids‟, it seems v...

  10. Li-ion battery cooling system integrates in nano-fluid environment

    Science.gov (United States)

    Tran, Lien; Lopez, Jorge; Lopez, Jesus; Uriostegui, Altovely; Barrera, Avery; Wiggins, Nathanial

    2017-02-01

    In this design challenge by the Texas Space Grant Consortium, the researchers design a cooling system for a lithium-ion battery. Lithium-ion batteries are an effective and reliable source of energy for small, portable devices. However, similar to other existing sources of energy, there is always a problem with overheating. The objective is to design a cooling system for lithium-ion batteries that will work in a zero gravity environment for orbital and interplanetary space systems. The system is to serve as a backup battery and a signal booster that can be incorporated into a spacesuit. The design must be able to effectively cool the batteries without the use of an atmosphere to carry away heat but also be a lightweight and reliable design. The design incorporates carbon nanotubes suspended in distilled water creating a nano-fluid environment. This design must include a failsafe in the event of thermal runaway, a problem common to lithium-ion batteries. This failsafe will completely shut off the system if the batteries reach a certain temperature. A cooling system that incorporates nano-fluids will achieve a lightweight and efficient way of cooling batteries.

  11. Li-ion battery cooling system integrates in nano-fluid environment

    Science.gov (United States)

    Tran, Lien; Lopez, Jorge; Lopez, Jesus; Uriostegui, Altovely; Barrera, Avery; Wiggins, Nathanial

    2016-10-01

    In this design challenge by the Texas Space Grant Consortium, the researchers design a cooling system for a lithium-ion battery. Lithium-ion batteries are an effective and reliable source of energy for small, portable devices. However, similar to other existing sources of energy, there is always a problem with overheating. The objective is to design a cooling system for lithium-ion batteries that will work in a zero gravity environment for orbital and interplanetary space systems. The system is to serve as a backup battery and a signal booster that can be incorporated into a spacesuit. The design must be able to effectively cool the batteries without the use of an atmosphere to carry away heat but also be a lightweight and reliable design. The design incorporates carbon nanotubes suspended in distilled water creating a nano-fluid environment. This design must include a failsafe in the event of thermal runaway, a problem common to lithium-ion batteries. This failsafe will completely shut off the system if the batteries reach a certain temperature. A cooling system that incorporates nano-fluids will achieve a lightweight and efficient way of cooling batteries.

  12. Optimal air-supply mode of hybrid system with radiant cooling and dedicated outdoor air

    Institute of Scientific and Technical Information of China (English)

    丁研; 田喆; 朱能

    2015-01-01

    The hybrid system with radiant cooling and dedicated outdoor air not only possesses high energy efficiency, but also creates a healthy and comfortable indoor environment. Indoor air quality will be improved by the dedicated outdoor air system (DOAS) and indoor thermal comfort can be enhanced by the radiant cooling system (RCS). The optimal air-supply mode of the hybrid system and the corresponding design approach were investigated. A full-scale experimental chamber with various air outlets and the ceiling radiant cooling panels (CRCP) was designed and established. The performances of different air-supply modes along with CRCPs were analyzed by multi-index evaluations. Preliminary investigations were also conducted on the humidity stratification and the control effect of different airflow modes to prevent condensation on CRCP. The overhead supply air is recommended as the best combination mode for the hybrid system after comprehensive comparison of the experiment results. The optimal proportion of CRCP accounting for the total cooling capacities in accord with specific cooling loads is found, which may provide valuable reference for the design and operation of the hybrid system.

  13. Development of a 1D thermal-hydraulic analysis code for once-through steam generator in SMRs using straight tubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngjae; Kim, Iljin; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    Diverse integral/small-modular reactors (SMRs) have been developed. Once-through steam generator (OTSG) which generates superheated steam without steam separator and dryer was used in the SMRs to reduce volume of steam generator. It would be possible to design a new steam generator with best estimate thermal-hydraulic codes such as RELAP and MARS. However, it is not convenience to use the general purpose thermal-hydraulic analysis code to design a specific component of nuclear power plants. A widely used simulation tool for thermal-hydraulic analysis of drum-type steam generators is ATHOS, which allows 3D analysis. On the other hand, a simple 1D thermal-hydraulic analysis code might be accurate enough for the conceptual design of OTSG. In this study, thermal-hydraulic analysis code for conceptual design of OTSG was developed using 1D homogeneous equilibrium model (HEM). A benchmark calculation was also conducted to verify and validate the prediction accuracy of the developed code by comparing with the analysis results with MARS. Finally, conceptual design of OTSG was conducted by the developed code. A simple 1D thermal-hydraulic analysis code was developed for the purpose of conceptual design OTSG for SMRs. A set of benchmark calculations was conducted to verify and validate the analysis accuracy of the developed code by comparing results obtained with a best-estimated thermal-hydraulic analysis code, MARS. Finally, analysis of two different OTSG design concepts with superheating and recirculation was demonstrated using the developed code.

  14. ITER components cooling: Satisfying the distinct needs of systems and components

    Energy Technology Data Exchange (ETDEWEB)

    Ployhar, Steven James, E-mail: steve.ployhar@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Gopalapillai, Babulal; Teodoros, Liliana Cristina; Dell Orco, Giovanni [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Kumar, Ajith; Gupta, Dinesh; Patel, Nirav; Jadhav, Mahesh Ashok [ITER-India, Institute for Plasma Research, A-29, GIDC Electronic Estate, Sector-25, Gandhinagar 382016, Gujarat (India)

    2014-10-15

    The ITER Tokamak requires multiple auxiliary systems to initiate, support, and monitor the fusion reaction. Heat produced by these systems, as well as the heat produced by the fusion reaction itself is collected by the ITER Cooling Water System (CWS) and rejected to the atmosphere. The CWS is composed of several systems designed for specific cooling roles. One of these systems is the Component Cooling Water System 2 (CCWS-2) whose function is to collect the heat from auxiliary client systems and components and transfer it to the Heat Rejection System. Clients are located throughout the site and have different requirements in terms of pressure, temperature, temperature variation, flow, metallurgy of wetted surfaces, and water quality. To satisfy these different requirements the CCWS-2 is divided into four separate loops, each of which has different operating parameters. For example, the CCWS-2A loop is designed to cool components with wetted surfaces of copper and primarily serves the radio-frequency heating systems, magnet power supplies, and neutral beam injector system components. This paper describes the evolution of the CCWS-2 system to match the needs of groups of compatible clients, and describes the development of the preliminary design of one of its loops, CCWS-2A, to meet individual client needs.

  15. Thermoeconomic impact on combined cycle performance of advanced blade cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Ghigliazza, Francesco; Traverso, Alberto; Massardo, Aristide Fausto [Thermochemical Power Group (TPG), Dipartimento di Macchine, Sistemi Energetici e Trasporti (DIMSET) - University of Genoa (Italy)

    2009-10-15

    In this work the thermoeconomic features of two different combined cycles using air ''open loop'' and steam ''closed loop'' cooled gas turbines are presented and compared in depth. In order to properly estimate both thermodynamic and thermoeconomic performance of the different combined cycles an analytical model of the blade cooling system has been developed in details and outlined in the paper. Internal Thermoeconomic functional analysis is not performed here, as only economic results are shown and discussed. The blade cooling detailed model, originally developed by TPG researchers, has been integrated into the web based modular code WTEMP, already validated for GT based cycles, developed in the last ten years by TPG. It is shown that the closed loop blade cooling configuration has the greatest potential in terms of thermodynamic efficiency and economic competitivity in the mid-term. (author)

  16. Quench characteristics of 6 T conduction-cooled NbTi magnet system

    Science.gov (United States)

    Kar, S.; Soni, V.; Konduru, P.; Sharma, R. G.; Kanjilal, D.; Datta, T. S.

    2015-12-01

    Conduction-cooled superconducting magnets are cooled by cryocooler alone through the conductive thermal links. The limited refrigeration capacity and conductive cooling make the magnets more prone to quench. We have studied the quench characteristics of a 6 T conduction-cooled NbTi magnet system in detail in this paper. The NbTi magnet has been designed for 102 A with 31% current margin to achieve 0.8 K temperature margin. During a training quench at 101.2 A, the outer surface of the NbTi magnet reached 53.25 K and the temperature of the 2nd stage cold head of the cryocooler reached 15.8 K. Conductive cooling by the cryocooler makes the post-quench recovery of the NbTi magnet in 40 minutes. The maximum sweep rate is 6 A/min for thermally stable operation of this conduction-cooled NbTi magnet. We have done an intentional quench at a sweep rate of 8 A/min. The maximum hot-spot temperature and the post-quench current decay have been simulated using a finite element analysis (FEA) code. Post-quench distribution of the dumped energy in the different components of the magnet system is also presented.

  17. Optimal control and performance test of solar-assisted cooling system

    KAUST Repository

    Huang, B.J.

    2010-10-01

    The solar-assisted cooling system (SACH) was developed in the present study. The ejector cooling system (ECS) is driven by solar heat and connected in parallel with an inverter-type air conditioner (A/C). The cooling load can be supplied by the ECS when solar energy is available and the input power of the A/C can be reduced. In variable weather, the ECS will probably operate at off-design condition of ejector and the cooling capability of the ECS can be lost completely. In order to make the ejector operate at critical or non-critical double-choking condition to obtain a better performance, an electronic expansion valve was installed in the suction line of the ejector to regulate the opening of the expansion valve to control the evaporator temperature. This will make the SACH always produce cooling effect even at lower solar radiation periods while the ejector performs at off-design conditions. The energy saving of A/C is experimentally shown 50-70% due to the cooling performance of ECS. The long-term performance test results show that the daily energy saving is around 30-70% as compared to the energy consumption of A/C alone (without solar-driven ECS). The total energy saving of A/C is 52% over the entire test period. © 2010 Elsevier Ltd. All rights reserved.

  18. Averthermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Javani, N.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: nader.javani@uoit.ca

    2011-07-01

    The transportation sector is a heavy consumer of energy and better energy use is needed to reduce fuel consumption. One way to improve energy usage is to recover waste heat for cabin heating, cooling, or to produce electricity. The aim of this paper is to examine the use of waste heat in hybrid electric vehicles (HEV) and electric vehicles for cooling purposes using an ejector cooling cycle and an absorption cooling cycle. Energy and exergy analyses were conducted using waste heat from the battery pack and the exhaust gases to power the boiler and generator. Results showed that waste energy from the battery pack does not provide enough energy to produce cabin cooling but that exhaust gases can produce 7.32 kW and 7.91 kW cooling loads in the ejector and absorption systems. This study demonstrated that both ejector and absorption systems can reduce energy consumption in vehicles through the use of waste heat from exhaust gases.

  19. Operational Experience of Cooling Water Systems for Accelerator Components at PLS

    CERN Document Server

    Kim, Kyungryul; Kim, Young-Chan; Lee, Bongho; Sik Han, Hong; Soo Ko In; Wha Chung, Chin

    2005-01-01

    The cooling water system has been utilized for absorbing heat generated by a multitude of electromagnetic power delivering networks at PLS. The separate cooling water distribution systems for the storage ring, beam transport line and linear accelerator have been operated with a different operating temperature of supplying water. All water used for heat removal from the accelerator components are deionised and filtered to provide with over 2 MO-cm specific resistance. The operating pressures and flows of input water are also controlled with flow balancing scheme at a specified range. The operating temperature of components in the accelerator is sustained as tight as below ±0.1 deg C to minimize the influence of temperature fluctuation on the beam energy and stability. Although the PLS cooling systems were initially installed with a high degree of flexibility to allow for easy maintenance, a number of system improvements have been employed to enhance operational reliability and to incorporate the newly...

  20. Thermo-dynamical measurements for ATLAS Inner Detector (evaporative cooling system)

    CERN Document Server

    Bitadze, Alexander; Buttar, Craig

    During the construction, installation and initial operation of the Evaporative Cooling System for the ATLAS Inner Detector SCT Barrel Sub-detector, some performance characteristics were observed to be inconsistent with the original design specifications, therefore the assumptions made in the ATLAS Inner Detector TDR were revisited. The main concern arose because of unexpected pressure drops in the piping system from the end of the detector structure to the distribution racks. The author of this theses made a series of measurements of these pressure drops and the thermal behavior of SCT-Barrel cooling Stave. Tests were performed on the installed detector in the pit, and using a specially assembled full scale replica in the SR1 laboratory at CERN. This test setup has been used to perform extensive tests of the cooling performance of the system including measurements of pressure drops in different parts of system, studies of the thermal profile along the stave pipe for different running conditions / parameters a...

  1. Spallation Neutron Source Drift Tube Linac Resonance Control Cooling System Modeling

    CERN Document Server

    Tang, Johnny Y; Champion, Marianne M; Feschenko, Alexander; Gibson, Paul; Kiselev, Yuri; Kovalishin, A S; Kravchuk, Leonid V; Kvasha, Adolf; Schubert, James P

    2005-01-01

    The Resonance Control Cooling System (RCCS) for the warm linac of the Spallation Neutron Source was designed by Los Alamos National Laboratory. The primary design focus was on water cooling of individual component contributions. The sizing the RCCS water skid was accomplished by means of a specially created SINDA/FLUINT model tailored to these system requirements. A new model was developed in Matlab Simulink and incorporates actual operational values and control valve interactions. Included is the dependence of RF input power on system operation, cavity detuning values during transients, time delays that result from water flows through the heat exchanger, the dynamic process of water warm-up in the cooling system due to dissipated RF power on the cavity surface, differing contributions on the cavity detuning due to drift tube and wall heating, and a dynamic model of the heat exchanger with characteristics in close agreement to the real unit. Because of the Matlab Simulink model, investigation of a wide range ...

  2. Performance of a silica gel-water adsorption cooling system for use in small-scale tri-generation applications

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, R.; Smeding, S.F.; Grisel, R.J.H. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2006-07-15

    The SOCOOL project focuses on the development of a small-scale combined cold, heat and power (tri-generation) system, which utilises the engine waste heat for cold production. It is demonstrated at the CRF Eco-Canteen in Turin, Italy. The cooling machine is made of two separate sub-cooling systems, each of which is to produce 5 kW of cooling power. One of the cooling systems is driven by 'low-temperature' engine cooling water, the other by 'high-temperature' engine exhaust gases. Tri-generation systems that use heat-driven cooling, offer the possibility of saving 15-20% primary energy. The low-temperature-driven sorption-cooling machine was designed and built at ECN, The Netherlands. Its performance was tested in our own laboratories, before shipment to Turin where it was integrated with the internal combustion engine.

  3. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  4. Low cryogen inventory, forced flow Ne cooling system with room temperature compression stage and heat recuperation

    CERN Document Server

    Shornikov, A; Wolf, A

    2014-01-01

    We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.

  5. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    Science.gov (United States)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  6. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective “cool roofs” absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (0.11±0.10 K) and the United States (0.14±0.12 K); India and Europe show statistically insignificant changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (0.0021 ±0.026 K). This counters past research suggesting that cool roofs can reduce, or even increase global mean temperatures. Thus, we suggest that while cool roofs are an effective tool for

  7. Numerical simulation of cooling rates in vitrification systems used for oocyte cryopreservation.

    Science.gov (United States)

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2011-08-01

    Oocyte cryopreservation is of key importance in the preservation and propagation of germplasm. Interest in oocyte cryopreservation has increased in recent years due to the application of assisted reproductive technologies in farm animals such as in vitro fertilization, nuclear transfer and the need for the establishment of ova/gene banks worldwide. However, the cryopreservation of the female gamete has been met with limited success mainly due to its small surface-area:volume ratio. In the past decade, several vitrification devices such as open pulled straws (OPS), fine and ultra fine pipette tips, nylon loops and polyethylene films have been introduced in order to manipulate minimal volumes and achieve high cooling rates. However, experimental comparison of cooling rates presents difficulties mainly because of the reduced size of these systems. To circumvent this limitation, a numerical simulation of cooling rates of various vitrification systems immersed in liquid nitrogen was conducted solving the non-stationary heat transfer partial differential equation using finite element method. Results indicate the nylon loop (Cryoloop®) is the most efficient heat transfer system analyzed, with a predicted cooling rate of 180,000°C/min for an external heat transfer coefficient h= 1000 W/m(2)K when cooling from 20 to -130°C; in contrast, the open pulled straw method (OPS) showed the lowest performance with a cooling rate of 5521°C/min considering the same value of external heat transfer coefficient. Predicted cooling rates of Miniflex® and Cryotop® (polyethylene film system) were 6164 and 37,500°C/min, respectively, for the same heat transfer coefficient. Copyright © 2011. Published by Elsevier Inc.

  8. Solid cryogen: a cooling system for future MgB2 MRI magnet

    Science.gov (United States)

    Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho

    2017-03-01

    An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN2) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB2) superconducting magnet. The rationally designed MgB2/SN2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN2 cooling system design, a wide temperature distribution on the SN2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN2 cooled MgB2 superconducting coils for MRI applications.

  9. Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater.

    Science.gov (United States)

    Li, Heng; Hsieh, Ming-Kai; Chien, Shih-Hsiang; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-01-01

    Secondary-treated municipal wastewater (MWW) is a promising alternative to freshwater as power plant cooling system makeup water, especially in arid regions. A prominent challenge for the successful use of MWW for cooling is potentially severe mineral deposition (scaling) on pipe surfaces. In this study, theoretical, laboratory, and field work was conducted to evaluate the mineral deposition potential of MWW and its deposition control strategies under conditions relevant to power plant cooling systems. Polymaleic acid (PMA) was found to effectively reduce scale formation when the makeup water was concentrated four times in a recirculating cooling system. It was the most effective deposition inhibitor of those studied when applied at 10 mg/L dosing level in a synthetic MWW. However, the deposition inhibition by PMA was compromised by free chlorine added for biogrowth control. Ammonia present in the wastewater suppressed the reaction of the free chlorine with PMA through the formation of chloramines. Monochloramine, an alternative to free chlorine, was found to be less reactive with PMA than free chlorine. In pilot tests, scaling control was more challenging due to the occurrence of biofouling even with effective control of suspended bacteria. Phosphorous-based corrosion inhibitors are not appropriate due to their significant loss through precipitation reactions with calcium. Chemical equilibrium modeling helped with interpretation of mineral precipitation behavior but must be used with caution for recirculating cooling systems, especially with use of MWW, where kinetic limitations and complex water chemistries often prevail. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Solid cryogen: a cooling system for future MgB2 MRI magnet

    Science.gov (United States)

    Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho

    2017-01-01

    An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN2) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB2) superconducting magnet. The rationally designed MgB2/SN2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN2 cooling system design, a wide temperature distribution on the SN2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN2 cooled MgB2 superconducting coils for MRI applications. PMID:28251984

  11. The Proposed Heating and Cooling System in the CH2 Building and Its Impact on Occupant Productivity

    Directory of Open Access Journals (Sweden)

    Lu Aye

    2012-11-01

    Full Text Available Melbourne's climatic conditions demand that its buildings require both heating and cooling systems. In a multi-storey office building , however, cooling requirements will dominate. How the internal space is cooled and ventilation air is delivered will significantly impact on occupant comfort. This paper discusses the heating and cooling systems proposed for the CH2building. The paper critiques the proposed systems against previous experience, both internationally and in Australia. While the heating system employs proven technologies, less established techniques are proposed for the cooling system. Air movement in the shower towers, for example, is to be naturally induced and this has not always been successful elsewhere. Phase change material for storage of "coolth" does not appear to have been demonstrated previously in a commercial building, so the effectiveness of the proposed system is uncertain. A conventional absorption chiller backs up the untried elements of the cooling system, so that ultimately occupant comfort should not be compromised .

  12. Implementation of gas district cooling and cogeneration systems in Malaysia; Mise en oeuvre de systemes de gas district cooling et de cogeneration en Malaisie

    Energy Technology Data Exchange (ETDEWEB)

    Haron, S. [Gas District Cooling, M, Sdn Bhd (Malaysia)

    2000-07-01

    With its energy demand in the early 1990's growing at a high rate due to the country's strong economic growth, Malaysia studied various options to improve the efficiency of its energy use. Since its natural gas reserves are almost four times that of its crude oil reserves, efforts were therefore centered on seeking ways to boost the use of natural gas to mitigate the growing domestic energy need. PETRONAS, the national oil company, subsequently studied and chose the District Cooling System using natural gas as the primary source of fuel. The Kuala Lumpur City Center development, which houses the PETRONAS Twin Towers, was subsequently chosen as the first project to use the Gas District Cooling (GDC) System. To acquire the technology and implement this project, PETRONAS created a new subsidiary, Gas District Cooling (Malaysia) Sendirian Berhad (GDC(M)). In the process of improving the plant's efficiency, GDC(M) discovered that the GDC system's efficiency and project economics would be significantly enhanced if its is coupled to a Cogeneration system. Having proven the success of the GDC/Cogeneration system, GDC(M) embarked on a campaign to aggressively promote and seek new opportunities to implement the system, both in Malaysia-and abroad. Apart from enhancing efficiency of energy use, and providing better project economics, the GDC/Cogeneration system also is environment friendly. Today, the GDC/Cogeneration systems is the system of choice for several important developments in Malaysia, which also includes the country's prestigious projects such as the Kuala Lumpur International Airport and the New Federal Government Administrative Center in Putrajaya. (author)

  13. Disinfection of bacterial biofilms in pilot-scale cooling tower systems.

    Science.gov (United States)

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron I

    2011-04-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.

  14. Study on a groundwater source heat pump cooling system in solar greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Lilong; Ma, Chengwei [China Agricultural Univ., Beijing (China). Coll. of Water Conservancy and Civil Engineering. Dept. of Agricultural Structure and Bio-environmental Engineering], E-mail: macwbs@cau.edu.cn

    2008-07-01

    This study aims at exploiting the potential of ground source heat pump (GSHP) technology in cooling agricultural greenhouse, and advocating the use of renewable and clean energy in agriculture. GSHP has the multi-function of heating, cooling and dehumidifying, which is one of the fastest growing technologies of renewable energy air conditioning in recent years. The authors carried out experiment on the ground source heat pump system in cooling greenhouse in Beijing region during the summertime of 2007, and conducted analysis on the energy efficiency of the system by using coefficient of performance (COP). According to the data collected during Aug.13-18th, 2007, the coefficient of performance of GSHP system (COP{sub sys}) has reached 3.15 on average during the test. (author)

  15. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    period required, economic viability, and operating conditions. One of the main issues impeding the utilization of the full potential of natural and renewable energy sources, e.g., solar and geothermal, for space heating and space cooling applications is the development of economically competitive......The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long......-term (seasonal) storage for the introduction of natural and renewable energy sources. TES systems for heating or cooling are utilized in applications where there is a time mismatch between the demand and the most economically favorable supply of energy. The selection of a TES system mainly depends on the storage...

  16. Cryogenic mechanical property testing system directly cooled by G-M cryocooler

    Science.gov (United States)

    Huang, R. J.; Liu, Q.; Li, L. F.; Gong, L. H.; Liu, H. M.; Xu, D.

    2014-01-01

    Cryogenic mechanical properties are generally considered to be some of the most important parameters in cryogenic engineering. Therefore, it is very important to test and investigate mechanical properties at low temperatures. Most systems for cryogenic mechanical property testing are cooled using liquid nitrogen (300 K-77 K) or liquid helium (77 K-4.2 K). As we know, liquid helium is relatively rare and thus expensive. In this study, to attain accurate and stable intermediate temperatures and reduce testing cost, a cryogenic mechanical property testing system cooled by a G-M cryocooler was studied and developed. In this system, the sample can be cooled down to 10.5 K after about 10 hours of running. The tension, bending and compression testing (load range up to 50 kN) can be carried out.

  17. Study on a groundwater source heat pump cooling system in solar greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Lilong; Ma, Chengwei [China Agricultural Univ., Beijing (China). Coll. of Water Conservancy and Civil Engineering. Dept. of Agricultural Structure and Bio-environmental Engineering], E-mail: macwbs@cau.edu.cn

    2008-07-01

    This study aims at exploiting the potential of ground source heat pump (GSHP) technology in cooling agricultural greenhouse, and advocating the use of renewable and clean energy in agriculture. GSHP has the multi-function of heating, cooling and dehumidifying, which is one of the fastest growing technologies of renewable energy air conditioning in recent years. The authors carried out experiment on the ground source heat pump system in cooling greenhouse in Beijing region during the summertime of 2007, and conducted analysis on the energy efficiency of the system by using coefficient of performance (COP). According to the data collected during Aug.13-18th, 2007, the coefficient of performance of GSHP system (COP{sub sys}) has reached 3.15 on average during the test. (author)

  18. Hybrid System for Snow Melting and Space Cooling by using Geothermal Energy

    Science.gov (United States)

    Hamada, Yasuhiro; Nakamura, Makoto; Kubota, Hideki

    This paper aims to develop a hybrid system for snow melting and space cooling by using geothermal energy in order to improve the availability factor of the borehole heat exchanger. Based on field experiments, a feasibility evaluation of the system was performed. First, snow melting experiments using geothermal energy were performed and the comparatively good road surface situation was realized. The primary energy reduction rate over 70% was shown in comparison with the conventional snow melting system. Second, regarding a snow melting tank with the hot water piping, it was clarified that the snow melting was possible even in the low temperature water of approximately 9-10°C by using water sprinkling in the tank jointly. Finally, by supplying the space cooling and dehumidification panel with the cold through the borehole heat exchanger in summer, it was shown that the good cooling effect was obtained.

  19. Numerical Validation of an Optimized Cooling System for Hot Stamping Die

    Science.gov (United States)

    Zakaria, A.; Abidin, M. A.; Ibrahim, M. S. N.; Senin, A.

    2016-08-01

    Numerical analysis of hot stamping process is very complex mainly due to thermomechanical processes involved. Many variables such as heat transfer coefficient, density, young modulus and other thermal parameters are temperature and pressure dependent. The paper presents results of CFD analysis on the near optimized cooling system of hot stamping die for automotive structural part. By using actual parameters obtained from the industry production line, this research is aimed at comparing the performance of actual cooling system with the results obtained by CFD simulation using commercial software. The die and blank were modelled as 3D volume mesh in a closed position thus ignoring blank history data prior to stamping operation. Temperature distribution representing hardness of the simulated final part is an agreement with the QA data of the actual part thus showing viability of this method to be used in cooling system design

  20. Web-based distributed System for TOF Experiment Cooling Plant Monitoring

    CERN Document Server

    Blanc, D

    2001-01-01

    This paper discusses the monitoring and control system for an automated cooling process. The plant is located in an experiment environment and with some distance between the principal components of the system namely the cooling station of the lead target temperature measurements and the TOF experiment control room. TOF experiment operators interact from a SCADA supervisory station through the TCP-IP Ethernet communication channel with the cooling plant. The main issue concerns the degree of automation given to the plant and the SCADA station to greatly ease the TOF control room operation. Another important issue is the real need for TOF physicists and vacuum technicians to access specific operational information in their respective process systems. In this way the availability of the Wizcon® Web-based SCADA applications, which reside on standard Windows NT Web servers, deliver real-time access and historical data to the different applications. The various authorised users can interact with their own applicat...

  1. EXPERIMENTAL INVESTIGATION OF THERMOELECTRIC GENERATOR MODULES WITH DIFFERENT TECHNIQUE OF COOLING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mohd Izam Abd Jalil

    2013-01-01

    Full Text Available Nowadays the world has experiencing global warming due to excessive energy release into atmospheres. Today, a lot of research being conducted on ways to recover or reused the energy losses. An experimental investigation has been carried out to identify the most suitable cooling system techniques to achieve a stable and sustainable power output. Four types of Thermoelectric Module (TEM was fitted and tested on different cooling system techniques. Testing was conducted using a candle flame as a heat source to produce a suitable temperature with the maximum temperature of 200°C. An electronic circuit is used to provide a constant and sufficient power. The use of suitable cooling system and TEM was found by investigating the module parameters such as the temperature different of hot to cold side, number of thermo elements and internal resistance. This research contributes an important role in saving energy and reducing the dependency to primary energy sources (AC power or battery.

  2. Single-Mask Fabrication of Temperature Triggered MEMS Switch for Cooling Control in SSL System

    NARCIS (Netherlands)

    Wei, J.; Ye, H.; Van Zeijl, H.W.; Sarro, P.M.; Zhang, G.Q.

    2012-01-01

    A micro-electro-mechanical-system (MEMS) based, temperature triggered, switch is developed as a cost-effective solution for smart cooling control of solid-state-lighting systems. The switch (1.0x0.4 mm2) is embedded in a silicon substrate and fabricated with a single-mask 3D micro-machining process.

  3. Ocmulgee National Monument Visitor Center solar heating and cooling system design review data

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    This document has been prepared as a part of the detailed design of the solar heating and cooling system to be installed at the Ocmulgee National Monument Visitor Center. It describes the 50 percent design review data for this site, and discusses the design approaches, system trade studies, subsystem design and development approach, solar collectors, preliminary specifications and other related information.

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXV, I--CATERPILLAR DIESEL ENGINE COOLING SYSTEM D-8 AND 824 MODELS, II--TIRES AND TIRE HARDWARE.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM AND TO PROVIDE A DESCRIPTION OF HEAVY TIRES AND WHEELS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) THEORY OF THE COOLING SYSTEM, (2) COOLING SYSTEM COMPONENTS, (3) MAINTENANCE TIPS (COOLING SYSTEM), (4)…

  5. Thermal Design and Analysis of a Multi-Stage 30K Radiative Cooling System for EPIC

    Science.gov (United States)

    Chui, Talso; Bock, Jamie; Holmes, Warren; Raab, Jeff

    2009-01-01

    The Experimental Probe of Inflationary Cosmology (EPIC) is an implementation of the NASA Einstein Inflation Probe mission, to answer questions about the physics of Inflation in the early Universe by measuring the polarization of the Cosmic Microwave Background (CMB). The mission relies on a passive cooling system to cool the enclosure of a telescope to 30 K; a cryocooler then cools this enclosure to 18 K and the telescope to 4 K. Subsequently, an adiabatic demagnetization refrigerator further cools a large focal plane to approx.100 mK. For this mission, the telescope has an aperture of 1.4 m, and the spacecraft's symmetry axis is oriented approx. 45 degrees relative to the direction of the sun. The spacecraft will be spun at approx. 0.5 rpm around this axis, which then precesses on the sky at 1 rph. The passive system must both supply the necessary cooling power for the cryocooler and meet demanding temperature stability requirements. We describe the thermal design of a passive cooling system consisting of four V-groove radiators for shielding of solar radiation and cooling the telescope to 30 K. The design realizes loads of 20 and 68 mW at the 4 K and 18 K stages on the cooler, respectively. A lower cost option for reaching 40 K with three V-groove radiators is also described. The analysis includes radiation coupling between stages of the radiators and sunshields, and parasitic conduction in the bipod support, harnesses, and ADR leads. Dynamic effects are also estimated, including the very small variations in temperature due to the scan motion of the spacecraft.

  6. Investigation of economics of back-end nuclear fuel cycle options in the Republic of Korea based on Once-through

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seok-Ki; Yim, Man-Sung [Korea Advance Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    The purpose of this study is to examine these questions and perform economic evaluations of various cases of Once-through back-end fuel cycles in the ROK. Therefore, the study is to support decision making in terms of how the long term spent nuclear fuel (SNF) management strategy should be developed. A spreadsheet model was developed to plan reactor construction, the interim storage and the HLW repository construction within engineered constraints, based on the estimation of the spent fuel flow and the energy supply of the nuclear power program. The model computes the back-end levelized costs for various fuel cycle choices. The scenarios assumed in the model include (1) 0 year/10year/20year of licensed operation period extension; (2) the phase-out of NPP program and the continuous use including the reunification of Korean peninsula; (3) reactor decommissioning and construction lead times - 10 years and 5 years respectively in this study; (4) geological constraints of siting for a new reactor - 38 for without the reunification and 70 for with the reunification; (5) the first initiation of reactor decommissioning and operation of HLW repository - assumed to be 2020 and 2050; and (6) capacity factor of reactor operation and the on-site wet storage pool capacity - 0.85 and 0.498 MTHM per MWe which is equivalent with APR1400. The capacity factor for PHWR reactors was assumed at 0.85 and the plan for PHWR was fixed as phase-out. The spreadsheet model conducts computation for annual expenditures of the back-end fuel cycle and calculates the levelized costs. Licensed operation period extension enhances not only economic efficiency, stable energy supply, but also reduces burden of siting for a new reactor and waste disposal. And regardless the reunification, continuous use of nuclear energy lowers the back-end fuel cycle cost. With projection that a large portion of social cost is included in the current back-end fuel cycle cost, nuclear energy likely has more competency in

  7. Solar-heating and cooling system design package

    Science.gov (United States)

    1980-01-01

    Package of information includes design data, performance specifications, drawings, hazard analysis, and spare parts list for commercially produced system installed in single-family dwelling in Akron, Ohio. System uses air flat-plate collectors, 12000 kg rock storage and backup heat pump. Solar portion requires 0.7 kW, and provides 35% of average total heating load including hot water. Information aids persons considering installing solar home-heating systems.

  8. Study of the Thermosyphon Cooling System with a Vessel in the Sea States

    Science.gov (United States)

    Yamaguchi, Kota; Sato, Ryo; Miki, Motohiro; Yamagata, Kotohiro; Ikeda, Tatsuya; Izumi, Mitsuru; Murase, Youhei; Umemoto, Katsuya; Yokoyama, Minoru

    Thermosyphon cooling by using neon gas has been studied at temperatures between 25 K and 40 K, since it provides advantage of large capacity of heat transport, less complicated and compact construction. This cooling system seems to suitable for a variety of on-board mechanical system with superconductors such as rotating machines. However, it is necessary to clarify the effect of both pitching and rolling motions on thermosyphon. They are temperature stability and the maximum thermal load to maintain the target temperature. In this study, we introduced the thermosyphon cooling system into the research vessel "Shioji-maru", a 425 ton vessel and studied its working properties. We focus on the heat load capability, which is applied to the evaporator, under the influence of the pitching and rolling of the vessel. The incremental or single step-wise heat load was systematically applied to study the effect of the neon quantity on the cooling performance at sea states. The on-board testing results for cooling with the thermosyphon are comparatively discussed with those obtained on the ground. The finite pitching and rolling of the ship considerably encouraged the heat exchange. The obtained result is caused by enhanced thermal exchange on the effective surface area originating from the ship motions.

  9. Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.; Eastment, M.; Hancock, E.; Reeves, P.

    2006-10-01

    The use of conventional evaporative cooling has rapidly declined in the United States despite the fact that it has high potential for energy savings in dry climates. Evaporative systems are very competitive in terms of first cost and provide significant reductions in operating energy use, as well as peak-load reduction benefits. Significant market barriers still remain and can be addressed through improved systems integration. This report investigates the first of these approaches, exploring innovative components. The U.S. Department of Energy (DOE) Building America research teams are investigating the use of two promising new pieces of residential cooling equipment that employ evaporative cooling as a part of their system design. The OASys unit, which is a combination of direct and indirect evaporative cooling stages developed by Davis Energy Group (DEG) and manufactured by Speakman CRS, is used to ultimately provide outside air to the living space. The outdoor air provided is indirectly and directly evaporatively cooled in two stages to a condition that can be below the wet-bulb (wb) temperature of the outside air, thus outperforming a conventional single-stage direct evaporative cooler.

  10. Design, construction, and testing of a residential solar heating and cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Ward, D.S.; Loef, G.O.G.

    1976-06-01

    The NSF/CSU Solar House I solar heating and cooling system became operational on 1 July 1974. During the first months of operation the emphasis was placed on adjustment, ''tuning,'' and fault correction in the solar collection and the solar/fuel/cooling subsystems. Following this initial check out period, analysis and testing of the system utilizing a full year of data were accomplished. This report discusses the results of this analysis of the full year of operation. (WDM)

  11. THERMAL DESIGN FOR HARMON DRY-COOLING SYSTEM IN LARGE POWER STATION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the analysis of air flow and heat transfer in the dry-cooling tower for Harmon system, a combined iteration method is presented to solve the coupled heat transfer and draft equations derived from theoretical and empirical formulas, with the size of the exchangers and the cooling tower or the systematic parameters being determined. Taking the 686 MW unit as an example, the present calculating results are well agreed with those of the real case, and thus the method presented is practical and feasible for reasonable design of Harmon system.

  12. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high...

  13. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey

    Science.gov (United States)

    1981-01-01

    The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.

  14. Study on chemical control indicators for circulating cooling systems water chemistry at power plants

    OpenAIRE

    Кишневский, Виктор Афанасьевич; Чиченин, Вадим Валентинович

    2014-01-01

    An analysis of applied stability indices, used for water chemistry control of circulating cooling systems at TPP and NPP is given in the paper.The spectrum of controlled indicators of circulating and make-up water during long-term operation of various water chemistries on scale models of circulating cooling systems at TPP and NPP is investigated.The results of chemical control of water chemistry with dosing mineral acid to make-up water and acrylic water chemistry without dosing mineral acid ...

  15. High Precision Temperature Control and Analysis of RF Deionized Cooling Water System

    CERN Document Server

    Tsai, Zong-Da; Chen June Rong; Liu, Chen-Yao

    2005-01-01

    Previously, the Taiwan Light Source (TLS) has proven the good beam quality mainly depends on the utility system stability. A serial of efforts were devoted to these studies. Further, a high precision temperature control of the RF deionized cooling water system will be achieved to meet the more critical stability requirement. The paper investigates the mixing mechanism through thermal and flow analysis and verifies the practical influences. A flow mixing mechanism and control philosophy is studied and processed to optimize temperature variation which has been reduced from ±0.1? to ±0.01?. Also, the improvement of correlation between RF performance and water cooling stability will be presented.

  16. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

  17. Making System Dynamics Cool IV: Teaching & Testing with Cases & Quizzes

    NARCIS (Netherlands)

    Pruyt, E.

    2012-01-01

    This follow-up paper presents cases and multiple choice questions for teaching and testing System Dynamics modeling. These cases and multiple choice questions were developed and used between January 2012 and April 2012 a large System Dynamics course (250+ 2nd year BSc and 40+ MSc students per year)

  18. Making System Dynamics Cool III: New Hot Teaching & Testing Cases

    NARCIS (Netherlands)

    Pruyt, E.

    2011-01-01

    This follow-up paper presents seven actual cases for testing and teaching System Dynamics developed and used between January 2010 and January 2011 for one of the largest System Dynamics courses (250+ students per year) at Delft University of Technology in the Netherlands. The cases presented in this

  19. Making System Dynamics Cool IV: Teaching & Testing with Cases & Quizzes

    NARCIS (Netherlands)

    Pruyt, E.

    2012-01-01

    This follow-up paper presents cases and multiple choice questions for teaching and testing System Dynamics modeling. These cases and multiple choice questions were developed and used between January 2012 and April 2012 a large System Dynamics course (250+ 2nd year BSc and 40+ MSc students per year)

  20. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    OpenAIRE

    Guiqiang Li; Gang Pei; Ming Yang; Jie Ji

    2014-01-01

    Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T) system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T) with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy ...

  1. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    Science.gov (United States)

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  2. Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition

    Science.gov (United States)

    Li, Y.; Ido, T.; Eichler, T.; Katori, H.

    We report a diode laser system developed for narrow-line cooling and trapping on the 1S0-3P1 intercombination transition of neutral strontium atoms. Doppler cooling on this spin-forbidden transition with a line width of Γ/2π=7.1 kHz enables us to achieve sub-μK temperatures in a two-step cooling process. The required reduction of the laser line width to the kHz level was achieved by locking the laser to a tunable Fabry-Pérot cavity. The long-term drift (>0.1 s) of the reference cavity was compensated by employing the saturated absorption signal obtained from Sr vapor in a heat pipe of novel design. We demonstrate the potential of the system by performing spectroscopy of Sr atoms confined to the Lamb-Dicke regime in a one-dimensional optical lattice.

  3. Inner Tracking System for ALICE: Conceptual Design of Mechanics, Cooling and Alignment

    CERN Document Server

    Giubellino, P; CERN. Geneva; Schükraft, Jürgen; Dobulevitch, V M; Fedorov, V M; Godisov, O N; Igolkin, S N; Yudkin, M I; Gerasimov, S F; Novikov, I A; Vitushkin, L F

    1994-01-01

    We present here the basic ideas for the design of the support and cooling system for the Inner Tracking System of the ALICE experiment at the LHC. The cooling scheme, which must provide 5 kW heat drain from the electronics situated inside the tracking volume and stabilise the temperature field for the Si-drift detectors within 0.1 ¡C, is the starting point of the design. The choice of candidate materials for the mechanics support and integrated cooling structures is done under the general constraint of the total mass minimization. We discuss here some of the ideas for the precise positional alignment and monitoring, and the alternative options which we are considering of the mechanical layout of the Inner Tracker. We also present some first results of prototype tests and of calculations of the gravitational sagging for the ladders.

  4. Investigation of some green compounds as corrosion and scale inhibitors for cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Quraishi, M.A.; Farooqi, I.H.; Saini, P.A. (Aligarh Muslim Univ. (India))

    1999-05-01

    The performance of an open-recirculating cooling system, an important component in most industries, is affected by corrosion and scale formation. Numerous additives have been used in the past for the control of corrosion and scale formation. Effects of the naturally occurring compounds azadirachta indica (leaves), punica granatum (shell), and momordica charantia (fruits), on corrosion of mild steel in 3% sodium chloride (NaCl) were assessed using weight loss, electrochemical polarization, and impedance techniques. Extracts of the compounds exhibited excellent inhibition efficiencies comparable to that of hydroxyethylidine diphosphonic acid (HEDP), the most preferred cooling water inhibitor. The compounds were found effective under static and flowing conditions. Extracts were quite effective in retarding formation of scales, and the maximum antiscaling efficiency was exhibited by the extract of azadirachta indica (98%). The blowdown of the cooling system possessed color and chemical oxygen demand (COD). Concentrations of these parameters were reduced by an adsorption process using activated carbon as an adsorbent.

  5. The practice of chemical treatment of the water/steam circuits in plants with forced flow once-through boilers. Praxis der chemischen Konditionierung von Wasser-Dampfkreislaeufen in Anlagen mit Zwangdurchlaufkesseln

    Energy Technology Data Exchange (ETDEWEB)

    Bursik, A. (Grosskraftwerk Mannheim AG (Germany)); Kittel, H. (VGB-Geschaeftsstelle, Essen (Germany))

    1992-02-01

    In 1990, a statistical survey was undertaken into the status of chemical treatment of water/steam circuits in plants with once-through forced-flow boilers. The results were reported at the VGB Conference on 'Chemistry in the Power Station 1990'. This paper imparts to the operators of plants with once-through forced-flow boilers additional information about the practice of chemical treatment. It contains guidelines concerning the chemicals used and also instructions about dosing points for individual materials and the type of dosing to be used in continuous operation. (orig.).

  6. Application of imitation steam'' systems to hot water district heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, P.J.; Chen, D.B.

    1991-10-01

    Pequod Associates, Inc. and District Energy St. Paul, Inc. installed a pilot project of an innovative District Heating technology through a contract with the US DOE. This applied research was funded by the Energy Research and Development Act (94--163) for District Heating and Cooling Research. The experimental design is an intervention technique that permits hot water district heating systems to connect to buildings equipped with steam heating systems to connect to buildings equipped with steam heating systems. This method can substantially reduce conversion costs in many older buildings. The method circulates Imitation Steam, which is moist hot air, as a heating medium in standard steam radiators and steam heating coils. Based on the operation of the system during the 1989--90 and 1990--91 winter heating seasons, we conclude the following: the basic concept of using Imitation Steam was proved feasible. The performance of the system can be improved beyond the levels achieved in this installation. Imitation Steam did not cause significant corrosion in the piping system. The technology can be used by other district heating systems to lower conversion costs and increase market penetration. Among the additional benefits from this technology are: eliminating old, inefficient boilers; lower maintenance costs; improved fuel efficiency; reduced emissions.

  7. Data on test results of vessel cooling system of high temperature engineering test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Saikusa, Akio [Secretariat of Nuclear Safety Commission, Tokyo (Japan); Nakagawa, Shigeaki; Fujimoto, Nozomu; Tachibana, Yukio; Iyoku, Tatsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-02-01

    High Temperature Engineering Test Reactor (HTTR) is the first graphite-moderated helium gas cooled reactor in Japan. The rise-to-power test of the HTTR started on September 28, 1999 and thermal power of the HTTR reached its full power of 30 MW on December 7, 2001. Vessel Cooling System (VCS) of the HTTR is the first Reactor Cavity Cooling System (RCCS) applied for High Temperature Gas Cooled Reactors. The VCS cools the core indirectly through the reactor pressure vessel to keep core integrity during the loss of core flow accidents such as depressurization accident. Minimum heat removal of the VCS to satisfy its safety requirement is 0.3MW at 30 MW power operation. Through the performance test of the VCS in the rise-to-power test of the HTTR, it was confirmed that the VCS heat removal at 30 MW power operation was higher than 0.3 MW. This paper shows outline of the VCS and test results on the VCS performance. (author)

  8. Enhancement of Polytechnic University of Puerto Rico's plasma machine cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Leal-Escalante, D; Colmenares, F; Gonzalez-Lizardo, A; Leal-Quiros, E [Plasma Engineering Laboratory, Polytechnic University of Puerto Rico, San Juan, PR 00918 (Puerto Rico)

    2008-10-15

    The Mirror and Cusp Plasma Machine at the Polytechnic University of Puerto Rico is a unique research and development machine to create plasma. Due to the high current, high magnetic field confinement and large chamber capacity, this machine is the only plasma machine in the Caribbean to reach high plasma temperatures and densities. Certainly these parameters are achieved by a high dc power supply that produces high currents in order to create a fine magnetic field; these currents range from 300 to 800 A, and the heat dissipation created by this process limits the use of the machine. Originally the machine had a water cooling line to circulate water at room temperature, but this line was not cool enough to efficiently remove heat from the system for large periods of time. Also, the high vacuum diffusion pumps used are water-cooled. The present study was developed to design a more efficient cooling system for the Plasma Laboratory using a water-cooled chiller; the main goals are to operate at lower temperatures but at stable currents I> 600 A, and to recycle the water. Now the machine can operate for longer periods of time and on a daily basis, resulting in more efficient experiments and investigations.

  9. Cooling System Design for a Split High Field Bitter-type Electromagnet

    Science.gov (United States)

    Birmingham, William; Bates, Evan; Romero-Talamas, Carlos; Rivera, William

    2014-10-01

    For the purpose of analyzing magnetized dusty plasma at the University of Maryland Baltimore County (UMBC), we are designing a split resistive electromagnet. When completed, the magnet will be capable of generating fields of 10 T for 10 seconds. The type of design proposed here was originally developed by Francis Bitter, and achieves high magnetic fields by helically stacked disk-shaped solenoids with axially oriented cooling channels. In order to ensure the safety and functionality of the apparatus, the geometry and placement of the cooling passages must be designed to establish a manageable temperature profile throughout the coil. The estimated power consumption from resistive losses is nearly 7 MW, thus it is imperative to optimize the cooling capacity of the system. The cooling capacity is limited by the mass of chilled water available at one time and the maximum achievable mass flow through the coils. The system is also designed to withstand the resultant mechanical stresses from the Lorentz force. Slot-shaped cooling channels are used. The number and placement of these channels is optimized through an iterative and integrated design process which combines analytic calculations with finite element analyses. The methodology and results of the design process is presented.

  10. Performance of materials in the component cooling water systems of pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.S.

    1993-06-01

    The component cooling water (CCW) system provides cooling water to several important loads throughout the plant under all operating conditions. An aging assessment CCW systems in pressurized water reactors (PWRs) was conducted as part of Nuclear Plant Aging Research Program (NPAR) instituted by the US Nuclear Regulatory Commission. This paper presents some of the results on the performances of materials in respect of their application in CCW Systems. All the CCW system failures reported to the Nuclear Plant Reliability Data System (NPRDS) from January 1988 to June 1990 were reviewed; it is concluded that three of the main contributors to CCW system failures are valves, pumps, and heat exchangers. This study identified the modes and causes of failure for these components; most of the causes for the aging-related failures could be related to the performance of materials. Also, in this paper the materials used for these components are reviewed, and there aging mechanisms under CCW system conditions are discussed.

  11. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  12. Mineral scaling mitigation in cooling systems using tertiary-treated municipal wastewater.

    Science.gov (United States)

    Liu, Wenshi; Chien, Shih-Hsiang; Dzombak, David A; Vidic, Radisav D

    2012-09-15

    Treated municipal wastewater (MWW) is recognized as a significant potential source of cooling water for power generation. One of the key challenges for the successful use of the effluent from wastewater treatment facilities for cooling is the potential for significant mineral scaling when the raw water is concentrated as much as 4-6 times in recirculating cooling systems. Previous bench- and pilot-scale tests have shown that commonly used phosphorus- and polymer- based scaling inhibitors are ineffective when secondary-treated municipal wastewater (MWW) is used as make-up. In this study, two types of tertiary-treated municipal wastewaters, namely secondary-treated MWW with pH adjustment (MWW_pH) and secondary-treated MWW subjected to nitrification and sand filtration (MWW_NF) were evaluated as the sole source of make-up water for recirculating cooling systems. Both laboratory studies and pilot-scale tests revealed that adjusting the pH to 7.8 could reduce the mineral scaling rate by more than 80% without causing any significant corrosion problems. In contrast to MWW, where calcium carbonate was the dominant scaling mineral, the main component of mineral scale in MWW_pH was calcium phosphate. Both static and dynamic bench-scale tests indicated that scaling would not be a significant concern when MWW_NF is used as the make-up water in recirculating cooling systems operated at 4-6 cycles of concentration (CoC). Extended pilot-scale studies confirmed that MWW_NF is suitable makeup water for power plant cooling systems and that no anti-scaling chemicals would be required. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    2017-09-03

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  14. Standby cooling system for a fluidized bed boiler

    Science.gov (United States)

    Crispin, Larry G.; Weitzel, Paul S.

    1990-01-01

    A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

  15. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    of container ships. The purpose of the model is to describe the important dynamics of the system, such as nonlinearities, transport delays and closed circuit flow dynamics to enable the model to be used for control design and simulation. The control challenge is related to the highly non-standard type of step...

  16. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    Science.gov (United States)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  17. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors AGENCY... Systems for Light-Water-Cooled Nuclear Power Reactors,'' in which the NRC made editorial corrections and... analysis for liquid and gaseous radwaste system components for light water nuclear power...

  18. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Yasin [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.

  19. Design and Development of a Photovoltaic Power System for Tropical Greenhouse Cooling

    Directory of Open Access Journals (Sweden)

    Faisal M.S. Al-Shamiry

    2007-01-01

    Full Text Available Renewable energy sources like photovoltaic (PV panels are used today in many applications. Natural ventilation in tropical greenhouse is common method for ventilation, which gives higher inside temperatures compared to the outside temperatures. In addition, this type of ventilation is not enough to reduce high temperature inside the structure in low land areas. Thus the requirement of cooling is increased. Use of the fossil fuel to run the cooling fans are not economically viable due to increasing of fuel cost and greenhouses are not always located near the electrical grid. This research presents a study on the installation and test of a complete photovoltaic hybrid system for cooling a tropical greenhouse. A hybrid photovoltaic system consisting of two photovoltaic sub-systems were connected to each other. This system includes 48 photovoltaic solar Panels with 18.75 watt each, one inverter, 1 charge controller and a battery bank (including 12 batteries. The PV system is located at University Putra Malaysia (UPM Research Park. The national electricity grid was used as a backup unit. The load consisted of two misting fans for cooling greenhouse (during test period time with 400 Watt electric power and five hours (11:00 am to 16:00 pm daily operation. The results obtained showed that the maximum current drawn from the array was found to be 14.9 ampere at 13:00 pm (with load. The voltage of array was found to be 26.9 volt while the voltage and current of battery bank were found to be 26.2 volt and 23.0 ampere respectively. In conclusion, this study highlights the primary study of PV hybrid energy systems for tropical greenhouse cooling as an application of renewable energy in Selangor, Malaysia. The results showed that PV system would be suitable to supply electricity to cover the loads requirement demands without using energy from the grid.

  20. Numerical simulation of draining and drying procedure for the ITER Generic Equatorial Port Plug cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Tanchuk, Victor, E-mail: Victor.Tanchuk@sintez.niiefa.spb.su [JSC “D.V. Efremov Institute of Electrophysical Apparatus”, 196641 St. Petersburg (Russian Federation); Grigoriev, Sergey; Lyublin, Boris [JSC “D.V. Efremov Institute of Electrophysical Apparatus”, 196641 St. Petersburg (Russian Federation); Maquet, Philippe [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Senik, Konstantin [JSC “D.V. Efremov Institute of Electrophysical Apparatus”, 196641 St. Petersburg (Russian Federation); Pak, Sunil [National Fusion Research Institute, Daejeon (Korea, Republic of); Udintsev, Victor [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France)

    2016-11-01

    Highlights: • The cooling system of the ITER Generic Equatorial Port Plug (GEPP) is of a complicated combination of horizontal and vertical channels. • The calculation model for the entire GEPP cooling circuit comprising 12 sub-circuits and built up of 2421 finite-volume elements has been developed. • Transient analysis of this model simulating the draining procedure by the KORSAR/B1 code has been performed. • Water in amount of 263 g of initial 531 kg in the GEPP remains in the dead-ends of the DSM and DFW channels in 150 s of draining procedure. • Almost 3 h are required to boil off 263 g of water trapped in the dead-ends. - Abstract: For effective vacuum leak testing all cooling circuits serving the ITER vessel and in-vessel components shall be drained and dried so that after this procedure taking less than 100 h the purge gas passing through a component has water content less than 100 ppm. This process is four-stage, with the first stage using a short blast of compressed nitrogen to blow most of water in the coolant channels out of the circuit. This process is hindered by volumes which trap water due to gravity. To remove the trapped water, it is necessary, first, to heat up the structure by hot and compressed nitrogen, and then water is evaporated by depressurized nitrogen. The cooling system of the ITER Diagnostic Equatorial Port Plugs is of a complicated hydraulic configuration. The system branching might make difficult removal of water from the piping in the scheduled draining mode. The authors have proposed the KORSAR computation code to simulate draining of the GEPP cooling circuit. The numerical simulation performed has made it possible to describe the process dynamics during draining of the entire GEPP cooling circuit and to define the process time, amount and location of residual water and evolution of two-phase flow regime.

  1. Passive evaporation-condensation system for laser cooling

    Directory of Open Access Journals (Sweden)

    Gershuni A. N.

    2012-04-01

    Full Text Available A special heat pipe for ensuring the thermal regime of the active element of an optical quantum generator (laser under heat sink by radiation has been developed. It is shown that under the simulated fuel element power of 50 W wall temperature in the heat pipe heating zone does not exceed 30°C, and the emergency heating prevents deep freezing of the entire system in the absence of heat generation of the object itself.

  2. MAXIMUM PRINCIPLE FOR THE OPTIMAL CONTROL OF AN ABLATION-TRANSPIRATION COOLING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    SUN Bing; GUO Baozhu

    2005-01-01

    This paper is concerned with an optimal control problem of an ablationtranspiration cooling control system with Stefan-Signorini boundary condition. The existence of weak solution of the system is considered. The Dubovitskii and Milyutin approach is adopted in the investigation of the Pontryagin's maximum principle of the system. The optimality necessary condition is presented for the problem with fixed final horizon and phase constraints.

  3. Research and Development of a Small-Scale Adsorption Cooling System

    Science.gov (United States)

    Gupta, Yeshpal

    The world is grappling with two serious issues related to energy and climate change. The use of solar energy is receiving much attention due to its potential as one of the solutions. Air conditioning is particularly attractive as a solar energy application because of the near coincidence of peak cooling loads with the available solar power. Recently, researchers have started serious discussions of using adsorptive processes for refrigeration and heat pumps. There is some success for the >100 ton adsorption systems but none exists in the adsorption system was developed and its performance was compared with similar thermal-powered systems. Results showed that both the adsorption and absorption systems provide equal cooling capacity for a driving temperature range of 70--120 ºC, but the adsorption system is the only system to deliver cooling at temperatures below 65 ºC. Additionally, the absorption and desiccant systems provide better COP at low temperatures, but the COP's of the three systems converge at higher regeneration temperatures. To further investigate the viability of solar-powered heat pump systems, an hourly building load simulation was developed for a single-family house in the Phoenix metropolitan area. Thermal as well as economic performance comparison was conducted for adsorption, absorption, and solar photovoltaic (PV) powered vapor compression systems for a range of solar collector area and storage capacity. The results showed that for a small collector area, solar PV is more cost-effective whereas adsorption is better than absorption for larger collector area. The optimum solar collector area and the storage size were determined for each type of solar system. As part of this dissertation work, a small-scale proof-of-concept prototype of the adsorption system was assembled using some novel heat transfer enhancement strategies. Activated carbon and butane was chosen as the adsorbent-refrigerant pair. It was found that a COP of 0.12 and a cooling

  4. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  5. The I-Xe System in Lodranites Suggests Impact-related Rapid Cooling

    Science.gov (United States)

    Crowther, S. A.; Whitby, J. A.; Busfield, A.; Holland, G.; Busemann, H.; Gilmour, J. D.

    2009-03-01

    The I-Xe system of three lodranites has been investigated. Two metal and one silicate separate from GRA 95209 gave ages consistent with each other (and the I-Xe age of Acapulco feldspar), suggesting the parent material underwent a period of rapid cooling.

  6. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto [Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  7. Impact of operating conditions on cooling capacity for sorption systems using water as refrigerant

    Science.gov (United States)

    Tremeac, Brice; Giraud, Florine; Vallon, Pierrick

    2017-02-01

    The implementation of compact heat exchanger in sorption systems is a key factor to allow the development of these systems. The aim of this paper is to develop a statistical model with a design of experiment (DOE) methodology and use dimensionless number to evaluate and understand the influence of the height of refrigerant liquid and secondary fluid inlet temperature on cooling capacity of a compact pate-type evaporator for sorption systems working near vacuum pressure. For this purpose, an experimental campaign was conducted on a small adsorption test bench using 13X/water as working couple. Cooling capacities from 640 to 2000 W were measured. The DOE is a Doelhert type with two parameters: the inlet secondary fluid temperature (from 10 to 21 °C) and the filing level of refrigerant in the evaporator (from 6 to 24 cm). Thanks to the exploitation of the mathematical model obtained, optimal points under different constraints were found. A maximum cooling capacity of 2021 +/-75 W in the entire experimental field was predicted for a secondary fluid inlet temperature of 25°C and a height of liquid level of 19.2 cm. Bond number and modified Jacob number per the ratio Psat/Ptriple were analyzed. The dimensionless numbers are correlated to the cooling capacity as a first step for designing compact plate-type evaporator for adsorption systems using water as refrigerant.

  8. Optimal Control of Distributed Parameter Systems with Application to Transient Thermoelectric Cooling

    Directory of Open Access Journals (Sweden)

    KOTSUR, M.

    2015-05-01

    Full Text Available We give a solution of optimal control problem for distributed parameter systems described by nonlinear partial differential equations with nonstandard boundary conditions. The variational method is used to obtain the general form of the necessary conditions of optimality. A suitable algorithm based on the numerical method of successive approximations has been constructed for computing the optimal control functions. The results are applied for optimization of transient thermoelectric cooling process. Optimal dependences of current on time have been calculated for thermoelectric cooler power supply with the purpose of minimizing the cooling temperature within a preset time interval.

  9. Design of Microwave Band Pass Filters for the Debuncher Stochastic Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Deibele, C.; /Fermilab

    2001-01-01

    The FIR filters designed for the debuncher stochastic cooling system needed improvement. Its bandwidth was too wide, its magnitude was not flat, its phase ripple was too great, and it was difficult to control the characteristics of the filter. A simple microwave technique was employed to have a short time delay, simple robust layout, and small board size. A significant savings was seen over the FIR technique and these filters were installed in the Antiproton Source Debuncher while the FIR filters were removed from the debuncher stochastic cooling entirely.

  10. Note: A four-pass acousto-optic modulator system for laser cooling of sodium atoms

    Science.gov (United States)

    Lu, Bo; Wang, Dajun

    2017-07-01

    We present a four-pass acousto-optic modulator (AOM) system for providing the repumping light for laser cooling of sodium atoms. With only one 400 MHz AOM, we achieve a tunable laser frequency shift around 1.6 GHz with total efficiency up to 30%. This setup provides an alternative over conventional methods to generate a sodium repumping light using more expensive high frequency AOMs or electro-optical modulators (EOMs) in the GHz domain. This compact and reliable setup can be easily adapted to other frequencies and may find applications in laser spectroscopy, laser cooling and trapping, and coherent manipulation of atomic quantum states.

  11. Unsteady, Cooled Turbine Simulation Using a PC-Linux Analysis System

    Science.gov (United States)

    List, Michael G.; Turner, Mark G.; Chen, Jen-Pimg; Remotigue, Michael G.; Veres, Joseph P.

    2004-01-01

    The fist stage of the high-pressure turbine (HPT) of the GE90 engine was simulated with a three-dimensional unsteady Navier-Sokes solver, MSU Turbo, which uses source terms to simulate the cooling flows. In addition to the solver, its pre-processor, GUMBO, and a post-processing and visualization tool, Turbomachinery Visual3 (TV3) were run in a Linux environment to carry out the simulation and analysis. The solver was run both with and without cooling. The introduction of cooling flow on the blade surfaces, case, and hub and its effects on both rotor-vane interaction as well the effects on the blades themselves were the principle motivations for this study. The studies of the cooling flow show the large amount of unsteadiness in the turbine and the corresponding hot streak migration phenomenon. This research on the GE90 turbomachinery has also led to a procedure for running unsteady, cooled turbine analysis on commodity PC's running the Linux operating system.

  12. Laser system for Doppler cooling of ytterbium ion in an optical frequency standard

    Energy Technology Data Exchange (ETDEWEB)

    Chepurov, S V; Lugovoy, A A; Kuznetsov, S N [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-06-30

    A laser system for Doppler cooling of ytterbium ion on the {sup 2}S{sub 1/2} → {sup 2}P{sub 1/2} transition in a single-ion optical frequency standard is developed. The second harmonic of a semiconductor laser with a wavelength of 739 nm is used for cooling. The laser frequency is doubled in a nonlinear BiBO crystal embedded in a ring resonator, which also serves as a reference for laser frequency stabilisation. Second-harmonic power of ∼100 μW is generated at a wavelength of 369.5 nm. Diode laser radiation is modulated by an electro-optic modulator at 14.75 GHz to generate a sideband exciting the {sup 2}S{sub 1/2} (F = 0) → {sup 2}P{sub 1/2} (F = 1) hyperfine component of the cooling transition that is not excited by resonant cooling light. The sideband relative intensity of a few percent proved to be sufficient to reduce the ion dwelling time in the {sup 2}S{sub 1/2} (F = 0) state to less than 10{sup -4} s and increase the cooling efficiency. (extreme light fields and their applications)

  13. Study of parameters affecting the performance of solar desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A A; Hoo, E A

    1993-01-01

    The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65{degree}C to 160{degree}C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

  14. Study of parameters affecting the performance of solar desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.A.; Hoo, E.A.

    1993-01-01

    The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65[degree]C to 160[degree]C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

  15. A passive cooling system of residential and commercial buildings in summer or hot season

    Science.gov (United States)

    Rahman, M. M.; Mashud, M.; Chu, C. M.; Misaran, M. S. bin; Sarker, M.; Kumaresen, S.

    2015-12-01

    The increasing number of high rise buildings may contribute to lack of natural ventilation in modern buildings. Generally, fans and air conditioning are used in the modern building for cooling and air ventilation. Most of the energy in tropical regions are consumed by heating, cooling and ventilation appliances. Therefore, solar power appliances for cooling, heating and ventilation will be a suitable option for saving energy from the household sector. A modified-structure building is designed and constructed with solar chimney to enhance ventilation rate that increases cooling performance and ensure thermal comfort. An evaporative cooler is introduced with a newly designed room to enhance the temperature reduction capacity. The room temperature is compared with a non-modified room as well as with ambient temperature. The results show that passive cooling system with evaporative cooler was able to reduce temperature by 5°C compared to the ambient temperature and about 2°C to 3°C below the reference room temperature.

  16. A dynamic model of an innovative high-temperature solar heating and cooling system

    Directory of Open Access Journals (Sweden)

    Buonomano Annamaria

    2016-01-01

    Full Text Available In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the utilization of flat-plate stationary solar collectors, manufactured by TVP Solar, rather than concentrating ones (typically adopted for driving double-stage absorption chillers. Such devices show ultra-high thermal efficiencies, even at very high (about 200°C operating temperatures, thanks to the high vacuum insulation. Aim of the paper is to analyse the energy and economic feasibility of such novel technology, by including it in a prototypal solar heating and cooling system. For this purpose, the solar heating and cooling system design and performance were analysed by means of a purposely developed dynamic simulation model, implemented in TRNSYS. A suitable case study is also presented. Here, the simulated plant is conceived for the space heating and cooling and the domestic hot water production of a small building, whose energy needs are fulfilled through a real installation (settled also for experimental purposes built up close to Naples (South Italy. Simulation results show that the investigated system is able to reach high thermal efficiencies and very good energy performance. Finally, the economic analysis shows results comparable to those achieved through similar renewable energy systems.

  17. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    Science.gov (United States)

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  18. Numerical model of sprayed air cooled condenser coupled to refrigerating system

    Energy Technology Data Exchange (ETDEWEB)

    Youbi-Idrissi, M.; Macchi-Tejeda, H.; Fournaison, L.; Guilpart, J. [Refrigerating Processes Research Unit, CEMAGEF, Parc de Tourvoie, BP 44, 92163 Antony Cedex (France)

    2007-07-15

    Because of technological, economic and environmental constraints, many refrigeration and air conditioning units are equipped with a simple air cooled condenser. Spraying the condenser seems to be an original solution to improve the energetic performances of such systems. To characterise this energetic benefit, a semi-local mathematical model was developed and applied to a refrigerating machine with and without spraying its air cooled condenser. It is found that, compared to a dry air cooled condenser, both the calorific capacity and machine COP increase by 13% and 55%, respectively. Furthermore, the model shows that a spray flow rate threshold occurs. It should not be exceeded to assure an effective and rational spray use. (author)

  19. Differences Between Passive And Active Cooling Systems In Gender, Physiological Responses, Thermal Sensation And Productivity

    DEFF Research Database (Denmark)

    Schellen, Lisje; Loomans, Marcel; van Marken Lichtenbelt, Wouter

    2011-01-01

    could occur due to application of low energy/exergy cooling systems, on human thermal comfort, physiological responses, and productivity. Furthermore, focus is on the differences between gender. This paper presents preliminary results obtained from experiments with four test subjects. To examine...... ventilation (To=26oC), active cooling by convection through (2) mixing and (3) displacement ventilation, active cooling by radiation (4) through the ceiling and mixing ventilation (5) through the floor and mixing ventilation and (6) through the floor and displacement ventilation. Three female subjects visited...... the climate room on two occasions: (1) and (4). During the experiments both physiological responses and thermal sensation were measured. To assess the productivity and performance a ‘Remote Performance Measurement’ (RPM) method was used....

  20. Plate coil thermal test bench for the Daniel K. Inouye Solar Telescope (DKIST) carousel cooling system

    Science.gov (United States)

    Phelps, LeEllen; Murga, Gaizka; Montijo, Guillermo; Hauth, David

    2014-08-01

    Analyses have shown that even a white-painted enclosure requires active exterior skin-cooling systems to mitigate dome seeing which is driven by thermal nonuniformities that change the refractive index of the air. For the Daniel K. Inouye Solar Telescope (DKIST) Enclosure, this active surface temperature control will take the form of a system of water cooled plate coils integrated into the enclosure cladding system. The main objective of this system is to maintain the surface temperature of the enclosure as close as possible to, but always below, local ambient temperature in order to mitigate this effect. The results of analyses using a multi-layer cladding temperature model were applied to predict the behavior of the plate coil cladding system and ultimately, with safety margins incorporated into the resulting design thermal loads, the detailed designs. Construction drawings and specifications have been produced. Based on these designs and prior to procurement of the system components, a test system was constructed in order to measure actual system behavior. The data collected during seasonal test runs at the DKIST construction site on Haleakalā are used to validate and/or refine the design models and construction documents as appropriate. The test fixture was also used to compare competing hardware, software, components, control strategies, and configurations. This paper outlines the design, construction, test protocols, and results obtained of the plate coil thermal test bench for the DKIST carousel cooling system.