WorldWideScience

Sample records for on-line non-contact gas

  1. On-line non-contact gas analysis

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    Non-intrusive and fast measurements of the gas temperature, NO and other gas concentrations at elevated temperatures in boilers, engines and flames are of the great interest. The optical properties of the gases must be known in a spectral range and temperature level of interest. High-resolution I...... composition in the near-burner field with co-firing of biomass and coal, and NO measurements in a large diesel engine....

  2. Numerical analysis of the non-contacting gas face seals

    Science.gov (United States)

    Blasiak, S.

    2017-08-01

    The non-contacting gas face seals are used in high-performance devices where the main requirements are safety and reliability. Compliance with these requirements is made possible by careful research and analysis of physical processes related to, inter alia, fluid flow through the radial gap and ring oscillations susceptible to being housed in the enclosure under the influence of rotor kinematic forces. Elaborating and developing mathematical models describing these phenomena allows for more and more accurate analysis results. The paper presents results of studies on stationary ring oscillations made of different types of materials. The presented results of the research allow to determine which of the materials used causes the greatest amplitude of the vibration of the system fluid film-working rings.

  3. Non-contacting shaft seals for gas and steam turbines

    OpenAIRE

    2012-01-01

    Improvements upon current gas turbine sealing technology performance are essential for decreasing specific fuel consumption to meet stringent future efficiency targets. The clearances between rotating and static components of a gas turbine, which need to be sealed, vary over a flight cycle. Hence, a seal which can passively maintain an optimum clearance, whilst preventing contact between itself and the rotor, is extremely desirable. Various configurations of a Rolls Royce (RR) seal concep...

  4. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines

    Science.gov (United States)

    Manara, J.; Zipf, M.; Stark, T.; Arduini, M.; Ebert, H.-P.; Tutschke, A.; Hallam, A.; Hanspal, J.; Langley, M.; Hodge, D.; Hartmann, J.

    2017-01-01

    The objective of the EU project "Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)" is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines. For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics are semi-transparent in the near and short wavelength infrared spectral region. Fortunately the applied ceramic materials are non-transparent in the long wavelength infrared and additionally exhibit a high emittance in this wavelength region. Therefore, a LWIR pyrometer can be used for non-contact temperature measurements of the surfaces of TBCs as such pyrometers overcome the described limitation of existing techniques. For performing non-contact temperature measurements in gas turbines one has to know the infrared-optical properties of the applied TBCs as well as of the hot combustion gas in order to properly analyse the measurement data. For reaching a low uncertainty on the one hand the emittance of the TBC should be high (>0.9) in order to reduce reflections from the hot surrounding and on the other hand the absorbance of the hot combustion gas should be low (<0.1) in order to decrease the influence of the gas on the measured signal. This paper presents the results of the work performed by the authors with focus on the implementation of the LWIR pyrometer and the

  5. Phenomenally High Transduction Air/gas Transducers for Practical Non-Contact Ultrasonic Applications

    Science.gov (United States)

    Bhardwaj, Mahesh C.

    2009-03-01

    Based on novel acoustic impedance matching layers and high coupling piezoelectric materials this paper describes exceptionally high air/gas transduction ultrasonic transducers. By providing applications oriented performance of these transducers we also usher in the era of much desired Non-Contact Ultrasound (NCU) testing and analysis of a wide range of materials including early stage formation of materials such as uncured composite prepregs, green ceramics and powder metals, plastics, elastomers, porous, hygroscopic, chemically bonded and other materials. Besides quality control, ultimately NCU offers timely opportunities for cost-effective materials production, energy savings, and environment protection.

  6. Non-contacting gas lubricated face seals for high p x v-values

    Science.gov (United States)

    Glienicke, J.; Launert, A.; Schums, H.; Kohring, B.

    1994-07-01

    The authors discuss recently developed mathematical fundamentals concerning the calculation of noncontacting gas lubricated face seals. They carried out extensive experiments using three different designs at pressures up to 10 MPa and sliding velocities up to 110 m/s. A comparison between the experimental results and the calculations indicates that a stable operation without wear can be ensured in all cases, provided that the materials and geometrical parameters of the seal have been properly chosen.

  7. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    Directory of Open Access Journals (Sweden)

    A. S. Tremsin

    2017-01-01

    Full Text Available Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (∼739 ± 98 kPa and ∼751 ± 154 kPa for two Xe resonances is in relatively good agreement with the pressure value of ∼758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ∼ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  8. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    Science.gov (United States)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; Byler, D. D.; McClellan, K. J.; Bourke, M. A. M.; Vallerga, J. V.

    2017-01-01

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (˜739 ± 98 kPa and ˜751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ˜758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ˜ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  9. On-line sample treatment - Capillary gas chromatography

    NARCIS (Netherlands)

    Goosens, EC; de Jong, D; de Jong, GJ; Brinkman, UAT

    1998-01-01

    Sample pretreatment is often the bottleneck of a trace level analytical procedure. In order to increase performance, increasing attention is therefore being devoted to combining sample pretreatment on-line with the separation technique that has to be used. In the present review, a variety of procedu

  10. Non-contact ECG monitoring

    Science.gov (United States)

    Smirnov, Alexey S.; Erlikh, Vadim V.; Kodkin, Vladimir L.; Keller, Andrei V.; Epishev, Vitaly V.

    2016-03-01

    The research is dedicated to non-contact methods of electrocardiography. The authors describe the routine of experimental procedure and suggest the approach to solving the problems which arise at indirect signal recording. The paper presents the results of experiments conducted by the authors, covers the flow charts of ECG recorders and reviews the drawbacks of filtering methods used in foreign equivalents.

  11. PREFACE: Non-contact AFM Non-contact AFM

    Science.gov (United States)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  12. Natural gas large volumes measurement: going for on-line custody transfer; Medicao de grandes volumes de gas natural: rumo a transferencia de custodia on-line

    Energy Technology Data Exchange (ETDEWEB)

    Mercon, Eduardo G.; Frisoli, Caetano [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    This paper describes the structure of the natural gas flow measurement process in TRANSPETRO, and comments features and performance of existing or under-implantation equipment and systems, reviewing best practices and technology in use. This process runs through three interrelated segments: data flow measurement, strictly speaking; data transfer and acquisition; and data flow measurement certification (data consolidation to invoice). Initially, the work makes an approach to the data flow measurement segment, evaluating technical features of flow meters, and describing configurations and functions of the operating gas flow computers in TRANSPETRO's custody transfer stations. In this part it will also be presented the implantation of TRANSPETRO's system for gas chromatography data input on-line to flow computers. Further, in data transfer and acquisition, SCADA system technical aspects will be evaluated, considering communications protocols and programmable logic controllers functions in remote terminal units, and discussing their places in the measurement process. Additionally, TRANSPETRO's experience in data measurement certification tools is in discussion, as well as new upcoming tools and their potential features, from what new practices will be suggested. Finally, all the work has been conceived and carried out always aiming to the state-of-the-art technology in gas flow measurement: on-line custody transfer. (author)

  13. On-line least squares support vector machine algorithm in gas prediction

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-hu; WANG Gang; ZHAO Ke-ke; TAN De-jian

    2009-01-01

    Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions. The Support Vector Machine (SVM) is a new machine learning algorithm that has excellent properties. The least squares support vector machine (LS-SVM) algorithm is an improved algorithm of SVM. But the common LS-SVM algorithm, used directly in safety predictions, has some problems. We have first studied gas prediction problems and the basic theory of LS-SVM. Given these problems, we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm, based on LS-SVM. Finally, given our observed data, we used the on-line algorithm to predict gas emissions and used other related algorithm to com- pare its performance. The simulation results have verified the validity of the new algorithm.

  14. Increasing of MERARG experimental performances: on-line fission gas release measurement by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pontillon, Y.; Capdevila, H.; Clement, S. [CEA, DEN, DEC, SA3C, LAMIR, F-13108 Saint Paul lez Durance, (France); Guigues, E.; Janulyte, A.; Zerega, Y.; Andre, J. [Aix-Marseille Universite, LISA EA 4672, 13397 MARSEILLE cedex 20, (France)

    2015-07-01

    The MERARG device - implemented at the LECASTAR Hot Laboratory, at the CEA Cadarache - allows characterizing nuclear fuels with respect to the behaviour of fission gases during thermal transients representative of normal or off normal operating nuclear power plant conditions. The fuel is heated in order to extract a part or the total gas inventory it contains. Fission Gas Release (FGR) is actually recorded by mean of both on-line gamma spectrometry station and micro gas chromatography. These two devices monitor the quantity and kinetics of fission gas release rate. They only address {sup 85}Kr radioactive isotope and the elemental quantification of Kr, Xe and He (with a relatively low detection limit in the latter case, typically 5-10 ppm). In order to better estimate the basic mechanisms that promote fission gas release from irradiated nuclear fuels, the CEA fuel study department decided to improve its experimental facility by modifying MERARG to extend the studies of gamma emitter fission gases to all gases (including Helium) with a complete isotopic distribution capability. To match these specifications, a Residual Gas Analyser (RGA) has been chosen as mass spectrometer. This paper presents a review of the main aspects of the qualification/calibration phase of the RGA type analyser. In particular, results recorded over three mass ranges 1-10 u, 80-90 u and 120-140 u in the two classical modes of MERARG, i.e. on-line and off-line measurements are discussed. Results obtained from a standard gas bottle show that the quantitative analysis at a few ppm levels can be achieved for all isotopes of Kr and Xe, as well as masses 2 and 4 u. (authors)

  15. Non-contact temperature measurement

    Science.gov (United States)

    Nordine, Paul C.; Krishnan, Shankar; Weber, J. K. R.; Schiffman, Robert A.

    Three methods for noncontact temperature measurement are presented. Ideal gas thermometry is realized by using laser-induced fluorescence to measure the concentration of mercury atoms in a Hg-Ar mixture in the vicinity of hot specimens. Emission polarimetry is investigated by measuring the spatially resolved intensities of polarized light from a hot tungsten sphere. Laser polarimetry is used to measure the optical properties, emissivity, and, in combination with optical pyrometry, the temperature of electromagnetically levitated liquid aluminum. The precision of temperature measurements based on the ideal gas law is + or - 2.6 percent at 1500-2000 K. The polarized emission technique is found to have the capability to determine optical properties and/or spectral emissivities of specimens over a wide range of wavelengths with quite simple instruments.

  16. On-line monitoring of dissolved gas-in-oil with FTIR spectra

    Institute of Scientific and Technical Information of China (English)

    Xianyong Liu; Yunluo Liu; Li Yue

    2003-01-01

    To overcome the disadvantages of conventional DGA (dissolved gas-in-oil) analysis using gas chromatography and other electrochemical sensors, initial researches were completed to realize on-line monitoring of dissolved gas-in-oil of power transformers using FTIR (Fourier Transform InfraRed) spectroscopy. Gas cell method is used to determine the characteristic absorption peaks of each diagnostic gas; simple and novel devices and procedures were designed in order to get measurable samples and spectra of mixed diagnostic gases with known concentration are taken using long optical path gas cell. The range of wavelength is estimated to be 3.0-13.9 μm from experimental spectra data. Hence the corresponding sampling frequency range should be in 536-4288 Hz and usable optical materials are suggested. It is concluded that a resolution of 10 cm-1 may well satisfy the monitoring of all diagnostic gases and water content except hydrogen, and the lowest detection limit may be as low as 2×l0-8 to acetylene with a 2.4-meter-long optical length.

  17. Utilization of on-line corrosion monitoring in the flue gas cleaning system

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Nielsen, Lars V.; Petersen, Michael B.

    2015-01-01

    such as HCl, KCl or chlorine containing corrosion products. Without knowing when corrosion occurs, it is difficult to take reasonable measures to reduce corrosion. In order to gain an improved understanding of the corrosion problem, an on-line corrosion measurement system was established before the booster....... A root cause analysis concluded that corrosion occurred due to corrosion products/deposit formed during operation; however it was unclear whether the majority of corrosion occurred during operation or downtime. In both cases the chlorine content in the flue gas results in the presence of chlorine species...

  18. A system for accurate on-line measurement of total gas consumption or production rates in microbioreactors

    NARCIS (Netherlands)

    van Leeuwen, Michiel; Heijnen, Joseph J.; Gardeniers, Johannes G.E.; Oudshoorn, Arthur; Noorman, Henk; Visser, Jan; van der Wielen, Luuk A.M.; van Gulik, Walter M.

    2009-01-01

    A system has been developed, based on pressure controlled gas pumping, for accurate measurement of total gas consumption or production rates in the nmol/min range, applicable for on-line monitoring of bioconversions in microbioreactors. The system was validated by carrying out a bioconversion with

  19. A system for accurate on-line measurement of total gas consumption or production rates in microbioreactors

    NARCIS (Netherlands)

    Leeuwen, van Michiel; Heijnen, Joseph J.; Gardeniers, Han; Oudshoorn, Arthur; Noorman, Henk; Visser, Jan; Wielen, van der Luuk A.M.; Gulik, van Walter M.

    2009-01-01

    A system has been developed, based on pressure controlled gas pumping, for accurate measurement of total gas consumption or production rates in the nmol/min range, applicable for on-line monitoring of bioconversions in microbioreactors. The system was validated by carrying out a bioconversion with k

  20. On-line combustion monitoring on dry low NOx industrial gas turbines

    Science.gov (United States)

    Rea, S.; James, S.; Goy, C.; Colechin, M. J. F.

    2003-07-01

    To reduce the NOx emissions levels produced by industrial gas turbines most manufacturers have adopted a lean premixed approach to combustion. Such combustion systems are susceptible to combustion-driven oscillations, and much of the installed modern gas turbines continue to suffer from reduced reliability due to instability-related problems. The market conditions which now exist under the New Electricity Trading Arrangements provide a strong driver for power producers to improve the reliability and availability of their generating units. With respect to low-emission gas turbines, such improvements can best be achieved through a combination of sophisticated monitoring, combustion optimization and, where appropriate, plant modifications to reduce component failure rates. On-line combustion monitoring (OLCM) provides a vital contribution to each of these by providing the operator with increased confidence in the health of the combustion system and also by warning of the onset of combustion component deterioration which could cause significant downstream damage. The OLCM systems installed on Powergen's combined cycle gas turbine plant utilize high-temperature dynamic pressure transducers mounted close to the combustor to enable measurement of the fluctuating pressures experienced within the combustion system. Following overhaul, a reference data set is determined over a range of operating conditions. Real-time averaged frequency spectra are then compared to the reference data set to enable identification of abnormalities. Variations in the signal may occur due to changes in ambient conditions, fuel composition, operating conditions, and the onset of component damage. The systems on Powergen's plant have been used successfully to detect each of the above, examples of which are presented here.

  1. Development of an automated high temperature valveless injection system for on-line gas chromatography

    Directory of Open Access Journals (Sweden)

    N. M. Kreisberg

    2014-07-01

    Full Text Available A reliable method of sample introduction is presented for on-line gas chromatography with a special application to in-situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a controlled pressure switching device that offers the advantage of long term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing the interface for other applications. Flow model accuracy is within measurement accuracy (1% when parameters are tuned for an ambient detector and 15% accurate when applied to a vacuum based detector. Laboratory comparisons made between the two methods of sample introduction using a thermal desorption aerosol gas chromatograph (TAG show approximately three times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in-situ instrument demonstrate minimal trending and a zero failure rate during field deployments ranging up to four weeks of continuous sampling. Extension of the VLI to dual collection cells is presented with less than 3% cell-to-cell carry-over.

  2. Assessment of corrosion in the flue gas cleaning system using on-line monitoring

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vendelbo Nielsen, Lars; Berggreen Petersen, Michael

    2015-01-01

    products/deposits were detected. An on-line corrosion measurement system was established to determine corrosion mechanisms. It was revealed that many shutdowns/start-ups of the plant influence corrosion and result in decreased lifetime of components and increased maintenance. The change of fuel from...

  3. Utilization of on-line corrosion monitoring in the flue gas cleaning system

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Nielsen, Lars V.; Petersen, Michael B.

    2015-01-01

    The power plant unit 1 at Amager, Denmark is a 350 MWth multifuel suspension-fired plant commissioned in 2009 which uses biomass. Increasing corrosion problems in the flue gas cleaning system have been observed since 2011 in both the gas-gas preheater and the booster fan and booster fan duct...... fan. The corrosion rates measured with respect to time were correlated to plant data such as load, temperature, gas composition, water content as well as change in the fuel used. From these results it is clear that many shutdowns/start-ups influence corrosion and therefore cause decreased lifetime...

  4. On-line experimental results of an argon gas cell-based laser ion source (KEK Isotope Separation System)

    Science.gov (United States)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2016-06-01

    KEK Isotope Separation System (KISS) has been developed at RIKEN to produce neutron rich isotopes with N = 126 to study the β -decay properties for application to astrophysics. The KISS is an element-selective mass-separation system which consists of an argon gas cell-based on laser ion source for atomic number selection and an ISOL mass-separation system. The argon gas cell of KISS is a key component to stop and collect the unstable nuclei produced in a multi-nucleon transfer reaction, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off- and on-line experiments to study the basic properties of the gas cell as well as of the KISS. We successfully extracted the laser-ionized stable 56Fe (direct implantation of a 56Fe beam into the gas cell) atoms and 198Pt (emitted from the 198Pt target by elastic scattering with a 136Xe beam) atoms from the KISS during the commissioning on-line experiments. We furthermore extracted laser-ionized unstable 199Pt atoms and confirmed that the measured half-life was in good agreement with the reported value.

  5. On-line measurement of raw gas elemental composition in fluidized bed biomass steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Neves, D. [Dept. of Environment and Planning, Centre of Environmental and Marine Studies, Univ. of Aveiro, Campus Universitario de Santiago, Aveiro (Portugal); Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden); Thunman, H.; Larsson, A.; Seemann, M. [Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden); Tarelho, L.; Matos, A. [Dept. of Environment and Planning, Centre of Environmental and Marine Studies, Univ. of Aveiro, Campus Universitario de Santiago, Aveiro (Portugal)

    2012-11-01

    At the present stage of technology development pursuing to achieve unattended gasification processes, the available methods to determine the CHON composition of raw gas involve a great deal of laboratory tasks, making it unpractical, time-consuming and costly. For instance, there are available analyzers to measure the chemical composition of dry raw gas but offline methods are used to determine the liquids (organic compounds + water). An alternative that is investigated in this work is to convert the raw gas first into simple product species that are easily analyzed. The straightforward way to achieve this is to burn the gas with proper amount of oxygen to assure quantitative conversion into CO{sub 2}, H{sub 2}O and N{sub 2}. This method is demonstrated here by monitoring the CHON composition of raw gas with high temporal resolution from Chalmers 2MW{sub th} FB gasifier.

  6. On-line Detection of Gas Pipeline Based on the Real-Time Algorithm and Network Technology with Robot

    Institute of Scientific and Technical Information of China (English)

    YAN Bo; YAN Guo-zheng; DING Guo-qing; ZHOU Bing; FU Xi-guang; ZUO Jian-yong

    2004-01-01

    The detection system integrates control technology, network technology, video encoding and decoding, video transmiss-ion, multi-single chip microcomputer communication, dat-abase technology, computer software and robot technology. The robot can adaptively adjust its status according to diameter (from 400 mm to 650 mm) of pipeline. The maximum detection distance is up to 1 000 m. The method of video coding in the system is based on fractal transformation. The experiments show that the coding scheme is fast and good PSNR. The precision of on-line detection is up to 3% thickness of pipeline wall. The robot can also have a high precision of location up to 0.03 m. The control method is based on network and characterized by on-line and real-time. The experiment in real gas pipeline shows that the performance of the detection system is good.

  7. On-line monitoring of the transesterification reaction between triglycerides and ethanol using near infrared spectroscopy combined with gas chromatography.

    Science.gov (United States)

    Richard, Romain; Li, Ying; Dubreuil, Brigitte; Thiebaud-Roux, Sophie; Prat, Laurent

    2011-06-01

    Many analytical procedures have been developed to determine the composition of reaction mixtures during transesterification of vegetable oils with alcohols. However, despite their accuracy, these methods are time consuming and cannot be easily used for on-line monitoring. In this work, a fast analytical method was developed to on-line monitor the transesterification reaction of high oleic sunflower oil with ethanol using Near InfraRed spectroscopy and a multivariate approach. The reactions were monitored through sequential scans of the reaction medium with a probe in a one-liter batch reactor without collecting and preparing samples. To calibrate the NIR analytical method, gas chromatography-flame ionization detection was used as a reference method. The method was validated by studying the kinetics of the EtONa-catalyzed transesterification reaction. Activation energy (51.0 kJ/mol) was also determined by considering a pseudo second order kinetics model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Simultaneous on-line monitoring of propofol and sevoflurane in balanced anesthesia by direct resistive heating gas chromatography.

    Science.gov (United States)

    Dong, Hao; Zhang, Feng Jiang; Wang, Fu Yuan; Wang, Ying Ying; Guo, Jing; Kanhar, G M; Chen, Jing; Liu, Jun; Zhou, Chen; Yan, Min; Chen, Xing

    2017-07-14

    In balanced anesthesia, sevoflurane and propofol are often used in combination to achieve a better anesthetic effect. However, methods for on-line monitoring of concentrations of the two anesthetics in patients are still rare in clinical. This study proposed a non-invasive method utilizing a fast gas chromatograph combined with a surface acoustic wave sensor (Fast GC-SAW) to simultaneously on-line monitor sevoflurane and propofol in patients' exhaled gas. By using the direct resistive heating capillary column, the single detection time of Fast GC-SAW system was significantly shortened to 90s, as well as the size reduced to (40cm×30cm×20cm). Besides, in the calibration of sevoflurane, Fast GC-SAW system showed a good linear correlation (R(2)=0.9925, P<0.01) with gas chromatography-mass spectrometer (GC-MS), which ensured the reliability and accuracy of the Fast GC-SAW system. Finally, clinical experiments on patients under balanced anesthesia were conducted. The varied concentrations measured by Fast GC-SAW extraordinarily matched the clinical usages of these two anesthetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. On-line quality monitoring in short-circuit gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Adolfsson, S. [Univ. of Karlskrono/Ronneby (Sweden). Dept. of Signal Processing]|[Lund Univ. (Sweden). Dept. of Production and Materials Engineering; Bahrami, A. [Technology Center of Kronoberg, Vaexjoe (Sweden)]|[Lund Univ. (Sweden); Bolmsjoe, G. [Lund Univ. (Sweden); Claesson, I. [Univ. of Karlskrono/Ronneby (Sweden)

    1999-02-01

    This paper addresses the problems involved in the automatic monitoring of the weld quality produced by robotized short-arc welding. A simple statistical change detection algorithm for the weld quality, the repeated Sequential Probability Ratio Test (SPRT), was used. The algorithm may similarly be viewed as a cumulative sum (CUSUM) type test, and is well-suited to detecting sudden minor changes in the monitored test statistic. The test statistic is based on the variance of the weld voltage, wherein it will be shown that the variance decreases when the welding process is not operating under optimal conditions. The performance of the algorithm is assessed through the use of experimental data. The results obtained from the algorithm show that it is possible to detect changes in weld quality automatically and on-line.

  10. Multi Parameter Flow Meter for On-Line Measurement of Gas Mixture Composition

    Directory of Open Access Journals (Sweden)

    Egbert van der Wouden

    2015-04-01

    Full Text Available In this paper we describe the development of a system and model to analyze the composition of gas mixtures up to four components. The system consists of a Coriolis mass flow sensor, density, pressure and thermal flow sensor. With this system it is possible to measure the viscosity, density, heat capacity and flow rate of the medium. In a next step the composition can be analyzed if the constituents of the mixture are known. This makes the approach universally applicable to all gasses as long as the number of components does not exceed the number of measured properties and as long as the properties are measured with a sufficient accuracy. We present measurements with binary and ternary gas mixtures, on compositions that range over an order of magnitude in value for the physical properties. Two platforms for analyses are presented. The first platform consists of sensors realized with MEMS fabrication technology. This approach allows for a system with a high level of integration. With this system we demonstrate a proof of principle for the analyses of binary mixtures with an accuracy of 10%. In the second platform we utilize more mature steel sensor technology to demonstrate the potential of this approach. We show that with this technique, binary mixtures can be measured within 1% and ternary gas mixtures within 3%.

  11. Non-contact temperature measurement requirements for electronic materials processing

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.

    1988-01-01

    The requirements for non-contact temperature measurement capabilities for electronic materials processing in space are assessed. Non-contact methods are probably incapable of sufficient accuracy for the actual absolute measurement of temperatures in most such applications but would be useful for imaging in some applications.

  12. Development Of An Acoustice Sensor For On-Line Gas Temperature Measurement In Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Peter Ariessohn; Hans Hornung

    2006-10-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. This report describes all of the activities conducted during the project and

  13. Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Peter Ariessohn

    2008-06-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations

  14. On-line measurement of N{sub 2}O in flue gas; Die On-line-Messung von N{sub 2}O in Verbrennungsgasen

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberger, H.J. [TUEV-Ecoplan Umwelt-GmbH, Muenchen (Germany); Fabinski, W.; Hielscher, B.; Zoechbauer, M. [Hartmann und Braun GmbH und Co. KG, Frankfurt am Main (Germany)

    1998-06-01

    Conventional on-line measurement of Nitrous Oxide (N{sub 2}O) in flue gases mainly is limited by the cross sensitivities of the used measurement technique and unwanted reactions in the sample conditioning system. Based on this state of engeneering, a simple method with a usual NDIR-analyzer and sample conditioning with the new coolertechnique is discribed. The measurement set-up has been installed in a waste incineration plant. The results of the investigations are being presented in this paper. (orig.) [Deutsch] Die Grenzen der herkoemmlichen On-line-Messtechnik von Distickstoffmonoxid (N{sub 2}O) in Rauchgasen sind massgeblich durch Querempfindlichkeiten der Messverfahren und unerwuenschte Nachreaktionen in der Probenaufbereitung bestimmt. Ausgehend von diesem Stand der Technik wird eine einfache Methode der N{sub 2}O-Messung mit einem handelsueblichen NDIR-Analysator und einer Probenaufbereitung mit einer neuen Kuehlertechnik beschrieben. Zwei Messaufbauten mit dieser neuen Technik wurden an einer Muellverbrennungsanlage installiert. Ueber die Untersuchungen dazu wird hier berichtet. (orig.)

  15. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    NARCIS (Netherlands)

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.

    1998-01-01

    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC system

  16. On-line derivatization gas chromatography with furan chemical ionization tandem mass spectrometry for screening of amphetamines in urine.

    Science.gov (United States)

    Tzing, Shin-Hwa; Ghule, Anil; Liu, Jen-Yu; Ling, Yong-Chien

    2006-12-22

    A simple alternative method with minimal sample pretreatment is investigated for screening of amphetamines in small volume (using only 20 microL) of urine sample. The method is sensitive and selective. The method uses gas chromatography (GC) direct sample introduction (DSI) for on-line derivatization (acylation) of amphetamines to improve sensitivity. Furan as chemical ionization (CI) reagent in conjunction with tandem mass spectrometry (MS/MS) is used to improve selectivity. Low background with sharp protonated molecular ion peaks of analytes is the evidence of improvement in sensitivity and selectivity. Blank urine samples spiked with known amounts of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine and 3,4-methylenedioxyethylamphetamine is analyzed. Selected ion monitoring of the characteristic product ions (m/z 119+136+150+163) using furan CI-MS/MS in positive ion mode is used for quantification. Limits of detection (LOD) between 0.4 and 1.0 ng mL(-1) and limits of quantitation (LOQ) between 1.0 and 2.0 ng mL(-1) are established. Linear response over the range of 1-1000 ng mL(-1) (r(2)>0.997) is observed for all analytes, except for methamphetamine (2.0-1000 ng mL(-1)). Good accuracy between 86 and 113% and precision ranging from 4 to 18% is obtained. The method is also tested on real samples of urine from suspected drug abusers. This method could be used for screening and determination of amphetamines in urine samples, however needs additional work for full validation.

  17. Contact and Non-contact Measurements of Grinding Pins

    Directory of Open Access Journals (Sweden)

    Magdziak Marek

    2015-01-01

    Full Text Available The paper presents the results of contact and non-contact measurements of external profiles of selected grinding pins. The measurements were conducted in order to choose the appropriate measuring technique in the case of the considered measurement task. In the case of contact measurements the coordinate measuring machine ACCURA II was applied. The used coordinate measuring machine was equipped with the contact scanning probe VAST XT and the Calypso inspection software. Contact coordinate measurements were performed by using of different measurement strategies. The applied strategies included different scanning velocities and distances between measured points. Non-contact measurements were conducted by means of the tool presetter produced by the Mahr company. On the basis of gained results the guidelines concerning measurements of grinding pins were formulated. The measurements of analyzed grinding pins performed by means of the non-contact measuring system are characterized by higher reproducibility than the contact measurements. The low reproducibility of contact measurements may be connected with the inaccuracy of the selected coordinate measuring machine and the measuring probe, the measurement parameters and environmental conditions in the laboratory where the coordinate measuring machine is located. Moreover, the paper presents the possible application of results of conducted investigations. The results of non-contact measurements can be used in the simulation studies of grinding processes. The simulations may reduce the costs of machining processes.

  18. Material removal model for non-contact chemical mechanical polishing

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianQun; ZHANG ChaoHui

    2008-01-01

    Material removal mechanism under non-contact condition between the pad and the wafer in the chemical mechanical polishing (CMP) process is investigated. Based on the assumption that almost all effective material removals take place due to the active abrasives which cut material through the plowing effects. A novel model is developed to predict the material removal rate (MRR) under non-contact condition between the pad and the wafer in CMP. Validated by the experimental data, the model is proved to be able to predict the change of MRR under non-contact condition. Numerical simulation of the model shows: the relative velocity u between the pad and the wafer and fluid viscosity η are the most important factors which impact MRR under non-contact condition; load changes of wafer also affects the MRR, but the effect is not as obvious as the relative velocity and fluid viscosity;when the radius of abrasive is not less than 50nm, the impact of MRR alone with the changes in the size of the abrasive can be ignored.

  19. Continuous control systems for non-contact ECG

    Science.gov (United States)

    Kodkin, Vladimir L.; Yakovleva, Galina V.; Smirnov, Alexey S.

    2017-03-01

    South Ural State University is still conducting the research work dedicated to innovations in biomedicine. Development of system for continuous control and diagnosis of the functional state in large groups of people is based on studies of non-contact ECG recording reported by the authors at the SPIE conference in 2016. The next stage of studies has been performed this year.

  20. Simulation of non-contact tonometer - Ocular response analyzer

    Directory of Open Access Journals (Sweden)

    M. Arsalan Khan

    2016-04-01

    Simultaneous explosion of ophthalmic knowledge and medical instrument, being made in the 19th century, has led to the invention of tonometers of varied designs and principles, and Non-Contact Tonometers (NCTs are among them. Glodmann Applanation Tonometer (GAT is considered the ‘gold standard’ in measuring IOP; however, IOP measurement using GAT is now known to be affected by various factors like corneal thickness, curvature and material properties as demonstrated by Khan [1]. Due to inaccuracies in measuring IOP by GAT, this ‘gold standard’ has been challenged. Therefore, the present research aims to develop a multi-parametric correction equation to determine the True Intraocular Pressure (IOPT using Non-Contact Tonometer and the current article focuses on evaluating the influence of individual parameters on IOP by NCT.

  1. Non-Contact Measurement Using A Laser Scanning Probe

    Science.gov (United States)

    Modjarrad, Amir

    1989-03-01

    Traditional high accuracy touch-trigger probing can now be complemented by high speed, non-contact, profile scanning to give another "dimension" to the three-dimensional Co-ordinate Measuring Machines (CMMs). Some of the features of a specially developed laser scanning probe together with the trade-offs involved in the design of inspection systems that use triangulation are examined. Applications of such a laser probe on CMMs are numerous since high speed scanning allows inspection of many different components and surfaces. For example, car body panels, tyre moulds, aircraft wing skins, turbine blades, wax and clay models, plastics, etc. Other applications include in-process surveillance in manufacturing and food processing, robotics vision and many others. Some of these applications are discussed and practical examples, case studies and experimental results are given with particular reference to use on CMMs. In conclusion, future developments and market trends in high speed non-contact measurement are discussed.

  2. Non-contact intracellular binding of chloroplasts in vivo

    Science.gov (United States)

    Li, Yuchao; Xin, Hongbao; Liu, Xiaoshuai; Li, Baojun

    2015-06-01

    Non-contact intracellular binding and controllable manipulation of chloroplasts in vivo was demonstrated using an optical fiber probe. Launching a 980-nm laser beam into a fiber, which was placed about 3 μm above the surface of a living plant (Hydrilla verticillata) leaf, enabled stable binding of different numbers of chloroplasts, as well as their arrangement into one-dimensional chains and two-dimensional arrays inside the leaf without damaging the chloroplasts. Additionally, the formed chloroplast chains were controllably transported inside the living cells. The optical force exerted on the chloroplasts was calculated to explain the experimental results. This method provides a flexible method for studying intracellular organelle interaction with highly organized organelle-organelle contact in vivo in a non-contact manner.

  3. Simultaneous assessment of cholesterol absorption and synthesis in humans using on-line gas chromatography/ combustion and gas chromatography/pyrolysis/isotope-ratio mass spectrometry.

    Science.gov (United States)

    Gremaud, G; Piguet, C; Baumgartner, M; Pouteau, E; Decarli, B; Berger, A; Fay, L B

    2001-01-01

    A number of dietary components and drugs are known to inhibit the absorption of dietary and biliary cholesterol, but at the same time can compensate by increasing cholesterol synthesis. It is, therefore, necessary to have a convenient and accurate method to assess both parameters simultaneously. Hence, we validated such a method in humans using on-line gas chromatography(GC)/combustion and GC/pyrolysis/isotope-ratio mass spectrometry (IRMS). Cholesterol absorption was measured using the ratio of [(13)C]cholesterol (injected intravenously) to [(18)O]cholesterol (administered orally). Simultaneously, cholesterol synthesis was measured using the deuterium incorporation method. Our methodology was applied to 12 mildly hypercholesterolemic men that were given a diet providing 2685 +/- 178 Kcal/day (mean +/- SD) and 255 +/- 8 mg cholesterol per day. Cholesterol fractional synthesis rates ranged from 5.0 to 10.5% pool/day and averaged 7.36% +/- 1.78% pool/day (668 +/- 133 mg/day). Cholesterol absorption ranged from 36.5-79.9% with an average value of 50.8 +/- 15.4%. These values are in agreement with already known data obtained with mildly hypercholesterolemic Caucasian males placed on a diet similar to the one used for this study. However, our combined IRMS method has the advantage over existing methods that it enables simultaneous measurement of cholesterol absorption and synthesis in humans, and is therefore an important research tool for studying the impact of dietary treatments on cholesterol parameters.

  4. Computational unit for non-contact photonic system

    Science.gov (United States)

    Kochetov, Alexander V.; Skrylev, Pavel A.

    2005-06-01

    Requirements to the unified computational unit for non-contact photonic system have been formulated. Estimation of central processing unit performance and required memory size are calculated. Specialized microcontroller optimal to use as central processing unit has been selected. Memory chip types are determinated for system. The computational unit consists of central processing unit based on selected microcontroller, NVRAM memory, receiving circuit, SDRAM memory, control and power circuits. It functions, as performing unit that calculates required parameters ofrail track.

  5. Non-contacting "snubber bearing" for passive magnetic bearing systems

    Energy Technology Data Exchange (ETDEWEB)

    Post, Richard F

    2017-08-22

    A new non-contacting magnetic "snubber" bearing is provided for application to rotating systems such as vehicular electromechanical battery systems subject to frequent accelerations. The design is such that in the equilibrium position the drag force of the snubber is very small (milliwatts). However in a typical case, if the rotor is displaced by as little as 2 millimeters a large restoring force is generated without any physical contact between the stationary and rotating parts of the snubber bearing.

  6. Motion-compensated non-contact detection of heart rate

    Science.gov (United States)

    Yang, Lei; Liu, Ming; Dong, Liquan; Zhao, Yuejin; Liu, Xiaohua

    2015-12-01

    A new non-contact heart rate detection method based on the dual-wavelength technique is proposed and demonstrated experimentally. It is a well-known fact that the differences in the circuits of two detection modules result in different responses of two modules for motion artifacts. This poses a great challenge to compensate the motion artifacts during measurements. In order to circumvent this problem, we have proposed the amplitude spectrum and phase spectrum adaptive filter. Comparing with the time-domain adaptive filter and independent component analysis, the amplitude spectrum and phase spectrum adaptive filter can suppress the interference caused by the two circuit differences and effectively compensate the motion artifacts. To make the device is much compact and portable, a photoelectric probe is designed. The measurement distance is from several centimeters up to several meters. Moreover, the data obtained by using this non-contact detection system is compared with those of the conventional finger blood volume pulse (BVP) sensor by simultaneously measuring the heart rate of the subject. The data obtained from the proposed non-contact system are consistent and comparable with that of the BVP sensor.

  7. Measuring elastic constants using non-contact ultrasonic techniques

    Science.gov (United States)

    Edwards, R. S.; Perry, R.; Cleanthous, D.; Backhouse, D. J.; Moore, I. J.; Clough, A. R.; Stone, D. I.

    2012-05-01

    The use of ultrasound for measuring elastic constants and phase transitions is well established. Standard measurements use piezoelectric transducers requiring couplant and contact with the sample. Recently, non-destructive testing (NDT) has seen an increase in the use of non-contact ultrasonic techniques, for example electromagnetic acoustic transducers (EMATs) and laser ultrasound, due to their many benefits. For measurements of single crystals over a range of temperatures non-contact techniques could also bring many benefits. These techniques do not require couplant, and hence do not suffer from breaking of the bond between transducer and sample during thermal cycling, and will potentially lead to a simpler and more adaptable measurement system with lower risk of sample damage. We present recent work adapting EMAT advances from NDT to measurements of single crystals at cryogenic temperatures and illustrate this with measurements of magnetic phase transitions in Gd64Sc36 using both contact and non-contact transducers. We discuss the measurement techniques implemented to overcome noise problems, and a digital pulse-echo-overlap technique, using data analysis in the frequency domain to measure the velocity.

  8. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    Science.gov (United States)

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Report on Non-Contact DC Electric Field Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Miles, R; Bond, T; Meyer, G

    2009-06-16

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  10. Algorithm describing pressure distribution of non-contact TNT explosion

    Directory of Open Access Journals (Sweden)

    Radosław Kiciński

    2014-12-01

    Full Text Available [b]Abstract[/b]. The aim of this study is to develop a computational algorithm, describing the shock wave pressure distribution in the space induced by non-contact TNT explosion. The procedure describes pressure distribution on a damp surface of the hull. Simulations have been carried out using Abaqus/CAE. The study also shows the pressure waveform descriptions provided by various authors and presents them in charts. The formulated conclusions convince efficiency of the algorithm application.[b]Keywords:[/b] Underwater explosion, shock wave, CAE, TNT, Kobben class submarine

  11. Microwave non-contact imaging of subcutaneous human body tissues

    Science.gov (United States)

    Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-01-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated. PMID:26609415

  12. Non-Contact Detection of Breathing Using a Microwave Sensor

    Science.gov (United States)

    Dei, Devis; Grazzini, Gilberto; Luzi, Guido; Pieraccini, Massimiliano; Atzeni, Carlo; Boncinelli, Sergio; Camiciottoli, Gianna; Castellani, Walter; Marsili, Massimo; Dico, Juri Lo

    2009-01-01

    In this paper the use of a continuous-wave microwave sensor as a non-contact tool for quantitative measurement of respiratory tidal volume has been evaluated by experimentation in seventeen healthy volunteers. The sensor working principle is reported and several causes that can affect its response are analyzed. A suitable data processing has been devised able to reject the majority of breath measurements taken under non suitable conditions. Furthermore, a relationship between microwave sensor measurements and volume inspired and expired at quiet breathing (tidal volume) has been found. PMID:22574033

  13. Non-Contact Detection of Breathing Using a Microwave Sensor

    Directory of Open Access Journals (Sweden)

    Massimo Marsili

    2009-04-01

    Full Text Available In this paper the use of a continuous-wave microwave sensor as a non-contact tool for quantitative measurement of respiratory tidal volume has been evaluated by experimentation in seventeen healthy volunteers. The sensor working principle is reported and several causes that can affect its response are analyzed. A suitable data processing has been devised able to reject the majority of breath measurements taken under non suitable conditions. Furthermore, a relationship between microwave sensor measurements and volume inspired and expired at quiet breathing (tidal volume has been found.

  14. Non-Contact Cardiac Activity Monitoring using Pulsed Laser Vibrometer

    Directory of Open Access Journals (Sweden)

    Chen Chia WANG

    2014-01-01

    Full Text Available We demonstrate experimentally the detection of detailed human cardiac mechanical activity in a remote, non-contacting, and non-ionizing manner using a pulsed laser vibrometer. The highly sensitive pulsed laser vibrometer allows the detection of the temporally-phased mechanical events occurring in individual cardiac cycles even from the surface of clothing-covered extremities of the subjects. Fine structures of the detected cardiac traces are identified with their meanings assigned and corroborated using accelerometer and electrocardiogram measurements obtained concurrently with the pulsed laser vibrometer studies.

  15. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  16. Non-Contact Heart Rate Monitoring Using Lab Color Space.

    Science.gov (United States)

    Rahman, Hamidur; Ahmed, Mobyen Uddin; Begum, Shahina

    2016-01-01

    Research progressing during the last decade focuses more on non-contact based systems to monitor Heart Rate (HR) which are simple, low-cost and comfortable to use. Most of the non-contact based systems are using RGB videos which is suitable for lab environment. However, it needs to progress considerably before they can be applied in real life applications. As luminance (light) has significance contribution on RGB videos HR monitoring using RGB videos are not efficient enough in real life applications in outdoor environment. This paper presents a HR monitoring method using Lab color facial video captured by a webcam of a laptop computer. Lab color space is device independent and HR can be extracted through facial skin color variation caused by blood circulation considering variable environmental light. Here, three different signal processing methods i.e., Fast Fourier Transform (FFT), Independent Component Analysis (ICA) and Principal Component Analysis (PCA) have been applied on the color channels in video recordings and blood volume pulse (BVP) has been extracted from the facial regions. In this study, HR is subsequently quantified and compare with a reference measurement. The result shows that high degrees of accuracy have been achieved compared to the reference measurements. Thus, this technology has significant potential for advancing personal health care, telemedicine and many real life applications such as driver monitoring.

  17. Non-Contact Conductivity Measurement for Automated Sample Processing Systems

    Science.gov (United States)

    Beegle, Luther W.; Kirby, James P.

    2012-01-01

    A new method has been developed for monitoring and control of automated sample processing and preparation especially focusing on desalting of samples before analytical analysis (described in more detail in Automated Desalting Apparatus, (NPO-45428), NASA Tech Briefs, Vol. 34, No. 8 (August 2010), page 44). The use of non-contact conductivity probes, one at the inlet and one at the outlet of the solid phase sample preparation media, allows monitoring of the process, and acts as a trigger for the start of the next step in the sequence (see figure). At each step of the muti-step process, the system is flushed with low-conductivity water, which sets the system back to an overall low-conductivity state. This measurement then triggers the next stage of sample processing protocols, and greatly minimizes use of consumables. In the case of amino acid sample preparation for desalting, the conductivity measurement will define three key conditions for the sample preparation process. First, when the system is neutralized (low conductivity, by washing with excess de-ionized water); second, when the system is acidified, by washing with a strong acid (high conductivity); and third, when the system is at a basic condition of high pH (high conductivity). Taken together, this non-contact conductivity measurement for monitoring sample preparation will not only facilitate automation of the sample preparation and processing, but will also act as a way to optimize the operational time and use of consumables

  18. Non-contact biomedical photoacoustic and ultrasound imaging.

    Science.gov (United States)

    Rousseau, Guy; Gauthier, Bruno; Blouin, Alain; Monchalin, Jean-Pierre

    2012-06-01

    The detection of ultrasound in photoacoustic tomography (PAT) usually relies on ultrasonic transducers in contact with the biological tissue through a coupling medium. This is a major drawback for important potential applications such as surgery. Here we report the use of a remote optical method, derived from industrial laser-ultrasonics, to detect ultrasound in tissues. This approach enables non-contact PAT (NCPAT) without exceeding laser exposure safety limits. The sensitivity of the method is based on the use of suitably shaped detection laser pulses and a confocal Fabry-Perot interferometer in differential configuration. Reliable image reconstruction is obtained by measuring remotely the surface profile of the tissue with an optical coherence tomography system. The proposed method also allows non-contact ultrasound imaging (US) by applying a second reconstruction algorithm to the data acquired for NCPAT. Endogenous and exogenous inclusions exhibiting optical and acoustic contrasts were detected ex vivo in chicken breast and calf brain specimens. Inclusions down to 0.3 mm in size were detected at depths exceeding 1 cm. The method could expand the scope of photoacoustic and US to in-vivo biomedical applications where contact is impractical.

  19. Non-contact electromagnetic exciter design with linear control method

    Science.gov (United States)

    Wang, Lin; Xiong, Xianzhi; Xu, Hua

    2017-01-01

    A non-contact type force actuator is necessary for studying the dynamic performance of a high-speed spindle system owing to its high-speed operating conditions. A non-contact electromagnetic exciter is designed for identifying the dynamic coefficients of journal bearings in high-speed grinding spindles. A linear force control method is developed based on PID controller. The influence of amplitude and frequency of current, misalignment and rotational speed on magnetic field and excitation force is investigated based on two-dimensional finite element analysis. The electromagnetic excitation force is measured with the auxiliary coils and calibrated by load cells. The design is validated by the experimental results. Theoretical and experimental investigations show that the proposed design can accurately generate linear excitation force with sufficiently large amplitude and higher signal to noise ratio. Moreover, the fluctuations in force amplitude are reduced to a greater extent with the designed linear control method even when the air gap changes due to the rotor vibration at high-speed conditions. Besides, it is possible to apply various types of excitations: constant, synchronous, and non-synchronous excitation forces based on the proposed linear control method. This exciter can be used as linear-force exciting and controlling system for dynamic performance study of different high-speed rotor-bearing systems.

  20. Non-contact biomedical photoacoustic and ultrasound imaging

    Science.gov (United States)

    Rousseau, Guy; Gauthier, Bruno; Blouin, Alain; Monchalin, Jean-Pierre

    2012-06-01

    The detection of ultrasound in photoacoustic tomography (PAT) usually relies on ultrasonic transducers in contact with the biological tissue through a coupling medium. This is a major drawback for important potential applications such as surgery. Here we report the use of a remote optical method, derived from industrial laser-ultrasonics, to detect ultrasound in tissues. This approach enables non-contact PAT (NCPAT) without exceeding laser exposure safety limits. The sensitivity of the method is based on the use of suitably shaped detection laser pulses and a confocal Fabry-Perot interferometer in differential configuration. Reliable image reconstruction is obtained by measuring remotely the surface profile of the tissue with an optical coherence tomography system. The proposed method also allows non-contact ultrasound imaging (US) by applying a second reconstruction algorithm to the data acquired for NCPAT. Endogenous and exogenous inclusions exhibiting optical and acoustic contrasts were detected ex vivo in chicken breast and calf brain specimens. Inclusions down to 0.3 mm in size were detected at depths exceeding 1 cm. The method could expand the scope of photoacoustic and US to in-vivo biomedical applications where contact is impractical.

  1. NON-CONTACT MEASUREMENT OF SCULPTURED SURFACE OF ROTATION

    Institute of Scientific and Technical Information of China (English)

    Zhang Guoxiong; Liu Shugui; Qiu Zurong; Yu Fusheng; Na Yonglin; Leng Changlin

    2004-01-01

    A method for measuring the sculptured surface of rotation by using coordinate measuring machine (CMM) and rotary table is proposed. The measurement is realized during the continuous rotation of the workpiece mounted on the rotary table while the probe moves along the generatrix of the surface step by step. This method possesses lots of advantages such as simplicity of probe motion, high reliability and efficiency. Some key techniques including calibration of the effective radius of the probing system, determination of the position of axis of rotation, auto-centering of the workpiece, data processing algorithm, are discussed. Approaches for determining the coordinates on measured surface, establishing workpiece coordinate system and surface fitting are presented in detail. The method can be used with contact or non-contact probes. Some fragile ceramic and plaster parts are measured by using the system consisting of a CMM, rotary table, motorized head and non-contact laser triangulation probe. The measuring uncertainty is about 0.02 mm which meets the general requirement in most cases.

  2. A non-contact fiber Bragg grating vibration sensor.

    Science.gov (United States)

    Li, Tianliang; Tan, Yuegang; Wei, Li; Zhou, Zude; Zheng, Kai; Guo, Yongxing

    2014-01-01

    A non-contact vibration sensor based on fiber Bragg grating (FBG) sensing has been proposed and studied in this paper. The principle of the sensor as well as simulation and experimental analyses are introduced. When the distance between the movable head and the measured shaft changed, the diaphragm deformed under magnetic coupling of the permanent magnet on the measured magnetic shaft. As a result, the center wavelength of the FBG connected to the diaphragm changed, based on which the vibration displacement of the rotating shaft could be obtained. Experimental results show that the resonant frequency of the sensor is about 1500 Hz and the working band ranges within 0-1300 Hz, which is consistent with the simulation analysis result; the sensitivity is -1.694 pm/μm and the linearity is 2.92% within a range of 2-2.4 mm. It can be used to conduct non-contact measurement on the vibration of the rotating shaft system.

  3. In-situ and on-line measurement of gas flux at a hydrocarbon seep from the northern South China Sea

    Science.gov (United States)

    Di, Pengfei; Feng, Dong; Chen, Duofu

    2014-06-01

    Natural hydrocarbon seeps in the marine environment are important sources of methane and other greenhouse gases to the ocean and the atmosphere. Accurate quantification of methane flux at hydrocarbon seeps is therefore necessary to evaluate their influence on the global methane budget and climate change. Hydrocarbon seeps on the seabed produce a near-shore gas bubble zone along the shallow western coast of Hainan Island, northern South China Sea. An in-situ and on-line gas flux measuring device was deployed over a hydrocarbon seep to quantify the gas flux by equal volume exchange venting from the seabed offshore of Ledong Town, Hainan Island, over 19 days. The physiochemical parameters and the dissolved methane concentration of the bottom water at the hydrocarbon seep were also measured. The gas flux from the hydrocarbon seep varied from 22 to 77 l/day with the tidal period and was strongly negatively correlated with water depth. The flux data from the seep suggests that the variation in hydrostatic pressure induced by tidal forcing and ocean swell may control the variation of the gas flux. The bottom water dissolved methane concentration, ranging from 26 to 74 nmol/L, was negatively correlated with temperature and water depth at the seabed and positively with the gas flux. The total gas volume released from the hydrocarbon seep was 30.5 m3 for the 19-day period, providing an estimated gas flux of 600 m3/yr. The 120 known hydrocarbon seeps along the eastern edge of the Yinggehai Basin could vent a large quantity of methane from the seafloor, which suggests that hydrocarbon seeps on the continental margin of the northern South China Sea may be an important natural source of methane to the atmosphere.

  4. Non-contact feature detection using ultrasonic Lamb waves

    Science.gov (United States)

    Sinha, Dipen N [Los Alamos, NM

    2011-06-28

    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  5. Preamplifiers for non-contact capacitive biopotential measurements*

    Science.gov (United States)

    Peng, GuoChen; Ignjatovic, Zeljko; Bocko, Mark F.

    2014-01-01

    Non-contact biopotential sensing is an attractive measurement strategy for a number of health monitoring applications, primarily the ECG and the EEG. In all such applications a key technical challenge is the design of a low-noise trans-impedance preamplifier for the typically low-capacitance, high source impedance sensing electrodes. In this paper, we compare voltage and charge amplifier designs in terms of their common mode rejection ratio, noise performance, and frequency response. Both amplifier types employ the same operational-transconductance amplifier (OTA), which was fabricated in a 0.35um CMOS process. The results show that a charge amplifier configuration has advantages for small electrode-to-subject coupling capacitance values (less than 10 pF - typical of noncontact electrodes) and that the voltage amplifier configuration has advantages for electrode capacitances above 10 pF. PMID:24109979

  6. Preamplifiers for non-contact capacitive biopotential measurements.

    Science.gov (United States)

    Peng, GuoChen; Ignjatovic, Zeljko; Bocko, Mark F

    2013-01-01

    Non-contact biopotential sensing is an attractive measurement strategy for a number of health monitoring applications, primarily the ECG and the EEG. In all such applications a key technical challenge is the design of a low-noise trans-impedance preamplifier for the typically low-capacitance, high source impedance sensing electrodes. In this paper, we compare voltage and charge amplifier designs in terms of their common mode rejection ratio, noise performance, and frequency response. Both amplifier types employ the same operational-transconductance amplifier (OTA), which was fabricated in a 0.35 um CMOS process. The results show that a charge amplifier configuration has advantages for small electrode-to-subject coupling capacitance values (less than 10 pF--typical of noncontact electrodes) and that the voltage amplifier configuration has advantages for electrode capacitances above 10 pF.

  7. Realization of ultrafast and high-quality anodic bonding using a non-contact scanning electrode

    Science.gov (United States)

    Wu, Jim-Wei; Yang, Chii-Rong; Huang, Mao-Jung; Yang, Cheng-Hao; Huang, Che-Yi

    2013-07-01

    The anodic bonding technique, which is primarily used in glass to silicon wafer bonding, has been extensively used in microelectromechanical systems (MEMS) for the packaging of microsensors and microactuators. When the bonding voltage is applied, the bonded region instantly occurs at the contact point of the cathode with the glass. The geometric shape or arranged pattern of the cathode electrode significantly affects the bonding quality, particularly the gas-trapping at the bonded interface and the bonding time. This paper presents a novel anodic bonding process, in which the non-contacting and rotating electrode with radial lines is used as the cathode for scan bonding with arc-discharge assistance. The experimental results show that a bonding ratio of 99.98% and an average bonding strength of 15.45 MPa for a 4-inch silicon/glass bonded pair can be achieved in a 17 s bonding time by using a cathode electrode with eight 45 included-angle radial lines at a rotation speed of 0.45 rpm, a non-contact gap of 120 µm, a bonding voltage of 900 V and a bonding temperature of 400 °C. This ultrafast and high-quality anodic bonding has been synchronously realized under this scan bonding technique.

  8. On-Line Derivatization Gas Chromatography Ion Trap Mass Spectrometry for Determination of Endocrine Disruptors in Surface Water

    Energy Technology Data Exchange (ETDEWEB)

    Tzing, Shin-Hwa; Chang, Jia-Yaw; Ling, Yong-Chien

    2004-03-31

    A method has been developed for the determination of endocrine disruptors (EDs) (containing hydroxyl groups) in surface water from different sources. The surface water samples from different sites including school and local dormitory sewage effluents, lake water and river water were collected and analyzed. In this method, the pretreated sample is directly analyzed by GC-MS using on-line derivatization, where tetramethylammonium hydroxide (TMA-OH) was used as the derivatizing agent. Use of large-volume direct sample introduction (DSI) and co-injection of the sample and TMAOH avoids external contaminations as observed in conventional derivatization protocols. Additionally, the use of chemical ionization (CI) and CI-MS/MS could enable detection of EDs at lower concentrations and reduce the matrices' interference thereby enhancing detection sensitivity of EDs for quantification. In this work, the use of dichloromethane as CI reagent for EDs is reported for the first time and could detect EDs to concentrations as low as 0.5 pg/mL. The recovery ranged from 74 to 112 % and the relative standard derivations for replicate analyses ranged from 5 to 17 %. We hope that this method will be applicable for routine analysis of EDs with hydroxyl functional groups.

  9. On-line gas analysis in animal cell cultivation: II. Methods for oxygen uptake rate estimation and its application to controlled feeding of glutamine.

    Science.gov (United States)

    Eyer, K; Oeggerli, A; Heinzle, E

    1995-01-05

    Different methods for oxygen uptake rate (OUR) determinations in animal cell cultivation were investigated using a high quality mass spectrometer. Dynamic measurements have considerable disadvantages because of disturbances of the growing cells by the necessary variations of dissolved oxygen concentration. Only infrequent discrete measurements are possible using this method. Stationary liquid phase balance yielded better results with much higher frequency. Gas phase balancing has the advantage of not requiring dissolved oxygen measurement and knowledge of K(L)a, both of them are easily biased. It was found that simple gas phase balancing is either very inaccurate (error larger than expected signal) or very slow, with gas phase residence times of several hours. Therefore, a new method of aeration was designed. Oxygen and CO(2) transfer are mainly achieved via sparging. The gas released to the headspace is diluted with a roughly 100-fold stream of an inert gas (helium). Through this dilution, gas ratios are not changed for O(2), CO(2), Ar, and N(2). The measurement of lower concentrations (parts per million and below) is easy using mass spectrometry with a secondary electron multiplier. With this new method an excellent accuracy and sufficient speed of analysis were obtained. All these on-line methods for OUR measurement were tested during the cultivation of animal cells. The new method allowed better study of the kinetics of animal cell cultures as was shown with a hybridoma cell line (HFN 7.1, ATCC CRL 1606) producing monoclonal antibodies against human fibronectin. With the aid of these methods it was possible to find a correlation between a rapid decrease in oxygen uptake rate (OUR) and glutamine concentration. The sudden decrease in OUR can be attributed to glutamine depletion. This provided a basis for the controlled addition of glutamine to reduce the formation of ammonia produced by hydrolysis. This control method based on OUR measurement resulted in

  10. Automatic on-line monitoring of atmospheric volatile organic compounds: gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems.

    Science.gov (United States)

    de Blas, Maite; Navazo, Marino; Alonso, Lucio; Durana, Nieves; Iza, Jon

    2011-11-15

    Traditionally air quality networks have been carrying out the continuous, on-line measurement of volatile organic compounds (VOC) in ambient air with GC-FID. In this paper some identification and coelution problems observed while using this technique in long-term measurement campaigns are described. In order to solve these problems a GC-MS was set up and operated simultaneously with a GC-FID for C2-C11 VOCs measurement. There are few on-line, unattended, long term measurements of atmospheric VOCs performed with GC-MS. In this work such a system has been optimized for that purpose, achieving good repeatability, linearity, and detection limits of the order of the GC-FID ones, even smaller in some cases. VOC quantification has been made by using response factors, which is not frequent in on-line GC-MS. That way, the identification and coelution problems detected in the GC-FID, which may led to reporting erroneous data, could be corrected. The combination of GC-FID and GC-MS as complementary techniques for the measurement of speciated VOCs in ambient air at sub-ppbv levels is proposed. Some results of the measurements are presented, including concentration values for some compounds not found until now on public ambient air VOC databases, which were identified and quantified combining both techniques. Results may also help to correct previously published VOC data with wrongly identified compounds by reprocessing raw chromatographic data.

  11. Automatic on-line monitoring of atmospheric volatile organic compounds: Gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Maite de, E-mail: maite.deblas@ehu.es [Chemical and Environmental Engineering Department, University College of Technical Mining and Civil Engineering, University of the Basque Country, Colina de Beurco s/n, 48902 Barakaldo (Spain); Navazo, Marino; Alonso, Lucio; Durana, Nieves [Chemical and Environmental Engineering Department, School of Engineering, University of the Basque Country, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Iza, Jon [Chemical and Environmental Engineering Department, Faculty of Pharmacy, University of the Basque Country, Paseo de la Universidad, 7, 01006, Vitoria-Gasteiz (Spain)

    2011-11-15

    Traditionally air quality networks have been carrying out the continuous, on-line measurement of volatile organic compounds (VOC) in ambient air with GC-FID. In this paper some identification and coelution problems observed while using this technique in long-term measurement campaigns are described. In order to solve these problems a GC-MS was set up and operated simultaneously with a GC-FID for C{sub 2}-C{sub 11} VOCs measurement. There are few on-line, unattended, long term measurements of atmospheric VOCs performed with GC-MS. In this work such a system has been optimized for that purpose, achieving good repeatability, linearity, and detection limits of the order of the GC-FID ones, even smaller in some cases. VOC quantification has been made by using response factors, which is not frequent in on-line GC-MS. That way, the identification and coelution problems detected in the GC-FID, which may led to reporting erroneous data, could be corrected. The combination of GC-FID and GC-MS as complementary techniques for the measurement of speciated VOCs in ambient air at sub-ppbv levels is proposed. Some results of the measurements are presented, including concentration values for some compounds not found until now on public ambient air VOC databases, which were identified and quantified combining both techniques. Results may also help to correct previously published VOC data with wrongly identified compounds by reprocessing raw chromatographic data.

  12. Inter-laboratory calibration of natural gas round robins for δ2H and δ13C using off-line and on-line techniques

    Science.gov (United States)

    Dai, Jinxing; Xia, Xinyu; Li, Zhisheng; Coleman, Dennis D.; Dias, Robert F.; Gao, Ling; Li, Jian; Deev, Andrei; Li, Jin; Dessort, Daniel; Duclerc, Dominique; Li, Liwu; Liu, Jinzhong; Schloemer, Stefan; Zhang, Wenlong; Ni, Yunyan; Hu, Guoyi; Wang, Xiaobo; Tang, Yongchun

    2012-01-01

    Compound-specific carbon and hydrogen isotopic compositions of three natural gas round robins were calibrated by ten laboratories carrying out more than 800 measurements including both on-line and off-line methods. Two-point calibrations were performed with international measurement standards for hydrogen isotope ratios (VSMOW and SLAP) and carbon isotope ratios (NBS 19 and L-SVEC CO2). The consensus δ13C values and uncertainties were derived from the Maximum Likelihood Estimation (MLE) based on off-line measurements; the consensus δ2H values and uncertainties were derived from MLE of both off-line and on-line measurements, taking the bias of on-line measurements into account. The calibrated consensus values in ‰ relative to VSMOW and VPDB are: NG1 (coal-related gas): Methane: δ2HVSMOW = − 185.1‰ ± 1.2‰, δ13CVPDB = − 34.18‰ ± 0.10‰ Ethane: δ2HVSMOW = − 156.3‰ ± 1.8‰, δ13CVPDB = − 24.66‰ ± 0.11‰ Propane: δ2HVSMOW = − 143.6‰ ± 3.3‰, δ13CVPDB = − 22.21‰ ± 0.11‰ i-Butane: δ13CVPDB = − 21.62‰ ± 0.12‰ n-Butane: δ13CVPDB = − 21.74‰ ± 0.13‰ CO2: δ13CVPDB = − 5.00‰ ± 0.12‰ NG2 (biogas): Methane: δ2HVSMOW = − 237.0‰ ± 1.2‰, δ13CVPDB = − 68.89‰ ± 0.12‰ NG3 (oil-related gas): Methane: δ2HVSMOW = − 167.6‰ ± 1.0‰, δ13CVPDB = − 43.61‰ ± 0.09‰ Ethane: δ2HVSMOW = − 164.1‰ ± 2.4‰, δ13CVPDB = − 40.24‰ ± 0.10‰ Propane: δ2HVSMOW = − 138.4‰ ± 3.0‰, δ13CVPDB = − 33.79‰ ± 0.09‰ All of the assigned values are traceable to the international carbon isotope standard of VPDB and hydrogen isotope standard of VSMOW.

  13. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials.

    Science.gov (United States)

    Hofmann, F; Mason, D R; Eliason, J K; Maznev, A A; Nelson, K A; Dudarev, S L

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  14. A Novel Multidirectional, Non-Contact Strain-Sensing Nanocomposite

    Science.gov (United States)

    Withey, Paul; Vemuru, Srivishnu; Bachilo, Sergei; Nagarajaiah, Satish; Weisman, R. Bruce

    2013-03-01

    Single-walled carbon nanotubes (SWCNTs) have been successfully dispersed in a polymeric host resulting in the development of a novel strain-sensitive nanocomposite material with promise for scalability. Dubbed ``strain paint'' this new material when coated onto a surface becomes a smart-skin sensor that can detect strain through load transfer from the polymeric host to embedded SWCNTs. Strain is easily measured in a non-contact manner via laser excitation and detection of the unique near-infrared (NIR) fluorescence spectrum of semiconducting SWCNTs. When strained, each (n , m) SWCNT type exhibits a predictable shift in its NIR fluorescence peak. SWCNTs with high intensity are easily detected in the bulk fluorescence spectrum of raw, unsorted SWCNTs embedded in the polymer. Thin films of the polymer/SWCNT nanocomposite were spin-coated onto substrates, strains typically up to 1% were applied, and strain magnitudes were determined by resistive strain gauges bonded to the coating and substrate. Spectral shifts reveal a linear response to strain with little hysteresis. Two SWCNT types exhibiting opposite spectral shifts with strain were used to improve sensitivity. Strain along any direction is determined simply by adjusting the polarization of the excitation laser.

  15. High magnetic field ohmically decoupled non-contact technology

    Science.gov (United States)

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  16. Modular Architecture of a Non-Contact Pinch Actuation Micropump

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2012-09-01

    Full Text Available This paper demonstrates a modular architecture of a non-contact actuation micropump setup. Rapid hot embossing prototyping was employed in micropump fabrication by using printed circuit board (PCB as a mold material in polymer casting. Actuator-membrane gap separation was studied, with experimental investigation of three separation distances: 2.0 mm, 2.5 mm and 3.5 mm. To enhance the micropump performance, interaction surface area between plunger and membrane was modeled via finite element analysis (FEA. The micropump was evaluated against two frequency ranges, which comprised a low driving frequency range (0–5 Hz, with 0.5 Hz step increments and a nominal frequency range (0–80 Hz, with 10 Hz per step increments. The low range frequency features a linear relationship of flow rate with the operating frequency function, while two magnitude peaks were captured in the flow rate and back pressure characteristic in the nominal frequency range. Repeatability and reliability tests conducted suggest the pump performed at a maximum flow rate of 5.78 mL/min at 65 Hz and a backpressure of 1.35 kPa at 60 Hz.

  17. Modular Architecture of a Non-Contact Pinch Actuation Micropump

    Science.gov (United States)

    Chee, Pei Song; Arsat, Rashidah; Adam, Tijjani; Hashim, Uda; Rahim, Ruzairi Abdul; Leow, Pei Ling

    2012-01-01

    This paper demonstrates a modular architecture of a non-contact actuation micropump setup. Rapid hot embossing prototyping was employed in micropump fabrication by using printed circuit board (PCB) as a mold material in polymer casting. Actuator-membrane gap separation was studied, with experimental investigation of three separation distances: 2.0 mm, 2.5 mm and 3.5 mm. To enhance the micropump performance, interaction surface area between plunger and membrane was modeled via finite element analysis (FEA). The micropump was evaluated against two frequency ranges, which comprised a low driving frequency range (0–5 Hz, with 0.5 Hz step increments) and a nominal frequency range (0–80 Hz, with 10 Hz per step increments). The low range frequency features a linear relationship of flow rate with the operating frequency function, while two magnitude peaks were captured in the flow rate and back pressure characteristic in the nominal frequency range. Repeatability and reliability tests conducted suggest the pump performed at a maximum flow rate of 5.78 mL/min at 65 Hz and a backpressure of 1.35 kPa at 60 Hz.

  18. On-line coupled reversed phase liquid chromatography and gas chromatography: a new sealing design for the TOTAD interface.

    Science.gov (United States)

    Martínez, Rosa María; Herraiz, Marta; Santa-María, Guillermo; Barba, Carmen

    2014-03-01

    Total elimination of the eluent resulting from the pre-separation step is the critical point when coupling LC to GC. As a helium flow is applied during transfer to eliminate the solvent, the interface used for linking the two chromatographic systems must be properly sealed to prevent gas leaks and to achieve an effective evaporation of the eluent. The aim of this work was to improve the performance of the Through Oven Transfer Adsorption Desorption (TOTAD) interface to remove the eluent coming from LC by modifying the way in which the injector sealing system is held in place. As with the original design, the new approach makes it possible to transfer high volumes at a high rate, but the proposed modification also simplifies the experimental work because the displacement risk of the sealing system is reduced. Analyses of an ester mixture by RPLC-GC were performed to confirm the applicability of the system modification. In this work, volumes of up to 5 ml, at flow rates as high as 2 ml/min, were transferred from LC to GC with almost complete solvent removal even when working in reversed phase mode in the LC step. © 2013 Published by Elsevier B.V.

  19. [On-line method for measurement of the carbon isotope ratio of atmospheric methane and its application to atmosphere of Yakela condensed gas field].

    Science.gov (United States)

    Tang, Jun-Hong; Bao, Zheng-Yu; Xiang, Wu; Qiao, Sheng-Ying; Li, Bing

    2006-01-01

    An on-line method for measurement of the 13C/12C ratio of methane by a gas chromatography/high-temperature conversion/ isotope ratio mass spectrometry (GC/C/MS) technique was developed. This method is less laborious, more rapid (45 min), of high precision (+/- 0.4 x 10(-3)) and by using a small amount of sample (about 200 mL of atmosphere). Its application to isotopic characterization, and hence methane source identification, was demonstrated by examination of atmosphere sample collected in Yakela condensed gas field, China. The average 13C/12C ratio of atmospheric methane in Yakela field was -45.0 x 10(-3) heavier by 1.2 x 10(-3) -2.0 x 10(-3) than the global average. This is caused by seepage and diffusing of methane from Yakela condensed gas reservoir. The concentrations of atmospheric methane in daytimes are found to be lower than those in nighttimes, and the corresponding 13C/12C ratios in daytimes are lighter compared to those in nighttimes, a phenomena probably caused by the fact that a small part of methane from Yakela condensate reservoir is consumed in soil's surface under sunlight.

  20. Determination of paraben preservatives in seafood using matrix solid-phase dispersion and on-line acetylation gas chromatography-mass spectrometry.

    Science.gov (United States)

    Djatmika, Rosalina; Hsieh, Chih-Chung; Chen, Jhih-Ming; Ding, Wang-Hsien

    2016-11-15

    An effective method for determining four commonly detected paraben preservatives (methyl, ethyl, propyl and butyl paraben) in marketed seafood is presented. This method employs matrix solid-phase dispersion (MSPD) before identification and quantification of the paraben preservatives via on-line acetylation gas chromatography-mass spectrometry (GC-MS). Parameters affecting the extraction efficiency of MSPD were optimized through a Box-Behnken design method. Under optimal condition, 0.5-g of freeze-dried seafood was mixed with 0.5-g of anhydrous sodium sulfate, and dispersed with 1.0-g of Florisil using vortex. After that, the blend was transferred to a glass column containing 1.5-g of silica gel+C18 (w/w, 9:1), which acted as clean-up co-sorbents. Then, target analytes were eluted with 12mL of acetonitrile. The extract was then derivatized on-line in the GC injection-port through reaction with acetic anhydride, and the identity and quantity of the target analytes were determined by the GC-MS system. The limits of quantitation (LOQs) were 0.2 to 1.0ng/g (dry weight). Preliminary results showed that the total concentrations of four selected parabens ranged from 16.7 to 44.7ng/g (dry weight).

  1. On-line combination of high performance liquid chromatography with comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry: a proof of principle study.

    Science.gov (United States)

    Zoccali, Mariosimone; Tranchida, Peter Quinto; Mondello, Luigi

    2015-02-03

    The present contribution is focused on the on-line combination of high performance liquid chromatography (HPLC), cryogenically modulated comprehensive two-dimensional gas chromatography (GC × GC), and triple quadrupole mass spectrometry (QqQ MS), generating a very powerful unified separation-science tool. The instrument can be used in seven different combinations ranging from one-dimensional HPLC with a photodiode array detector to on-line LC × GC × GC/QqQ MS. The main focus of the present research is directed to the LC-GC × GC/QqQ MS configuration, with its analytical potential shown in a proof-of-principle study involving a very complex sample, namely, coal tar. Specifically, a normal-phase LC process enabled the separation of three classes of coal tar compounds: (1) nonaromatic hydrocarbons; (2) unsaturated compounds (with and without S); (3) oxygenated constituents. The HPLC fractions were transferred to the GC × GC instrument via a syringe-based interface mounted on an autosampler. Each fraction was subjected to a specific programmed temperature vaporizer GC × GC/QqQ MS untargeted or targeted analysis. For example, the coal tar S-containing compounds were pinpointed through multiple-reaction-monitoring analysis, while full-scan information was attained for the oxygenated constituents.

  2. On-line coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil. Part 1: method of analysis.

    Science.gov (United States)

    Biedermann, Maurus; Grob, Koni

    2012-09-14

    For the analysis of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH), on-line coupled high performance liquid chromatography-gas chromatography-flame ionization detection (HPLC-GC-FID) offers important advantages: it separates MOSH and MOAH in robust manner, enables direct injection of large aliquots of raw extracts (resulting in a low detection limit), avoids contamination of the sample during preparation and is fully automated. This review starts with an overview of the technology, particularly the fundamentals of introducing large volumes of solvent into GC, and their implementation into various transfer techniques. The main part deals with the concepts of MOSH and MOAH analysis, with a thorough discussion of the choices made. It is followed by a description of the method. Finally auxiliary tools are summarized to remove interfering components, enrich the sample in case of a high fat content and obtain additional information about the MOSH and MOAH composition.

  3. Epoxidized soy bean oil migrating from the gaskets of lids into food packed in glass jars. Analysis by on-line liquid chromatography-gas chromatography.

    Science.gov (United States)

    Fankhauser-Noti, Anja; Fiselier, Katell; Biedermann-Brem, Sandra; Grob, Koni

    2005-08-01

    The migration of epoxidized soy bean oil (ESBO) from the gasket in the lids of glass jars into foods, particularly those rich in edible oil, often far exceeds the legal limit (60 mg/kg). ESBO was determined through a methyl ester isomer of diepoxy linoleic acid. Transesterification occurred directly in the homogenized food. From the extracted methyl esters, the diepoxy components were isolated by normal-phase LC and transferred on-line to gas chromatography with flame ionization detection using the on-column interface in the concurrent solvent evaporation mode. The method involves verification elements to ensure the reliability of the results for every sample analyzed. The detection limit is 2-5 mg/kg, depending on the food. Uncertainty of the procedure is below 10%.

  4. Non-contact Laser-based Human Respiration Rate Measurement

    Science.gov (United States)

    Scalise, L.; Marchionni, P.; Ercoli, I.

    2011-08-01

    At present the majority of the instrumentation, used in clinical environments, to measure human respiration rate are based on invasive and contact devices. The gold standard instrument is considered the spirometer which is largely used; it needs a direct contact and requires a collaboration by the patient. Laser Doppler Vibrometer (LDVi) is an optical, non-contact measurement system for the assessment of a surface velocity and displacement. LDVi has already been used for the measurement of the cardiac activity and for the measurement of the chest-wall displacements. The aims of this work are to select the best measurement point on the thoracic surface for LDVi monitoring of the respiration rate (RR) and to compare measured data with the RR valued provided by the spirometer. The measurement system is composed by a LDV system and a data acquisition board installed on a PC. Tests were made on 10 different point of the thorax for each patient. Patients population was composed by 33 subjects (17 male and 16 female). The optimal measurement point was chosen considering the maximum peak-to-peak value of the displacement measured by LDV. Before extracting RR we have used a special wavelet decomposition for better selection of the expiration peaks. A standard spirometer was used for the validation of the data. From tests it results that the optimal measurement point, namely is located on the inferior part of the thoracic region (left, front side). From our tests we have obtained a close correlation between the RR values measured by the spirometer and those measured by the proposed method: a difference of 14±211 ms on the RR value is reported for the entire population of 33 subjects. Our method allows a no-contact measurement of lungs activity (respiration period), reducing the electric and biological risks. Moreover it allows to measure in critical environment like in RMN or in burned skin where is difficult or impossible to apply electrodes.

  5. Non-contact luminescence lifetime cryothermometry for macromolecular crystallography.

    Science.gov (United States)

    Mykhaylyk, V B; Wagner, A; Kraus, H

    2017-05-01

    Temperature is a very important parameter when aiming to minimize radiation damage to biological samples during experiments that utilize intense ionizing radiation. A novel technique for remote, non-contact, in situ monitoring of the protein crystal temperature has been developed for the new I23 beamline at the Diamond Light Source, a facility dedicated to macromolecular crystallography (MX) with long-wavelength X-rays. The temperature is derived from the temperature-dependent decay time constant of luminescence from a minuscule scintillation sensor (luminescence lifetime thermometry is presented, the features of the detection method and the choice of temperature sensor are discussed, and it is demonstrated how the temperature monitoring system was integrated within the viewing system of the endstation used for the visualization of protein crystals. The thermometry system was characterized using a Bi4Ge3O12 crystal scintillator that exhibits good responsivity of the decay time constant as a function of temperature over a wide range (8-270 K). The scintillation sensor was calibrated and the uncertainty of the temperature measurements over the primary operation temperature range of the beamline (30-150 K) was assessed to be ±1.6 K. It has been shown that the temperature of the sample holder, measured using the luminescence sensor, agrees well with the expected value. The technique was applied to characterize the thermal performance of different sample mounts that have been used in MX experiments at the I23 beamline. The thickness of the mount is shown to have the greatest impact upon the temperature distribution across the sample mount. Altogether, these tests and findings demonstrate the usefulness of the thermometry system in highlighting the challenges that remain to be addressed for the in-vacuum MX experiment to become a reliable and indispensable tool for structural biology.

  6. Non-contact measurement of ocular microtremor using laser speckle

    Science.gov (United States)

    Kenny, E.; Coakley, D.; Boyle, G.

    2010-04-01

    The human eye moves continuously even while it appears to be at rest. The involuntary eye movements causing this motion are called fixational eye movements. Ocular Microtremor (OMT) is the smallest (150 - 2500nm amplitude) and fastest (~ 80Hz) of these eye movements. OMT has been proven to provide useful clinical information regarding depth of consciousness and neurological disorders. Most quantitative clinical investigations of OMT have been carried out using an eye-contacting piezoelectric probe. However, this measurement procedure suffers from a number of disadvantages which limit the potential of the technique in the clinical environment. The need for eye contact requires the eye to be anaesthetised and not all subjects can tolerate the procedure. A promising alternative to the piezoelectric technique is speckle metrology. A speckle correlation instrument for measuring OMT was first described by Al-Kalbani et al. The approach presented in this paper is a non contact measurement technique implementing laser speckle correlation and using a highly light sensitive video camera operating at 500Hz. The OMT measurement technique in this paper was investigated using a human subject and an eye movement simulator. Using this system, measurement of speckle on the eye takes only a few minutes, no eye drops are necessary and no discomfort is caused to the subject. The paper describes the preliminary results of capturing speckle from the simulator and from the human eye in-vivo at eye safe laser powers. The effects of tear flow, biospeckle and speckle shifting by larger eye movements on the displacement information carried by the speckle are also discussed.

  7. Total on-line monitoring system of Tokyo gas transmission pipelines; Systeme global de controle et de surveillance des canalisations de transport du gaz developpe par Tokyo gas

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, M. [Tokyo Gas Co., Ltd (Japan)

    2000-07-01

    As Tokyo Gas transmission pipeline is located in residential areas of Metropolitan Tokyo, more precise and advanced maintenance and inspection methods become necessary. A more efficient maintenance and inspection management system is being sought in line with the extension of gas transmission pipelines. Research and development is underway for various types of maintenance /monitoring systems that predict or detect pipeline damage or failure. Some systems have already been put to practical use. Tokyo Gas has developed a total online monitoring system featuring upgraded performance and centralized data processing. This system carries out 24-hour monitoring for damage and failure, and sends warnings to operators at the Pipeline Regional Network Office. This paper introduces the functions of the system, as well as the functions which are currently in the R and D stage. (author)

  8. Determination of parabens in human urine by optimal ultrasound-assisted emulsification microextraction and on-line acetylation gas chromatography-mass spectrometry.

    Science.gov (United States)

    Hui-Ting, Zhou; Ding, Erica M C; Ding, Wang-Hsien

    2017-07-15

    An effective and solvent-less method for the rapid determination of four commonly detected parabens (methyl-, ethyl-, propyl- and butyl-) in human urine samples is described. This method employed ultrasound-assisted emulsification microextraction (USAEME) before identification and quantitation of the parabens via on-line acetylation gas chromatography-mass spectrometry (GC-MS). Urine samples were enzymatically de-conjugated with β-glucuronidase and then extracted by an optimal USAEME procedure for the measurement of total concentrations of target analytes. The optimal USAEME parameters for one mL of urine sample (containing 0.1-g of sodium chloride), according to the Box-Behnken design method, are thus described: extractant of 200-μL of ethyl acetate, and ultrasonication for 1.0min and centrifugation at 7000rpm (3min). The supernatant was collected and evaporated until dry. Then the residue was re-dissolved in methanol (100-μL), and the extract was subjected to on-line acetylation GC-MS analysis. The limits of quantitation (LOQs) were less than 0.06ng/mL. Precisions for both intra- and inter-day analysis were calculated, and were less than 8%. Mean extraction recovery (known as trueness) was between 83 and 101% on three concentration levels. In human urine, the total concentrations of the four selected parabens, according to preliminary results, range from 0.3 to 124.5ng/mL for male, and from 27.2 to 246.3ng/mL for female. Female urine samples showed higher concentrations for the target parabens, which may indicate higher exposure due to lifestyle. This method permits accurate and high-throughput analysis of parabens for epidemiological studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. On-line derivatization for hourly measurements of gas- and particle-phase Semi-Volatile oxygenated organic compounds by Thermal desorption Aerosol Gas chromatography (SV-TAG

    Directory of Open Access Journals (Sweden)

    G. Isaacman

    2014-07-01

    Full Text Available Laboratory oxidation studies have identified a large number of oxygenated organic compounds that can be used as tracers to understand sources and oxidation chemistry of atmospheric particulate matter. Quantification of these compounds in ambient environments has traditionally relied on low time-resolution collection of filter samples followed by offline sample treatment with a derivatizing agent to allow analysis by gas chromatography of otherwise non-elutable organic chemicals with hydroxyl groups. We present here an automated in situ instrument for the measurement of highly polar organic semi-volatile and low-volatility compounds in both the gas- and particle-phase with hourly time-resolution. The dual-cell Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG with derivatization collects particle-only and combined particle-plus-vapor samples on two parallel sampling cells that are analyzed in series by thermal desorption into helium saturated with derivatizing agent. Introduction of MSTFA, a silylating agent, yields complete derivatization of all tested compounds, including alkanoic acids, polyols, diacids, sugars, and multifunctional compounds. In laboratory tests, derivatization is found to be highly reproducible (< 3% variability. During field deployment, a regularly injected internal standard is used to correct for variability in detector response, derivatization efficiency, desorption efficiency, and transfer efficiency. Error in quantification from instrument fluctuations is found to be less than 10% for hydrocarbons and less than 15% for all oxygenates for which a functionally similar internal standard is available. After internal standard corrections, calibration curves are found to be linear for all compounds over the span of one month with comparable response on both of the parallel sampling cells.

  10. On-line derivatization for hourly measurements of gas- and particle-phase Semi-Volatile oxygenated organic compounds by Thermal desorption Aerosol Gas chromatography (SV-TAG)

    Science.gov (United States)

    Isaacman, G.; Kreisberg, N. M.; Yee, L. D.; Worton, D. R.; Chan, A. W. H.; Moss, J. A.; Hering, S. V.; Goldstein, A. H.

    2014-07-01

    Laboratory oxidation studies have identified a large number of oxygenated organic compounds that can be used as tracers to understand sources and oxidation chemistry of atmospheric particulate matter. Quantification of these compounds in ambient environments has traditionally relied on low time-resolution collection of filter samples followed by offline sample treatment with a derivatizing agent to allow analysis by gas chromatography of otherwise non-elutable organic chemicals with hydroxyl groups. We present here an automated in situ instrument for the measurement of highly polar organic semi-volatile and low-volatility compounds in both the gas- and particle-phase with hourly time-resolution. The dual-cell Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG) with derivatization collects particle-only and combined particle-plus-vapor samples on two parallel sampling cells that are analyzed in series by thermal desorption into helium saturated with derivatizing agent. Introduction of MSTFA, a silylating agent, yields complete derivatization of all tested compounds, including alkanoic acids, polyols, diacids, sugars, and multifunctional compounds. In laboratory tests, derivatization is found to be highly reproducible (regularly injected internal standard is used to correct for variability in detector response, derivatization efficiency, desorption efficiency, and transfer efficiency. Error in quantification from instrument fluctuations is found to be less than 10% for hydrocarbons and less than 15% for all oxygenates for which a functionally similar internal standard is available. After internal standard corrections, calibration curves are found to be linear for all compounds over the span of one month with comparable response on both of the parallel sampling cells.

  11. Sequence of oral bacterial co-adhesion and non-contact brushing

    NARCIS (Netherlands)

    van der Mei, H. C.; Rustema-Abbing, M.; Bruinsma, G. M.; Gottenbos, B.; Busscher, H. J.

    Non-contact plaque removal offers advantages in interproximal spaces, fissures, and pockets. It requires the generation of strong fluid flows and the inclusion of air bubbles to become effective. A pair of co-adhering streptococci and actinomyces has been used previously to demonstrate non-contact

  12. Energy transfer, volumetric expansion, and removal of oral biofilms by non-contact brushing

    NARCIS (Netherlands)

    Busscher, H. J.; Jager, D.; Finger, G.; Schaefer, N.; van der Mei, H. C.

    2010-01-01

    Non-contact removal of oral biofilms offers advantages beyond the reach of bristles, but it is unknown how energy transfer for removal from brush-to-biofilm occurs. In the present study we evaluated non-contact, oral biofilm removal by oscillating-rotating and sonic toothbrushes, and their acoustic

  13. On-line monitoring of gas-phase bioreactors for biogas treatment: hydrogen sulfide and sulfide analysis by automated flow systems

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Rosa; Cunha Machado, Vinicius; Lafuente, Javier; Gabriel, David [Universitat Autonoma de Barcelona, Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria (ETSE), Bellaterra (Spain); Baeza, Mireia [Edifici C-Nord, Universitat Autonoma de Barcelona, Grup de Sensors i Biosensors, Departament de Quimica, Facultat de Ciencies, Bellaterra (Spain)

    2008-06-15

    Biogas is produced by biological processes under anaerobic conditions and may contain up to 20,000 ppm{sub v} hydrogen sulfide (H{sub 2}S), a corrosive substance that attacks power engines and can affect the health of the industrial staff. H{sub 2}S must be removed from the biogas, especially in co-generation facilities where the biogas is burnt for energy production. Nowadays, biofiltration is being studied and considered as an interesting alternative for removing H{sub 2}S from the biogas besides classical chemical processes. The novelty of this work is the design and construction of an automated H{sub 2}S on-line analyser to assess the composition of the liquid and gas phases of gas-phase bioreactors. The analyser is made of two parallel flow configurations which share the same detection device. The first configuration is a single-channel flow injection analyser (FIA) to detect S{sup 2-} in the liquid phase. The second configuration is a continuous flow analyser (CFA) with a gaseous diffusion step (GD-CFA) for detecting H{sub 2}S in the gas phase. The diffusion step enables separation of the H{sub 2}S{sub (g)} from the sample and its conversion into a detectable chemical species (S{sup 2-}). S{sup 2-} detection was performed with an Ag{sub 2}S ion-selective electrode (ISE) selective to S{sup 2-}{sub (aq)}. The main response parameters of the FIA system are a linear range between 3 x 10{sup -5} and 1 x 10{sup -1} mol L{sup -1} S{sup 2-} (0.61-3,200 mg L{sup -1}), with a sensitivity of 27.9 mV decade{sup -1} and a detection limit of 1.93 x 10{sup -5} mol L{sup -1} S{sup 2-}. The GD-CFA configuration presents a linear range between 400 and 10,000 ppm{sub v} H{sub 2}S{sub (g)} with a sensitivity of 26.1 mV decade{sup -1} and a detection limit of 245 ppm{sub v} H{sub 2}S. The proposed analyser was used by analysing real gas and liquid samples with optimal results at a full-scale biotrickling filter for biogas treatment at a municipal wastewater treatment plant. (orig.)

  14. Oxidative and inert pyrolysis on-line coupled to gas chromatography with mass spectrometric detection: On the pyrolysis products of tobacco additives.

    Science.gov (United States)

    Paschke, Meike; Hutzler, Christoph; Henkler, Frank; Luch, Andreas

    2016-11-01

    According to European legislation, tobacco additives may not increase the toxicity or the addictive potency of the product, but there is an ongoing debate on how to reliably characterize and measure such properties. Further, too little is known on pyrolysis patterns of tobacco additives to assume that no additional toxicological risks need to be suspected. An on-line pyrolysis technique was used and coupled to gas chromatography-mass spectrometry (GC/MS) to identify the pattern of chemical species formed upon thermal decomposition of 19 different tobacco additives like raw cane sugar, licorice or cocoa. To simulate the combustion of a cigarette it was necessary to perform pyrolysis at inert conditions as well as under oxygen supply. All individual additives were pyrolyzed under inert or oxidative conditions at 350, 700 and 1000°C, respectively, and the formation of different toxicants was monitored. We observed the generation of vinyl acrylate, fumaronitrile, methacrylic anhydride, isobutyric anhydride and 3-buten-2-ol exclusively during pyrolysis of tobacco additives. According to the literature, these toxicants so far remained undetectable in tobacco or tobacco smoke. Further, the formation of 20 selected polycyclic aromatic hydrocarbons (PAHs) with molecular weights of up to 278Da was monitored during pyrolysis of cocoa in a semi-quantitative approach. It was shown that the adding of cocoa to tobacco had no influence on the relative amounts of the PAHs formed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Rapid recognition of irradiated dry-cured ham by on-line coupling of reversed-phase liquid chromatography with gas chromatography and mass spectrometry.

    Science.gov (United States)

    Martínez, R M; Barba, C; Calvo, M M; Santa-María, G; Herraiz, M

    2011-06-01

    The use of on-line coupling of reversed-phase liquid chromatography and gas chromatography (RPLC-GC) with the through oven transfer adsorption desorption (TOTAD) interface and mass spectrometry (MS) was proposed for testing different types of commercial Spanish dry-cured ham for irradiation treatment at various doses (0, 1.5, 2, and 4 kGy). The qualitative analysis of radiation-specific compounds (e.g., n-pentadecane, 1-hexadecene, 1,7-hexadecadiene, n-heptadecane, 8-heptadecene, and 2-dodecylcyclobutanone) can be simultaneously established in a single run with samples that have or have not been irradiated. The overall analysis, which takes less than 100 min, includes a rapid extraction step using a small amount of dichloromethane-methanol (1:1, vol/vol) and anhydrous sodium sulfate, the subsequent fractionation of the sample in the first dimension of the system (RPLC), the transfer of the target fraction to the second dimension, the GC separation, and the MS detection. The calculated limits of detection in ham were lower than 22 ng/g. Repeatability studies provided relative standard deviation values of 0.8 to 13.5%.

  16. Organotin speciation in environmental matrices by automated on-line hydride generation-programmed temperature vaporization-capillary gas chromatography-mass spectrometry detection.

    Science.gov (United States)

    Serra, H; Nogueira, J M F

    2005-11-11

    In the present contribution, a new automated on-line hydride generation methodology was developed for dibutyltin and tributyltin speciation at the trace level, using a programmable temperature-vaporizing inlet followed by capillary gas chromatography coupled to mass spectrometry in the selected ion-monitoring mode acquisition (PTV-GC/MS(SIM)). The methodology involves a sequence defined by two running methods, the first one configured for hydride generation with sodium tetrahydroborate as derivatising agent and the second configured for speciation purposes, using a conventional autosampler and data acquisition controlled by the instrument's software. From the method-development experiments, it had been established that injector configuration has a great effect on the speciation of the actual methodology, particularly, the initial inlet temperature (-20 degrees C; He: 150 ml/min), injection volume (2 microl) and solvent characteristics using the solvent venting mode. Under optimized conditions, a remarkable instrumental performance including very good precision (RSD CRM 462, Nr. 330 dibutyltin: 68+/-12 ng/g; tributyltin: 54+/-15 ng/g on dry mass basis), using liquid-liquid extraction (LLE) and solid-phase extraction (SPE) sample enrichment and multiple injections (2 x 5 microl) for sensitivity enhancement. The methodology evidenced high reproducibility, is easy to work-up, sensitive and showed to be a suitable alternative to replace the currently dedicated analytical systems for organotin speciation in environmental matrices at the trace level.

  17. [Determination of 28 organochlorine and pyrethroid pesticides in pine nuts using solid-phase extraction and on-line gel permeation chromatography-gas chromatography/mass spectrometry].

    Science.gov (United States)

    Kang, Qinghe; Wu, Yan; Gao, Kaiyang; Li, Zhibin

    2009-03-01

    An analytical method has been developed for the determination of 28 organochlorine pesticides and pyrethroid pesticides in pine nuts. The sample was extracted With acetonitrile-water (4:1, v/v) as the extraction solution by means of high-speed homogenization. The crude extract was purified by an Aluminium-N solid phase extraction column to remove most of the fat and sterols in the sample, then on-line gel permeation chromatography-gas chromatography/ mass spectrometry (GPC-GC/MS) analysis was performed. The recoveries for the most of pesticides in the sample spiked with the standards of 0.05 mg/kg were 70%-120%, and the relative standard deviations were less than 15%. The limits of detection of 28 organochlorine pesti- and pyrethroid pesticides were 0.002-0.05 mg/kg. The linear relationship and the recovery results were satisfactory. The method is rapid, accurate, highly senstive, and can be used for the simultaneous determination of pesticide residues in pine nuts.

  18. Flow visualization of a non-contact transport device by Coanda effect

    Science.gov (United States)

    Iki, Norihiko; Abe, Hiroyuki; Okada, Takashi

    2014-08-01

    AIST proposes new technology of non-contact transport device utilizing Coanda effect. A proposed non-contact transport device has a cylindrical body and circular slit for air. The air flow around non-contact device is turbulent and its flow pattern depends on the injection condition. Therefore we tried visualization of the air flow around non -contact device as the first step of PIV measurement. Several tracer particles were tried such as TiO2 particles, water droplets, potatoes starch, rice starch, corn starch. Hot-wire anemometer is employed to velocity measurement. TiO2 particles deposit inside of a slit and clogging of a slit occurs frequently. Potato starch particles do not clog a slit but they are too heavy to trace slow flow area. Water droplets by ultrasonic atomization also deposit inside of slit but they are useful to visualize flow pattern around a non-contact transport device by being supplied from circumference. Coanda effect of proposed non-contact transport device was confirmed and injected air flow pattern switches by a work. Air flow around non-contact trance port device is turbulent and its velocity range is wide. Therefore flow measurement by tracer part icle has traceability issue. Suitable tracer and exposure condition depends on target area.

  19. An automated method for the analysis of phenolic acids in plasma based on ion-pairing micro-extraction coupled on-line to gas chromatography/mass spectrometry with in-liner derivatisation

    NARCIS (Netherlands)

    Peters, S.; Kaal, E.; Horsting, I.; Janssen, H.-G.

    2012-01-01

    A new method is presented for the analysis of phenolic acids in plasma based on ion-pairing ‘Micro-extraction in packed sorbent’ (MEPS) coupled on-line to in-liner derivatisation-gas chromatography-mass spectrometry (GC-MS). The ion-pairing reagent served a dual purpose. It was used both to improve

  20. On-line gas chromatography combustion/pyrolysis isotope ratio mass spectrometry (HRGC-C/P-IRMS) of pineapple (Ananas comosus L. Merr.) volatiles.

    Science.gov (United States)

    Preston, Christina; Richling, Elke; Elss, Sandra; Appel, Markus; Heckel, Frank; Hartlieb, Ariane; Schreier, Peter

    2003-12-31

    By use of extracts prepared by liquid-liquid separation of the volatiles from self-prepared juices of pineapple fruits (Ananas comosus) (n = 14) as well as commercial pineapple recovery aromas/water phases (n = 3), on-line capillary gas chromatography-isotope ratio mass spectrometry was employed in the combustion (C) and the pyrolysis (P) modes (HRGC-C/P-IRMS) to determine the delta(13)C(VPDB) and delta(2)H(VSMOW) values of selected pineapple flavor constituents. In addition to methyl 2-methylbutanoate 1, ethyl 2-methylbutanoate 2, methyl hexanoate 3, ethyl hexanoate 4, and 2,5-dimethyl-4-methoxy-3[2H]-furanone 5, each originating from the fruit, the delta(13)C(VPDB) and delta(2)H(VSMOW) data of commercial synthetic 1-5 and "natural" (biotechnologically derived) 1-4 were determined. With delta(13)C(VPDB) data of pineapple volatiles 1-4 varying from -12.8 to -24.4 per thousand, the range expected for CAM metabolism was observed. Compound 5 showed higher depletion from -20.9 to -28.6 per thousand. A similar situation was given for the delta(2)H(VSMOW) values of 3-5 from pineapple ranging from -118 to -191 per thousand, whereas 1 and 2 showed higher depleted values from -184 to -263 per thousand. In nearly all cases, analytical differentiation of 1-5 from pineapple and natural as well as synthetic origin was possible. In general, natural and synthetic 1-5 exhibited delta(13)C(VPDB) data ranging from -11.8 to -32.2 per thousand and -22.7 to -35.9 per thousand, respectively. Their delta(2)H(VSMOW) data were in the range from -242 to -323 per thousand and -49 to -163 per thousand, respectively.

  1. Update of on-line coupled liquid chromatography - gas chromatography for the analysis of mineral oil hydrocarbons in foods and cosmetics.

    Science.gov (United States)

    Biedermann, Maurus; Munoz, Celine; Grob, Koni

    2017-09-13

    On-line coupled high performance liquid chromatography-gas chromatography-flame ionization detection (HPLC-GC-FID) is the most widely used method for the analysis of mineral oil hydrocarbons in food, food contact materials, tissues and cosmetics. With comprehensive two-dimensional gas chromatography (GCxGC), a tool became available for better establishing the elution sequence of the various types of hydrocarbons from the HPLC column used for isolating the mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH). The performance of a heavily used HPLC column with reduced retention for MOAH was investigated to improve the robustness of the method. Updates are recommended that render the MOSH/MOAH separation less dependent of the state of the HPLC column and more correct in cases of highly refined mineral oil products of high molecular mass. Cyclohexyl cyclohexane (Cycy), used as internal standard, turned out to be eluted slightly after cholestane (Cho); apparently the size exclusion effect predominates the extra retention by ring number on the 60Å pore size silica gel. Hence, Cycy can be used to determine the end of the MOSH fraction. Long chain alkyl benzenes were eluted earlier than tri-tert. butyl benzene (Tbb). It is proposed to start the MOAH transfer immediately after the MOSH fraction and use a gradient causing breakthrough of dichloromethane (visible in the UV chromatogram) at a time suitable to elute perylene (Per) at the end of the fraction. In this way, a decrease in retention power of the HPLC column can be tolerated without adjustment of the MOAH fraction until some MOAH start being eluted into the MOSH fraction. This critical point can be checked either with di(2-ethylhexyl) benzene (DEHB) as a marker or the HPLC-UV chromatogram. Finally, based on new findings in rats and human tissues, it is recommended to integrate the MOSH and MOAH up to the retention time of the n-alkane C40. Copyright © 2017 Elsevier B.V. All rights

  2. INNOVATIVE NON-CONTACT METROLOGY SOLUTIONS FOR LARGE OPTICAL TELESCOPES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has unique non-contact precision metrology requirements for dimensionally inspecting the global position and orientation of large and highly-polished...

  3. ChemCam-like Spectrometer for Non-Contact Measurements of Key Isotopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses the need for a non-contact instrument capable of measuring the isotopic ratios O-18/O-16 and D/H from water ice and other solid materials...

  4. Practical Non-contact ECG Electrodes for Prep-free Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cognionics has developed a high-quality, low-noise, dry/non-contact ECG electrode that can obtain signals even through layers of clothing without any skin...

  5. A Contact and Non-Contact Hybrid Profilometer with Large Range

    Institute of Scientific and Technical Information of China (English)

    YUN Jianping; YANG Xudong; XIE Tiebang; CHANG Suping

    2007-01-01

    A novel hybrid instrument of contact and non-contact measurement with large range is developed, and both measurement systems are based on a Linnik interference microscope and on white-light interference measuring techniques. The ambiguity presented in conventional monochromatic interferometers is not present in the contact and non-contact measurement, and they have a virtually unlimited unambiguous range. For the contact measurement, the vertical measuring range is ±5 mm with a resolution of 1 nm and the horizontal measuring range is ±25 mm in x-range and y-range with a resolution of 1.25 μm; for the non-contact measurement, the vertical measuring range is ±5 mm with a resolution of 1 nm and the horizontal resolution better than 0.5 μm.

  6. Multimodal non-contact photoacoustic and OCT imaging with galvanometer scanning

    Science.gov (United States)

    Berer, Thomas; Hochreiner, Armin; Leiss-Holzinger, Elisabeth; Bauer-Marschallinger, Johannes; Buchsbaum, Andreas

    2015-03-01

    In this paper we present multimodal non-contact photoacoustic and optical coherence tomography (OCT) imaging using a galvanometer scanner. Photoacoustic signals are acquired without contact on the surface of a specimen using an interferometric technique. The interferometer is realized in a fiber-optic network using a fiber laser at 1550 nm as source. In the same fiber-optic network a spectral-domain OCT system is realized, using a broadband light source at 1300 nm. Light from the fiber laser and the OCT source are multiplexed into the same fiber and the same objective is used for both imaging modalities. Fast non-contact photoacoustic and OCT imaging is demonstrated by scanning the detection spot utilizing a galvanometer scanner. Multimodal photoacoustic and OCT imaging is shown on agarose phantoms. As the same fiber network and optical components are used for non-contact photoacoustic and OCT imaging the obtained images are co-registered intrinsically.

  7. Non-contact optoacoustic imaging with focused air-coupled transducers

    Energy Technology Data Exchange (ETDEWEB)

    Deán-Ben, X. Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Pang, Genny A.; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); School of Medicine, Technische Universität München (TUM), Munich (Germany); Montero de Espinosa, Francisco [CSIC, Institute of Physics and Communication Technologies, Madrid (Spain)

    2015-08-03

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that an air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics.

  8. Optical non-contact floating object tracking using an open-source library

    DEFF Research Database (Denmark)

    2013-01-01

    In this paper, an optical non-contact low budget method for tracking the position of multi-object is presented for marine/off-shore laboratory applications. Particular focus is given at the wave energy field and the analysis of floating wave energy converters dynamics. The measurement of the posi......In this paper, an optical non-contact low budget method for tracking the position of multi-object is presented for marine/off-shore laboratory applications. Particular focus is given at the wave energy field and the analysis of floating wave energy converters dynamics. The measurement...

  9. Application of the NANOMEFOS non-contact measurement machine in asphere and freeform optics production

    NARCIS (Netherlands)

    Henselmans, R.; Gubbels, G.P.H.; Drunen, C. van

    2010-01-01

    The NANOMEFOS machine is capable of fast, non-contact and universal measurement of aspheres and freeforms, up to ø500 mm with a measurement uncertainty below 30 nm (2σ). It is now being applied in asphere and freeform production at TNO.

  10. Acanthamoeba keratitis in a non-contact lens wearer with human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, Birgitte Rønde; Kronborg, Gitte

    2003-01-01

    Acanthamoeba keratitis is potentially blinding and often associated with contact lens wearing. A human immunodeficiency virus (HIV)-positive patient, a non-contact lens wearer, presented with keratitis. She experienced a protracted course of disease, characterized by exacerbations and remissions...

  11. Quantification of tip-broadening in non-contact atomic force microscopy with carbon nanotube tips

    DEFF Research Database (Denmark)

    Meinander, Kristoffer; Jensen, Thomas N.; Simonsen, Soren B.

    2012-01-01

    Carbon nanotube terminated atomic force microscopy (AFM) probes have been used for the imaging of 5 nm wide surface supported Pt nanoclusters by non-contact (dynamic mode) AFM in an ultra-high vacuum. The results are compared to AFM measurements done with conventional Si-tips, as well...

  12. Spectral Representation Analysis of Non Contact Acousto Thermal Signature Data (Preprint)

    Science.gov (United States)

    2017-07-07

    the acoustic waves are absorbed into the material and converted to heat through the diffusion of transverse thermal currents, inter-crystalline...from Non-contact acousto-thermal signature (NCATS) experiments are considered. Spectral representation models are developed for general conductive...experiments are considered. Spectral representation models are developed for general conductive cooling physics. These models are subsequently used to

  13. A comparison of hamstring muscle activity during different screening tests for non-contact ACL injury

    DEFF Research Database (Denmark)

    Husted, Rasmus S; Bencke, Jesper; Andersen, Lars Louis

    2016-01-01

    BACKGROUND: Reduced ability to activate the medial hamstring muscles during a sports-specific sidecutting movement has been found to be a potential risk factor for non-contact ACL injury. However, whether a reduced ability to activate the medial hamstring muscle is a general neuromuscular phenome...

  14. Development of an on-line coupling of liquid-liquid extraction, normal-phase liquid chromatography and high-resolution gas chromatography producing an analytical marker for the prediction of mutagenicity and carcinogenicity of bitumen and bitumen fumes.

    Science.gov (United States)

    Blomberg, J; de Groot, P C; Brandt, H C; van der Does, J J; Schoenmakers, P J

    1999-07-23

    A fast and fully automated system for the determination of polycyclic aromatic compounds (PACs) is described. The system has been developed to produce an analytical 'marker', correlating chemical characteristics (including PAC analysis) with mutagenicity and carcinogenicity. The products of interest are bitumen fumes, bitumen and other (heavy or even residual) oil products, regardless of their boiling range. Dimethyl sulphoxide (DMSO) extractables obtained from a flow-injection analysis (FIA) system are introduced on-line in a normal-phase liquid chromatographic (NPLC) system. Here, the PACs are separated from the DMSO and possible co-extracted heavy residual species. The final step incorporates on-line gas chromatographic analysis of the three-to-six-ring PAC fraction, followed by flame-ionisation detection for quantification. It was demonstrated that data obtained from samples in the distillate lubrication-oil range correlate well with data obtained from the manual DMSO-extraction method standardised by the Institute of Petroleum as IP346.

  15. GEM-AQ, an on-line global multiscale chemical weather system: model description and evaluation of gas phase chemistry processes

    Directory of Open Access Journals (Sweden)

    J. W. Kaminski

    2007-10-01

    Full Text Available Tropospheric chemistry and air quality processes were implemented on-line in the Global Environmental Multiscale model. The integrated model, GEM-AQ, has been developed as a platform to investigate chemical weather at scales from global to urban. The model was exercised for five years (2001–2005 to evaluate its ability to simulate seasonal variations and regional distributions of trace gases such as ozone, nitrogen dioxide and carbon monoxide on the global scale. The model results presented are compared with observations from satellites, aircraft measurement campaigns and balloon sondes.

  16. An investigation into the concurrent collection of human scent and epithelial skin cells using a non-contact sampling device.

    Science.gov (United States)

    Caraballo, Norma Iris; Mendel, Julian; Holness, Howard; La Salvia, Joel; Moroose, Tina; Eckenrode, Brian; Stockham, Rex; Furton, Kenneth; Mills, DeEtta

    2016-09-01

    In criminal investigations, the collection of human scent often employs a non-contact, dynamic airflow device, known as the Scent Transfer Unit 100 (STU-100), to transfer volatile organic compounds (VOCs) from an object/person onto a collection material that is subsequently presented to human scent discriminating canines. Human scent is theorized to be linked to epithelial skin cells that are shed at a relatively constant rate allowing both scent and cellular material to be deposited into the environment and/or onto objects. Simultaneous collection of cellular material, with adequate levels of nuclear deoxyribonucleic acid (nDNA), and human scent using a non-invasive methodology would facilitate criminal investigations. This study evaluated the STU-100 for the concurrent collection of human scent and epithelial skin cells from a porous (paper) and non-porous (stainless steel bar) object that was held for a specified period of time in the dominant hand of twenty subjects (10 females and 10 males). Human scent analysis was performed using headspace static solid-phase microextraction with gas chromatography-mass spectrometry (HS-SPME/GC-MS). A polycarbonate filter was used to trap epithelial skin cells which, upon extraction, were subsequently analyzed, inter-laboratory, using the quantitative polymerase chain reaction (qPCR). The STU-100 proved to be inadequate for collecting the minimum number of epithelial skin cells required to obtain nuclear DNA concentrations above the limit of detection for the qPCR kit. With regard to its use for human scent collection, a reduction in the number and mass of compounds was observed when compared to samples that were directly collected. However, when the indirect collection of human scent from the two different objects was compared, a greater number and mass of compounds was observed from the non-porous object than from the porous object. This outcome suggests that the matrix composition of the scent source could affect the

  17. A laboratory flow reactor with gas particle separation and on-line MS/MS for product identification in atmospherically important reactions

    Directory of Open Access Journals (Sweden)

    J. F. Bennett

    2009-06-01

    Full Text Available A system to study the gas and particle phase products from gas phase hydrocarbon oxidation is described. It consists of a gas phase photochemical flow reactor followed by a diffusion membrane denuder to remove gases from the reacted products, or a filter to remove the particles. Chemical analysis is performed by an atmospheric pressure chemical ionization (APCI triple quadrupole mass spectrometer. A diffusion membrane denuder is shown to remove trace gases to below detectable limits so the particle phase can be studied. The system was tested by examining the products of the oxidation of m-xylene initiated by HO radicals. Dimethylphenol was observed in both the gas and particle phases although individual isomers could not be identified. Two furanone isomers, 5-methyl-2(3Hfuranone and 3-methyl-2(5Hfuranone were identified in the particulate phase, but the isobaric product 2,5 furandione was not observed. One isomer of dimethyl-nitrophenol was identified in the particle phase but not in the gas phase.

  18. A laboratory flow reactor with gas particle separation and on-line MS/MS for product identification in atmospherically important reactions

    Directory of Open Access Journals (Sweden)

    J. F. Bennett

    2009-12-01

    Full Text Available A system to study the gas and particle phase products from gas phase hydrocarbon oxidation is described. It consists of a gas phase photochemical flow reactor followed by a diffusion membrane denuder to remove gases from the reacted products, or a filter to remove the particles. Chemical analysis is performed by an atmospheric pressure chemical ionization (APCI triple quadrupole mass spectrometer. A diffusion membrane denuder is shown to remove trace gases to below detectable limits so the particle phase can be studied. The system was tested by examining the products of the oxidation of m-xylene initiated by HO radicals. Dimethylphenol was observed in both the gas and particle phases although individual isomers could not be identified. Two furanone isomers, 5-methyl-2(3Hfuranone and 3-methyl-2(5Hfuranone were identified in the particulate phase, but the isobaric product 2,5 furandione was not observed. One isomer of dimethyl-nitrophenol was identified in the particle phase but not in the gas phase.

  19. The origin of fluids and gases in the DFDP-2B borehole, New Zealand; insight from on-line mud gas monitoring

    Science.gov (United States)

    Mathewson, Loren; Wiersberg, Thomas; Niedermann, Samuel; Erzinger, Joerg; Menzies, Catriona; Toy, Virginia; Zimmer, Martin

    2016-04-01

    The Deep Fault Drilling Project (DFDP) aims to improve our understanding of the Alpine Fault Zone, a tectonically active fault system in New Zealand known to rupture in large events, by deep scientific drilling. The borehole DFDP-2B approached the Alpine Fault at depth, reaching a final depth of 892 m. During drilling, gas was extracted from returning drilling mud and changes in the gas composition were tracked by mass spectrometry (N2, O2, Ar, CO2, CH4, He, and H2), gas chromatography (CH4, C2H6, C3H8, i/n-C4H10), and alpha-spectrometry for 222Rn. The rapid formation of mud wall cake seals the borehole from fluid inflow along the borehole; hence formation-derived gases enter mostly at the drill bit during drilling. Gas was sampled for offline analyses on noble gas and stable isotopes to complement the dataset. Apart from an atmospheric input, the gases in drilling mud derive from the pore space of rock, crushed at the drill bit, and from permeable layers intersected by the borehole. OLGA thus may provide information on fluid origins, flow rates and paths, fluid-rock interactions along these paths, and the permeability structure of the faulted rock mass. The principle formation-derived gases found in drilling mud during drilling of DFDP-2 were CO2 (≤1.7 vol.-%), H2 (50 at 236 m). For a more comprehensive overview, compilation of the OLGA dataset with cuttings data and data from geophysical downhole logging is ongoing.

  20. Non-Contact Translation-Rotation Sensor Using Combined Effects of Magnetostriction and Piezoelectricity

    Directory of Open Access Journals (Sweden)

    Guang Meng

    2012-10-01

    Full Text Available Precise displacement sensors are an important topic in precision engineering. At present, this type of sensors typically have a single feature of either translation or rotation measurement. They are also inconvenient to integrate with the host devices. In this report we propose a new kind of sensor that enables both translation and rotation measurement by using the combined effect of magnetostriction and piezoelectricity. As a proof of concept, we experimentally realized a prototype of non-contact translation-rotation precise sensor. In the current research stage, through both theoretical and experimental study, the non-contact displacement sensor is shown to be feasible for measuring both translation and rotation either in coarse or fine measurement. Moreover, owing to its compact, rigid structure and fewer components, it can be easily embedded in host equipment.

  1. Atomic-scale non-contact AFM studies of alumina supported nanoparticles

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Meinander, Kristoffer; Simonsen, Søren Bredmose

    ATOMIC-SCALE NON-CONTACT ATOMIC FORCE STUDIES OF ALUMINA SUPPORTED NANOPARTICLES Thomas N. Jensen, Kristoffer Meinander, Flemming Besenbacher and Jeppe V. Lauritsen Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus C, Denmark Heterogeneous catalysis plays a crucial role...... at the nanometre scale [1]. When operated in the so-called non-contact mode (nc-AFM), this technique yields genuine atomic resolution and offers a unique tool for atomic-scale studies of clean surfaces, as well as, nanoparticles and thin films on these surfaces irrespective of the substrate being electrically...... conducting or non-conducting [2]. We use nc-AFM to study the growth, shape and size of nanoparticles on spinel and alumina surfaces. In addition to this, we have grown a transition alumina thin film on a spinel surface in order to characterize such a film as well as studying the catalytic properties...

  2. Acanthamoeba keratitis in a non-contact lens wearer with human immunodeficiency virus.

    Science.gov (United States)

    Hansen, Birgitte; Kronborg, Gitte

    2003-01-01

    Acanthamoeba keratitis is potentially blinding and often associated with contact lens wearing. A human immunodeficiency virus (HIV)-positive patient, a non-contact lens wearer, presented with keratitis. She experienced a protracted course of disease, characterized by exacerbations and remissions, and was treated with various topical antibiotics and steroids. 13 months after symptom onset the eye was removed owing to serious scarring of cornea and unbearable pain. Microbiological and histopathological examination of the cornea showed Acanthamoeba. In non-contact lens wearers suffering from Acanthamoeba keratitis the diagnosis is delayed, pathognomonic features are often not seen and visual outcome is usually poor. There is no known relation between HIV infection and Acanthamoeba keratitis.

  3. Non-contact translation-rotation sensor using combined effects of magnetostriction and piezoelectricity.

    Science.gov (United States)

    Yang, Bintang; Liu, Qingwei; Zhang, Ting; Cao, Yudong; Feng, Zhiqiang; Meng, Guang

    2012-10-15

    Precise displacement sensors are an important topic in precision engineering. At present, this type of sensors typically have a single feature of either translation or rotation measurement. They are also inconvenient to integrate with the host devices. In this report we propose a new kind of sensor that enables both translation and rotation measurement by using the combined effect of magnetostriction and piezoelectricity. As a proof of concept, we experimentally realized a prototype of non-contact translation-rotation precise sensor. In the current research stage, through both theoretical and experimental study, the non-contact displacement sensor is shown to be feasible for measuring both translation and rotation either in coarse or fine measurement. Moreover, owing to its compact, rigid structure and fewer components, it can be easily embedded in host equipment.

  4. Acanthamoeba keratitis in a non-contact lens wearer with human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, Birgitte Rønde; Kronborg, Gitte

    2003-01-01

    Acanthamoeba keratitis is potentially blinding and often associated with contact lens wearing. A human immunodeficiency virus (HIV)-positive patient, a non-contact lens wearer, presented with keratitis. She experienced a protracted course of disease, characterized by exacerbations and remissions......, and was treated with various topical antibiotics and steroids. 13 months after symptom onset the eye was removed owing to serious scarring of cornea and unbearable pain. Microbiological and histopathological examination of the cornea showed Acanthamoeba. In non-contact lens wearers suffering from Acanthamoeba...... keratitis the diagnosis is delayed, pathognomonic features are often not seen and visual outcome is usually poor. There is no known relation between HIV infection and Acanthamoeba keratitis....

  5. Non-contact transmittance photoplethysmographic imaging (PPGI) for long-distance cardiovascular monitoring

    CERN Document Server

    Amelard, Robert; Kazemzadeh, Farnoud; Pfisterer, Kaylen J; Lin, Bill S; Wong, Alexander; Clausi, David A

    2015-01-01

    Photoplethysmography (PPG) devices are widely used for monitoring cardiovascular function. However, these devices require skin contact, which restrict their use to at-rest short-term monitoring using single-point measurements. Photoplethysmographic imaging (PPGI) has been recently proposed as a non-contact monitoring alternative by measuring blood pulse signals across a spatial region of interest. Existing systems operate in reflectance mode, of which many are limited to short-distance monitoring and are prone to temporal changes in ambient illumination. This paper is the first study to investigate the feasibility of long-distance non-contact cardiovascular monitoring at the supermeter level using transmittance PPGI. For this purpose, a novel PPGI system was designed at the hardware and software level using ambient correction via temporally coded illumination (TCI) and signal processing for PPGI signal extraction. Experimental results show that the processing steps yield a substantially more pulsatile PPGI si...

  6. Development of the Floating Centrifugal Pump by Use of Non Contact Magnetic Drive and Its Performance

    Directory of Open Access Journals (Sweden)

    Mitsuo Uno

    2004-01-01

    Full Text Available This article focuses on the impeller construction, non contact driving method and performance of a newly developed shaftless floating pump with centrifugal impeller. The drive principle of the floating impeller pump used the magnet induction method similar to the levitation theory of the linear motor. In order to reduce the axial thrust by the pressure different between shroud and disk side, the balance hole and the aileron blade were installed in the floating impeller. Considering the above effect, floating of an impeller in a pump was realized. Moreover, the performance curves of a developed pump are in agreement with a general centrifugal pump, and the dimensionless characteristic curve also agrees under the different rotational speed due to no mechanical friction of the rotational part. Therefore, utility of a non contacting magnetic-drive style pump with the floating impeller was made clear.

  7. Contact and non-contact ultrasonic measurement in the food industry: a review

    Science.gov (United States)

    Taufiq Mohd Khairi, Mohd; Ibrahim, Sallehuddin; Yunus, Mohd Amri Md; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated.

  8. Non-contact tunable damping of a cantilever beam structure embedded with photo-rheological fluids

    Science.gov (United States)

    Cho, Min-Young; Kim, Ji-Sik; Choi, Seung-Bok; Kim, Gi-Woo

    2016-02-01

    This research presents an introduction to non-contact tunable damping using a new class of photo-rheological fluids (PRFs) whose rheological behavior can be changed by using ultraviolet (UV) light. When the PRF is irradiated by UV light, its viscosity decreases; the viscosity recovers to its initial value when UV light is switched off, implying that the viscosity of PRF is reversible and tunable. We demonstrate that UV light can be used to induce the changes in the viscosity of PRFs, and that the proposed method can be successfully applied to realize non-contact tunable damping of vibrating structures. The additional advantages of PRF include no deposition associated with the single-phase solution of PRF and no electro-magnetic interference shielding.

  9. Deep-Hole Inner Diameter Measuring System Based on Non-contact Capacitance Sensor

    Institute of Scientific and Technical Information of China (English)

    于永新; 张恒; 王宗超; 常以哲

    2010-01-01

    A precise aperture measuring system of small deep holes with capacitance sensors is presented. Based on the working principle of non-contact capacitance sensors, influence of the edge effect of gauge head is studied, and one capacitance sensor for measuring the aperture of the small blind holes or through holes is introduced. The system is composed of one positioning device, one aperture measuring capacitance sensor, one measuring circuit, and software. This system employs visual CCD and two-dimensional mic...

  10. NON-CONTACT MEASUREMENT SYSTEM OF FREEFORM SURFACE AND NURBS RECONSTRUCTION OF MEASUREMENT POINTS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the development of the non-contact measurement system of free-form surface, NURBS reconstruc-tion of measurement points of freeform surface is effectively realized by modifying the objective function and recursiveprocedure and calculating the optimum number of control points. The reconstruction precision is evaluated through Ja-cobi's transformation method. The feasibility of the measurement system and effectiveness of the reconstruction algo-rithm above are proved by experiment.

  11. Non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement

    DEFF Research Database (Denmark)

    Rose, Bjarke; Imam, H.; Hanson, Steen Grüner

    1998-01-01

    A novel method for measurement of angular displacement in one or two dimensions for arbitrarily shaped objects is presented. The method is based on Fourier transforming the scattered field from a single laser beam that illuminates the target. The angular distribution of the light field at the tar...... interest. Furthermore, it is shown that robust, non-contact optical systems for industrial applications can be produced....

  12. Modeling leukocyte-leukocyte non-contact interactions in a lymph node.

    Directory of Open Access Journals (Sweden)

    Nicola Gritti

    Full Text Available The interaction among leukocytes is at the basis of the innate and adaptive immune-response and it is largely ascribed to direct cell-cell contacts. However, the exchange of a number of chemical stimuli (chemokines allows also non-contact interaction during the immunological response. We want here to evaluate the extent of the effect of the non-contact interactions on the observed leukocyte-leukocyte kinematics and their interaction duration. To this aim we adopt a simplified mean field description inspired by the Keller-Segel chemotaxis model, of which we report an analytical solution suited for slowly varying sources of chemokines. Since our focus is on the non-contact interactions, leukocyte-leukocyte contact interactions are simulated only by means of a space dependent friction coefficient of the cells. The analytical solution of the Keller-Segel model is then taken as the basis of numerical simulations of interactions between leukocytes and their duration. The mean field interaction force that we derive has a time-space separable form and depends on the chemotaxis sensitivity parameter as well as on the chemokines diffusion coefficient and their degradation rate. All these parameters affect the distribution of the interaction durations. We draw a successful qualitative comparison between simulated data and sets of experimental data for DC-NK cells interaction duration and other kinematic parameters. Remarkably, the predicted percentage of the leukocyte-leukocyte interactions falls in the experimental range and depends (~25% increase upon the chemotactic parameter indicating a non-negligible direct effect of the non-contact interaction on the leukocyte interactions.

  13. An investigation of highly accurate and precise robotic hole measurements using non-contact devices

    Directory of Open Access Journals (Sweden)

    Usman Zahid

    2016-01-01

    Full Text Available Industrial robots arms are widely used in manufacturing industry because of their support for automation. However, in metrology, robots have had limited application due to their insufficient accuracy. Even using error compensation and calibration methods, robots are not effective for micrometre (μm level metrology. Non-contact measurement devices can potentially enable the use of robots for highly accurate metrology. However, the use of such devices on robots has not been investigated. The research work reported in this paper explores the use of different non-contact measurement devices on an industrial robot. The aim is to experimentally investigate the effects of robot movements on the accuracy and precision of measurements. The focus has been on assessing the ability to accurately measure various geometric and surface parameters of holes despite the inherent inaccuracies of industrial robot. This involves the measurement of diameter, roundness and surface roughness. The study also includes scanning of holes for measuring internal features such as start and end point of a taper. Two different non-contact measurement devices based on different technologies are investigated. Furthermore, effects of eccentricity, vibrations and thermal variations are also assessed. The research contributes towards the use of robots for highly accurate and precise robotic metrology.

  14. Demonstration of a non-contact x-ray source using an inductively heated pyroelectric accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee, E-mail: symolloi@uci.edu

    2015-04-11

    X-ray emission from pyroelectric sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm{sup 3} Lithium Niobate (LiNbO{sub 3}) pyroelectric crystal maintained in a 3–12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.

  15. A model undergraduate research institute for study of emerging non-contact measurement technologies and techniques

    Science.gov (United States)

    Dvonch, Curt; Smith, Christopher; Bourne, Stefanie; Blandino, Joseph R.; Miles, Jonathan J.

    2006-04-01

    The Infrared Development and Thermal Structures Laboratory (IDTSL) is an undergraduate research laboratory in the College of Integrated Science and Technology (CISAT) at James Madison University (JMU) in Harrisonburg, Virginia. During the 1997-98 academic year, Dr. Jonathan Miles established the IDTSL at JMU with the support of a collaborative research grant from the NASA Langley Research Center and with additional support from the College of Integrated Science and Technology at JMU. The IDTSL supports research and development efforts that feature non-contact thermal and mechanical measurements and advance the state of the art. These efforts all entail undergraduate participation intended to significantly enrich their technical education. The IDTSL is funded by major government organizations and the private sector and provides a unique opportunity to undergraduates who wish to participate in projects that push the boundaries of non-contact measurement technologies, and provides a model for effective hands-on, project oriented, student-centered learning that reinforces concepts and skills introduced within the Integrated Science and Technology (ISAT) curriculum. The lab also provides access to advanced topics and emerging measurement technologies; fosters development of teaming and communication skills in an interdisciplinary environment; and avails undergraduates of professional activities including writing papers, presentation at conferences, and participation in summer internships. This paper provides an overview of the Infrared Development and Thermal Structures Laboratory, its functionality, its record of achievements, and the important contribution it has made to the field of non-contact measurement and undergraduate education.

  16. Simulation Test System of Non-Contact D-dot Voltage Transformer

    Science.gov (United States)

    Yang, Jie; Wang, Jingang; Luo, Ruixi; Gao, Can; Songnong, Li; Kongjun, Zhou

    2016-04-01

    The development trend of future voltage transformer in smart grid is non-contact measurement, miniaturization and intellectualization. This paper proposes one simulation test system of non-contact D-dot transformer for voltage measurement. This simulation test system consists of D-dot transformer, signal processing circuit and ground PC port. D-dot transformer realizes the indirect voltage measurement by measuring the change rate of electric displacement vector, a non-contact means (He et al. 2004, Principles and experiments of voltage transformer based on self-integrating D-dot probe. Proc CSEE 2014;15:2445-51). Specific to the characteristics of D-dot transformer signals, signal processing circuits with strong resistance to interference and distortion-free amplified sensor output signal are designed. WIFI wireless network is used to transmit the voltage detection to LabVIEW-based ground collection port and LabVIEW technology is adopted for signal reception, data processing and analysis and other functions. Finally, a test platform is established to simulate the performance of the whole test system of single-phase voltage transformer. Test results indicate that this voltage transformer has sound real-time performance, high accuracy and fast response speed and the simulation test system is stable and reliable and can be a new prototype of voltage transformers.

  17. OLAM: A wearable, non-contact sensor for continuous heart-rate and activity monitoring.

    Science.gov (United States)

    Albright, Ryan K; Goska, Benjamin J; Hagen, Tory M; Chi, Mike Y; Cauwenberghs, G; Chiang, Patrick Y

    2011-01-01

    A wearable, multi-modal sensor is presented that can non-invasively monitor a patient's activity level and heart function concurrently for more than a week. The 4 in(2) sensor incorporates both a non-contact heartrate sensor and a 5-axis inertial measurement unit (IMU), allowing simultaneous heart, respiration, and movement monitoring without requiring physical contact with the skin [1]. Hence, this Oregon State University Life and Activity Monitor (OLAM) provides the unique opportunity to combine motion data with heart-rate information, enabling assessment of actual physical activity beyond conventional movement sensors. OLAM also provides a unique platform for non-contact sensing, enabling the filtering of movement artifacts generated by the non-contact capacitive interface, using the IMU data as a movement noise channel. Intended to be used in clinical trials for weeks at a time with no physician intervention, the OLAM allows continuous non-invasive monitoring of patients, providing the opportunity for long-term observation into a patient's physical activity and subtle longitudinal changes.

  18. Non-Contact Stiffness Measurement of a Suspended Single Walled Carbon Nanotube Device

    Science.gov (United States)

    Zheng, Yun; Su, Chanmin; Getty, Stephanie

    2010-01-01

    A new nanoscale electric field sensor was developed for studying triboelectric charging in terrestrial and Martian dust devils. This sensor is capable to measure the large electric fields for large dust devils without saturation. However, to quantify the electric charges and the field strength it is critical to calibrate the mechanical stiffness of the sensor devices. We performed a technical feasibility study of the Nano E-field Sensor stiffness by a non-contact stiffness measurement method. The measurement is based on laser Doppler vibrometer measurement of the thermal noise due to energy flunctuations in the devices. The experiment method provides a novel approach to acquire data that is essential in analyzing the quantitative performance of the E-field Nano Sensor. To carry out the non-contact stiffness measurement, we fabricated a new Single-Walled Carbon Nanotube (SWCNT) E-field sensor with different SWCNTs suspension conditions. The power spectra of the thermal induced displacement in the nano E-field sensor were measured at the accuracy of picometer. The power spectra were then used to derive the mechanical stiffness of the sensors. Effect of suspension conditions on stiffness and sensor sensitivty was discussed. After combined deformation and resistivity measurement, we can compare with our laboratory testing and field testing results. This new non-contact measurement technology can also help to explore to other nano and MEMS devices in the future.

  19. Development of SCARA-Type Haptic Device for Electrostatic Non-Contact Handling System

    Science.gov (United States)

    West, Ewoud Van; Yamamoto, Akio; Burns, Benjamin; Higuchi, Toshiro

    This paper describes the development of a SCARA-type haptic device, which will be used to assist a human operator in non-contact object handling of silicon wafers using electrostatic levitation. The device has three degrees of freedom, of which only one (vertical) is actively controlled. By utilizing the admittance control paradigm, a high vertical stiffness and a high output force can be achieved. These properties are necessary for the intended application of non-contact object handling to prevent instabilities (induced by the human motion) of the electrostatic levitation system. As the nominal air gap between object and electrostatic levitator is in the order of 350 micrometer, with an allowable position error of about 150 micrometer, instability can easily occur if there is no haptic assistance, especially in the picking up or placing process. The developed SCARA-type haptic device has a mechanical stiffness of 51 N/mm for the vertical direction when it is in the weakest posture, which is sufficient for the non-contact handling task. The design and performance of the haptic device for the active vertical degree of freedom are described in this paper.

  20. Non-contact SQUID-NDT method using a ferrite core for carbon-fibre composites

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Yoshimi [Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555 (Japan); Kasai, Naoko [Nanoelectronics Research Institute, AIST, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Takashima, Hiroshi [Nanoelectronics Research Institute, AIST, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Ishiyama, Atsushi [Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555 (Japan)

    2002-12-01

    Carbon-fibre composites (CFCs), such as carbon-fibre-reinforced plastic (CFRP), are promising composite materials for aerospace structures. However, there is no reliable non-contact NDT method for the detection of deep-lying cracks in thick CFCs at the present time. In this study a non-contact eddy-current-based SQUID-NDT method for thick CFCs was developed. Because CFC is conductively low (electrically), and the target CFC is thick, an induction coil with a U-shaped ferrite core was employed to generate a strong induction field while supplying a low frequency current to the coil. This method was applied to 20 mm thick CFRP specimens with hidden slots at various depths. All signal responses due to the slots located at 5 mm up to 17.5 mm in depth were successfully detected while supplying 150 mA at 300 Hz. The peak amplitude of the response obtained by the method was the same as, or larger than, that of previous results on the same specimens by the current injection method. It shows that the developed method can efficiently induce a large eddy current in the conductively low specimen. It is concluded that this method has the potential to be applicable to the non-contact NDT on very thick CFCs.

  1. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  2. Radium activity and radon exhalation rates from phosphate ores using CR-39 on-line with an electronic radon gas analyzer 'Alpha GUARD'

    Energy Technology Data Exchange (ETDEWEB)

    Saad, A.F. [Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt)], E-mail: abdallahsaad@hotmail.com

    2008-08-15

    Nuclear track detectors (NTDs) have seen a major expansion in application to general physical and geological problems reflecting its advances in understanding the exhalation dependence of radon as well as radon and radium concentration distributions in the earth's crust. However, considerable uncertainties still persist, in particular, concerning the detection efficiency of track detectors which are not calibrated precisely to a standard method or an active detector of a unique efficiency. In this investigation, CR-39 NTDs and an electronic radon gas analyzer 'Alpha GUARD' were used for the measurement of radon exhalation rate and radium concentration in phosphate samples collected from two different mines of El-Sobaeya and El-Suez, Egypt. The phosphate sample was loaded into an emanation container (Genitron Instruments GmbH) equipped with a PC-based radon gas analyzer. The CR-39 track detectors were mounted inside a diffusion cup used simultaneously with the Alpha GUARD radon gas analyzer. Radium activity in phosphate samples was found to vary from 1.8 to 361.3kBqkg{sup -1}. The radon exhalation rates in these samples were found to vary from 0.020 (0.003) to 4.125Bqm{sup -2}h{sup -1}(0.658Bqkg{sup -1}h{sup -1})

  3. Continuous on-line calibration of diffusive soil-atmosphere trace gas transport using vertical {sup 220}Rn- and {sup 222}Rn-activity profiles

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, B.E. [Bern Univ. (Switzerland). Physics Inst.; Neftel, A. [Inst. of Environmental Protection and Agriculture, Bern (Switzerland); Tarakanov, S.V. [Inst. of Silicate Chemistry, St. Petersburg (Russian Federation)

    2001-07-01

    Continuous monitoring of {sup 220}Rn- and {sup 222}Rn-activities above and below the soil surface combined with sporadic direct {sup 222}Rn-flux measurements is used to quantify diffusive trace gas transport in the air-filled pore space of soil, through the soil-atmosphere interface and in the lowest layers of the atmosphere. In a calm night, {sup 222}Rn-activities above the surface first build-up near the ground (z < 10 cm) and subsequently with a delay of 2-3 hours at higher altitudes (z < 5 m). Knowing (1) the {sup 222}Rn-flux from activity profiles measured in soil gas, (2) from direct flux determinations and (3) using information about atmospheric diffusion parameters from {sup 220}Rn-activities measured near the surface it is possible to model the temporal evolution of the vertical {sup 222}Rn-profiles in a night with stable weather and constant soil conditions. The system operates automatically for extended periods of time in the field enabling a better understanding of transport processes in response to changing environmental conditions (wind, rain, soil humidity). (orig.)

  4. Single photon ionization (SPI) via incoherent VUV-excimer light: robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis.

    Science.gov (United States)

    Mühlberger, F; Wieser, J; Ulrich, A; Zimmermann, R

    2002-08-01

    Fast on-line detection of organic compounds from complex mixtures, such as industrial process gas streams, require selective and sensitive analytical methods. One feasible approach for this purpose is the use of mass spectrometry (MS) with a selective and soft (fragment-free) ionization technique, such as chemical ionization (CI) or photo ionization (PI). Single photon ionization (SPI) with vacuum ultraviolet (VUV) light is a particularly sof tionization technique, well-suited for detection of both aromatic and aliphatic species. Problematic, however, is the generation of the VUV light. In general, the vacuum ultraviolet (VUV) light sources for SPI-MS are based either on lasers (e.g., 118-nm radiation generated by frequency-tripling of the third harmonic of a Nd:YAG laser) or on conventional VUV lamps, such as deuterium lamps. Althoughthe laser-based techniques are very sophisticated and expensive, the conventional lamps have serious drawbacks regarding their optical parameters, such as low-output power, low spectral power density, and broad emission bands. In this work, a novel excimer VUV light source, in which an electron beam is used to form rare gas excimer species, is used. The excimer VUV light sourceproduces brilliant and intense VUV light. The novel VUV light source was coupled to a compact and mobile time-of-flight mass spectrometer (TOFMS). A special interface design, including optical (VUV optics) as well as electronic measures (e.g., pulsed ion extraction) was realized. The use of the excimer VUV lamp for SPI will allow the realization of very compact, rugged, and sensitive SPI-TOFMS devices, which preferably will be adapted for process analytical application or monitoring issues (e.g., chemical warfare detection). The excimer VUV-lamp technology delivers VUV light with a good beam quality and high-output power at low costs. Furthermore, it allows changing the emitted wavelength as well as the bandwidth of the excimer VUV lamp in t he 100-200-nm region

  5. Aerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation

    Science.gov (United States)

    Chirico, Roberto; Prevot, Andre S. H.; DeCarlo, Peter F.; Heringa, Maarten F.; Richter, Rene; Weingartner, Ernest; Baltensperger, Urs

    2011-04-01

    In this study we present measurements of gas and aerosol phase composition for a mixed vehicle fleet in the Gubrist tunnel (Switzerland) in June 2008. PM 1 composition measurements were made with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) and a Multi Angle Absorption Photometer (MAAP). Gas-phase measurements of CO, CO 2, NO x and total hydrocarbons (THC) were performed with standard instrumentation. Weekdays had a characteristic diurnal pattern with 2 peaks in concentrations for all traffic related species corresponding to high vehicle density (˜300 ± 30 vehicles per 5 min) in the morning rush hour between 06:00 and 09:00 and in the afternoon rush hours from approximately 15:30 to 18:30. The emission factors (EF) of OA were heavily influenced by the OA mass loading. To exclude this partitioning effect, only organic aerosol mass concentrations from 60 μg m -3 to 90 μg m -3 were considered and for these conditions the EF(OA) value for HDV was 33.7 ± 2.3 mg km -1 for a temperature inside the tunnel of 20-25 °C. This value is not directly applicable to ambient conditions because it is derived from OA mass concentrations that are roughly a factor of 10 higher than typical ambient concentrations. An even higher EF(OA) HDV value of 47.4 ± 1.6 mg km -1 was obtained when the linear fit was applied to all data points including OA concentrations up to 120 μg m -3. Similar to the increasing EF, the OA/BC ratio in the tunnel was also affected by the organic loading and it increased by a factor of ˜3 over the OA range 10-120 μg m -3. This means that also the OA emission factors at ambient concentrations of around 5-10 μg m -3 would be 2-3 times lower than the emission factor given above. For OA concentrations lower than 40 μg m -3 the OA/BC mass ratio was below 1, while at an OA concentration of 100-120 μg m -3 the OA/BC ratio was ˜1.5. The AMS mass spectra (MS) acquired in the tunnel were highly correlated with the primary organic aerosol

  6. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: setup and first results on cigarette smoke and human breath.

    Science.gov (United States)

    Mühlberger, F; Streibel, T; Wieser, J; Ulrich, A; Zimmermann, R

    2005-11-15

    Single-photon ionization (SPI) using vacuum ultraviolet (VUV) light produced by an electron beam pumped rare gas excimer source has been coupled to a compact and mobile time-of-flight mass spectrometer (TOFMS). The novel device enables real-time on-line monitoring of organic trace substances in complex gaseous matrixes down to the ppb range. The pulsed VUV radiation of the light source is employed for SPI in the ion source of the TOFMS. Ion extraction is also carried out in a pulsed mode with a short time delay with respect to ionization. The experimental setup of the interface VUV light source/time-of-flight mass spectrometer is described, and the novel SPI-TOFMS system is characterized by means of standard calibration gases. Limits of detection down to 50 ppb for aliphatic and aromatic hydrocarbons were achieved. First on-line applications comprised real-time measurements of aromatic and aliphatic trace compounds in mainstream cigarette smoke, which represents a highly dynamic fluctuating gaseous matrix. Time resolution was sufficient to monitor the smoking process on a puff-by-puff resolved basis. Furthermore, human breath analysis has been carried out to detect differences in the breath of a smoker and a nonsmoker, respectively. Several well-known biomarkers for smoke could be identified in the smoker's breath. The possibility for even shorter measurement times while maintaining the achieved sensitivity makes this new device a promising tool for on-line analysis of organic trace compounds in process gases or biological systems.

  7. Neonatal non-contact respiratory monitoring based on real-time infrared thermography

    Science.gov (United States)

    2011-01-01

    Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils) temperature profile associated with the inspiration and expiration phases successively. Objective The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU) using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI) detection) and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards. Results Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases. Conclusions Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU). The promising results suggest to include this technology into advanced NICU monitors. PMID:22243660

  8. Neonatal non-contact respiratory monitoring based on real-time infrared thermography

    Directory of Open Access Journals (Sweden)

    Abbas Abbas K

    2011-10-01

    Full Text Available Abstract Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils temperature profile associated with the inspiration and expiration phases successively. Objective The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI detection and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards. Results Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases. Conclusions Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU. The promising results suggest to include this technology into advanced NICU monitors.

  9. "Non-Contact Ultrasonic Treatment of Metals in a Magnetic Field"

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Wilgen, John B [ORNL; Kisner, Roger A [ORNL; Jaramillo, Roger A [ORNL; Ludtka, Gail Mackiewicz- [ORNL

    2007-01-01

    A concept has been originated for non-contact ultrasonic treatment of metals based on the use of an induction coil located in a high-field superconducting magnet. An advantage of using a high magnetic field environment (> 9 T) is that this allows the induced surface current in the sample to be decreased proportionately. As a result, the incidental induction heating associated with the use of the EMAT (Electromagnetic Acoustical Transducer) is greatly reduced, which improves the energy efficiency of the EMAT approach. The method can be coupled with high-field magnetic processing, but can also be used where only ultrasonic treatment is beneficial. In the proof-of-principle experiments, a high-field EMAT was used for non-contact ultrasonic processing of aluminum samples during solidification. The magnetic field for the EMAT was supplied by a high-field (20 Tesla) resistive magnet, and the current was provided by an induction coil. This resulted in a highly efficient EMAT that delivered 0.5 MPa (~5 atmospheres) of acoustic drive to the surface of the sample while coupling less than 100 watts of incidental induction heating. The exceptionally high energy efficiency of the electromagnetic transducer is due to the use of the high magnetic field, which reduces the current needed to achieve the same acoustic pressure. In these initial experiments, aluminum samples of A356 alloy were heated to the liquid state and allowed to solidify at a controlled cooling rate while subjected to the non-contact ultrasonic stimulation (0.5 MPa @ 165 kHz) provided by an induction coil located within the 200 mm (~8-inch) bore of a 20-T Bitter resistive magnet.

  10. Fos expression at the cerebellum following non-contact arousal and mating behavior in male rats

    Science.gov (United States)

    Manzo, Jorge; Miquel, Marta; Toledo, Rebeca; Mayor-Mar, Justo Abraham; Garcia, Luis I.; Aranda-Abreu, Gonzalo E.; Caba, Mario; Hernandez, Maria Elena

    2010-01-01

    The cerebellum is considered a center underlying fine movements, cognition, memory and sexual responses. The latter feature led us to correlate sexual arousal and copulation in male rats with neural activity at the cerebellar cortex. Two behavioral paradigms were used in this investigation: the stimulation of males by distant receptive females (non-contact sexual stimulation), and the execution of up to three consecutive ejaculations. The vermis area of the cerebellum was removed following behavioral experiments, cut into sagittal sections, and analyzed with Fos immunohistochemistry to determine neuronal activation. At the mid-vermis region (sections from the midline to 0.1 mm laterally), non-contact stimulation significantly increased the activity of granule neurons. The number of activated cells increased in every lobule, but lobules 1 and 6 to 9 showed the greatest increment. In sexual behavior tests, males reaching one ejaculation had a high number of activated neurons similar to those counted after non-contact stimulation. However, two or three consecutive ejaculations showed a smaller number of Fos-ir cells. In contrast to the mid-vermis region, sections farthest from the midline (0.1 to 0.9 mm laterally) revealed that only lobule 7 expressed activated neurons. These data suggest that a well-delineated group of granule neurons have a sexual biphasic response at the cerebellar vermis, and that Fos in them is under an active degradation mechanism. Thus, they participate as a neural substrate for male rat sexual responses with an activation-deactivation process corresponding with the sensory stimulation and motor performance occurring during copulation. PMID:17936859

  11. Non-contact metrology of aspheric surfaces based on MWLI technology

    Science.gov (United States)

    Berger, G.; Petter, J.

    2013-09-01

    A non-contact optical scanning metrology solution measuring aspheric surfaces is presented, which is based on multi wavelength interferometry (MWLI). The technology yields high density 3D data in short measurement times (including set up time) and provides high, reproducible form measurement accuracy. It measures any asphere without restrictions in terms of spherical departures. In addition, measurement of a large variety of special optics is enabled, such as annular lenses, segmented optics, optics with diffractive steps, ground optics, optics made of opaque and transparent materials, and small and thin optics (e.g. smart phone lenses). The measurement instrument can be used under production conditions.

  12. A non-contact mine pressure evaluation method by electromagnetic radiation

    Science.gov (United States)

    Wang, Enyuan; He, Xueqiu; Liu, Xiaofei; Li, Zhonghui; Wang, Chao; Xiao, Dong

    2011-10-01

    An electromagnetic radiation evaluation method for the relative stress state of coal bed under stress was proposed in this paper. The stress distribution of mine roadway or working face, as well as high stress zone or stress gradient zone, was analyzed by the method. The main advantages of the technique are its characteristics of non-contact, orientability, and regional monitoring. Correlation analysis of electromagnetic radiation with relative stress was carried out in coal mines and tunnels. The results indicate that the electromagnetic radiation technology has a wide application prospect in the evaluation of mine pressure.

  13. A non-contact complete knee dislocation with popliteal artery disruption, a rare martial arts injury.

    Science.gov (United States)

    Viswanath, Y K; Rogers, I M

    1999-09-01

    Complete knee dislocation is a rare injury and an associated incidence of popliteal artery damage ranges from 16-60% of cases. It occurs commonly in road traffic accidents and in high velocity trauma where significant contact remains as the usual mode of injury. We describe a rare case of non-contact knee dislocation with popliteal artery injury sustained while practising Aikido, a type of martial art. This patient successfully underwent closed reduction of the knee with an emergency vein bypass graft. Similar injury in association with Aikido has not been described in the English literature previously. Various martial art injuries are briefly discussed and safety recommendations made.

  14. Non-contact 3D fingerprint scanner using structured light illumination

    Science.gov (United States)

    Troy, Mike; Hassebrook, Laurence; Yalla, Veeraganesh; Daley, Raymond

    2011-03-01

    As crime prevention and national security remain a top priority, requirements for the use of fingerprints for identification continue to grow. While the size of fingerprint databases continues to expand, new technologies that can improve accuracy and ultimately matching performance will become more critical to maintain the effectiveness of the systems. FlashScan3D has developed non-contact, fingerprint scanners based on the principles of Structured Light Illumination (SLI) that capture 3Dimensional data of fingerprints quickly, accurately and independently of an operator. FlashScan3D will present findings from various research projects performed for the US Army and the Department of Homeland Security.

  15. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography

    Directory of Open Access Journals (Sweden)

    Buj C.

    2015-09-01

    Full Text Available A very fast innovative holographic off-axis non-contact detection method for Photoacoustic Tomography (PAT is introduced. It overcomes the main problems of most state-of-the-art photoacoustic imaging approaches that are long acquisition times and the requirement of acoustic contact. In order to increase the acquisition speed significantly, the surface displacements of the object, caused by the photoacoustic pressure waves, are measured interferometrically in two dimensions. Phase alterations in the observed speckle field are used to identify changes in the object’s topography. A sampling rate of up to 80 MHz is feasible, which reduces the occurrence of motion artefacts.

  16. Acute Compartment Syndrome after Non-Contact Peroneus Longus Muscle Rupture.

    Science.gov (United States)

    Merriman, Jarrad; Villacis, Diego; Kephart, Curtis; Yi, Anthony; Romano, Russ; Hatch, George F Rick

    2015-12-01

    This case demonstrates a rare variation in the pattern of injury and the presentation of acute lateral compartment syndrome of the leg. Although uncommon, lateral compartment syndrome of the leg after an ankle inversion leading to peroneus longus muscle rupture has been previously documented. This case was unusual because there was no overt ankle injury and the patient was able to continue physical activity, in spite of a significant rupture of the peroneus longus muscle that was determined later. This case highlights the necessary vigilance clinicians must maintain when assessing non-contact injuries in patients with possible compartment syndrome.

  17. 燃气管道阴极保护在线数据监测管理系统探讨%Exploration of on -Line Monitoring and Assessment System for Cathodic Protection of Gas Pipelines

    Institute of Scientific and Technical Information of China (English)

    郝君第

    2012-01-01

    For the lack of gas pipeline conventional cathodic protection method, one kind of gas transmission and dis- tribution pipeline cathodic protection system on line was introduced. The system mainly included four units of the field measurement equipment and data acquisition unit, data communication and transmission unit, a data processing unit, and WEB release unit module. The system in Europe got a better development and can effectively monitor and control the gas pipeline cathodic protection.%针对燃气管道常规阴极保护方法的不足,介绍一种燃气输配管线在线阴极保护系统。整个系统主要包括现场测量设备及数据采集单元、数据通信和传输单元、数据处理单元、WEB发布单元等四个模块单元。该系统在欧洲得到较好的发展,能够有效监控燃气管道阴极保护情况。

  18. Non-contact measurements of water jet spreading width with a laser instrument

    Science.gov (United States)

    Funami, Yuki; Hasuya, Ryo; Tanabe, Kotaro; Nakanishi, Yuji

    2016-08-01

    Jet spreading width is one of the important characteristics of water jets discharging into the air. Many researchers have dealt with measuring this width, and contact measuring methods on the water jet surface were employed in a lot of the cases. In order to avoid undesirable effects caused by the contact on the jet surface, we introduce non-contact measuring methods with a laser instrument to the measurements of jet spreading width. In measurements, a transmitter emits sheet-like laser beam to a receiver. The water jet between the transmitter and the receiver interrupts the laser beam and makes a shadow. The minimum and maximum values of the shadow width are measured. In addition, pictures of the water jet are taken with a scale, and the shadow width is measured from the pictures. The experiments on various needle strokes were performed. Three kinds of width consistent with the jet structure were obtained. In the results, it can be concluded that our non-contact measuring methods are feasible. The data of jet spreading widths and jet taper were obtained and are useful for future applications.

  19. Features of the non-contact carotid pressure waveform: Cardiac and vascular dynamics during rebreathing

    Science.gov (United States)

    Casaccia, S.; Sirevaag, E. J.; Richter, E. J.; O'Sullivan, J. A.; Scalise, L.; Rohrbaugh, J. W.

    2016-10-01

    This report amplifies and extends prior descriptions of the use of laser Doppler vibrometry (LDV) as a method for assessing cardiovascular activity, on a non-contact basis. A rebreathing task (n = 35 healthy individuals) was used to elicit multiple effects associated with changes in autonomic drive as well as blood gases including hypercapnia. The LDV pulse was obtained from two sites overlying the carotid artery, separated by 40 mm. A robust pulse signal was obtained from both sites, in accord with the well-described changes in carotid diameter over the blood pressure cycle. Emphasis was placed on extracting timing measures from the LDV pulse, which could serve as surrogate measures of pulse wave velocity (PWV) and the associated arterial stiffness. For validation purposes, a standard measure of pulse transit time (PTT) to the radial artery was obtained using a tonometric sensor. Two key measures of timing were extracted from the LDV pulse. One involved the transit time along the 40 mm distance separating the two LDV measurement sites. A second measure involved the timing of a late feature of the LDV pulse contour, which was interpreted as reflection wave latency and thus a measure of round-trip travel time. Both LDV measures agreed with the conventional PTT measure, in disclosing increased PWV during periods of active rebreathing. These results thus provide additional evidence that measures based on the non-contact LDV technique might provide surrogate measures for those obtained using conventional, more obtrusive assessment methods that require attached sensors.

  20. A Case of Non-Contact Lens related Acanthamoeba keratitis in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohamed Kamel, A. G.

    2005-01-01

    Full Text Available Acanthamoeba is a ubiquitous free-living amoeba and is responsible for an uncommon yet increasingly diagnosed keratitis in humans. Acanthamoeba keratitis is perhaps the most challenging ocular infection to manage successfully and it can result in permanently impaired vision or blindness. Although contact lens use is the principal risk factor, about 10% of cases occur following trauma and exposure to contaminated soil or water. Cases of Acanthamoeba keratitis involving contact lens wearers have previously been reported in Malaysia but this is the first time, a non-contact lens relatedAcanthamoeba keratitis is reported. The case involved a 28 year old Indonesian male construction worker who had a trauma of the right eye. While working his eye was struck by some sand and dust particles and he quickly washed his eye with water from an open tank at the construction site. He then experienced pain, redness, glaring and blurring of vision of the right eye. The diagnosis was missed at the initial presentation but subsequent culture of the corneal scraping demonstrated Acanthamoeba as the aetiological agent. The history, clinical findings, diagnosis and treatment of non-contact lens related Acanthamoeba keratitis are briefly discussed in this communication. We hope to create awareness especially among the medical and paramedical staff about the existence of this infection in the country and fully support the consideration of Acanthamoeba keratitis as part of the differential diagnosis of most cases of presumed microbial keratitis.

  1. Performance of Magnetic-Superconductor Non-Contact Harmonic Drive for Cryogenic Space Applications

    Directory of Open Access Journals (Sweden)

    Jose Luis Perez-Diaz

    2015-07-01

    Full Text Available Harmonic drives are profusely used in aerospace mainly because of their compactness and large reduction ratio. However, their use in cryogenic environments is still a challenge. Lubrication and fatigue are non-trivial issues under these conditions. The objective of the Magnetic-Superconductor Cryogenic Non-contact Harmonic Drive (MAGDRIVE project, funded by the EU Space FP7, is to design, build, and test a new concept of MAGDRIVE. Non-contact interactions among magnets, soft magnetic materials, and superconductors are efficiently used to provide a high reduction ratio gear that smoothly and naturally operates at cryogenic environments. The limiting elements of conventional harmonic drives (teeth, flexspline, and ball bearings are substituted by contactless mechanical components (magnetic gear and superconducting magnetic bearings. The absence of contact between moving parts prevents wear, lubricants are no longer required, and the operational lifetime is greatly increased. This is the first mechanical reducer in mechanical engineering history without any contact between moving parts. In this paper, the test results of a −1:20 inverse reduction ratio MAGDRIVE prototype are reported. In these tests, successful operation at 40 K and 10−3 Pa was demonstrated for more than 1.5 million input cycles. A maximum torque of 3 N·m and an efficiency of 80% were demonstrated. The maximum tested input speed was 3000 rpm, six times the previous existing record for harmonic drives at cryogenic temperatures.

  2. Non-contact assessment of electrical performance for rapidly sintered nanoparticle silver coatings through colorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cherrington, M.; Claypole, T.C.; Gethin, D.T. [Welsh Centre for Printing and Coating, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom); Worsley, D.A. [SPECIFIC, College of Engineering, Swansea University, Baglan Bay Innovation Centre, Central Avenue, Baglan Energy Park, Port Talbot, SA12 7AX (United Kingdom); Deganello, D., E-mail: d.deganello@swansea.ac.uk [Welsh Centre for Printing and Coating, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2012-11-01

    The color change during the ultrafast near-infrared sintering process of a nanoparticle silver ink has been correlated to its electrical performance through colorimetry using the CIELAB industry standard. Nanoparticle silver ink films, deposited over a flexible polyethylene terephthalate substrate, presented significant shifting in the a* and b* color coordinates during sintering, exhibiting the best conductivity with an a* coordinate of approximately 0 and a b* coordinate of approximately + 10. This color change has been associated with the Lorenz-Mie theory of electromagnetic scattering. This indirect measurement technique is potentially a breakthrough technology for fast in-line non-contact characterization of the drying and sintering process of nanoparticle conductive inks for use in large area roll-to-roll processing of printed electronics. - Highlights: Black-Right-Pointing-Pointer Color change of a nanoparticle silver coating was measured during sintering Black-Right-Pointing-Pointer Color change was correlated to the electrical performance of the coating. Black-Right-Pointing-Pointer Potential in-line non-contact measurement method for roll-to-roll printed electronics.

  3. A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves.

    Science.gov (United States)

    Harb, M S; Yuan, F G

    2015-08-01

    A rapid, fully non-contact, hybrid system which encompasses an air-coupled transducer (ACT) and a laser Doppler vibrometer (LDV) is presented for profiling A0 Lamb wave dispersion of an isotropic aluminum plate. The ACT generates ultrasonic pressure incident upon the surface of the plate. The pressure waves are partially refracted into the plate. The LDV is employed to measure the out-of-plane velocity of the excited Lamb wave mode at some distances where the Lamb waves are formed in the plate. The influence of the ACT angle of incidence on Lamb wave excitation is investigated and Snell's law is used to directly compute Lamb wave dispersion curves including phase and group velocity dispersion curves in aluminum plates from incident angles found to generate optimal A0 Lamb wave mode. The measured curves are compared to results obtained from a two-dimensional (2-D) Fast Fourier transform (FFT), Morlet wavelet transform (MWT) and theoretical predictions. It was concluded that the experimental results obtained using Snell's law concept are well in accordance with the theoretical solutions. The high degree of accuracy in the measured data with the theoretical results proved a high sensitivity of the air-coupled and laser ultrasound in characterizing Lamb wave dispersion in plate-like structures. The proposed non-contact hybrid system can effectively characterize the dispersive relation without knowledge of neither the materials characteristics nor the mathematical model.

  4. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Science.gov (United States)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland

    2016-07-01

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  5. Design of novel non-contact multimedia controller for disability by using visual stimulus.

    Science.gov (United States)

    Pan, Jeng-Shyang; Lo, Chi-Chun; Tsai, Shang-Ho; Lin, Bor-Shyh

    2015-12-01

    The design of a novel non-contact multimedia controller is proposed in this study. Nowadays, multimedia controllers are generally used by patients and nursing assistants in the hospital. Conventional multimedia controllers usually involve in manual operation or other physical movements. However, it is more difficult for the disabled patients to operate the conventional multimedia controller by themselves; they might totally depend on others. Different from other multimedia controllers, the proposed system provides a novel concept of controlling multimedia via visual stimuli, without manual operation. The disabled patients can easily operate the proposed multimedia system by focusing on the control icons of a visual stimulus device, where a commercial tablet is used as the visual stimulus device. Moreover, a wearable and wireless electroencephalogram (EEG) acquisition device is also designed and implemented to easily monitor the user's EEG signals in daily life. Finally, the proposed system has been validated. The experimental result shows that the proposed system can effectively measure and extract the EEG feature related to visual stimuli, and its information transfer rate is also good. Therefore, the proposed non-contact multimedia controller exactly provides a good prototype of novel multimedia controlling scheme.

  6. Microfluidic impact printer with interchangeable cartridges for versatile non-contact multiplexed micropatterning.

    Science.gov (United States)

    Ding, Yuzhe; Huang, Eric; Lam, Kit S; Pan, Tingrui

    2013-05-21

    Biopatterning has been increasingly used for well-defined cellular microenvironment, patterned surface topology, and guided biological cues; however, it meets challenges on biocompatibility, thermal and chemical sensitivity, as well as limited availability of reagents. In this paper, we aim at combining the desired features from non-contact inkjet printing and dot-matrix impact printing to establish a versatile multiplexed micropatterning platform, referred to as Microfluidic Impact Printer (MI-Printer), for emerging biomedical applications. Using this platform, we can achieve the distinct features of no cross-contamination, sub-microliter ink loading with a minimal dead volume, high-throughput printing, biocompatible non-contact processing, sequential patterning with self-alignment, wide adaptability for complex media (e.g., cell suspension or colloidal solutions), interchangeable/disposable cartridge design, and simple assembly and configuration, all highly desirable towards laboratory-based research and development. Specifically, the printing resolution of the MI-printer platform has been experimentally characterized and theoretically analysed. Optimal printing resolution of 80 μm has been repeatedly obtained. Furthermore, two useful functions of the MI-printer, multiplexed printing and combinatorial printing, have been experimentally demonstrated with less than 10 μm misalignment. Moreover, molecular and biological patterning, utilizing the multiplexed and combinatorial printing, has been implemented to illustrate the utility of this versatile printing technique for emerging biomedical applications.

  7. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Meyers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The Thermal Characterization Test of NASAs 12.5-kW Hall thruster is being completed. This thruster is being developed to support of a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of this test, an infrared-based, non-contact thermal imaging system was developed to measure Hall thruster surfaces that are exposed to high voltage or harsh environment. To increase the accuracy of the measurement, a calibration array was implemented, and a pilot test was performed to determine key design parameters for the calibration array. The raw data is analyzed in conjunction with a simplified thermal model of the channel to account for reflection. The reduced data will be used to refine the thruster thermal model, which is critical to the verification of the thruster thermal specifications. The present paper will give an overview of the decision process that led to identification of the need for a non-contact temperature diagnostic, the development of said diagnostic, the measurement results, and the simplified thermal model of the channel.

  8. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity

    Science.gov (United States)

    Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O’Donnell, Matthew

    2016-12-01

    Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.

  9. A Non-Contact Pulse Automatic Positioning Measurement System for Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Ying-Yun Chen

    2015-04-01

    Full Text Available This study is to construct a non-contact pulse automatic positioning measurement system for Traditional Chinese Medicine (TCM using optical triangulation measurements. The system consists of a linear laser, a CMOS image sensor and image analysis software. The linear laser is projected on the pulse beat location on the wrists; the CMOS image sensor records the process and the software analyzes the images. The program mainly uses the optical centroid and fast Fourier transform (FFT principles to calculate centroid changes (pulse amplitude changes from the images taken by the CMOS image sensor. It returns the positions of cun, guan and chi pulses automatically in terms of the amplitudes and the signals are then transformed from the time domain (time-amplitude into the frequency domain (frequency-amplitude via FFT to obtain the waveforms and frequencies of the cun, guan and chi pulses. It successfully extracts the data from the TCM pulse reading and can be a medical aid system for TCM. Combining the advantages of optical measurement and computer automation, this system provides a non-contact, easy to operate, fast in detection and low-cost equipment design.

  10. Thermal isolation of microchip reaction chambers for rapid non-contact DNA amplification

    Science.gov (United States)

    Easley, Christopher J.; Humphrey, Joseph A. C.; Landers, James P.

    2007-09-01

    This paper describes further optimization of a non-contact, infrared-mediated system for microchip DNA amplification via the polymerase chain reaction (PCR). The optimization is focused on heat transfer modeling and subsequent fabrication of thermally isolated reaction chambers in glass devices that are uniquely compatible with non-contact thermal control. With a thermal conductivity approximately an order of magnitude higher than many plastics, glass is not the obvious substrate of choice for rapid thermal cycling in microfluidic chambers, yet it is preferable in terms of optical clarity, solvent compatibility and chemical inertness. Based on predictions of a lumped capacity heat transfer analysis, it is shown here that post-bonding, patterned etching of surrounding glass from microfluidic reaction chambers provides enhancements as high as 3.6- and 7.5-fold in cooling and heating rates, respectively, over control devices with the same chamber designs. These devices are then proven functional for rapid DNA amplification via PCR, in which 25 thermal cycles are completed in only 5 min in thermally isolated PCR chambers of 270 nL volume, representing the fastest static PCR in glass devices reported to date. Amplification of the 500-base pair fragment of λ-DNA was confirmed by capillary gel electrophoresis. In addition to rapid temperature control, the fabrication scheme presented, which is compatible with standard photolithography and wet etching techniques, provides a simple alternative for general thermal management in glass microfluidic devices without metallization.

  11. A review of non-contact, low-cost physiological information measurement based on photoplethysmographic imaging.

    Science.gov (United States)

    Liu, He; Wang, Yadong; Wang, Lei

    2012-01-01

    In recent decades, there has been increasing interest in low-cost, non-contact and pervasive methods for measuring physiological information, such as heart rate (HR), respiratory rate, heart rate variability (HRV) and oxyhemoglobin saturation. The conventional methods including wet adhesive Ag/AgCl electrodes for HR and HRV, the capnograph device for respiratory status and pulse oximetry for oxyhemoglobin saturation provide excellent signals but are expensive, troublesome and inconvenient. A method to monitor physiological information based on photoplethysmographic imaging offers a new means for health monitoring. Blood volume can be indirectly assessed in terms of blood velocity, blood flow rate and blood pressure, which, in turn, can reflect changes in physiological parameters. Changes in blood volume can be determined from the spectra of light reflected from or transmitted through body tissues. Images of an area of the skin surface are consecutively captured with the color camera of a computer or smartphone and, by processing and analyzing the light signals, physiological information such as HR, respiratory rate, HRV and oxyhemoglobin saturation can be acquired. In this paper, we review the latest developments in using photoplethysmographic imaging for non-contact health monitoring and discuss the challenges and future directions for this field.

  12. An infrared-driven flexible pyroelectric generator for non-contact energy harvester.

    Science.gov (United States)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-21

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm(-2) near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.

  13. A novel nano-scale non-contact temperature measurement technique for crystalline materials.

    Science.gov (United States)

    Wu, Xiaowei; Hull, Robert

    2012-11-23

    A new high spatial resolution non-contact temperature measurement technique (thermal scanning electron microscopy, ThSEM) is demonstrated. It employs temperature dependent thermal diffuse scattering in electron backscatter diffraction (EBSD) in a scanning electron microscope (SEM). Unlike conventional scanning thermal microscopy, which uses contact probes, ThSEM is a non-contact method. In contrast to optical temperature mapping techniques, ThSEM does not have the spatial resolution limitation that arises from the optical wavelength and theoretically can reach a resolution of <10 nm. The hardware setup is very similar to the EBSD system in an SEM, which can make the integration of temperature mapping into an SEM relatively straightforward. Moreover, multiple signals or contrast mechanisms, such as temperature distributions, grain orientation maps, topographic images and elemental maps can be obtained from the same sample area depending on the specific SEM capability. This technique thus adds a new channel-the temperature signal-to the collection of existing SEM signals.

  14. NON-CONTACT ULTRASONIC TREATMENT OF METALS IN A MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Wilgen, John B [ORNL; Kisner, Roger A [ORNL; Jaramillo, Roger A [ORNL; Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL

    2007-01-01

    A high-field EMAT (Electromagnetic Acoustical Transducer) has been used for non-contact ultrasonic processing of aluminum samples during solidification. The magnetic field for the EMAT is supplied by a high-field (20 Tesla) resistive magnet, and the current is provided by an induction coil. This resulted in a highly efficient EMAT that delivered 0.5 MPa of acoustic drive to the surface of the sample while coupling less than 100 watts of incidental induction heating. The exceptionally high energy efficiency of the electromagnetic transducer is due to the use of high magnetic field, which reduces the current needed to achieve the same acoustic pressure. In the initial experiments, aluminum samples of A356 alloy were heated to the liquid state and allowed to solidify at a controlled cooling rate while subjected to the non-contact ultrasonic stimulation (0.5 MPa @ 165 kHz) provided by an induction coil located within the bore of a 20-T resistive magnet

  15. On-Line Metrology with Conoscopic Holography: Beyond Triangulation

    Science.gov (United States)

    Álvarez, Ignacio; Enguita, Jose M.; Frade, María; Marina, Jorge; Ojea, Guillermo

    2009-01-01

    On-line non-contact surface inspection with high precision is still an open problem. Laser triangulation techniques are the most common solution for this kind of systems, but there exist fundamental limitations to their applicability when high precisions, long standoffs or large apertures are needed, and when there are difficult operating conditions. Other methods are, in general, not applicable in hostile environments or inadequate for on-line measurement. In this paper we review the latest research in Conoscopic Holography, an interferometric technique that has been applied successfully in this kind of applications, ranging from submicrometric roughness measurements, to long standoff sensors for surface defect detection in steel at high temperatures. PMID:22399984

  16. Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

    2007-10-01

    The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

  17. A Brief Introduction of On-Line Analytical Processing Based On Data Warehouse of Gas Card Data%面向加油卡数据仓库的联机分析处理的探讨

    Institute of Scientific and Technical Information of China (English)

    陆瑞明

    2015-01-01

    对于石油销售企业来说,每天企业下属各加油站加油卡的使用都在不断产生交易数据,如何对这些海量数据进行有效挖掘处理成了目前业界的研究热点。本文则为关于加油卡大数据应用提供了一种业界最流行的方法:首先搭建一个数据存储系统,称为数据仓库,能存储海量历史数据;然后,在数据仓库的基础上,引入联机分析处理(OLAP),根据业务部门的不同需求给出各自所需的结果,也供企业高层管理人员进行决策使用。%Transaction data from gas cards are being created and collected continuously everyday at every gas station, which makes it very important to study on how to manage those massive data efficiently. This paper proposes a popular application of big data analysis on massive gas card transaction data: at first, building a data storage system, called Data Warehouse, to store large amounts of historical transaction data; secondly, introducing the On-Line Analytical Processing (OLAP) based on the Data Warehouse. OLAP allows users to extract different kinds of information from the raw data that meets their own needs for either research studies or enterprise decision making purpose.

  18. Inverse analysis of water profile in starch by non-contact photopyroelectric method

    Science.gov (United States)

    Frandas, A.; Duvaut, T.; Paris, D.

    2000-07-01

    The photopyroelectric (PPE) method in a non-contact configuration was proposed to study water migration in starch sheets used for biodegradable packaging. A 1-D theoretical model was developed, allowing the study of samples having a water profile characterized by an arbitrary continuous function. An experimental setup was designed or this purpose which included the choice of excitation source, detection of signals, signal and data processing, and cells for conditioning the samples. We report here the development of an inversion procedure allowing for the determination of the parameters that influence the PPE signal. This procedure led to the optimization of experimental conditions in order to identify the parameters related to the water profile in the sample, and to monitor the dynamics of the process.

  19. Non-contact wafer thickness measurement of capacitance sensor circuit based on CAV424

    Directory of Open Access Journals (Sweden)

    Yan You Jun

    2016-01-01

    Full Text Available Non-contact wafer thickness measurement with the CAV424 capacitance sensor special integrated circuit and arc pole plate capacitor sensor has good stability and linearity under low capacity of the bottom of sensor and low&entity; C condition. This method has a high technical advantages and practical value. Two capacitance sensors Cb, Ca measurement spacing 4mm install at the same axis which constitutes the size condition for measuring thickness. The static capacity of Ca and Cb is a constant value. The capacity of Cb and Ca will change when the silicon wafer is involved. This change is checked by the CAV424 capacitive sensor which has better linearity and higher thickness resolution.

  20. A non-contact 3D method to characterize the surface roughness of castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Hansen, Hans Nørgaard

    2013-01-01

    A non-contact technique using a 3D optical system was used to measure the surface roughness of two selected standard surface roughness comparators used in the foundry industry. Profile and areal analyses were performed using scanning probe image processor (SPIP) software. The results show...... that the surface quality of the standard comparators was successfully evaluated and it was established that the areal parameters are the most informative for cast components. The results from the surface comparators were compared with the results from a stylus instrument. Sand cast components were also evaluated...... and the surface roughness parameter (Sa) values were compared with those of the standards. Sa parameter suffices for the evaluation of casting surface texture. The S series comparators showed a better description of the surface of castings after shot blasting than the A series....

  1. Atomic-scale non-contact AFM studies of alumina supported nanoparticles

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Meinander, Kristoffer; Simonsen, Søren Bredmose

    ATOMIC-SCALE NON-CONTACT ATOMIC FORCE STUDIES OF ALUMINA SUPPORTED NANOPARTICLES Thomas N. Jensen, Kristoffer Meinander, Flemming Besenbacher and Jeppe V. Lauritsen Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus C, Denmark Heterogeneous catalysis plays a crucial role...... in the society today, both as the means for environmental protection and as the backbone technology for most of the chemical industries. Among important processes based on heterogeneous catalysis are biomass conversion, steam reforming of methane and the synthesis of synthetic fuel from hydrocarbons, coal...... materials is a prerequisite for the synthesis of more sintering stable catalysts and the realizations of nanocatalysts implementing catalyst particles with a tailored size and morphology. In the last two decades the atomic force microscope (AFM) has become one of the premier tools for studying surfaces...

  2. Non-contact wide-field hemodynamic imaging reveals the inverted jugular venous pulse waveform

    CERN Document Server

    Amelard, Robert; Greaves, Danielle K; Pfisterer, Kaylen J; Leung, Jason; Clausi, David A; Wong, Alexander

    2016-01-01

    Cardiovascular disease is the leading cause of death globally. Cardiovascular monitoring is important to prevent diseases from progressing. The jugular venous pressure waveform (JVP) is able to provide important information about cardiac health. Factors such as mechanical deformations, electric abnormalities, and irregular external forces change the fundamental shape of the JVP. However, current methods for measuring the JVP require invasive catheter insertion, or subjective qualitative visual inspection of the patient's jugular pulse. Thus, JVP are not routinely performed, and are scheduled only when there is probable cause for catheterisation. Non-invasive monitoring methods would benefit JVP monitoring. Recently, there has been a surge in focus on photoplethysmographic imaging (PPGI) systems. These systems are non-contact wide-field imaging systems able to assess blood pulse waveforms across a large area of the body. However, PPGI has not been previously explored for measuring jugular venous pulse. In this...

  3. Non-contact gears: II. Casimir torque between concentric corrugated cylinders for the scalar case

    CERN Document Server

    Cavero-Pelaez, Ines; Parashar, Prachi; Shajesh, K V

    2008-01-01

    The Casimir interaction between two concentric corrugated cylinders provides the mechanism for non-contact gears. To this end, we calculate the Casimir torque between two such cylinders, described by $\\delta$-potentials, which interact through a scalar field. We derive analytic expressions for the Casimir torque for the case when the corrugation amplitudes are small in comparison to the corrugation wavelengths. We derive explicit results for the Dirichlet case, and exact results for the weak coupling limit, in the leading order. The results for the corrugated cylinders approach the corresponding expressions for the case of corrugated parallel plates in the limit of large radii of cylinders (relative to the difference in their radii) while keeping the corrugation wavelength fixed.

  4. Non-contact in vivo measurement of ocular microtremor using laser speckle correlation metrology.

    Science.gov (United States)

    Kenny, E; Coakley, D; Boyle, G

    2014-07-01

    Ocular microtremor (OMT) is a small involuntary eye movement present in all subjects. In this paper we present the results of in vivo OMT measurement using a novel non-contact laser speckle technique. OMT signals have not previously been measured from the sclera using this laser speckle correlation technique. To verify the system's ability to record eye movements, it is first tested using a large angle eye rotation. Next, the system is tested with a group of 20 subjects and OMT parameters are extracted. The results of OMT measurements gave a mean frequency of 78 ± 3.86 Hz and peak-to-peak amplitude of 21.42 ± 7.01 µrad, these values are consistent with known values from eye-contacting methods.

  5. Non-contact direct measurement of the magnetocaloric effect in thin samples.

    Science.gov (United States)

    Cugini, F; Porcari, G; Solzi, M

    2014-07-01

    An experimental setup, based on a non-contact temperature sensor, is proposed to directly measure the magnetocaloric effect of samples few micrometers thick. The measurement of the adiabatic temperature change of foils and ribbons is fundamental to design innovative devices based on magnetocaloric thin materials or micro-structuring bulk samples. The reliability of the proposed setup is demonstrated by comparing the measurements performed on a bulk gadolinium sample with the results obtained by an experimental setup based on a Cernox bare chip thermoresistance and by in-field differential scanning calorimetry. We show that this technique can measure the adiabatic temperature variation on gadolinium sheets as thin as 27 μm. Heat transfer simulations are added to describe the capability of the presented technique.

  6. Non-contact direct measurement of the magnetocaloric effect in thin samples

    Energy Technology Data Exchange (ETDEWEB)

    Cugini, F., E-mail: francesco.cugini1@difest.unipr.it; Porcari, G.; Solzi, M. [Department of Physics and Earth Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma (Italy)

    2014-07-15

    An experimental setup, based on a non-contact temperature sensor, is proposed to directly measure the magnetocaloric effect of samples few micrometers thick. The measurement of the adiabatic temperature change of foils and ribbons is fundamental to design innovative devices based on magnetocaloric thin materials or micro-structuring bulk samples. The reliability of the proposed setup is demonstrated by comparing the measurements performed on a bulk gadolinium sample with the results obtained by an experimental setup based on a Cernox bare chip thermoresistance and by in-field differential scanning calorimetry. We show that this technique can measure the adiabatic temperature variation on gadolinium sheets as thin as 27 μm. Heat transfer simulations are added to describe the capability of the presented technique.

  7. Non contact probing of interfacial stiffnesses between two plates by Zero-Group Velocity Lamb modes

    CERN Document Server

    Mezil, Sylvain; Royer, Daniel; Prada, Claire

    2014-01-01

    A non contact technique using Zero-Group Velocity (ZGV) Lamb modes is developed to probe the bonding between two solid plates coupled by a thin layer. The layer thickness is assumed to be negligible compared with the plate thickness and the acoustic wavelength. The coupling layer is modeled by a normal and a tangential spring to take into account the normal and shear interfacial stresses. Theoretical ZGV frequencies are determined for a symmetrical bi-layer structure and the effect of the interfacial stiffnesses on the cut-off and ZGV frequencies are evaluated. Experiments are conducted with two glass plates bonded by a drop of water, oil, or salol, leading to a few micrometer thick layer. An evaluation of normal and shear stiffnesses, is obtained using ZGV resonances locally excited and detected with laser ultrasonic techniques.

  8. Non-contact physiological signal detection using continuous wave Doppler radar.

    Science.gov (United States)

    Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye

    2014-01-01

    The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system.

  9. Non-contact measurement of pulse wave velocity using RGB cameras

    Science.gov (United States)

    Nakano, Kazuya; Aoki, Yuta; Satoh, Ryota; Hoshi, Akira; Suzuki, Hiroyuki; Nishidate, Izumi

    2016-03-01

    Non-contact measurement of pulse wave velocity (PWV) using red, green, and blue (RGB) digital color images is proposed. Generally, PWV is used as the index of arteriosclerosis. In our method, changes in blood volume are calculated based on changes in the color information, and is estimated by combining multiple regression analysis (MRA) with a Monte Carlo simulation (MCS) model of the transit of light in human skin. After two pulse waves of human skins were measured using RGB cameras, and the PWV was calculated from the difference of the pulse transit time and the distance between two measurement points. The measured forehead-finger PWV (ffPWV) was on the order of m/s and became faster as the values of vital signs raised. These results demonstrated the feasibility of this method.

  10. Unobtrusive Non-Contact Detection of Arrhythmias using a “Smart” Bed

    Directory of Open Access Journals (Sweden)

    Ch. Brueser

    2011-01-01

    Full Text Available We present an instrumented bed for unobtrusive, non-contact monitoring of cardiac and respiratory activity. The system presented here is based on the principle of ballistocardiography (BCG, and measures cardiopulmonary vibrations of the body by means of an electromechanical foil (EMFi attached to the mattress. Using our system, a clinical study with 13 participants was conducted to assess the BCG’s ability to distinguish atrial fibrillations from normal sinus rhythms. By computing a time-frequency representation of the recorded signals based on parametric autoregressive estimators, we can show clear qualitative differences between normal and arrhythmic BCG episodes. The same distinctive features could also be observed when applying our method to a simultaneously recorded reference ECG. Our results suggest that ECG and BCG both contain the same basic information with respect to the presence of atrial fibrillations, and that a bed-mounted BCG sensor can indeed be used to detect atrial fibrillations.

  11. On the control of bistability in non-contact mode AFM using modulated time delay

    Directory of Open Access Journals (Sweden)

    Kirrou I.

    2014-01-01

    Full Text Available We study the control of bistability in non-contact mode AFM using time delay with modulated feedback gain. We consider that the tip-sample interaction force is described by Lennard-Jones potential and the equation of motion is modeled by single degree of freedom system. Perturbation analysis is performed to obtain the modulation equations of the slow dynamic. The influence of the modulated time delay on the nonlinear characteristic of the frequency response is analyzed and the evolution of the bistability region in the modulated time delay parameter plan is examined. Results show that modulation of the feedback gain can be used to reduce the amplitude of the microcanteliver response and to suppress the bistability regime in large region of the modulated delay parameter space. The analytical predictions are compared to numerical simulations for validation.

  12. Quantification of tip-broadening in non-contact atomic force microscopy with carbon nanotube tips

    DEFF Research Database (Denmark)

    Meinander, Kristoffer; Jensen, Thomas N.; Simonsen, Soren B.;

    2012-01-01

    Carbon nanotube terminated atomic force microscopy (AFM) probes have been used for the imaging of 5 nm wide surface supported Pt nanoclusters by non-contact (dynamic mode) AFM in an ultra-high vacuum. The results are compared to AFM measurements done with conventional Si-tips, as well...... as with transmission electron microscopy images, which give accurate measures for cluster widths. Despite their ideal aspect ratio, tip-broadening is concluded to be a severe problem even when imaging with carbon nanotube tips, which overestimates the cluster width by several times the nominal width of the nanotube...... tip. This broadening is attributed to a bending of the carbon nanotubes, and not to pure geometrical factors, which coincidentally results in a significant improvement for relative height measurements of tightly spaced high aspect ratio structures, as compared to what can be achieved...

  13. Multimodal non-contact photoacoustic and OCT imaging using a fiber based approach

    Science.gov (United States)

    Berer, T.; Leiss-Holzinger, E.; Hochreiner, A.; Bauer-Marschallinger, J.; Leitner, M.; Buchsbaum, A.

    2014-03-01

    In this paper we present multimodal non-contact photoacoustic and OCT imaging. Photoacoustic signals are acquired remotely on the surface of a specimen with a Mach-Zehnder interferometer. The interferometer is realized in a fiberoptic network using a fiber laser at 1550nm as source. In the same fiber-optic network a spectral-domain OCT system is realized. The OCT system utilizes a superluminescent diode at 1325nm as light source; imaging data are acquired using a spectrometer with an InGaAs line array. Light from the fiber laser and the superluminescent diode are multiplexed into one fiber and the same objective is used for both imaging modalities. Reflected light is demultiplexed and guided to the respective imaging systems. We demonstrate the photoacoustic and OCT imaging modalities on different phantom samples. Finally, we show multimodal imaging with both modalities simultaneously. The resulting photoacoustic and OCT images match perfectly.

  14. Multi-dimensional, non-contact metrology using trilateration and high resolution FMCW ladar.

    Science.gov (United States)

    Mateo, Ana Baselga; Barber, Zeb W

    2015-07-01

    Here we propose, describe, and provide experimental proof-of-concept demonstrations of a multidimensional, non-contact-length metrology system design based on high resolution (millimeter to sub-100 micron) frequency modulated continuous wave (FMCW) ladar and trilateration based on length measurements from multiple, optical fiber-connected transmitters. With an accurate FMCW ladar source, the trilateration-based design provides 3D resolution inherently independent of standoff range and allows self-calibration to provide flexible setup of a field system. A proof-of-concept experimental demonstration was performed using a highly stabilized, 2 THz bandwidth chirped laser source, two emitters, and one scanning emitter/receiver providing 1D surface profiles (2D metrology) of diffuse targets. The measured coordinate precision of <200 microns was determined to be limited by laser speckle issues caused by diffuse scattering of the targets.

  15. An infrared-driven flexible pyroelectric generator for non-contact energy harvester

    Science.gov (United States)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-01

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm-2 near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat

  16. Common mode noise cancellation for electrically non-contact ECG measurement system on a chair.

    Science.gov (United States)

    Keun Kim, Ko; Kyu Lim, Yong; Suk Park, Kwang

    2005-01-01

    Electrically non-contact ECG measurement system on a chair can be applied to a number of various fields for continuous health monitoring in daily life. However, the body is floated electrically for this system due to the capacitive electrodes and the floated body is very sensitive to the external noises or motion artifacts which affect the measurement system as the common mode noise. In this paper, the Driven-Seat-Ground circuit similar to the Driven-Right-Leg circuit is proposed to reduce the common mode noise. The analysis of this equivalent circuit is performed and the output signal waveforms are compared between with Driven-Seat-Ground and with capacitive ground. As the results, the Driven-Seat-Ground circuit improves significantly the properties of the fully capacitive ECG measurement system as the negative feedback.

  17. Characterization of non-contact torque transfer and switching system for superconducting flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, M., E-mail: m208005@sic.shibaura-it.ac.j [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Takeda, K. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Hasegawa, H.; Seino, H.; Nagashima, K. [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan); Murakami, M. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan)

    2010-11-01

    Superconducting flywheel energy storage system can store the energy for a long duration, in that the main body of a flywheel is placed in a vacuum chamber to minimize rotational loss, and is separated from a generation motor. The superconducting flywheel device need a non-contact system which can transfer the rotational torque without contact. A combination of two permanent magnets can transmit the power without contact. We calculated the torque forces and the field distributions of two types of magnetic arrays; repulsive type and Halbach type. Both magnetic circuits have respective inner and outer diameters of 61.5 and 144 mm and consist of eight poles of Fe-Nd-B permanent magnets 30 mm in thickness. We also studied the effects of the number of poles and the size on the transferable torque forces and found that a practical torque transfer and switching systems can be constructed with a combination of permanent magnetic circuits.

  18. Non-contact thickness measurement for ultra-thin metal foils with differential white light interferometry

    Institute of Scientific and Technical Information of China (English)

    Yanli Du(杜艳丽); Huimin Yan(严惠民); Yong Wu(吴勇); Xiaoqiang Yao(姚晓强); Yongjun Nie(聂永军); Baixuan Shi(施柏煊)

    2004-01-01

    A new differential white light interference technique for the thickness measurements of metal foil is presented. In this work, the differential white light system consists of two Michelson interferometers in tandem,and the measured reflective surfaces are the corresponding surfaces of metal foil. Therefore, the measuring result is only relative to the thickness but not the position of metal foil. The method is non-contact and non-destructive, it has the advantages of high accuracy, fast detection, and compact structure. Theoretical analysis and preliminary experimental verifications have shown that the technique can be used to measure the thickness of foil in the range of 1 to 80 μm with accuracy better than 0.08 μm.

  19. Non-contact optical sensor for detection of glucose concentration using a magneto-optic effect

    Science.gov (United States)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; García, Javier; Zalevsky, Zeev

    2016-03-01

    In this paper we aim to experimentally verify a speckle based technique for non-contact measurement of glucose concentration in blood stream while the vision for the final device aims to contain a single wristwatch-style device containing an AC (alternating) electro-magnet generated by a solenoid, a laser and a camera. The experiments presented in work are performed in-vitro in order to verify the effects that are responsible for the operation principle. When a glucose substance is inserted into a solenoid generating an alternating magnetic field it exhibits Faraday rotation which affects the temporal changes of the secondary speckle patterns distribution. The temporal frequency resulting from the AC magnetic field was found to have a lock-in amplification role which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  20. Investigation of human body potential measured by a non-contact measuring system.

    Science.gov (United States)

    Ichikawa, Norimitsu

    2016-12-07

    A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body's voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not.

  1. Non-contact Breath Motion Monitor ing System in Full Automation.

    Science.gov (United States)

    Sato, Isao; Nakajima, Masato

    2005-01-01

    It is said that sleep apnea syndrome is one of the main causes of airplane, train and car accidents. We have developed a non-contact breathing measurement system which diagnoses not only sleep apnea syndrome but also other sleep disorders. This system calculates the amount of the volume change and makes the movement of the outside of the body by the breath motion visible. If the patient is breathing abnormally, we are able to recognize the appearance of abnormality at a glance and know the amount of the volume change in that location. To verify the amount of the volume change, we compare the amount of ventilation measured with a spirometer to the amount of volume change measured with this system. As a result, there is a high correlation in the amount of the volume change and the amount of ventilation in any sleeping position.

  2. Non-contact and noise tolerant heart rate monitoring using microwave doppler sensor and range imagery.

    Science.gov (United States)

    Matsunag, Daichi; Izumi, Shintaro; Okuno, Keisuke; Kawaguchi, Hiroshi; Yoshimoto, Masahiko

    2015-01-01

    This paper describes a non-contact and noise-tolerant heart beat monitoring system. The proposed system comprises a microwave Doppler sensor and range imagery using Microsoft Kinect™. The possible application of the proposed system is a driver health monitoring. We introduce the sensor fusion approach to minimize the heart beat detection error. The proposed algorithm can subtract a body motion artifact from Doppler sensor output using time-frequency analysis. The body motion artifact is a crucially important problem for biosignal monitoring using microwave Doppler sensor. The body motion speed is obtainable from range imagery, which has 5-mm resolution at 30-cm distance. Measurement results show that the success rate of the heart beat detection is improved about 75% on average when the Doppler wave is degraded by the body motion artifact.

  3. COMPARISON AND ANALYSIS OF THREE DIFFERENT NON-CONTACTING FLAME TEMPERATURE FIELD MEASUREMENTS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A much better substitutional means is discussed to calculate the flame temperature field with the application of digital image processing technology.Three non-contacting temperature measurements are used and compared.Such as the traditional two-color temperature measurement,the CCD filtering two-color temperature measurement and the monochromatic temperature measurement.It is indicated that the CCD two-color temperature measurement is not a fully correct means because of its poor theoretical basis.The monochromatic temperature measurement acquires a relatively ideal temperature field distribution in spite of needing a reference temperature.It should be noted that the Abel transformation applied in the plasma diagnosis is for the first time introduced to solve the problem of three-dimensional flame brightness piling.

  4. Non-contact Measurement of Damaged External Tapered Thread Based on Linear Array CCD

    Science.gov (United States)

    He, F. J.; Zhang, R. J.; Du, Z. J.; Cui, X. M.

    2006-10-01

    The non-contact measurement of external tapered thread based on linear array CCD is presented to decrease the measuring error caused by local damage area contrast to the measurement with mechanical gauges. The thread is scanned by linear array CCD and the signal is processed by first order difference to obtain thread contour. For the thread with damage on tooth flank and deformation on generating line, the Hough transform and weighted least squares are adopted to reduce the local defects and to set up fitted thread contour equations that can reflect the real dimension. Then the dimensions can be calculated based on these equations according to the definition. The paper also presents the method to evaluate the local damage. Experiment shows that the method is suitable for the measurement of damaged thread.

  5. A non-contact complete knee dislocation with popliteal artery disruption, a rare martial arts injury

    Science.gov (United States)

    Viswanath, Y; Rogers, I

    1999-01-01

    Complete knee dislocation is a rare injury and an associated incidence of popliteal artery damage ranges from 16-60% of cases. It occurs commonly in road traffic accidents and in high velocity trauma where significant contact remains as the usual mode of injury. We describe a rare case of non-contact knee dislocation with popliteal artery injury sustained while practising Aikido, a type of martial art. This patient successfully underwent closed reduction of the knee with an emergency vein bypass graft. Similar injury in association with Aikido has not been described in the English literature previously. Various martial art injuries are briefly discussed and safety recommendations made.


Keywords: Aikido; knee dislocation; popliteal artery disruption; sports injury PMID:10616692

  6. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    Science.gov (United States)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  7. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    Science.gov (United States)

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  8. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line

    Directory of Open Access Journals (Sweden)

    Qiang Zhou

    2015-12-01

    Full Text Available A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  9. Non-contacting transfer of elastic energy into explosive simulants for dynamic property estimation

    Energy Technology Data Exchange (ETDEWEB)

    Greeney, Nathan S.; Strovink, Kurt M.; Scales, John A. [Physics Department, Colorado School of Mines, Golden, Colorado 80401 (United States); Jessop, Andrew M.; Stuart Bolton, J. [Ray W. Herrick Laboratories, Purdue University, West Lafayette, Indiana 47907-2099 (United States); Watson, Christopher C.; Adams, Douglas E. [Purdue Center for Systems Integrity, Purdue University, Lafayette, Indiana 47905 (United States)

    2014-05-21

    Non-contacting acoustical methods can be used to extract various material properties of liquid or solid samples without disturbing the sample. These methods are useful even in the lab since they do not involve coupling anything to the sample, which might change its properties. A forteriori, when dealing with potentially dangerous materials, non-contacting methods may be the only safe solutions to mechanical characterization. Here, we show examples of using laser ultrasound to remotely insonify and monitor the elastic properties of several granular explosive simulants. The relatively short near-infrared laser pulse length (a few hundred nanoseconds) provides a broad-band thermoelastic source of ultrasound; we intentionally stay in the thermoelastic regime to avoid damaging the material. Then, we use a scanning laser Doppler vibrometer to measure the ultrasonic response of the sample. LDV technology is well established and very sensitive at ultrasonic frequencies; atomic level motions can be measured with modest averaging. The resulting impulse response of the explosive simulant can be analyzed to determine decay rates and wave speeds, with stiffer samples showing faster wave speeds and lower decay rates. On the other hand, at the low-frequency end of the acoustic spectrum, we use an electronically phased array to couple into a freely suspended sample's normal modes. This allows us to gently heat up the sample (3 °C in just under 5 min, as shown with a thermal IR camera). In addition to the practical interest in making the sample more chemically visible through heat, these two measurements (low-frequency resonant excitation vs high-frequency wave propagation) bracket the frequency range of acoustic non-destructive evaluation methods available.

  10. Non-contact ultrasonic technique for Lamb wave characterization in composite plates.

    Science.gov (United States)

    Harb, M S; Yuan, F G

    2016-01-01

    A fully non-contact single-sided air-coupled and laser ultrasonic non-destructive system based on the generation and detection of Lamb waves is implemented for the characterization of A0 Lamb wave mode dispersion in a composite plate. An air-coupled transducer (ACT) radiates acoustic pressure on the surface of the composite and generates Lamb waves within the structure. The out-of-plane velocity of the propagating wave is measured using a laser Doppler vibrometer (LDV). In this study, the non-contact automated system focuses on measuring A0 mode frequency-wavenumber, phase velocity dispersion curves using Snell's law and group velocity dispersion curves using Morlet wavelet transform (MWT) based on time-of-flight along different wave propagation directions. It is theoretically demonstrated that Snell's law represents a direct link between the phase velocity of the generated Lamb wave mode and the coincidence angle of the ACT. Using Snell's law and MWT, the former three dispersion curves of the A0 mode are easily and promptly generated from a set of measurements obtained from a rapid ACT angle scan experiment. In addition, the phase velocity and group velocity polar characteristic wave curves are also computed to analyze experimentally the angular dependency of Lamb wave propagation. In comparison with the results from the theory, it is confirmed that using the ACT/LDV system and implementing simple Snell's law method is highly sensitive and effective in characterizing the dispersion curves of Lamb waves in composite structures as well as its angular dependency.

  11. Magnetic induction spectroscopy: non-contact measurement of the electrical conductivity spectra of biological samples

    Science.gov (United States)

    Barai, A.; Watson, S.; Griffiths, H.; Patz, R.

    2012-08-01

    Measurement of the electrical conductivity of biological tissues as a function of frequency, often termed ‘bioelectrical impedance spectroscopy (BIS)’, provides valuable information on tissue structure and composition. In implementing BIS though, there can be significant practical difficulties arising from the electrode-sample interface which have likely limited its deployment in industrial applications. In magnetic induction spectroscopy (MIS) these difficulties are eliminated through the use of fully non-contacting inductive coupling between the sensors and sample. However, inductive coupling introduces its own set of technical difficulties, primarily related to the small magnitudes of the induced currents and their proportionality with frequency. This paper describes the design of a practical MIS system incorporating new, highly-phase-stable electronics and compares its performance with that of electrode-based BIS in measurements on biological samples including yeast suspensions in saline (concentration 50-400 g l-1) and solid samples of potato, cucumber, tomato, banana and porcine liver. The shapes of the MIS spectra were in good agreement with those for electrode-based BIS, with a residual maximum discrepancy of 28%. The measurement precision of the MIS was 0.05 S m-1 at 200 kHz, improving to 0.01 S m-1 at a frequency of 20 MHz, for a sample volume of 80 ml. The data-acquisition time for each MIS measurement was 52 s. Given the value of spectroscopic conductivity information and the many advantages of obtaining these data in a non-contacting manner, even through electrically-insulating packaging materials if necessary, it is concluded that MIS is a technique with considerable potential for monitoring bio-industrial processes and product quality.

  12. DistancePPG: Robust non-contact vital signs monitoring using a camera.

    Science.gov (United States)

    Kumar, Mayank; Veeraraghavan, Ashok; Sabharwal, Ashutosh

    2015-05-01

    Vital signs such as pulse rate and breathing rate are currently measured using contact probes. But, non-contact methods for measuring vital signs are desirable both in hospital settings (e.g. in NICU) and for ubiquitous in-situ health tracking (e.g. on mobile phone and computers with webcams). Recently, camera-based non-contact vital sign monitoring have been shown to be feasible. However, camera-based vital sign monitoring is challenging for people with darker skin tone, under low lighting conditions, and/or during movement of an individual in front of the camera. In this paper, we propose distancePPG, a new camera-based vital sign estimation algorithm which addresses these challenges. DistancePPG proposes a new method of combining skin-color change signals from different tracked regions of the face using a weighted average, where the weights depend on the blood perfusion and incident light intensity in the region, to improve the signal-to-noise ratio (SNR) of camera-based estimate. One of our key contributions is a new automatic method for determining the weights based only on the video recording of the subject. The gains in SNR of camera-based PPG estimated using distancePPG translate into reduction of the error in vital sign estimation, and thus expand the scope of camera-based vital sign monitoring to potentially challenging scenarios. Further, a dataset will be released, comprising of synchronized video recordings of face and pulse oximeter based ground truth recordings from the earlobe for people with different skin tones, under different lighting conditions and for various motion scenarios.

  13. On-line current feed and computer aided control tactics for automatic balancing head

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the designed automatic balancing head,a non-contact induction transformer is used to deliver driving energy to solve the problem of current fed and controlling on-line.Computer controlled automatic balancing experiments with phase-magnitude control tactics were performed on a flexible rotor system.Results of the experiments prove that the energy feeding method and the control tactics are effective in the automatic balancing head for vibration controlling.

  14. Microwave assisted saponification (MAS) followed by on-line liquid chromatography (LC)-gas chromatography (GC) for high-throughput and high-sensitivity determination of mineral oil in different cereal-based foodstuffs.

    Science.gov (United States)

    Moret, Sabrina; Scolaro, Marianna; Barp, Laura; Purcaro, Giorgia; Conte, Lanfranco S

    2016-04-01

    A high throughput, high-sensitivity procedure, involving simultaneous microwave-assisted extraction (MAS) and unsaponifiable extraction, followed by on-line liquid chromatography (LC)-gas chromatography (GC), has been optimised for rapid and efficient extraction and analytical determination of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in cereal-based products of different composition. MAS has the advantage of eliminating fat before LC-GC analysis, allowing an increase in the amount of sample extract injected, and hence in sensitivity. The proposed method gave practically quantitative recoveries and good repeatability. Among the different cereal-based products analysed (dry semolina and egg pasta, bread, biscuits, and cakes), egg pasta packed in direct contact with recycled paperboard had on average the highest total MOSH level (15.9 mg kg(-1)), followed by cakes (10.4 mg kg(-1)) and bread (7.5 mg kg(-1)). About 50% of the pasta and bread samples and 20% of the biscuits and cake samples had detectable MOAH amounts. The highest concentrations were found in an egg pasta in direct contact with recycled paperboard (3.6 mg kg(-1)) and in a milk bread (3.6 mg kg(-1)).

  15. 激光在线分析系统在煤气氧含量检测中的应用%Application of laser on-line analyzing system in measurement of oxygen content in gas

    Institute of Scientific and Technical Information of China (English)

    魏爱国

    2013-01-01

    利用LGA-4130分析仪对电捕焦油器后煤气中的氧含量进行在线检测,并通过DCS控制系统设置含氧量的上限值对电捕焦油器实行连锁停机,确保电捕焦油器连续安全运行。对该系统进行分析后,在肯定其技术优点的同时指出其缺陷,并提出了改进建议。%Oxygen analyzer LGA-4130 is used for on-line measurement of oxygen content in gas after electro-static tar precipitator ( ETP ) and for interlock shutdown of the ETP in case of reaching the HH limit of the oxygen value preset on DCS aiming at a safe and stable running of the ETP .The ad-vantages and disadvantages of this analyzing system are studied in this paper ,suggestions for improve-ment are also given .

  16. Development of an analytical method for the determination of the misuse in sports of boldenone through the analysis of urine by on-line coupling liquid chromatography-gas chromatography-combustion-isotope ratio mass spectrometry.

    Science.gov (United States)

    Toledano, R M; Díaz-Plaza, E M; Cortes, J M; Aragón, A; Vázquez, A M; Villén, J; Muñoz-Guerra, J

    2014-11-28

    Boldenone (Bo), androsta-1,4-dien-17β-ol-3-one, is an anabolic androgenic steroid not clinically approved for human application. Despite this, many cases are reported every year of athletes testing positive for Bo or its main metabolite 5β-androst-1-en-17β-ol-3-one (BoM). Recently the capability of different human intestinal bacteria to produce enzymes able to modify endogenous steroids in Bo has been demonstrated. When a urinary concentration of Bo and/or BoM between 5 and 30 ng/mL is measured a complementary analysis by gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) must be carried out to discriminate the endogenous or exogenous origin. In the present work, a novel analytical method that couples LC-GC by means of the TOTAD interface with C-IRMS is described. The method is based on a first RPLC separation of unacetyled steroids, followed by acetylation and automated on-line LC-GC-C-IRMS, which includes a second RPLC clean-up of acetyl Bo and BoM, isolation of the two fractions in a fraction collector and their consecutive analysis by GC-C-IRMS. The method has been applied to the analysis of urine samples fortified at 5 and 10 ng/mL, where it has shown a good performance.

  17. Full-hand 3D non-contact scanner using sub-window-based structured light-illumination technique

    Science.gov (United States)

    Yalla, Veeraganesh; Hassebrook, Laurence; Daley, Ray; Boles, Colby; Troy, Mike

    2012-06-01

    Fingerprint identification is a well-regarded and widely accepted modality in the field of biometrics for its high recognition rates. Legacy 2D contact based methods, though highly evolved in terms of technology suffer from certain drawbacks. Being contact based, there are many known issues which affect the recognition rates. Flashscan3D/University of Kentucky (UKY) developed state of the art 3D non-contact fingerprint scanners using different structured light illumination (SLI) techniques namely SLI single Point Of View (POV) and the SLI Subwindowing techniques. Capturing the fingerprints by non-contact means in 3D gives much higher quality fingerprint data which ultimately improves matching rates over a traditional 2D approach. In this paper, we present a full hand 3D non-contact scanner using the SLI Sub-windowing technique. Sample fingerprint data and experimental results for fingerprint matching based on a small sample 3D fingerprint test set are presented.

  18. Operational modal analysis of a rectangular plate using non-contact excitation and measurement

    Science.gov (United States)

    Xu, Y. F.; Zhu, W. D.

    2013-09-01

    Operational modal analysis (OMA), or output-only modal analysis, has been extensively developed in the past decades and widely used especially when the input is unknown and difficult to measure. This paper presents a non-contact experimental technique for measuring modal parameters of a rectangular aluminum plate with free boundaries using only the output data, with the intention to apply the technique to turbine blades. OMA is used to analyze both the out-of-plane and in-plane vibrations of the plate in the frequency range of up to 15,000 Hz, which can be an operation frequency range of a turbine blade, under white noise acoustic excitation in a direction of interest. It is shown that OMA can be performed when the types of measurement at the measurement and reference points are different, since the associated cross-correlation functions contain modal characteristics of the test structure. A single-point laser vibrometer and a free-field microphone are used to simultaneously measure the responses of the plate in a non-contact manner, with the microphone measurement serving as the reference. The pressure measured by the microphone near the reference point is shown to be proportional to the normal surface acceleration at the reference point, and the cross power spectral densities obtained by the current test method can be used for modal parameter estimation. A method for measuring the in-plane modes of the plate by shining the laser beam on the plate surface with an incident angle is developed. Experimental modal analysis (EMA) is also performed on the plate using an impact hammer and the laser vibrometer. The measured natural frequencies and mode shapes of the out-of-plane and in-plane modes of the plate using OMA and EMA are compared with those calculated using commercial finite element software. The maximum error between the measured and calculated natural frequencies of the plate is 1.53 percent for the first 18 elastic modes, including 16 out-of-plane and two in

  19. Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System

    Science.gov (United States)

    Hudson, Troy L.; Hecht, Michael H.

    2011-01-01

    As shown by the Phoenix Mars Lander's Thermal and Electrical Conductivity Probe (TECP), contact measurements of thermal conductivity and diffusivity (using a modified flux-plate or line-source heat-pulse method) are constrained by a number of factors. Robotic resources must be used to place the probe, making them unavailable for other operations for the duration of the measurement. The range of placement is also limited by mobility, particularly in the case of a lander. Placement is also subject to irregularities in contact quality, resulting in non-repeatable heat transfer to the material under test. Most important from a scientific perspective, the varieties of materials which can be measured are limited to unconsolidated or weakly-cohesive regolith materials, rocks, and ices being too hard for nominal insertion strengths. Accurately measuring thermal properties in the laboratory requires significant experimental finesse, involving sample preparation, controlled and repeatable procedures, and, practically, instrumentation much more voluminous than the sample being tested (heater plates, insulation, temperature sensors). Remote measurements (infrared images from orbiting spacecraft) can reveal composite properties like thermal inertia, but suffer both from a large footprint (low spatial resolution) and convolution of the thermal properties of a potentially layered medium. In situ measurement techniques (the Phoenix TECP is the only robotic measurement of thermal properties to date) suffer from problems of placement range, placement quality, occupation of robotic resources, and the ability to only measure materials of low mechanical strength. A spacecraft needs the ability to perform a non-contact thermal properties measurement in situ. Essential components include low power consumption, leveraging of existing or highly-developed flight technologies, and mechanical simplicity. This new in situ method, by virtue of its being non-contact, bypasses all of these

  20. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy

    Science.gov (United States)

    Jarvis, Samuel Paul

    2015-01-01

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions. PMID:26307976

  1. Air microjet system for non-contact force application and the actuation of micro-structures

    Science.gov (United States)

    Khare, S. M.; Venkataraman, V.

    2016-01-01

    We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 μm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s-1 were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 μN on a poly dimethyl siloxane (PDMS) micropillar (50 μm in diameter, 157 μm in height) and 415 μN on a PDMS membrane (3 mm in diameter, 28 μm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 μN on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.

  2. Management of infectious fractures with "Non-Contact Plate" (NCP) method.

    Science.gov (United States)

    Alemdar, Celil; Azboy, Ibrahim; Atiç, Ramazan; Özkul, Emin; Gem, Mehmet; Kapukaya, Ahmet

    2015-09-01

    The aim of this study was to evaluate the outcomes of internal fixation with Non-Contact Plating (NCP) after deep infection caused by previous surgeries of the tibia or femur fractures. The study included 15 patients (4 female and 11 male). The mean age patients was 36.6 years (range, 21-64 years). There were 6 femur and 9 tibia fractures. The mean follow-up period was 25.7 months (range, 15-45 months). The study comprised 11 open and 4 closed fractures. External fixator was used in 3, plate in 4, and intramedullary nail in 8 patients for index surgery. Deep infection was diagnosed via clinical findings, laboratory parameters, and microbiological evaulation. Deep infection was diagnosed within a mean period of 5.5 weeks (range, 2-10 weeks). The infecting organism was methicillin-resistant staphylococcus aureus (MRSA) in 5, methicillin-sensitive staphylococcus aureus (MSSA) in 6, pseudomonas auroginosa in 2, and enterobacteriacea in 2 patients. Union achieved in all patients. Mean time to union was 17 (range, 11-38) weeks. Delayed union was observed in 3 patients who required additional surgeries. Of these one patient developed osteomyelitis. The NCP is an effective alternative method in the treatment of deep infection encountered after internal or external fixation for the tibia, or femur fractures.

  3. Magnetic behaviour of non-contacting Ni nanoparticles encapsulated in vertically aligned carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.A.; Elbaile, L. [Departamento de Fisica, Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Bertran, E.; Garcia-Cespedes, J. [Grupo FEMAN, IN2UB, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Svalov, A. [Ural State University, Institute of Physics and Applied Mathematics, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation)

    2010-11-15

    Magnetic properties of carbon nanotubes (CNT) obtained by plasma-enhanced chemical vapour deposition (PECVD) have been studied. The growth of these nanotubes has been activated from Ni catalyst nanoparticles. Samples consist of Ni nanoparticles encapsulated at the tip of vertically aligned multiwalled carbon nanotubes (VACNTs) forming an homogeneous and dense large area monolayer of isolated (non-contacting) nanoparticles. The magnetic characterisation has been performed in the temperature range of 5-300 K with magnetic fields up to 9 T. The results show that the wide size range (30-180 nm) of the particles originates the coexistence of blocked and superparamagnetic particles and leads to the strong ferromagnetic behaviour of the whole assembly. The coercivity decreases monotonically with increasing temperature and the value for the intrinsic coercivity is 225 Oe. The encapsulation of Ni nanoparticles by VACNTs preserves them from aggregation. This makes possible to tune the coercivity by controlling size distribution of particle monolayers. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer.

    Science.gov (United States)

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills.

  5. Non-contact mode excitation of small structures in air using ultrasound radiation force

    Science.gov (United States)

    Huber, Thomas M.; Purdham, John C.; Fatemi, Mostafa; Kinnick, Randall R.; Greenleaf, James F.

    2005-04-01

    With the advent of MEMS, modal analysis of small structures is increasingly important. However, conventional excitation techniques normally require contact, which may not be feasible for small objects. We present a non-contact method that uses interference of ultrasound frequencies in air to produce low-frequency excitation of structures. Objects studied included hard-drive HGA suspensions and MEMS devices. The vibration induced by the ultrasound radiation force was varied in a wide range from 0 Hz to 50 kHz. Object motion was detected using a laser vibrometer; measured frequencies agreed with expected values. Also demonstrated was the unique capability to selectively enhance or suppress modes independently. For example, the ratio of the vibrational amplitudes of the 175 Hz first-bending and 1.33 kHz torsional modes of a small cantilever could be changed from in excess of 10:1 to less than 1:10 by shifting the ultrasound modulation phase 90 degrees. Similar changes were obtained for a 3 mm square MEMS mirror in the ratios of vibration amplitude around its two separate axes. Torsional modes of a hard-drive suspension could be selectively enhanced by over a factor of two by moving the ultrasound focus point from near the center to near the edge of the suspension.

  6. Automatic detection of measurement points for non-contact vibrometer-based diagnosis of cardiac arrhythmias

    Science.gov (United States)

    Metzler, Jürgen; Kroschel, Kristian; Willersinn, Dieter

    2017-03-01

    Monitoring of the heart rhythm is the cornerstone of the diagnosis of cardiac arrhythmias. It is done by means of electrocardiography which relies on electrodes attached to the skin of the patient. We present a new system approach based on the so-called vibrocardiogram that allows an automatic non-contact registration of the heart rhythm. Because of the contactless principle, the technique offers potential application advantages in medical fields like emergency medicine (burn patient) or premature baby care where adhesive electrodes are not easily applicable. A laser-based, mobile, contactless vibrometer for on-site diagnostics that works with the principle of laser Doppler vibrometry allows the acquisition of vital functions in form of a vibrocardiogram. Preliminary clinical studies at the Klinikum Karlsruhe have shown that the region around the carotid artery and the chest region are appropriate therefore. However, the challenge is to find a suitable measurement point in these parts of the body that differs from person to person due to e. g. physiological properties of the skin. Therefore, we propose a new Microsoft Kinect-based approach. When a suitable measurement area on the appropriate parts of the body are detected by processing the Kinect data, the vibrometer is automatically aligned on an initial location within this area. Then, vibrocardiograms on different locations within this area are successively acquired until a sufficient measuring quality is achieved. This optimal location is found by exploiting the autocorrelation function.

  7. A Non-Contact Measurement System for the Range of Motion of the Hand

    Directory of Open Access Journals (Sweden)

    Trieu Pham

    2015-07-01

    Full Text Available An accurate and standardised tool to measure the active range of motion (ROM of the hand is essential to any progressive assessment scenario in hand therapy practice. Goniometers are widely used in clinical settings for measuring the ROM of the hand. However, such measurements have limitations with regard to inter-rater and intra-rater reliability and involve direct physical contact with the hand, possibly increasing the risk of transmitting infections. The system proposed in this paper is the first non-contact measurement system utilising Intel Perceptual Technology and a Senz3D Camera for measuring phalangeal joint angles. To enhance the accuracy of the system, we developed a new approach to achieve the total active movement without measuring three joint angles individually. An equation between the actual spacial position and measurement value of the proximal inter-phalangeal joint was established through the measurement values of the total active movement, so that its actual position can be inferred. Verified by computer simulations, experimental results demonstrated a significant improvement in the calculation of the total active movement and successfully recovered the actual position of the proximal inter-phalangeal joint angles. A trial that was conducted to examine the clinical applicability of the system involving 40 healthy subjects confirmed the practicability and consistency in the proposed system. The time efficiency conveyed a stronger argument for this system to replace the current practice of using goniometers.

  8. The importance of illumination in a non-contact photoplethysmography imaging system for burn wound assessment

    Science.gov (United States)

    Mo, Weirong; Mohan, Rachit; Li, Weizhi; Zhang, Xu; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffery E.

    2015-02-01

    We present a non-contact, reflective photoplethysmogram (PPG) imaging method and a prototype system for identifying the presence of dermal burn wounds during a burn debridement surgery. This system aims to provide assistance to clinicians and surgeons in the process of dermal wound management and wound triage decisions. We examined the system variables of illumination uniformity and intensity and present our findings. An LED array, a tungsten light source, and eventually high-power LED emitters were studied as illumination methods for our PPG imaging device. These three different illumination sources were tested in a controlled tissue phantom model and an animal burn model. We found that the low heat and even illumination pattern using high power LED emitters provided a substantial improvement to the collected PPG signal in our animal burn model. These improvements allow the PPG signal from different pixels to be comparable in both time-domain and frequency-domain, simplify the illumination subsystem complexity, and remove the necessity of using high dynamic range cameras. Through the burn model output comparison, such as the blood volume in animal burn data and controlled tissue phantom model, our optical improvements have led to more clinically applicable images to aid in burn assessment.

  9. Handheld non-contact evaluation of fastener flushness and countersink surface profiles using optical coherence tomography

    Science.gov (United States)

    Wang, James H.; Wang, Michael R.

    2016-07-01

    We report the use of spectral domain optical coherence tomography (SD-OCT) for non-contact optical evaluation of fastener flushness and countersink surface profile. Using a handheld galvanometer scanner of only 0.5 lb in weight the SD-OCT can perform line scan surface profile measurement of fastener and countersink without demanding accurate scan center alignment. It demonstrates fast measurement of fastener flushness, radius, slant angle, as well as countersink edge radius and surface angle within 90 ms suitable for handheld operation. With the use of a broadband light source at 840 nm center wavelength and 45 nm spectral bandwidth and a lens of 60 mm focal length, the low coherence interferometry based SD-OCT measurement offers axial depth resolution of 8.5 μm, lateral resolution of 19 μm, and measurement depth of 3.65 mm in the air. Multi-line scans can yield 3D surface profiles of fastener and countersink.

  10. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Samuel Paul Jarvis

    2015-08-01

    Full Text Available A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions.

  11. Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Laura Aulbach

    2017-03-01

    Full Text Available The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler.

  12. Full-field speckle interferometry for non-contact photoacoustic tomography.

    Science.gov (United States)

    Horstmann, Jens; Spahr, Hendrik; Buj, Christian; Münter, Michael; Brinkmann, Ralf

    2015-05-21

    A full-field speckle interferometry method for non-contact and prospectively high speed Photoacoustic Tomography is introduced and evaluated as proof of concept. Thermoelastic pressure induced changes of the objects topography are acquired in a repetitive mode without any physical contact to the object. In order to obtain high acquisition speed, the object surface is illuminated by laser pulses and imaged onto a high speed camera chip. In a repetitive triple pulse mode, surface displacements can be acquired with nanometre sensitivity and an adjustable sampling rate of e.g. 20 MHz with a total acquisition time far below one second using kHz repetition rate lasers. Due to recurring interferometric referencing, the method is insensitive to thermal drift of the object due to previous pulses or other motion. The size of the investigated area and the spatial and temporal resolution of the detection are scalable. In this study, the approach is validated by measuring a silicone phantom and a porcine skin phantom with embedded silicone absorbers. The reconstruction of the absorbers is presented in 2D and 3D. The sensitivity of the measurement with respect to the photoacoustic detection is discussed. Potentially, Photoacoustic Imaging can be brought a step closer towards non-anaesthetized in vivo imaging and new medical applications not allowing acoustic contact, such as neurosurgical monitoring or burnt skin investigation.

  13. Non-contacting Measurement of Oil Film Thickness Between Loaded Metallic Gear Teeth

    Science.gov (United States)

    Cox, Daniel B.; Ceccio, Steven L.; Dowling, David R.

    2013-11-01

    The mechanical power transmission efficiency of gears is depends on the lubrication condition between gear teeth. While the lubrication levels can be generally predicted, an effective in-situ non-contacting measurement of oil film thicknesses between loaded metallic gear teeth has proved elusive. This study explores a novel oil film thickness measurement technique based on optical fluence, the light energy transmitted between loaded gear teeth. A gear testing apparatus that allowed independent control of gear rotation rate, load torque, and oil flow was designed and built. Film thickness measurements made with 5-inch-pitch-diameter 60-tooth spur gears ranged from 0.3 to 10.2 mil. These results are compared with film thickness measurements made in an earlier investigation (MacConochie and Cameron, 1960), as well as with predictions from two film thickness models: a simple two-dimensional squeezed oil film and the industry-accepted model as described by the American Gear Manufacturers Association (AGMA 925, 2003). In each case, the measured film thicknesses were larger than the predicted thicknesses, though these discrepancies might be attributed to the specifics the experiments and to challenges associated with calibrating the fluence measurements. [Sponsored by General Electric].

  14. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy.

    Science.gov (United States)

    Jarvis, Samuel Paul

    2015-08-21

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions.

  15. A non-contact high resolution piezoelectric film based sensor for monitoring breathing during sleep

    Science.gov (United States)

    Johnston, Robert; Nakano, Katsuya; Fujita, Kento; Misaki, Shinya; Fujii, Hiroyuki; Misaki, Yukinori

    2017-07-01

    Currently, research for measuring human breathing during sleep is actively being conducted into using technologies that include piezoelectric, ultrasonic, microwave and infrared rays. But various problems have led to not many practical applications. As such, it was decided to develop a PVDF (PolyVinylidene DiFluoride) based non-contact high resolution sensor for monitoring a subject's breathing as they sleep. Development of the high resolution respiration sensor was possible through the use of PVDF piezoelectric film and the development of a new sensor configuration. Although there was already an existing respiration sensor research resulting product available, is weak signal strength made it very sensitive to noise and difficult to measure respiration accurately. As such, complicated circuits and signal processing were needed. A new high resolution breathing sensor was developed with greater signal strength and with just the use of some simple circuits and signal processing, was able to accurately measure subject breathing. Also due to the greater signal strength, it became possible to measure both heart rate and respiration rate simultaneously.

  16. The non-contact heart rate measurement system for monitoring HRV.

    Science.gov (United States)

    Huang, Ji-Jer; Yu, Sheng-I; Syu, Hao-Yi; See, Aaron Raymond

    2013-01-01

    A noncontact ECG monitoring and analysis system was developed using capacitive-coupled device integrated to a home sofa. Electrodes were placed on the backrest of a sofa separated from the body with only the chair covering and the user's clothing. The study also incorporates measurements using different fabric materials, and a pure cotton material was chosen to cover the chair's backrest. The material was chosen to improve the signal to noise ratio. The system is initially implemented on a home sofa and is able to measure non-contact ECG through thin cotton clothing and perform heart rate analysis to calculate the heart rate variability (HRV) parameters. It was also tested under different conditions and results from reading and sleeping exhibited a stable ECG. Subsequently, results from our calculated HRV were found to be identical to those of a commercially available HRV analyzer. However, HRV parameters are easily affected by motion artifacts generated during drinking or eating with the latter producing a more severe disturbance. Lastly, parameters measured are saved on a cloud database, providing users with a long-term monitoring and recording for physiological information.

  17. Theoretical and experimental investigation on optimization of a non-contact air conveyor

    Institute of Scientific and Technical Information of China (English)

    钟伟; 黎鑫; 陶国良; 路波; 香川利春

    2016-01-01

    Air film conveyors equipped with porous pads have been developed to bring the liquid crystal display (LCD) into a non-contact state during transportation process. In this work, a theoretical model including flow property of porous media and Reynolds equation is established within a representative region in order to optimize the design parameters of a partial porous air conveyor. With the theoretical model, an optimization method using nondominated sorting genetic algorithm – II (NSGA-II) is applied for a two-objective optimization to achieve a minimum air consumption and maximum load capacity. Three Pareto-optimal solutions are selected to analyze the influence of each parameter on the characteristics of the air conveyor, and the results indicate that the position of the porous pads has the most significant impact on the performance and of course must be determined with care. Furthermore, experimental results in terms of the supporting force versus gap clearance show that the optimized air conveyor can greatly improve the load capacity over the normal one, indicating that the optimization method is applicable for practical use.

  18. Development of non-contact structural health monitoring system for machine tools

    Directory of Open Access Journals (Sweden)

    Deepam Goyal

    2016-08-01

    Full Text Available In this era of flexible manufacturing systems, a real-time structural health monitoring (SHM is paramount for machining processes which are of great relevance today, when there is a constant call for better productivity with high quality at low price. During machining, vibrations are always brought forth because of mechanical disturbances from various sources such as an engine, a sound, and noise, among others. A SHM system provides significant economic benefits when applied to machine tools and machining processes. This study demonstrates a non contact SHM system for machine tools based on the vibration signal collected through a low-cost, microcontroller based data acquisition system. The examination tests of this developed system have been carried out on a vibration rig. The readings have also been calibrated with the accelerometer to validate the proposed system. The developed system results in quick measurement, enables reliable monitoring, and is cost effective with no need to alter the structure of the machine tool. It is expected that the system can forewarn the operator for timely based maintenance actions in addition to reducing the costs of machine downtime and acquiring equipments with reduction in complexity of machine tools.

  19. Non-contact ultrasonic spectroscopy measurement of elastic constants and ultrasonic attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.B.; Kuokkala, V.T.; Srinivasan, S.; Visscher, W.M.

    1991-01-01

    We have developed an ultrasonic spectroscopy method for measuring the elastic constants of solids in hostile environments and over a broad temperature regime. The sample is cut as a rectangular parallelepiped, approximately 1 mm{sup 3} in volume. One or two of the sample surfaces are coated with a thin film of a magnetostrictive material such as nickel. The sample is placed coaxially with two solenoids. One solenoid is used to generate an AC magnetic field of small amplitude which stretches the films. By sweeping the frequency of this field, the sample is excited successively into its various mechanical resonance modes. The second solenoid detects the mechanical resonances. The elastic constants are then deduced from the spectrum of mechanical resonances measured at constant temperature. The internal friction is deduced from the width of the resonance peaks. Because the technique is strictly non-contact (the sample may be encapsulated in a fused silica tube), it is deal for measuring elastic constants in hostile environments or under controlled atmospheres. In its present version the system allows us to measure the elastic constants and ultrasonic attenuation of a given sample between 80 and 100 K. The operation of the system is exemplified by measurements on amorphous Ni{sub 80}P{sub 20} and crystalline Ti{sub 60}Cr{sub 40}. 17 refs., 6 figs.

  20. Non-contact thrust stand calibration method for repetitively pulsed electric thrusters.

    Science.gov (United States)

    Wong, Andrea R; Toftul, Alexandra; Polzin, Kurt A; Pearson, J Boise

    2012-02-01

    A thrust stand calibration technique for use in testing repetitively pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoid to produce a pulsed magnetic field that acts against a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasi-steady average deflection of the thrust stand arm away from the unforced or "zero" position can be related to the average applied force through a simple linear Hooke's law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other. The overall error on the linear regression fit used to determine the calibration coefficient was roughly 1%.

  1. Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry.

    Science.gov (United States)

    Stepanenko, Dmitry A; Minchenya, Vladimir T

    2012-09-01

    The article presents novel design of non-contact rotary ultrasonic motor consisting of ring-shaped stator vibrating in in-plane flexural mode and rotor provided with blades. In contrast to other motors with similar design proposed motor relies on the use of standing ultrasonic waves. This simplifies design and electronic control of motor and becomes possible due to introduction of artificial asymmetry, for example by tilting one or several blades of the rotor relative to the surface normal. Operating principle of the proposed motor is based on acoustic radiation torque exerted on rotor by ultrasonic waves propagating in air or fluid gap between rotor and stator. This torque is calculated using finite element method by means of COMSOL Multiphysics software. Dynamics of rotor is studied using MathCad software and general theory of nonlinear conservative oscillators. Role of asymmetry is explained on the basis of comparative analysis of potential functions and phase trajectories for symmetric and asymmetric cases. It is shown that direction of rotation is determined by structural parameters of motor, particularly tilting direction (clockwise or counter-clockwise) of the blades. Conceptual design of motor with bidirectional rotation is described. Direction and velocity of rotation in the proposed conceptual design can be potentially controlled by changing excitation frequency of stator. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Non-contact skin emissivity: measurement from reflectance using step change in ambient radiation temperature.

    Science.gov (United States)

    Togawa, T

    1989-02-01

    A method of estimating skin emissivity based on reflectance measurement upon transient stepwise change in the ambient radiation temperature was proposed. To effect this change, two shades at different temperatures were switched mechanically, and the change in radiation from the skin surface was recorded through an aperture for each shade by a high-resolution, fast-response radiometer having a sensitivity within the 8-14 microns range. Measurements were made on the forehead, forearm, palm and back of the hand in 10 male and 10 female subjects. No significant differences in emissivity were observed among sites and between sexes. The overall average of the skin emissivity obtained was 0.971 +/- 0.005 (SD). This result is inconsistent with most reported skin emissivity values. However, as the former studies had many inherent inadequacies, both theoretical and experimental, it is considered that most of these reported skin emissivities are unacceptable. The method proposed in this study has the following advantages: (1) relative calibration between instruments is unnecessary, (2) non-contact measurement can be achieved, and (3) each measurement can be made within one minute.

  3. Comparison of non-contact infrared thermometry and rectal thermometry in cats.

    Science.gov (United States)

    Nutt, Kelly R; Levy, Julie K; Tucker, Sylvia J

    2016-10-01

    Body temperature is commonly used for assessing health and identifying infectious diseases in cats. Rectal thermometry, the most commonly used method, is stressful, invasive and time consuming. Non-contact infrared thermometry (NIRT) has been used with mixed success to measure temperature in humans and other species. The purpose of this study was to determine if NIRT measurements were comparable to rectal temperature measurements or, if not highly correlated, could at least identify cats in the hypothermic or hyperthermic range in need of further evaluation. From a total of six NIRT devices and 15 anatomic sites, three devices and three sites (pinna, gingiva and perineum) with the highest correlation to rectal temperature were selected for further study. Measurements were made in 188 adult cats housed indoors at animal shelters, veterinary clinics and private homes across a wide range of body temperatures and compared with rectal temperatures. Bland-Altman analysis revealed poor agreement between NIRT and rectal thermometry. The mean NIRT measurements ranged from 0.7-1.3°C below the mean rectal measurements, but the effect was not consistent; NIRT measurements tended to exceed rectal measurements in hypothermic cats and fall below rectal measurements in normothermic and hyperthermic cats. The accuracy of temperature measurements using NIRT devices is not reliable for clinical use in cats. © The Author(s) 2015.

  4. Novel non-contact control system of electric bed for medical healthcare.

    Science.gov (United States)

    Lo, Chi-Chun; Tsai, Shang-Ho; Lin, Bor-Shyh

    2017-03-01

    A novel non-contact controller of the electric bed for medical healthcare was proposed in this study. Nowadays, the electric beds are widely used for hospitals and home-care, and the conventional control method of the electric beds usually involves in the manual operation. However, it is more difficult for the disabled and bedridden patients, who might totally depend on others, to operate the conventional electric beds by themselves. Different from the current controlling method, the proposed system provides a new concept of controlling the electric bed via visual stimuli, without manual operation. The disabled patients could operate the electric bed by focusing on the control icons of a visual stimulus tablet in the proposed system. Besides, a wearable and wireless EEG acquisition module was also implemented to monitor the EEG signals of patients. The experimental results showed that the proposed system successfully measured and extracted the EEG features related to visual stimuli, and the disabled patients could operate the adjustable function of the electric bed by themselves to effectively reduce the long-term care burden.

  5. Dual modality of non-contact photoacoustic tomography and fluorescence imaging using double cladding fiber

    Science.gov (United States)

    Eom, Jonghyun; Park, Seong Jun; Kim, Ju Wan; Park, Soongho; Lee, Byeong Ha

    2015-03-01

    We present a fiber-based dual-modal imaging system that combines non-contact photoacoustic tomography (NCPAT) and fluorescence imaging by using double cladding fiber (DCF). The NCPAT system utilizing an all-fiber heterodyne interferometer as an ultrasound detector measures the photoacoustic signal at the sample surface without physical contact. Fluorescence imaging system is composed of fiber-optics to deliver the excitation light and the emission light. For combined system the probe consists of a specially fabricated DCF coupler and a lensed fiber so that we can simultaneously acquire the signals of two systems with the same probe. The DCF has a core and two claddings, inner and outer, which allows two concentric light-guiding channels via the core and the inner cladding. The lensed fiber of the DCF probe is compactly fabricated to focus the interferometer light and the excitation light, and to efficiently collect the fluorescence signal. To demonstrate the feasibility of the proposed dual-modal system, we have conducted phantom experiments using tissue mimicking phantoms which contained a couple of tubes filled with fluorescein solution and black ink, respectively. The proposed imaging system is implanted with fiber-optic configurations so that it has the potential for minimally invasive and improved diagnosis and guided treatment of diseases.

  6. Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities

    NARCIS (Netherlands)

    Mujawar, L.H.; Norde, W.; Amerongen, van A.

    2013-01-01

    Non-contact inkjet printing technology is one of the most promising tools for producing microarrays. The quality of the microarray depends on the type of the substrate used for printing biomolecules. Various porous and non-porous substrates have been used in the past, but due to low production cost

  7. Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities

    NARCIS (Netherlands)

    Mujawar, L.H.; Norde, W.; Amerongen, van A.

    2013-01-01

    Non-contact inkjet printing technology is one of the most promising tools for producing microarrays. The quality of the microarray depends on the type of the substrate used for printing biomolecules. Various porous and non-porous substrates have been used in the past, but due to low production cost

  8. Diagnosis of early-stage damage to polymer - glass fibre composites using non-contact measurement of vibration signals

    Energy Technology Data Exchange (ETDEWEB)

    Figlus, Tomasz; Koziol, Mateusz [Silesian University of Technology, Katowice (Poland)

    2016-08-15

    Ensuring reliable operation of the means of transport requires the development of methods for early detection of damage to its components made of composite materials. For diagnostic testing of composite materials during normal operation of the means of transport, the authors propose to use non-contact vibration measurement methods and their subsequent processing and analysis. The paper presents the results of laboratory tests whose aim was to assess the ability to detect early symptoms of damage to composite materials using non-contact vibration measurement methods. The measurements included mechanical curves of the glass composite samples made in a conventional manner and simultaneously their vibrations were measured in a non-contact manner using a laser vibrometer. Continuous wavelet transform was used for processing vibration signals. Calculated time-frequency scale distributions of vibration signals enabled the designation of frequency scale bands in which early, low-energy symptoms of damage to glass composites are observed. The analysis results allow to draw conclusions that the use of non-contact measurements and processing of vibration signals extends the existing range of composites research and enables detection of early, low-energy symptoms of damage to glass fibre reinforced composites.

  9. Laser-induced forward transfer of high-viscosity silver precursor ink for non-contact printed electronics

    NARCIS (Netherlands)

    Inui, T.; Mandamparambil, R.; Araki, T.; Abbel, R.J.; Koga, H.; Nogi, M.; Suganuma, K.

    2015-01-01

    Non-contact printing techniques are receiving increasing interest in the field of printed electronics, because they can be used to pattern various inks on arbitrary substrates without applying mechanical pressure or damaging pre-patterned components. The ink-jet process is frequently used for non-co

  10. Platinum nanoparticle-facilitated reflective surfaces for non-contact temperature control in microfluidic devices for PCR amplification.

    Science.gov (United States)

    Leslie, Daniel C; Seker, Erkin; Bazydlo, Lindsay A L; Strachan, Briony C; Landers, James P

    2012-01-07

    The polymerase chain reaction (PCR) is critical for amplification of target sequences of DNA or RNA that have clinical, biological or forensic relevance. While extrinsic Fabry-Perot interferometry (EFPI) has been shown to be adequate for non-contact temperature sensing, the difficulty in defining a reflective surface that is semi-reflective, non-reactive for PCR compatibility and adherent for thermal bonding has limited its exploitation. Through the incorporation of a reflective surface fabricated using a thermally driven self-assembly of a platinum nanoparticle monolayer on the surface of the microfluidic chamber, an enhanced EFPI signal results, allowing for non-contact microfluidic temperature control instrumentation that uses infrared-mediated heating, convective forced-air cooling, and interferometic temperature sensing. The interferometer is originally calibrated with a miniature copper-constantan thermocouple in the PCR chamber resulting in temperature sensitivities of -22.0 to -32.8 nm·°C(-1), depending on the chamber depth. This universal calibration enables accurate temperature control in any device with arbitrary dimensions, thereby allowing versatility in various applications. Uniquely, this non-contact temperature control for PCR thermocycling is applied to the amplification of STR loci for human genetic profiling, where nine STR loci are successfully amplified for human identification using the EFPI-based non-contact thermocycling.

  11. Laser-induced forward transfer of high-viscosity silver precursor ink for non-contact printed electronics

    NARCIS (Netherlands)

    Inui, T.; Mandamparambil, R.; Araki, T.; Abbel, R.J.; Koga, H.; Nogi, M.; Suganuma, K.

    2015-01-01

    Non-contact printing techniques are receiving increasing interest in the field of printed electronics, because they can be used to pattern various inks on arbitrary substrates without applying mechanical pressure or damaging pre-patterned components. The ink-jet process is frequently used for

  12. β-紫罗兰酮热裂解行为的初步探讨%Investigation of Pyrolysis Behavior ofβ-Ionone by on-line Pyrolysis-gas Chromatography/mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    赵瑞峰; 程侠; 叶荣飞; 林翔; 饶国华

    2014-01-01

    采用在线热裂解-气相色谱/质谱(Py-GC/MS )联用技术研究了在氦气氛围中β-紫罗兰酮在300、400、500、600、700、800℃下的热裂解行为,结果表明:①β-紫罗兰酮可以裂解生成48种物质;②在600℃以下只有10.765%的β-紫罗兰酮发生裂解;在700、800℃裂解加剧,有18.149%和21.286%的β-紫罗兰酮发生裂解;③同时随着裂解温度的升高,形成的危害性芳香烃类化合物的相对含量也逐渐增大。此外,根据主要裂解产物对β-紫罗兰酮的裂解机理进行了初步探讨。%β-Ionone was pyrolyzed under helium atmospheres at 300,400,500,600,700 and 800 ℃respectively,and the pyrolysates were analyzed by on-line gas chromatography /mass spectrometry (GC/MS).The results showed that (1 )Forty-eight substances were detected from the pyrolysates at 800 ℃;(2)At 600 ℃ only 10.765% ofβ-ionone was pyrolyzed.The pyrolysis reaction became more intensive at 700 and 800 ℃,18.149%and 21.286%ofβ-ionone was pyrolyzed;(3)the percentage of aromatic compounds increased with the increase of pyrolysis temperature.The possible pyrolysis mechanism ofβ-i-onone was preliminarily investigated based on the major pyrolysates.

  13. On-line measurement of heat of combustion

    Science.gov (United States)

    Chaturvedi, S. K.; Chegini, H.

    1988-01-01

    An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.

  14. Formación on line On line learning

    Directory of Open Access Journals (Sweden)

    O. Grau-Perejoan

    2008-09-01

    Full Text Available La formación on line es una modalidad de enseñanza a distancia basada en las nuevas tecnologías. En este artículo se pretende hacer una introducción a base de describir a grandes rasgos sus características principales: asincronía, no presencialidad, comunicación escrita, función del profesor on line, así como los retos, los riesgos, las ventajas y los inconvenientes que plantea. Se exponen las diferencias entre la formación on line y la formación presencial, de manera que los docentes puedan adaptar de la mejor manera posible sus propuestas formativas a la modalidad on line. Se introduce el importantísimo papel de la planificación y de la fase de diseño y, finalmente, se repasan conceptos útiles para comprender mejor el mundo de la formación on line como son los conceptos entorno virtual de aprendizaje (EVA o Blended Learning (B-Learning.On line learning is a type of distance education based on new technologies. This article's aim is to introduce its main characteristics -asynchrony, non-presentiality, written communication, e-teacher role- as well as its challenges, risks, advantages and limitations. Differences between on line learning and face-to-face learning are presented in order to enable educational professionals to adapt their courses to the on line methodology. Planning and designing are introduced as key phases and, finally, useful concepts such as Virtual Learning Environment (VLE or Blended Learning (B-Learning are reviewed in order to achieve a better understanding of the on line learning field.

  15. Non-Contact Thrust Stand Calibration Method for Repetitively-Pulsed Electric Thrusters

    Science.gov (United States)

    Wong, Andrea R.; Toftul, Alexandra; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    A thrust stand calibration technique for use in testing repetitively-pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoidal coil to produce a pulsed magnetic field that acts against the magnetic field produced by a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasisteady average deflection of the thrust stand arm away from the unforced or zero position can be related to the average applied force through a simple linear Hooke s law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other as the constant relating average deflection and average thrust match within the errors on the linear regression curve fit of the data. Quantitatively, the error on the calibration coefficient is roughly 1% of the coefficient value.

  16. Non-contact flow gauging for the extension and development of rating curves

    Science.gov (United States)

    Perks, Matthew; Large, Andy; Russell, Andy

    2015-04-01

    Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves

  17. Sleep stage classification by non-contact vital signs indices using Doppler radar sensors.

    Science.gov (United States)

    Kagawa, Masayuki; Suzumura, Kazuki; Matsui, Takemi

    2016-08-01

    Disturbed sleep has become more common in recent years. To improve the quality of sleep, undergoing sleep observation has gained interest as a means to resolve possible problems. In this paper, we evaluate a non-restrictive and non-contact method for classifying real-time sleep stages and report on its potential applications. The proposed system measures heart rate (HR), heart rate variability (HRV), body movements, and respiratory signals of a sleeping person using two 24-GHz microwave radars placed beneath the mattress. We introduce a method that dynamically selects the window width of the moving average filter to extract the pulse waves from the radar output signals. The Pearson correlation coefficient between two HR measurements derived from the radars overnight, and the reference polysomnography was the average of 88.3% and the correlation coefficient for HRV parameters was the average of 71.2%. For identifying wake and sleep periods, the body-movement index reached sensitivity of 76.0%, and a specificity of 77.0% with 10 participants. Low-frequency (LF) components of HRV and the LF/HF ratio had a high degree of contribution and differed significantly across the three sleep stages (REM, LIGHT, and DEEP; p sleep stages (p > 0.05). We applied a canonical discriminant analysis to identify wake or sleep periods and to classify the three sleep stages with leave-one-out cross validation. Classification accuracy was 66.4% for simply identifying wake and sleep, 57.1% for three stages (wake, REM, and NREM) and 34% for four stages (wake, REM, LIGHT, and DEEP). This is a novel system for measuring HRs, HRV, body movements, and respiratory intervals and for measuring high sensitivity pulse waves using two radar signals. It simplifies measurement of sleep stages and may be employed at nursing care facilities or by the general public to improve sleep quality.

  18. Endoluminal non-contact soft tissue ablation using fiber-based Er:YAG laser delivery

    Science.gov (United States)

    Kundrat, Dennis; Fuchs, Alexander; Schoob, Andreas; Kahrs, Lüder A.; Ortmaier, Tobias

    2016-03-01

    The introduction of Er:YAG lasers for soft and hard tissue ablation has proven promising results over the last decades due to strong absorption at 2.94 μm wavelength by water molecules. An extension to endoluminal applications demands laser delivery without mirror arms due to dimensional constraints. Therefore, fiber-based solutions are advanced to provide exible access while keeping space requirements to a minimum. Conventional fiber-based treatments aim at laser-tissue interactions in contact mode. However, this procedure is associated with disadvantages such as advancing decrease in power delivery due to particle coverage of the fiber tip, tissue carbonization, and obstructed observation of the ablation progress. The objective of this work is to overcome aforementioned limitations with a customized fiber-based module for non-contact robot-assisted endoluminal surgery and its associated experimental evaluation. Up to the authors knowledge, this approach has not been presented in the context of laser surgery at 2.94 μm wavelength. The preliminary system design is composed of a 3D Er:YAG laser processing unit enabling automatic laser to fiber coupling, a GeO2 solid core fiber, and a customized module combining collimation and focusing unit (focal length of 20 mm, outer diameter of 8 mm). The performance is evaluated with studies on tissue substitutes (agar-agar) as well as porcine samples that are analysed by optical coherence tomography measurements. Cuts (depths up to 3mm) with minimal carbonization have been achieved under adequate moistening and sample movement (1.5mms-1). Furthermore, an early cadaver study is presented. Future work aims at module miniaturization and integration into an endoluminal robot for scanning and focus adaptation.

  19. Non-contact hematoma damage and healing assessment using reflectance photoplethysmographic imaging

    Science.gov (United States)

    Amelard, Robert; Pfisterer, Kaylen J.; Clausi, David A.; Wong, Alexander

    2016-03-01

    Impact trauma may cause a hematoma, which is the leakage of venous blood into surrounding tissues. Large hematomas can be dangerous as they may inhibit local blood ow. Hematomas are often diagnosed visually, which may be problematic if the hematoma leaks deeper than the visible penetration depth. Furthermore, vascular wound healing is often monitored at home without the aid of a clinician. We therefore investigated the use of near infrared (NIR) re ectance photoplethysmographic imaging (PPGI) to assess vascular damage resulting from a hematoma, and monitor the healing process. In this case study, the participant experienced internal vascular damage in the form of a hematoma. Using a PPGI system with dual-mode temporally coded illumination for ambient-agnostic data acquisition and mounted optical elements, the tissue was illuminated with a spatially uniform irradiance pattern of 850 nm wavelength light for increased tissue penetration and high oxy-to-deoxyhemoglobin absorption ratio. Initial and follow-up PPGI data collection was performed to assess vascular damage and healing. The tissue PPGI sequences were spectrally analyzed, producing spectral maps of the tissue area. Experimental results show that spatial differences in spectral information can be observed around the damaged area. In particular, the damaged site exhibited lower pulsatility than the surrounding healthy tissue. This pulsatility was largely restored in the follow-up data, suggesting that the tissue had undergone vascular healing. These results indicate that hematomas can be assessed and monitored in a non-contact visual manner, and suggests that PPGI can be used for tissue health assessment, with potential extensions to peripheral vascular disease.

  20. Long-range non-contact imaging photoplethysmography: cardiac pulse wave sensing at a distance

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.; Piasecki, Alyssa M.; Bowers, Margaret A.; Klosterman, Samantha L.

    2016-03-01

    Non-contact, imaging photoplethysmography uses photo-optical sensors to measure variations in light absorption, caused by blood volume pulsations, to assess cardiopulmonary parameters including pulse rate, pulse rate variability, and respiration rate. Recently, researchers have studied the applications and methodology of imaging photoplethysmography. Basic research has examined some of the variables affecting data quality and accuracy of imaging photoplethysmography including signal processing, imager parameters (e.g. frame rate and resolution), lighting conditions, subject motion, and subject skin tone. This technology may be beneficial for long term or continuous monitoring where contact measurements may be harmful (e.g. skin sensitivities) or where imperceptible or unobtrusive measurements are desirable. Using previously validated signal processing methods, we examined the effects of imager-to-subject distance on one-minute, windowed estimates of pulse rate. High-resolution video of 22, stationary participants was collected using an enthusiast-grade, mirrorless, digital camera equipped with a fully-manual, super-telephoto lens at distances of 25, 50, and 100 meters with simultaneous contact measurements of electrocardiography, and fingertip photoplethysmography. By comparison, previous studies have usually been conducted with imager-to-subject distances of up to only a few meters. Mean absolute error for one-minute, windowed, pulse rate estimates (compared to those derived from gold-standard electrocardiography) were 2.0, 4.1, and 10.9 beats per minute at distances of 25, 50, and 100 meters, respectively. Long-range imaging presents several unique challenges among which include decreased, observed light reflectance and smaller regions of interest. Nevertheless, these results demonstrate that accurate pulse rate measurements can be obtained from over long imager-to-participant distances given these constraints.

  1. High-speed defect detection in rails by non-contact guided ultrasonic testing

    Science.gov (United States)

    Rizzo, Piervincenzo; Bartoli, Ivan; Lanza di Scalea, Francesco; Coccia, Stefano; Fateh, Mahmood

    2005-05-01

    Recent train accidents and associated direct and indirect repair costs have reaffirmed the need for developing rail defect detection systems more effective than those used today. The group at the UCSD NDE & Structural Health Monitoring Laboratory, in collaboration with the US Federal Railroad Administration, is conducting a study that aims at developing an inspection strategy for rails based on guided ultrasonic waves. This paper illustrates a guided-wave inspection system that is targeted to the detection of transverse-type cracks in the rail head, that are among the most dangerous flaws in rails. The methodology is based on a hybrid non-contact system that uses a pulsed laser for generating waves and multiple air-coupled sensors for detecting waves. The remote sensors are positioned as far away as 76 mm (3") from the top of rail head. Signal processing based on the Continuous Wavelet Transform is used to characterize the time-frequency content of the propagating waves. Features extracted after Discrete Wavelet processing of the wave signals result in a damage index that is robust with respect to noise and is related to the crack depth; the method allows for fast inspection with the potential for quantifying the extent of the flaw. It is demonstrated that the adopted setup allows for the detection of small cracks, as shallow as 1 mm in depth. It is also shown that the ultrasonic wave features considered in this study are directly related to the reduction of the rail head cross-sectional area caused by a transverse crack.

  2. A non-contact temperature measurement system for controlling photothermal medical laser treatments

    Science.gov (United States)

    Kaya, Ã.-zgür; Gülsoy, Murat

    2016-03-01

    Photothermal medical laser treatments are extremely dependent on the generated tissue temperature. It is necessary to reach a certain temperature threshold to achieve successful results, whereas preventing to exceed an upper temperature value is required to avoid thermal damage. One method to overcome this problem is to use previously conducted dosimetry studies as a reference. Nevertheless, these results are acquired in controlled environments using uniform subjects. In the clinical environment, the optical and thermal characteristics (tissue color, composition and hydration level) vary dramatically among different patients. Therefore, the most reliable solution is to use a closed-loop feedback system that monitors the target tissue temperature to control laser exposure. In this study, we present a compact, non-contact temperature measurement system for the control of photothermal medical laser applications that is cost-efficient and simple to use. The temperature measurement is achieved using a focused, commercially available MOEMS infrared thermocouple sensor embedded in an off-axis arrangement on the laser beam delivery hand probe. The spot size of the temperature sensor is ca. 2.5 mm, reasonably smaller than the laser spot sizes used in photothermal medical laser applications. The temperature readout and laser control is realized using a microcontroller for fast operation. The utilization of the developed system may enable the adaptation of several medical laser treatments that are currently conducted only in controlled laboratory environments into the clinic. Laser tissue welding and cartilage reshaping are two of the techniques that are limited to laboratory research at the moment. This system will also ensure the safety and success of laser treatments aiming hyperthermia, coagulation and ablation, as well as LLLT and PDT.

  3. Automatic detection of whole night snoring events using non-contact microphone.

    Directory of Open Access Journals (Sweden)

    Eliran Dafna

    Full Text Available OBJECTIVE: Although awareness of sleep disorders is increasing, limited information is available on whole night detection of snoring. Our study aimed to develop and validate a robust, high performance, and sensitive whole-night snore detector based on non-contact technology. DESIGN: Sounds during polysomnography (PSG were recorded using a directional condenser microphone placed 1 m above the bed. An AdaBoost classifier was trained and validated on manually labeled snoring and non-snoring acoustic events. PATIENTS: Sixty-seven subjects (age 52.5 ± 13.5 years, BMI 30.8 ± 4.7 kg/m(2, m/f 40/27 referred for PSG for obstructive sleep apnea diagnoses were prospectively and consecutively recruited. Twenty-five subjects were used for the design study; the validation study was blindly performed on the remaining forty-two subjects. MEASUREMENTS AND RESULTS: To train the proposed sound detector, >76,600 acoustic episodes collected in the design study were manually classified by three scorers into snore and non-snore episodes (e.g., bedding noise, coughing, environmental. A feature selection process was applied to select the most discriminative features extracted from time and spectral domains. The average snore/non-snore detection rate (accuracy for the design group was 98.4% based on a ten-fold cross-validation technique. When tested on the validation group, the average detection rate was 98.2% with sensitivity of 98.0% (snore as a snore and specificity of 98.3% (noise as noise. CONCLUSIONS: Audio-based features extracted from time and spectral domains can accurately discriminate between snore and non-snore acoustic events. This audio analysis approach enables detection and analysis of snoring sounds from a full night in order to produce quantified measures for objective follow-up of patients.

  4. Automatic detection of whole night snoring events using non-contact microphone.

    Science.gov (United States)

    Dafna, Eliran; Tarasiuk, Ariel; Zigel, Yaniv

    2013-01-01

    Although awareness of sleep disorders is increasing, limited information is available on whole night detection of snoring. Our study aimed to develop and validate a robust, high performance, and sensitive whole-night snore detector based on non-contact technology. Sounds during polysomnography (PSG) were recorded using a directional condenser microphone placed 1 m above the bed. An AdaBoost classifier was trained and validated on manually labeled snoring and non-snoring acoustic events. Sixty-seven subjects (age 52.5 ± 13.5 years, BMI 30.8 ± 4.7 kg/m(2), m/f 40/27) referred for PSG for obstructive sleep apnea diagnoses were prospectively and consecutively recruited. Twenty-five subjects were used for the design study; the validation study was blindly performed on the remaining forty-two subjects. To train the proposed sound detector, >76,600 acoustic episodes collected in the design study were manually classified by three scorers into snore and non-snore episodes (e.g., bedding noise, coughing, environmental). A feature selection process was applied to select the most discriminative features extracted from time and spectral domains. The average snore/non-snore detection rate (accuracy) for the design group was 98.4% based on a ten-fold cross-validation technique. When tested on the validation group, the average detection rate was 98.2% with sensitivity of 98.0% (snore as a snore) and specificity of 98.3% (noise as noise). Audio-based features extracted from time and spectral domains can accurately discriminate between snore and non-snore acoustic events. This audio analysis approach enables detection and analysis of snoring sounds from a full night in order to produce quantified measures for objective follow-up of patients.

  5. RELIABILITY OF A CONTACT AND NON-CONTACT SIMULATED TEAM GAME CIRCUIT

    Directory of Open Access Journals (Sweden)

    Tarveen K.R. Singh

    2010-12-01

    Full Text Available Most team sports are characterised by repeated short maximal sprint efforts interspersed with longer periods of active recovery or rest. Although a variety of testing protocols have been devised to simulate these activity patterns under controlled conditions, a common limitation is the lack of 'body contact' to simulate the tackling efforts seen in contact sports. Therefore, the purpose of this study was to assess the reliability of a simulated team game protocol with and without 'contact'. Eleven male, team-sport athletes (mean ± SD; age 22 ± 2 yr; BMI 23.0 ± 1.7 kg·m-2 completed four separate testing trials; two 'non-contact' trials (NCON and two 'contact' (CON trials of a simulated game to determine the reliability of a range of team sport performance indicators including repeated 15-m sprint time, vertical jump height, heart rate response and ratings of perceived exertion (RPE. The team game protocol involved four sets of 15-min of intermittent running around a circuit replicating the movement patterns observed in team sports, either with or without simulated contact. Within-subject reliability of each performance measure was determined by expressing the typical error of measurement as the coefficient of variation, as well as determining intra-class correlations. Both CON and NCON produced reliable results for a variety of team sport performance indicators including repeated 15-m sprint time, vertical jump height, heart rate response and RPE. Repeated sprint and jump performance declined over time throughout the simulated game (p < 0.05, while heart rate and RPE increased. There was no difference in these performance measures between CON and NCON protocols. As such, these simulated game protocols provide reliable options for assessing team game performance parameters in response to training or other interventions under controlled conditions

  6. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source.

    Science.gov (United States)

    Mühlberger, F; Saraji-Bozorgzad, M; Gonin, M; Fuhrer, K; Zimmermann, R

    2007-11-01

    Orthogonal acceleration time-of-flight mass spectrometers (oaTOFMS), which are exhibiting a pulsed orthogonal extraction of ion bunches into the TOF mass analyzer from a continuous primary ion beam, are well-suited for continuous ionization methods such as electron impact ionization (EI). Recently an electron beam pumped rare gas excimer lamp (EBEL) was introduced, which emits intensive vacuum UV (VUV) radiation at, e.g., 126 nm (argon excimer) and is well suited as the light source for soft single photon ionization (SPI) of organic molecules. In this paper, a new compact oaTOFMS system which allows switching between SPI, using VUV-light from an EBEL-light source, and conventional EI is described. With the oaTOFMS system, EBEL-SPI and EI mass spectral transients can be recorded at very high repetition rates (up to 100 kHz), enabling high duty cycles and therefore good detection efficiencies. By using a transient recorder card with the capability to perform on-board accumulation of the oaTOF transients, final mass spectra with a dynamic range of 106 can be saved to the hard disk at a rate of 10 Hz. As it is possible to change the ionization modes (EI and SPI) rapidly, a comprehensive monitoring of complex gases with highly dynamic compositions, such as cigarette smoke, is possible. In this context, the EI based mass spectra address the bulk composition (compounds such as water, oxygen, carbon dioxide, etc. in the up to percentage concentration range) as well as some inorganic trace gases such as argon, sulfur dioxide, etc. down to the low ppm level. The EBEL-SPI mass spectra on the other hand are revealing the organic composition down to the lower ppb concentration range.

  7. An improved non-contact thermometer and hygrometer with rapid response

    Science.gov (United States)

    Underwood, R.; Gardiner, T.; Finlayson, A.; Bell, S.; de Podesta, M.

    2017-02-01

    Previously (Underwood et al 2015 Meteorol. Appl. 22 830) we reported first tests of a device capable of simultaneous, non-contact, temperature and humidity (NCTAH) measurements in air. The device used an acoustic thermometer and a tuneable diode laser absorption spectrometer (TDLAS), a combination which should be capable of an extremely rapid response to changes in humidity as it does not require moisture in a solid-state matrix to equilibrate with the surrounding air. In this paper we report recent developments of the instrument focussed on reducing its response time so that it can be used as a reference instrument for assessing the response time of conventional humidity sensors. In addition, the interdependence of the temperature and humidity estimates is now accounted for in real-time using an iterative procedure, which eliminates the need for data post-processing. The TDLAS measures water molecule number density based on the transmission of an infrared beam (approximate wavelength 1360 nm) through a 0.6 m path length. The acoustic thermometer is based around a fixed-path acoustic interferometer. The improved NCTAH device now produces estimates of the water molecule number density every 20 ms and the temperature output displays an RC filter-like response, with a time constant of approximately 30 ms. The instrument has been tested in a climatic chamber through a temperature range of  -40 °C to  +40 °C and a dew point range of  -43 °C to  +38 °C, at atmospheric pressure, comparing the instrument readings with those from a calibrated hygrometer and four platinum resistance thermometers. In steady-state conditions, the instrument readings are in good agreement with the conventional sensors, with temperature differences less than 1 °C (repeatability 0.1 °C), and humidity differences mostly within 5% of mixing ratio. Under transient conditions, we demonstrate how the instrument can be used to evaluate the response times of conventional

  8. 非接触式酒驾检测系统的硬件设计%Hardware design of non-contact drunk detection system

    Institute of Scientific and Technical Information of China (English)

    黄晖

    2013-01-01

    At present,the commonly-used method by means of contact alcohol detection which investigates drunk driving has high precision,but it can not realize real-time detection and therefore the efficiency is very low.In order to monitor the driver's drunk driving behavior more effectively,a non-contact drunk detection system used to real-time monitor the driver's drinking status has been developed and a gas strength of alcohol detecting platform comprised of the O2/CO2 sensor,the gas alcohol sensor and microprocessor has been built.It expounds the detection principle and primary structure composition of non-contact drunk detection system based on expiratory flow detection,introduces the hardware design of gas strength of alcohol detecting platform as well as the calibration experiment to this detecting platform.The experimental result shows that the platform examination value and the contact alcohol detection values have high degree of linear correlation.%目前,查处酒驾常用的接触式酒精检测方法精度较高,但不能实时检测,效率很低.为了更有效地监控驾驶员的酒驾行为,开发了一套实时监测驾驶员饮酒状况的非接触式酒驾检测系统,并搭建一个由O2/CO2传感器、气敏酒精传感器及微处理器等组成的气体酒精浓度检测平台.阐述了非接触式酒驾检测系统基于呼气气流检测的检测原理和主要结构组成,介绍了气体酒精浓度检测平台的硬件设计以及对该检测平台的标定实验,实验结果显示平台检测值与接触式酒精检测值之间存在良好的线性相关度.

  9. Development of Nondestructive Non-Contact Acousto-Thermal Evaluation Technique for Damage Detection in Materials (Postprint)

    Science.gov (United States)

    2012-09-01

    Bison and E. Grinzato, “ Building material characterization by using IR thermography for efficient heating systems,” in Thermosense XXX, edited by P. V...heat generation and propagation. In flash thermography , and pulse laser methods the source is a direct heat pulse. Thermal diffusivity in the material ...AFRL-RX-WP-JA-2014-0223 DEVELOPMENT OF NONDESTRUCTIVE NON- CONTACT ACOUSTO-THERMAL EVALUATION TECHNIQUE FOR DAMAGE DETECTION IN MATERIALS

  10. Polarised light stress analysis and laser scatter imaging for non-contact inspection of heat seals in food trays

    OpenAIRE

    Barnes, Michael; Dudbridge, Michael; Duckett, Tom

    2012-01-01

    This paper introduces novel non-contact methods for detecting faults in heat seals of food packages. Two alternative imaging technologies are investigated; laser scatter imaging and polarised light stress images. After segmenting the seal area from the rest of the respective image, a classifier is trained to detect faults in different regions of the seal area using features extracted from the pixels in the respective region. A very large set of candidate features, based on statistical informa...

  11. The distinctions between the electrical conductivities under non-contact and contact current excitation in spin–split two-dimensional conductors

    Energy Technology Data Exchange (ETDEWEB)

    Kopeliovich, A.I. [B. Verkin Institute for Low Temperature Physics & Engineering, NAS of Ukraine (Ukraine); Pyshkin, P.V., E-mail: pavel.pyshkin@gmail.com [Ikerbasque, Basque Foundation for Science 48011, Bilbao (Spain); Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Kalinenko, A.N.; Yanovsky, A.V. [B. Verkin Institute for Low Temperature Physics & Engineering, NAS of Ukraine (Ukraine)

    2016-02-15

    It is shown that the normal electron–electron scattering is a source of electrical resistance on non-contact current excitation in two-dimensional spin–split electron systems. In contrast to the contact current injection, non-contact current excitation causes spatially inhomogeneous polarization in a two-dimensional conductor leading to new resistivity mechanisms.

  12. Air-coupled acoustic radiation force source for non-contact measurement of soft media elasticity (Conference Presentation)

    Science.gov (United States)

    Ambroziński, Lukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David S.; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2017-04-01

    Acoustic radiation force (ARF) is commonly used in ultrasound (US)-based elastography to generate shear waves deep within soft tissue. These waves can be detected with different methods, e.g. contact conventional ultrasound imaging probes or contact free magnetic resonance or optical coherence tomography (OCT). For many clinical applications, however, for instance the eye, a totally non-contact system for generation/detection of mechanical waves is needed. Here, we present a method for efficient non-contact excitation of broadband transverse mechanical waves in soft media. The approach is based on pushing the medium under study with a 1 MHz chirped US wave focused to its surface from air. The US beam reflected from the air/medium interface provides the ARF force to the medium surface launching a transient mechanical wave in the transverse (lateral) direction. The design and performance of the air-coupled transducer is discussed. The focal zone, peak pressure and acoustic intensity are measured for transducers with different numerical apertures. Time and frequency characteristics of the propagating mechanical waves, generated in soft tissue, are tracked with a phase-sensitive ultra-fast frame rate OCT imaging system. Application of the proposed method for non-contact, non-invasive, sub-mm resolution elasticity measurement in soft tissue is proposed.

  13. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor

    Directory of Open Access Journals (Sweden)

    Ki-Tae Nam

    2016-08-01

    Full Text Available Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users’ driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW.

  14. Development and application of a portable manual non-contact-type goniometric instrument for measuring human anatomical angular parameters.

    Science.gov (United States)

    Susato, Shin-ichi

    2013-02-01

    Several manual contact-type goniometric instruments have previously been developed to measure joint range of motion (ROM) during physical-therapy evaluation. These include the universal goniometer and the gravity-dependent goniometer, or inclinometer, which are used to measure the ROM angle of a subject in a fully erect posture. Here, we developed a manual non-contact-type portable goniometric instrument for the measurement of anatomical angular parameters based on the principle of spot irradiation by using laser markers. The accuracy of the developed instrument was tested and its performance was compared with that of a contact-type instrument by using a skeletal model (14 static angle assessments), a free posture manikin (18 static angle assessments), and healthy human bodies (5 males and 5 females; 11 dynamic angle assessments). Measurement errors were examined also. When taking the measurements, a visual landmark-detection method was used in place of the conventional palpation method, which is inappropriate for a non-contact measuring system. The instrument developed here is applicable for practical non-contact goniometry and ROM measurements.

  15. Non-contact measurement of the electrical conductivity and coverage density of silver nanowires for transparent electrodes using Terahertz spectroscopy

    Science.gov (United States)

    Park, Sung-Hyeon; Chung, Wan-Ho; Kim, Hak-Sung

    2017-02-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used for non-contact measurement of the conductivity and coverage density (D C) of silver nanowires (SNWs) as transparent electrodes. The reflection mode of THz-TDS with an incident angle of 30° was used, and the sheet resistance (R sh) of SNW films was measured using the four-point probe method. The correlations between the THz reflection ratio and R sh were studied by comparing the results of the four-point probe method and the measured THz reflection ratios. Also, the D C of SNWs was evaluated using THz waveforms with a general refractivity formula. This result matched well with a conventional approximation method using a scanning electron microscope image. Furthermore, defects in the SNWs could be easily detected using the THz-TDS imaging technique. The non-contact THz-TDS measurement method that we developed is expected to be a promising technique for non-contact measurement of the R sh and D C for transparent conductive electrodes.

  16. Research on working clearance optimization for non-contact stress detection with magneto-elastic stress sensor

    Science.gov (United States)

    Guo, Yingfu; Tang, Guiqing; Wang, Wenyun

    2013-10-01

    In order to acquire the optimal working clearance for non-contact detecting stress of steel members with magneto-elastic stress sensor, a magneto-elastic sensor probe with E-shaped structure is adopted for carrying out the relevant research. Firstly, the principle of non-contact stress detection is discussed based on magneto-elastic effect, and the magnetic circuit of the magneto-elastic stress sensor is analyzed for deducing the basic output voltage equation of sensor when tested pieces (low carbon steel Q235) is loaded with uniaxial stress, on the basis of ferromagnetism and presented references, the technical parameter of sensor is determined for designing non-contact stress detection system. After that, focusing on the design of the testing program with different excitation frequencies and air gap, actual experiments are carried out to optimize working clearance when tested pieces are loaded with uniaxial stress. Results of the test show that this kind of sensor is not only simple in structure but also valuable with non-destructive, convenient and fast measurement of stress in application.

  17. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    Science.gov (United States)

    Trichopoulos, Georgios C.

    . Additionally, a butterfly-shaped antenna layout is introduced that enables broadband imaging. The alternative design presented here, allows for video-rate imaging in the 0.6--1.2 THz band and maintains a small antenna footprint, resulting in densely packed FPAs. In both antenna designs, we optimize the impedance matching between the antennas and the integrated electronic devices, thus achieving optimum responsivity levels for high sensitivity and low noise performance. Subsequently, we present the design details of the first THz camera and the first THz camera images captured. With the realized THz camera, imaging of concealed objects is achieved with system that allows rapid cross-sectional imaging (˜2 min). For the design and analysis of the THz camera performance, we developed an in-house hybrid electromagnetic model, combining full-wave and high-frequency computational methods. The antenna radiation and impedance computation is first carried out using full-wave modeling of the FPA. Subsequently, we employ scalar diffraction theory to compute the field distribution at any point in space. Thus, the hybrid electromagnetic model allows fast and accurate design of THz antennas and modeling of the complete THz imaging system. Finally, motivated by the novel THz antenna layouts and the quasioptical techniques, we developed a novel non-contact probe measurement method for on-chip device characterization. In the THz regime, traditional contact probes are too small and fragile, thus inhibiting accurate and reliable circuit measurements. By integrating the device under test (DUT) with THz antennas that act as the measurement probes, we may couple the incident and reflected signal from and to the network analyzer without residing to any physical connection.

  18. CERN Video News on line

    CERN Multimedia

    2003-01-01

    The latest CERN video news is on line. In this issue : an interview with the Director General and reports on the new home for the DELPHI barrel and the CERN firemen's spectacular training programme. There's also a vintage video news clip from 1954. See: www.cern.ch/video or Bulletin web page

  19. Non-contact temperature measurement. [in containerless space-based experiments

    Science.gov (United States)

    Nordine, Paul C.; Krishnan, Shankar; Weber, J. K. R.; Schiffman, Robert A.

    1991-01-01

    Three methods for noncontact temperature measurement are presented. Ideal gas thermometry is realized by using laser-induced fluorescence to measure the concentration of mercury atoms in a Hg-Ar mixture in the vicinity of hot specimens. Emission polarimetry is investigated by measuring the spatially resolved intensities of polarized light from a hot tungsten sphere. Laser polarimetry is used to measure the optical properties, emissivity, and, in combination with optical pyrometry, the temperature of electromagnetically levitated liquid aluminum. The precision of temperature measurements based on the ideal gas law is + or - 2.6 percent at 1500-2000 K. The polarized emission technique is found to have the capability to determine optical properties and/or spectral emissivities of specimens over a wide range of wavelengths with quite simple instruments.

  20. Flue gas on-line monitoring techniques of continuous emission monitoring system.%烟气排放连续监测系统的烟气参数在线监测技术

    Institute of Scientific and Technical Information of China (English)

    朱卫东; 朱建平; 徐淮明; 范黎峰; 祖亮

    2011-01-01

    The flue gas monitoring techniques of continuous emission monitoring system are introduced briefly,including flue gas flow rate measurement, flue gas water content measurement and flue gas oxygen content measurement. The applications of the data obtained from flue gas monitoring and the future development of flue gas monitoring techniques are discussed.%简要介绍了烟气排放连续监测系统的烟气参数监测项目及技术要求,包括烟气流速、烟气水分含量、烟气含氧量在线监测技术.对烟气参数在线监测的应用与发展进行了探讨.

  1. Clean Air OnLine

    Energy Technology Data Exchange (ETDEWEB)

    Finney, D. [Environment Canada, Gatineau, PQ (Canada). Air Pollution Prevention Directorate

    2004-04-07

    This presentation describes Clean Air OnLine, a multi-tiered website dedicated to providing Canadians with information on air quality. The website is under development to support action to reduce air emissions, demonstrate the links between air emissions and environmental impacts, and enhance the understanding of sustainable community development issues such as health, energy, and urban sprawl. Partners in the Clean Air OnLine (CAOL) initiative include Environment Canada and the Clean Air Partnership which includes the Greater Toronto Area pilot project. The audience for CAOL includes municipal decision makers, local decision makers, community leaders, and the general public. The project provides Canadians with air pollution contextual information on pollution sources, pollutants, and related issues. It also provides information on health, environmental and economic impacts and the interrelationships with climate change issues and energy use. tabs., figs.

  2. On-line moisture analysis

    CERN Document Server

    Cutmore, N G

    2002-01-01

    Measurement of the moisture content of iron ore has become a key issue for controlling moisture additions for dust suppression. In most cases moisture content is still determined by manual or automatic sampling of the ore stream, followed by conventional laboratory analysis by oven drying. Although this procedure enables the moisture content to be routinely monitored, it is too slow for control purposes. This has generated renewed interest in on-line techniques for the accurate and rapid measurement of moisture in iron ore on conveyors. Microwave transmission techniques have emerged over the past 40 years as the dominant technology for on-line measurement of moisture in bulk materials, including iron ores. Alternative technologies have their limitations. Infra-red analysers are used in a variety of process industries, but rely on the measurement of absorption by moisture in a very thin surface layer. Consequently such probes may be compromised by particle size effects and biased presentation of the bulk mater...

  3. Non Contact Type of Pulse Detonation Engine Thrust Measurement Theory and Experimental Study%脉冲爆震发动机非接触推力测试理论与实验研究

    Institute of Scientific and Technical Information of China (English)

    李超; 郑龙席; 李勍; 黄希桥

    2013-01-01

    对非接触推力的产生原理进行了理论分析,并利用CFD软件,对影响该测量方法精度的发动机气动因素进行了数值分析.结果显示非接触方法在尾喷管出口气流为低压、高温、高流量且承接板安装较近的情况下,测量损失较小.通过火箭式爆震发动机推力测量实验,研究了爆震发动机频率以及承接板安装位置对非接触式推力测量结果的影响.实验结果表明,承接板上的测量推力会随承接板到发动机尾喷口距离的增加而减小,高频情况下的相对误差比低频情况下小,实验结果与数值模拟一致.%Analysing the principle of the non-contact thrust method, using CFD software, the effects of the non-contact thrust measurement method by numerical analysis are foand out. The result shows that there will be less loss of measurement when the exhaust air is low pressure, high temperature, high flow rate. Through the cold blowing experiment and rocket type detonation engine thrust measure experiment, the effects of gas flow rate, frequency and receiving plate installation position in non-contact measuring method are studied. The experimental results show that the relative errors of the non-contact type thrust measurement method will reduce with the increases of the gas flow rate, the thrust will reduce with the distance increased, and the experimental results and numerical simulation are consistent.

  4. Rapid, non-destructive and non-contact inspection of solid foods by means of photothermal radiometry; thermal effusivity and initial heating coefficient

    NARCIS (Netherlands)

    Gijsbertsen, A.; Bicanic, D.D.; Gielen, J.L.W.; Chirtoc, M.

    2004-01-01

    CO2-laser photothermal radiometry (PTR) was demonstrated to be suitable for the nondestructive and non-contact characterization (both optical and thermal) of solid phase agricultural commodities (fres vegetables, fruits) and confectionery products (candy).

  5. Non-contact continuous-wave diffuse optical tomographic system to capture vascular dynamics in the foot

    Science.gov (United States)

    Hoi, Jennifer W.; Kim, Hyun K.; Khalil, Michael A.; Fong, Christopher J.; Marone, Alessandro; Shrikhande, Gautam; Hielscher, Andreas H.

    2015-03-01

    Dynamic optical tomographic imaging has shown promise in diagnosing and monitoring peripheral arterial disease (PAD), which affects 8 to 12 million in the United States. PAD is the narrowing of the arteries that supply blood to the lower extremities. Prolonged reduced blood flow to the foot leads to ulcers and gangrene, which makes placement of optical fibers for contact-based optical tomography systems difficult and cumbersome. Since many diabetic PAD patients have foot wounds, a non-contact interface is highly desirable. We present a novel non-contact dynamic continuous-wave optical tomographic imaging system that images the vasculature in the foot for evaluating PAD. The system images at up to 1Hz by delivering 2 wavelengths of light to the top of the foot at up to 20 source positions through collimated source fibers. Transmitted light is collected with an electron multiplying charge couple device (EMCCD) camera. We demonstrate that the system can resolve absorbers at various locations in a phantom study and show the system's first clinical 3D images of total hemoglobin changes in the foot during venous occlusion at the thigh. Our initial results indicate that this system is effective in capturing the vascular dynamics within the foot and can be used to diagnose and monitor treatment of PAD in diabetic patients.

  6. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    Science.gov (United States)

    Ambroziński, Łukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-07-01

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  7. Application of the laser generated focused-Lamb wave for non-contact imaging of defects in plate.

    Science.gov (United States)

    Jhang, Kyung-Young; Shin, Min Jae; Lim, Byoung Ok

    2006-12-22

    The laser generation method of focused-Lamb wave is expected to have high defect-detection ability with advantages of non-contact testing. In this method, the laser beam is illuminated on the surface of the object through an arrayed-arc slit, and then the energy of the generated Lamb wave is concentrated on the focus point of arc. This focusing effect enables the concentration of higher wave intensity on the focus with better S/N ratio of signal, and has better spatial resolution compared to the conventional line arrayed method. This paper describes a 2-D imaging system using this laser generated, focused-Lamb wave combined with its detection by the air-coupled transducer. This technique is fully non-contact so it can be easily applied for the automatic inspection. The effectiveness of the proposed method was verified by experiments on a 1-mm thick aluminum plate with artificial drill-hole defect with diameters of 1mm. The 2-D image of was constructed by scanning and the result showed that the location and size of defects were clearly detected.

  8. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes.

    Science.gov (United States)

    Heo, Chaejeong; Yoo, Jeongwan; Lee, Siyoung; Jo, Areum; Jung, Susie; Yoo, Hyosun; Lee, Young Hee; Suh, Minah

    2011-01-01

    Electric field stimulation has become one of the most promising therapies for a variety of neurological diseases. However, the safety and effectiveness of the stimulator are critical in determining the outcome. Because there are few safe and effective in vivo and/or in vitro stimulator devices, we demonstrate a method that allows for non-contact electric field stimulation with a specific strength that is able to control cell-to-cell interaction in vitro. Graphene, a form of graphite, and polyethylene terephthalate (PET) was used to create a non-cytotoxic in vitro graphene/PET film stimulator. A transient non-contact electric field was produced by charge-balanced biphasic stimuli through the graphene/PET film electrodes and applied to cultured neural cells. We found that weak electric field stimulation (pulse duration of 10 s) as low as 4.5 mV/mm for 32 min was particularly effective in shaping cell-to-cell interaction. Under weak electric field stimulation, we observed a significant increase in the number of cells forming new cell-to-cell couplings and in the number of cells strengthening existing cell-to-cell couplings. The underlying mechanism of the altered cellular interactions may be related to an altered regulation of the endogenous cytoskeletal proteins fibronectin, actin, and vinculin. In conclusion, this technique may open a new therapeutic approach for augmenting cell-to-cell coupling in cell transplantation therapy in the central nervous system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Non-contact versus contact-based sensing methodologies for in-home upper arm robotic rehabilitation.

    Science.gov (United States)

    Howard, Ayanna; Brooks, Douglas; Brown, Edward; Gebregiorgis, Adey; Chen, Yu-Ping

    2013-06-01

    In recent years, robot-assisted rehabilitation has gained momentum as a viable means for improving outcomes for therapeutic interventions. Such therapy experiences allow controlled and repeatable trials and quantitative evaluation of mobility metrics. Typically though these robotic devices have been focused on rehabilitation within a clinical setting. In these traditional robot-assisted rehabilitation studies, participants are required to perform goal-directed movements with the robot during a therapy session. This requires physical contact between the participant and the robot to enable precise control of the task, as well as a means to collect relevant performance data. On the other hand, non-contact means of robot interaction can provide a safe methodology for extracting the control data needed for in-home rehabilitation. As such, in this paper we discuss a contact and non-contact based method for upper-arm rehabilitation exercises that enables quantification of upper-arm movements. We evaluate our methodology on upper-arm abduction/adduction movements and discuss the advantages and limitations of each approach as applied to an in-home rehabilitation scenario.

  10. High spatial and temporal resolution measurement of mechanical properties in hydrogels by non-contact laser excitation

    Directory of Open Access Journals (Sweden)

    N. Hosoya

    2016-09-01

    Full Text Available Gels have received increased attention as potential materials for biological materials because they can exhibit similar mechanical properties. One obstacle for using gels is that their mechanical properties are significantly altered by defects, such as an inhomogeneous crosslink density distribution. If these defects could be detected and the values and spatial distributions of mechanical properties in the gel could be determined, it would be possible to apply gels for several fields. To achieve the high spatial and temporal resolution measurement of mechanical properties in hydrogels, in our method, a conventional contact excitation device is replaced with a non-contact excitation using laser ablation for the input and magnetic resonance elastography to measure stress waves is replaced with the Schlieren method with a high-speed camera. Magnetic resonance elastography is a local measurement technique, and consequently, requires a lot of time to characterize a sample, as well as does not have sufficient spatial resolution to obtain a broad range of elasticity coefficients of gels. We use laser ablation to apply non-contact impulse excitations to gels to generate stress waves inside them. We can determine mechanical properties of gels using the stress waves’ propagation velocity.

  11. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    Energy Technology Data Exchange (ETDEWEB)

    Ambroziński, Łukasz [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); AGH University of Science and Technology, Krakow 30059 (Poland); Pelivanov, Ivan, E-mail: ivanp3@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Song, Shaozhen; Yoon, Soon Joon; Gao, Liang; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Li, David [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Chemical Engineering, University of Washington Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K. [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)

    2016-07-25

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  12. IOP measurement in silicone oil tamponade eyes by Corvis ST tonometer, Goldmann applanation tonometry and non-contact tonometry.

    Science.gov (United States)

    Zhang, Yang; Zheng, Lin; Bian, Ailing; Zhou, Qi

    2017-04-25

    To compare the postoperative intraocular pressure (IOP) of eyes following pars plana vitrectomy (PPV) combined with intravitreal silicone oil (SO) tamponade by Corneal Visualization Scheimpflug Technology (CST), Goldmann applanation tonometry (GAT) and non-contact tonometry (NCT). Thirty-eight participants who had undergone PPV combined with SO tamponade to treat vitreoretinal diseases were enrolled. Postoperative IOP measurements were obtained using CST, NCT and GAT. Inter-device agreement was assessed by Bland-Altman analysis. The correlation coefficient was used to describe the potential postoperative factors affecting the postoperative IOP differences between each device. Bland-Altman analysis revealed the bias between CST and GAT, between CST and NCT, and between GAT and NCT to be -0.2, 2.1 and 2.4 mmHg, respectively. CST and GAT correlated well with each other. NCT values were lower than those of GAT and CST (all p tamponade eyes, NCT obtains lower IOP than other tonometry techniques, and CST is highly consistent with GAT. CST offers an optional non-contact method for measuring postoperative IOP in SO tamponade eyes.

  13. High spatial and temporal resolution measurement of mechanical properties in hydrogels by non-contact laser excitation

    Science.gov (United States)

    Hosoya, N.; Terashima, Y.; Umenai, K.; Maeda, S.

    2016-09-01

    Gels have received increased attention as potential materials for biological materials because they can exhibit similar mechanical properties. One obstacle for using gels is that their mechanical properties are significantly altered by defects, such as an inhomogeneous crosslink density distribution. If these defects could be detected and the values and spatial distributions of mechanical properties in the gel could be determined, it would be possible to apply gels for several fields. To achieve the high spatial and temporal resolution measurement of mechanical properties in hydrogels, in our method, a conventional contact excitation device is replaced with a non-contact excitation using laser ablation for the input and magnetic resonance elastography to measure stress waves is replaced with the Schlieren method with a high-speed camera. Magnetic resonance elastography is a local measurement technique, and consequently, requires a lot of time to characterize a sample, as well as does not have sufficient spatial resolution to obtain a broad range of elasticity coefficients of gels. We use laser ablation to apply non-contact impulse excitations to gels to generate stress waves inside them. We can determine mechanical properties of gels using the stress waves' propagation velocity.

  14. Non-contact assessment of COD and turbidity concentrations in water using diffuse reflectance UV-Vis spectroscopy.

    Science.gov (United States)

    Agustsson, Jon; Akermann, Oliver; Barry, D Andrew; Rossi, Luca

    2014-08-01

    Water contamination is an important environmental concern underlining the need for reliable real-time information on contaminant concentrations in natural waters. Here, a new non-contact UV-Vis spectroscopic approach for monitoring contaminants in water, and especially wastewater, is proposed. Diffuse reflectance UV-Vis spectroscopy was applied to measure simultaneously the chemical oxygen demand (COD) and turbidity (TUR) concentrations in water. The measurements were carried out in the wavelength range from 200-1100 nm. The measured spectra were analysed using partial-least-squares (PLS) regression. The correlation coefficient between the measured and the reference concentrations of COD and TUR in the water samples were R(2) = 0.85 and 0.96, respectively. These results highlight the potential of non-contact UV-Vis spectroscopy for the assessment of water contamination. A system built on the concept would be able to monitor wastewater pollution continuously, without the need for laborious sample collection and subsequent laboratory analysis. Furthermore, since no parts of the system are in contact with the wastewater stream the need for maintenance is minimised.

  15. Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes

    Science.gov (United States)

    Wilson, Adam A.; Borca-Tasciuc, Theodorian

    2017-07-01

    Simplified heat-transfer models are widely employed by heated probe scanning thermal microscopy techniques for determining thermal conductivity of test samples. These parameters have generally been assumed to be independent of sample properties; however, there has been little investigation of this assumption in non-contact mode, and the impact calibration procedures have on sample thermal conductivity results has not been explored. However, there has been little investigation of the commonly used assumption that thermal exchange parameters are sample independent in non-contact mode, or of the impact calibration procedures have on sample thermal conductivity results. This article establishes conditions under which quantitative, localized, non-contact measurements using scanning thermal microscopy with heated microprobes may be most accurately performed. The work employs a three-dimensional finite element (3DFE) model validated using experimental results and no fitting parameters, to determine the dependence of a heated microprobe thermal resistance as a function of sample thermal conductivity at several values of probe-to-sample clearance. The two unknown thermal exchange parameters were determined by fitting the 3DFE simulated probe thermal resistance with the predictions of a simplified probe heat transfer model, for two samples with different thermal conductivities. This calibration procedure known in experiments as the intersection method was simulated for sample thermal conductivities in the range of 0.1-50 W m-1 K-1 and clearance values in the 260-1010 nm range. For a typical Wollaston wire microprobe geometry as simulated here, both the thermal exchange radius and thermal contact resistance were found to increase with the sample thermal conductivity in the low thermal conductivity range while they remained approximately constant for thermal conductivities >1 W m-1 K-1, with similar trends reported for all clearance values investigated. It is shown that

  16. PHENIX on-line systems

    Energy Technology Data Exchange (ETDEWEB)

    Adler, S.S.; Allen, M.; Alley, G.; Amirikas, R.; Arai, Y.; Awes, T.C.; Barish, K.N.; Barta, F.; Batsouli, S.; Belikov, S.; Bennett, M.J.; Bobrek, M.; Boissevain, J.G.; Boose, S.; Britton, C.; Britton, L.; Bryan, W.L.; Cafferty, M.M.; Carey, T.A.; Chang, W.C.; Chi, C.Y.; Chiu, M.; Cianciolo, V.; Cole, B.A.; Constantin, P.; Cook, K.C.; Cunitz, H.; Desmond, E.J.; Ebisu, K.; Efremenko, Y.V.; El Chenawi, K.; Emery, M.S.; Engo, D.; Ericson, N.; Fields, D.E.; Frank, S.; Frantz, J.E.; Franz, A.; Frawley, A.D.; Fried, J.; Gannon, J.; Gee, T.F.; Gentry, R.; Giannotti, P.; Gustafsson, H.-A.; Haggerty, J.S.; Hahn, S.; Halliwell, J.; Hamagaki, H.; Hansen, A.G.; Hara, H.; Harder, J.; He, X.; Heistermann, F.; Hemmick, T.K.; Hibino, M.; Hill, J.C. E-mail: jhill@iastate.edu; Homma, K.; Jacak, B.V.; Jagadish, U.; Jia, J.; Kajihara, F.; Kametani, S.; Kamyshkov, Y.; Kandasamy, A.; Kang, J.H.; Kapustinsky, J.; Katou, K.; Kelley, M.A.; Kelly, S.; Kikuchi, J.; Kim, S.Y.; Kim, Y.G.; Kistenev, E.; Kotchetkov, D.; Kurita, K.; Lajoie, J.G.; Lenz, M.; Lenz, W.; Li, X.H.; Lin, S.; Liu, M.X.; Markacs, S.; Matathias, F.; Matsumoto, T.; Mead, J.; Mischke, R.E.; Mishra, G.C.; Moore, A.; Muniruzzamann, M.; Musrock, M.; Nagle, J.L.; Nandi, B.K.; Newby, J.; Nystrand, J.; O' Brien, E.; O' Connor, P.; Ohnishi, H.; Oskarsson, A.; Osterman, L.; Oyama, K.; Paffrath, L.; Pancake, C.E.; Pantuev, V.S.; Petridis, A.N.; Pisani, R.P.; Plagge, T.; Plasil, F.; Purschke, M.L.; Rankowitz, S.; Rao, R.; Rau, M.; Read, K.F.; Ryu, S.S.; Sakaguchi, T.; Sato, H.D.; Seto, R.; Shiina, T.; Silvermyr, D.; Simon-Gillo, J.; Simpson, M.; Sippach, W.; Skank, H.D.; Skutnik, S.; Sleege, G.A.; Smith, G.D.; Smith, M.; Stankus, P.W.; Steinberg, P.; Sugitate, T.; Sullivan, J.P.; Taketani, A.; Tamai, M.; Tanaka, Y.; Thomas, W.D.; Todd, R.; Toldo, F.; Turner, G.; Ushiroda, T.; Velkovska, J.; Hecke, H.W. van; Lith, M. van; Villatte, L.; Achen, W. von; Walker, J.W.; Wang, H.Q.; White, S.N.; Wintenberg, A.L.; Witzig, C.; Wood, L.[and others

    2003-03-01

    The PHENIX On-Line system takes signals from the Front End Modules (FEM) on each detector subsystem for the purpose of generating events for physics analysis. Processing of event data begins when the Data Collection Modules (DCM) receive data via fiber-optic links from the FEMs. The DCMs format and zero suppress the data and generate data packets. These packets go to the Event Builders (EvB) that assemble the events in final form. The Level-1 trigger (LVL1) generates a decision for each beam crossing and eliminates uninteresting events. The FEMs carry out all detector processing of the data so that it is delivered to the DCMs using a standard format. The FEMs also provide buffering for LVL1 trigger processing and DCM data collection. This is carried out using an architecture that is pipelined and deadtimeless. All of this is controlled by the Master Timing System (MTS) that distributes the RHIC clocks. A Level-2 trigger (LVL2) gives additional discrimination. A description of the components and operation of the PHENIX On-Line system is given and the solution to a number of electronic infrastructure problems are discussed.

  17. Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation.

    Science.gov (United States)

    Chi, Yu M; Cauwenberghs, Gert

    2009-01-01

    A non-contact EEG electrode with input capacitance neutralization and common-mode noise suppression circuits is presented. The coin sized sensor capacitively couples to the scalp without direct contact to the skin. To minimize the effect of signal attenuation and channel gain mismatch, the input capacitance of each sensor is actively neutralized using positive feedback and bootstrapping. Common-mode suppression is achieved through a single conductive sheet to establish a common mode reference. Each sensor electrode provides a differential gain of 60 dB. Signals are transmitted in a digital serial daisy-chain directly from a local 16-bit ADC, minimizing the number of wires required to establish a high density EEG sensor network. The micropower electrode consumes only 600 microW from a single 3.3 V supply.

  18. Experimental Methodology for Determining Turbomachinery Blade Damping Using Magnetic Bearing Excitation and Non-Contacting Optical Measurements

    Science.gov (United States)

    Provenza, Andrew J.; Duffy, Kirsten P.

    2010-01-01

    Experiments to determine the effects of turbomachinery fan blade damping concepts such as passively shunted piezoelectric materials on blade response are ongoing at the NASA Glenn Research Center. A vertical rotor is suspended and excited with active magnetic bearings (AMBs) usually in a vacuum chamber to eliminate aerodynamic forces. Electromagnetic rotor excitation is superimposed onto rotor PD-controlled support and can be fixed to either a stationary or rotating frame of reference. The rotor speed is controlled with an air turbine system. Blade vibrations are measured using optical probes as part of a Non-Contacting Stress Measurement System (NSMS). Damping is calculated from these measurements. It can be difficult to get accurate damping measurements using this experimental setup and some of the details of how to obtain quality results are seemingly nontrivial. The intent of this paper is to present those details.

  19. Non-contact measurement of helicopter device position in wind tunnels with the use of optical videogrammetry method

    Science.gov (United States)

    Kuruliuk, K. A.; Kulesh, V. P.

    2016-10-01

    An optical videogrammetry method using one digital camera for non-contact measurements of geometric shape parameters, position and motion of models and structural elements of aircraft in experimental aerodynamics was developed. The tests with the use of this method for measurement of six components (three linear and three angular ones) of real position of helicopter device in wind tunnel flow were conducted. The distance between camera and test object was 15 meters. It was shown in practice that, in the conditions of aerodynamic experiment instrumental measurement error (standard deviation) for angular and linear displacements of helicopter device does not exceed 0,02° and 0.3 mm, respectively. Analysis of the results shows that at the minimum rotor thrust deviations are systematic and generally are within ± 0.2 degrees. Deviations of angle values grow with the increase of rotor thrust.

  20. Physical Non-Contact Communication between Microscopic Aquatic Species: Novel Experimental Evidences for an Interspecies Information Exchange

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    2016-01-01

    Full Text Available Previous experiments on physical non-contact communication within same species gave rise to test for this type of communication also across the species border, which was the aim of the present study. It was found that autotrophic unicellular organisms (Euglena viridis, separated by cuvettes, affected the proliferation rate of heterotrophic unicellular organisms (Paramecium caudatum. Further, the heterotrophic unicellular organism affected also the proliferation rate of a multicellular heterotrophic organism (Rotatoria sp. and vice versa. In the case when populations (of Euglena viridis and Paramecium caudatum were shielded against electromagnetic fields in the optical spectrum from each other, no effects were measured. The results may support the notion that the organisation of ecosystems relies also on the exchange of electromagnetic fields from their constituting biosystems.

  1. Studies on the Evaluation Methods for the Food Quality with a Non-contact type Capacitance Sensor.

    Science.gov (United States)

    Narumiya, Tadaoki; Hagura, Yoshio

    Changes of capacitance and temperature of ethyl alcohol, hamburger and dough with cheese filling were measured with specially-made measuring devices during the freezing and thawing. The results of measurement of capacitance and temperature suggest a linear correlation for ethyl alcohol as a single constituent substance. The adequate correlation is too estimated from the results of food samples, though the capacitance of food sample varies greatly at the start and end of freezing and thawing process. It has been demonstrated that the quality or physical condition of food sample can be determined easily by the measurement of capacitance using the specially-made devices. Also the quality or physical condition of food can be determined easily by the non-contact and non-destructive measurements of capacitance. A variety application of the present technique is conceivable for the process control of the freezing and thawing foods.

  2. Unusual case of methicillin resistant staphylococcus aureus and acanthamoeba keratitis in a non-contact lens wearer from Kashmir, India.

    Science.gov (United States)

    Lone, Rubina; Syed, Khurshid; Abdul, Rashid; Sheikh, Sajjad Ahmed; Shah, Faisal

    2009-01-01

    Acanthamoeba species can cause a chronic, progressive, ulcerative keratitis of the eye, which is not responsive to the usual antimicrobial treatment and is frequently mistaken for stromal herpes keratitis. Acanthamoeba keratitis continues to be a burgeoning and unsolved problem. Although soft contact lens wear is reported as the major risk factor in other parts of the world, reports from India suggest that acanthamoeba keratitis is more common among non-contact lens wearers. An unusual case of coinfection with Acanthamoeba and methicillin resistant staphylococcus aureus (MRSA) as causes of corneal keratitis in a contact lens wearer from Kashmir, India, is reported. Recent findings have shown that MRSA uses amoebae to spread, sidestepping hospital and other protection measures. Cysts of the isolated Acanthamoeba tolerated an incubation temperature of 40°C, indicating a pathogenic species. This case highlights the importance of culture methods in the diagnosis of corneal infection and the choice of treatment regimen.

  3. Study of geometric errors detection method for NC machine tools based on non-contact circular track

    Science.gov (United States)

    Yan, Kejun; Liu, Jun; Gao, Feng; Wang, Huan

    2008-12-01

    This paper presents a non-contact measuring method of geometric errors for NC machine tools based on circular track testing method. Let the machine spindle move along a circular path, the position error of every tested position in the circle can be obtained using two laser interferometers. With a volumetric error model, the 12 components of geometric error apart from angular error components can be derived. It has characteristics of wide detection range and high precision. Being obtained geometric errors respectively, it is of great significance for the error compensation of NC machine tools. This method has been tested on a MCV-510 NC machine tool. The experiment result has been proved to be feasible for this method.

  4. Oscillation propagating in non-contact linear piezoelectric ultrasonic levitation transporting system---from solid state to fluid media.

    Science.gov (United States)

    Li, Xianghua; Sun, Yuntao; Chen, Chao; Zhao, Chunsheng

    2010-04-01

    Non-contact ultrasonic motors (USM) show potential for future use, especially in the industrial fields because of its simple structure and quick response. It is therefore important to comprehensively understand their theoretical background so as to push this research forward. In this study, we shall fully explain and deduce the driving mechanism of a linear ultrasonic levitation transporting system. Oscillation equations from the initial exciting Langevin transducer and flexural traveling wave propagation on the linear guide were first established. Then the squeezing fluid movement between the linear guide and the levitating slider was analyzed. Next, after being excited by the progressing wave under corresponding boundary conditions, the related tangential velocity of the middle flow field was obtained. Finally, the validated experiment was set up to test slider velocity.

  5. Fusion of wireless and non-contact technologies for the dynamic testing of a historic RC bridge

    Science.gov (United States)

    Ferrari, Rosalba; Pioldi, Fabio; Rizzi, Egidio; Gentile, Carmelo; Chatzi, Eleni N.; Serantoni, Eugenio; Wieser, Andreas

    2016-12-01

    In this paper, a dynamic testing and corresponding signal processing methodology is presented for condition assessment of bridge structures, via use of a diverse and potentially dense grid of low-cost and easily deployable monitoring technologies. In particular, wireless and non-contact sensors are simultaneously deployed on a historic reinforced concrete bridge in order to record acceleration and dynamic displacement response, under operational loading conditions. An innovative monitoring approach is proposed on both the hardware (sensors) and software (algorithmic) front, in which an effective data fusion procedure is adopted for fusing these alternative technologies for vibration-based monitoring in terms of both acceleration and displacement information. The demonstrated efficacy of the fusion procedure on the case-study of an actual operating system, the historic Brivio bridge, reveals the potential of this approach within the context of structural monitoring, where acquisition of heterogeneous information certainly proves advantageous.

  6. Application of the HHT Method to the Non-contact Thickness Measurement of an Axially Moving Thin Plate

    Science.gov (United States)

    Wu, Yangfang; Lu, Qianqian; Xia, Chunlin; Ding, Fan

    2016-06-01

    Non-contact thickness measuring systems can be found in a wide spectrum of technologies. In this paper, Hilbert-Huang transform method is used to analyze the real time signals of a measuring system which includes two round conveyor strings carrying a thin plate, a solar wafer as a sample under test. The vibrations of moving strings and the plate, which are sensitive to moving speed and initial tension in the string, are introduced briefly; the relevant analyses should be helpful for the system design. Using EMD-based time-domain filtering and complementary method, thickness variations and error bands are estimated for different cases. The results show that HHT method as an adaptive time-frequency method, should be potential in measurement engineering applications.

  7. A Low-Cost, Normally Closed, Solenoid Valve for Non-Contact Dispensing in the Sub-µL Range

    Directory of Open Access Journals (Sweden)

    Peter Koltay

    2013-02-01

    Full Text Available We present a disposable, normally closed, non-contact dispensing valve for the sub-µL range. The miniaturized solenoid valve (diameter: 8 mm, height: 27.25 mm is compatible to standard Luer-Lock interfaces. A highly dynamic actuation principle enables opening times down to 1 ms. The dispensing performance was evaluated for water (η = 1.03 mPas and a 66% (w/w glycerol/water solution (η = 16.98 mPas, at pressures varying from 200 to 800 mbar. The experimentally determined minimal dispensing volume was 163 nL (CV 1.6% for water and 123 nL (CV 4.5% for 66% (w/w glycerol/water. The low-cost polymer valve enables high precision dispensing of liquid volumes down to the lower end of the sub-µL range comparable to high-end non-disposable micro-dispensing valves.

  8. Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities.

    Science.gov (United States)

    Mujawar, Liyakat Hamid; Norde, Willem; van Amerongen, Aart

    2013-01-21

    Non-contact inkjet printing technology is one of the most promising tools for producing microarrays. The quality of the microarray depends on the type of the substrate used for printing biomolecules. Various porous and non-porous substrates have been used in the past, but due to low production cost and easy availability, non-porous substrates like glass and plastic are preferred over porous substrates. On these non-porous substrates, obtaining spot uniformity and a high signal to noise ratio is a big challenge. In our research work, we have modified pristine glass slides using various silanes to produce a range of hydrophobic glass substrates. The hydrophobicities of the slides expressed in the contact angle (θ) of a sessile drop of water were 49°, 61°, 75°, 88° and 103°. Using a non-contact inkjet printer, microarrays of biotinylated biomolecules (BSA and IgG) were produced on these modified glass substrates, pristine (untreated) glass and also on HTA polystyrene slides. The uniformity of the spots, reflecting the distribution of the biomolecules in the spots, was analyzed and compared using confocal laser scanning microscopy (CLSM). The quality of the spots was superior on the glass slide with a contact angle of ∼75°. We also investigated the influence of the hydrophobicity of the substrate on a two-step, real diagnostic antibody assay. This nucleic acid microarray immunoassay (NAMIA) for the detection of Staphylococcus aureus showed that on highly hydrophilic (θ 100°) the assay signal was low, whereas an excellent signal was obtained on the substrates with intermediate contact angles, θ ∼ 61° and θ ∼ 75°, respectively.

  9. Reversible wetting of NaCl nanoparticles at relative humidities below deliquescence observed by environmental non-contact AFM

    Energy Technology Data Exchange (ETDEWEB)

    Bruzewicz, D.A.; Lewis, E.; Ocko, B. M.; McGraw, R. L.; Schwartz, S. E.

    2009-12-14

    The behavior of NaCl nanoparticles as a function of relative humidity (RH) was characterized by depositing particles on a prepared hydrophobic surface and measuring their height via non-contact environmental atomic force microscopy (AFM). Non-contact AFM allows greater sensitivity to changes in the size of particles than does contact AFM or scanning electron microscopy, and greater sensitivity to changes in shape than do mass-based techniques. Crystalline cubic NaCl nanoparticles with sides of 35 to 150 nm were found to reversibly take up water with increasing RH, and to form a liquid-like surface layer of thickness 2 to 4 nm at humidities well below the deliquescence point of 75.0% at 20°C. Measurable uptake begins at 70% RH. The maximum thickness of the layer increases with increasing RH for a given particle size and, for a given RH, increases with increasing particle size over the range studied. The liquid-like behavior of the layer is indicated by a reversible “rounding” at the tops of the particles, where the ratio of particle height to radius of curvature increases from zero (flat top) at 68% RH to 0.7 at 74% RH. These observations suggest that a reorganization of mass occurs on the solid NaCl nanoparticle, and hence that the behavior of NaCl aerosol nanoparticles at RH between 70 and 75% RH is more complex than an abrupt first-order phase transition. Theoretical treatments of the phase transition should therefore account for both the presence of a liquid-like layer prior to deliquescence, and the RH-dependent thickness of the layer.

  10. On-line coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil. Part 2: migration from paperboard into dry foods: interpretation of chromatograms.

    Science.gov (United States)

    Biedermann, Maurus; Grob, Koni

    2012-09-14

    Mineral oil hydrocarbons are complex as well as varying mixtures and produce correspondingly complex chromatograms (on-line HPLC-GC-FID as described in Part 1): mostly humps of unresolved components are obtained, sometimes with sharp peaks on top. Chromatograms may also contain peaks of hydrocarbons from other sources which need to be subtracted from the mineral oil components. The review focuses on the interpretation and integration of chromatograms related to food contamination by mineral oil from paperboard boxes (off-set printing inks and recycled fibers), if possible distinguishing between various sources of mineral oil. Typical chromatograms are shown for relevant components and interferences as well as food samples encountered on the market. Details are pointed out which may provide relevant information. Integration is shown for examples of paperboard packaging materials as well as various foods. Finally the uncertainty of the analysis and limit of quantitation are discussed for specific examples. They primarily result from the interpretation of the chromatogram, manually placing the baseline and cuts for taking off extraneous components. Without previous enrichment, the limit of quantitation is between around 0.1 mg/kg for foods with a low fat content and 2.5 mg/kg for fats and oils. The measurement uncertainty can be kept clearly below 20% for most samples.

  11. [Non-contact monitoring of heart and lung activity using magnetic induction measurement in a neonatal animal model].

    Science.gov (United States)

    Heimann, Konrad; Steffen, Matthias; Bernstein, Nina; Heerich, Nora; Stanzel, Sven; Cordes, Axel; Leonhardt, Steffen; Wenzl, Tobias G; Orlikowsky, Thorsten

    2009-12-01

    Magnetic induction measurement (MIM) allows the identification of resistance in biologic tissues by alternating magnetic fields. These occur when well-conducting (blood) and poor-conducting matter (air) is moved through the thorax during heart and lung activity. As a result, allocation of the resistance changes and the total resistance of the thorax is shifted. By using coils, these changes can be registered in a non-contact manner and recorded. To date, this measuring principle was employed only in adult volunteers or in full-grown pigs. A neonatal animal model has not yet been described. The aim of this study was to test the hypothesis that non-contact monitoring of heart and lung activity using MIM in a porcine newborn piglet model can be applied in order to evaluate neonatal disorders of heart and lung activity in the future. By using five coils (three measurement and two excitation coils), placed at the bottom of an experimental incubator, magnetic induction changes, depending on the heart and lung activity in 16 analgosedated piglets, were simultaneously measured and compared with pulse oximetry and airflow detection (flow resistance and pressure differential sensor) as reference signals. In addition, spontaneous breathing, including apnea, CPAP (continuous positive airway pressure to prevent end-expiratory alveolar collapse, flow 8 l/min; pressure 5 cm H(2)O), mechanical ventilation (inspiratory pressure 14 cm H(2)O; frequency 40/min) and high frequency oxygenation ventilation (HFOV, ventilation method in lung failure) (frequency 10 Hz, mean pressure 10 cm H(2)O, amplitude 1.5) were performed. Lung activity with MIM compared with the reference signal was estimated with a detection rate (%) of "correct registered lung activity". To quantify the analogy between MIM and reference signal for heart activity, the concordance correlation coefficient after Lin (95% confidence interval) and the Bland-Altman plot were calculated. The detection rate for breathing

  12. Non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement Capteur non-contact de laser speckle pour mesurer le déplacement angulaire à une ou deux dimensions

    Science.gov (United States)

    Rose, Bjarke; Imam, Husain; Hanson, Steen G.

    1998-06-01

    A novel method for measurement of angular displacement in one or two dimensions for arbitrarily shaped objects is presented. The method is based on Fourier transforming the scattered field from a single laser beam that illuminates the target. The angular distribution of the light field at the target is linearly mapped onto an array image sensor placed in the Fourier plane. Measuring this displacement facilitates the determination of the angular displacement. It is demonstrated both theoretically and experimentally that the angular displacement sensor is insensitive to object shape, target distance and any longitudinal or transverse movement of the target, if the image sensor is placed in the Fourier plane. A straightforward procedure to place the image sensor in the Fourier plane is presented here. Theoretically and experimentally, it is shown that the method has a resolution of 0.3 mdeg for small angular displacements, and methods for further improvement in resolution are discussed. No special surface treatment is required for surfaces having irregularities of the order of or larger than the wavelength of the incident light. It is shown that this is the case for most surfaces of practical interest. Furthermore, it is shown that robust, non-contact optical systems for industrial applications can be produced.

  13. 呼气中挥发性硫化物的质子转移反应质谱在线检测%On-line Detection of Volatile Sulfur Compounds in Breath Gas by Proton Transfer Reaction Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    沈成银; 王鸿梅; 黄超群; 陆燕; 夏磊; 陈小景; 王宏志; 储焰南

    2015-01-01

    利用自主研制的高灵敏呼气检测质子转移反应质谱( PTR-MS),对一名口臭受试者的口腔吹出气体、鼻子呼出气体和口腔内气体分别进行多组分实时监测,发现了该受试者呼气中3种引起口臭的挥发性硫化物( VSCs)的来源并不相同,其中甲硫醇主要来源于口腔,硫化氢和二甲基硫则主要来源于肺或呼吸道。本研究不仅发现了口腔内气体在PTR-MS呼气监测过程中的特征变化趋势,还分析了呼出气体中3种VSCs的来源,对于呼气的正确采样和检测具有重要的指导意义。%To develop a kind of noninvasive method of breath diagnosis in diseases, much attention has been paid to the study of the relation between diseases and volatile organic compounds in human breath gas. However, the gas in oral cavity was usually ignored in many studies of breath gas. The bad breath odor of a participant was studied by a home-made proton transfer reaction mass spectrometer( PTR-MS) . The breath via the mouth, breath via the nose and the air in the mouth cavity were monitored with the mode of multiple ion detect scans. The results show that three different volatile sulfur compounds that cause bad breath odor should be attributed to different sources. The source of methyl mercaptan in breath is oral cavity, and the source of hydrogen sulphide and dimethylsulfide in breath is lung or respiratory tract. The related result is very important to sampling and detection of breath gas.

  14. Lamb wave dispersion and anisotropy profiling of composite plates via non-contact air-coupled and laser ultrasound

    Science.gov (United States)

    Harb, M. S.; Yuan, F. G.

    2015-03-01

    Conventional ultrasound inspection has been a standard non-destructive testing method for providing an in-service evaluation and noninvasive means of probing the interior of a structure. In particular, measurement of the propagation characteristics of Lamb waves allows inspection of plates that are typical components in aerospace industry. A rapid, complete non-contact hybrid approach for excitation and detection of Lamb waves is presented and applied for non-destructive evaluation of composites. An air-coupled transducer (ACT) excites ultrasonic waves on the surface of a composite plate, generating different propagating Lamb wave modes and a laser Doppler vibrometer (LDV) is used to measure the out-of-plane velocity of the plate. This technology, based on direct waveform imaging, focuses on measuring dispersive curves for A0 mode in a composite laminate and its anisotropy. A two-dimensional fast Fourier transform (2D-FFT) is applied to out-of-plane velocity data captured experimentally using LDV to go from the time-spatial domain to frequency-wavenumber domain. The result is a 2D array of amplitudes at discrete frequencies and wavenumbers for A0 mode in a given propagation direction along the composite. The peak values of the curve are then used to construct frequency wavenumber and phase velocity dispersion curves, which are also obtained directly using Snell's law and the incident angle of the excited ultrasonic waves. A high resolution and strong correlation between numerical and experimental results are observed for dispersive curves with Snell's law method in comparison to 2D-FFT method. Dispersion curves as well as velocity curves for the composite plate along different directions of wave propagation are measured. The visual read-out of the dispersion curves at different propagation directions as well as the phase velocity curves provide profiling and measurements of the composite anisotropy. The results proved a high sensitivity of the air-coupled and laser

  15. Association between maximal hamstring muscle strength and hamstring muscle pre-activity during a movement associated with non-contact ACL injury

    DEFF Research Database (Denmark)

    Zebis, M. K.; Sorensen, R. S.; Thorborg, K.

    2015-01-01

    Background: Reduced hamstring pre-activity during sidecutting increases the risk for non-contact ACL injury. During the last decade resistance training of the lower limb muscles has become an integral part ofACLinjury prevention in e.g. soccer and handball. However, it is not known whether a strong...... levels of muscle pre-activity during movements like the sidecutting maneuver. Implications: Other exercise modalities (i.e. neuromuscular training) are needed to optimize hamstring muscle pre-activity during movements associated with non-contact ACL injury....

  16. Non-contact inspection for inner surface of small-diameter pipes based on laser-PSD

    Institute of Scientific and Technical Information of China (English)

    WU En-qi; KE Ying-lin; LI Jiang-xiong

    2005-01-01

    A new non-contact inspection technique based on laser-PSD (position sensitive detector) to inspect the inner surface of small-diameter pipe is proposed,and the corresponding sensor has been developed.After being reflected by two mirrors in series,a laser beam is projected onto the inner wall of a pipe as a small light spot and is read by a two-dimensional PSD.Based on the signals from the PSD and the structure parameters of the sensor,the spot position on the wall can be calculated in a local 3D coordinate system.The spot controlled by the micro-motor driven mirrors will scan a closed section ring on the inner wall of the pipe to obtain the relative coordinates of all the sampled points.The data will be then processed through data segmentation and least square fitting,to reconstruct the section curve used for obtaining the radius and the defect description of the section.Driven by a micro-pipe robot,the sensor can inspect a long curved pipe and obtain its 3-D reconstruction.An inspection system based on this technique can detect the mini-diameter pipe with an inner diameter of 9.5 mm~10.5 mm and a curvature radius larger than 100 mm at a measurement accuracy of the inner surface defect of ±0.1 mm.

  17. Creation of training aids for human remains detection canines utilizing a non-contact, dynamic airflow volatile concentration technique.

    Science.gov (United States)

    DeGreeff, Lauryn E; Weakley-Jones, Barbara; Furton, Kenneth G

    2012-04-10

    Human remains detection (HRD) canines are trained to locate human remains in a variety of locations and situations which include minimal quantities of remains that may be buried, submerged or extremely old. The aptitude of HRD canines is affected by factors such as training, familiarity with the scent source and environmental conditions. Access to appropriate training aids is a common issue among HRD canine handlers due to overly legal restrictions, difficulty in access and storage, and the potential biological hazards stemming from the use of actual human remains as training aids. For this reason, we propose a unique approach of training aid creation, utilizing non-contact, dynamic air-flow odor concentration onto sorbent materials. Following concentration, the sorbent material retains the odor from the scent source composed of volatile organic compounds. The sorbent material containing the odor can then be utilized as a canine training aid. Training materials prepared in this manner were tested under a variety of conditions with many HRD canines to demonstrate the efficacy of the new training aids. A high level of correct canine responses to the new training aids was achieved, approaching 90%, with minimal false positives. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Non-contact measurement of tremor for the characterisation of Parkinsonian individuals: comparison between Kinect and Laser Doppler vibrometer

    Science.gov (United States)

    Casacanditella, L.; Cosoli, G.; Ceravolo, MG; Tomasini, EP

    2017-08-01

    Parkinson’s disease is a progressive neurodegenerative disorder affecting the central nervous system. One of its main and most evident symptoms is the tremor, which usually manifests at rest with varying intensity during time. An important diagnostic challenge is the differential diagnosis between Parkinson’s disease and the other most widely represented tremor syndrome, i.e. Essential (or senile) tremor. At present there are no standard methods for the quantification of tremor and the diagnosis of both Parkinson’s disease and Essential tremor is mainly done on the base of clinical criteria and by using rating scales. The aim of this work is to objectively and non-invasively assess the tremor linked to the quoted diseases, using non-contact techniques: Laser Doppler Vibrometer (LDV) and Kinect for Windows device. Two subjects with Parkinson’s disease and one with Essential tremor were tested in different conditions: at rest, during a cognitive task, with forward stretched arms and in “Wing position”. The results from data processing in terms of tremor frequency seem to be comparable, with a mean deviation of 0.31 Hz. Furthermore, the values computed are consistent with what is stated in the literature (i.e. 4-12 Hz). So, both LDV and Kinect device can be considered suitable to be used as an objective means for the assessment and monitoring of Parkinson’s disease tremor, helping the clinician in the choice of the most suitable treatment for the patients.

  19. True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids: topography and material contrast.

    Science.gov (United States)

    Almonte, Lisa; Colchero, Jaime

    2017-02-23

    The present work analyses how the tip-sample interaction signals critically determine the operation of an Atomic Force Microscope (AFM) set-up immersed in liquid. On heterogeneous samples, the conservative tip-sample interaction may vary significantly from point to point - in particular from attractive to repulsive - rendering correct feedback very challenging. Lipid membranes prepared on a mica substrate are analyzed as reference samples which are locally heterogeneous (material contrast). The AFM set-up is operated dynamically at low oscillation amplitude and all available experimental data signals - the normal force, as well as the amplitude and frequency - are recorded simultaneously. From the analysis of how the dissipation (oscillation amplitude) and the conservative interaction (normal force and resonance frequency) vary with the tip-sample distance we conclude that dissipation is the only appropriate feedback source for stable and correct topographic imaging. The normal force and phase then carry information about the sample composition ("chemical contrast"). Dynamic AFM allows imaging in a non-contact regime where essentially no forces are applied, rendering dynamic AFM a truly non-invasive technique.

  20. Non-contact reflectometric readout of disposable microfluidic devices by near infra-red low-coherence interferometry

    Directory of Open Access Journals (Sweden)

    Giulia Rigamonti

    2016-11-01

    Full Text Available We are here demonstrating the functionality of infra-red low-coherence reflectometry for the spot optical readout of solution concentrations in commercially available microfluidic devices. Disposable polymeric microfluidic devices composed by 100-µm-deep channels were connected to an external fluidic path that allowed flow-through of water-glucose solutions at different concentrations. Measurements were performed with near-infrared low-power sources, namely a tungsten lamp and a Superluminescent Light Emitting Diode (SLED, allowing the read-out in a wavelength region of minimum invasiveness for biological fluids. The selected optical scheme based on an all-fiber Michelson configuration is well suited for non-contact, remote investigations of the fluids flowing in plastic microfluidic devices, with arbitrary layout and thickness. For the first time, using the SLED, we exploited the double round trip of light in the fluid channel for doubling the sensitivity with respect to the standard single pass set-up, previously demonstrated.

  1. The non-contact measure of the heart rate variability by laser Doppler vibrometry: comparison with electrocardiography

    Science.gov (United States)

    Cosoli, G.; Casacanditella, L.; Tomasini, E. P.; Scalise, L.

    2016-06-01

    The assessment of the heart rate variability (HRV) is of utmost importance, being one of the most promising markers of the activity of the autonomic nervous system and associated to cardiovascular mortality. Different signals can be used to perform HRV, primarily electrocardiography (ECG), photoplethysmography (PPG), phonocardiography (PCG) or vibrocardiography (VCG), since the fundamental aspect is the individuation of a periodic feature strictly correlated with cardiac activity (i.e. R-peak in ECG or the first sound in PCG). In this work, the authors demonstrate that the VCG performances in HRV analysis are sufficiently accurate if compared to the ones measured by ECG (i.e. standard methodology); moreover, the authors want to prove the feasibility of such measurement in correspondence of different measurement points (i.e. carotid artery—which is the typical VCG measurement point—and the radial artery on the wrist)1. Results show that VCG has a mean deviation of  <1 bpm with respect to ECG in heart rate (HR) measurement; carotid artery is the most accurate site for the assessment, but also the radial artery is a valid site, even if with a reduced SNR. With regards to HRV parameters, the mean percentage deviation is  <10% in correspondence of carotid artery, and  ≈16% for the radial artery. So, VCG allows for non-contact monitoring of the cardiac activity.

  2. Non-contact AFM investigation of influence of freezing process on the surface structure of potato starch granule

    Science.gov (United States)

    Krok, F.; Szymońska, J.; Tomasik, P.; Szymoński, M.

    2000-04-01

    To assess the influence of the freezing process on the surface structure of a potato starch granule, a non-contact Atomic Force Microscopy (NC-AFM) investigation at ambient conditions has been undertaken. The observations were carried out for dried (oven-dried) and native (air-dried) starch. The obtained AFM images of the native starch granule surface demonstrated it as not uniformly smooth and having rough undulating appearance with layers of adsorbed water which could be removed by oven drying in 130°C. After freezing, the dried starch granule surface still consisted of nodules of about 100 nm in diameter. Significant changes in the granule surface appearance can be seen for dried starch samples frozen with some excess of water as well as for native starch samples frozen with its original water. Then the aggregation and polishing of the granules was observed and their surface revealed a microstructure with distinct ring-like protrusions of about 300 nm in diameter. Our observations tally with the amylopectine "blocket" starch granule structure model proposed in the literature and allowed to conclude that freezing may be a useful tool, among other methods, for modifying starch granule properties.

  3. The enhancement of neuronal cells wound healing with non-contact electric field stimulation by graphene electrodes

    Science.gov (United States)

    Lee, Sohee; Heo, Chaejeong; Lee, Si Young; Lee, Young Hee; Suh, Minah

    2013-05-01

    Electrical stimulation affects cellular behaviors including division, migration and wound healing [1-3]. Cellular injury often occurs due to the imbalance of the endogenous electric field [3]. In order to recover from the injury, wound healing process requires various cellular changes such as regeneration, migration, and the enhancement of cytoskeletal proteins and growth factors. In previous reports, a weak non-contact electric field stimulation (nEFS) accelerates the cell migration as well as cell-to-cell coupling between neuronal cell junction which are accompanied by increasing of cytoskeletal proteins [4, 5]. In this paper, we further investigated the wound healing effect of the nEFS in the neuronal cells (SHSY5Y cells) with live cell optical imaging. Cells were cultured over the optically transparent graphenen EF stimulator. Cellular behavioral changes upon nEFS were recorded with live optical imaging during stimulation of 120 minutes. The ability of wound healing was significantly enhanced with the nEFS. In particular, nEFS significantly shorten the duration of wound healing process. Moreover, after treating cells with cytochalasin D, a block polymerization of the actin filaments, the nEFS significantly enhanced wound healing process of cytochalasin D treated neural cells as compared to the control neural cells. This study suggests that nEFS may provide an effective way to control neural cells repairing process from cellular injury. Further mechanism study about the effect of nEFS on the wound healing may shed new light on cellular behavior.

  4. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  5. A Time-Frequency Respiration Tracking System using Non-Contact Bed Sensors with Harmonic Artifact Rejection

    Science.gov (United States)

    Beattie, Zachary T.; Jacobs, Peter G.; Riley, Thomas C.; Hagen, Chad C.

    2015-01-01

    Sleep apnea is a serious health condition that affects many individuals and has been associated with serious health conditions such as cardiovascular disease. Clinical diagnosis of sleep apnea requires that a patient spend the night in a sleep clinic while being wired up to numerous obtrusive sensors. We are developing a system that utilizes respiration rate and breathing amplitude inferred from non-contact bed sensors (i.e. load cells placed under bed supports) to detect sleep apnea. Multi-harmonic artifacts generated either biologically or as a result of the impulse response of the bed have made it challenging to track respiration rate and amplitude with high resolution in time. In this paper, we present an algorithm that can accurately track respiration on a second-by-second basis while removing noise harmonics. The algorithm is tested using data collected from 5 patients during overnight sleep studies. Respiration rate is compared with polysomnography estimations of respiration rate estimated by a technician following clinical standards. Results indicate that certain subjects exhibit a large harmonic component of their breathing signal that can be removed by our algorithm. When compared with technician transcribed respiration rates using polysomnography signals, we demonstrate improved accuracy of respiration rate tracking using harmonic artifact rejection (mean error: 0.18 breaths/minute) over tracking not using harmonic artifact rejection (mean error: −2.74 breaths/minute). PMID:26738176

  6. A non-contact mechanical solution for implementing synchronized switching techniques for energy harvesting using reed switches

    Science.gov (United States)

    Shih, Ya Shan; Vasic, Dejan; Jong Wu, Wen

    2016-12-01

    In this work we proposed a new mechanical method of implementing the synchronized switching technique for piezoelectric energy harvesting based on reed switches. Serving as a mechanical displacement monitor and the switch itself, it holds the merit of non-contact, persistence, and the low voltage threshold of merely a single PN junction. However, as all mechanical switches inherits chattering, or bouncing, energy loss and damping on the inversion was caused. To side pass the chattering, three types of electro-mechanical hybrid switches were furthermore developed to stabilize the interfered current flow: resistor-capacitor snubbers, inductor-capacitor snubbers, and silicon controlled rectifiers (SCRs). Each of the method has its merit and suitable working conditions. Comparing to conventional electrical switches, the proposed switches, greatly reduced the switch impedance since the mechanical switch part provides a physically open switch, and the electrical switch part merely consist of either a diode and a MOSFET pair, or a single SCR. Subsequently, the power loss due to the circuit was efficiently eliminated.

  7. Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: direct mechanical measurements and simulations

    Directory of Open Access Journals (Sweden)

    Jens Falter

    2014-04-01

    Full Text Available Quartz tuning forks are being increasingly employed as sensors in non-contact atomic force microscopy especially in the “qPlus” design. In this study a new and easily applicable setup has been used to determine the static spring constant at several positions along the prong of the tuning fork. The results show a significant deviation from values calculated with the beam formula. In order to understand this discrepancy the complete sensor set-up has been digitally rebuilt and analyzed by using finite element method simulations. These simulations provide a detailed view of the strain/stress distribution inside the tuning fork. The simulations show quantitative agreement with the beam formula if the beam origin is shifted to the position of zero stress onset inside the tuning fork base and torsional effects are also included. We further found significant discrepancies between experimental calibration values and predictions from the shifted beam formula, which are related to a large variance in tip misalignment during the tuning fork assembling process.

  8. A comparison of muscle damage, soreness and performance following a simulated contact and non-contact team sport activity circuit.

    Science.gov (United States)

    Singh, Tarveen K R; Guelfi, Kym J; Landers, Grant; Dawson, Brian; Bishop, David

    2011-09-01

    The aim was to compare the effect of a simulated team sport activity circuit (reflective of the activity demands of Australian football) either with or without body 'contact' on muscle soreness, damage, and performance when the circuit was repeated 48 h later. Eleven male, team-sport athletes completed a 'non-contact' (NCON) and a 'contact' (CON) version of the team sport activity circuit in a crossover design with at least 1 week between trials. The effect of CON and NCON on repeated 15m sprint and vertical jump performance was assessed by completing the same version of the circuit 48 h after the initial trial. The effect on perceived soreness and blood markers of muscle damage and inflammation was also determined. Subsequent performance was affected to a greater extent by CON, with both best and mean sprint times significantly slower 48h following CON (pprotein increased following CON but not NCON. In conclusion, Greater perceived soreness and decrements in performance of the simulated team sport activity circuit when repeated 48 h later were observed following CON.

  9. Non-contact online thickness measurement system for metal films based on eddy current sensing with distance tracking technique.

    Science.gov (United States)

    Li, Wei; Wang, Hongbo; Feng, Zhihua

    2016-04-01

    This paper proposes an online, non-contact metal film thickness measurement system based on eddy current sensing. The slope of the lift-off curve (LOC) is used for characterizing target thickness. Theoretical derivation was conducted to prove that the slope is independent of the lift-off variation. In practice, the measurement has some immunity to the lift-off, but not perfect. The slope of LOC is still affected at some extent by the lift-off. Hence, a height tracking system was also proposed, which could stabilize the distance between the sensor and the target and significantly reduce the lift-off effect. The height tracking system contains a specially designed probe, which could vibrate rapidly to obtain a fast measurement speed, and its height can be adjusted up and down continuously to stabilize the lift-off. The sensor coil in the thickness measurement system was also used as the height sensor in the height tracking system. Several experiments were conducted to test the system performances under static and dynamic conditions. This measurement system demonstrated significant advantages, such as simple and clear conversion between the slope of LOC and target thickness, high resolution and stability, and minimized effect of lift-off variation.

  10. The non-contact detection and identification of blood stained fingerprints using visible wavelength reflectance hyperspectral imaging: Part 1.

    Science.gov (United States)

    Cadd, Samuel; Li, Bo; Beveridge, Peter; O'Hare, William T; Campbell, Andrew; Islam, Meez

    2016-05-01

    Blood is one of the most commonly encountered types of biological evidence found at scenes of violent crime and one of the most commonly observed fingerprint contaminants. Current visualisation methods rely on presumptive tests or chemical enhancement methods. Although these can successfully visualise ridge detail, they are destructive, do not confirm the presence of blood and can have a negative impact on DNA sampling. A novel application of visible wavelength reflectance hyperspectral imaging (HSI) has been used for the detection and positive identification of blood stained fingerprints in a non-contact and non-destructive manner on white ceramic tiles. The identification of blood was based on the unique visible absorption spectrum of haemoglobin between 400 and 500 nm. HSI has been used to successfully visualise ridge detail in blood stained fingerprints to the ninth depletion. Ridge detail was still detectable with diluted blood to 20-fold dilutions. Latent blood stains were detectable to 15,000-fold dilutions. Ridge detail was detectable for fingerprints up to 6 months old. HSI was also able to conclusively distinguish blood stained fingerprints from fingerprints in six paints and eleven other red/brown media with zero false positives.

  11. Organic double layer element driven by triboelectric nanogenerator: Study of carrier behavior by non-contact optical method

    Science.gov (United States)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-02-01

    By using optical electric-field-induced second-harmonic generation (EFISHG) technique, we studied carrier behavior caused by contact electrification (CE) in an organic double-layer element. This double-layer sample was half suspended in the open air, where one electrode (anode or cathode) was connected with a Cu foil for electrification while the other electrode was floated. Results showed two distinct carrier behaviors, depending on the (anode or cathode) connections to the Cu foil, and these carrier behaviors were analyzed based on the Maxwell-Wagner model. The double-layer sample works as a simple solar cell device. The photovoltaic effect and CE process have been proved to be two paralleled effects without strong interaction with each other, while photoconductivity changing in the sample can enhance the relaxation of CE induced charges. By probing the carrier behavior in this half-suspended device, the EFISHG technique has been demonstrated to be an effective non-contact method for clarifying the CE effect on related energy harvesting devices and electronics devices. Meanwhile, the related physical analysis in this letter is also useful for elucidating the fundamental characteristic of hybrid energy system based on solar cell and triboelectric nanogenerator.

  12. Development of a baby friendly non-contact method for measuring vital signs: First results of clinical measurements in an open incubator at a neonatal intensive care unit

    Science.gov (United States)

    Klaessens, John H.; van den Born, Marlies; van der Veen, Albert; Sikkens-van de Kraats, Janine; van den Dungen, Frank A.; Verdaasdonk, Rudolf M.

    2014-02-01

    For infants and neonates in an incubator vital signs, such as heart rate, breathing, skin temperature and blood oxygen saturation are measured by sensors and electrodes sticking to the skin. This can damage the vulnerable skin of neonates and cause infections. In addition, the wires interfere with the care and hinder the parents in holding and touching the baby. These problems initiated the search for baby friendly 'non-contact' measurement of vital signs. Using a sensitive color video camera and specially developed software, the heart rate was derived from subtle repetitive color changes. Potentially also respiration and oxygen saturation could be obtained. A thermal camera was used to monitor the temperature distribution of the whole body and detect small temperature variations around the nose revealing the respiration rate. After testing in the laboratory, seven babies were monitored (with parental consent) in the neonatal intensive care unit (NICU) simultaneously with the regular monitoring equipment. From the color video recordings accurate heart rates could be derived and the thermal images provided accurate respiration rates. To correct for the movements of the baby, tracking software could be applied. At present, the image processing was performed off-line. Using narrow band light sources also non-contact blood oxygen saturation could be measured. Non-contact monitoring of vital signs has proven to be feasible and can be developed into a real time system. Besides the application on the NICU non-contact vital function monitoring has large potential for other patient groups.

  13. Tertiary Treated Waste water as a Promising Alternative for Potable Water for Non-Contact Domestic Use. CaseStudy:RiqqaWastewaterTreatmentPlant

    Directory of Open Access Journals (Sweden)

    Munther I. Almatouq,

    2015-06-01

    Full Text Available WatersecurityisavitalissueinaridcountrieslikeKuwait,wheredesalinatedwateristhe solesupplyoffresh water.Thispaper isacontributiontotheongoingefforts towardsrationalizationin potablewater consumption.In addition,itdiscusses therole of high-quality effluent water, from wastewater treatment plants in Kuwait, as a potential replacementfor potable water for non-contact domesticapplications as a oneway in savingin thisvaluablecommodity.

  14. Design of a machine for the universal non-contact measurement of large free-form optics with 30 nm uncertainty

    NARCIS (Netherlands)

    Henselmans, R.; Rosielle, P.C.J.N.; Steinbuch, M.; Saunders, I.; Bergmans, R.

    2005-01-01

    A new universal non-contact measurement machine design for measuring free-form optics with 30 nm expanded uncertainty is presented. In the cylindrical machine concept, an optical probe with 5 mm range is positioned over the surface by a motion system. Due to a 2nd order error effect when measuring s

  15. Polar Metal Oxide Surfaces of MgAl2O4 and ZnO Studied with Non-Contact Atomic Force Microscopy

    DEFF Research Database (Denmark)

    Rasmussen, Morten Karstoft

    2011-01-01

    large and complicated surface reconstructions. However, by utilizing the non-contact atomic force microscope together with complimentary experimental techniques and theoretical calculations, the work presented in this thesis introduces a new general route for resolving the atomic structure of a polar...

  16. Are on-line currencies virtual banknotes?

    OpenAIRE

    Stephen F. Quinn; William Roberds

    2003-01-01

    The history of money is marked by innovations that have expanded the role of "inside money"-money created by the private sector. For instance, the past few years have seen the development of several types of on-line payment arrangements, some of which have been dubbed "on-line currencies." ; This article examines the likely success or failure of on-line currencies by means of a historical analogy. The discussion compares the introduction of on-line currencies to the debut of the bearer bankno...

  17. A pilot study evaluating non-contact low-frequency ultrasound and underlying molecular mechanism on diabetic foot ulcers.

    Science.gov (United States)

    Yao, Min; Hasturk, Hatice; Kantarci, Alpdogan; Gu, Guosheng; Garcia-Lavin, Silvia; Fabbi, Matteo; Park, Nanjin; Hayashi, Hisae; Attala, Khaled; French, Michael A; Driver, Vickie R

    2014-12-01

    Non-contact low-frequency ultrasound (NCLF-US) devices have been increasingly used for the treatment of chronic non-healing wounds. The appropriate dose for NCLF-US is still in debate. The aims of this pilot study were to evaluate the relationship between dose and duration of treatment for subjects with non-healing diabetic foot ulcers (DFUs) and to explore the correlation between wound healing and change of cytokine/proteinase/growth factor profile. This was a prospective randomised clinical study designed to evaluate subjects with non-healing DFUs for 5 weeks receiving standard of care and/or NCLF-US treatment. Subjects were randomly assigned to one of the three groups: application of NCLF-US thrice per week (Group 1), NCLF-US once per week (Group 2) and the control (Group 3) that received no NCLF-US. All subjects received standard wound care plus offloading for a total of 4 weeks. Percent area reduction (PAR) of each wound compared with baseline was evaluated weekly. Profiles of cytokines/proteinase/growth factors in wound fluid and biopsied tissue were quantified to explore the correlation between wound healing and cytokines/growth factor expression. Twelve DFU patients, 2 (16·7%) type 1 and 10 (83·3%) type 2 diabetics, with an average age of 58 ± 10 years and a total of 12 foot ulcers were enrolled. Average ulcer duration was 36·44 ± 24·78 weeks and the average ABI was 0·91 ± 0·06. Group 1 showed significant wound area reduction at weeks 3, 4 and 5 compared with baseline, with the greatest PAR, 86% (P diabetic foot ulcers through, at least in part, inhibiting pro-inflammatory cytokines in chronic wound and improving tissue regeneration. Therapeutic application of NFLU, thrice (3) per week, renders the best wound area reduction.

  18. A surgical navigation system for non-contact diffuse optical tomography and intraoperative cone-beam CT

    Science.gov (United States)

    Daly, Michael J.; Muhanna, Nidal; Chan, Harley; Wilson, Brian C.; Irish, Jonathan C.; Jaffray, David A.

    2014-02-01

    A freehand, non-contact diffuse optical tomography (DOT) system has been developed for multimodal imaging with intraoperative cone-beam CT (CBCT) during minimally-invasive cancer surgery. The DOT system is configured for near-infrared fluorescence imaging with indocyanine green (ICG) using a collimated 780 nm laser diode and a nearinfrared CCD camera (PCO Pixelfly USB). Depending on the intended surgical application, the camera is coupled to either a rigid 10 mm diameter endoscope (Karl Storz) or a 25 mm focal length lens (Edmund Optics). A prototype flatpanel CBCT C-Arm (Siemens Healthcare) acquires low-dose 3D images with sub-mm spatial resolution. A 3D mesh is extracted from CBCT for finite-element DOT implementation in NIRFAST (Dartmouth College), with the capability for soft/hard imaging priors (e.g., segmented lymph nodes). A stereoscopic optical camera (NDI Polaris) provides real-time 6D localization of reflective spheres mounted to the laser and camera. Camera calibration combined with tracking data is used to estimate intrinsic (focal length, principal point, non-linear distortion) and extrinsic (translation, rotation) lens parameters. Source/detector boundary data is computed from the tracked laser/camera positions using radiometry models. Target registration errors (TRE) between real and projected boundary points are ~1-2 mm for typical acquisition geometries. Pre-clinical studies using tissue phantoms are presented to characterize 3D imaging performance. This translational research system is under investigation for clinical applications in head-and-neck surgery including oral cavity tumour resection, lymph node mapping, and free-flap perforator assessment.

  19. The role of domestic tap water on Acanthamoeba keratitis in non-contact lens wearers and validation of laboratory methods.

    Science.gov (United States)

    Koltas, Ismail Soner; Eroglu, Fadime; Erdem, Elif; Yagmur, Meltem; Tanır, Ferdi

    2015-09-01

    Acanthamoeba is increasingly recognized as an important cause of keratitis in non-contact lens wearers while contact lens wear is the leading risk factor for Acanthamoeba keratitis (AK). It is unlikely that the Acanthamoeba colonization is a feature which is effective only in patient's homes with infectious keratitis since the organism has been isolated from domestic tap water. Two hundred and thirty-one (231) corneal scrapings were taken from infectious keratitis cases, and four contact lens solutions and domestic tap waters were taken from 22 out of 44 AK-diagnosed patient's homes. Microscopic examination, culture, PCR, real-time PCR and DNA sequencing analyses were used for AK-diagnosed samples. The real-time PCR was the most sensitive (100 %) one among the methods used in diagnosis of AK. The 44 (19.0 %) out of 231 corneal scrapings, 4/4 (100 %) contact lens solution and 11/22 (50 %) of domestic tap water samples were found to be positive by real-time PCR for Acanthamoeba. A. griffini (T3), A. castellanii (T4) and A. jacobsi (T15) genotypes were obtained from corneal scrapings, contact lens solutions and domestic tap water samples taken from the patient's homes diagnosed with AK. The isolation of Acanthamoeba containing 6/22 (27.3 %) A. griffini (T3), 14/22 (63.6 %) A. castellanii (T4) and 2/22 (9.1 %) A. jacobsi (T15) from the domestic tap water outlets of 22 of 44 (50 %) of patient's homes revealed that is a significant source of these organisms. A. griffini (T3) and A. jacobsi (T15) genotypes have not been determined from AK cases in Turkey previously. Thus, we conclude that Acanthamoeba keratitis is associated with exposition of patients who has ocular trauma or ocular surface disease to domestic tap water in endemic or potentially endemic countries.

  20. On line routing per mobile phone

    DEFF Research Database (Denmark)

    Bieding, Thomas; Görtz, Simon; Klose, Andreas

    2009-01-01

    On-line routing is concerned with building vehicle routes in an ongoing fashion in such a way that customer requests arriving dynamically in time are efficiently and effectively served. An indispensable prerequisite for applying on-line routing methods is mobile communication technology. Addition...

  1. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    Science.gov (United States)

    Wilson, Adam A.

    is determined that, when operating the scanning hot probe technique in air at standard temperature and pressure using Wollaston probes, the technique is capable of measuring, within 20% uncertainty, samples with values of thermal conductivity up to 10 Wm-1K-1 in contact mode and up to 2 Wm-1K-1 in non-contact mode. By increasing the thermal conductivity of the probe's surroundings (i.e. changing air to a more conductive gas), sensitivity in non-contact mode to sample thermal conductivity is improved, which suggests potential for future investigations using non-contact scanning hot probe to measure thermal conductivity of higher thermal conductivity samples. The ability of the technique to differentiate thin films from the substrate is investigated, and the sensitivity of the technique to thin films and samples with anisotropic properties is explored. The models (both analytical and finite element) developed and reported in this dissertation lead to the ability to measure samples which, by the standard procedure before this work, were unable to be accurately measured. While other techniques failed to be able to successfully interrogate the film thermal conductivity of a full set of double-wall carbon nanotubes infused into polymers, the methods developed in this work allowed non-contact scanning hot probe measurements to be successfully performed to obtain the film thermal conductivity for each sample. Finite element simulations accounting for the anisotropy of these thin film on sample materials show similar trends with independently measured in-plane thermal conductivity for the only two (of five) samples in the set which were successfully able to be measured by the independent technique. Investigations in contact mode with high resolution Pd probes, whose probe-to-sample clearance is difficult to control in a repeatable fashion, show that surface roughness affects the thermal contact resistance. This can lead to values of reported sample thermal conductivity which

  2. Transmission geometry laser ablation into a non-contact liquid vortex capture probe for mass spectrometry imaging.

    Science.gov (United States)

    Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias; Van Berkel, Gary J

    2014-08-15

    Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) set up to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V™ ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. The estimated capture efficiency of laser-ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~2.8 mm(2) ) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution not only of particulates, but also of gaseous products of the laser ablation. The use of DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 µm was demonstrated for stamped ink on DIRECTOR(®) slides based on the ability to distinguish features present both in the optical and in the chemical

  3. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Bhandari, Deepak [ORNL; Lorenz, Matthias [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the

  4. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    Energy Technology Data Exchange (ETDEWEB)

    Di Sieno, Laura, E-mail: laura.disieno@polimi.it; Dalla Mora, Alberto; Contini, Davide [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Wabnitz, Heidrun; Macdonald, Rainer [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Pifferi, Antonio [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Mazurenka, Mikhail [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Hannoversches Zentrum für Optische Technologien, Nienburger Str. 17, 30167 Hannover (Germany); Hoshi, Yoko [Department of Biomedical Optics, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Boso, Gianluca; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Becker, Wolfgang [Becker and Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Martelli, Fabrizio [Dipartimento di Fisica e Astronomia dell’Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze 50019 (Italy)

    2016-03-15

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  5. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases

    Science.gov (United States)

    Waldén, Markus; Krosshaug, Tron; Bjørneboe, John; Andersen, Thor Einar; Faul, Oliver

    2015-01-01

    Background Current knowledge on anterior cruciate ligament (ACL) injury mechanisms in male football players is limited. Aim To describe ACL injury mechanisms in male professional football players using systematic video analysis. Methods We assessed videos from 39 complete ACL tears recorded via prospective professional football injury surveillance between 2001 and 2011. Five analysts independently reviewed all videos to estimate the time of initial foot contact with the ground and the time of ACL tear. We then analysed all videos according to a structured format describing the injury circumstances and lower limb joint biomechanics. Results Twenty-five injuries were non-contact, eight indirect contact and six direct contact injuries. We identified three main categories of non-contact and indirect contact injury situations: (1) pressing (n=11), (2) re-gaining balance after kicking (n=5) and (3) landing after heading (n=5). The fourth main injury situation was direct contact with the injured leg or knee (n=6). Knee valgus was frequently seen in the main categories of non-contact and indirect contact playing situations (n=11), but a dynamic valgus collapse was infrequent (n=3). This was in contrast to the tackling-induced direct contact situations where a knee valgus collapse occurred in all cases (n=3). Conclusions Eighty-five per cent of the ACL injuries in male professional football players resulted from non-contact or indirect contact mechanisms. The most common playing situation leading to injury was pressing followed by kicking and heading. Knee valgus was frequently seen regardless of the playing situation, but a dynamic valgus collapse was rare. PMID:25907183

  6. Examination of a Novel Method for Non-Contact, Low-Cost, and Automated Heart-Rate Detection in Ambient Light Using Photoplethysmographic Imaging

    Science.gov (United States)

    2014-10-01

    a remote non-contact manner. The system comprises a complementary metal- oxide semiconductor (CMOS) camera and a dual wavelength array of LEDs (760...may be useful for medical purposes such as characterization of vascular skin lesions (e.g., port wine stains) and remote sensing of vital signs (e.g...Abbreviations, and Acronyms AC affective computing ARL US Army Research Laboratory CMOS complementary metal- oxide semiconductor ECG

  7. On-line Measuring Method for Shell Chamber Volume

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-zhong; WANG De-min; JIANG Tao; CAO Guo-hua; WANG Qi

    2005-01-01

    Using the ideal gas state equation, an on-line measuring method for the shell chamber volume is studied in this paper. After analyzing how various measurement parameters affect the measurement accuracy, the system parameters are optimized in this method. Because the shape and volume of the tested items are similar, the method of using "tamping" to raise the accuracy and speed of the measurement is put forward. Based on the work above, a prototype of the testing instrument for shell chamber volume was developed, automatically testing and controlling. Compared with the method of "water weight", this method is more accurate, quicker and more automotive, so it is adaptable for the use of on-line detection.

  8. On-line meters monitor gas concentrations in transformers

    Energy Technology Data Exchange (ETDEWEB)

    Pirhonen, R.; Lustre, L. [ed.

    1997-11-01

    Power transformers are by far the most expensive single components of 400 kV transmission grid substations. The acquisition price of a transformer is about FIM 15 to 20 million. A good way to extend the service life of a transformer considerably is to conduct a general overhaul. The cornerstone of cost-efficient maintenance is the correct timing of the general overhaul, which usually costs a couple million Finnish marks

  9. Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques

    Science.gov (United States)

    Araki, Teppei; Mandamparambil, Rajesh; Martinus Peterus van Bragt, Dirk; Jiu, Jinting; Koga, Hirotaka; van den Brand, Jeroen; Sekitani, Tsuyoshi; den Toonder, Jaap M. J.; Suganuma, Katsuaki

    2016-11-01

    Silver nanowires (AgNWs) are excellent candidate electrode materials in next-generation wearable devices due to their high flexibility and high conductivity. In particular, patterning techniques for AgNWs electrode manufacture are very important in the roll-to-roll printing process to achieve high throughput and special performance production. It is also essential to realize a non-contact mode patterning for devices in order to keep the pre-patterned components away from mechanical damages. Here, we report a successful non-contact patterning of AgNWs-based stretchable and transparent electrodes by laser-induced forward transfer (LIFT) technique. The technique was used to fabricate a 100% stretchable electrode with a width of 200 μm and electrical resistivity 10-4 Ωcm. Experiments conducted integrating the stretchable electrode on rubber substrate in which LED was pre-fabricated showed design flexibility resulting from non-contact printing. Further, a patterned transparent electrode showed over 80% in optical transmittance and less than 100 Ω sq-1 in sheet resistance by the optimized LIFT technique.

  10. Enhancement of the Excitation Efficiency of the Non-Contact Magnetostrictive Sensor for Pipe Inspection by Adjusting the Alternating Magnetic Field Axial Length

    Directory of Open Access Journals (Sweden)

    Pengfei Sun

    2014-01-01

    Full Text Available The non-contact magnetostrictive sensor (MsS has been widely used in the guided wave testing of pipes, cables, and so on. However, it has a disadvantage of low excitation efficiency. A new method for enhancing the excitation efficiency of the non-contact MsS for pipe inspection using guided waves, by adjusting the axial length of the excitation magnetic field, is proposed. A special transmitter structure, in which two copper rings are added beside the transmitter coil, is used to adjust the axial length at the expense of weakening the excitation magnetic field. An equivalent vibration model is presented to analyze the influence of the axial length variation. The final result is investigated by experiments. Results show that the excitation efficiency of the non-contact MsS is enhanced in the whole inspection frequency range of the L(0,2 mode if the axial length is adjusted to a certain value. Moreover that certain axial length is the same for pipes of different sizes but made of the same material.

  11. Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques.

    Science.gov (United States)

    Araki, Teppei; Mandamparambil, Rajesh; van Bragt, Dirk Martinus Peterus; Jiu, Jinting; Koga, Hirotaka; van den Brand, Jeroen; Sekitani, Tsuyoshi; den Toonder, Jaap M J; Suganuma, Katsuaki

    2016-11-11

    Silver nanowires (AgNWs) are excellent candidate electrode materials in next-generation wearable devices due to their high flexibility and high conductivity. In particular, patterning techniques for AgNWs electrode manufacture are very important in the roll-to-roll printing process to achieve high throughput and special performance production. It is also essential to realize a non-contact mode patterning for devices in order to keep the pre-patterned components away from mechanical damages. Here, we report a successful non-contact patterning of AgNWs-based stretchable and transparent electrodes by laser-induced forward transfer (LIFT) technique. The technique was used to fabricate a 100% stretchable electrode with a width of 200 μm and electrical resistivity 10(-4) Ωcm. Experiments conducted integrating the stretchable electrode on rubber substrate in which LED was pre-fabricated showed design flexibility resulting from non-contact printing. Further, a patterned transparent electrode showed over 80% in optical transmittance and less than 100 Ω sq(-1) in sheet resistance by the optimized LIFT technique.

  12. On-line generalized Steiner problem

    Energy Technology Data Exchange (ETDEWEB)

    Awerbuch, B.; Azar, Y.; Bartal, Y. [Tel Aviv Univ. (Israel)

    1996-12-31

    The Generalized Steiner Problem (GSP) is defined as follows. We are given a graph with non-negative weights and a set of pairs of vertices. The algorithm has to construct minimum weight subgraph such that the two nodes of each pair are connected by a path. We consider the on-line generalized Steiner problem, in which pairs of vertices arrive on-line and are needed to be connected immediately. We give a simple O(log{sup 2} n) competitive deterministic on-line algorithm. The previous best online algorithm (by Westbrook and Yan) was O({radical}n log n) competitive. We also consider the network connectivity leasing problem which is a generalization of the GSP. Here edges of the graph can be either bought or leased for different costs. We provide simple randomized O(log{sup 2} n) competitive algorithm based on the on-line generalized Steiner problem result.

  13. The war against on-line piracy

    OpenAIRE

    Harris, Julian

    2011-01-01

    A summary by Julian Harris, Deputy General Editor Amicus Curiae, of US attempts to control what it identifies as rogue Internet sites engaged in on-line piracy and opposition to such legislative moves.

  14. On-Line Acquisitions by LOLITA

    Directory of Open Access Journals (Sweden)

    Frances G. Spigai

    1970-12-01

    Full Text Available The on-line acquisition program (LOLITA in use at the Oregon State University Library is described in terms of development costs, equipment requirements, and overall design philosophy. In particular, the record format and content of records in the on-order file, and the on-line processing of these records (input, search, correction, output using a cathode ray tube display terminal are detailed.

  15. ACSEPP On-Line Electronic Payment Protocol

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-bin; ZHU Xian; HONG Fan

    2004-01-01

    With analyzing the existing on-line electronic payment protocols, this paper presents a new on-line electronic payment protocol named ACSEPP: Anonymous, Convenient and Secure Electronic Payment Protocol.Its aim is to design a practical electronic payment protocol which is both secure and convenient.Without using PKI_CA frame, it realized the anonymity of consumer and merchant, the convenient of handling, the low cost of maintenance and the security.

  16. Formación on line

    Directory of Open Access Journals (Sweden)

    O. Grau-Perejoan

    Full Text Available La formación on line es una modalidad de enseñanza a distancia basada en las nuevas tecnologías. En este artículo se pretende hacer una introducción a base de describir a grandes rasgos sus características principales: asincronía, no presencialidad, comunicación escrita, función del profesor on line, así como los retos, los riesgos, las ventajas y los inconvenientes que plantea. Se exponen las diferencias entre la formación on line y la formación presencial, de manera que los docentes puedan adaptar de la mejor manera posible sus propuestas formativas a la modalidad on line. Se introduce el importantísimo papel de la planificación y de la fase de diseño y, finalmente, se repasan conceptos útiles para comprender mejor el mundo de la formación on line como son los conceptos entorno virtual de aprendizaje (EVA o Blended Learning (B-Learning.

  17. On line routing per mobile phone

    DEFF Research Database (Denmark)

    Bieding, Thomas; Görtz, Simon; Klose, Andreas

    2009-01-01

    . Additionally it is of utmost importance that the employed communication system is suitable integrated with the firm’s enterprise application system and business processes. On basis of a case study, we describe in this paper a system that is cheap and easy to implement due to the use of simple mobile phones......On-line routing is concerned with building vehicle routes in an ongoing fashion in such a way that customer requests arriving dynamically in time are efficiently and effectively served. An indispensable prerequisite for applying on-line routing methods is mobile communication technology...

  18. Educational On-Line Gaming Propensity

    DEFF Research Database (Denmark)

    Sudzina, Frantisek; Razmerita, Liana; Kirchner, Kathrin

    2014-01-01

    Educational on-line games are promising for new generations of students who are grown up digital. Th e new generations of students are technology savvy and spend lots of time on the web and on social networks. Based on an exploratory study, this article investigates the factors that infl uence...... students’ willingness to participate in serious games for teaching/learning. Th is study investigates the relationship between students’ behavior on Facebook, Facebook games, and their attitude toward educational on-line games. Th e results of the study reveal that the early adopters of educational games...

  19. 矿井瞬态传导骚扰非接触测量方法研究%Non-contact Measuring Methods of Transient Conduction Disturbances in Mine

    Institute of Scientific and Technical Information of China (English)

    冯德旺

    2012-01-01

    Transient electromagnetic radiation model of short dipole, in which pulse current is used as its excitation source, can be built based on electromagnetic field theory. Moreover, the transient radiation field was closely bound up with the pulse current of power cable. The transformation model between direct contact measured value and non-contact measured value was built through modeling experiments, and the non-contact measuring method of transient conduction disturbance in mine was advanced. The experimental results in mines show that non-contact measurement method can catch the time domain waveforms of power cable transient radiation in the instant of switching operations. Electric-field strength of the electromagnetic radiation field caused by pulse current may reach up to 4 V/m, which has great effect on electromagnetic environment.%以瞬态脉冲电流作为短偶极子的激励源,运用电磁场理论建立短偶极子的瞬态辐射发射模型,确定短偶极子瞬态辐射场与其流过的脉冲电流密切相关,并通过地面实验建立直接接触测量值和非接触测量值之间的转换模型,提出井下瞬态传导骚扰的非接触测量方法.井下实验研究表明:非接触测量方法可以及时捕获开关操作瞬间电力电缆瞬态辐射的时域波形;距离电缆1 cm处脉冲电流辐射的电场强度最高可达到4V/m,对井下电磁环境影响较大.

  20. 一种非接触式的精密主轴回转误差测量系统%A Non Contact Measurement System of Rotation Error of Precision Spindle

    Institute of Scientific and Technical Information of China (English)

    王子龙; 卢红; 吴强; 王一新

    2014-01-01

    Based on the double probe error separation method,the paper designed a non contact rotation er-ror measurement system which is easy to carry,install and debug,and highly precise,can realize the on-line monitoring and measurement and is also suitable for a variety of precision spindles.Therefore,it can realize the whole system’s functions including the connection between software and hardware,data collec-tion ,data processing and data storage.Finally we conducted a series of experiments on the machining cen-ter spindle through the hardware system,which verified the feasibility and reliability of the measurement system,and reached some conclusions through the analysis of the experimental data.%基于双测头误差分离法设计一种易于携带、非接触式测量、能够实现在线测量和监控、适应多种工况的精密主轴回转误差测量系统。为此,以 VC++为软件平台,实现整个系统的软硬件连接、数据采集、数据处理和数据保存等功能。最后通过硬件搭建完成了对一种加工中心主轴的测量实验,证明了此精密主轴回转误差测量系统的可行性和可靠性,并且通过对所得实验数据的分析得到了一定的结论。

  1. Combined Effect of Surface Tension, Gravity and van der Waals Force Induced by a Non-Contact Probe Tip on the Shape of Liquid Surface

    Institute of Scientific and Technical Information of China (English)

    LIU Nan; BAI Yi-Long; XIA Meng-Fen; KE Fu-Jiu

    2005-01-01

    @@ Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly gov erned by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.

  2. ON-LINE DOCUMENTS CONTENT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    VASILESCU RAMONA VIOLETA

    2010-05-01

    Full Text Available This paper outlines the steps and technologies used in developing an on-line application server with many desktop clients, and with high power processing for a wide range of input documents to obtain searchable documents on the highest portability standards, PDF and PDF /A.

  3. 在线热裂解-气相色谱/质谱联用技术分析葫芦巴净油的热裂解产物%Analysis of Pyrolysates from Fenugreek Absolute by On-Line Pyrolysis-Gas Chromatography/Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    叶荣飞; 程侠; 宋森川; 李峰; 黄飞; 任成龙; 宋化灿

    2015-01-01

    采用在线热裂解-气相色谱/质谱(Py-GC/MS)联用技术研究了氦气氛围中葫芦巴净油在300、400、500、600、700、800℃下的热裂解行为。结果表明:①在上述条件下共鉴定出86种裂解产物,主要是酯、酸、醇、烯烃类化合物;②裂解温度低于500℃时,检测到的成分基本相同;③裂解温度从600℃升至800℃,检测到危害性的苯系物种类增多、相对含量增大。此外,对葫芦巴净油裂解产物的致香机理和苯系物的形成机理进行了简单讨论。%Fenugreek absolute was pyrolyzed under helium atmospheres at 300,400,500,600,700 and 800 ℃,respectively.The pyrolysates were analyzed by on-line gas chromatography/mass spectrometry (GC/MS).The results showed that,first,eighty-six constituents were identified,and the major of the pyrolysates were esters,acids,alcohols and alkenes.Second,the pyrolysates were almost same at lower temperature (300~500 ℃).Third,more and more benzene derivates were identified with higher per-centage with increasing temperature (600~800 ℃).In addition,the flavor mechanism and the attribu-tion of benzene compounds were investigated.

  4. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    Science.gov (United States)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  5. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Choi, S.G.; Choi, W.K.; Yang, B.Y. [School of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Lee, E.S., E-mail: leees@dreamwiz.com [Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2014-09-30

    Highlights: • Invar alloy was electrochemically polished and then subjected to PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. • Optical microscopic/SEM and non-contact 3D measurement study of Invar surface analyses. • Analysis result shows that applied voltage and electrode shape are factors that affect the surface conditions. - Abstract: In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis.

  6. Introduction of a new model for time-continuous and non-contact investigations of in-vitro thrombolysis under physiological flow conditions

    Directory of Open Access Journals (Sweden)

    Trillenberg Peter

    2011-05-01

    Full Text Available Abstract Background Thrombolysis is a dynamic and time-dependent process influenced by the haemodynamic conditions. Currently there is no model that allows for time-continuous, non-contact measurements under physiological flow conditions. The aim of this work was to introduce such a model. Methods The model is based on a computer-controlled pump providing variable constant or pulsatile flows in a tube system filled with blood substitute. Clots can be fixed in a custom-built clot carrier within the tube system. The pressure decline at the clot carrier is measured as a novel way to measure lysis of the clot. With different experiments the hydrodynamic properties and reliability of the model were analyzed. Finally, the lysis rate of clots generated from human platelet rich plasma (PRP was measured during a one hour combined application of diagnostic ultrasound (2 MHz, 0.179 W/cm2 and a thrombolytic agent (rt-PA as it is commonly used for clinical sonothrombolysis treatments. Results All hydrodynamic parameters can be adjusted and measured with high accuracy. First experiments with sonothrombolysis demonstrated the feasibility of the model despite low lysis rates. Conclusions The model allows to adjust accurately all hydrodynamic parameters affecting thrombolysis under physiological flow conditions and for non-contact, time-continuous measurements. Low lysis rates of first sonothrombolysis experiments are primarily attributable to the high stability of the used PRP-clots.

  7. The Effect of Non-Contact Conditions in a Splinted Fixed Partial Denture on the Load Sharing Mechanism: A Finite Element Study

    Institute of Scientific and Technical Information of China (English)

    M.Z.Bendjaballah

    2012-01-01

    A computer-aided design model for a fixed partial denture was constructed and used in a finite element analysis to study the overall load sharing mechanism between the fixed partial denture and oral structures while the denture base rested on the alveolar ridge.To investigate the consequences of non-contact conditions,three additional models were generated incorporating a uniform clearance of 0.125 mm,0.25 mm,and 0.5 mm,respectively.A 100 N static load located at the free end of the prosthesis was applied while the distal portion of the jaw was set fixed.The results show that whilst releasing the ridge almost entirely,the presence of the clearance drastically increased the load on the splinting teeth.A pull-out force on the canine tooth of about 44 N was computed,accompanied by a mesio-distal moment of about 500 N.cm.The combination of which was similar to the tooth extraction maneuver performed by the dentist.In contrast,the second premolar was found to bear a push-in force of almost 115N.The first molar,though barely solicited in the contact condition,became substantially loaded in non-contact conditions,which validates the choice of sacrificing three teeth to support the denture.

  8. Detailed rock failure susceptibility mapping in steep rocky coasts by means of non-contact geostructural surveys: the case study of the Tigullio Gulf (Eastern Liguria, Northern Italy

    Directory of Open Access Journals (Sweden)

    P. De Vita

    2012-04-01

    Full Text Available In this study, an engineering geological analysis for the assessment of the rock failure susceptibility of a high, steep, rocky coast was developed by means of non-contact geostructural surveys. The methodology was applied to a 6-km coastal cliff located in the Gulf of Tigullio (Northern Tyrrhenian Sea between Rapallo and Chiavari.

    The method is based on the geostructural characterisation of outcropping rock masses through meso- and macroscale stereoscopic analyses of digital photos that were taken continuously from a known distance from the coastline. The results of the method were verified through direct surveys of accessible sample areas. The rock failure susceptibility of the coastal sector was assessed by analysing the fundamental rock slope mechanisms of instability and the results were implemented into a Geographic Information System (GIS.

    The proposed method is useful for rock failure susceptibility assessments in high, steep, rocky coastal areas, where accessibility is limited due to cliffs or steep slopes. Moreover, the method can be applied to private properties or any other area where a complete and systematic analysis of rock mass structural features cannot be achieved.

    Compared to direct surveys and to other non-contact methods based on digital terrestrial photogrammetry, the proposed procedure provided good quality data of the structural features of the rock mass at a low cost. Therefore, the method could be applied to similar coastal areas with a high risk of rock failure occurrence.

  9. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites.

    Science.gov (United States)

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-03-21

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer.

  10. Er:YAG and CTH:YAG laser radiation: contact versus non-contact enamel ablation and sonic-activated bulk composite placement

    Science.gov (United States)

    Buckova, M.; Kasparova, M.; Dostalova, T.; Jelinkova, H.; Sulc, J.; Nemec, M.; Fibrich, M.; Bradna, P.; Miyagi, M.

    2013-05-01

    Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel.

  11. On-line alkali detector based on surface ionization

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, J.G.; Loenn, B.; Jaeglid, B.; Engvall, K.; Pettersson, J.B.C. [Chalmers University of Technology, Goeteborg (Sweden). Dept. of Physical Chemistry GU

    1998-12-31

    This project adapts a new on-line alkali measurement technique to coal and biomass combustion and gasification. Alkali metal atoms are known to easily ionize in contact with hot metal surfaces, and the instrument is based on this principle called surface ionization (SI). The primary parts of the detector are a platinum filament and an ion collector. The platinum filament is supported between two electrodes and heated to the temperature for alkali vaporization in ionic form. The ion collector is situated close to the filament. The measured current is proportional to the arrival rate of alkali atoms onto the filament. Laboratory tests were performed on detector sensitivity, detection limit, and time response. Similar sensitivity to both sodium and potassium regardless of molecular form was found. The time response of the detector is determined to be approximately 1 ms enabling it to monitor fast concentration changes in flue gas. Particles with a size below 5 nm melt completely on the hot platinum surface and give similar signals. For larger particles, the ionization efficiency is not 100% and depends on the type of salt. This problem can be overcome with an alternative filament configuration. The detector function was tested in a laboratory high pressure furnace using different fuel samples, atmospheres, and pressures. Alkali release from coal in general is lower than for biomass samples, rate constants and activation energies for alkali release were determined. Measurements were carried out in a biomass pyrolysis apparatus and a gasification pilot plant. The detector function was not influenced by a high concentration of hydrocarbons in the gas phase, and the measurements confirmed detector function in a hostile environment. The detector performed well in laboratory tests, and is a strong candidate for further development into a standard on-line monitor of alkali species in hot flue gas. 10 refs., 16 figs.

  12. Gas chromatography

    Science.gov (United States)

    Guiochon, Georges; Guillemin, Claude L.

    1990-11-01

    Gas chromatography is a powerful separation technique for gas and vapor mixtures. Combining separation and on-line detection permits accurate quantitative analysis of complex mixtures, including traces of compounds down to parts per trillions in some particular cases. The importance of gas chromatography in quality control and process control in the chemical and drug industry, in environmental pollution investigations and in clinical analysis is critical. The principles of the technique are discussed, the main components of a gas chromatograph are described and some idea of the importance of the applications is given.

  13. Educational On-Line Gaming Propensity

    DEFF Research Database (Denmark)

    Sudzina, Frantisek; Razmerita, Liana; Kirchner, Kathrin

    2014-01-01

    Educational on-line games are promising for new generations of students who are grown up digital. Th e new generations of students are technology savvy and spend lots of time on the web and on social networks. Based on an exploratory study, this article investigates the factors that infl uence...... students’ willingness to participate in serious games for teaching/learning. Th is study investigates the relationship between students’ behavior on Facebook, Facebook games, and their attitude toward educational on-line games. Th e results of the study reveal that the early adopters of educational games...... are likely to be students, who are young, have only a few Facebook connections, who currently play Facebook game(s). Furthermore, the study emphasizes that there may be differences between students coming from various countries....

  14. New Trends in on-line Marketing

    OpenAIRE

    Palkovič, Lukáš

    2011-01-01

    This bachelor thesis deals with new trend of internet marketing, it focuses especially on viral marketing. The theoretical part charasterizes the process of viral campaigns, furthermore deals with the components and aspects of on-line environment. Another separated chapter presents social networks, their place in viral marketing and at last but not least the viral video making process. The practical part contains different analyses of specific viral campaigns. The next and equally the last pa...

  15. Connecting to On-line Data

    Science.gov (United States)

    Eichhorn, G.; Astrophysics Datacenter Executive Committee (ADEC)

    2004-05-01

    The Astrophysics Datacenter Executive Committee (ADEC) is coordinating the development of a system to facilitate the linking to on-line data. This system has three components: 1. Unique dataset identifiers. 2. A verification system for identifiers. 3. Permanent links to on-line data sets. 1. The ADEC has agreed on a naming scheme for data sets that allows for the unique identification of any data set. The ADEC data centers will clearly mark their data with these identifiers to allow the generation of links to these data. 2. Each data center has a utility that can check whether a data set identifier is a valid identifier at that center. A central verifier allows third parties access to these individual verifiers through a single portal. 3. The central verifier also provides permanent links to data sets through a central link forwarding system. This makes it possible to move data sets between data centers while maintaining the permanent links. The ADEC plans to first use this system to implement the linking from the literature to on-line data in a collaboration with the AAS and the University of Chicago Press for the AAS journals.

  16. The Leuven isotope separator on-line laser ion source

    CERN Document Server

    Kudryavtsev, Y; Franchoo, S; Huyse, M; Gentens, J; Kruglov, K; Müller, W F; Prasad, N V S; Raabe, R; Reusen, I; Van den Bergh, P; Van Duppen, P; Van Roosbroeck, J; Vermeeren, L; Weissman, L

    2002-01-01

    An element-selective laser ion source has been used to produce beams of exotic radioactive nuclei and to study their decay properties. The operational principle of the ion source is based on selective resonant laser ionization of nuclear reaction products thermalized and neutralized in a noble gas at high pressure. The ion source has been installed at the Leuven Isotope Separator On-Line (LISOL), which is coupled on-line to the cyclotron accelerator at Louvain-la-Neuve. sup 5 sup 4 sup , sup 5 sup 5 Ni and sup 5 sup 4 sup , sup 5 sup 5 Co isotopes were produced in light-ion-induced fusion reactions. Exotic nickel, cobalt and copper nuclei were produced in proton-induced fission of sup 2 sup 3 sup 8 U. The b decay of the sup 6 sup 8 sup - sup 7 sup 4 Ni, sup 6 sup 7 sup - sup 7 sup 0 Co, sup 7 sup 0 sup - sup 7 sup 5 Cu and sup 1 sup 1 sup 0 sup - sup 1 sup 1 sup 4 Rh isotopes has been studied by means of beta-gamma and gamma-gamma spectroscopy. Recently, the laser ion source has been used to produce neutron-d...

  17. [CHANGING OF PHYSICO-CHEMICAL PARAMETERS OF NON-CONTACT (ELECTROCHEMICAL) ACTIVATED DRINKING WATER IS ASSOCIATED WITH INDUCTION OF GENOMIC INSTABILITY OF CULTIVATED HUMAN BLOOD LYMPHOCYTES].

    Science.gov (United States)

    Zatsepina, O V; Ingel, F I

    2016-01-01

    In the article there are presented data which are the fragment of large multidisciplinary study of genetic safety of non-contact electrochemically activated water (NAW). The aim of this study was the analysis of the relation of impacts of genomic instability (micronucleus test with cytochalasin B) detected in human blood cells, cultured in medias prepared on the base of these NAWs, with physical and chemical properties of these NaWs. In experiments there were used catholytes and anolytes obtained by activation of osmotic, tap and dining bottled water As a result of such activation, all waters were shown to acquire the ability to induce genomic instability in cellular cultures. Notably in cell cultures on catholytes and anolytes these effects differed between themselves and have been associated with different physical and chemical properties of the NAWs.

  18. Non-Contact to Contact Transition: Direct Measurements of Interaction Forces between a Solid Probe and a Planar Air-Water Interface

    Institute of Scientific and Technical Information of China (English)

    WU Di; WANG Yi-Zhen; ZHANG Jin-Xiu

    2007-01-01

    The interaction force between a solid probe and a planar air-water interface is measured by using an atomic force microscope. It is demonstrated that during the approach of the probe to the air-water interface, the force curves decline all the time due to the van der Waals attraction and induces a stable profile of water surface raised. When the tip approaches very close to the water surface, force curves jump suddenly, reflecting the complex behaviour of the unstable water surface. With a theoretical analysis we conclude that before the tip touches water surface,two water profiles appear, one stable and the other unstable. Then, with further approaching, the tip touches water surface and the non-contact to contact transition occurs.

  19. Rapid skin profiling with non-contact full-field optical coherence tomography: study of patients with diabetes mellitus type I

    Science.gov (United States)

    Zakharov, P.; Talary, M. S.; Kolm, I.; Caduff, A.

    2009-07-01

    The application of the full-field optical coherence tomography (OCT) microscope to the characterisation of skin morphology is described. An automated procedure for analysis and interpretation of the OCT data has been developed which provides measures of the laterally averaged depth profiles of the skin reflectance. The skin at the dorsal side of the upper arm of 22 patients with Type 1 Diabetes Mellitus has been characterised in a non-contact way. The OCT signal profile was compared with the optical histological data obtained with a commercial confocal microscope (CM). The highest correlation to the epidermal thickness (ET) obtained using CM was found for the distance from the entrance OCT peak to the first minimum of the reflection profile (R2=0.657, pdiabetes or concentration of glycated haemoglobin in the blood.

  20. 'Sub-atomic' resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study.

    Science.gov (United States)

    Campbellová, Anna; Ondráček, Martin; Pou, Pablo; Pérez, Rubén; Klapetek, Petr; Jelínek, Pavel

    2011-07-22

    A Si adatom on a Si(111)-(7 × 7) reconstructed surface is a typical atomic feature that can rather easily be imaged by a non-contact atomic force microscope (nc-AFM) and can be thus used to test the atomic resolution of the microscope. Based on our first principles density functional theory (DFT) calculations, we demonstrate that the structure of the termination of the AFM tip plays a decisive role in determining the appearance of the adatom image. We show how the AFM image changes depending on the tip-surface distance and the composition of the atomic apex at the end of the tip. We also demonstrate that contaminated tips may give rise to image patterns displaying so-called 'sub-atomic' features even in the attractive force regime.

  1. Total on-line purchasing system (TOPS)

    Energy Technology Data Exchange (ETDEWEB)

    Collins, N.

    1995-11-01

    The Information Management Division (IMD) at LLNL is developing a new purchasing system for the Procurement Department. The first major development of this new system is called, {open_quotes}Total On-Line Purchasing System{close_quotes} (TOPS). TOPS will help speed up the requisitioning process by having requisitions electronically entered by requesters and electronically sent to buyers to be put on Purchase Orders. The new purchasing system will use Electronic Commerce (EC)/Electronic Data Interchange (EDI), to help increase transaction flows for shipping notices, RFQs, Quotes, Purchase Orders, and Invoices. ANSI X.12 is the EDI standard that this new EC will use.

  2. 非接触式远程自动体温测量仪设计%Design of non-contact remote automatic thermometer

    Institute of Scientific and Technical Information of China (English)

    李卫兵; 胡波; 孔华生

    2013-01-01

    基于非接触式人体体温测量并且实现远程监测目的,设计了一体温测量仪,采用SPCE061A单片机控制,光电开关检测人体信号,控制步进电机调整温度传感器的位置,用红外测温传感器测量目标温度,在液晶上显示温度值.数据通过无线传输模块传至主控机,由主控机显示温度值实时远程监测,当测量的温度值超过设定温度值时声光报警.该系统可实现无接触式人体体温测量,具有远程监测功能,检测距离可达100m,避免了测量的交叉影响,具有实际应用价值.%Based on the non-contact body temperature measurement and to realize the remote monitoring purpose,A body temperature measuring instrument with SPCE061A as its microprocessor is designed. The system detects body signals by the photoelectric switch, to adjust the location of the temperature sensor by stepper motor, to measure the target temperature by infrared temperature sensor, the temperature value displayed on the LCD. Data from the host computer transmits to the host computer through the wireless transmission modules and displays on LCD with temperature values. The system will send out sound and light alarm when the measured temperature exceeds the set temperature value. The system can realize non-contact body temperature measurement with remote monitoring function. The detection distance is more than 100 meter. So the design has practical application value.

  3. Profile measurement of a bent neutron mirror using an ultrahigh precision non-contact measurement system with an auto focus laser probe

    Science.gov (United States)

    Morita, S.; Guo, J.; Yamada, N. L.; Torikai, N.; Takeda, S.; Furusaka, M.; Yamagata, Y.

    2016-07-01

    A bent neutron mirror has been considered as one of the best solutions for focusing neutron beams from the viewpoint of cost-benefit performance. Although the form deviation of the bent profile is expected because of the large spot size, it is difficult to measure due to its geometric limitation. Here, we propose a non-contact measurement system using an auto focus (AF) laser probe on an ultrahigh precision machine tool to precisely evaluate the form deviation of the bent mirror. The AF laser probe is composed of a diode laser, a position sensitive sensor, a charge-coupled device (CCD) camera and a microscope objective lens which is actuated by an electromagnetic motor with 1 nm resolution for position sensing and control. The sensor enables a non-contact profile measurement of a high precision surface without any surface damage in contrast with contact-type ultrahigh precision coordinate measurement machines with ruby styli. In the on-machine measurement system, a personal computer simultaneously acquires a displacement signal from the AF laser probe and 3-axis positional coordinates of the ultrahigh machine tool branched between the linear laser scales and the numerical controller. The acquisition rate of the 4-axis positional data in 1 nm resolution is more than 10 Hz and the simultaneity between the axes is negligible. The profile of a neutron bent mirror was measured from a transparent side using the developed system, and the result proves that the form deviation of the mirror enlarged the the spot size of focused neuron beam.

  4. The Effectiveness of Injury Prevention Programs to Modify Risk Factors for Non-Contact Anterior Cruciate Ligament and Hamstring Injuries in Uninjured Team Sports Athletes: A Systematic Review.

    Science.gov (United States)

    Monajati, Alireza; Larumbe-Zabala, Eneko; Goss-Sampson, Mark; Naclerio, Fernando

    2016-01-01

    Hamstring strain and anterior cruciate ligament injuries are, respectively, the most prevalent and serious non-contact occurring injuries in team sports. Specific biomechanical and neuromuscular variables have been used to estimate the risk of incurring a non-contact injury in athletes. The aim of this study was to systematically review the evidences for the effectiveness of injury prevention protocols to modify biomechanical and neuromuscular anterior cruciate and/or hamstring injuries associated risk factors in uninjured team sport athletes. PubMed, Science Direct, Web of Science, Cochrane Libraries, U.S. National Institutes of Health clinicaltrials.gov, Sport Discuss and Google Scholar databases were searched for relevant journal articles published until March 2015. A manual review of relevant articles, authors, and journals, including bibliographies was performed from identified articles. Nineteen studies were included in this review. Four assessment categories: i) landing, ii) side cutting, iii) stop-jump, and iv) muscle strength outcomes, were used to analyze the effectiveness of the preventive protocols. Eight studies using multifaceted interventions supported by video and/or technical feedback showed improvement in landing and/or stop-jump biomechanics, while no effects were observed on side-cutting maneuver. Additionally, multifaceted programs including hamstring eccentric exercises increased hamstring strength, hamstring to quadriceps functional ratio and/or promoted a shift of optimal knee flexion peak torque toward a more open angle position. Multifaceted programs, supported by proper video and/or technical feedback, including eccentric hamstring exercises would positively modify the biomechanical and or neuromuscular anterior cruciate and/or hamstring injury risk factors.

  5. Comparison of a novel non-contact biomotion sensor with wrist actigraphy in estimating sleep quality in patients with obstructive sleep apnoea.

    Science.gov (United States)

    Pallin, Michael; O'Hare, Emer; Zaffaroni, Alberto; Boyle, Patricia; Fagan, Ciara; Kent, Brian; Heneghan, Conor; de Chazal, Philip; McNicholas, Walter T

    2014-08-01

    Ambulatory monitoring is of major clinical interest in the diagnosis of obstructive sleep apnoea syndrome. We compared a novel non-contact biomotion sensor, which provides an estimate of both sleep time and sleep-disordered breathing, with wrist actigraphy in the assessment of total sleep time in adult humans suspected of obstructive sleep apnoea syndrome. Both systems were simultaneously evaluated against polysomnography in 103 patients undergoing assessment for obstructive sleep apnoea syndrome in a hospital-based sleep laboratory (84 male, aged 55 ± 14 years and apnoea-hypopnoea index 21 ± 23). The biomotion sensor demonstrated similar accuracy to wrist actigraphy for sleep/wake determination (77.3%: biomotion; 76.5%: actigraphy), and the biomotion sensor demonstrated higher specificity (52%: biomotion; 34%: actigraphy) and lower sensitivity (86%: biomotion; 94%: actigraphy). Notably, total sleep time estimation by the biomotion sensor was superior to actigraphy (average overestimate of 10 versus 57 min), especially at a higher apnoea-hypopnoea index. In post hoc analyses, we assessed the improved apnoea-hypopnoea index accuracy gained by combining respiratory measurements from polysomnography for total recording time (equivalent to respiratory polygraphy) with total sleep time derived from actigraphy or the biomotion sensor. Here, the number of misclassifications of obstructive sleep apnoea severity compared with full polysomnography was reduced from 10/103 (for total respiratory recording time alone) to 7/103 and 4/103 (for actigraphy and biomotion sensor total sleep time estimate, respectively). We conclude that the biomotion sensor provides a viable alternative to actigraphy for sleep estimation in the assessment of obstructive sleep apnoea syndrome. As a non-contact device, it is suited to longitudinal assessment of sleep, which could also be combined with polygraphy in ambulatory studies.

  6. A multi-view time-domain non-contact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging.

    Science.gov (United States)

    Lapointe, Eric; Pichette, Julien; Bérubé-Lauzière, Yves

    2012-06-01

    We present a non-contact diffuse optical tomography (DOT) scanner with multi-view detection (over 360°) for localizing fluorescent markers in scattering and absorbing media, in particular small animals. It relies on time-domain detection after short pulse laser excitation. Ultrafast time-correlated single photon counting and photomultiplier tubes are used for time-domain measurements. For light collection, seven free-space optics non-contact dual wavelength detection channels comprising 14 detectors overall are placed around the subject, allowing the measurement of time point-spread functions at both excitation and fluorescence wavelengths. The scanner is endowed with a stereo camera pair for measuring the outer shape of the subject in 3D. Surface and DOT measurements are acquired simultaneously with the same laser beam. The hardware and software architecture of the scanner are discussed. Phantoms are used to validate the instrument. Results on the localization of fluorescent point-like inclusions immersed in a scattering and absorbing object are presented. The localization algorithm relies on distance ranging based on the measurement of early photons arrival times at different positions around the subject. This requires exquisite timing accuracy from the scanner. Further exploiting this capability, we show results on the effect of a scattering hetereogenity on the arrival time of early photons. These results demonstrate that our scanner provides all that is necessary for reconstructing images of small animals using full tomographic reconstruction algorithms, which will be the next step. Through its free-space optics design and the short pulse laser used, our scanner shows unprecedented timing resolution compared to other multi-view time-domain scanners.

  7. Model for on-line moisture-content control during solid-state fermentation

    NARCIS (Netherlands)

    Nagel, F.J.J.I.; Tramper, J.; Bakker, M.S.N.; Rinzema, A.

    2001-01-01

    In this study we describe a model that estimates the extracellular (nonfungal) and overall water contents of wheat grains during solid-state fermentation (SSF) with Aspergillus oryzae, using on-line measurements of oxygen, carbon dioxide, and water vapor in the gas phase. The model uses elemental ba

  8. Modern on-line control system for refuse-fueled power plants. Moderne Leittechnik fuer Muellverbrennungsanlage

    Energy Technology Data Exchange (ETDEWEB)

    Grasmueck, L. (Asea Brown Boveri AG, Mannheim (Germany, F.R.)); Klitzke, H.J. (Goepfert und Reimer und Partner, Beratende Ingenieure, Hamburg (Germany, F.R.)); Schumacher, E. (Technische Werke Ludwigshafen am Rhein AG (Germany, F.R.))

    1989-10-01

    30 years after commissioning a refuse-fueled power plant in Ludwigshafen was retrofitted and extended. A process control system provides an optimal waste combustion and flue gas cleanup. An on-line central strategy, special requirements on waste combustion and solutions are presented in this report. (orig.).

  9. On-line and Mobil Learning Activities

    Science.gov (United States)

    Ackerman, S. A.; Whittaker, T. M.; Jasmin, T.; Mooney, M. E.

    2012-12-01

    Introductory college-level science courses for non-majors are critical gateways to imparting not only discipline-specific information, but also the basics of the scientific method and how science influences society. They are also indispensable for student success to degree. On-line, web-based homework (whether on computers or mobile devices) is a rapidly growing use of the Internet and is becoming a major component of instruction in science, replacing delayed feedback from a few major exams. Web delivery and grading of traditional textbook-type questions is equally effective as having students write them out for hand grading, as measured by student performance on conceptual and problem solving exams. During this presentation we will demonstrate some of the interactive on-line activities used to teach concepts and how scientists approach problem solving, and how these activities have impacted student learning. Evaluation of the activities, including formative and summative, will be discussed and provide evidence that these interactive activities significantly enhance understanding of introductory meteorological concepts in a college-level science course. More advanced interactive activities are also used in our courses for department majors, some of these will be discussed and demonstrated. Bring your mobile devices to play along! Here is an example on teaching contouring: http://profhorn.aos.wisc.edu/wxwise/contour/index.html

  10. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 2: a review of prevention programs aimed to modify risk factors and to reduce injury rates.

    Science.gov (United States)

    Alentorn-Geli, Eduard; Myer, Gregory D; Silvers, Holly J; Samitier, Gonzalo; Romero, Daniel; Lázaro-Haro, Cristina; Cugat, Ramón

    2009-08-01

    Soccer is the most commonly played sport in the world, with an estimated 265 million active soccer players participating in the game as on 2006. Inherent to this sport is the higher risk of injury to the anterior cruciate ligament (ACL) relative to other sports. ACL injury causes a significant loss of time from competition in soccer, which has served as the strong impetus to conduct research that focuses to determine the risk factors for injury, and more importantly, to identify and teach techniques to reduce this injury in the sport. This research emphasis has afforded a rapid influx of literature aimed to report the effects of neuromuscular training on the risk factors and the incidence of non-contact ACL injury in high-risk soccer populations. The purpose of the current review is to sequence the most recent literature relating the effects of prevention programs that were developed to alter risk factors associated with non-contact ACL injuries and to reduce the rate of non-contact ACL injuries in soccer players. To date there is no standardized intervention program established for soccer to prevent non-contact ACL injuries. Multi-component programs show better results than single-component preventive programs to reduce the risk and incidence of non-contact ACL injuries in soccer players. Lower extremity plyometrics, dynamic balance and strength, stretching, body awareness and decision-making, and targeted core and trunk control appear to be successful training components to reduce non-contact ACL injury risk factors (decrease landing forces, decrease varus/valgus moments, and increase effective muscle activation) and prevent non-contact ACL injuries in soccer players, especially in female athletes. Pre-season injury prevention combined with an in-season maintenance program may be advocated to prevent injury. Compliance may in fact be the limiting factor to the overall success of ACL injury interventions targeted to soccer players regardless of gender. Thus

  11. Aprender a innovar: una experiencia on line

    Directory of Open Access Journals (Sweden)

    Joaquín MORENO MARCHAL

    2014-11-01

    Full Text Available La creatividad y la innovación se han convertido en recursos clave en la denominada sociedad del conocimiento, que bien podría ser también llamada sociedad de la innovación. Pero innovar es una actividad compleja, que integra la aplicación de múltiples capacidades, el pensamiento divergente y convergente, la gestión de equipos humanos, la comunicación. Ahora bien, a innovar se puede, y se debe, aprender. Aprender a innovar es un reto y también una obligación para el conjunto del sistema educativo en todos sus niveles. Partiendo de estas consideraciones este trabajo expone una experiencia de aprendizaje de la creatividad y de la innovación a través de un curso totalmente on line basado en la plataforma MOODLE, en el marco del Programa de Formación Permanente de la Universidad de Cádiz. Se presenta un modelo del proceso de innovación, denominado CREALAB, de elaboración propia. Este modelo se ha utilizado como base del proceso de aprendizaje de la creatividad y de la innovación y en el diseño del curso, está organizado en torno a actividades y tiene un carácter iterativo y realimentado. Se presentan además el conjunto del diseño metodológico y los resultados obtenidos en las dos ediciones celebradas hasta el momento. El diseño del curso totalmente on line y los resultados alcanzados permiten estimar un alto potencial de aplicación, tanto a nivel personal como a nivel organizacional.

  12. On-line chemical composition analyzer development

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Garrison, A.A.; Muly, E.C.; Moore, C.F.

    1992-02-01

    The energy consumed in distillation processes in the United States represents nearly three percent of the total national energy consumption. If effective control of distillation columns can be accomplished, it has been estimated that it would result in a reduction in the national energy consumption of 0.3%. Real-time control based on mixture composition could achieve these savings. However, the major distillation processes represent diverse applications and at present there does not exist a proven on-line chemical composition sensor technology which can be used to control these diverse processes in real-time. This report presents a summary of the findings of the second phase of a three phase effort undertaken to develop an on-line real-time measurement and control system utilizing Raman spectroscopy. A prototype instrument system has been constructed utilizing a Perkin Elmer 1700 Spectrometer, a diode pumped YAG laser, two three axis positioning systems, a process sample cell land a personal computer. This system has been successfully tested using industrially supplied process samples to establish its performance. Also, continued application development was undertaken during this Phase of the program using both the spontaneous Raman and Surface-enhanced Raman modes of operation. The study was performed for the US Department of Energy, Office of Industrial Technologies, whose mission is to conduct cost-shared R D for new high-risk, high-payoff industrial energy conservation technologies. Although this document contains references to individual manufacturers and their products, the opinions expressed on the products reported do not necessarily reflect the position of the Department of Energy.

  13. On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures

    Science.gov (United States)

    Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali

    1996-01-01

    A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.

  14. Design of non-contact touch screen system%非接触式触摸屏系统的设计

    Institute of Scientific and Technical Information of China (English)

    向斌宾; 蒋向东; 王继岷; 李建国

    2011-01-01

    针对目前触摸屏必须接触式控制的缺陷,提出了一种基于图像处理技术的新型触摸屏系统.该系统以微软VX-6000USB2.0摄像头为图像传感器,由PC机采集图像序列,识别和跟踪定位激光光斑,并对用户的指点控制信息做出相应反应.阐述了该系统结构及定位原理,使用基于OpenCV(open source computer vision library)的图像处理算法辅助开发其软件系统.提出一种基于边界修复的图像二次校正法,通过对训练样本的测量发现,系统拥有很好的指点精度.实验结果表明,所设计触摸屏系统能够初步实现非接触式指点的要求,为大屏幕挂壁式非接触式触摸屏系统的研究提供了有效的思路.%When the current touch screen must be contacted control,it proposes a new touch screen system based on the image processing technology.The system introduces Microsoft VX-6000 USB2.0 camera as its image sensor, gathers image sequences, identifies and positions the laser spot,and responds with users' pointing information.lt describes the architecture of the system, a software for positioning,and uses image processing algorithm based on OpenCV(open source computer vision library) to help developing its software system.lt proposes an image secondary correction method based on edge-restoration.By training samples, it finds that the system has excellent accuracy.The experimental results indicate that the system can realize the non-contact requirement and provide an effective thought for the study of non-contact large screen wall touch screen system.

  15. Simultaneous Determination of 34 Pesticide Residues in Vegetable Oil by QuEChERS-on-line Gel Permeation Chromatography-Gas Chromatography-Mass Spectrometry%QuEChERS-在线凝胶色谱-气相色谱-质谱法测定植物油中34种农药残留

    Institute of Scientific and Technical Information of China (English)

    阮华; 荣维广; 宋宁慧; 吉文亮; 刘华良; 马永建

    2014-01-01

    A method for the simultaneous determination of 34 pesticides in sunflower oil, soybean oil and corn oil was developed. The samples were extracted and purified by a modified QuEChERS method, and then the supernatant was analyzed by on-line gel permeation chromatography-gas chromatography-mass spectrometry ( GPC-GC-MS ) . The linear range was from 0 . 01 to 0 . 2 mg/L with a good correlation coefficients ( r≥0. 9913). The average recoveries of 31 pesticides (except p,p′-DDE, p,p′-DDD, p,p′-DDT. For detail, please reference to section 3 . 6 ) ranged from 70 . 3% to 115 . 4%, 69 . 5% to 112 . 6% and 70 . 2% to 116 . 1%spiked at 0. 05 μg/g and 0. 1 μg/g with the relative standard deviations (RSDs, n=6) less than 13. 3%, 13. 5% and 12. 1% in sunflower oil, soybean oil and corn oil samples, respectively. The LODs of this method ranged from 0. 0692 to 2. 28, 0. 0559 to 2. 01 and 0. 0584 to 2. 14μg/kg (S/N=3) in sunflower oil, soybean oil and corn oil samples respectively. The convenient operation and versatility of this method are suitable for the fast screening and detection of 34 pesticide residues in sunflower oil, soybean oil and corn oil.%建立了葵花油、大豆油和玉米油中34种中高毒农药的快速筛查方法。样品采用改进的QuEChERS方法进行提取净化,提取液采用在线GPC-GC-MS检测。结果表明,34种农药在0.01~0.2 mg/L范围内具有良好的线性关系,相关系数为0.9913~0.9997。除p,p′-DDE, p,p′-DDD, p,p′-DDT外的31种农药在葵花油、大豆油和玉米油中的检出限分别为0.0692~2.28μg/kg,0.0559~2.01μg/kg,0.0584~2.14μg/kg;在0.05和0.1μg/g添加水平的平均回收率分别为70.3%~115.4%,69.5%~112.6%,70.2%~116.1%;相对标准偏差(RSD, n=6)分别为2.9%~13.3%,3.9%~13.5%,4.2%~12.1%。本方法具有操作便捷、快速等特点,适用于葵花油、大豆油和玉米油中34种农药残留的快速筛查与检测。

  16. Influence of visualization on consumption during on-line shopping

    OpenAIRE

    Hictaler, Urška

    2013-01-01

    This diploma work studies the influence of visualization on consumption during on-line shopping. The first part of the thesis starts with key areas of visualization, consumption and on-line shopping. Visualization, areas of use, human perception and ways of product presentation in on-line shops are defined discussed first. Next, consumption, consumers and factors that influence their decisions and satisfaction are defined. The last topic in the first part of the thesis discusses on-line shopp...

  17. On-Line Learning: One Way to Bring People Together

    Science.gov (United States)

    Goff-Kfouri, Carol Ann

    2006-01-01

    The purpose of this study was to demonstrate the benefits of on-line learning for adult learners and to further demystify three common misconceptions concerning on-line learning: students certainly do receive support from their on-line professors, the professor is pro-active rather than passive, and students may be more motivated to learn than in…

  18. A Distributed System for Learning Programming On-Line

    Science.gov (United States)

    Verdu, Elena; Regueras, Luisa M.; Verdu, Maria J.; Leal, Jose P.; de Castro, Juan P.; Queiros, Ricardo

    2012-01-01

    Several Web-based on-line judges or on-line programming trainers have been developed in order to allow students to train their programming skills. However, their pedagogical functionalities in the learning of programming have not been clearly defined. EduJudge is a project which aims to integrate the "UVA On-line Judge", an existing…

  19. On-Line Impact Load Identification

    Directory of Open Access Journals (Sweden)

    Krzysztof Sekuła

    2013-01-01

    Full Text Available The so-called Adaptive Impact Absorption (AIA is a research area of safety engineering devoted to problems of shock absorption in various unpredictable scenarios of collisions. It makes use of smart technologies (systems equipped with sensors, controllable dissipaters and specialised tools for signal processing. Examples of engineering applications for AIA systems are protective road barriers, automotive bumpers or adaptive landing gears. One of the most challenging problems for AIA systems is on-line identification of impact loads, which is crucial for introducing the optimum real-time strategy of adaptive impact absorption. This paper presents the concept of an impactometer and develops the methodology able to perform real-time impact load identification. Considered dynamic excitation is generated by a mass M1 impacting with initial velocity V0. An analytical formulation of the problem, supported with numerical simulations and experimental verifications is presented. Two identification algorithms based on measured response of the impacted structure are proposed and discussed. Finally, a concept of the AIA device utilizing the idea of impactometer is briefly presented.

  20. SOL: INNOVACIÓN ON-LINE

    Directory of Open Access Journals (Sweden)

    Rubén Faúndez

    2007-11-01

    Full Text Available Las aplicaciones de simulación tienden a ser cada vez más cercanas a usuarios e industrias. Sin embargo, muchas de ellas no poseen ni la capacidad ni el conocimiento como para desarrollar internamente sus modelos de simulación. Por este motivo, y como una forma de apoyar la toma de decisiones basándose en modelos de simulación, se presenta la plataforma SOL (Simulación On Line. La metodología completa de trabajo, así como la interacción entre SOL, Empresa y Asesor, son presentadas. Su base de datos, los niveles de usuarios, sus funcionalidades, y la creación automatizada de información grafica y visual, también son explicadas. En el caso de aplicación, el uso de SOL para apoyar la toma de decisiones en una operación de movimiento de material, permite a los tomadores de decisión acceder a análisis robustos basados en información extraída de los modelos de simulación. SOL, al almacenar información, funcionar vía web, generar análisis automatizados y crear visualizaciones, permite cumplir con las expectativas de los usuarios respecto a una solución integral en simulación.

  1. Time-resolved non-contact fluorescence diffuse optical tomography measurements with ultra-fast time-correlated single photon counting avalanche photodiodes

    Science.gov (United States)

    Bérubé-Lauzière, Yves; Robichaud, Vincent; Lapointe, Éric

    2007-07-01

    The design and fabrication of time-correlated single photon counting (TCSPC) avalanche photodiodes (APDs) and associated quenching circuits have made significant progresses in recent years. APDs with temporal resolutions comparable to microchannel plate photomultiplier tubes (MCP-PMTs) are now available. MCP-PMTs were until these progresses the best TCSPC detectors with timing resolutions down to 30ps. APDs can now achieve these resolutions at a fraction of the cost. Work is under way to make the manufacturing of TCSPC APDs compatible with standard electronics fabrication practices. This should allow to further reduce their cost and render them easier to integrate in complex multi-channel TCSPC electronics, as needed in diffuse optical tomography (DOT) systems. Even if their sensitive area is much smaller than that of the ubiquitous PMT used in TCSPC, we show that with appropriate selection of optical components, TCSPC APDs can be used in time-domain DOT. To support this, we present experimental data and calculations clearly demonstrating that comparable measurements can be obtained with APDs and PMTs. We are, to our knowledge, the first group using APDs in TD DOT, in particular in non-contact TD fluorescence DOT.

  2. Exploring Alternative Non-contact temperature measurements for 99Mo production facility NorthStar FY14 Activity 5, Deliverable 2

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Michael Andrew [Los Alamos National Laboratory

    2015-03-04

    We have conducted an experiment to explore an alternative non-contact method of measuring the Inconel target window temperature. This experiment involves using a standard color camera to observe the visible light emitted from the Inconel target window at high heat in order to estimate the window temperature. The safety limit to prevent target window failure is 700 °C and therefore we need a reliable and accurate method of measuring temperature especially in the range of 600 °C to 700 °C if it is to replace the IR camera. In this temperature range the window will emit a significant amount of black body radiation within the visible range and hence the idea of using a color camera. The goal is to see if the shift in window color (determined by the RBG pixel values of the camera) as the target window is heated to 700 °C can be calibrated to the temperature.The reasons for exploring this as an alternative to an IR are camera are: significant cost reduction and potentially less complicated to calibrate.

  3. Quantitative assessment of hemodynamic and structural characteristics of in vivo brain tissue using total diffuse reflectance spectrum measured in a non-contact fashion.

    Science.gov (United States)

    Song, Yinchen; Garcia, Sarahy; Frometa, Yisel; Ramella-Roman, Jessica C; Soltani, Mohammad; Almadi, Mohamed; Riera, Jorge J; Lin, Wei-Chiang

    2017-01-01

    Here we present a new methodology that investigates the intrinsic structural and hemodynamic characteristics of in vivo brain tissue, in a non-contact fashion, and can be easily incorporated in an intra-operative environment. Within this methodology, relative total diffuse reflectance spectra (RTD(λ)) were acquired from targets using a hybrid spectroscopy imaging system. A spectral interpretation algorithm was subsequently applied to RTD(λ) to retrieve optical properties related to the compositional and structural characteristics of each target. Estimation errors of the proposed methodology were computationally evaluated using a Monte Carlo simulation model for photon migration under various conditions. It was discovered that this new methodology could handle moderate noise and achieve very high accuracy, but only if the refractive index of the target is known. The accuracy of the technique was also validated using a series of tissue phantom studies, and consistent and accurate estimates of μs'(λ)/μa(λ) were obtained from all the phantoms tested. Finally, a small-scale animal study was conducted to demonstrate the clinical utility of the reported method, wherein a forepaw stimulation model was utilized to induce transient hemodynamic responses in somatosensory cortices. With this approach, significant stimulation-related changes (p < 0.001) in cortical hemodynamic and structural characteristics were successfully measured.

  4. Atomic layer deposition of HfO{sub 2} onto SiO{sub 2} substrates investigated in-situ by non-contact UHV/AFM

    Energy Technology Data Exchange (ETDEWEB)

    Kolanek, Krzysztof; Karavaev, Konstantin; Tallarida, Massimo; Schmeisser, Dieter [Brandenburgische Technische Universitaet, LS Angewandte Physik-Sensorik, Cottbus (Germany)

    2010-07-01

    We investigated in-situ the atomic layer deposition (ALD) of HfO{sub 2} onto SiO{sub 2} substrates with ultra high vacuum (UHV) non-contact atomic force microscope (NC-AFM). The ALD process was started after detailed analysis of the initial Si(001)/SiO{sub 2} substrate. The ALD cycles, made by using tetrakis-di-methyl-amido-Hf (TDMAHf) and water as precursors, were performed on the SiO{sub 2} substrate maintained at 230 C. We studied the relation between the film growth and the root mean square surface roughness, surface skewness, kurtosis, fractal dimension and correlation length. In the initial stages of the ALD process with our analysis of the surface height histograms we were capable of determination: HfO{sub 2} layer thickness, surface coverage and surface roughness of a substrate and deposited material. Observation of the surface height histograms evolution during deposition allowed us to verify conformal and effective ALD growth on SiO{sub 2} substrate. With this detailed analysis of the surface topography we confirmed the completion of the first HfO{sub 2} layer after four ALD cycles.

  5. Non-contact low-frequency ultrasound therapy compared with UK standard of care for venous leg ulcers: a single-centre, assessor-blinded, randomised controlled trial.

    Science.gov (United States)

    White, Judith; Ivins, Nicola; Wilkes, Antony; Carolan-Rees, Grace; Harding, Keith G

    2016-10-01

    'Hard-to-heal' wounds are those which fail to heal with standard therapy in an orderly and timely manner and may warrant the use of advanced treatments such as non-contact low-frequency ultrasound (NLFU) therapy. This evaluator-blinded, single-site, randomised controlled trial, compared NLFU in addition to UK standard of care [SOC: (NLFU + SOC)] three times a week, with SOC alone at least once a week. Patients with chronic venous leg ulcers were eligible to participate. All 36 randomised patients completed treatment (17 NLFU + SOC, 19 SOC), and baseline demographics were comparable between groups. NLFU + SOC patients showed a -47% (SD: 38%) change in wound area; SOC, -39% (38%) change; and difference, -7·4% [95% confidence intervals (CIs) -33·4-18·6; P = 0·565]. The median number of infections per patient was two in both arms of the study and change in quality of life (QoL) scores was not significant (P = 0·490). NLFU + SOC patients reported a substantial mean (SD) reduction in pain score of -14·4 (14·9) points, SOC patients' pain scores reduced by -5·3 (14·8); the difference was -9·1 (P = 0·078). Results demonstrated the importance of high-quality wound care. Outcome measures favoured NLFU + SOC over SOC, but the differences were not statistically significant. A larger sample size and longer follow-up may reveal NLFU-related improvements not identified in this study.

  6. ARM-based Non-contact Safe Driving Warning System%基于ARM的非接触式安全驾驶预警系统

    Institute of Scientific and Technical Information of China (English)

    严海玉; 杨会成; 宋一博; 张慧; 漏鸣杰; 韩康

    2014-01-01

    The present system uses a non-contact method, using CMOS camera OV3640 module to capture images, uses ARM11 development board and Linux operating systems as the development platform, combines with the open source computer vision library OpenCV to accelerate the operation speed and reduce the cost, uses QT writing code to design user interface GUI for user-friendly real-time operation. The system achieves the detection and warning of fatigue conditions.%本系统采用非接触法,使用CMOS摄像头OV3640模块采集图像,以ARM11开发板和Linux操作系统为开发平台,结合开源计算机视觉库OpenCV来加快运行速度和降低使用成本,采用QT编写代码设计了用户界面GUI,方便用户实时操作。实现了疲劳状况的检测和预警。

  7. The impact of single nucleotide polymorphisms on patterns of non-contact musculoskeletal soft tissue injuries in a football player population according to ethnicity.

    Science.gov (United States)

    Pruna, Ricard; Ribas, Jordi; Montoro, Jose Bruno; Artells, Rosa

    2015-02-02

    The prevention, diagnosis, and management of non-contact musculoskeletal soft tissue injuries (NCMSTIs) related to participation in sports are key components of sport and exercise medicine. Epidemiological data have demonstrated the existence of interindividual differences in the severity of NCMSTIs, indicating that these injuries occur as a consequence of both extrinsic and intrinsic factors, including genetic variations. We have collected data on NCMSTIs suffered by 73 elite players of White, black African and Hispanic ethnicity of European football over the course of three consecutive seasons. We have also examined eight single nucleotide polymorphisms (SNPs) in genes related to tissue recovery and tissue repair in blood drawn from the players and correlated our findings with type and severity of injuries in each ethnic group. The frequency of the SNPs varied among the three ethnic sub-groups (p<0.0001). Among Whites, a significant relationship was observed between ligament injuries and ELN (p=0.001) and between tendinous injuries and ELN (p=0.05) and IGF2 (p=0.05). Among Hispanics, there was a significant relation between muscle injuries and ELN (p=0.032) and IGF2 (p=0.016). Interracial genotypic differences may be important in the study of NCMSTIs. A genetic profile based on SNPs may be useful tool to describe each individual's injuribility risk and provide specific treatment and preventive care for football players. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  8. Non-contact atomic force microscopy study of hydroxyl groups on the spinel MgAl2O4(100) surface.

    Science.gov (United States)

    Federici Canova, F; Foster, A S; Rasmussen, M K; Meinander, K; Besenbacher, F; Lauritsen, J V

    2012-08-17

    Atom-resolved non-contact atomic force microscopy (NC-AFM) studies of the magnesium aluminate (MgAl(2)O(4)) surface have revealed that, contrary to expectations, the (100) surface is terminated by an aluminum and oxygen layer. Theoretical studies have suggested that hydrogen plays a strong role in stabilizing this surface through the formation of surface hydroxyl groups, but the previous studies did not discuss in depth the possible H configurations, the diffusion behaviour of hydrogen atoms and how the signature of adsorbed H is reflected in atom-resolved NC-AFM images. In this work, we combine first principles calculations with simulated and experimental NC-AFM images to investigate the role of hydrogen on the MgAl(2)O(4)(100) surface. By means of surface energy calculations based on density functional theory, we show that the presence of hydrogen adsorbed on the surface as hydroxyl groups is strongly predicted by surface stability considerations at all relevant partial pressures of H(2) and O(2). We then address the question of how such adsorbed hydrogen atoms are reflected in simulated NC-AFM images for the most stable surface hydroxyl groups, and compare with experimental atom-resolved NC-AFM data. In the appendices we provide details of the methods used to simulate NC-AFM using first principles methods and a virtual AFM.

  9. The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

    Directory of Open Access Journals (Sweden)

    Christian Wagner

    2014-02-01

    Full Text Available Scanning probe microscopy (SPM plays an important role in the investigation of molecular adsorption. The possibility to probe the molecule–surface interaction while tuning its strength through SPM tip-induced single-molecule manipulation has particularly promising potential to yield new insights. We recently reported experiments, in which 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA molecules were lifted with a qPlus-sensor and analyzed these experiments by using force-field simulations. Irrespective of the good agreement between the experiment and those simulations, systematic inconsistencies remained that we attribute to effects omitted from the initial model. Here we develop a more realistic simulation of single-molecule manipulation by non-contact AFM that includes the atomic surface corrugation, the tip elasticity, and the tip oscillation amplitude. In short, we simulate a full tip oscillation cycle at each step of the manipulation process and calculate the frequency shift by solving the equation of motion of the tip. The new model correctly reproduces previously unexplained key features of the experiment, and facilitates a better understanding of the mechanics of single-molecular junctions. Our simulations reveal that the surface corrugation adds a positive frequency shift to the measurement that generates an apparent repulsive force. Furthermore, we demonstrate that the scatter observed in the experimental data points is related to the sliding of the molecule across the surface.

  10. Non-contact radiofrequency-induced reduction of subcutaneous abdominal fat correlates with initial cardiovascular autonomic balance and fat tissue hormones: safety analysis.

    Science.gov (United States)

    Pumprla, Jiri; Howorka, Kinga; Kolackova, Zuzana; Sovova, Eliska

    2015-01-01

    The non-invasive reduction of subcutaneous abdominal fat became popular in the last decade. Radiofrequency (RF), non-contact, selective-field device Vanquish® has been developed to selectively induce deep fat tissue heating to reduce waist circumference. Our analysis evaluates immediate and sustained effects of this treatment on cardiovascular autonomic function and on selected metabolic parameters. Study design/ patients and methods: A retrospective proof-of-concept analysis of RF treatment effects was conducted in 20 individuals with metabolic syndrome, to reduce the subcutaneous abdominal fat. Four 30-minutes treatment sessions (manufacturer´s standard protocol) were performed in 1-week intervals. Vital signs, ECG, lab screening, body composition, subcutaneous fat thickness and spectral analysis of heart rate variability (HRV) have been examined before, after the 1 (st) and 4 (th) treatment, and at follow-up visits 1 month and 3 months after the treatment. The RF treatment led to a significant reduction of abdominal circumference after the 4 (th) session (p0.59, pfat. While the treatment increases the immediate sympathetic response of the body to deep tissue heating, no sustained change in autonomic function could be recorded at 1 month follow-up. The observed correlation between initial VLF spectral power and waist circumference reduction at follow-up, as well as the association of initial adiponectin values and immediate autonomic response to the treatment might be instrumental for decisions on body contouring strategies.

  11. STUDY OF NON-CONTACT MEASUREMENT OF FREE-FORM SURFACES%自由曲面非接解测量技术的研究

    Institute of Scientific and Technical Information of China (English)

    徐玉春; 张国雄; 解则晓; 冯国馨; 王春海

    2001-01-01

    提出了一种基于坐标测量机、测头回转体和激光三角法测头的非接触三维测量系统,并介绍了测量系统的工作原理.同时给出了采用标准球对测量系统进行标定的方法,建立了测量系统的数学模型,还对白纸样板曲面进行了实际测量.%A non-contact three-dimensional measurement method is presented in this paper.This system consists of a laser triangulation probe,a probe head and a coordinate measuring machine (CMM).The measurement principle of the system is discussed,and a system calibration method employing a reference ball is proposed.The geometric model involving four frames is established to calculate the data points based on the reading of the laser probe and position information from the CMM.A measuring experiment for gesso free-form surface using this system is carried out.

  12. Novel method for rapid in-situ hybridization of HER2 using non-contact alternating-current electric-field mixing

    Science.gov (United States)

    Saito, Yoshitaro; Imai, Kazuhiro; Nakamura, Ryuta; Nanjo, Hiroshi; Terata, Kaori; Konno, Hayato; Akagami, Yoichi; Minamiya, Yoshihiro

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2)-targeted agents are an effective approach to treating HER2-positive breast cancer patients. However, the lack of survival benefit in HER2-negative patients as well as the toxic effects and high cost of the drugs highlight the need for accurate and prompt assessment of HER2 status. Our aim was to evaluate the clinical utility of a novel rapid dual in-situ hybridization (RISH) method developed to facilitate hybridization. The method takes advantage of the non-contact mixing effect of an alternating current (AC) electric field. One hundred sixty-three specimens were used from patients diagnosed with primary breast cancers identified immunohistochemically as HER2 0/1(+), (2+) or (3+). The specimens were all tested using conventional dual in-situ hybridization (DISH), DISH with an automated slide stainer, and RISH. With RISH the HER2 test was completed within 6 h, as compared to 20–22 h needed for the standard protocol. Although RISH produced results more promptly using smaller amounts of labeled antibody, the staining and accuracy of HER2 status evaluation with RISH was equal to or greater than with DISH. These results suggest RISH could be used as a clinical tool to promptly determine HER2 status. PMID:27443187

  13. A comprehensive comparative study of Bandwidth enhancement of an antenna by non contacting feed lines with Rectangular Microstrip Patch (RMP using superstrate at ku band

    Directory of Open Access Journals (Sweden)

    POORNANAND DUBEY

    2012-04-01

    Full Text Available So far as this paper is concerned, this paper presents a comparative study of a rectangular Microstrip patch antenna at Gigahertz (GHz frequency using non contacting microstrip feed lines of length 14 to 14.9 mm (we didn’t extend the feed line up to 15mm length as in this case it would start contacting with the patch with superstrate. This means we created capacitive coupling between patch and feed line by varying the length of feed line up to which it doesn’t come into contact with the patch. The results presented here are obtained usingAnsoft High Frequency Structure Simulator (HFSS 11.0 software which is based on full wave finite element method. As a matter of fact, here five different feed line lengths antennas outcomes are shown and their comparative results are also shown in the tabular form. In this study a superstrate of thickness 5mm is also introduced to get the more precise results. Here it is very important to mention that the best performance of antenna i.e., below -10dB that we achieved at the feed line length of 14.9 mm i.e. spacing between the feed line and patch is 0.1 mm and we got bandwidth of 41.5% and resonance frequency of 17.8 GHz at solution frequency of 17.8 GHz.

  14. 非接触法自动测量薄膜厚度%Measurement the Thickness of a Thin Film by Automatic and Non-contact

    Institute of Scientific and Technical Information of China (English)

    彭真真; 赵硕浛; 刘月林; 程匹克; 陈程

    2011-01-01

    根据白光等厚干涉原理,基于单片机改造的迈氏干涉仪用于自动测量透明薄膜厚度,采用非接触性测量法。当迈克尔逊干涉仪静镜形成的虚像与动镜相交所成的夹角很小时,在光屏上看到彩色干涉条纹,插入薄膜后,光程差改变,彩纹消失。步进电机带动微调手轮转动,当彩纹再次出现,即可得出透明薄膜厚度。%According to the theory of equal thickness interference of white light,we have used the Michelson interferrometer reformed based on MCU to automatically measure the thickness of a transparent thin film,which is a non-contact method.When the angle between the virtual image of the static mirror and the dynamic mirror of the Michelson interferometer is very small,the colored interference fringes will appear.After inserting a thin film,the interference fringes disappear because the optical path difference changed.With rotating of the fine-tuning hand-wheel driven by stepping motor,the thickness of the thin film is measured when the interference fringes appears again.

  15. Detection of segmentation cracks in top coat of thermal barrier coatings during plasma spraying by non-contact acoustic emission method.

    Science.gov (United States)

    Ito, Kaita; Kuriki, Hitoshi; Araki, Hiroshi; Kuroda, Seiji; Enoki, Manabu

    2014-06-01

    Numerous cracks can be observed in the top coat of thermal barrier coatings (TBCs) deposited by the atmospheric plasma spraying (APS) method. These cracks can be classified into vertical and horizontal ones and they have opposite impact on the properties of TBCs. Vertical cracks reduce the residual stress in the top coat and provide strain tolerance. On the contrary, horizontal cracks trigger delamination of the top coat. However, monitoring methods of cracks generation during APS are rare even though they are strongly desired. Therefore, an in situ, non-contact and non-destructive evaluation method for this objective was developed in this study with the laser acoustic emission (AE) technique by using laser interferometers as a sensor. More AE events could be detected by introducing an improved noise reduction filter and AE event detection procedures with multiple thresholds. Generation of vertical cracks was successfully separated from horizontal cracks by a newly introduced scanning pattern of a plasma torch. Thus, generation of vertical cracks was detected with certainty by this monitoring method because AE events were detected only during spraying and a positive correlation was observed between the development degree of vertical cracks and the total AE energy in one experiment.

  16. Quantitative assessment of hemodynamic and structural characteristics of in vivo brain tissue using total diffuse reflectance spectrum measured in a non-contact fashion

    Science.gov (United States)

    Song, Yinchen; Garcia, Sarahy; Frometa, Yisel; Ramella-Roman, Jessica C.; Soltani, Mohammad; Almadi, Mohamed; Riera, Jorge J.; Lin, Wei-Chiang

    2016-01-01

    Here we present a new methodology that investigates the intrinsic structural and hemodynamic characteristics of in vivo brain tissue, in a non-contact fashion, and can be easily incorporated in an intra-operative environment. Within this methodology, relative total diffuse reflectance spectra (RTD(λ)) were acquired from targets using a hybrid spectroscopy imaging system. A spectral interpretation algorithm was subsequently applied to RTD(λ) to retrieve optical properties related to the compositional and structural characteristics of each target. Estimation errors of the proposed methodology were computationally evaluated using a Monte Carlo simulation model for photon migration under various conditions. It was discovered that this new methodology could handle moderate noise and achieve very high accuracy, but only if the refractive index of the target is known. The accuracy of the technique was also validated using a series of tissue phantom studies, and consistent and accurate estimates of μs’(λ)/μa(λ) were obtained from all the phantoms tested. Finally, a small-scale animal study was conducted to demonstrate the clinical utility of the reported method, wherein a forepaw stimulation model was utilized to induce transient hemodynamic responses in somatosensory cortices. With this approach, significant stimulation-related changes (p < 0.001) in cortical hemodynamic and structural characteristics were successfully measured. PMID:28101403

  17. A non-contact technique for evaluation of elastic structures at large stand-off distances: applications to classification of fluids in steel vessels.

    Science.gov (United States)

    Kaduchak, G; Sinha, D N; Lizon, D C; Kelecher, M J

    2000-01-01

    A novel technique for non-contact evaluation of structures in air at large stand-off distances (on the order of several meters) has been developed. It utilizes a recently constructed air-coupled, parametric acoustic array to excite the resonance vibrations of elastic, fluid-filled vessels. The parametric array is advantageous for NDE applications in that it is capable of producing a much narrower beamwidth and broader bandwidth than typical devices that operate under linear acoustic principles. In the present experiments, the array operates at a carrier frequency of 217 kHz, and the sound field several meters from the source is described spectrally by the envelope of the drive voltage. An operating bandwidth of more than 25 kHz at a center frequency of 15 kHz is demonstrated. For the present application, the array is used to excite vibrations of fluid-filled, steel containers at stand-off distances of greater than 3 m. The vibratory response of a container is detected with a laser vibrometer in a monostatic configuration with the acoustic source. By analyzing the change in the response of the lowest order, antisymmetric Lamb wave as the interior fluid loading conditions of the container are changed, the fluid contained within the steel vessel is classified.

  18. Conformational studies of self-organized regioregular poly(3-dodecylthiophene)s using non-contact atomic force microscopy in ultra high vacuum condition

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shukichi [Kansai Advanced Research Center, National Institute of Information and Communications Technology (KARC-NiCT), 588-2, Iwaoka, Nishi-ku, Kobe 651-2492 (Japan)]. E-mail: tanakas@nict.go.jp; Grevin, Benjamin [Laboratoire de Physique des Metaux Synthetiques UMR5819-SprAM, DRFMC CEA-Grenoble, 17 rue des Martyrs 38054 Grenoble Cedex 9 (France); Rannou, Patrice [Laboratoire de Physique des Metaux Synthetiques UMR5819-SprAM, DRFMC CEA-Grenoble, 17 rue des Martyrs 38054 Grenoble Cedex 9 (France); Suzuki, Hitoshi [Kansai Advanced Research Center, National Institute of Information and Communications Technology (KARC-NiCT), 588-2, Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Mashiko, Shinro [Kansai Advanced Research Center, National Institute of Information and Communications Technology (KARC-NiCT), 588-2, Iwaoka, Nishi-ku, Kobe 651-2492 (Japan)

    2006-03-21

    Conformations of one of the variations of {pi}-conjugated poly-alkylthiophene, poly(3-dodecylthiophene)s (P3DDT)s on the surface in ultra high vacuum (UHV) were investigated by non-contact atomic force microscopy (NC-AFM) operated by frequency-modulation mode (FM-mode). From individual molecules to several multi-layered ones, polymer chains on the surface were clearly resolved on conducting highly oriented pyrolytic graphite (HOPG) substrates and insulating mica ones, respectively. Solvent evaporation was found to have two stages, which influenced the diffusion, ordering, and adhesion processes of polymer chains on the substrate. To keep the ordered conformations of deposited polymer chains when they are transferred from ambient condition to UHV, these evaporation processes should be carefully considered. The initial conformation of polymers on the substrate was found to depend strongly on the lattice matching conditions and interactions between polymers and substrates. Formations of stripe-like structures of P3DDT polymers were found on the mica substrates, which is promising for device application.

  19. Use of a laser displacement sensor with a non-contact electromagnetic vibration device for assessment of simulated periodontal tissue conditions.

    Science.gov (United States)

    Kobayashi, Hiroshi; Yamaoka, Masaru; Hayashi, Makoto; Ogiso, Bunnai

    2016-01-01

    A non-contact electromagnetic vibration device (NEVD) was previously developed to monitor the condition of periodontal tissues by assessing mechanical parameters. This system requires placement of an accelerometer on the target tooth, to detect vibration. Using experimental tooth models, we evaluated the performance of an NEVD system with a laser displacement sensor (LDS), which does not need an accelerometer. Simulated teeth (polyacetal rods) were submerged at various depths in simulated bone (polyurethane or polyurethane foam) containing simulated periodontal ligament (tissue conditioner). Then, mechanical parameters (resonant frequency, elastic modulus, and viscosity coefficient) were assessed using the NEVD with the following detection methods: Group 1, measurement with an accelerometer; Group 2, measurement with an LDS in the presence of the accelerometer; and Group 3, measurement with an LDS in the absence of the accelerometer. Statistical analyses were performed using nonparametric methods (n = 5) (P < 0.05). The three mechanical parameters significantly increased with increasing depth. In addition, the mechanical parameters significantly differed between the polyurethane and polyurethane foam models. Although Groups 1 and 2 did not significantly differ, most all mechanical parameters in Group 3 were significantly larger and more distinguishable than those in Groups 1 and 2. The LDS was more accurate in measuring mechanical parameters and better able to differentiate periodontal tissue conditions. (J Oral Sci 58, 93-99, 2016).

  20. On-Line Coolant Chemistry Analysis

    Energy Technology Data Exchange (ETDEWEB)

    LM Bachman

    2006-07-19

    Impurities in the gas coolant of the space nuclear power plant (SNPP) can provide valuable indications of problems in the reactor and an overall view of system health. By monitoring the types and amounts of these impurities, much can be implied regarding the status of the reactor plant. However, a preliminary understanding of the expected impurities is important before evaluating prospective detection and monitoring systems. Currently, a spectroscopy system is judged to hold the greatest promise for monitoring the impurities of interest in the coolant because it minimizes the number of entry and exit points to the plant and provides the ability to detect impurities down to the 1 ppm level.

  1. 一种非接触式红外通讯电路设计与实现%Design and Research of Non -Contact Infrared Communication Circuit

    Institute of Scientific and Technical Information of China (English)

    蒋军

    2016-01-01

    为解决水下设备连接器采用分离式水密插座在长期插拔使用过程中会出现接触不良以及在水下使用过程中会出现金属电化学腐蚀的问题,采用一种非接触式红外通讯电路设计方式。通讯电路装置由两个电路组件构成:对接电路插头和对接电路插座,它们分别密闭在一种特殊的透光材料中。数据通讯采用符合 IrDA1.2低功耗物理层规范的红外收发管实现,控制芯片采用英飞凌16位单片 XC164CM作为其处理器,信息触发单元由一个电磁铁和干簧管组成,电源部分采用带控制端的电源模块。硬件电路设计完成非接触式红外通讯系统,软件程序设计保证数据通讯正常运行。实验测试结果证明,在混浊水中也能满足使用要求,具有一定的实用性和应用价值。%In order to solve the problems,bad contact during the underwater equipment connector using separate water tight socket and metal electrochemical corrosion under water,the non -contact infra-red communication circuit is designed.It is composed of docking circuit plug and docking circuit socket, which confined in light -passing material respectively.The data communication is performed by infrared transceiver tube which conforming IrDA1.2 low power physical layer specifications.The control chip uses Infineon 16 bit single XC164CM as CPU,information trigger unit is composed of a electric magnet and reed switch and the power unit uses the control end of power module.The hardware circuit of design com-pletes non -contact infrared communication system,and the software program of design guarantees data communication normally.The test results show that it also meets the design requirements in turbid water and has a certain practicality and application value.

  2. 非接触动态实时视线跟踪技术%Non-Contact Dynamic Real-Time Eye Tracking Technology

    Institute of Scientific and Technical Information of China (English)

    王向军; 蔡方方; 刘峰; 李洋

    2015-01-01

    The eye tracking is the key technology of intelligent eye movement operating system, which is also the basis that enables eye movement operating system to be the advanced human-machine interactive applications. This paper gives a more comprehensive vision of the development of non-contact eye tracking technology, and introduces the non-contact eye gaze tracking technology that enables to achieve real-time dynamic eye tracking or gaze point estimation, including 2D eye tracking methods, 3D eye tracking methods and model-based 3D methods. Comparing and analyzing new development of the existing methods mentioned above, this paper illustrates the scientific prob-lems that eye tracking technology currently faces, and presents a novel head-mounted free space eye tracking method based on binocular stereo vision. The conclusion is that eye tracking technology should meet intelligent human-machine interactive approach based on eye movement operating system expands to free space. The eye tracking technology develops towards high-precision, easy to configure and wider range of sight in free space measurement.%视线跟踪技术是智能眼动操作系统的关键技术,是实现先进眼动操作系统作为高级人机交互应用的基础和前提。较为完整地阐述了非接触式视线跟踪技术的发展历程,并详细介绍了现有的实现视线或注视点实时动态跟踪测量的非接触视线跟踪技术,包括2D视线跟踪方法、3D视线跟踪方法和基于3D模型的视线跟踪方法。通过分析和比较现有的三类方法的最新进展,介绍了视线跟踪技术目前面临的科学问题,提出了基于双目立体视觉的头戴式自由空间视线跟踪测量方法,指出了视线跟踪技术应满足基于眼动操作系统的智能人机交互方法向自由空间操作发展的需求,朝着高精度、易配置、更大视线活动范围的自由空间视线测量方向发展。

  3. The natural history of corneal topographic progression of keratoconus after age 30 years in non-contact lens wearers.

    Science.gov (United States)

    Gokul, Akilesh; Patel, Dipika V; Watters, Grant A; McGhee, Charles N J

    2017-06-01

    To determine if significant progression of disease occurs in older, non-contact lens wearing, subjects with keratoconus and to identify potential predictive factors. Clinical and computerised corneal topography records of subjects with keratoconus attending a specialist optometry practice were retrospectively analysed to identify those aged ≥30 years, with ≥2 consultations ≥12 months apart, no contact lens wear and no corneal scarring, surgery or corneal hydrops. Topographic parameters assessed included: maximum keratometry (Kmax), steep keratometry (Ksteep), flat keratometry (Kflat), inferior-superior (I-S) ratio and the surface asymmetry and regularity (surface asymmetry index and surface regularity index) indices. Of the 449 subjects with keratoconus assessed, 43 eyes of 27 patients (6.01%) met inclusion criteria, with median age 38.45 (12.86) years at baseline and median follow-up 4.36 (8.68) years. There was a significant increase in Kmax (0.30 (1.21) D), Ksteep (0.27 (0.90) D), Kflat (0.34 (1.12) D) and I-S (0.26 (0.82) D) between baseline and final review, pkeratoconus may continue to progress beyond age 30. Older subjects with keratoconus should be monitored for progression, particularly with respect to possible corneal collagen cross-linking or astigmatic correction in cataract surgery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Microscopic study of stress effects around micro-crack tips using a non-contact stress-induced light scattering method

    Science.gov (United States)

    Sakata, Y.; Terasaki, N.; Nonaka, K.

    2016-09-01

    Fine-polishing techniques may cause micro-cracks under glass substrate surfaces. According to highly requirement from production field, a thermal stress-induced light scattering method (T-SILSM) was successfully developed for a non-contact inspection to detect the micro-cracks through changing in the intensity of light scattering accompanied by applying thermal stress at the responding position of the micro-cracks. In this study, in order to investigate that the origin of the measuring principle in microscopic order, a newly developed microscopic T-SILSM system with a rotation stage and a numerical simulation analysis were used to investigate the following; (1) the scattering points and surface in the micro-crack, (2) the stress concentration points in the micro-crack, and (3) the relationship between these information and the point in which intensity of the light scattering changes in the micro-crack through T-SILSM. Light scattering was observed at the responding position of the micro-crack with selectivity in the direction of laser irradiation even in the microscopic order. In addition, the position of the changes in the light scattering in was at both tips in the micro-crack, and it was consistent with the stress concentration point in the micro-crack. Therefore, it can be concluded that the intentional change in light scattering though T-SILSM is originated from light scattering at micro-crack and also from stress concentration and consecutive change in refractive index at both tips in micro-crack.

  5. Derivation, characterization and differentiation of a new human embryonic stem cell line from a Chinese hatched blastocyst assisted by a non-contact laser system.

    Science.gov (United States)

    Wu, Rongrong; Xu, Chenming; Jin, Fan; Tan, Zhou; Gu, Bin; Chen, Liangbiao; Yao, Xing; Zhang, Ming

    2010-08-01

    Currently worldwide attention has focused on the derivation of human embryonic stem cells (hESCs) for future therapeutic medicine. However, the majority of existing hESCs are directly or indirectly exposed to non-human materials during their derivation and/or propagation, which greatly restrict their therapeutic potential. Besides the efforts to improve culture systems, the derivation procedure, especially blastocyst manipulation, needs to be optimized. We adopted a non-contact laser-assisted hatching system in combination with sequential culture process to obtain hatched blastocysts as materials for hESC derivation, and derived a hESC line ZJUhES-1 of a Chinese population without exposure to any non-human materials during blastocyst manipulation. ZJUhES-1 satisfies the criteria of pluripotent hESCs: typically morphological characteristics; the expression of alkaline phosphatase, human telomerase reverse transcriptase and multiple hESC-specific markers including SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, OCT-4, Nanog, Rex-1, Sox-2, UTF-1, Connexins 43 and 45, TERF-1 and TERF-2, Glut-1, BCRP-1/ABCG-2, GDF3, LIN28, FGF4, Thy-1, Cripto1/TDGF1, AC133 as well as SMAD1/2/3/5; extended proliferative capacity; maintenance of a stable male karyotype after long-term cultivation; and robust multiple-lineage developmental potentials both in vivo and in vitro. Moreover, ZJUhES-1 has distinct identity revealed from DNA fingerprinting. Our xeno-free blastocyst manipulation procedure may promote the progression toward clinical-grade hESC derivation.

  6. Use of 18S rRNA gene-based PCR assay for diagnosis of acanthamoeba keratitis in non-contact lens wearers in India.

    Science.gov (United States)

    Pasricha, Gunisha; Sharma, Savitri; Garg, Prashant; Aggarwal, Ramesh K

    2003-07-01

    Identification of Acanthamoeba cysts and trophozoites in ocular tissues requires considerable expertise and is often time-consuming. An 18S rRNA gene-based PCR test, highly specific for the genus Acanthamoeba, has recently been reported in the molecular diagnosis of Acanthamoeba keratitis. This PCR assay was compared with conventional microbiological tests for the diagnosis of Acanthamoeba keratitis. In a pilot study, the PCR conditions with modifications were first tested on corneal scrapings from patients with culture-proven non-contact lens-related Acanthamoeba, bacterial, and fungal keratitis. This was followed by testing of corneal scrapings from 53 consecutive cases of microbial keratitis to determine sensitivity, specificity, and predictive values of the assay. All corneal scrapings from patients with proven Acanthamoeba keratitis showed a 463-bp amplicon, while no amplicon was obtained from patients with bacterial or fungal keratitis. Some of these amplified products were sequenced and compared with EMBL database reference sequences to validate these to be of Acanthamoeba origin. Out of 53 consecutive cases of microbial keratitis included for evaluating the PCR, 10 (18.9%) cases were diagnosed as Acanthamoeba keratitis on the basis of combined results of culture, smear, and PCR of corneal scrapings. Based on culture results as the "gold standard," the sensitivity of PCR was the same as that of the smear (87.5%); however, the specificity and the positive and negative predictive values of PCR were marginally higher than the smear examination (97.8 versus 95.6%, 87.5 versus 77.8%, and 97.8 versus 97.7%) although the difference was not significant. This study confirms the efficacy of the PCR assay and is the first study to evaluate a PCR-based assay against conventional methods of diagnosis in a clinical setting.

  7. Evaluation and optimization of quartz resonant-frequency retuned fork force sensors with high Q factors, and the associated electric circuits, for non-contact atomic force microscopy.

    Science.gov (United States)

    Ooe, Hiroaki; Fujii, Mikihiro; Tomitori, Masahiko; Arai, Toyoko

    2016-02-01

    High-Q factor retuned fork (RTF) force sensors made from quartz tuning forks, and the electric circuits for the sensors, were evaluated and optimized to improve the performance of non-contact atomic force microscopy (nc-AFM) performed under ultrahigh vacuum (UHV) conditions. To exploit the high Q factor of the RTF sensor, the oscillation of the RTF sensor was excited at its resonant frequency, using a stray capacitance compensation circuit to cancel the excitation signal leaked through the stray capacitor of the sensor. To improve the signal-to-noise (S/N) ratio in the detected signal, a small capacitor was inserted before the input of an operational (OP) amplifier placed in an UHV chamber, which reduced the output noise from the amplifier. A low-noise, wideband OP amplifier produced a superior S/N ratio, compared with a precision OP amplifier. The thermal vibrational density spectra of the RTF sensors were evaluated using the circuit. The RTF sensor with an effective spring constant value as low as 1000 N/m provided a lower minimum detection limit for force differentiation. A nc-AFM image of a Si(111)-7 × 7 surface was produced with atomic resolution using the RTF sensor in a constant frequency shift mode; tunneling current and energy dissipation images with atomic resolution were also simultaneously produced. The high-Q factor RTF sensor showed potential for the high sensitivity of energy dissipation as small as 1 meV/cycle and the high-resolution analysis of non-conservative force interactions.

  8. Automated pipeline to analyze non-contact infrared images of the paraventricular nucleus specific leptin receptor knock-out mouse model

    Science.gov (United States)

    Diaz Martinez, Myriam; Ghamari-Langroudi, Masoud; Gifford, Aliya; Cone, Roger; Welch, E. B.

    2015-03-01

    Evidence of leptin resistance is indicated by elevated leptin levels together with other hallmarks of obesity such as a defect in energy homeostasis.1 As obesity is an increasing epidemic in the US, the investigation of mechanisms by which leptin resistance has a pathophysiological impact on energy is an intensive field of research.2 However, the manner in which leptin resistance contributes to the dysregulation of energy, specifically thermoregulation,3 is not known. The aim of this study was to investigate whether the leptin receptor expressed in paraventricular nucleus (PVN) neurons plays a role in thermoregulation at different temperatures. Non-contact infrared (NCIR) thermometry was employed to measure surface body temperature (SBT) of nonanesthetized mice with a specific deletion of the leptin receptor in the PVN after exposure to room (25 °C) and cold (4 °C) temperature. Dorsal side infrared images of wild type (LepRwtwt/sim1-Cre), heterozygous (LepRfloxwt/sim1-Cre) and knock-out (LepRfloxflox/sim1-Cre) mice were collected. Images were input to an automated post-processing pipeline developed in MATLAB to calculate average and maximum SBTs. Linear regression was used to evaluate the relationship between sex, cold exposure and leptin genotype with SBT measurements. Findings indicate that average SBT has a negative relationship to the LepRfloxflox/sim1-Cre genotype, the female sex and cold exposure. However, max SBT is affected by the LepRfloxflox/sim1-Cre genotype and the female sex. In conclusion this data suggests that leptin within the PVN may have a neuroendocrine role in thermoregulation and that NCIR thermometry combined with an automated imaging-processing pipeline is a promising approach to determine SBT in non-anesthetized mice.

  9. On-Line Condition Monitoring using Computational Intelligence

    CERN Document Server

    Vilakazi, C B; Mautla, P; Moloto, E

    2007-01-01

    This paper presents bushing condition monitoring frameworks that use multi-layer perceptrons (MLP), radial basis functions (RBF) and support vector machines (SVM) classifiers. The first level of the framework determines if the bushing is faulty or not while the second level determines the type of fault. The diagnostic gases in the bushings are analyzed using the dissolve gas analysis. MLP gives superior performance in terms of accuracy and training time than SVM and RBF. In addition, an on-line bushing condition monitoring approach, which is able to adapt to newly acquired data are introduced. This approach is able to accommodate new classes that are introduced by incoming data and is implemented using an incremental learning algorithm that uses MLP. The testing results improved from 67.5% to 95.8% as new data were introduced and the testing results improved from 60% to 95.3% as new conditions were introduced. On average the confidence value of the framework on its decision was 0.92.

  10. On-line catalytic upgrading of biomass fast pyrolysis products

    Institute of Scientific and Technical Information of China (English)

    LU Qiang; ZHU XiFeng; LI WenZhi; ZHANG Ying; CHEN DengYu

    2009-01-01

    Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed to achieve fast pyrolysis of biomass and on-line analysis of the pyrolysis vapors. Four biomass materials (poplar wood, fir wood, cotton straw and rice husk) were pyrolyzed to reveal the difference among their products. Moreover, catalytic cracking of the pyrolysis vapors from cotton straw was performed by using five catalysts, including two microporous zeolites (HZSM-5 and HY) and three mesoporous catalysts (ZrO2&TiO2, SBA-15 and AI/SBA-15). The results showed that the distribution of the pyrolytic products from the four materials differed a little from each other, while catalytic cracking could significantly alter the pyrolytic products. Those important primary pyrolytic products such as levoglucosen, hydroxyacetaldehyde and 1-hydroxy-2-propanone were decreased greatly after catalysis. The two microporous zeolites were ef-fective to generate high yields of hydrocarbons, while the three mesoporous materials favored the formation of furan, furfural and other furan compounds, as well as acetic acid.

  11. Robust on-line monitoring of biogas processes; Robusta maettekniker on-line foer optimerad biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Aake; Hansson, Mikael; Kanerot, Mija; Krozer, Anatol; Loefving, Bjoern; Sahlin, Eskil

    2010-03-15

    Although demand for biomethane in Sweden is higher than ever, many Swedish codigestion plants are presently operated below their designed capacity. Efforts must be taken to increase the loading rate and guarantee stable operation and high availability of the plants. There are currently no commercial systems for on-line monitoring, and due to the characteristics of the material, including corrosion and tearing, robust applications have to be developed. The objective of this project was to identify and study different monitoring technologies with potential for on-line monitoring of both substrate mixtures and anaerobic digester content. Based on the prerequisites and demands at Boraas Energi och Miljoe AB's (BEMAB, the municipal energy and waste utility in the city of Boraas, Sweden) biogas plant, the extent of the problems, measurement variables and possible ways of managing these issues have been identified and prioritized. The substrate mixtures in question have a high viscosity and are inhomogeneous with variation in composition, which calls for further homogenization, dilution and filtration to achieve high precision in the necessary analyses. Studies of using different mixers and mills showed that the particle size (800 mum) needed for on-line COD measurement could not be achieved. The problem of homogenization can be avoided if indirect measurement methods are used. Laboratory tests with NIR (near-infra red spectroscopy) showed that VS can be predicted (R2=0,78) in the interval of 2-9% VS. Furthermore, impedance can give a measurement of soluble components. However, impedance is not sensitive enough to give a good measurement of total TS. Microwave technology was installed at the production plant and showed a faster response to changes in TS than the existing TS-sensor. However, due to technical problems, the evaluation only could be done during a limited period of ten days. BEMAB will continue the measurements and evaluation of the instrument. The

  12. DOE-EPRI On-Line Monitoring Implementation Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    E. Davis, R. Bickford

    2003-01-02

    Industry and EPRI experience at several plants has shown on-line monitoring to be very effective in identifying out-of-calibration instrument channels or indications of equipment-degradation problems. The EPRI implementation project for on-line monitoring has demonstrated the feasability of on-line monitoring at several participating nuclear plants. The results have been very enouraging, and substantial progress is anticipated in the coming years.

  13. Poss On-line (Personalisation of Self-Service Solutions across On-line platforms)

    DEFF Research Database (Denmark)

    Nielsen, Janni; Nielsen, Lene; Jespersen, Mikkel

    2005-01-01

    The project on Personalisation of Self-service Solutions across On-line Platforms (POSS ON-LINE) focuses on users, clients, and self-service solutions. It is based on the understanding that clients and users are different and have different goals, and that self-service takes place in different co...... at the process of development. However, we lack methods to predict user behaviour without having to deal with huge amounts of data and data from both quantitative data as well as life world observations are required....... the client and the user. The system gathers data about the user, which enables the client to push information to the user. Personalisation enables graphic user interface design that is personalised and relevant to the individual user and invites the user to get access to information with less strain....... Personalisation of self-service solutions is promising and IT companies are experiencing an increase in the clients' demands. At the same time the development of solutions moves within a shorter and shorter time span. Hence the process of innovations is paced and there is an increasing need of new ways of looking...

  14. Research of On-line Analytical Method of Trace Oxygen and Water in Argon

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Metal sodium has an active chemical quality. When it is used as a coolant in a fast neutron reactor, it must be protected by a cover gas argon for safety operation of the reactor. But oxygen and water in argon can produce chemical reaction with sodium. Then sodium hydroxide, sodium oxide and hydrogen can be produced. This will be harmful to the safety operation of reactor. The purpose of controlling a level of impurity in the cover gas is for controlling a level of impurity in sodium. The research is to find an on-line determining method and a sampling system to monitor

  15. Design of Non-contact Automatic Measurement System%非接触式自动测量系统设计

    Institute of Scientific and Technical Information of China (English)

    王波

    2012-01-01

    In order to improve workpiece measurement automation and accuracy, a non-contact automatic measurement system based on universal tool microscope was designed. System image denoising, edge detection, sub-pixel positioning algorithms have been studied; First, high-precision gratings were installed on the vertical and horizontal rails with the grating signal acquisition card collecting vertical and horizontal grating signal, and the computer data processing for the integer part of the measured object size measurement;. The workpiece detection eyepiece and eyepiece vertical and horizontal position readings were installed on the test piece and the vertical and horizontal readout CCD, image processing, the measured size after the fractional part; then, the final measurement results are marked with two dimensions from the drawing in AutoCAD display. . Experimental results show that; the system has high precision, and the actual high-precision requirements of measurement are met.%为了提高工件测量自动化程度和测量精度,设计了基于万能工具显微镜的非接触自动测量系统.对该系统所采用的图像去噪、边缘检测、亚像素定位等算法进行了研究;首先,在纵向和横向导轨上分别安装高精度光栅尺,用光栅信号采集卡采集纵向和横向光栅信号,经计算机数据处理获取被测物体测量尺寸整数部分;在工件检测目镜和纵向和横向读数目镜的位置上分别安装工件检测CCD和纵向和横向读数CCD,经过图像处理测得尺寸小数部分;然后,将两部分尺寸输入到AutoCAD中自动绘图标注显示最终测量结果.实验结果表明:该系统具有较高的测量精度,基本满足实际测量中快速、高精度的要求.

  16. A comparison of the Goldmann applanation and non-contact (Keeler Pulsair EasyEye) tonometers and the effect of central corneal thickness in indigenous African eyes.

    Science.gov (United States)

    Babalola, O E; Kehinde, A V; Iloegbunam, A C; Akinbinu, T; Moghalu, C; Onuoha, I

    2009-03-01

    The Keeler Pulsair EasyEye non-contact tonometer (NCT) was introduced into practice at Rachel Eye Center Abuja, Nigeria, where the patients are indigenous Africans. This was compared to the 'gold standard' Goldmann applanation tonometer (GAT) to determine if the instrument was accurate in Africans, with particular reference to the influence of central corneal thickness (CCT). 174 eyes of 88 patients were analysed. Pachymetry was performed using Sonomed PacScan AP300, and GAT with the Haag Streit R-900. Pachymetric corrections of NCT (NCTc) and GAT (GATc) were carried out with the Sonomed algorithm. Pearson's correlation r, linear regression analysis, Student t-test and Bland-Altman analysis were used to compare the instruments. Mean NCT readings were similar (17.36 mmHg) to mean GAT (17.42 mmHg; p = 0.769). GAT/NCT correlation coefficient, r, was 0.883 as compared with 0.868 for GATc/NCTc. The linear regression equation was GAT = 2.79 + 0.84*NCT (r(2) = 0.78). Forty-five per cent of differences were within 1 mmHg, while 79% were within 3 mmHg. This was similar to findings in some studies on Caucasians. Bland-Altman analysis however suggested that the spread of differences was wider than in those studies. Outliers (differences more than 5 mmHg) sometimes reflected difficulties encountered with GAT in routine practice. Mean CCT was 537.9 microm, (S.D. 38.4, 95% confidence interval 532.1-543.7 microm) and CCT appeared lower than in Caucasians. Both GAT and NCT IOP tended to rise with increasing CCT but NCT had a greater tendency to do so. Regression analysis suggested that NCT IOP increased by 0.6 mmHg for every 10 mum increase in CCT, compared to 0.4 mmHg for GAT. Thirty-eight per cent of the patients preferred NCT as opposed to 25% GAT. The Keeler Pulsair EasyEye gives reliable measurements of IOP in African eyes but is significantly affected by CCT. Particularly in borderline cases where management decisions have to be taken, it may be necessary to have pachymetric

  17. ON-LINE PREEMPTIVE SCHEDULING ON UNIFORM MACHINES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuzhong; WANG Shouyang; Bo Chen; ZHANG Shuxia

    2001-01-01

    We address the problem of preemptively schedule on-line jobs on arbitrary muniformly related machines with the objective of minimizing the schedule length. We provide the first on-line algorithm for this general problem, and show that the algorithm being the speeds of the m machines.

  18. From Off-line to On-line Handwriting Recognition

    NARCIS (Netherlands)

    Lallican, P.; Viard-Gaudin, C.; Knerr, S.

    2004-01-01

    On-line handwriting includes more information on time order of the writing signal and on the dynamics of the writing process than off-line handwriting. Therefore, on-line recognition systems achieve higher recognition rates. This can be concluded from results reported in the literature, and has been

  19. On-Line and Off-Line Assessment of Metacognition

    Science.gov (United States)

    Saraç, Seda; Karakelle, Sema

    2012-01-01

    The study investigates the interrelationships between different on-line and off-line measures for assessing metacognition. The participants were 47 fifth grade elementary students. Metacognition was assessed through two off-line and two on-line measures. The off-line measures consisted of a teacher rating scale and a self-report questionnaire. The…

  20. On-line characterization of a hybridoma cell culture process.

    Science.gov (United States)

    Zhou, W; Hu, W S

    1994-06-20

    The on-line determination of the physiological state of a cell culture process requires reliable on-line measurements of various parameters and calculations of specific rates from these measurements. The cell concentration of a hybridoma culture was estimated on-line by measuring optical density (OD) with a laser turbidity probe. The oxygen uptake rate (OUR) was determined by monitoring dynamically dissolved oxygen concentration profiles and closing oxygen balances in the culture. The base addition for neutralizing lactate produced by cells was also monitored on-line via a balance. Using OD and OUR measurements, the specific growth and specific oxygen consumption rates were determined on-line. By combining predetermined stoichiometric relationships among oxygen and glucose consumption and lactate production, the specific glucose consumption and lactate production rates were also calculated on-line. Using these on-line measurements and calculations, the hybridoma culture process was characterized on-line by identifying the physiological states. They will also facilitate the implementation of nutrient feeding strategies for fed-batch and perfusion cultures. (c) 1994 John Wiley & Sons, Inc.

  1. On-line optimal control of greenhouse crop cultivation.

    NARCIS (Netherlands)

    Straten, van G.

    1996-01-01

    Thus far, optimal control has primarily been investigated for seasonal crop growth optimization. On-line aspects have received much less attention. The decomposition between long term strategies and on-line control, however, is not trivial. Appreciable losses occur when set-points generated by seaso

  2. On-line optimal control of greenhouse crop cultivation.

    NARCIS (Netherlands)

    Straten, van G.

    1996-01-01

    Thus far, optimal control has primarily been investigated for seasonal crop growth optimization. On-line aspects have received much less attention. The decomposition between long term strategies and on-line control, however, is not trivial. Appreciable losses occur when set-points generated by seaso

  3. Algorithms for semi on-line multiprocessor scheduling problems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off-line or on-line environment. But in practice, problems are often not really off-line or on-line but somehow in between. This means that, with respect to the on-line problem, some further information about the tasks is available, which allows the improvement of the performance of the best possible algorithms. Problems of this class are called semi on-line ones. The authors studied two semi on-line multiprocessor scheduling problems, in which, the total processing time of all tasks is known in advance, or all processing times lie in a given interval. They proposed approximation algorithms for minimizing the makespan and analyzed their performance guarantee. The algorithms improve the known results for 3 or more processor cases in the literature.

  4. Application of non-contact radar flow measurement technology at Yangshuo Hydrological Station%非接触式雷达测流技术在阳朔水文站的应用

    Institute of Scientific and Technical Information of China (English)

    周凌芸; 潘仁红

    2014-01-01

    简介非接触式雷达测流技术原理,以阳朔水文站作为实验站,通过与常规流速仪测流的比测,找出最佳流速相关关系,评定应用非接触式雷达技术实施在线流量监测的可行性,结果:其精度满足规范要求,阳朔水文站非接触式雷达测流可行。%A brief introduction was made on the principle of non-contact radar flow measurement technology. At Yangshuo Hydrological Station, the flow records observed with this technology were compared with that out of nor-mal velocity meter to look for the best velocity correlation, and evaluate the feasibility of online flow monitoring with non-contact radar technology. It was concluded that the measurement accuracy conforms to the specification and it is feasible to adopt non-contact radar flow measurement at Yangshuo Hydrological Station.

  5. Volume overload cleanup: An approach for on-line SPE-GC, GPC-GC, and GPC-SPE-GC

    NARCIS (Netherlands)

    Kerkdijk, H.; Mol, H.G.J.; Nagel, B. van der

    2007-01-01

    A new concept for cleanup, based on volume overloading of the cleanup column, has been developed for on-line coupling of gel permeation chromatography (GPC), solid-phase extraction (SPE), or both, to gas chromatography (GC). The principle is outlined and the applicability demonstrated by the determi

  6. A non-contacting approach for full field dynamic strain monitoring of rotating structures using the photogrammetry, finite element, and modal expansion techniques

    Science.gov (United States)

    Baqersad, Javad

    deformation of the blades at target locations. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. In order to validate the results for the rotating turbine, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system. The approach used in this work to predict the strain showed higher accuracy than measurements obtainable by using the digital image correlation technique. The new expansion approach is able to extract dynamic strain all over the entire structure, even inside the structure beyond the line of sight of the measurement system. Because the method is based on a non-contacting measurement approach, it can be readily applied to a variety of structures having different boundary and operating conditions, including rotating blades.

  7. On-line Autonomous Learning Based on Leamerg Expectation

    Institute of Scientific and Technical Information of China (English)

    李利娜

    2008-01-01

    On-line autonomous learning of College English is one of the important reforms in colleges recently.This paper aims to explore the changes of teachers'role in the new on-line setting.The article first reviews the theoretical study of learner autonomy,then makes a practical investigation into the attitude and expectation learners have on teachers through a self-designed questionnaire,and explores that teachers should make an adjustment to their role orientation and changes their roles into motivators,evaluators and resources supphers in the new on-line setting.

  8. On-line Classical Guitar Course: Blogs for Music Education

    OpenAIRE

    José Luis Navarro; Gilles Lavigne; G. Guadalupe Martínez Salgado

    2009-01-01

    This article introduces an on-line course constructed by means of a blog. The tool was the main goal of a research project titled “Develop, Implementation and evaluation of a Hybrid Course Face to face-On Line for Teaching the Beginning to Play the Classical Guitar”. This work was a three steep project in which it was implemented, applied and evaluated. The on-line course was intended to prepare the students to learn the basic principles to start in classical music with the guitar. The result...

  9. Understanding on-line community: the affordances of virtual space

    Directory of Open Access Journals (Sweden)

    Karen Ruhleder

    2002-01-01

    Full Text Available Increasing numbers of on-line venues for learning are emerging as virtual communities become more accessible and commonplace. This paper looks at one particular virtual community, an on-line degree programme at the University of Illinois, Urbana-Champaign, which offers an M.S. in Library and Information Science (called LEEP. It draws on a framework presented by Mynatt, et al. (1998, which provides a lens for talking about on-line community as a set of affordances. This framework is applied to illustrate the interactions, artefacts, and expectations that shape this community.

  10. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  11. Activated aluminum oxide selectively retaining long chain n-alkanes: Part II. Integration into an on-line high performance liquid chromatography-liquid chromatography-gas chromatography-flame ionization detection method to remove plant paraffins for the determination of mineral paraffins in foods and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Fiselier, Katell [Official Food Control Authority of the Canton of Zurich, P.O. Box, CH-8032 Zurich (Switzerland); Fiorini, Dennis [Department of Chemical Sciences, University of Camerino, V.S. Agostino 1, I-62032, Camerino (Italy); Grob, Koni [Official Food Control Authority of the Canton of Zurich, P.O. Box, CH-8032 Zurich (Switzerland)], E-mail: koni@grob.org

    2009-02-16

    Aluminum oxide activated by heating to 300-400 deg. C retains n-alkanes with more than about 20 carbon atoms, whereas iso-alkanes largely pass non-retained (with characteristics described in more detail in Part I). This property is useful for the analysis of mineral oil contamination of foods and other matrices: it enables the removal of plant n-alkanes, typically ranging from C{sub 23} to C{sub 33}, when they disturb the analysis of mineral paraffins (usually almost exclusively consisting of iso-alkanes). An on-line HPLC-LC-GC-FID method is proposed in which a first silica gel HPLC column isolates the paraffins from the bulk of edible oils or extracts and is backflushed with dichloromethane. In a second separation step, a 10 cm x 2 mm i.d. column packed with activated aluminum oxide separates the long chain n-alkanes from the fraction of the iso-alkanes which is transferred to GC-FID by the on-column interface and the retention gap technique. The retained n-alkanes are removed by flushing with iso-octane.

  12. On-Line Trajectory Retargeting for Alternate Landing Sites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Barron Associates, Inc. proposes to develop a novel on-line trajectory optimization approach for Reusable Launch Vehicles (RLVs) under failure scenarios, targeting...

  13. ON-LINE SCHEDULING WITH REJECTION ON IDENTICAL PARALLEL MACHINES

    Institute of Scientific and Technical Information of China (English)

    Cuixia MIAO; Yuzhong ZHANG

    2006-01-01

    In this paper, we consider the on-line scheduling of unit time jobs with rejection on m identical parallel machines. The objective is to minimize the total completion time of the accepted jobs plus the total penalty of the rejected jobs. We give an on-line algorithm for the problem with competitive ratio 1/2(2 + √3) ≈ 1.86602.

  14. From User Comments to On-line Conversations

    OpenAIRE

    Wang, Chunyan; Ye, Mao; Huberman, Bernardo A.

    2012-01-01

    We present an analysis of user conversations in on-line social media and their evolution over time. We propose a dynamic model that accurately predicts the growth dynamics and structural properties of conversation threads. The model successfully reconciles the differing observations that have been reported in existing studies. By separating artificial factors from user behaviors, we show that there are actually underlying rules in common for on-line conversations in different social media web...

  15. Directions for Future Research in On-line Distance Education

    OpenAIRE

    Alaa SADIK

    2015-01-01

    Although institutions have invested much in developing on-line environments or using already established commercial platforms, only few studies have been conducted to investigate the effectiveness of on-line courses based on empirical data (Jung and Rha, 2000). A review of the literature conducted in this study showed that most of online learning studies investigated the effectiveness of Web-based interaction or Internet conferencing on learning, not the entire learning environment. Even in t...

  16. An On-line Ferrograph for Monitoring Machine Wear

    Institute of Scientific and Technical Information of China (English)

    L(U) Xiao-jun; JING Min-qing; XIE You-bai

    2005-01-01

    In order to improve an on-line ferrograph, this paper simulates a three dimensional magnetic field distribution of an electromagnet, builds a sinking motion model of a wear particle, and investigates the motion law of wear particles under two different conditions. Both numeric results and experimental results show that the on-line ferrograph is capable of monitoring machine wear conditions by measuring the concentration and size distribution of wear particles in lubricating oil.

  17. [Research on On-Line Calibration Based Photoacoustic Spectrometry System for Monitoring the Concentration of CO2 in Atmosphere].

    Science.gov (United States)

    Zhang, Jian-feng; Pan, Sun-qiang; Lin, Xiao-lu; Hu, Peng-bing; Chen, Zhe-min

    2016-01-01

    Resonate frequency and cell constant of photoacoustic spectrum system are usually calibrated by using standard gas in laboratory, whereas the resonate frequency and cell constant will be changed in-situ, leading to measurement accuracy errors, caused by uncertainties of standard gas, differences between standard and measured gas components and changes in environmental condition, such as temperature and humidity. As to overcome the above problems, we have proposed an on-line atmospheric oxygen-based calibration technology for photoacoustic spectrum system and used in measurement of concentration of carbon dioxide in atmosphere. As the concentration of atmospheric oxygen is kept as constant as 20.96%, the on-line calibration for the photoacoustic spectrum system can be realized by detecting the swept-frequency and peak signal at 763.73 nm. The cell of the PAS has a cavity with length of 100 mm and an inner diameter of 6 mm, and worked in a first longitudinal resonant mode. The influence of environmental temperature and humidity, gas components on the photoacoustic cell's performance has been theoretically analyzed, and meanwhile the resonant frequencies and cell constants were calibrated and acquired respectively using standard gas, indoor air and outdoor air. Compared with calibrated gas analyzer, concentration of carbon dioxide is more accurate by using the resonant frequency and cell constant calculated by oxygen in tested air, of which the relative error is less than 1%, much smaller than that calculated by the standard gas in laboratory. The innovation of this paper is that using atmospheric oxygen as photoacoustic spectrum system's calibration gas effectively reduces the error caused by using standard gas and environmental condition changes, and thus improves the on-line measuring accuracy and reliability of the photoacoustic spectrum system.

  18. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2003-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  19. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2005-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  20. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2004-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.

  1. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2003-07-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  2. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  3. On-line determination of oxygen isotope ratios of water or ice by mass spectrometry.

    Science.gov (United States)

    Leuenberger, M; Huber, C

    2002-09-15

    Oxygen isotope ratio determination on any of the water phases (water vapor, water, ice) is of great relevance in different research fields such as climate and paleoclimate studies, geological surveys, and hydrological studies. The conventional technique for oxygen isotope measurement involves equilibration with carbon dioxide gas for a given time with a subsequent isotope determination. The equilibration technique is available in different layouts, but all of them are rather time-consuming. Here we report a new on-line technique that processes water samples as well as ice samples. The same principal, CO2 hydration, is used but speeded up by (i) a direct injection and full dissolution of CO2 in the water, (ii) an increased isotope exchange temperature at 50 degrees C, and (iii) a rapid gas extraction by means of an air-permeable membrane into a continuous helium flux supplying the isotope ratio mass spectrometer with the sample gas. The precision is better than 0.1/1000 which is only slightly larger than with the conventional equilibration technique. This on-line technique allows analysis of 1 m of ice with a resolution of 1-3 cm, depending on the meltwater flux, within 1 h. Similarly, continuous and fast analysis can be performed for aqueous samples for hydrological, geological, and perhaps medical applications.

  4. On-Line Characterization of Aerosols Formed in a Jet Flow Condenser for Analytical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Chr.; Mohr, M. [EMPA Duebendorf (Switzerland)

    2004-03-01

    With a jet flow condenser (JFC) aerosol particles can be generated from gases containing high boiling substances. This can be used for transferring these substances from the hot carrier gas into an analytical device. In this study we have investigated the particle number size distribution (NSD) produced in two JFCs with different geometry. Experiments were performed with elemental zinc as a model substance. Zinc has been volatilised in a tubular furnace and the particles generated in the JFC were characterized on-line by a Scanning Mobility Particle Sizer (SMPS). (author)

  5. Acute non-contact anterior cruciate ligament tears are associated with relatively increased vastus medialis to semimembranosus cross-sectional area ratio: a case-control retrospective MR study.

    Science.gov (United States)

    Wieschhoff, Ged G; Mandell, Jacob C; Czuczman, Gregory J; Nikac, Violeta; Shah, Nehal; Smith, Stacy E

    2017-07-15

    Hamstring muscle deficiency is increasingly recognized as a risk factor for anterior cruciate ligament (ACL) tears. The purpose of this study is to evaluate the vastus medialis to semimembranosus cross-sectional area (VM:SM CSA) ratio on magnetic resonance imaging (MRI) in patients with ACL tears compared to controls. One hundred knee MRIs of acute ACL tear patients and 100 age-, sex-, and side-matched controls were included. Mechanism of injury, contact versus non-contact, was determined for each ACL tear subject. The VM:SM CSA was measured on individual axial slices with a novel method using image-processing software. One reader measured all 200 knees and the second reader measured 50 knees at random to assess inter-reader variability. The intraclass correlation coefficient (ICC) was calculated to evaluate for correlation between readers. T-tests were performed to evaluate for differences in VM:SM CSA ratios between the ACL tear group and control group. The ICC for agreement between the two readers was 0.991 (95% confidence interval 0.984-0.995). Acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.44 vs. 1.28; p = 0.005). Non-contact acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.48 vs. 1.20; p = 0.003), whereas contact acute ACL tear patients do not (1.23 vs. 1.26; p = 0.762). Acute non-contact ACL tears are associated with increased VM:SM CSA ratios, which may imply a relative deficiency in hamstring strength. This study also demonstrates a novel method of measuring the relative CSA of muscles on MRI.

  6. Sport Management Taught On-Line: A Discussion

    Directory of Open Access Journals (Sweden)

    William F. Stier Jr

    2009-01-01

    Full Text Available An introduction to the world of on-line courses (distance education/learning is presented. In addition, the world of on-line learning, as it pertains to sport management, is examined within the framework of (a pedagogy, (b finances,(c assessment, and (d choosing to transition from the traditional classroom to on-line learning. Pertinent points relative to each of the four categories are presented from the literature. In an effort to stimulate thought and discussion to the subject of on-line learning for sport management programs/courses the authors provide their reactions to the literature points by presenting their comments/reactions from a sport management perspective. Sport management professors and administrators are encouraged to critically examine the feasibility of such on-line courses (distance education/learning within their own curricula while maintaining an appropriate framework revolving around sound theoretical instructional strategies, methods as well as appropriate use of instructional tools, including but not limited to, computersand the WWW.

  7. 非接触眼压计对青光眼患者筛查的临床意义%The Clinical Significance of Glaucoma Patients Screening with Non-contact Tonometer

    Institute of Scientific and Technical Information of China (English)

    浦佳宁; 秦丽娟

    2011-01-01

    目的 应用Topeon CT-80A接触眼压计在临床应用中筛查高眼压患者,并对其进行进一步的检查诊断及治疗,探讨非接触眼压计对于青光眼患者筛查的临床意义.方法 用非接触眼压计测量602例(1204眼)眼压,对于单眼眼压>21mmHg或双眼眼压差>8mmHg的患者,于随后两天同一时间连续测量3次,并进行房角、视野、眼底等其他眼科相关检查.结果 测量的602例(1204眼)中发现高眼压患者83人(137眼),复诊有21人(33眼)被确诊青光眼患者,并对其进行治疗及随访.结论 非接触眼压计对青光眼患者的筛查具有重要的临床意义.%Objective To find out the clinical significance for the glaucoma patients who will be treated by non-contact tonometer in a physical examination.Methods The one whose intraocular pressure is higher than 21mmHg or the difference between two eyes is higher than 8mmHg will be followed up.Undertake intraocular pressure examination by means of non-contact tonometer at the same hour of three continuous days and opthalmological examination. Results A total of 602 patients were measured by means of non contact tonometer with ocular hypertension 137 eyes,glaucoma 33 eyes. Conclusion Non-contact tonometer can be considered as a valuable screening device for glaucoma patients.

  8. On-line coupling of supercritical fluid extraction and chromatographic techniques.

    Science.gov (United States)

    Sánchez-Camargo, Andrea Del Pilar; Parada-Alfonso, Fabián; Ibáñez, Elena; Cifuentes, Alejandro

    2017-01-01

    This review summarizes and discusses recent advances and applications of on-line supercritical fluid extraction coupled to liquid chromatography, gas chromatography, and supercritical fluid chromatographic techniques. Supercritical fluids, due to their exceptional physical properties, provide unique opportunities not only during the extraction step but also in the separation process. Although supercritical fluid extraction is especially suitable for recovery of non-polar organic compounds, this technique can also be successfully applied to the extraction of polar analytes by the aid of modifiers. Supercritical fluid extraction process can be performed following "off-line" or "on-line" approaches and their main features are contrasted herein. Besides, the parameters affecting the supercritical fluid extraction process are explained and a "decision tree" is for the first time presented in this review work as a guide tool for method development. The general principles (instrumental and methodological) of the different on-line couplings of supercritical fluid extraction with chromatographic techniques are described. Advantages and shortcomings of supercritical fluid extraction as hyphenated technique are discussed. Besides, an update of the most recent applications (from 2005 up to now) of the mentioned couplings is also presented in this review.

  9. On-line Payment System Survey – eCash

    Directory of Open Access Journals (Sweden)

    Marius Popa

    2009-12-01

    Full Text Available The paper presents the main aspects regarding an on-line payment system. Some characteristics of such system are presented and an existing system is analyzed. On its fundamental sense, the electronic commerce is a concept that represents the purchase and sale process or exchange of products, services, information, using o computer network, inclusively the Internet. In the most part of the cases, the electronic commerce imply on-line payments that lead to creation of some kinds of electronic money and some specific payment systems. There are described the some electronic payment mechanisms and the architecture and the functions of the on-line payment system E-Cash are depicted.

  10. A Hybrid On-line Verification Method of Relay Setting

    Science.gov (United States)

    Gao, Wangyuan; Chen, Qing; Si, Ji; Huang, Xin

    2017-05-01

    Along with the rapid development of the power industry, grid structure gets more sophisticated. The validity and rationality of protective relaying are vital to the security of power systems. To increase the security of power systems, it is essential to verify the setting values of relays online. Traditional verification methods mainly include the comparison of protection range and the comparison of calculated setting value. To realize on-line verification, the verifying speed is the key. The verifying result of comparing protection range is accurate, but the computation burden is heavy, and the verifying speed is slow. Comparing calculated setting value is much faster, but the verifying result is conservative and inaccurate. Taking the overcurrent protection as example, this paper analyses the advantages and disadvantages of the two traditional methods above, and proposes a hybrid method of on-line verification which synthesizes the advantages of the two traditional methods. This hybrid method can meet the requirements of accurate on-line verification.

  11. On-line laser spectroscopy with thermal atomic beams

    CERN Document Server

    Thibault, C; De Saint-Simon, M; Duong, H T; Guimbal, P; Huber, G; Jacquinot, P; Juncar, P; Klapisch, Robert; Liberman, S; Pesnelle, A; Pillet, P; Pinard, J; Serre, J M; Touchard, F; Vialle, J L

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a CW tunable dye laser interacts at right angles with a thermal atomic beam. /sup 76-98/Rb, /sup 118-145 /Cs and /sup 208-213/Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while /sup 30-31/Na and /sup 38-47/K have been studied by setting the apparatus directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. The hyperfine structure, spins and isotope shifts of the alkali isotopes and isomers are measured. (8 refs).

  12. Strengthening weak ties through on-line gaming

    DEFF Research Database (Denmark)

    Sudzina, Frantisek; Razmerita, Liana Virginia; Kirchner, Kathrin

    On-line gaming became widespread in the last couple of years. The aim of the research presented in the paper is to figure out to what extent does game playing helps to strengthen weak ties and what additional factors influence this process. The approach is rather exploratory – some factors...... are grounded in theory, some are new. These factors are age, gender, place of origin, number of their Facebook connections (friends in Facebook terminology), the amount of time they are on Facebook, the amount of time they keep the Facebook site open, the amount of time they play on-line games, and the reasons...... for starting to play on-line games. Regarding the latter, we chose to focus only on escapist reasons....

  13. On-Line Voltage Stability Assessment based on PMU Measurements

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; P. Da Silva, Luiz C.; Nielsen, Arne Hejde

    2009-01-01

    through statistic analysis. During the off-line analysis, a memory of high-risk situations following a pre-defined voltage stability criterion is obtained. Thereafter, basic statistics analyses are applied resulting in the definition of voltage regions. During on-line operation, voltage magnitudes......This paper presents a method for on-line monitoring of risk voltage collapse based on synchronised phasor measurement. As there is no room for intensive computation and analysis in real-time, the method is based on the combination of off-line computation and on-line monitoring, which are correlated...... of critical buses obtained by phasor measurements are monitored in relation to the risk regions. Comprehensive studies demonstrate that the proposed method could assist operators to avoid voltage collapse events, by taking preventive or emergency actions....

  14. On-line tribochemical strengthening of gear surface

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It has been found that under favorable friction conditions some antiwear elements inlubricating additives can permeate into subsurface of metal which can strengthens the friction sur-faces and improves anti-wear capacity of frication pairs. It is in many ways similar to chemical heattreatment. A new concept, technology of on-line strengthening, was logically put forward. Based oncurrent gear surface treatment technology, the on-line strengthen of gear surface is proposed. Itsdesign method is established. Based on it, the on-line strengthen of gear is achieved on CL-100gear test machine. A new method is put forward for strengthen treatment of gear surface. Andthree kinds of surface film were suggested.

  15. Why do People Stop Playing On-Line Games?

    DEFF Research Database (Denmark)

    Sudzina, Frantisek; Razmerita, Liana

    2012-01-01

    The recent initial public offering of shares of Zynga, probably the most important on-line game provider, drew interest of potential investors but also of general public to their business model. What the most interested people learned so far is that if Zynga had not changed their accounting...... practice, they would be in red numbers for several months already. This is most likely caused by people stopping to play their games. This paper provides an estimate of what proportion of people, who played on-line games, already stopped playing them. Additionally, it analyzed the reasons why people...

  16. On-Line Generation of 3D-Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter

    1992-01-01

    The paper describes the technique of filtering white noise for on-line generation of 3D-waves on a small computer in the laboratory. The wave generation package is implemented and tested in the 3D-wave basin at the University of Aalborg.......The paper describes the technique of filtering white noise for on-line generation of 3D-waves on a small computer in the laboratory. The wave generation package is implemented and tested in the 3D-wave basin at the University of Aalborg....

  17. The User-friendly On-Line Diffusion Chamber

    CERN Document Server

    Aviles Acosta, Jaime

    2015-01-01

    The On-Line Diffusion Chamber is a stand-alone apparatus built to carry out short-live radiotracer diffusion studies. The availability of the on-demand production of isotopes in the ISOLDE facility, and the design of the apparatus to streamline the implantation process, annealing treatment, ion gun ablation with a tape transport system, and radiation intensity measurement with a Ge gamma detector all in the same apparatus, gives the On-Line Diffusion Chamber a unique ability to studies with short-lived radioisotopes or isomer states that are not possible in any other facility in the world.

  18. 5th Computer Science On-line Conference

    CERN Document Server

    Senkerik, Roman; Oplatkova, Zuzana; Silhavy, Petr; Prokopova, Zdenka

    2016-01-01

    This volume is based on the research papers presented in the 5th Computer Science On-line Conference. The volume Artificial Intelligence Perspectives in Intelligent Systems presents modern trends and methods to real-world problems, and in particular, exploratory research that describes novel approaches in the field of artificial intelligence. New algorithms in a variety of fields are also presented. The Computer Science On-line Conference (CSOC 2016) is intended to provide an international forum for discussions on the latest research results in all areas related to Computer Science. The addressed topics are the theoretical aspects and applications of Computer Science, Artificial Intelligences, Cybernetics, Automation Control Theory and Software Engineering.

  19. Automatic on-line detection system design research on internal defects of metal materials based on optical fiber F-P sensing technology

    Science.gov (United States)

    Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang

    2016-10-01

    Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.

  20. Review of Non-contact Activation of the Thermo-induced Shape Memory Polymer%热致形状记忆聚合物非接触式驱动的研究进展

    Institute of Scientific and Technical Information of China (English)

    张大伟; 张彦华; 谢非

    2012-01-01

    非接触式驱动是将能量直接作用于热致形状记忆聚合物上,驱动其回复初始形状的驱动方法.从电驱动、激光驱动和磁场驱动等方面概述了非接触式驱动的实现方法、原理,综述了近年来热致形状记忆聚合物非接触式驱动的研究进展,并展望了非接触式驱动的可能应用领域与前景.%The non-contact actuation method that applies external energy directly on shape memory polymers and actuates their shape recovery has attracted increasing attention in the world. The research progress on non-contact actuation method of thermo-induced shape memory (TSMP) is reviewed, mainly from the electricity, laser and magnetism actuation to summarize the realizing methods, principle and recent development. Finally, some potential applications and their prospects of such are recommended.

  1. Application of non contact video gauge in bending loading test%非接触式位移/应变视频测量系统在弯曲试验中的应用

    Institute of Scientific and Technical Information of China (English)

    梁芳; 黄志强; 白桦

    2014-01-01

    在弯曲梁试验中运用了非接触式位移/应变视频测量系统,对其跨中挠度及梁侧混凝土应变进行测量,同时使用应变片在梁的另一侧测量应变,与视频测量法进行对比。结果表明:两种仪器测得的应变的相对误差能够满足测量需要。在本试验的基础上而且非接触式位移/应变视频测量系统在试验前无需花费时间去贴应变片,测量结束后整个试验过程都被记录下来,可供以后研究。%The paper compares the measure results by non contact video gauge and strain gauges in bending loading test. The non contact video gauge don't need to stick the strain gauges, and can record the entire test process.

  2. On-Line Learning and the Implications for School Design

    Science.gov (United States)

    Stack, Greg

    2011-01-01

    "Disrupting Class," published in 2008, is the story of how disruptive innovation, innovation that changes the business model organizations, will fundamentally change the American school system. The book's most startling prediction is that half of all high school classes will be on-line by 2019. In considering these predictions, the author began to…

  3. On-line multidimensional separation systems for peptide analysis

    NARCIS (Netherlands)

    Stroink, T.

    2005-01-01

    Today, there is an increasing interest in selective and sensitive analysis of proteins and peptides with a relatively high speed. The first chapter of this thesis describes several strategies for the on-line multidimensional analysis of peptides and proteins in biological samples. This overview of t

  4. On-line probabilistic classification with particle filters

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro; de Freitas, N.; Fog, Torben L.

    2000-01-01

    We apply particle filters to the problem of on-line classification with possibly overlapping classes. This allows us to compute the probabilities of class membership as the classes evolve. Although we adopt neural network classifiers, the work can be extended to any other parametric classification...

  5. Personal Assistant for onLine Services: Addressing human factors

    NARCIS (Netherlands)

    Lindenberg, J.; Nagata, S.F.; Neerincx, M.A.

    2003-01-01

    The Personal Assistant for onLine Services (PALS) project aims at substantially improving the user experience of mobile internet services. It focuses on a generic solution: a personal assistant, which attunes the interaction to the momentary user needs and use context (e.g. adjusting the

  6. Efficiently Building On-line Tools for Distributed Heterogeneous Environments

    Directory of Open Access Journals (Sweden)

    Günther Rackl

    2002-01-01

    Full Text Available Software development is getting more and more complex, especially within distributed middleware-based environments. A major drawback during the overall software development process is the lack of on-line tools, i.e. tools applied as soon as there is a running prototype of an application. The MIMO MIddleware MOnitor provides a solution to this problem by implementing a framework for an efficient development of on-line tools. This paper presents a methodology for developing on-line tools with MIMO. As an example scenario, we choose a distributed medical image reconstruction application, which represents a test case with high performance requirements. Our distributed, CORBA-based application is instrumented for being observed with MIMO and related tools. Additionally, load balancing mechanisms are integrated for further performance improvements. As a result, we obtain an integrated tool environment for observing and steering the image reconstruction application. By using our rapid tool development process, the integration of on-line tools shows to be very convenient and enables an efficient tool deployment.

  7. Developing an On-Line Interactive Health Psychology Module

    Science.gov (United States)

    Upton, Dominic; Cooper, Carol

    2006-01-01

    On-line teaching material in health psychology was developed which ensured a range of students could access appropriate material for their course and level of study. This material has been developed around the concept of smaller "content chunks" which can be combined into whole units of learning (topics), and ultimately, a module. On the basis of…

  8. Why do People Stop playing On-Line Games?

    DEFF Research Database (Denmark)

    Sudzina, Frantisek; Razmerita, Liana

    2012-01-01

    The recent initial public offering of shares of Zynga, probably the most important on-line game provider, drew interest of potential investors but also of general public to their business model. What the most interested people learned so far is that if Zynga had not changed their accounting...

  9. On-line fuzzy logic control of tube bending

    Science.gov (United States)

    Lieh, Junghsen; Li, Wei Jie

    2005-11-01

    This paper describes the simulation and on-line fuzzy logic control of tube bending. By combining elasticity and plasticity theories, a conventional model was developed. The results from simulation were compared with those obtained from testing. The experimental data reveal that there exists certain level of uncertainty and nonlinearity in tube bending, and its variation could be significant. To overcome this, a on-line fuzzy logic controller with self-tuning capabilities was designed. The advantages of this on-line system are (1) its computational requirement is simple in comparison with more algorithmic-based controllers, and (2) the system does not need prior knowledge of material characteristics. The device includes an AC motor, a servo controller, a forming mechanism, a 3D optical sensor, and a microprocessor. This automated bending machine adopts primary and secondary errors between the actual response and desired output to conduct on-line rule reasoning. Results from testing show that the spring back angle can be effectively compensated by the self- tuning fuzzy system in a real-time fashion.

  10. The dynamics of on-line principal component analysis

    NARCIS (Netherlands)

    Biehl, M.; Schlösser, E.

    1998-01-01

    The learning dynamics of an on-line algorithm for principal component analysis is described exactly in the thermodynamic limit by means of coupled ordinary differential equations for a set of order parameters. It is demonstrated that learning is delayed significantly because existing symmetries amon

  11. On-Line Learning and the Implications for School Design

    Science.gov (United States)

    Stack, Greg

    2011-01-01

    "Disrupting Class," published in 2008, is the story of how disruptive innovation, innovation that changes the business model organizations, will fundamentally change the American school system. The book's most startling prediction is that half of all high school classes will be on-line by 2019. In considering these predictions, the author began to…

  12. Specialization processes in on-line unsupervised learning

    NARCIS (Netherlands)

    Biehl, M.; Freking, A.; Reents, G.; Schlösser, E.

    1998-01-01

    From the recent analysis of supervised learning by on-line gradient descent in multilayered neural networks it is known that the necessary process of student specialization can be delayed significantly. We demonstrate that this phenomenon also occurs in various models of unsupervised learning. A sol

  13. A New On-Line Resource for Psycholinguistic Studies

    Science.gov (United States)

    Szekely, Anna; Jacobsen, Thomas; D'Amico, Simona; Devescovi, Antonella; Andonoa, Elena; Herron, Daniel; Lu, Ching Ching; Pechmann, Thomas; Pleh, Csaba; Wicha, Nicole; Federmeier, Kara; Gerdjikova, Irina; Gutierrez, Gabriel; Hung, Daisy, Hsu, Jeanne; Iyer, Gowri; Kohnert, Kathryn; Mehotcheva, Teodora; Orozco-Figueroa, Araceli; Tzeng, Angela; Tzeng, Ovid; Arevalo, Analia; Vargha, Andras; Butler, Andrew C.; Buffington, Robert; Bates, Elizabeth

    2004-01-01

    Picture naming is a widely used technique in psycholinguistic studies. Here, we describe new on-line resources that our project has compiled and made available to researchers on the world wide web at http://crl.ucsd.edu/~aszekely/ipnp/. The website provides access to a wide range of picture stimuli and related norms in seven languages. Picture…

  14. ADAPTIVE CONTEXT PROCESSING IN ON-LINE HANDWRITTEN CHARACTER RECOGNITION

    NARCIS (Netherlands)

    Iwayama, N.; Ishigaki, K.

    2004-01-01

    We propose a new approach to context processing in on-line handwritten character recognition (OLCR). Based on the observation that writers often repeat the strings that they input, we take the approach of adaptive context processing. (ACP). In ACP, the strings input by a writer are automatically

  15. The Lesson Observation On-Line (Evidence Portfolio) Platform

    Science.gov (United States)

    Cooper, David G.

    2015-01-01

    At a time when teacher training is being moved to school-based programmes it is important to engage in a research-informed dialogue about creating more distinctive, and cost-effective 21st century models of teacher training. Three years ago I began feasibility field testing the Lesson Observation On-line (Evidence Portfolio) Platform [LOOP]…

  16. On-line EM algorithm for the normalized gaussian network.

    Science.gov (United States)

    Sato, M; Ishii, S

    2000-02-01

    A normalized gaussian network (NGnet) (Moody & Darken, 1989) is a network of local linear regression units. The model softly partitions the input space by normalized gaussian functions, and each local unit linearly approximates the output within the partition. In this article, we propose a new on-line EMalgorithm for the NGnet, which is derived from the batch EMalgorithm (Xu, Jordan, &Hinton 1995), by introducing a discount factor. We show that the on-line EM algorithm is equivalent to the batch EM algorithm if a specific scheduling of the discount factor is employed. In addition, we show that the on-line EM algorithm can be considered as a stochastic approximation method to find the maximum likelihood estimator. A new regularization method is proposed in order to deal with a singular input distribution. In order to manage dynamic environments, where the input-output distribution of data changes over time, unit manipulation mechanisms such as unit production, unit deletion, and unit division are also introduced based on probabilistic interpretation. Experimental results show that our approach is suitable for function approximation problems in dynamic environments. We also apply our on-line EM algorithm to robot dynamics problems and compare our algorithm with the mixtures-of-experts family.

  17. On-Line Synthesis and Analysis by Mass Spectrometry

    Science.gov (United States)

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2015-01-01

    In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…

  18. Investigating on-line pornography at the University of Johannesburg

    Directory of Open Access Journals (Sweden)

    P. Laughton

    2008-01-01

    Full Text Available The on-line user of today has access to a vast collection of information resources. In addition, the developments in Internet and Web technologies have made it even easier for surfers to anonymously get access to on-line pornography. The purpose of this research was to investigate the extent to which access to on-line pornography at the University of Johannesburg can be managed. For the empirical part of this research 1037 questionnaires were proportionally distributed to and completed by students on all five campuses of the university. The questionnaire consisted of four sections: biographical information; university computer facility usage; university acceptable use policy; and personal experience with university computer facilities. The gender distribution for the sample was almost even, with a total of 49,4% male participants and 50,6% female, with the largest grouping of respondents (61,6% aged between 19 years and 21 years. Of the respondents, 36,7% indicated that exposure to unsolicited pornography did not bother them. When asked to what extent students should have access to pornography, 60,5% stated 'None' while 32,6% believed that 'Restricted' access should be granted for research purposes and 6,9% believed that students should be granted 'Total' access to pornography. Results from the research will be used to manage access to on-line resources at the University of Johannesburg better.

  19. Investigating on-line pornography at the University of Johannesburg

    Directory of Open Access Journals (Sweden)

    P. Laughton

    2007-12-01

    Full Text Available The on-line user of today has access to a vast collection of information resources. In addition, the developments in Internet and Web technologies have made it even easier for surfers to anonymously get access to on-line pornography. The purpose of this research was to investigate the extent to which access to on-line pornography at the University of Johannesburg can be managed. For the empirical part of this research 1037 questionnaires were proportionally distributed to and completed by students on all five campuses of the university. The questionnaire consisted of four sections: biographical information; university computer facility usage; university acceptable use policy; and personal experience with university computer facilities. The gender distribution for the sample was almost even, with total of 49,4% male participants and 50,6% female, with the largest grouping of respondents(61,6% aged between 19 years and 21 years. Of the respondents, 36,7% indicated that exposure to unsolicited pornography did not bother them. When asked to what extent students should have access to pornography, 60,5% stated 'None' while 32,6% believed that 'Restricted' access should be granted for research purposes and 6,9% believed that students should be granted 'Total' access to pornography. Results from the research will be used to manage access to on-line resources at the University of Johannesburg better.

  20. On-Line NDE for Advanced Reactor Designs

    Science.gov (United States)

    Nakagawa, N.; Inanc, F.; Thompson, R. B.; Junker, W. R.; Ruddy, F. H.; Beatty, J. M.; Arlia, N. G.

    2003-03-01

    This expository paper introduces the concept of on-line sensor methodologies for monitoring the integrity of components in next generation power systems, and explains general benefits of the approach, while describing early conceptual developments of suitable NDE methodologies. The paper first explains the philosophy behind this approach (i.e. the design-for-inspectability concept). Specifically, we describe where and how decades of accumulated knowledge and experience in nuclear power system maintenance are utilized in Generation IV power system designs, as the designs are being actively developed, in order to advance their safety and economy. Second, we explain that Generation IV reactor design features call for the replacement of the current outage-based maintenance by on-line inspection and monitoring. Third, the model-based approach toward design and performance optimization of on-line sensor systems, using electromagnetic, ultrasonic, and radiation detectors, will be explained. Fourth, general types of NDE inspections that are considered amenable to on-line health monitoring will be listed. Fifth, we will describe specific modeling developments to be used for radiography, EMAT UT, and EC detector design studies.