WorldWideScience

Sample records for on-line image guided

  1. Introducing an on-line adaptive procedure for prostate image guided intensity modulate proton therapy.

    Zhang, M; Westerly, D C; Mackie, T R

    2011-08-07

    With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D(98%), D(50%) and D(2%) values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom

  2. On line portal imaging

    Munro, Peter

    1996-01-01

    Purpose/Objective: The purpose of this presentation is to examine the various imaging devices that have been developed for portal imaging; describe some of the image registration methods that have been developed to determine geometric errors quantitatively; discuss some of the ways that portal imaging has been incorporated into routine clinical practice; describe quality assurance procedures for these devices, and discuss the use of portal imaging devices for dosimetry applications. Discussion: Verification of patient positioning has always been an important aspect of external beam radiation therapy. Over the past decade many portal imaging devices have been developed by individual investigators and most accelerator manufacturers now offer 'on-line' portal imaging systems. The commercial devices can be classified into three categories: T.V. camera-based systems, liquid ionisation chamber systems, and amorphous silicon systems. Many factors influence the quality of images generated by these portal imaging systems. These include factors which are unavoidable (e.g., low subject contrast), factors which depend upon the individual imaging device forming the image (e.g., dose utilisation, spatial resolution) as well as factors which depend upon the characteristics of the linear accelerator irradiating the imaging system (x-ray source size, image magnification). The characteristics of individual imaging systems, such as spatial resolution, temporal response, and quantum utilisation will be discussed. One of the major advantages of on-line portal imaging is that many quantitative techniques have been developed to detect errors in patient positioning. The general approach is to register anatomic structures on a portal image with the same structures on a digitized simulator film. Once the anatomic structures have been registered, any discrepancies in the position of the patient can be identified. However, the task is not nearly as straight-forward as it sounds. One problem

  3. On line portal imaging

    Munro, Peter

    1997-01-01

    Purpose/Objective: The purpose of this presentation is to examine the various imaging devices that have been developed for portal imaging, describe some of the image registration methods that have been developed to determine geometric errors quantitatively, and discuss how portal imaging has been incorporated into clinical practice. Discussion: Verification of patient positioning has always been an important aspect of external beam radiation therapy. Over the past decade many portal imaging devices have been developed by individual investigators and most accelerator manufacturers now offer 'on-line' portal imaging systems. The commercial devices include T.V. camera-based systems, liquid ionisation chamber systems, and shortly, flat panel systems. The characteristics of these imaging systems will be discussed. In addition, other approaches such as the use of kilovoltage x-ray sources, video monitoring, and ultrasound have been proposed for improving patient positioning. Some of the advantages of these approaches will be discussed. One of the major advantages of on-line portal imaging is that many quantitative techniques have been developed to detect errors in patient positioning. The general approach is to register anatomic structures on a portal image with the same structures on a digitized simulator film. Once the anatomic structures have been registered, any discrepancies in the position of the patient can be identified. One problem is finding a common frame of reference for the simulator and portal images, since the location of the radiation field within the pixel matrix may differ for the two images. As a result, a common frame of reference has to be established before the anatomic structures in the images can be registered - generally by registering radiation field edges identified in the simulator and portal images. In addition, distortions in patient geometry or rotations out of the image plane can confound the image registration techniques. Despite the

  4. On line portal imaging

    Munro, Peter

    1995-01-01

    Purpose/Objective: The purpose of this presentation is to review the physics of imaging with high energy x-ray beams; examine the various imaging devices that have been developed for portal imaging; describe some of the image registration methods that have been developed to determine errors in patient positioning quantitatively; and discuss some of the ways that portal imaging has been incorporated into routine clinical practice. Verification of patient positioning has always been an important aspect of external beam radiation therapy. Checks of patient positioning have generally been done with film, however, film suffers from a number of drawbacks, such as poor image display and delays due to film development. Over the past decade many portal imaging devices have been developed by individual investigators and most accelerator manufacturers now offer 'on-line' portal imaging systems, which are intended to overcome the limitations of portal films. The commercial devices can be classified into three categories: T.V. camera-based systems, liquid ionisation chamber systems, and amorphous silicon systems. Many factors influence the quality of images generated by these portal imaging systems. These include factors which are unavoidable (e.g., low subject contrast), factors which depend upon the individual imaging device forming the image (e.g., dose utilisation, spatial resolution) as well as factors which depend upon the characteristics of the linear accelerator irradiating the imaging system (x-ray source size, image magnification). The fundamental factors which limit image quality and the characteristics of individual imaging systems, such as spatial resolution, temporal response, and quantum utilisation will be discussed. One of the major advantages of on-line portal imaging is that many quantitative techniques have been developed to detect errors in patient positioning. The general approach is to register anatomic structures on a portal image with the same

  5. Automatic localization of the prostate for on-line or off-line image-guided radiotherapy

    Smitsmans, Monique H.P.; Wolthaus, Jochem W.H.; Artignan, Xavier; Bois, Josien de; Jaffray, David A.; Lebesque, Joos V.; Herk, Marcel van

    2004-01-01

    Purpose: With higher radiation dose, higher cure rates have been reported in prostate cancer patients. The extra margin needed to account for prostate motion, however, limits the level of dose escalation, because of the presence of surrounding organs at risk. Knowledge of the precise position of the prostate would allow significant reduction of the treatment field. Better localization of the prostate at the time of treatment is therefore needed, e.g. using a cone-beam computed tomography (CT) system integrated with the linear accelerator. Localization of the prostate relies upon manual delineation of contours in successive axial CT slices or interactive alignment and is fairly time-consuming. A faster method is required for on-line or off-line image-guided radiotherapy, because of prostate motion, for patient throughput and efficiency. Therefore, we developed an automatic method to localize the prostate, based on 3D gray value registration. Methods and materials: A study was performed on conventional repeat CT scans of 19 prostate cancer patients to develop the methodology to localize the prostate. For each patient, 8-13 repeat CT scans were made during the course of treatment. First, the planning CT scan and the repeat CT scan were registered onto the rigid bony structures. Then, the delineated prostate in the planning CT scan was enlarged by an optimum margin of 5 mm to define a region of interest in the planning CT scan that contained enough gray value information for registration. Subsequently, this region was automatically registered to a repeat CT scan using 3D gray value registration to localize the prostate. The performance of automatic prostate localization was compared to prostate localization using contours. Therefore, a reference set was generated by registering the delineated contours of the prostates in all scans of all patients. Gray value registrations that showed large differences with respect to contour registrations were detected with a χ 2

  6. Use of deformed intensity distributions for on-line modification of image-guided IMRT to account for interfractional anatomic changes

    Mohan, Radhe; Zhang Xiaodong; Wang He; Kang Yixiu; Wang Xiaochun; Liu, Helen; Ang, K.; Kuban, Deborah; Dong Lei

    2005-01-01

    Purpose: Recent imaging studies have demonstrated that there can be significant changes in anatomy from day to day and over the course of radiotherapy as a result of daily positioning uncertainties and physiologic and clinical factors. There are a number of strategies to minimize such changes, reduce their impact, or correct for them. Measures to date have included improved immobilization of external and internal anatomy or adjustment of positions based on portal or ultrasound images. Perhaps the most accurate way is to use CT image-guided radiotherapy, for which the possibilities range from simple correction of setup based on daily CT images to on-line near real-time intensity modulated radiotherapy (IMRT) replanning. In addition, there are numerous intermediate possibilities. In this paper, we report the development of one such intermediate method that takes into account anatomic changes by deforming the intensity distributions of each beam based on deformations of anatomy as seen in the beam's-eye-view. Methods and materials: The intensity distribution deformations are computed based on anatomy deformations discerned from the changes in the current image relative to a reference image (e.g., the pretreatment CT scan). First, a reference IMRT plan is generated based on the reference CT image. A new CT image is acquired using an in-room CT for every fraction. The anatomic structure contours are obtained for the new image. (For this article, these contours were manually drawn. When image guided IMRT methods are implemented, anatomic structure contours on subsequent images will likely be obtained with automatic or semiautomatic means. This could be achieved by, for example, first deforming the original CT image to match today's image, and then using the same deformation transformation to map original contours to today's image.) The reference intensity distributions for each beam are then deformed so that the projected geometric relationship within the beam

  7. SPIRES I: on-line search guide

    Addis, L.

    1975-06-01

    SPIRES I is the first generation of the on-line Stanford Public Information Retrieval System. Designed as a prototype system, SPIRES I was later moved to the SLAC computing facility where it has been routinely available to SLAC users in the field of high-energy physics. The scope and use of the SPIRES I system are described in this manual

  8. Using Reading Guides and On-Line Quizzes to Improve Reading Compliance and Quiz Scores

    Maurer, Trent W.; Longfield, Judith

    2015-01-01

    This study compared students' daily in-class reading quiz scores in an introductory Child Development course across five conditions: control, reading guide only, reading guide and on-line practice quiz, reading guide and on-line graded quiz, and reading guide and both types of on-line quizzes. At the beginning of class, students completed a 5-item…

  9. Automatic Delineation of On-Line Head-And-Neck Computed Tomography Images: Toward On-Line Adaptive Radiotherapy

    Zhang Tiezhi; Chi Yuwei; Meldolesi, Elisa; Yan Di

    2007-01-01

    Purpose: To develop and validate a fully automatic region-of-interest (ROI) delineation method for on-line adaptive radiotherapy. Methods and Materials: On-line adaptive radiotherapy requires a robust and automatic image segmentation method to delineate ROIs in on-line volumetric images. We have implemented an atlas-based image segmentation method to automatically delineate ROIs of head-and-neck helical computed tomography images. A total of 32 daily computed tomography images from 7 head-and-neck patients were delineated using this automatic image segmentation method. Manually drawn contours on the daily images were used as references in the evaluation of automatically delineated ROIs. Two methods were used in quantitative validation: (1) the dice similarity coefficient index, which indicates the overlapping ratio between the manually and automatically delineated ROIs; and (2) the distance transformation, which yields the distances between the manually and automatically delineated ROI surfaces. Results: Automatic segmentation showed agreement with manual contouring. For most ROIs, the dice similarity coefficient indexes were approximately 0.8. Similarly, the distance transformation evaluation results showed that the distances between the manually and automatically delineated ROI surfaces were mostly within 3 mm. The distances between two surfaces had a mean of 1 mm and standard deviation of <2 mm in most ROIs. Conclusion: With atlas-based image segmentation, it is feasible to automatically delineate ROIs on the head-and-neck helical computed tomography images in on-line adaptive treatments

  10. Risk-based equipment removal guide for on-line maintenance at PSE ampersand G

    Knoll, A.; Smith, C.; Pollock, J.

    1995-01-01

    On-line maintenance plays an important role in achieving safe and reliable power generation in a nuclear power plant. However, maintenance, if not properly planned and performed, may also be an important contributor to plant risk. Therefore, plant-specific procedures are needed for equipment removal from service to enhance the benefits of on-line maintenance and minimize the risks involved. The problem is to identify and implement the most effective on-line maintenance policy in the form of a proceduralized guide to assure plant safety under various operation and maintenance constraints. This paper presents a methodology to develop plant-specific on-line maintenance strategies and acceptance criteria using a multivariate safety approach based on risk assessment. Based on plant-specific data as modeled in the individual plant evaluation (IPE) and the updated probabilistic safety assessment (PSA), the risk-based methodology is currently being applied to the development of proceduralized equipment removal guides at Hope Creek and Salem units 1 and 2 of Public Service Electric and Gas Company (PSE ampersand G)

  11. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy.

    Chae Young Lee

    Full Text Available The purposes of this study were to optimize a proton computed tomography system (pCT for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy.

  12. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R.; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-01

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ˜50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  13. Study of different registration methods for on-line kilovoltage cone-beam CT guided lung cancer radiation

    Wang Yanyang; Fu Xiaolong; Xia Bing; Wu Zhengqin; Fan Min; Yang Huanjun; Xu Zhiyong; Jiang Guoliang

    2009-01-01

    Objective: To select the optimal registration method for on-line kilovoltage cone-beam CT (KVCBCT) guided lung cancer radiation and evaluate the reproducibility of the selected method. Methods: Sixteen patients with non-small cell lung cancer were enrolled into this study. A total of 96 pretreatment KVCBCT images from the 16 patients were available for the analysis. Image registration methods were bone-based automatic registration, gray-based automatic registration, manual registration and semi-automatic registration. All registrations were accomplished by one physician. Another physician blindly evaluated the results of each registration, then selected the optimal registration method and evaluated its reproducibility. Results: The average score of the bone-based automatic registration, gray-based automatic registration, manual registration and semi-automatic registration methods was 2.4, 2.7, 3.0 and 3.7, respectively. The score of the four different groups had statistics significant difference (F=42.20, P<0.001). Using the semi-automatic registration method, the probability of the difference between two registration results more than 3 mm in the left-right, superior-inferior, and anterior-posterior directions was 0, 3% and 6% by the same physician, 0, 14% and 0 by different physicians, and 8%, 14% and 8% by physician and radiation therapist. Conclusions: Semi-automatic registration method, possessing the highest score and accepted reproducibility, is appropriate for KVCBCT guided lung cancer radiation. (authors)

  14. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure

    Yuanqiang Ren

    2017-05-01

    Full Text Available Structural health monitoring (SHM of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  15. Feature Extraction in Sequential Multimedia Images: with Applications in Satellite Images and On-line Videos

    Liang, Yu-Li

    Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory

  16. On-line monitoring of fluid bed granulation by photometric imaging.

    Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko

    2014-11-01

    This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Image-Guided Cancer Nanomedicine

    Dong-Hyun Kim

    2018-01-01

    Full Text Available Multifunctional nanoparticles with superior imaging properties and therapeutic effects have been extensively developed for the nanomedicine. However, tumor-intrinsic barriers and tumor heterogeneity have resulted in low in vivo therapeutic efficacy. The poor in vivo targeting efficiency in passive and active targeting of nano-therapeutics along with the toxicity of nanoparticles has been a major problem in nanomedicine. Recently, image-guided nanomedicine, which can deliver nanoparticles locally using non-invasive imaging and interventional oncology techniques, has been paid attention as a new opportunity of nanomedicine. This short review will discuss the existing challenges in nanomedicine and describe the prospects for future image-guided nanomedicine.

  18. Image guided prostate cancer treatments

    Bard, Robert L. [Bard Cancer Center, Biofoundation for Angiogenesis Research and Development, New York, NY (United States); Fuetterer, Jurgen J. [Radboud Univ. Nijmegen, Medical Centre (Netherlands). Dept. of Radiology; Sperling, Dan (ed.) [Sperling Prostate Center, Alpha 3TMRI, New York, NY (United States)

    2014-07-01

    Systematic overview of the application of ultrasound and MRI in the diagnosis and treatment of diseases of the lower urinary tract. Detailed information on image-guided therapies, including focused ultrasound, photodynamic therapy, and microwave and laser ablation. Numerous high-quality illustrations based on high-end equipment. Represents the state of the art in Non Invasive Imaging and Minimally Invasive Ablation Treatment (MIAT). Image-Guided Prostate Cancer Treatments is a comprehensive reference and practical guide on the technology and application of ultrasound and MRI in the male pelvis, with special attention to the prostate. The book is organized into three main sections, the first of which is devoted to general aspects of imaging and image-guided treatments. The second section provides a systematic overview of the application of ultrasound and MRI to the diagnosis and treatment of diseases of the lower urinary tract. Performance of the ultrasound and MRI studies is explained, and the normal and abnormal pathological anatomy is reviewed. Correlation with the ultrasound in the same plane is provided to assist in understanding the MRI sequences. Biopsy and interventional procedures, ultrasound-MRI fusion techniques, and image-guided therapies, including focused ultrasound, photodynamic therapy, microwave and laser ablation, are all fully covered. The third section focuses on securing treatment effectiveness and the use of follow-up imaging to ensure therapeutic success and detect tumor recurrence at an early stage, which is vital given that prompt focal treatment of recurrence is very successful. Here, particular attention is paid to the role of Doppler ultrasound and DCE-MRI technologies. This book, containing a wealth of high-quality illustrations based on high-end equipment, will acquaint beginners with the basics of prostate ultrasound and MRI, while more advanced practitioners will learn new skills, means of avoiding pitfalls, and ways of effectively

  19. Image guided multibeam radiotherapy

    Freijo, J.L.

    2008-01-01

    This paper provides an outlook of the status of the first development stages for an updated design of radiotherapy conformal system based on tumor 3D images obtained as an output the last generation imaging machines as PET, CT and MR which offer a very valuable output in cancer diagnosis. Prospective evaluation of current software codes and acquisition of useful experience in surgical planning involves a multidisciplinary process as an initial and unavoidable stage to develop an expert software and user skills which assures the delivery of the radiation dose is done correctly in geometry and value in each voxel as a radiation protection basic condition. The validation of the images obtained has been done by the production of anatomical models of interest regions by rapid proto typing of the 3D segmented images and its evaluation by contrasting with the real regions during surgical procedures. (author)

  20. Haematuria: an imaging guide.

    Moloney, Fiachra

    2014-01-01

    This paper discusses the current status of imaging in the investigation of patients with haematuria. The physician must rationalize imaging so that serious causes such as malignancy are promptly diagnosed while at the same time not exposing patients to unnecessary investigations. There is currently no universal agreement about the optimal imaging work up of haematuria. The choice of modality to image the urinary tract will depend on individual patient factors such as age, the presence of risk factors for malignancy, renal function, a history of calculus disease and pregnancy, and other factors, such as local policy and practice, cost effectiveness and availability of resources. The role of all modalities, including conventional radiography, intravenous urography\\/excretory urography, ultrasonography, retrograde pyelography, multidetector computed tomography urography (MDCTU), and magnetic resonance urography, is discussed. This paper highlights the pivotal role of MDCTU in the imaging of the patient with haematuria and discusses issues specific to this modality including protocol design, imaging of the urothelium, and radiation dose. Examination protocols should be tailored to the patient while all the while optimizing radiation dose.

  1. Development of a portable computed tomographic scanner for on-line imaging of industrial piping systems

    Jaafar Abdullah; Mohd Arif Hamzah; Mohd Soyapi Mohd Yusof; Mohd Fitri Abdul Rahman; Fadil IsmaiI; Rasif Mohd Zain

    2003-01-01

    Computed tomography (CT) technology is being increasingly developed for industrial application. This paper presents the development of a portable computed tomographic scanner for on?line imaging of industrial piping systems. The theoretical approach, the system hardware, the data acquisition system and the adopted algorithm for image reconstruction are discussed. The scanner has large potential to be used to determine the extent of corrosion under insulation (CUI), to detect blockages, to measure the thickness of deposit/materials built-up on the walls and to improve understanding of material flow in pipelines. (Author)

  2. Contrast-guided image interpolation.

    Wei, Zhe; Ma, Kai-Kuang

    2013-11-01

    In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications.

  3. Image-guided surgery.

    Wagner, A; Ploder, O; Enislidis, G; Truppe, M; Ewers, R

    1996-04-01

    Interventional video tomography (IVT), a new imaging modality, achieves virtual visualization of anatomic structures in three dimensions for intraoperative stereotactic navigation. Partial immersion into a virtual data space, which is orthotopically coregistered to the surgical field, enhances, by means of a see-through head-mounted display (HMD), the surgeon's visual perception and technique by providing visual access to nonvisual data of anatomy, physiology, and function. The presented cases document the potential of augmented reality environments in maxillofacial surgery.

  4. Image guided percutaneous splenic interventions

    Kang, Mandeep; Kalra, Naveen; Gulati, Madhu; Lal, Anupam; Kochhar, Rohit; Rajwanshi, Arvind

    2007-01-01

    Aim: The objective of this study is to evaluate the efficacy and safety of image-guided percutaneous splenic interventions as diagnostic or therapeutic procedures. Materials and methods: We performed a retrospective review of our interventional records from July 2001 to June 2006. Ninety-five image-guided percutaneous splenic interventions were performed after informed consent in 89 patients: 64 men and 25 women who ranged in age from 5 months to 71 years (mean, 38.4 years) under ultrasound (n = 93) or CT (n = 2) guidance. The procedures performed were fine needle aspiration biopsy of focal splenic lesions (n = 78) and aspiration (n = 10) or percutaneous catheter drainage of a splenic abscess (n = 7). Results: Splenic fine needle aspiration biopsy was successful in 62 (83.78%) of 74 patients with benign lesions diagnosed in 43 (58.1%) and malignancy in 19 (25.67%) patients. The most common pathologies included tuberculosis (26 patients, 35.13%) and lymphoma (14 patients, 18.91%). Therapeutic aspiration or pigtail catheter drainage was successful in all (100%) patients. There were no major complications. Conclusions: Image-guided splenic fine needle aspiration biopsy is a safe and accurate technique that can provide a definitive diagnosis in most patients with focal lesions in the spleen. This study also suggests that image-guided percutaneous aspiration or catheter drainage of splenic abscesses is a safe and effective alternative to surgery

  5. An integrated on-line irradiation and in situ live cell imaging system

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen, E-mail: gen.yang@pku.edu.cn; Wang, Yugang

    2015-09-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO{sub 2}, O{sub 2} concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia.

  6. An integrated on-line irradiation and in situ live cell imaging system

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen; Wang, Yugang

    2015-01-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO 2 , O 2 concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia

  7. An integrated on-line irradiation and in situ live cell imaging system

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen; Wang, Yugang

    2015-09-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO2, O2 concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia.

  8. On-line video image processing system for real-time neutron radiography

    Fujine, S; Yoneda, K; Kanda, K [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1983-09-15

    The neutron radiography system installed at the E-2 experimental hole of the KUR (Kyoto University Reactor) has been used for some NDT applications in the nuclear field. The on-line video image processing system of this facility is introduced in this paper. A 0.5 mm resolution in images was obtained by using a super high quality TV camera developed for X-radiography viewing a NE-426 neutron-sensitive scintillator. The image of the NE-426 on a CRT can be observed directly and visually, thus many test samples can be sequentially observed when necessary for industrial purposes. The video image signals from the TV camera are digitized, with a 33 ms delay, through a video A/D converter (ADC) and can be stored in the image buffer (32 KB DRAM) of a microcomputer (Z-80) system. The digitized pictures are taken with 16 levels of gray scale and resolved to 240 x 256 picture elements (pixels) on a monochrome CRT, with the capability also to display 16 distinct colors on a RGB video display. The direct image of this system could be satisfactory for penetrating the side plates to test MTR type reactor fuels and for the investigation of moving objects.

  9. Magnetic imaging and machine vision NDT for the on-line inspection of stainless steel strips

    Ricci, M; Ficola, A; Fravolini, M L; Battaglini, L; Palazzi, A; Burrascano, P; Valigi, P; Appolloni, L; Cervo, S; Rocchi, C

    2013-01-01

    An on-line inspection system for stainless steel strips has been developed on an annealing and pickling line at the Acciai Speciali Terni S.p.A. steel mill. Besides a machine vision apparatus, the system contextually exploits a magnetic imaging system designed and realized for the specific application. The main goal of the research is represented by the fusion of the information provided by the two apparatuses that can improve the detection and classification tasks by enlarging the set of detectable defects. In this paper, the development, the calibration and the characteristics of the magnetic imaging apparatus are detailed and experimental results obtained both in laboratory and in situ are reported. A comparative analysis of the performances of the two devices is also reported based on preliminary results and some conclusions and perspectives are drawn. (paper)

  10. Image-guided robotic surgery.

    Marescaux, Jacques; Solerc, Luc

    2004-06-01

    Medical image processing leads to an improvement in patient care by guiding the surgical gesture. Three-dimensional models of patients that are generated from computed tomographic scans or magnetic resonance imaging allow improved surgical planning and surgical simulation that offers the opportunity for a surgeon to train the surgical gesture before performing it for real. These two preoperative steps can be used intra-operatively because of the development of augmented reality, which consists of superimposing the preoperative three-dimensional model of the patient onto the real intraoperative view. Augmented reality provides the surgeon with a view of the patient in transparency and can also guide the surgeon, thanks to the real-time tracking of surgical tools during the procedure. When adapted to robotic surgery, this tool tracking enables visual serving with the ability to automatically position and control surgical robotic arms in three dimensions. It is also now possible to filter physiologic movements such as breathing or the heart beat. In the future, by combining augmented reality and robotics, these image-guided robotic systems will enable automation of the surgical procedure, which will be the next revolution in surgery.

  11. Objective-guided image annotation.

    Mao, Qi; Tsang, Ivor Wai-Hung; Gao, Shenghua

    2013-04-01

    Automatic image annotation, which is usually formulated as a multi-label classification problem, is one of the major tools used to enhance the semantic understanding of web images. Many multimedia applications (e.g., tag-based image retrieval) can greatly benefit from image annotation. However, the insufficient performance of image annotation methods prevents these applications from being practical. On the other hand, specific measures are usually designed to evaluate how well one annotation method performs for a specific objective or application, but most image annotation methods do not consider optimization of these measures, so that they are inevitably trapped into suboptimal performance of these objective-specific measures. To address this issue, we first summarize a variety of objective-guided performance measures under a unified representation. Our analysis reveals that macro-averaging measures are very sensitive to infrequent keywords, and hamming measure is easily affected by skewed distributions. We then propose a unified multi-label learning framework, which directly optimizes a variety of objective-specific measures of multi-label learning tasks. Specifically, we first present a multilayer hierarchical structure of learning hypotheses for multi-label problems based on which a variety of loss functions with respect to objective-guided measures are defined. And then, we formulate these loss functions as relaxed surrogate functions and optimize them by structural SVMs. According to the analysis of various measures and the high time complexity of optimizing micro-averaging measures, in this paper, we focus on example-based measures that are tailor-made for image annotation tasks but are seldom explored in the literature. Experiments show consistency with the formal analysis on two widely used multi-label datasets, and demonstrate the superior performance of our proposed method over state-of-the-art baseline methods in terms of example-based measures on four

  12. A Guide to On-line Geological Information and Publications for Use in GSHP Site Characterization

    Rafferty, K

    2000-03-01

    One of the first steps in the consideration of a GSHP system is a characterization of the site in terms of geology and groundwater availability. Information concerning aquifer (or aquifers) available at the site, their ability to produce water, depth to water, geology, depth to bedrock and the nature of the soil and rock (hydraulic and thermal properties) are key issues. This information guides the designer in the selection of the type of GSHP system to be used and in the design of the system. The ground source industry has not taken full advantage of available geological information resources in the past. This document is an effort to introduce GSHP designers to some of these information sources and the nature of the data that is available. A special emphasis has been placed on Internet based resources operated by government agencies--primarily the USGS and state geological surveys. The following section provides some background information on the maps and other information sources in general. This is followed by summaries of information available for the most active GSHP states.

  13. A heuristic approach to edge detection in on-line portal imaging

    McGee, Kiaran P.; Schultheiss, Timothy E.; Martin, Eric E.

    1995-01-01

    Purpose: Portal field edge detection is an essential component of several postprocessing techniques used in on-line portal imaging, including field shape verification, selective contrast enhancement, and treatment setup error detection. Currently edge detection of successive fractions in a multifraction portal image series involves the repetitive application of the same algorithm. As the number of changes in the field is small compared to the total number of fractions, standard edge detection algorithms essentially recalculate the same field shape numerous times. A heuristic approach to portal edge detection has been developed that takes advantage of the relatively few changes in the portal field shape throughout a fractionation series. Methods and Materials: The routine applies a standard edge detection routine to calculate an initial field edge and saves the edge information. Subsequent fractions are processed by applying an edge detection operator over a small region about each point of the previously defined contour, to determine any shifts in the field shape in the new image. Failure of this edge check indicates that a significant change in the field edge has occurred, and the original edge detection routine is applied to the image. Otherwise the modified edge contour is used to define the new edge. Results: Two hundred and eighty-one portal images collected from an electronic portal imaging device were processed by the edge detection routine. The algorithm accurately calculated each portal field edge, as well as reducing processing time in subsequent fractions of an individual portal field by a factor of up to 14. Conclusions: The heuristic edge detection routine is an accurate and fast method for calculating portal field edges and determining field edge setup errors

  14. On-line MR imaging for dose validation of abdominal radiotherapy

    Glitzner, M; Crijns, S P M; De Senneville, B Denis; Kontaxis, C; Prins, F M; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial.Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant.In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur.The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions.In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose.Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  −2.3–1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  −2.5 to 1.9 Gy could be traced back. (paper)

  15. On-line MR imaging for dose validation of abdominal radiotherapy

    Glitzner, M.; Crijns, S. P. M.; de Senneville, B. Denis; Kontaxis, C.; Prins, F. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-11-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial. Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant. In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur. The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions. In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose. Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  -2.3-1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  -2.5 to 1.9 Gy could be traced back.

  16. On-line cone beam CT image guidance for vocal cord tumor targeting

    Osman, Sarah O.S.; Boer, Hans C.J. de; Astreinidou, Eleftheria; Gangsaas, Anne; Heijmen, Ben J.M.; Levendag, Peter C.

    2009-01-01

    Background and purpose: We are developing a technique for highly focused vocal cord irradiation in early glottic carcinoma to optimally treat a target volume confined to a single cord. This technique, in contrast with the conventional methods, aims at sparing the healthy vocal cord. As such a technique requires sub-mm daily targeting accuracy to be effective, we investigate the accuracy achievable with on-line kV-cone beam CT (CBCT) corrections. Materials and methods: CBCT scans were obtained in 10 early glottic cancer patients in each treatment fraction. The grey value registration available in X-ray volume imaging (XVI) software (Elekta, Synergy) was applied to a volume of interest encompassing the thyroid cartilage. After application of the thus derived corrections, residue displacements with respect to the planning CT scan were measured at clearly identifiable relevant landmarks. The intra- and inter-observer variations were also measured. Results: While before correction the systematic displacements of the vocal cords were as large as 2.4 ± 3.3 mm (cranial-caudal population mean ± SD Σ), daily CBCT registration and correction reduced these values to less than 0.2 ± 0.5 mm in all directions. Random positioning errors (SD σ) were reduced to less than 1 mm. Correcting only for translations and not for rotations did not appreciably affect this accuracy. The residue random displacements partly stem from intra-observer variations (SD = 0.2-0.6 mm). Conclusion: The use of CBCT for daily image guidance in combination with standard mask fixation reduced systematic and random set-up errors of the vocal cords to <1 mm prior to the delivery of each fraction dose. Thus, this facilitates the high targeting precision required for a single vocal cord irradiation.

  17. Improvement in dose escalation using off-line and on-line image feedback in the intensity modulated beam design for prostate cancer treatment

    Yan, D.; Birkner, M.; Nuesslin, F.; Wong, J.; Martinez, A.

    2001-01-01

    planning was performed based on the predefined planning target volume (CTV + 1cm margin. The capability of safe dose escalation increases, on average, extra 15% in the first on-line strategy. The second on-line feedback strategy shows only a marginal improvement on the total treatment dose compared to the first one. However, it shows further improvement on the dose distribution in the normal organs. Conclusions: The capability of safe dose escalation can be significantly enhanced in both the off-line and the on-line image feedback strategies. In the off-line image feedback strategy, patient/organ geometric information obtained from the first week of treatment appears adequate to guide the inverse planning design for remaining treatment. In the on-line image feedback strategy, the knowledge of organ dose distribution received from the previous treatment improves the design of beam intensity

  18. Integration of on-line imaging, plan adaptation and radiation delivery: proof of concept using digital tomosynthesis

    Mestrovic, Ante; Otto, Karl; Nichol, Alan; Clark, Brenda G

    2009-01-01

    The main objective of this manuscript is to propose a new approach to on-line adaptive radiation therapy (ART) in which daily image acquisition, plan adaptation and radiation delivery are integrated together and performed concurrently. A method is described in which on-line ART is performed based on intra-fractional digital tomosynthesis (DTS) images. Intra-fractional DTS images were reconstructed as the gantry rotated between treatment positions. An edge detection algorithm was used to automatically segment the DTS images as the gantry arrived at each treatment position. At each treatment position, radiation was delivered based on the treatment plan re-optimized for the most recent DTS image contours. To investigate the feasibility of this method, a model representing a typical prostate, bladder and rectum was used. To simulate prostate deformations, three clinically relevant, non-rigid deformations (small, medium and large) were modeled by systematically deforming the original anatomy. Using our approach to on-line ART, the original treatment plan was successfully adapted to arrive at a clinically acceptable plan for all three non-rigid deformations. In conclusion, we have proposed a new approach to on-line ART in which plan adaptation is performed based on intra-fractional DTS images. The study findings indicate that this approach can be used to re-optimize the original treatment plan to account for non-rigid anatomical deformations. The advantages of this approach are 1) image acquisition and radiation delivery are integrated in a single gantry rotation around the patient, reducing the treatment time, and 2) intra-fractional DTS images can be used to detect and correct for patient motion prior to the delivery of each beam (intra-fractional patient motion).

  19. Image-guided procedures in brain biopsy.

    Fujita, K; Yanaka, K; Meguro, K; Narushima, K; Iguchi, M; Nakai, Y; Nose, T

    1999-07-01

    Image-guided procedures, such as computed tomography (CT)-guided stereotactic and ultrasound-guided methods, can assist neurosurgeons in localizing the relevant pathology. The characteristics of image-guided procedures are important for their appropriate use, especially in brain biopsy. This study reviewed the results of various image-guided brain biopsies to ascertain the advantages and disadvantages. Brain biopsies assisted by CT-guided stereotactic, ultrasound-guided, Neuronavigator-guided, and the combination of ultrasound and Neuronavigator-guided procedures were carried out in seven, eight, one, and three patients, respectively. Four patients underwent open biopsy without a guiding system. Twenty of 23 patients had a satisfactory diagnosis after the initial biopsy. Three patients failed to have a definitive diagnosis after the initial procedure, one due to insufficient volume sampling after CT-guided procedure, and two due to localization failure by ultrasound because the lesions were nonechogenic. All patients who underwent biopsy using the combination of ultrasound and Neuronavigator-guided methods had a satisfactory result. The CT-guided procedure provided an efficient method of approaching any intracranial target and was appropriate for the diagnosis of hypodense lesions, but tissue sampling was sometimes not sufficient to achieve a satisfactory diagnosis. The ultrasound-guided procedure was suitable for the investigation of hyperdense lesions, but was difficult to localize nonechogenic lesions. The combination of ultrasound and Neuronavigator methods improved the diagnostic accuracy even in nonechogenic lesions such as malignant lymphoma. Therefore, it is essential to choose the most appropriate guiding method for brain biopsy according to the radiological nature of the lesions.

  20. Color image guided depth image super resolution using fusion filter

    He, Jin; Liang, Bin; He, Ying; Yang, Jun

    2018-04-01

    Depth cameras are currently playing an important role in many areas. However, most of them can only obtain lowresolution (LR) depth images. Color cameras can easily provide high-resolution (HR) color images. Using color image as a guide image is an efficient way to get a HR depth image. In this paper, we propose a depth image super resolution (SR) algorithm, which uses a HR color image as a guide image and a LR depth image as input. We use the fusion filter of guided filter and edge based joint bilateral filter to get HR depth image. Our experimental results on Middlebury 2005 datasets show that our method can provide better quality in HR depth images both numerically and visually.

  1. Automated analysis of heterogeneous carbon nanostructures by high-resolution electron microscopy and on-line image processing

    Toth, P.; Farrer, J.K.; Palotas, A.B.; Lighty, J.S.; Eddings, E.G.

    2013-01-01

    High-resolution electron microscopy is an efficient tool for characterizing heterogeneous nanostructures; however, currently the analysis is a laborious and time-consuming manual process. In order to be able to accurately and robustly quantify heterostructures, one must obtain a statistically high number of micrographs showing images of the appropriate sub-structures. The second step of analysis is usually the application of digital image processing techniques in order to extract meaningful structural descriptors from the acquired images. In this paper it will be shown that by applying on-line image processing and basic machine vision algorithms, it is possible to fully automate the image acquisition step; therefore, the number of acquired images in a given time can be increased drastically without the need for additional human labor. The proposed automation technique works by computing fields of structural descriptors in situ and thus outputs sets of the desired structural descriptors in real-time. The merits of the method are demonstrated by using combustion-generated black carbon samples. - Highlights: ► The HRTEM analysis of heterogeneous nanostructures is a tedious manual process. ► Automatic HRTEM image acquisition and analysis can improve data quantity and quality. ► We propose a method based on on-line image analysis for the automation of HRTEM image acquisition. ► The proposed method is demonstrated using HRTEM images of soot particles

  2. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    Zhang, Ye; Knopf, A; Tanner, Colby; Boye, Dirk; Lomax, Antony J.

    2013-01-01

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At

  3. MR image reconstruction via guided filter.

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  4. Development of an ion guide coupled to an on-line isotope separation system on Sara. Identification and study of isospin exotic nuclei at Isolde and Sara

    Bouldjedri, A.

    1992-06-01

    This work is concerned with the study of exotic nuclei located on both sides of the stability-line and known as neutron rich and neutron deficient respectively. For the former, produced by alpha particle-induced fission, an on-line isotope separation with an ion guide (IGISOL) has been developed and submitted to several off-line and on-line optimization tests showing capacity to spectroscopic studies. In the case of neutron deficient nuclei near the magicity Z=82, 182 Tl(3s) has been identified and its decaying modes and those of 183 Tl ground state, studied, using the on-line separator ISOLDE. On the other hand, the β decay of 172,175 Ir produced in 32 S induced reaction is studied using a helium jet system on the SARA accelerator. Existence of isomers is derived from half-lives measurements

  5. Guy's Guide to Body Image

    ... height). For them, puberty may add to their insecurities. Building a Better Body Image So what can ... image, but getting too focused on appearance can cause a guy to overlook the other positive parts ...

  6. Quality assurance for image-guided radiotherapy

    Marinello, Ginette

    2008-01-01

    The topics discussed include, among others, the following: Quality assurance program; Image guided radiotherapy; Commissioning and quality assurance; Check of agreement between visual and displayed scales; quality controls: electronic portal imaging device (EPID), MV-kV and kV-kV, cone-beam CT (CBCT), patient doses. (P.A.)

  7. Different styles of image-guided radiotherapy

    van Herk, Marcel

    2007-01-01

    To account for geometric uncertainties during radiotherapy, safety margins are applied. In many cases, these margins overlap organs at risk, thereby limiting dose escalation. The aim of image-guided radiotherapy is to improve the accuracy by imaging tumors and critical structures on the machine just

  8. Guide to Magellan image interpretation

    Ford, John P.; Plaut, Jeffrey J.; Weitz, Catherine M.; Farr, Tom G.; Senske, David A.; Stofan, Ellen R.; Michaels, Gregory; Parker, Timothy J.; Fulton, D. (Editor)

    1993-01-01

    An overview of Magellan Mission requirements, radar system characteristics, and methods of data collection is followed by a description of the image data, mosaic formats, areal coverage, resolution, and pixel DN-to-dB conversion. The availability and sources of image data are outlined. Applications of the altimeter data to estimate relief, Fresnel reflectivity, and surface slope, and the radiometer data to derive microwave emissivity are summarized and illustrated in conjunction with corresponding SAR image data. Same-side and opposite-side stereo images provide examples of parallax differences from which to measure relief with a lateral resolution many times greater than that of the altimeter. Basic radar interactions with geologic surfaces are discussed with respect to radar-imaging geometry, surface roughness, backscatter modeling, and dielectric constant. Techniques are described for interpreting the geomorphology and surface properties of surficial features, impact craters, tectonically deformed terrain, and volcanic landforms. The morphologic characteristics that distinguish impact craters from volcanic craters are defined. Criteria for discriminating extensional and compressional origins of tectonic features are discussed. Volcanic edifices, constructs, and lava channels are readily identified from their radar outlines in images. Geologic map units are identified on the basis of surface texture, image brightness, pattern, and morphology. Superposition, cross-cutting relations, and areal distribution of the units serve to elucidate the geologic history.

  9. Image quality (IQ) guided multispectral image compression

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  10. Small animal imaging. Basics and practical guide

    Kiessling, Fabian [Aachen Univ. (RWTH) (Germany). Chair of Experimental Molecular Imaging; Pichler, Bernd J. (eds.) [Tuebingen Univ. (Germany). Lab. for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation

    2011-07-01

    Small animal imaging has been recognized as an important tool in preclinical research. Nevertheless, the results of non-invasive imaging are often disappointing owing to choice of a suboptimal imaging modality and/or shortcomings in study design, experimental setup, and data evaluation. This textbook is a practical guide to the use of non-invasive imaging in preclinical research. Each of the available imaging modalities is discussed in detail, with the assistance of numerous informative illustrations. In addition, many useful hints are provided on the installation of a small animal unit, study planning, animal handling, and the cost-effective performance of small animal imaging. Cross-calibration methods, data postprocessing, and special imaging applications are also considered in depth. This is the first book to cover all the practical basics in small animal imaging, and it will prove an invaluable aid for researchers, students, and technicians. (orig.)

  11. Small animal imaging. Basics and practical guide

    Kiessling, Fabian; Pichler, Bernd J.

    2011-01-01

    Small animal imaging has been recognized as an important tool in preclinical research. Nevertheless, the results of non-invasive imaging are often disappointing owing to choice of a suboptimal imaging modality and/or shortcomings in study design, experimental setup, and data evaluation. This textbook is a practical guide to the use of non-invasive imaging in preclinical research. Each of the available imaging modalities is discussed in detail, with the assistance of numerous informative illustrations. In addition, many useful hints are provided on the installation of a small animal unit, study planning, animal handling, and the cost-effective performance of small animal imaging. Cross-calibration methods, data postprocessing, and special imaging applications are also considered in depth. This is the first book to cover all the practical basics in small animal imaging, and it will prove an invaluable aid for researchers, students, and technicians. (orig.)

  12. On-line MR imaging for dose validation of abdominal radiotherapy

    Glitzner, M; Crijns, S P M; de Senneville, B Denis; Kontaxis, C; Prins, F M; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial.Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static

  13. Trilogy Image-Guided Stereotactic Radiosurgery

    Huntzinger, Calvin; Friedman, William; Bova, Frank; Fox, Timothy; Bouchet, Lionel; Boeh, Lester M.B.A.

    2007-01-01

    Full integration of advanced imaging, noninvasive immobilization, positioning, and motion-management methods into radiosurgery have resulted in fundamental changes in therapeutic strategies and approaches that are leading us to the treatment room of the future. With the introduction of image-guided radiosurgery (IGRS) systems, such as Trilogy TM , physicians have for the first time a practical means of routinely identifying and treating very small lesions throughout the body. Using new imaging processes such as positron emission tomography/computed tomography (PET/CT) scans, clinics may be able to detect these lesions and then eradicate them with image-guided stereotactic radiosurgery treatments. Thus, there is promise that cancer could be turned into a chronic disease, managed through a series of checkups, and Trilogy treatments when metastatic lesions reappear

  14. On-line fresh-cut lettuce quality measurement system using hyperspectral imaging

    Lettuce, which is a main type of fresh-cut vegetable, has been used in various fresh-cut products. In this study, an online quality measurement system for detecting foreign substances on the fresh-cut lettuce was developed using hyperspectral reflectance imaging. The online detection system with a s...

  15. Registration of Urban Aerial Image and LiDAR Based on Line Vectors

    Qinghong Sheng

    2017-09-01

    Full Text Available In a traditional registration of a single aerial image with airborne light detection and ranging (LiDAR data using linear features that regard line direction as a control or linear features as constraints in the solution, lacking the constraint of linear position leads to the error propagation of the adjustment model. To solve this problem, this paper presents a line vector-based registration mode (LVR in which image rays and LiDAR lines are expressed by a line vector that integrates the line direction and the line position. A registration equation of line vector is set up by coplanar imaging rays and corresponding control lines. Three types of datasets consisting of synthetic, theInternational Society for Photogrammetry and Remote Sensing (ISPRS test project, and real aerial data are used. A group of progressive experiments is undertaken to evaluate the robustness of the LVR. Experimental results demonstrate that the integrated line direction and the line position contributes a great deal to the theoretical and real accuracies of the unknowns, as well as the stability of the adjustment model. This paper provides a new suggestion that, for a single image and LiDAR data, registration in urban areas can be accomplished by accommodating rich line features.

  16. Guided color consistency optimization for image mosaicking

    Xie, Renping; Xia, Menghan; Yao, Jian; Li, Li

    2018-01-01

    This paper studies the problem of color consistency correction for sequential images with diverse color characteristics. Existing algorithms try to adjust all images to minimize color differences among images under a unified energy framework, however, the results are prone to presenting a consistent but unnatural appearance when the color difference between images is large and diverse. In our approach, this problem is addressed effectively by providing a guided initial solution for the global consistency optimization, which avoids converging to a meaningless integrated solution. First of all, to obtain the reliable intensity correspondences in overlapping regions between image pairs, we creatively propose the histogram extreme point matching algorithm which is robust to image geometrical misalignment to some extents. In the absence of the extra reference information, the guided initial solution is learned from the major tone of the original images by searching some image subset as the reference, whose color characteristics will be transferred to the others via the paths of graph analysis. Thus, the final results via global adjustment will take on a consistent color similar to the appearance of the reference image subset. Several groups of convincing experiments on both the synthetic dataset and the challenging real ones sufficiently demonstrate that the proposed approach can achieve as good or even better results compared with the state-of-the-art approaches.

  17. On-line transmission electron microscopic image analysis of chromatin texture for differentiation of thyroid gland tumors.

    Kriete, A; Schäffer, R; Harms, H; Aus, H M

    1987-06-01

    Nuclei of the cells from the thyroid gland were analyzed in a transmission electron microscope by direct TV scanning and on-line image processing. The method uses the advantages of a visual-perception model to detect structures in noisy and low-contrast images. The features analyzed include area, a form factor and texture parameters from the second derivative stage. Three tumor-free thyroid tissues, three follicular adenomas, three follicular carcinomas and three papillary carcinomas were studied. The computer-aided cytophotometric method showed that the most significant differences were the statistics of the chromatin texture features of homogeneity and regularity. These findings document the possibility of an automated differentiation of tumors at the ultrastructural level.

  18. Characterization of the Mucor circinelloides life cycle by on-line image analysis

    Lübbehüsen, Tina Louise; Nielsen, Jens; Mcintyre, Mhairi

    2003-01-01

    in and between the different morphological forms of the organism.Methods and Results: Mycelial growth and the transformation of hyphae into chains of arthrospores were characterized by image analysis techniques and described quantitatively. The influence of the nature (glucose and xylose) and concentration......-through cell, and combined with fluorescent microscopy which allowed new insights to bud formation. Additionally, numbers and distribution of nuclei in arthrospores, hyphae and yeasts were studied.Conclusions: The results give essential information on the morphological development of the organism...

  19. Image-guided radiation therapy: physician's perspectives

    Gupta, T.; Anand Narayan, C.

    2012-01-01

    The evolution of radiotherapy has been ontogenetically linked to medical imaging. Over the years, major technological innovations have resulted in substantial improvements in radiotherapy planning, delivery, and verification. The increasing use of computed tomography imaging for target volume delineation coupled with availability of computer-controlled treatment planning and delivery systems have progressively led to conformation of radiation dose to the target tissues while sparing surrounding normal tissues. Recent advances in imaging technology coupled with improved treatment delivery allow near-simultaneous soft-tissue localization of tumor and repositioning of patient. The integration of various imaging modalities within the treatment room for guiding radiation delivery has vastly improved the management of geometric uncertainties in contemporary radiotherapy practice ushering in the paradigm of image-guided radiation therapy (IGRT). Image-guidance should be considered a necessary and natural corollary to high-precision radiotherapy that was long overdue. Image-guided radiation therapy not only provides accurate information on patient and tumor position on a quantitative scale, it also gives an opportunity to verify consistency of planned and actual treatment geometry including adaptation to daily variations resulting in improved dose delivery. The two main concerns with IGRT are resource-intensive nature of delivery and increasing dose from additional imaging. However, increasing the precision and accuracy of radiation delivery through IGRT is likely to reduce toxicity with potential for dose escalation and improved tumor control resulting in favourable therapeutic index. The radiation oncology community needs to leverage this technology to generate high-quality evidence to support widespread adoption of IGRT in contemporary radiotherapy practice. (author)

  20. Radiation damage of light guide fibers in gamma radiation field - on-line monitoring of absorption centers formation

    Blaha, J.; Simane, C.; Finger, M.; Slunecka, M.; Finger, M. Jr.; Sluneckova, V.; Janata, A.; Vognar, M.; Sulc, M.

    2004-01-01

    The kinetics of radiation-induced changes of absorption coefficient was studied by online transmission spectra measurement for two different Kuraray light guide fibers. The samples were irradiated by bremsstrahlung gamma radiation, dose rates were from 2 Gy/s to 25 Gy/s. The kinetic coefficients both for absorption centers formation and for recovery processes were calculated. Good agreement of experimental data and simple one-short-lived absorption center model were received for radiation-hard light guide Kuraray (KFC). The more complicated process was observed on Kuraray (PSM) clear fiber. It was caused by the reaction of the oxygen dissolved in fiber and created radicals. The results are very useful for prediction of an optical fibers response in conditions of new nuclear and particle physics experiments. (author)

  1. NEW INSTRUMENTS FOR SURVEY: ON LINE SOFTWARES FOR 3D RECONTRUCTION FROM IMAGES

    E. Fratus de Balestrini

    2012-09-01

    Full Text Available 3d scanning technologies had a significant development and have been widely used in documentation of cultural, architectural and archeological heritages. Modern methods of three-dimensional acquiring and modeling allow to represent an object through a digital model that combines visual potentialities of images (normally used for documentation to the accuracy of the survey, becoming at the same time support for the visualization that for metric evaluation of any artefact that have an historical or artistic interest, opening up new possibilities for cultural heritage's fruition, cataloging and study. Despite this development, because of the small catchment area and the 3D laser scanner's sophisticated technologies, the cost of these instruments is very high and beyond the reach of most operators in the field of cultural heritages. This is the reason why they have appeared low-cost technologies or even free, allowing anyone to approach the issues of acquisition and 3D modeling, providing tools that allow to create three-dimensional models in a simple and economical way. The research, conducted by the Laboratory of Photogrammetry of the University IUAV of Venice, of which we present here some results, is intended to figure out whether, with Arc3D, it is possible to obtain results that can be somehow comparable, in therms of overall quality, to those of the laser scanner, and/or whether it is possible to integrate them. They were carried out a series of tests on certain types of objects, models made with Arc3D, from raster images, were compared with those obtained using the point clouds from laser scanner. We have also analyzed the conditions for an optimal use of Arc3D: environmental conditions (lighting, acquisition tools (digital cameras and type and size of objects. After performing the tests described above, we analyzed the patterns generated by Arc3D to check what other graphic representations can be obtained from them: orthophotos and drawings

  2. On-line, continuous monitoring in solar cell and fuel cell manufacturing using spectral reflectance imaging

    Sopori, Bhushan; Rupnowski, Przemyslaw; Ulsh, Michael

    2016-01-12

    A monitoring system 100 comprising a material transport system 104 providing for the transportation of a substantially planar material 102, 107 through the monitoring zone 103 of the monitoring system 100. The system 100 also includes a line camera 106 positioned to obtain multiple line images across a width of the material 102, 107 as it is transported through the monitoring zone 103. The system 100 further includes an illumination source 108 providing for the illumination of the material 102, 107 transported through the monitoring zone 103 such that light reflected in a direction normal to the substantially planar surface of the material 102, 107 is detected by the line camera 106. A data processing system 110 is also provided in digital communication with the line camera 106. The data processing system 110 is configured to receive data output from the line camera 106 and further configured to calculate and provide substantially contemporaneous information relating to a quality parameter of the material 102, 107. Also disclosed are methods of monitoring a quality parameter of a material.

  3. On-Line GIS Analysis and Image Processing for Geoportal Kielce/poland Development

    Hejmanowska, B.; Głowienka, E.; Florek-Paszkowski, R.

    2016-06-01

    GIS databases are widely available on the Internet, but mainly for visualization with limited functionality; very simple queries are possible i.e. attribute query, coordinate readout, line and area measurements or pathfinder. A little more complex analysis (i.e. buffering or intersection) are rare offered. Paper aims at the concept of Geoportal functionality development in the field of GIS analysis. Multi-Criteria Evaluation (MCE) is planned to be implemented in web application. OGC Service is used for data acquisition from the server and results visualization. Advanced GIS analysis is planned in PostGIS and Python programming. In the paper an example of MCE analysis basing on Geoportal Kielce is presented. Other field where Geoportal can be developed is implementation of processing new available satellite images free of charge (Sentinel-2, Landsat 8, ASTER, WV-2). Now we are witnessing a revolution in access to the satellite imagery without charge. This should result in an increase of interest in the use of these data in various fields by a larger number of users, not necessarily specialists in remote sensing. Therefore, it seems reasonable to expand the functionality of Internet's tools for data processing by non-specialists, by automating data collection and prepared predefined analysis.

  4. ON-LINE GIS ANALYSIS AND IMAGE PROCESSING FOR GEOPORTAL KIELCE/POLAND DEVELOPMENT

    B. Hejmanowska

    2016-06-01

    Full Text Available GIS databases are widely available on the Internet, but mainly for visualization with limited functionality; very simple queries are possible i.e. attribute query, coordinate readout, line and area measurements or pathfinder. A little more complex analysis (i.e. buffering or intersection are rare offered. Paper aims at the concept of Geoportal functionality development in the field of GIS analysis. Multi-Criteria Evaluation (MCE is planned to be implemented in web application. OGC Service is used for data acquisition from the server and results visualization. Advanced GIS analysis is planned in PostGIS and Python programming. In the paper an example of MCE analysis basing on Geoportal Kielce is presented. Other field where Geoportal can be developed is implementation of processing new available satellite images free of charge (Sentinel-2, Landsat 8, ASTER, WV-2. Now we are witnessing a revolution in access to the satellite imagery without charge. This should result in an increase of interest in the use of these data in various fields by a larger number of users, not necessarily specialists in remote sensing. Therefore, it seems reasonable to expand the functionality of Internet's tools for data processing by non-specialists, by automating data collection and prepared predefined analysis.

  5. Image-guided positioning and tracking.

    Ruan, Dan; Kupelian, Patrick; Low, Daniel A

    2011-01-01

    Radiation therapy aims at maximizing tumor control while minimizing normal tissue complication. The introduction of stereotactic treatment explores the volume effect and achieves dose escalation to tumor target with small margins. The use of ablative irradiation dose and sharp dose gradients requires accurate tumor definition and alignment between patient and treatment geometry. Patient geometry variation during treatment may significantly compromise the conformality of delivered dose and must be managed properly. Setup error and interfraction/intrafraction motion are incorporated in the target definition process by expanding the clinical target volume to planning target volume, whereas the alignment between patient and treatment geometry is obtained with an adaptive control process, by taking immediate actions in response to closely monitored patient geometry. This article focuses on the monitoring and adaptive response aspect of the problem. The term "image" in "image guidance" will be used in a most general sense, to be inclusive of some important point-based monitoring systems that can be considered as degenerate cases of imaging. Image-guided motion adaptive control, as a comprehensive system, involves a hierarchy of decisions, each of which balances simplicity versus flexibility and accuracy versus robustness. Patient specifics and machine specifics at the treatment facility also need to be incorporated into the decision-making process. Identifying operation bottlenecks from a system perspective and making informed compromises are crucial in the proper selection of image-guidance modality, the motion management mechanism, and the respective operation modes. Not intended as an exhaustive exposition, this article focuses on discussing the major issues and development principles for image-guided motion management systems. We hope these information and methodologies will facilitate conscientious practitioners to adopt image-guided motion management systems

  6. Reliability-guided digital image correlation for image deformation measurement

    Pan Bing

    2009-01-01

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness

  7. Endovascular image-guided interventions (EIGIs)

    Rudin, Stephen; Bednarek, Daniel R.; Hoffmann, Kenneth R.

    2008-01-01

    Minimally invasive interventions are rapidly replacing invasive surgical procedures for the most prevalent human disease conditions. X-ray image-guided interventions carried out using the insertion and navigation of catheters through the vasculature are increasing in number and sophistication. In this article, we offer our vision for the future of this dynamic field of endovascular image-guided interventions in the form of predictions about (1) improvements in high-resolution detectors for more accurate guidance, (2) the implementation of high-resolution region of interest computed tomography for evaluation and planning, (3) the implementation of dose tracking systems to control patient radiation risk, (4) the development of increasingly sophisticated interventional devices, (5) the use of quantitative treatment planning with patient-specific computer fluid dynamic simulations, and (6) the new expanding role of the medical physicist. We discuss how we envision our predictions will come to fruition and result in the universal goal of improved patient care.

  8. Issues in image-guided therapy.

    Haigron , Pascal; Luo , Limin ,; Coatrieux , Jean-Louis

    2009-01-01

    International audience; Medical robotics, computer- assisted surgery (CAS), image-guided therapy (IGT), and the like emerged more than 20 years ago, and many advances have been made since. Conferences and workshops have been organized; scientific contributions, position papers, and patents have been published; new academic societies have been launched; and companies were created all over the world to propose methods, devices, and systems in the area. Researchers in robotics, computer vision a...

  9. Relations of image quality in on-line portal images and individual patient parameters for pelvic field radiotherapy

    Heuvel, F. van den; Neve, W. de; Coghe, M.; Verellen, D.; Storme, G.

    1992-01-01

    The aims of the present study involving 566 pelvic fields on 13 patients were: 1. To study the machine- and patient-related factors influencing image quality. 2. To study the factors related to machine, patient and patient set-up, influencing the errors of field set-up. 3. To develop a method for predicting the camera settings. The OPI device consisted of a fluorescent screen scanned by a video camera. An image quality score on a scale 0-5 was given for 546/566 fields. In a univariate analysis, open field subtraction adversely affected the score. The image score of anterior fields was significantly better than that of posterior fields. Multivariate stepwise logistic regression showed that, in addition to anterior or posterior field and subtraction, gender was also a significant predictor of image score. Errors requiring field adjustments were detected on 289/530 (54.5%) evaluable fields or 229/278 (82.4%) evaluable patient set-ups. Multivariate logistic regression showed that the probability of performing an adjustment was significantly related to gender, image quality and AP-PA diameter. The magnitude of adjustments made in the lateral direction correlated significantly with patient bulk. The camera kV level with gain held constant showed an exponential dependency on dose rate at the image detector plate and can thus be predicted by treatment planning. (orig.)

  10. Ultrasonic image analysis and image-guided interventions.

    Noble, J Alison; Navab, Nassir; Becher, H

    2011-08-06

    The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.

  11. Plantar fascia: imaging diagnosis and guided treatment.

    McNally, Eugene G; Shetty, Shilpa

    2010-09-01

    Plantar fasciopathy is a common cause of heel pain. This article covers the imaging anatomy of the hindfoot, the imaging findings on ultrasound and magnetic resonance imaging (MRI) of plantar fasciopathy, plantar fibromas, trauma, Achilles tendonopathy, neural compression, stress fractures of the os calcis and other heel pad lesions. Thickening of the plantar fascia insertion more than 5 mm either on ultrasound or MRI is suggestive of plantar fasciopathy. Ultrasound is superior to MRI for diagnosis of plantar fibroma as small low signal lesions on MRI are similar to the normal plantar fascia signal. Ultrasound demonstrates low echogenicity compared with the echogenic plantar fascia. Penetrating injuries can appear bizarre due to associated foreign body impaction and infection. Achilles tendonopathy can cause heel pain and should be considered as a possible diagnosis. Treatment options include physical therapy, ECSWT, corticosteroid injection, and dry needling. Percutaneous US guided treatment methods will be described. Thieme Medical Publishers.

  12. Preoperative imaging as the basis for image-guided neurosurgery

    Winkler, D.; Strauss, G.; Hesse, S.; Sabri, O.; Goldammer, A.; Meixensberger, J.; Hund-Georgiadis, M.; Richter, A.; Kahn, T.

    2004-01-01

    With the progressive development of soft- and hardware, the acceptance of image-guided neurosurgery has increased dramatically. Additional image data are required to analyze the nature and the dimensions of pathological processes and the surrounding tissue. In this context, fMRI, SPECT, PET, as well as special modalities of CT and MR imaging, are routinely used. Secondary post-processing options are used to detect intracerebral lesions as well as adjacent functional eloquent regions in the parenchymatous organ pre- and intraoperatively. The integration of different image information guarantees the precise planning and realization of surgical maneuvers. The segmentation of interesting structures and risk structures, as well as their implementation in the neuronavigation systems, help to avoid additional intraoperative traumatization and offer a higher level of safety and precision. In this article the value and limitations of presurgical imaging will be discussed. (orig.) [de

  13. X-ray volume imaging in image-guided radiotherapy

    Thorson, Theodore; Prosser, Tim

    2006-01-01

    Treatment simulation has significantly improved the accuracy and precision of radiation therapy delivery. A new generation of therapy systems promises to take the simulation and imaging process to a new level of accuracy; however, this will require changes in the workflow process. We describe the first generation of these devices, review the various imaging options and how they might be used in the clinic to improve treatment outcomes, and suggest several workflow approaches. Workflows discussed include on-line interventional, off-line adaptive, and off-line predictive approaches, with both geometric and dosimetric considerations. These changes will place new knowledge requirements on the medical dosimetrist and will necessitate involvement in the development of new departmental processes

  14. Particle image velocimetry a practical guide

    Raffel, Marcus; Wereley, Steve T; Kompenhans, Jürgen

    2007-01-01

    The development of Particle Image Velocimetry (PIV), a measurement technique, which allows for capturing velocity information of whole ?ow ?elds in fractions of a second, has begun in the eighties of the last century. In 1998, when this book has been published ?rstly, the PIV technique emerged from laboratories to applications in fundamental and industrial research, in par- lel to the transition from photo-graphicalto video recording techniques. Thus this book, whose objective was and is to serve as a practical guide to the PIV technique, found strong interest within the increasing group of us

  15. Image guided versus palpation guided core needle biopsy of palpable breast masses: a prospective study

    Smriti Hari

    2016-01-01

    Interpretation & conclusions: Our results showed that in palpable breast masses, image guided biopsy was superior to palpation guided biopsy in terms of sensitivity, false negative rate and repeat biopsy rates.

  16. INNOLAB- image guided surgery and therapy lab

    Fritzsche Holger

    2017-09-01

    Full Text Available Incremental innovation, something better or cheaper or more effective, is the standard innovation process for medical product development. Disruptive innovation is often not recognized as disruptive, because it very often starts as a simple and easy alternative to existing products with much reduced features and bad performance. Innovation is the invention multiplied with a commercial use, or in other words something that eventually provides a value to a clinical user or patient. To create such innovation not a technology push (technology delivered from a technical need perspective but rather a pull (by learning and working with the clinical users is required. Medical technology students need to understand that only through proper observation, procedure know-how and subsequent analysis and evaluation, clinically relevant and affordable innovation can be generated and possibly subsequently used for entrepreneurial ventures. The dedicated laboratory for innovation, research and entrepreneurship- INNOLAB ego.-INKUBATOR IGT (Image Guided Therapies is financed by the state of Sachsen-Anhalt as part of the European ego.-INKUBATOR program with (EFRE funds at the university clinic operated by the technical chair for catheter technologies and image guided surgeries. It forms a network node between medicine, research and economics. It teaches students to lead innovation processes, technology transfer to the user and is designed to stimulate the start-up intentions.

  17. Image-guided radiofrequency ablation of renal cell carcinoma

    Boss, Andreas; Clasen, Stephan; Pereira, Philippe L.; Kuczyk, Markus; Schick, Fritz

    2007-01-01

    The incidence of renal cell carcinoma is rising with the increased number of incidental detection of small tumours. During the past few years, percutaneous imaging-guided radiofrequency ablation has evolved as a minimally invasive treatment of small unresectable renal tumours offering reduced patient morbidity and overall health care costs. In radiofrequency ablation, thermal energy is deposited into a targeted tumour by means of a radiofrequency applicator. In recent studies, radiofrequency ablation was shown to be an effective and safe modality for local destruction of renal cell carcinoma. Radiofrequency applicator navigation can be performed via ultrasound, computed tomography or magnetic resonance guidance; however, ultrasound seems less favourable because of the absence of monitoring capabilities during ablation. On-line monitoring of treatment outcome can only be performed with magnetic resonance imaging giving the possibility of eventual applicator repositioning to ablate visible residual tumour tissue. Long-term follow-up is crucial to assess completeness of tumour ablation. New developments in ablation technology and radiological equipment will further increase the indication field for radiofrequency ablation of renal cell carcinoma. Altogether, radiofrequency ablation seems to be a promising new modality for the minimally invasive treatment of renal cell carcinoma, which was demonstrated to exhibit high short-term effectiveness. (orig.)

  18. Image-guided drug delivery: preclinical applications and clinical translation

    Ojha, Tarun; Rizzo, Larissa; Storm, Gerrit; Kiessling, Fabian; Lammers, Twan Gerardus Gertudis Maria

    2015-01-01

    Image-guided drug delivery refers to the combination of drug targeting and imaging. Preclinically, image-guided drug delivery can be used for several different purposes, including for monitoring biodistribution, target site accumulation, off-target localization, drug release and drug efficacy.

  19. Radiation resistivity of pure-silica core image guide

    Hayami, H.; Ishitani, T.; Kishihara, O.; Suzuki, K.

    1988-01-01

    Radiation resistivity of pure-silica core image guides were investigated in terms of incremental spectral loss and quality of pictures transmitted through the image guides. Radiation-induced spectral losses were measured so as to clarify the dependences of radiation resistivity on such parameters as core materials (OH and Cl contents), picture element dimensions, (core packing density and cladding thickness), number of picture elements and drawing conditions. As the results, an image guide with OH-and Cl-free pure-silica core, 30-45% in core packing density, and 1.8 ∼ 2.2 μm in cladding thickness showed the lowest loss. The parameters to design this image guide were almost the same as those to obtain a image guide with good picture quality. Radiation resistivity of the image guide was not dependent on drawing conditions and number of picture elements, indicating that the image guide has large allowable in production conditions and that reliable quality is constantly obtained in production. Radiation resistivity under high total doses was evaluated using the image guide with the lowest radiation-induced loss. Maximum usable lengths of the image guide for practical use under specific high total doses and maximum allowable total doses for the image guide in specific lengths were extrapolated. Picture quality in terms of radiation-induced degradation in color fidelity in the pictures transmitted through image guides was quantitatively evaluated in the chromaticity diagram based on the CIE standard colorimetric system and in the color specification charts according to three attributes of colors. The image guide with the least spectral incremental loss gives the least radiation-induced degradation in color fidelity in the pictures as well. (author)

  20. Automated landmark-guided deformable image registration.

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-07

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency.

  1. Automated landmark-guided deformable image registration

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-01

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency. (paper)

  2. Image guided surgery for petrous apex lesions

    Van Havenbergh, T.; De Ridder, D.; Verlooy, J.; Koekelkoren, E.; Van De Heyning, P.

    2003-01-01

    To evaluate whether computer-assisted frameless stereotactic navigation in the temporal bone provides sufficient clinical application accuracy and thus a useful tool in temporal bone surgery. Two patients with petrous apex cholesterol granuloma were operated on by an epidural middle fossa approach using a Stealth/MedtronicTM neuronavigation system. Based an literature data optimal skin fiducial placement and registration methods were used. Intra-operative accuracy was checked using three precise anatomical landmarks. Drilling of the petrotis apex bone was guided by neuronavigation. Postoperative Computed Tomography (CT) images were fused with the preoperative CT and planning. The application of image-guidance in temporal bone surgery causes no additional burden to the patient nor prolongs the operating time. The accuracy measured at the anatomical landmarks was under 2,0 mm. This is confirmed by evaluation of bone removal through image fusion of pre- and postoperative CT scan. The clinical application of a neuronavigation system during petrous apex surgery can be regarded as useful. Using all available data on registration methods it seems possible to obtain intra-operative application accuracies of < 2,0 mm. Additional cadaver work is being performed to support these data. (author)

  3. Image-guided and adaptive radiotherapy

    Louvel, G.; Chajon, E.; Henry, O.; Cazoulat, G.; Le Maitre, A.; Simon, A.; Bensadoun, R.J.; Crevoisier, R. de

    2012-01-01

    Image-guided radiotherapy (IGRT) aims to take into account anatomical variations occurring during irradiation by visualization of anatomical structures. It may consist of a rigid registration of the tumour by moving the patient, in case of prostatic irradiation for example. IGRT associated with intensity-modulated radiotherapy (IMRT) is strongly recommended when high-dose is delivered in the prostate, where it seems to reduce rectal and bladder toxicity. In case of significant anatomical deformations, as in head and neck tumours (tumour shrinking and decrease in volume of the salivary glands), re-planning appears to be necessary, corresponding to the adaptive radiotherapy. This should ideally be 'monitored' and possibly triggered based on a calculation of cumulative dose, session after session, compared to the initial planning dose, corresponding to the concept of dose-guided adaptive radiotherapy. The creation of 'planning libraries' based on predictable organ positions (as in cervical cancer) is another way of adaptive radiotherapy. All of these strategies still appear very complex and expensive and therefore require stringent validation before being routinely applied. (authors)

  4. Image-Guided Spinal Ablation: A Review

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Koch, Guillaume, E-mail: guillaume.koch@chru-strasbourg.fr; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr; Garnon, Julien, E-mail: julien.garnon@chru-strasbourg.fr; Cazzato, Roberto Luigi, E-mail: roberto-luigi.cazzato@chru-strasbourg.fr; Edalat, Faramarz, E-mail: faramarz.edalat@gmail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [Strasbourg University Hospital (France)

    2016-09-15

    The image-guided thermal ablation procedures can be used to treat a variety of benign and malignant spinal tumours. Small size osteoid osteoma can be treated with laser or radiofrequency. Larger tumours (osteoblastoma, aneurysmal bone cyst and metastasis) can be addressed with radiofrequency or cryoablation. Results on the literature of spinal microwave ablation are scarce, and thus it should be used with caution. A distinct advantage of cryoablation is the ability to monitor the ice-ball by intermittent CT or MRI. The different thermal insulation, temperature and electrophysiological monitoring techniques should be applied. Cautious pre-procedural planning and intermittent intra-procedural monitoring of the ablation zone can help reduce neural complications. Tumour histology, patient clinical-functional status and life-expectancy should define the most efficient and least disabling treatment option.

  5. Optimization and verification of image reconstruction for a Compton camera towards application as an on-line monitor for particle therapy

    Taya, T.; Kataoka, J.; Kishimoto, A.; Tagawa, L.; Mochizuki, S.; Toshito, T.; Kimura, M.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.

    2017-07-01

    Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ~ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.

  6. Dosimetric impact of image-guided 3D conformal radiation therapy of prostate cancer

    Schaly, B; Song, W; Bauman, G S; Battista, J J; Van Dyk, J

    2005-01-01

    The goal of this work is to quantify the impact of image-guided conformal radiation therapy (CRT) on the dose distribution by correcting patient setup uncertainty and inter-fraction tumour motion. This was a retrospective analysis that used five randomly selected prostate cancer patients that underwent approximately 15 computed tomography (CT) scans during their radiation treatment course. The beam arrangement from the treatment plan was imported into each repeat CT study and the dose distribution was recalculated for the new beam setups. Various setup scenarios were then compared to assess the impact of image guidance on radiation treatment precision. These included (1) daily alignment to skin markers, thus representing a conventional beam setup without image guidance (2) alignment to bony anatomy for correction of daily patient setup error, thus representing on-line portal image guidance, and (3) alignment to the 'CTV of the day' for correction of inter-fraction tumour motion, thus representing on-line CT or ultrasound image guidance. Treatment scenarios (1) and (3) were repeated with a reduced CTV to PTV margin, where the former represents a treatment using small margins without daily image guidance. Daily realignment of the treatment beams to the prostate showed an average increase in minimum tumour dose of 1.5 Gy, in all cases where tumour 'geographic miss' without image guidance was apparent. However, normal tissue sparing did not improve unless the PTV margin was reduced. Daily realignment to the tumour combined with reducing the margin size by a factor of 2 resulted in an average escalation in tumour dose of 9.0 Gy for all five static plans. However, the prescription dose could be escalated by 13.8 Gy when accounting for changes in anatomy by accumulating daily doses using nonlinear image registration techniques. These results provide quantitative information on the effectiveness of image-guided radiation treatment of prostate cancer and demonstrate that

  7. Radiologists' leading position in image-guided therapy

    Helmberger, Thomas; Martí-Bonmatí, Luis; Pereira, Philippe; Gillams, Alice; Martínez, Jose; Lammer, Johannes; Malagari, Katarina; Gangi, Afshin; de Baere, Thierry; Adam, E. Jane; Rasch, Coen; Budach, Volker; Reekers, Jim A.

    2013-01-01

    Image-guided diagnostic and therapeutic procedures are related to, or performed under, some kind of imaging. Such imaging may be direct inspection (as in open surgery) or indirect inspection as in endoscopy or laparoscopy. Common to all these techniques is the transformation of optical and visible

  8. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    Mukherjee, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Patel, R J [Bhabha Atomic Research Centre, Mumbai (India). Refuelling Technology Division

    1994-12-31

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs.

  9. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    Mukherjee, S.; Ghosh, J.K.; Patel, R.J.

    1994-01-01

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs

  10. Evaluation of Image-Guided Positioning for Frameless Intracranial Radiosurgery

    Lamba, Michael; Breneman, John C.; Warnick, Ronald E.

    2009-01-01

    Purpose: The standard for target alignment and immobilization in intracranial radiosurgery is frame-based alignment and rigid immobilization using a stereotactic head ring. Recent improvements in image-guidance systems have introduced the possibility of image-guided radiosurgery with nonrigid immobilization. We present data on the alignment accuracy and patient stability of a frameless image-guided system. Methods and Materials: Isocenter alignment errors were measured for in vitro studies in an anthropomorphic phantom for both frame-based stereotactic and frameless image-guided alignment. Subsequently, in vivo studies assessed differences between frame-based and image-guided alignment in patients who underwent frame-based intracranial radiosurgery. Finally, intratreatment target stability was determined by image-guided alignment performed before and after image-guided mask immobilized radiosurgery. Results: In vitro hidden target localization errors were comparable for the framed (0.7 ± 0.5 mm) and image-guided (0.6 ± 0.2 mm) techniques. The in vivo differences in alignment were 0.9 ± 0.5 mm (anteroposterior), -0.2 ± 0.4 mm (superoinferior), and 0.3 ± 0.5 mm (lateral). For in vivo stability tests, the mean distance differed between the pre- and post-treatment positions with mask-immobilized radiosurgery by 0.5 ± 0.3 mm. Conclusion: Frame-based and image-guided alignment accuracy in vitro was comparable for the system tested. In vivo tests showed a consistent trend in the difference of alignment in the anteroposterior direction, possibly due to torque to the ring and mounting system with frame-based localization. The mask system as used appeared adequate for patient immobilization.

  11. Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation

    Terrence T. Kim

    2016-01-01

    Full Text Available We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy.

  12. Large-scale building scenes reconstruction from close-range images based on line and plane feature

    Ding, Yi; Zhang, Jianqing

    2007-11-01

    Automatic generate 3D models of buildings and other man-made structures from images has become a topic of increasing importance, those models may be in applications such as virtual reality, entertainment industry and urban planning. In this paper we address the main problems and available solution for the generation of 3D models from terrestrial images. We first generate a coarse planar model of the principal scene planes and then reconstruct windows to refine the building models. There are several points of novelty: first we reconstruct the coarse wire frame model use the line segments matching with epipolar geometry constraint; Secondly, we detect the position of all windows in the image and reconstruct the windows by established corner points correspondences between images, then add the windows to the coarse model to refine the building models. The strategy is illustrated on image triple of college building.

  13. MR image-guided portal verification for brain treatment field

    Yin Fangfang; Gao Qinghuai; Xie Huchen; Nelson, Diana F.; Yu Yan; Kwok, W. Edmund; Totterman, Saara; Schell, Michael C.; Rubin, Philip

    1998-01-01

    Purpose: To investigate a method for the generation of digitally reconstructed radiographs directly from MR images (DRR-MRI) to guide a computerized portal verification procedure. Methods and Materials: Several major steps were developed to perform an MR image-guided portal verification procedure. Initially, a wavelet-based multiresolution adaptive thresholding method was used to segment the skin slice-by-slice in MR brain axial images. Some selected anatomical structures, such as target volume and critical organs, were then manually identified and were reassigned to relatively higher intensities. Interslice information was interpolated with a directional method to achieve comparable display resolution in three dimensions. Next, a ray-tracing method was used to generate a DRR-MRI image at the planned treatment position, and the ray tracing was simply performed on summation of voxels along the ray. The skin and its relative positions were also projected to the DRR-MRI and were used to guide the search of similar features in the portal image. A Canny edge detector was used to enhance the brain contour in both portal and simulation images. The skin in the brain portal image was then extracted using a knowledge-based searching technique. Finally, a Chamfer matching technique was used to correlate features between DRR-MRI and portal image. Results: The MR image-guided portal verification method was evaluated using a brain phantom case and a clinical patient case. Both DRR-CT and DRR-MRI were generated using CT and MR phantom images with the same beam orientation and then compared. The matching result indicated that the maximum deviation of internal structures was less than 1 mm. The segmented results for brain MR slice images indicated that a wavelet-based image segmentation technique provided a reasonable estimation for the brain skin. For the clinical patient case with a given portal field, the MR image-guided verification method provided an excellent match between

  14. [Study on the Effects and Compensation Effect of Recording Parameters Error on Imaging Performance of Holographic Grating in On-Line Spectral Diagnose].

    Jiang, Yan-xiu; Bayanheshig; Yang, Shuo; Zhao, Xu-long; Wu, Na; Li, Wen-hao

    2016-03-01

    To making the high resolution grating, a numerical calculation was used to analyze the effect of recording parameters on groove density, focal curve and imaging performance of the grating and their compensation. Based on Fermat' s principle, light path function and aberration, the effect on imaging performance of the grating was analyzed. In the case of fixed using parameters, the error of the recording angle has a greater influence on imaging performance, therefore the gain of the weight of recording angle can improve the accuracy of the recording angle values in the optimization; recording distance has little influence on imaging performance; the relative errors of recording parameters cause the change of imaging performance of the grating; the results indicate that recording parameter errors can be compensated by adjusting its corresponding parameter. The study can give theoretical guidance to the fabrication for high resolution varied-line-space plane holographic grating in on-line spectral diagnostic and reduce the alignment difficulty by analyze the main error effect the imaging performance and propose the compensation method.

  15. The effect of sidewall roughness on line edge roughness in top-down scanning electron microscopy images

    Verduin, T.; Lokhorst, S. R.; Kruit, P.; Hagen, C. W.

    2015-03-01

    We have investigated in a numerical study the determination of sidewall roughness (SWR) from top down scanning electron microscopy (SEM) images. In a typical metrology application, top-down SEM images are acquired in a (critical-dimension) SEM and the roughness is analyzed. However, the true size, shape and roughness characteristics of resist features are not fully investigated in the analysis of top-down SEM images. In reality, rough resist features are complex three-dimensional structures and the characterization naturally extends to the analysis of SWR. In this study we randomly generate images of rough lines and spaces, where the lines are made of PMMA on a silicon substrate. The lines that we study have a length of 2 µm, a width of 32nm and a height of 32 nm. The SWR is modeled by using the power spectral density (PSD) function of Palasantzas, which characterizes roughness by the standard deviation σ, correlation length ξ and roughness exponent α . The actual roughness is generated by application of the method of Thorsos in two dimensions. The images are constructed by using a home-built program for simulating electron-specimen interactions. The program that we have developed is optimized for complex arbitrary geometries and large number of incident low energy primary electrons by using multi-core CPUs and GPUs. The program uses the dielectric function model for inelastic scattering events and has an implementation specifically for low energy electrons. A satisfactory comparison is made between the secondary electron yields from the home-built program and another program found in literature. In order to reduce the risk of shrinkage, we use a beam energy of 300 eV and a spot size of 3 nm. Each pixel is exposed with 20 electrons on average (≍ 276 µC/cm2), following the Poisson distribution to account for illumination shot noise. We have assumed that the detection of electrons is perfect and does not introduce additional noise. We measure line edge

  16. Image-guided pleural biopsy: diagnostic yield and complications

    Benamore, R.E.; Scott, K.; Richards, C.J.; Entwisle, J.J.

    2006-01-01

    Background: Pleural biopsy and cytology are standard procedures for the investigation of pleural disease. Recent medical literature has suggested that image-guided pleural biopsy shows improved sensitivity for the diagnosis of pleural malignancy, when compared with the more commonly performed reverse bevel needle biopsy such as Abrams' needle. In our centre there has been an increasing trend towards performing image-guided pleural biopsies, and to our knowledge there is no large published series documenting the complication rate and diagnostic yield. Methods: The radiology and pathology databases were searched for all image-guided [computed tomography (CT) and ultrasound (US)] pleural biopsies from January 2001 to December 2004. All imaging and histology were reviewed, and final diagnostic information about patients was obtained from the respiratory multidisciplinary team database and patient notes. A record was made of complications following biopsy, presence of pleura in the biopsy, and adequacy of tissue for histological diagnosis. Results: A total of 82 patients underwent 85 image-guided pleural biopsies over a 4-year period. 80 cases were performed under CT and five under US guidance. The rate of new pneumothorax detected by chest radiography was 4.7%. No patient required a chest drain or blood transfusion to treat complications. In 10 (12%) cases, there was inadequate tissue to reach a confident histological diagnosis and in eight (9%) of these, no pleura was present. Assuming all suspicious and inadequate biopsies are treated as benign, which is the worst case scenario, image-guided pleural biopsy has a sensitivity and specificity of 76% and 100%, respectively, for the diagnosis of malignant disease. Conclusions: Image-guided pleural biopsy is a safe procedure with few associated complications and has a higher sensitivity than previously published series for reverse cutting needle biopsy in the diagnosis of malignant pleural disease

  17. Image-guided pleural biopsy: diagnostic yield and complications

    Benamore, R.E. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom)]. E-mail: rachelbenamore@doctors.org.uk; Scott, K. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Richards, C.J. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Entwisle, J.J. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom)

    2006-08-15

    Background: Pleural biopsy and cytology are standard procedures for the investigation of pleural disease. Recent medical literature has suggested that image-guided pleural biopsy shows improved sensitivity for the diagnosis of pleural malignancy, when compared with the more commonly performed reverse bevel needle biopsy such as Abrams' needle. In our centre there has been an increasing trend towards performing image-guided pleural biopsies, and to our knowledge there is no large published series documenting the complication rate and diagnostic yield. Methods: The radiology and pathology databases were searched for all image-guided [computed tomography (CT) and ultrasound (US)] pleural biopsies from January 2001 to December 2004. All imaging and histology were reviewed, and final diagnostic information about patients was obtained from the respiratory multidisciplinary team database and patient notes. A record was made of complications following biopsy, presence of pleura in the biopsy, and adequacy of tissue for histological diagnosis. Results: A total of 82 patients underwent 85 image-guided pleural biopsies over a 4-year period. 80 cases were performed under CT and five under US guidance. The rate of new pneumothorax detected by chest radiography was 4.7%. No patient required a chest drain or blood transfusion to treat complications. In 10 (12%) cases, there was inadequate tissue to reach a confident histological diagnosis and in eight (9%) of these, no pleura was present. Assuming all suspicious and inadequate biopsies are treated as benign, which is the worst case scenario, image-guided pleural biopsy has a sensitivity and specificity of 76% and 100%, respectively, for the diagnosis of malignant disease. Conclusions: Image-guided pleural biopsy is a safe procedure with few associated complications and has a higher sensitivity than previously published series for reverse cutting needle biopsy in the diagnosis of malignant pleural disease.

  18. Monitoring tumor motion with on-line mega-voltage cone-beam computed tomography imaging in a cine mode

    Reitz, Bodo; Gayou, Olivier; Parda, David S; Miften, Moyed

    2008-01-01

    Accurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes. In this work, the feasibility of using the MV-CBCT raw data as a fluoroscopic series of portal images to monitor tumor changes due to e.g. respiratory motion was investigated. A method was developed to read and convert the CB raw data into a cine. To improve the contrast-to-noise ratio on the MV-CB projection data, image post-processing with filtering techniques was investigated. Volumes of interest from the planning CT were projected onto the MV-cine. Because of the small exposure and the varying thickness of the patient depending on the projection angle, soft-tissue contrast was limited. Tumor visibility as a function of tumor size and projection angle was studied. The method was well suited in the upper chest, where motion of the tumor as well as of the diaphragm could be clearly seen. In the cases of patients with non-small cell lung cancer with medium or large tumor masses, we verified that the tumor mass was always located within the PTV despite respiratory motion. However for small tumors the method is less applicable, because the visibility of those targets becomes marginal. Evaluation of motion in non-superior-inferior directions might also be limited for small tumor masses. Viewing MV-CBCT data in a cine mode adds to the utility of MV-CBCT for verification of tumor motion and for deriving individualized treatment margins

  19. MR image-guided portal verification for brain treatment field

    Yin, F.-F.; Gao, Q.H.; Xie, H.; Nelson, D.F.; Yu, Y.; Kwok, W.E.; Totterman, S.; Schell, M.C.; Rubin, P.

    1996-01-01

    and marrow information within the skull. Next, a ray-tracing method is used to generate a projection (pseudo-portal) image at the planned treatment position. In this situation, the ray-tracing is simply performed on pixels rather than attenuation coefficients. The skull and its relative positions are also projected to the pseudo-portal image and are used as 'hint' for the search of similar features in the portal images. A Canny edge detector is applied to the region of treatment field and is used to enhance brain contour and skull. The skull in the brain is then identified using a snake technique which is guided by the ''hint'', the projected features from MR images. Finally, a Chamfer matching technique is used to correlate features between the MR projection and portal images. Results: MR image-guided portal verification technique is evaluated using a clinical patient case who has an astrocytoma brain tumor and is treated by radiation therapy. The segmented results for brain MR slice images indicate that a wavelet-based image segmentation technique provides a reasonable estimation for the brain skull. Compared to the brain portal image, the method developed in this study for the generation of brain projection images provides skull structure about 3 mm differences. However, overall matching results are within 2 mm compared to the results between portal and simulation images. In addition, tumor volume can be accurately visualized in the projection image and be mapped over to portal images for treatment verification with this approach. Conclusions: A method for MR image-guided portal verification of brain treatment field is being developed. Although the projection image from MR images dose not have the similar radiographic appearance as portal images, it provides certain essential anatomical features (landmarks and gross tumor) as well as their relative locations to be used as references for computerized portal verification

  20. On-line measurement of crystalline color by color-image processing system; Gazo shori system wo mochiita kessho no online iro sokutei

    Okayasu, S.; Katayama, M.; Shinohara, T. [Ajinomoto Co. Inc., Tokyo (Japan)

    1996-01-20

    Aiming for the stable operation and the rationalization of factory plant, the color-image processing has been tried to introduce into the on-line system to measure the crystalline color of L-Lysine in its refining process. Because the practical spectro-photometry was used to be employed by manual measurement. In this paper, the calculation formula of the transmittance by spectrophotometry is theoretically introduced by analyzing the relation of Lambert-Beer`s law of luminous transparency with the Kubelka-Munk`s function of the luminous dispersion using color image data. The parameters of the calculation formula were decided by actual measurement, so that the formula with accuracy value of {plus_minus}3% elucidated the possible estimation of transmittance by spectrophotometry. The system was tested on a commercial plant, and some issues are discussed. 8 refs., 8 figs., 3 tabs.

  1. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer

    Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi

    2016-01-01

    Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth

  2. Diffuse reflectance imaging: a tool for guided biopsy

    Jayanthi, Jayaraj L.; Subhash, Narayanan; Manju, Stephen; Nisha, Unni G.; Beena, Valappil T.

    2012-01-01

    Accurate diagnosis of premalignant or malignant oral lesions depends on the quality of the biopsy, adequate clinical information and correct interpretation of the biopsy results. The major clinical challenge is to precisely locate the biopsy site in a clinically suspicious lesion. Dips due to oxygenated hemoglobin absorption have been noticed at 545 and 575 nm in the diffusely reflected white light spectra of oral mucosa and the intensity ratio R545/R575 has been found suited for early detection of oral pre-cancers. A multi-spectral diffuse reflectance (DR) imaging system has been developed consisting of an electron multiplying charge coupled device (EMCCD) camera and a liquid crystal tunable filter for guiding the clinician to an optimal biopsy site. Towards this DR images were recorded from 27 patients with potentially malignant lesions on their tongue (dorsal, lateral and ventral sides) and from 44 healthy controls at 545 and 575 nm with the DR imaging system. False colored ratio image R545/R575 of the lesion provides a visual discerning capability that helps in locating the most malignant site for biopsy. Histopathological report of guided biopsy showed that out of the 27 patients 16 were cancers, 9 pre-cancers and 2 lichen planus. In this clinical trial DR imaging has correctly guided 25 biopsy sites, yielding a sensitivity of 93% and a specificity of 98%, thereby establishing the potential of DR imaging as a tool for guided biopsy.

  3. Procedures minimally invasive image-guided

    Mora Guevara, Alejandro

    2011-01-01

    A literature review focused on minimally invasive procedures, has been performed at the Department of Radiology at the Hospital Calderon Guardia. A multidisciplinary team has been raised for decision making. The materials, possible complications and the available imaging technique such as ultrasound, computed tomography, magnetic resonance imaging, have been determined according to the procedure to be performed. The revision has supported medical interventions didactically enjoying the best materials, resources and conditions for a successful implementation of procedures and results [es

  4. WE-EF-303-06: Feasibility of PET Image-Based On-Line Proton Beam-Range Verification with Simulated Uniform Phantom and Human Brain Studies

    Lou, K; Sun, X; Zhu, X; Grosshans, D; Clark, J; Shao, Y

    2015-01-01

    Purpose: To study the feasibility of clinical on-line proton beam range verification with PET imaging Methods: We simulated a 179.2-MeV proton beam with 5-mm diameter irradiating a PMMA phantom of human brain size, which was then imaged by a brain PET with 300*300*100-mm 3 FOV and different system sensitivities and spatial resolutions. We calculated the mean and standard deviation of positron activity range (AR) from reconstructed PET images, with respect to different data acquisition times (from 5 sec to 300 sec with 5-sec step). We also developed a technique, “Smoothed Maximum Value (SMV)”, to improve AR measurement under a given dose. Furthermore, we simulated a human brain irradiated by a 110-MeV proton beam of 50-mm diameter with 0.3-Gy dose at Bragg peak and imaged by the above PET system with 40% system sensitivity at the center of FOV and 1.7-mm spatial resolution. Results: MC Simulations on the PMMA phantom showed that, regardless of PET system sensitivities and spatial resolutions, the accuracy and precision of AR were proportional to the reciprocal of the square root of image count if image smoothing was not applied. With image smoothing or SMV method, the accuracy and precision could be substantially improved. For a cylindrical PMMA phantom (200 mm diameter and 290 mm long), the accuracy and precision of AR measurement could reach 1.0 and 1.7 mm, with 100-sec data acquired by the brain PET. The study with a human brain showed it was feasible to achieve sub-millimeter accuracy and precision of AR measurement with acquisition time within 60 sec. Conclusion: This study established the relationship between count statistics and the accuracy and precision of activity-range verification. It showed the feasibility of clinical on-line BR verification with high-performance PET systems and improved AR measurement techniques. Cancer Prevention and Research Institute of Texas grant RP120326, NIH grant R21CA187717, The Cancer Center Support (Core) Grant CA016672

  5. Improved Image-Guided Laparoscopic Prostatectomy

    2013-07-01

    capture specific hepatic struc- tures in 2 views: The portal vein confluence, hepatic vein confluence, inferior vena cava, and gallbladder . Still images and...assisted surgery with vessel extraction and registration: A feasibility study”, IPCAI 2011, LNCS Vol. 6689, 122-132 (2011). [9] Ophir, J., Cespedes

  6. Guided SAR image despeckling with probabilistic non local weights

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  7. Guided filtering for solar image/video processing

    Long Xu

    2017-06-01

    Full Text Available A new image enhancement algorithm employing guided filtering is proposed in this work for enhancement of solar images and videos, so that users can easily figure out important fine structures imbedded in the recorded images/movies for solar observation. The proposed algorithm can efficiently remove image noises, including Gaussian and impulse noises. Meanwhile, it can further highlight fibrous structures on/beyond the solar disk. These fibrous structures can clearly demonstrate the progress of solar flare, prominence coronal mass emission, magnetic field, and so on. The experimental results prove that the proposed algorithm gives significant enhancement of visual quality of solar images beyond original input and several classical image enhancement algorithms, thus facilitating easier determination of interesting solar burst activities from recorded images/movies.

  8. Smart travel guide: from internet image database to intelligent system

    Chareyron, Ga"l.; Da Rugna, Jérome; Cousin, Saskia

    2011-02-01

    To help the tourist to discover a city, a region or a park, many options are provided by public tourism travel centers, by free online guides or by dedicated book guides. Nonetheless, these guides provide only mainstream information which are not conform to a particular tourist behavior. On the other hand, we may find several online image databases allowing users to upload their images and to localize each image on a map. These websites are representative of tourism practices and constitute a proxy to analyze tourism flows. Then, this work intends to answer this question: knowing what I have visited and what other people have visited, where should I go now? This process needs to profile users, sites and photos. our paper presents the acquired data and relationship between photographers, sites and photos and introduces the model designed to correctly estimate the site interest of each tourism point. The third part shows an application of our schema: a smart travel guide on geolocated mobile devices. This android application is a travel guide truly matching the user wishes.

  9. Interpretation of medical images by model guided analysis

    Karssemeijer, N.

    1989-01-01

    Progress in the development of digital pictorial information systems stimulates a growing interest in the use of image analysis techniques in medicine. Especially when precise quantitative information is required the use of fast and reproducable computer analysis may be more appropriate than relying on visual judgement only. Such quantitative information can be valuable, for instance, in diagnostics or in irradiation therapy planning. As medical images are mostly recorded in a prescribed way, human anatomy guarantees a common image structure for each particular type of exam. In this thesis it is investigated how to make use of this a priori knowledge to guide image analysis. For that purpose models are developed which are suited to capture common image structure. The first part of this study is devoted to an analysis of nuclear medicine images of myocardial perfusion. In ch. 2 a model of these images is designed in order to represent characteristic image properties. It is shown that for these relatively simple images a compact symbolic description can be achieved, without significant loss of diagnostically importance of several image properties. Possibilities for automatic interpretation of more complex images is investigated in the following chapters. The central topic is segmentation of organs. Two methods are proposed and tested on a set of abdominal X-ray CT scans. Ch. 3 describes a serial approach based on a semantic network and the use of search areas. Relational constraints are used to guide the image processing and to classify detected image segments. In teh ch.'s 4 and 5 a more general parallel approach is utilized, based on a markov random field image model. A stochastic model used to represent prior knowledge about the spatial arrangement of organs is implemented as an external field. (author). 66 refs.; 27 figs.; 6 tabs

  10. Teleconsultation in image guided dental implantology

    Truppe, M.; Kawana, H.; Schicho, K.; Ewers, R.

    2008-01-01

    Telemedicine encourages the separation of highly knowledge-based, diagnosis/consultation-oriented activities from skill centered activities such as surgical patient treatment. Teleconsultation is defined as consultation, evaluation and management services provided to patients via telecommunication systems with out face-to-face interaction between patient and health-care provider. The increasing clinical relevance of computer assisted navigation technology promoted new perspectives in telemedicine utilizing live sensor data to enhance remote visualization. Any digital content, i.e. digital images from imaging modalities (most frequently Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) as well as navigation data (e.g. intraoperative coordinates of surgical instruments relatively to preplanned pathways and target-points at the patient, implant positions, etc.), can be transferred without any loss of information. This means that remote experts can be involved in surgical interventions or preoperative planning sessions while being supplied with identical information as the 'local' staff. Examples from computer assisted dental implantology are given as well as a case study.

  11. Percutaneous Ultrasonography as Imaging Modality and Sampling Guide for Pulmonologists

    Stigt, Jos A.; Groen, Harry J. M.

    2014-01-01

    Ultrasound (US) imaging is gradually progressing into common practice in contemporary pulmonology. Its main applications are to determine the presence and amount of pleural effusions and to guide subsequent treatment interventions. Guidelines recommend the use of US for these indications. Training

  12. Managing image collections a practical guide

    Note, Margot

    2011-01-01

    This book explores issues surrounding all aspects of visual collection management, taken from real-world experience in creating management systems and digitizing core content. Readers will gain the knowledge to manage the digitization process from beginning to end, assess and define the needs of their particular project, and evaluate digitization options. Additionally, they will select strategies which best meet current and future needs, acquire the knowledge to select the best images for digitization, and understand the legal issues surrounding digitization of visual collections.<

  13. Concept for quantifying the dose from image guided radiotherapy

    Schneider, Uwe; Hälg, Roger; Besserer, Jürgen

    2015-01-01

    Radiographic image guidance is routinely used for patient positioning in radiotherapy. All radiographic guidance techniques can give a significant radiation dose to the patient. The dose from diagnostic imaging is usually managed by using effective dose minimization. In contrast, image-guided radiotherapy adds the imaging dose to an already high level of therapeutic radiation which cannot be easily managed using effective dose. The purpose of this work is the development of a concept of IGRT dose quantification which allows a comparison of imaging dose with commonly accepted variations of therapeutic dose. It is assumed that dose variations of the treatment beam which are accepted in the spirit of the ALARA convention can also be applied to the additional imaging dose. Therefore we propose three dose categories: Category I: The imaging dose is lower than a 2 % variation of the therapy dose. Category II: The imaging dose is larger than in category I, but lower than the therapy dose variations between different treatment techniques. Category III: The imaging dose is larger than in Category II. For various treatment techniques dose measurements are used to define the dose categories. The imaging devices were categorized according to the measured dose. Planar kV-kV imaging is a category I imaging procedure. kV-MV imaging is located at the edge between category I and II and is for increasing fraction size safely a category I imaging technique. MV-MV imaging is for all imaging technologies a category II procedure. MV fan beam CT for localization is a category I technology. Low dose protocols for kV CBCT are located between category I and II and are for increasing fraction size a category I imaging technique. All other investigated Pelvis-CBCT protocols are category II procedures. Fan beam CT scout views are category I technology. Live imaging modalities are category III for conventional fractionation, but category II for stereotactic treatments. Dose from radiotherapy

  14. Image guided neuroendoscopy for third ventriculostomy.

    Broggi, G; Dones, I; Ferroli, P; Franzini, A; Servello, D; Duca, S

    2000-01-01

    Third ventriculostomy has become an increasing popular procedure for the treatment of hydrocephalus of different aetiologies. Between october 1997 and october 1998, 17 patients (12 females, 5 males; 12-82 year-old; mean age 43) underwent image-assisted endoscopic third ventriculostomy for hydrocephalus at the Istituto Nazionale Neurologico "C.Besta" of Milano. There was no mortality and no long term morbidity. Neuronavigation has been found useful in selecting the safest trajectory to the target avoiding any traction on the foramen of Monro related structures and allowing the necessary mobility for fine adjustments under visual and "tactile" control when choosing the safest point to perform the stoma. According to our experience neuro-endoscopy and neuronavigation seems to be complementary in reaching easy, safe and successful results in the treatment of hydrocephalus of different origins.

  15. Usefulness of automated biopsy guns in image-guided biopsy

    Lee, Jung Hyung; Rhee, Chang Soo; Lee, Sung Moon; Kim, Hong; Woo, Sung Ku; Suh, Soo Jhi

    1994-01-01

    To evaluate the usefulness of automated biopsy guns in image-guided biopsy of lung, liver, pancreas and other organs. Using automated biopsy devices, 160 biopsies of variable anatomic sites were performed: Biopsies were performed under ultrasonographic(US) guidance in 95 and computed tomographic (CT) guidance in 65. We retrospectively analyzed histologic results and complications. Specimens were adequate for histopathologic diagnosis in 143 of the 160 patients(89.4%)-Diagnostic tissue was obtained in 130 (81.3%), suggestive tissue obtained in 13(8.1%), and non-diagnostic tissue was obtained in 14(8.7%). Inadequate tissue was obtained in only 3(1.9%). There was no statistically significant difference between US-guided and CT-guided percutaneous biopsy. There was no occurrence of significant complication. We have experienced mild complications in only 5 patients-2 hematuria and 2 hematochezia in transrectal prostatic biopsy, and 1 minimal pneumothorax in CT-guided percutaneous lung biopsy. All of them were resolved spontaneously. The image-guided biopsy using the automated biopsy gun was a simple, safe and accurate method of obtaining adequate specimen for the histopathologic diagnosis

  16. Usefulness of automated biopsy guns in image-guided biopsy

    Lee, Jung Hyung; Rhee, Chang Soo; Lee, Sung Moon; Kim, Hong; Woo, Sung Ku; Suh, Soo Jhi [School of Medicine, Keimyung University, Daegu (Korea, Republic of)

    1994-12-15

    To evaluate the usefulness of automated biopsy guns in image-guided biopsy of lung, liver, pancreas and other organs. Using automated biopsy devices, 160 biopsies of variable anatomic sites were performed: Biopsies were performed under ultrasonographic(US) guidance in 95 and computed tomographic (CT) guidance in 65. We retrospectively analyzed histologic results and complications. Specimens were adequate for histopathologic diagnosis in 143 of the 160 patients(89.4%)-Diagnostic tissue was obtained in 130 (81.3%), suggestive tissue obtained in 13(8.1%), and non-diagnostic tissue was obtained in 14(8.7%). Inadequate tissue was obtained in only 3(1.9%). There was no statistically significant difference between US-guided and CT-guided percutaneous biopsy. There was no occurrence of significant complication. We have experienced mild complications in only 5 patients-2 hematuria and 2 hematochezia in transrectal prostatic biopsy, and 1 minimal pneumothorax in CT-guided percutaneous lung biopsy. All of them were resolved spontaneously. The image-guided biopsy using the automated biopsy gun was a simple, safe and accurate method of obtaining adequate specimen for the histopathologic diagnosis.

  17. Deformable image registration for image guided prostate radiotherapy

    Cassetta, Roberto; Riboldi, Marco; Baroni, Guido; Leandro, Kleber; Novaes, Paulo Eduardo; Goncalves, Vinicius; Sakuraba, Roberto; Fattori, Giovanni

    2016-01-01

    In this study, we present a CT to CBCT deformable registration method based on the ITK library. An algorithm was developed in order to explore the soft tissue information of the CT-CBCT images to perform deformable image registration (DIR), making efforts to overcome the poor signal-to-noise ratio and HU calibration issues that limits CBCT use for treatment planning purposes. Warped CT images and contours were generated and their impact in adaptive radiotherapy was evaluated by DVH analysis for photon and proton treatments. Considerable discrepancies, related to the treatment planning dose distribution, might be found due to changes in patient’s anatomy. (author)

  18. Real-time Fluorescence Image-Guided Oncologic Surgery

    Mondal, Suman B.; Gao, Shengkui; Zhu, Nan; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2014-01-01

    Medical imaging plays a critical role in cancer diagnosis and planning. Many of these patients rely on surgical intervention for curative outcomes. This requires a careful identification of the primary and microscopic tumors, and the complete removal of cancer. Although there have been efforts to adapt traditional imaging modalities for intraoperative image guidance, they suffer from several constraints such as large hardware footprint, high operation cost, and disruption of the surgical workflow. Because of the ease of image acquisition, relatively low cost devices and intuitive operation, optical imaging methods have received tremendous interests for use in real-time image-guided surgery. To improve imaging depth under low interference by tissue autofluorescence, many of these applications utilize light in the near-infra red (NIR) wavelengths, which is invisible to human eyes. With the availability of a wide selection of tumor-avid contrast agents, advancements in imaging sensors, electronic and optical designs, surgeons are able to combine different attributes of NIR optical imaging techniques to improve treatment outcomes. The emergence of diverse commercial and experimental image guidance systems, which are in various stages of clinical translation, attests to the potential high impact of intraoperative optical imaging methods to improve speed of oncologic surgery with high accuracy and minimal margin positivity. PMID:25287689

  19. Simulation of 3D-treatment plans in head and neck tumors aided by matching of digitally reconstructed radiographs (DRR) and on-line distortion corrected simulator images

    Lohr, Frank; Schramm, Oliver; Schraube, Peter; Sroka-Perez, Gabriele; Seeber, Steffen; Schlepple, Gerd; Schlegel, Wolfgang; Wannenmacher, Michael

    1997-01-01

    Background and purpose: Simulation of 3D-treatment plans for head and neck malignancy is difficult due to complex anatomy. Therefore, CT-simulation and stereotactic techniques are becoming more common in the treatment preparation, overcoming the need for simulation. However, if simulation is still performed, it is an important step in the treatment preparation/execution chain, since simulation errors, if not detected immediately, can compromise the success of treatment. A recently developed PC-based system for on-line image matching and comparison of digitally reconstructed radiographs (DRR) and distortion corrected simulator monitor images that enables instant correction of field placement errors during the simulation process was evaluated. The range of field placement errors with noncomputer aided simulation is reported. Materials and methods: For 14 patients either a primary 3D-treatment plan or a 3D-boost plan after initial treatment with opposing laterals for head and neck malignancy with a coplanar or non-coplanar two- or three-field technique was simulated. After determining the robustness of the matching process and the accuracy of field placement error detection with phantom measurements, DRRs were generated from the treatment planning CT-dataset of each patient and were interactively matched with on-line simulator images that had undergone correction for geometrical distortion, using a landmark algorithm. Translational field placement errors in all three planes as well as in-plane rotational errors were studied and were corrected immediately. Results: The interactive matching process is very robust with a tolerance of <2 mm when suitable anatomical landmarks are chosen. The accuracy for detection of translational errors in phantom measurements was <1 mm and for in-plane rotational errors the accuracy had a maximum of only 1.5 deg.. For patient simulation, the mean absolute distance of the planned versus simulated isocenter was 6.4 ± 3.9 mm. The in

  20. Radiologists' leading position in image-guided therapy.

    Helmberger, Thomas; Martí-Bonmatí, Luis; Pereira, Philippe; Gillams, Alice; Martínez, Jose; Lammer, Johannes; Malagari, Katarina; Gangi, Afshin; de Baere, Thierry; Adam, E Jane; Rasch, Coen; Budach, Volker; Reekers, Jim A

    2013-02-01

    Image-guided diagnostic and therapeutic procedures are related to, or performed under, some kind of imaging. Such imaging may be direct inspection (as in open surgery) or indirect inspection as in endoscopy or laparoscopy. Common to all these techniques is the transformation of optical and visible information to a monitor or the eye of the operator. Image-guided therapy (IGT) differs by using processed imaging data acquired before, during and after a wide range of different imaging techniques. This means that the planning, performing and monitoring, as well as the control of the therapeutic procedure, are based and dependent on the "virtual reality" provided by imaging investigations. Since most of such imaging involves radiology in the broadest sense, there is a need to characterise IGT in more detail. In this paper, the technical, medico-legal and medico-political issues will be discussed. The focus will be put on state-of-the-art imaging, technical developments, methodological and legal requisites concerning radiation protection and licensing, speciality-specific limitations and crossing specialty borders, definition of technical and quality standards, and finally to the issue of awareness of IGT within the medical and public community. The specialty-specific knowledge should confer radiologists with a significant role in the overall responsibility for the imaging-related processes in various non-radiological specialties. These processes may encompass purchase, servicing, quality management, radiation protection and documentation, also taking responsibility for the definition and compliance with the legal requirements regarding all radiological imaging performed by non-radiologists.

  1. HDR Pathological Image Enhancement Based on Improved Bias Field Correction and Guided Image Filter

    Qingjiao Sun

    2016-01-01

    Full Text Available Pathological image enhancement is a significant topic in the field of pathological image processing. This paper proposes a high dynamic range (HDR pathological image enhancement method based on improved bias field correction and guided image filter (GIF. Firstly, a preprocessing including stain normalization and wavelet denoising is performed for Haematoxylin and Eosin (H and E stained pathological image. Then, an improved bias field correction model is developed to enhance the influence of light for high-frequency part in image and correct the intensity inhomogeneity and detail discontinuity of image. Next, HDR pathological image is generated based on least square method using low dynamic range (LDR image, H and E channel images. Finally, the fine enhanced image is acquired after the detail enhancement process. Experiments with 140 pathological images demonstrate the performance advantages of our proposed method as compared with related work.

  2. An Amateur's Guide to Observing and Imaging the Heavens

    Morison, Ian

    2014-06-01

    Foreword; Acknowledgments; Prologue: a tale of two scopes; 1. Telescope and observing fundamentals; 2. Refractors; 3. Binoculars and spotting scopes; 4. The Newtonian telescope and its derivatives; 5. The Cassegrain telescope and its derivatives - Schmidt-Cassegrains and Maksutovs; 6. Telescope maintenance, collimation and star testing; 7. Telescope accessories: finders, eyepieces and bino-viewers; 8. Telescope mounts: alt/az and equatorial with their computerised variants; 9. The art of visual observing; 10. Visual observations of the Moon and planets; 11. Imaging the Moon and planets with DSLRs and web-cams; 12. Observing and imaging the Sun in white light and H-alpha; 13. Observing with an astro-video camera to 'see' faint objects; 14. Deep sky imaging with standard and H-alpha modified DSLR cameras; 15. Deep sky imaging with cooled CCD cameras; 16. Auto-guiding techniques and equipment; 17. Spectral studies of the Sun, stars and galaxies; 18. Improving and enhancing images in Photoshop; Index.

  3. Strategies for Biologic Image-Guided Dose Escalation: A Review

    Sovik, Aste; Malinen, Eirik; Olsen, Dag Rune

    2009-01-01

    There is increasing interest in how to incorporate functional and molecular information obtained by noninvasive, three-dimensional tumor imaging into radiotherapy. The key issues are to identify radioresistant regions that can be targeted for dose escalation, and to develop radiation dose prescription and delivery strategies providing optimal treatment for the individual patient. In the present work, we review the proposed strategies for biologic image-guided dose escalation with intensity-modulated radiation therapy. Biologic imaging modalities and the derived images are discussed, as are methods for target volume delineation. Different dose escalation strategies and techniques for treatment delivery and treatment plan evaluation are also addressed. Furthermore, we consider the need for response monitoring during treatment. We conclude with a summary of the current status of biologic image-based dose escalation and of areas where further work is needed for this strategy to become incorporated into clinical practice

  4. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    Hargrave, C; Deegan, T; Gibbs, A; Poulsen, M; Moores, M; Harden, F; Mengersen, K

    2014-01-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  5. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    Hargrave, C.; Moores, M.; Deegan, T.; Gibbs, A.; Poulsen, M.; Harden, F.; Mengersen, K.

    2014-03-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  6. The efficacy of Elekta Synergy image-guided radiotherapy

    Takamatsu, Shigeyuki; Takanaka, Tsuyoshi; Kumano, Tomoyasu

    2008-01-01

    We evaluated the efficacy of Elekta Synergy image-guided radiotherapy (IGRT) system equipped with cone beam CT (CBCT) for high accuracy radiation therapy. In cases set up with body marking who had large set up error could be adjusted by this system within 1 mm error. IGRT with CBCT correction provided precise set up. Elekta Synergy IGRT system is useful for high accuracy set up and will facilitate novel precise radiotherapy techniques. (author)

  7. Compact instrument for fluorescence image-guided surgery

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  8. Image-guided radiotherapy for effective radiotherapy delivery

    Karlsson, Ulf Lennart

    2016-01-01

    Image-guided radiotherapy (IGRT) is a new radiotherapy technology that combines the rapid dose fall off associated with intensity-modulated radiotherapy (IMRT) and daily tumor imaging allowing for high precision tumor dose delivery and effective sparing of surrounding normal organs. The new radiation technology requires close collaboration between radiologists, nuclear medicine specialists, and radiation oncologists to avoid marginal miss. Modern diagnostic imaging such as positron emission tomography (PET) scans, positron emission tomography with Computed Tomograpgy (PET-CT), and magnetic resonance imaging (MRI) allows the radiation oncologist to target the positive tumor with high accuracy. As the tumor is well visualized during radiation treatment, the margins required to avoid geographic miss can be safely reduced , thus sparing the normal organs from excessive radiation. When the tumor is located close to critical radiosensitive structures such as the spinal cord, IGRT can deliver a high dose of radiatio...

  9. A finite state model for respiratory motion analysis in image guided radiation therapy

    Wu Huanmei; Sharp, Gregory C; Salzberg, Betty; Kaeli, David; Shirato, Hiroki; Jiang, Steve B

    2004-01-01

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates

  10. A finite state model for respiratory motion analysis in image guided radiation therapy

    Wu Huanmei [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Sharp, Gregory C [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States); Salzberg, Betty [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Kaeli, David [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States)

    2004-12-07

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates.

  11. Automated dental implantation using image-guided robotics: registration results.

    Sun, Xiaoyan; McKenzie, Frederic D; Bawab, Sebastian; Li, Jiang; Yoon, Yongki; Huang, Jen-K

    2011-09-01

    One of the most important factors affecting the outcome of dental implantation is the accurate insertion of the implant into the patient's jaw bone, which requires a high degree of anatomical accuracy. With the accuracy and stability of robots, image-guided robotics is expected to provide more reliable and successful outcomes for dental implantation. Here, we proposed the use of a robot for drilling the implant site in preparation for the insertion of the implant. An image-guided robotic system for automated dental implantation is described in this paper. Patient-specific 3D models are reconstructed from preoperative Cone-beam CT images, and implantation planning is performed with these virtual models. A two-step registration procedure is applied to transform the preoperative plan of the implant insertion into intra-operative operations of the robot with the help of a Coordinate Measurement Machine (CMM). Experiments are carried out with a phantom that is generated from the patient-specific 3D model. Fiducial Registration Error (FRE) and Target Registration Error (TRE) values are calculated to evaluate the accuracy of the registration procedure. FRE values are less than 0.30 mm. Final TRE values after the two-step registration are 1.42 ± 0.70 mm (N = 5). The registration results of an automated dental implantation system using image-guided robotics are reported in this paper. Phantom experiments show that the practice of robot in the dental implantation is feasible and the system accuracy is comparable to other similar systems for dental implantation.

  12. Image-guided stereotactic surgery using ultrasonography and reconstructive three-dimensional CT-imaging system

    Kawamura, Hirotsune; Iseki, Hiroshi; Umezawa, Yoshihiro

    1991-01-01

    A new simulation and navigation system utilizing three-dimensional CT images has been developed for image-guided stereotactic surgery. Preoperative CT images are not always useful in predicting the intraoperative location of lesions, for cerebral lesions are easily displaced or distorted by gravity, brain retraction, and/or CSF aspiration during operative procedure. This new system, however, has the advantage that the intraoperative locations of intracranial lesions or the anatomical structures of the brain can be precisely confirmed during stereotactic surgery. Serial CT images were obtained from a patient whose head had been fixed to the ISEKI CT-guided stereotactic frame. The data of serial CT images were saved on a floppy disc and then transferred to the work station (IRIS) using the off line. In order to find the best approach angle for ultrasound-guided stereotactic surgery, three-dimenstional CT images were reconstructed using the work station. The site of the craniotomy or the angle of the trajectory of the ultrasound probe was measured preoperatively based on the three-dimensional CT images. Then, in the operating room, the patient's head was fixed to the ISEKI frame with the subframe at the same position as before according to the measurement of the CT images. In a case of cystic glioma, the predicable ultrasonograms from three-dimensional reconstructive CT images were ascertained to correspond well to the actual ultrasound images during ultrasound-guided stereotactic surgery. Therefore, the new simulation and navigation system can be judged to be a powerful operative supporting modality for correcting the locations of cerebral lesions; it allows one to perform stereotactic surgery more accurately and less invasively. (author)

  13. Fast-MICP for frameless image-guided surgery

    Lee, Jiann-Der; Huang, Chung-Hsien; Wang, Sheng-Ta; Lin, Chung-Wei; Lee, Shin-Tseng

    2010-01-01

    Purpose: In image-guided surgery (IGS) systems, image-to-physical registration is critical for reliable anatomical information mapping and spatial guidance. Conventional stereotactic frame-based or fiducial-based approaches provide accurate registration but are not patient-friendly. This study proposes a frameless cranial IGS system that uses computer vision techniques to replace the frame or fiducials with the natural features of the patient. Methods: To perform a cranial surgery with the proposed system, the facial surface of the patient is first reconstructed by stereo vision. Accuracy is ensured by capturing parallel-line patterns projected from a calibrated LCD projector. Meanwhile, another facial surface is reconstructed from preoperative computed tomography (CT) images of the patient. The proposed iterative closest point (ICP)-based algorithm [fast marker-added ICP (Fast-MICP)] is then used to register the two facial data sets, which transfers the anatomical information from the CT images to the physical space. Results: Experimental results reveal that the Fast-MICP algorithm reduces the computational cost of marker-added ICP (J.-D. Lee et al., ''A coarse-to-fine surface registration algorithm for frameless brain surgery,'' in Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 836-839) to 10% and achieves comparable registration accuracy, which is under 3 mm target registration error (TRE). Moreover, two types of optical-based spatial digitizing devices can be integrated for further surgical navigation. Anatomical information or image-guided surgical landmarks can be projected onto the patient to obtain an immersive augmented reality environment. Conclusion: The proposed frameless IGS system with stereo vision obtains TRE of less than 3 mm. The proposed Fast-MICP registration algorithm reduces registration time by 90% without compromising accuracy.

  14. Endoscopic hyperspectral imaging: light guide optimization for spectral light source

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2018-02-01

    Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.

  15. Fast-MICP for frameless image-guided surgery

    Lee, Jiann-Der; Huang, Chung-Hsien; Wang, Sheng-Ta; Lin, Chung-Wei; Lee, Shin-Tseng [Department of Electrical Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Mechatronics, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Neurosurgery and Medical Augmented Reality Research Center, Chang Gung Memorial Hospital, No. 199, Tunghwa Rd., Taipei 105, Taiwan (China)

    2010-09-15

    Purpose: In image-guided surgery (IGS) systems, image-to-physical registration is critical for reliable anatomical information mapping and spatial guidance. Conventional stereotactic frame-based or fiducial-based approaches provide accurate registration but are not patient-friendly. This study proposes a frameless cranial IGS system that uses computer vision techniques to replace the frame or fiducials with the natural features of the patient. Methods: To perform a cranial surgery with the proposed system, the facial surface of the patient is first reconstructed by stereo vision. Accuracy is ensured by capturing parallel-line patterns projected from a calibrated LCD projector. Meanwhile, another facial surface is reconstructed from preoperative computed tomography (CT) images of the patient. The proposed iterative closest point (ICP)-based algorithm [fast marker-added ICP (Fast-MICP)] is then used to register the two facial data sets, which transfers the anatomical information from the CT images to the physical space. Results: Experimental results reveal that the Fast-MICP algorithm reduces the computational cost of marker-added ICP (J.-D. Lee et al., ''A coarse-to-fine surface registration algorithm for frameless brain surgery,'' in Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 836-839) to 10% and achieves comparable registration accuracy, which is under 3 mm target registration error (TRE). Moreover, two types of optical-based spatial digitizing devices can be integrated for further surgical navigation. Anatomical information or image-guided surgical landmarks can be projected onto the patient to obtain an immersive augmented reality environment. Conclusion: The proposed frameless IGS system with stereo vision obtains TRE of less than 3 mm. The proposed Fast-MICP registration algorithm reduces registration time by 90% without compromising accuracy.

  16. On-line image guidance for frameless stereotactic radiotherapy of lung malignancies by cone beam CT: Comparison between target localization and alignment on bony anatomy

    Masi, Laura; Casamassima, Franco; Menichelli, Claudia; Pasciuti, Katia; Doro, Raffaela; Polli, Caterina; D'imporzano, Elena; Bonucci, Ivano

    2008-01-01

    Introduction. Free-breathing stereotactic radiotherapy for lung malignancies requires reliable prediction of respiratory motion and accurate target localization. A protocol was adopted for reproducibility and reduction of respiratory motion and for target localization by CBCT image guidance. Tumor respiratory displacements and tumor positioning errors relative to bony anatomy alignment are analyzed. Materials and method. Image guided SRT was performed for 99 lung malignancies. Two groups of patients were considered: group A did not perform any breathing control; group B controlled visually their respiratory cycle and volumes on an Active Breathing Coordinator (ABC) monitor during the acquisition of simulation CT and CBCT, and treatment delivery. GTV on end inhale and exhale CT data sets were fused in an ITV and the extent of tumor motion evaluated between these 2 phases. A pre-treatment CBCT was acquired and aligned to the reference CT using bony anatomy; for tumor positioning the ITV contour on the reference CT was matched to the visible tumor on CBCT. Interobserver variability of tumor positioning was evaluated. ITV and CBCT tumor dimensions were compared. Results. 3D tumor breathing displacement (mean±SD) was significantly higher for group A (14.7±9.9 mm) than for group B (4.7±3.1 mm). The detected differences between tumor and bony structure alignment below 3 mm were 68% for group B and 45% for group A, reaching statistical significance. Interobserver variability was 1.7±1.1 mm (mean±SD). Dimensions of tumor image on CBCT were consistent with ITV dimensions for group B (max difference 14%). Conclusions. The adopted protocol seems effective in reducing respiratory internal movements and margin. Tumor positioning errors relative to bony anatomy are also reduced. However bony anatomy as a surrogate of the target may still lead to some relevant positioning errors. Target visualization on CBCT is essential for an accurate localization in lung SRT

  17. CT guided stereotaxy based on scout view imaging

    Wester, K; Kjartansson, O; Bakke, S J

    1987-05-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing.

  18. CT guided stereotaxy based on scout view imaging

    Wester, K.; Kjartansson, O.; Bakke, S.J.; Rikshospitalet, Oslo

    1987-01-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing. (orig.)

  19. Image-guided breast biopsy: state-of-the-art

    O' Flynn, E.A.M., E-mail: lizoflynn@doctors.org.u [South East London Breast Screening Programme and National Breast Screening Training Centre, Kings College Hospital NHS Foundation Trust, London SE5 9RS (United Kingdom); Wilson, A.R.M.; Michell, M.J. [South East London Breast Screening Programme and National Breast Screening Training Centre, Kings College Hospital NHS Foundation Trust, London SE5 9RS (United Kingdom)

    2010-04-15

    Percutaneous image-guided breast biopsy is widely practised to evaluate predominantly non-palpable breast lesions. There has been steady development in percutaneous biopsy techniques. Fine-needle aspiration cytology was the original method of sampling, followed in the early 1990s by large core needle biopsy. The accuracy of both has been improved by ultrasound and stereotactic guidance. Larger bore vacuum-assisted biopsy devices became available in the late 1990s and are now commonplace in most breast units. We review the different types of breast biopsy devices currently available together with various localization techniques used, focusing on their advantages, limitations and current controversial clinical management issues.

  20. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set

  1. Preoperative magnetic resonance imaging protocol for endoscopic cranial base image-guided surgery.

    Grindle, Christopher R; Curry, Joseph M; Kang, Melissa D; Evans, James J; Rosen, Marc R

    2011-01-01

    Despite the increasing utilization of image-guided surgery, no radiology protocols for obtaining magnetic resonance (MR) imaging of adequate quality are available in the current literature. At our institution, more than 300 endonasal cranial base procedures including pituitary, extended pituitary, and other anterior skullbase procedures have been performed in the past 3 years. To facilitate and optimize preoperative evaluation and assessment, there was a need to develop a magnetic resonance protocol. Retrospective Technical Assessment was performed. Through a collaborative effort between the otolaryngology, neurosurgery, and neuroradiology departments at our institution, a skull base MR image-guided (IGS) protocol was developed with several ends in mind. First, it was necessary to generate diagnostic images useful for the more frequently seen pathologies to improve work flow and limit the expense and inefficiency of case specific MR studies. Second, it was necessary to generate sequences useful for IGS, preferably using sequences that best highlight that lesion. Currently, at our institution, all MR images used for IGS are obtained using this protocol as part of preoperative planning. The protocol that has been developed allows for thin cut precontrast and postcontrast axial cuts that can be used to plan intraoperative image guidance. It also obtains a thin cut T2 axial series that can be compiled separately for intraoperative imaging, or may be fused with computed tomographic images for combined modality. The outlined protocol obtains image sequences effective for diagnostic and operative purposes for image-guided surgery using both T1 and T2 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Navigation concepts for magnetic resonance imaging-guided musculoskeletal interventions.

    Busse, Harald; Kahn, Thomas; Moche, Michael

    2011-08-01

    Image-guided musculoskeletal (MSK) interventions are a widely used alternative to open surgical procedures for various pathological findings in different body regions. They traditionally involve one of the established x-ray imaging techniques (radiography, fluoroscopy, computed tomography) or ultrasound scanning. Over the last decades, magnetic resonance imaging (MRI) has evolved into one of the most powerful diagnostic tools for nearly the whole body and has therefore been increasingly considered for interventional guidance as well.The strength of MRI for MSK applications is a combination of well-known general advantages, such as multiplanar and functional imaging capabilities, wide choice of tissue contrasts, and absence of ionizing radiation, as well as a number of MSK-specific factors, for example, the excellent depiction of soft-tissue tumors, nonosteolytic bone changes, and bone marrow lesions. On the downside, the magnetic resonance-compatible equipment needed, restricted space in the magnet, longer imaging times, and the more complex workflow have so far limited the number of MSK procedures under MRI guidance.Navigation solutions are generally a natural extension of any interventional imaging system, in particular, because powerful hardware and software for image processing have become routinely available. They help to identify proper access paths, provide accurate feedback on the instrument positions, facilitate the workflow in an MRI environment, and ultimately contribute to procedural safety and success.The purposes of this work were to describe some basic concepts and devices for MRI guidance of MSK procedures and to discuss technical and clinical achievements and challenges for some selected implementations.

  3. Navigation concepts for MR image-guided interventions.

    Moche, Michael; Trampel, Robert; Kahn, Thomas; Busse, Harald

    2008-02-01

    The ongoing development of powerful magnetic resonance imaging techniques also allows for advanced possibilities to guide and control minimally invasive interventions. Various navigation concepts have been described for practically all regions of the body. The specific advantages and limitations of these concepts largely depend on the magnet design of the MR scanner and the interventional environment. Open MR scanners involve minimal patient transfer, which improves the interventional workflow and reduces the need for coregistration, ie, the mapping of spatial coordinates between imaging and intervention position. Most diagnostic scanners, in contrast, do not allow the physician to guide his instrument inside the magnet and, consequently, the patient needs to be moved out of the bore. Although adequate coregistration and navigation concepts for closed-bore scanners are technically more challenging, many developments are driven by the well-known capabilities of high-field systems and their better economic value. Advanced concepts such as multimodal overlays, augmented reality displays, and robotic assistance devices are still in their infancy but might propel the use of intraoperative navigation. The goal of this work is to give an update on MRI-based navigation and related techniques and to briefly discuss the clinical experience and limitations of some selected systems. (Copyright) 2008 Wiley-Liss, Inc.

  4. Deep architecture neural network-based real-time image processing for image-guided radiotherapy.

    Mori, Shinichiro

    2017-08-01

    To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. On line ultrasonic integrated backscatter

    Landini, L.; Picano, E.; Mazzarisi, A.; Santarelli, F.; Benassi, A.; De Pieri, G.

    1988-01-01

    A new equipment for on-line evaluation of index based on two-dimensional integrated backscatter from ultrasonic images is described. The new equipment is fully integrated into a B-mode ultrasonic apparatus which provides a simultaneous display of conventional information together with parameters of tissue characterization. The system has been tested with a backscattering model of microbubbles in polysaccharide solution, characterized by a physiological exponential time decay. An exponential fitting to the experimental data was performed which yielded r=0.95

  6. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  7. Micro-tattoo guided OCT imaging of site specific inflammation

    Phillips, Kevin G.; Choudhury, Niloy; Samatham, Ravikant V.; Singh, Harvinder; Jacques, Steven L.

    2010-02-01

    Epithelial biologists studying human skin diseases such as cancer formation and psoriasis commonly utilize mouse models to characterize the interplay among cells and intracellular signal transduction pathways that result in programmed changes in gene expression and cellular behaviors. The information obtained from animal models is useful only when phenotypic presentations of disease recapitulate those observed in humans. Excision of tissues followed by histochemical analysis is currently the primary means of establishing the morphological presentation. Non invasive imaging of animal models provides an alternate means to characterize tissue morphology associated with the disease of interest in vivo. While useful, the ability to perform in vivo imaging at different time points in the same tissue location has been a challenge. This information is key to understanding site specific changes as the imaged tissue can now be extracted and analyzed for mRNA expression. We present a method employing a micro-tattoo to guide optical coherence tomography (OCT) imaging of ultraviolet induced inflammation over time in the same tissue locations.

  8. An integrated multimodality image-guided robot system for small-animal imaging research

    Hsu, Wen-Lin; Hsin Wu, Tung; Hsu, Shih-Ming; Chen, Chia-Lin; Lee, Jason J.S.; Huang, Yung-Hui

    2011-01-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO 2 probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153±0.042 mm of desired placement; the phantom simulation errors were within 0.693±0.128 mm. In small-animal studies, the pO 2 probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  9. Multiscale infrared and visible image fusion using gradient domain guided image filtering

    Zhu, Jin; Jin, Weiqi; Li, Li; Han, Zhenghao; Wang, Xia

    2018-03-01

    For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.

  10. Enabling image fusion for a CT guided needle placement robot

    Seifabadi, Reza; Xu, Sheng; Aalamifar, Fereshteh; Velusamy, Gnanasekar; Puhazhendi, Kaliyappan; Wood, Bradford J.

    2017-03-01

    Purpose: This study presents development and integration of hardware and software that enables ultrasound (US) and computer tomography (CT) fusion for a FDA-approved CT-guided needle placement robot. Having real-time US image registered to a priori-taken intraoperative CT image provides more anatomic information during needle insertion, in order to target hard-to-see lesions or avoid critical structures invisible to CT, track target motion, and to better monitor ablation treatment zone in relation to the tumor location. Method: A passive encoded mechanical arm is developed for the robot in order to hold and track an abdominal US transducer. This 4 degrees of freedom (DOF) arm is designed to attach to the robot end-effector. The arm is locked by default and is released by a press of button. The arm is designed such that the needle is always in plane with US image. The articulated arm is calibrated to improve its accuracy. Custom designed software (OncoNav, NIH) was developed to fuse real-time US image to a priori-taken CT. Results: The accuracy of the end effector before and after passive arm calibration was 7.07mm +/- 4.14mm and 1.74mm +/-1.60mm, respectively. The accuracy of the US image to the arm calibration was 5mm. The feasibility of US-CT fusion using the proposed hardware and software was demonstrated in an abdominal commercial phantom. Conclusions: Calibration significantly improved the accuracy of the arm in US image tracking. Fusion of US to CT using the proposed hardware and software was feasible.

  11. A new image navigation system for MR-guided cryosurgery

    Mogami, Takuji; Dohi, Michiko; Harada, Junta

    2002-01-01

    The purpose of this study was to evaluate the feasibility of Interactive Scan Control (ISC), a new MR image navigation system, during percutaneous puncture in cryosurgery. With the ISC system in place, percutaneous MR-guided cryosurgery was performed in 26 cases, with the ISC system being used in 11 cases (five renal tumors, three uterine fibroids and three metastatic liver tumors). The ISC system comprised infrared cameras and an MR-compatible optical tracking tool that was directly connected to a cryoprobe. Tumor sizes ranged from 1.2 cm (metastatic liver tumor) to 9.0 cm (uterine fibroid), for a mean size of 3.9 cm. With ISC, one to three cryoprobes with a diameter of 2 mm or 3 mm were advanced into the tumors with the guidance of an MR fluoroscopic image. Two freeze-thaw cycles were used for cryosurgery. During the cryosurgery, the formation of iceballs was monitored on MR images. Follow-up dynamic CT or MRI as well as physical examinations were conducted after two weeks and six weeks. Placement of probes was successfully performed under the control of the ISC system. During cryosurgery, engulfment of the tumors by iceballs was carefully monitored by MRI. Necrosis of the cryoablated area was confirmed in all renal tumors by follow-up dynamic CT. The size regression of the uterine fibroids was observed through follow-up MRI. Two of the three cases of metastatic liver tumor were ablated completely. Additional therapy for a residual tumor was performed on one patient with a metastatic liver tumor. A small amount of pneumothorax was the only complication found in a patient with a metastatic liver tumor. MR-guided cryosurgery with this new navigation system was feasible with low morbidity and allowed for safe and accurate puncture with a cryoprobe. (author)

  12. Compositional-prior-guided image reconstruction algorithm for multi-modality imaging

    Fang, Qianqian; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.

    2010-01-01

    The development of effective multi-modality imaging methods typically requires an efficient information fusion model, particularly when combining structural images with a complementary imaging modality that provides functional information. We propose a composition-based image segmentation method for X-ray digital breast tomosynthesis (DBT) and a structural-prior-guided image reconstruction for a combined DBT and diffuse optical tomography (DOT) breast imaging system. Using the 3D DBT images from 31 clinically measured healthy breasts, we create an empirical relationship between the X-ray intensities for adipose and fibroglandular tissue. We use this relationship to then segment another 58 healthy breast DBT images from 29 subjects into compositional maps of different tissue types. For each breast, we build a weighted-graph in the compositional space and construct a regularization matrix to incorporate the structural priors into a finite-element-based DOT image reconstruction. Use of the compositional priors enables us to fuse tissue anatomy into optical images with less restriction than when using a binary segmentation. This allows us to recover the image contrast captured by DOT but not by DBT. We show that it is possible to fine-tune the strength of the structural priors by changing a single regularization parameter. By estimating the optical properties for adipose and fibroglandular tissue using the proposed algorithm, we found the results are comparable or superior to those estimated with expert-segmentations, but does not involve the time-consuming manual selection of regions-of-interest. PMID:21258460

  13. Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform)

    Sorcini, B.; Tilikidis, A.

    2006-01-01

    Image-guided radiation therapy (IGRT) can be used to measure and correct positional errors for target and critical structures immediately prior to or during treatment delivery. Some of the most recent available methods applied for target localization are: trans-abdominal ultrasound, implanted markers with in room MV or kV X-rays, optical surface tracking systems, implantable electromagnetic markers, in room CT such as kVCT on rail, kilo-voltage or mega-voltage cone-beam CT (CBCT) and helical megavoltage CT. The verification of the accurate treatment position in conjunction with detailed anatomical information before every fraction can be essential for the outcome of the treatment. In this paper we present the on-board imager (OBI, Varian Medical Systems, Palo Alto, CA) that has been in routine clinical use at the Karolinska University Hospital since June 2004. The OBI has been used for on-line set-up correction of prostate patients using internal gold markers. Displacements of these markers can be monitored radiographically during the treatment course and the registered marker shifts act as a surrogate for prostate motion. For this purpose, on-board kV-kV seems to be an ideal system in terms of image quality. The CBCT function of OBI was installed in March 2005 at our department. It focuses on localizing tumors based on internal anatomy, not just on the conventional external marks or tattoos. The CBCT system provides the capacity for soft tissue imaging in the treatment position and real-time radiographic monitoring during treatment delivery. (authors)

  14. Image guided placement of temporary anchorage devices for tooth movement

    Bahl-Palomo, L.; Bissada, N. [Case Western Reserve Univ. School of Dental Medicine, Dept. of Periodontics, Cleveland, OH (United States); Palomo, J.M.; Hans, M.G. [Case Western Reserve Univ. School of Dental Medicine, Dept. of Orthodontics, Cleveland, OH (United States)

    2007-06-15

    The aim of this project is to develop an image guided protocol for placement of a temporary anchorage device without surgically reflecting a mucoperiosteal flap. Eighteen orthodontic cases were selected for skeletal anchorage from the department of orthodontics at Case University. CBCT images of the subjects were taken using the Hitachi CB MercuRay system set at 15 mA, 120 kVp. CBCT images evaluated the ideal location for TAD placement in three dimensions. Horizontal and vertical linear measurements were taken from fixed dental landmarks to clearly define the location for placement. Transverse slices were used to evaluate the thickness of the buccal plate. Using the transverse view, the angle of insertion was determined such that the maximum buccal plate surface area would contact the screw. TADs were placed in the optimum location, with the most appropriate angle of insertion using a closed approach and with minimal local anesthesia and without flap elevation. Results: All TADs were placed without anatomic encroachment and enabled fixed orthodontic anchorage. (orig.)

  15. Imaging the Southern Sky An Amateur Astronomer's Guide

    Chadwick, Stephen

    2012-01-01

    "If you're looking for a handy reference guide to help you image and explore the many splendors of the southern sky, Imaging the Southern Sky is the book for you. The work features not only stunning color images, all taken by Stephen Chadwick, of the best galaxies, nebulae, and clusters available to astrophotographers, but also lesser-known objects, some of which have gone largely unexplored! Beginners and experienced observers alike should appreciate the book's remarkable imagery and simple text, which provides concise and accurate information on each object and its epoch 2000.0 position, and also expert testimony on its visual nature. Each object essay also includes a section on technical information that should help astrophotographers in their planning, including telescope aperture, focal length and ratio, camera used, exposure times, and field size. As a charming bonus, the authors have taken the liberty to name many of the lesser-known objects to reflect their New Zealand heritage. Constellation by con...

  16. Synthesis of multifunctional gold nanoparticles for image guided therapy

    Laurent, Gautier

    2014-01-01

    The original properties of nanoparticles make them extremely attractive in the field of oncology. In fast, gold nanoparticles coated by macrocyclic ligands allow imaging and therapy with only one object. Therefore, multifunctional platforms are very promising for image-guided therapy, winch constitutes an important step towards personalization of treatment. This consists of stimulating the therapeutic activity of the nanoparticles when their accumulation is high within the tumor zone and low in healthy tissues. A higher selectivity of the treatment is therefore expected. Biodistribution study by SPECT/CT has shown free circulation, renal elimination and a moderate retention by the liver of the nanoparticles. However, this retention is not due to the opsonisation processes. The MRI study of rats' brain carrying a gliosarcoma has shown an accumulation of nanoparticles Au-at-FADOTAGA-Gd in the tumor. Moreover, the co-labeling of these nanoparticles by Ge and 64Cts2+ was successfully performed. As a result, PET/MRI images, a much researched combination but rarely achieved, were acquired on the same animal alter intravenous injection of the co-labeled nanoparticles. The radiosensitizing character of nanoparticles Au-at-TADOTAGA was confirmed by the follow up of tumor growth alter a treatment by MRT (microbeam irradiation) 15 minutes after intratumoral injection of nanoparticles. The therapeutic gain of this treatment has been validated by MRT 24 hours after intravenous injection of nanoparticles to rats carrying gliosarcoma (radioresistant tumor in radiosensitive organ). (author)

  17. Image guided placement of temporary anchorage devices for tooth movement

    Bahl-Palomo, L.; Bissada, N.; Palomo, J.M.; Hans, M.G.

    2007-01-01

    The aim of this project is to develop an image guided protocol for placement of a temporary anchorage device without surgically reflecting a mucoperiosteal flap. Eighteen orthodontic cases were selected for skeletal anchorage from the department of orthodontics at Case University. CBCT images of the subjects were taken using the Hitachi CB MercuRay system set at 15 mA, 120 kVp. CBCT images evaluated the ideal location for TAD placement in three dimensions. Horizontal and vertical linear measurements were taken from fixed dental landmarks to clearly define the location for placement. Transverse slices were used to evaluate the thickness of the buccal plate. Using the transverse view, the angle of insertion was determined such that the maximum buccal plate surface area would contact the screw. TADs were placed in the optimum location, with the most appropriate angle of insertion using a closed approach and with minimal local anesthesia and without flap elevation. Results: All TADs were placed without anatomic encroachment and enabled fixed orthodontic anchorage. (orig.)

  18. Integration of intraoperative stereovision imaging for brain shift visualization during image-guided cranial procedures

    Schaewe, Timothy J.; Fan, Xiaoyao; Ji, Songbai; Roberts, David W.; Paulsen, Keith D.; Simon, David A.

    2014-03-01

    Dartmouth and Medtronic Navigation have established an academic-industrial partnership to develop, validate, and evaluate a multi-modality neurosurgical image-guidance platform for brain tumor resection surgery that is capable of updating the spatial relationships between preoperative images and the current surgical field. A stereovision system has been developed and optimized for intraoperative use through integration with a surgical microscope and an image-guided surgery system. The microscope optics and stereovision CCD sensors are localized relative to the surgical field using optical tracking and can efficiently acquire stereo image pairs from which a localized 3D profile of the exposed surface is reconstructed. This paper reports the first demonstration of intraoperative acquisition, reconstruction and visualization of 3D stereovision surface data in the context of an industry-standard image-guided surgery system. The integrated system is capable of computing and presenting a stereovision-based update of the exposed cortical surface in less than one minute. Alternative methods for visualization of high-resolution, texture-mapped stereovision surface data are also investigated with the objective of determining the technical feasibility of direct incorporation of intraoperative stereo imaging into future iterations of Medtronic's navigation platform.

  19. Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy

    Hälg, Roger A.; Besserer, Jürgen; Schneider, Uwe

    2012-01-01

    Purpose: The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from imaging devices used with treatment machines from the manufacturers Accuray, Elekta, Siemens, and Varian and from computed tomography scanners from GE Healthcare were determined and the resulting effective dose was calculated. The list of investigated imaging techniques consisted of cone beam computed tomography (kilo- and megavoltage), megavoltage fan beam computed tomography, kilo- and megavoltage planar imaging, planning computed tomography with and without gating methods and planar scout views. Results: A conventional 3D planning CT resulted in an effective dose additional to the treatment stray dose of less than 1 mSv outside of the treated volume, whereas a 4D planning CT resulted in a 10 times larger dose. For a daily setup of the patient with two planar kilovoltage images or with a fan beam CT at the TomoTherapy unit, an additional effective dose outside of the treated volume of less than 0.4 mSv and 1

  20. Fluorescent supramolecular micelles for imaging-guided cancer therapy

    Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen

    2016-02-01

    A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth

  1. Image-guided regularization level set evolution for MR image segmentation and bias field correction.

    Wang, Lingfeng; Pan, Chunhong

    2014-01-01

    Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. 3-Tesla functional magnetic resonance imaging-guided tumor resection

    Hall, W.A. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Depts. of Neurosurgery; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiation Oncology; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiology; University of Minnesota Medical Center (MMC), Minneapolis, MN (United States); Truwit, C.L. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiology; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Pediatrics; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Neurology; Hennepin Country Medical Center, Minneapolis, MN (United States). Dept. of Radiology

    2006-12-15

    Objective: We sought to determine the safety and efficacy of using 3-tesla (T) functional magnetic resonance imaging (fMRI) to guide brain tumor resection. Material and methods: From February 2004 to March 2006, fMRI was performed on 13 patients before surgical resection. Functional imaging was used to identify eloquent cortices for motor (8), speech (3), and motor and speech (2) activation using two different 3-T magnetic resonance (MR) scanners. Surgical resection was accomplished using a 1.5-T intraoperative MR system. Appropriate MR scan sequences were performed intraoperatively to determine and maximize the extent of the surgical resection. Results: Tumors included six oligodendrogliomas, three meningiomas, two astrocytomas and two glioblastomas multiforme. The fMRI data was accurate in all cases. After surgery, two patients had hemiparesis, two had worsening of their speech, and one had worsening of speech and motor function. Neurological function returned to normal in all patients within 1 month. Complete resections were possible in 10 patients (77%). Two patients had incomplete resections because of the proximity of their tumors to functional areas. Biopsy was performed in another patient with an astrocytoma in the motor strip. Conclusion: 3-T fMRI was accurate for locating neurologic function before tumor resection near eloquent cortex. (orig.)

  3. Quantifying attention shifts in augmented reality image-guided neurosurgery.

    Léger, Étienne; Drouin, Simon; Collins, D Louis; Popa, Tiberiu; Kersten-Oertel, Marta

    2017-10-01

    Image-guided surgery (IGS) has allowed for more minimally invasive procedures, leading to better patient outcomes, reduced risk of infection, less pain, shorter hospital stays and faster recoveries. One drawback that has emerged with IGS is that the surgeon must shift their attention from the patient to the monitor for guidance. Yet both cognitive and motor tasks are negatively affected with attention shifts. Augmented reality (AR), which merges the realworld surgical scene with preoperative virtual patient images and plans, has been proposed as a solution to this drawback. In this work, we studied the impact of two different types of AR IGS set-ups (mobile AR and desktop AR) and traditional navigation on attention shifts for the specific task of craniotomy planning. We found a significant difference in terms of the time taken to perform the task and attention shifts between traditional navigation, but no significant difference between the different AR set-ups. With mobile AR, however, users felt that the system was easier to use and that their performance was better. These results suggest that regardless of where the AR visualisation is shown to the surgeon, AR may reduce attention shifts, leading to more streamlined and focused procedures.

  4. 3-Tesla functional magnetic resonance imaging-guided tumor resection

    Hall, W.A.; Truwit, C.L.; Univ. of Minnesota Medical School, Minneapolis, MN; Univ. of Minnesota Medical School, Minneapolis, MN; Hennepin Country Medical Center, Minneapolis, MN

    2006-01-01

    Objective: We sought to determine the safety and efficacy of using 3-tesla (T) functional magnetic resonance imaging (fMRI) to guide brain tumor resection. Material and methods: From February 2004 to March 2006, fMRI was performed on 13 patients before surgical resection. Functional imaging was used to identify eloquent cortices for motor (8), speech (3), and motor and speech (2) activation using two different 3-T magnetic resonance (MR) scanners. Surgical resection was accomplished using a 1.5-T intraoperative MR system. Appropriate MR scan sequences were performed intraoperatively to determine and maximize the extent of the surgical resection. Results: Tumors included six oligodendrogliomas, three meningiomas, two astrocytomas and two glioblastomas multiforme. The fMRI data was accurate in all cases. After surgery, two patients had hemiparesis, two had worsening of their speech, and one had worsening of speech and motor function. Neurological function returned to normal in all patients within 1 month. Complete resections were possible in 10 patients (77%). Two patients had incomplete resections because of the proximity of their tumors to functional areas. Biopsy was performed in another patient with an astrocytoma in the motor strip. Conclusion: 3-T fMRI was accurate for locating neurologic function before tumor resection near eloquent cortex. (orig.)

  5. Evaluating imaging-pathology concordance and discordance after ultrasound-guided breast biopsy

    2018-01-01

    Ultrasound (US)-guided breast biopsy has become the main method for diagnosing breast pathology, and it has a high diagnostic accuracy, approaching that of open surgical biopsy. However, methods for confirming adequate lesion retrieval after US-guided biopsy are relatively limited and false-negative results are unavoidable. Determining imaging-pathology concordance after US-guided biopsy is essential for validating the biopsy result and providing appropriate management. In this review article, we briefly present the results of US-guided breast biopsy; describe general aspects to consider when establishing imaging-pathology concordance; and review the various categories of imaging-pathology correlations and corresponding management strategies. PMID:29169231

  6. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    Kapur, T. [Brigham & Women’s Hospital (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  7. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    Kapur, T.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  8. On-line filtering

    Verkerk, C.

    1978-01-01

    Present day electronic detectors used in high energy physics make it possible to obtain high event rates and it is likely that future experiments will face even higher data rates than at present. The complexity of the apparatus increases very rapidly with time and also the criteria for selecting desired events become more and more complex. So complex in fact that the fast trigger system cannot be designed to fully cope with it. The interesting events become thus contaminated with multitudes of uninteresting ones. To distinguish the 'good' events from the often overwhelming background of other events one has to resort to computing techniques. Normally this selection is made in the first part of the analysis of the events, analysis normally performed on a powerful scientific computer. This implies however that many uninteresting or background events have to be recorded during the experiment for subsequent analysis. A number of undesired consequences result; and these constitute a sufficient reason for trying to perform the selection at an earlier stage, in fact ideally before the events are recorded on magnetic tape. This early selection is called 'on-line filtering' and it is the topic of the present lectures. (Auth.)

  9. Image-Guided percutaneous biopsies with a biopsy gun

    Lee, Kyung Hwan; Lim, Hyo Keun; Kim, Eun Ah; Yun, Ku Sub; Bae, Sang Hoo; Shin, Hyung Sik [Hallym University College of Medicine, Seoul (Korea, Republic of)

    1994-07-15

    We report the results of image-guided percutaneous biopsies with a biopsy gun and evaluate the clinical usefulness. One hundred and five biopsies under ultrasonographic or fluoroscopic guidance were performed. Various anatomic sites were targeted(liver; 50, chest; 22, kidney; 12, pancreas; 8, intraperitoeum; 7, retroperitoneum; ). Obtained tissue was diagnostic in 98 of the 105 biopsies(93%). In each instance, representative core tissue specimens were obtained. Evaluation of the core tissue by pathologist revealed consistent, uniform specimens that contained significant crush artifact in no case. Five biopsies yielded inadequate tissue which were too small for histopathologic interpretation or were composed of necrotic debris. Two biopsies yielded adequate tissues, but tissues were not of the target. The diagnoses were malignancy in 77 biopsies and benign disease in 21 biopsies. No complications other than mild, localized discomfort were encountered except a transient hemoptysis and pneumothorax which was observed in two patients. Cutting biopsy with a biopsy gun provided sufficient amount of target tissue for an accurate diagnosis of malignant and benign disease. It was a safe and useful procedure for percutaneous biopsy.

  10. Image-guided robotic radiosurgery for spinal metastases

    Gibbs, Iris C.; Kamnerdsupaphon, Pimkhuan; Ryu, Mi-Ryeong; Dodd, Robert; Kiernan, Michaela; Chang, Steven D.; Adler, John R.

    2007-01-01

    Background and Purpose: To determine the effectiveness and safety of image-guided robotic radiosurgery for spinal metastases. Materials/Methods: From 1996 to 2005, 74 patients with 102 spinal metastases were treated using the CyberKnife TM at Stanford University. Sixty-two (84%) patients were symptomatic. Seventy-four percent (50/68) of previously treated patients had prior radiation. Using the CyberKnife TM , 16-25 Gy in 1-5 fractions was delivered. Patients were followed clinically and radiographically for at least 3 months or until death. Results: With mean follow-up of 9 months (range 0-33 months), 36 patients were alive and 38 were dead at last follow-up. No death was treatment related. Eighty-four (84%) percent of symptomatic patients experienced improvement or resolution of symptoms after treatment. Three patients developed treatment-related spinal injury. Analysis of dose-volume parameters and clinical parameters failed to identify predictors of spinal cord injury. Conclusions: Robotic radiosurgery is effective and generally safe for spinal metastases even in previously irradiated patients

  11. In vivo optoacoustic temperature imaging for image-guided cryotherapy of prostate cancer

    Petrova, E. V.; Brecht, H. P.; Motamedi, M.; Oraevsky, A. A.; Ermilov, S. A.

    2018-03-01

    The objective of this study is to demonstrate in vivo the feasibility of optoacoustic temperature imaging during cryotherapy of prostate cancer. We developed a preclinical prototype optoacoustic temperature imager that included pulsed optical excitation at a wavelength of 805 nm, a modified clinical transrectal ultrasound probe, a parallel data acquisition system, image processing and visualization software. Cryotherapy of a canine prostate was performed in vivo using a commercial clinical system, Cryocare® CS, with an integrated ultrasound imaging. The universal temperature-dependent optoacoustic response of blood was employed to convert reconstructed optoacoustic images to temperature maps. Optoacoustic imaging of temperature during prostate cryotherapy was performed in the longitudinal view over a region of 30 mm (long)  ×  10 mm (deep) that covered the rectum, the Denonvilliers fascia, and the posterior portion of the treated gland. The transrectal optoacoustic images showed high-contrast vascularized regions, which were used for quantitative estimation of local temperature profiles. The constructed temperature maps and their temporal dynamics were consistent with the arrangement of the cryoprobe and readouts of the thermal needle sensors. The temporal profiles of the readouts from the thermal needle sensors and the temporal profile estimated from the normalized optoacoustic intensity of the selected vascularized region showed significant resemblance, except for the initial overshoot, that may be explained as a result of the physiological thermoregulatory compensation. The temperature was mapped with errors not exceeding  ±2 °C (standard deviation) consistent with the clinical requirements for monitoring cryotherapy of the prostate. In vivo results showed that the optoacoustic temperature imaging is a promising non-invasive technique for real-time imaging of tissue temperature during cryotherapy of prostate cancer, which can be combined

  12. Spatially weighted mutual information image registration for image guided radiation therapy

    Park, Samuel B.; Rhee, Frank C.; Monroe, James I.; Sohn, Jason W.

    2010-01-01

    Purpose: To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). Methods: It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically ''important'' areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/MVCT image sets. The

  13. Spatially weighted mutual information image registration for image guided radiation therapy.

    Park, Samuel B; Rhee, Frank C; Monroe, James I; Sohn, Jason W

    2010-09-01

    To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically "important" areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/ MVCT image sets. The SWMI registration with

  14. Markerless registration for image guided surgery. Preoperative image, intraoperative video image, and patient

    Kihara, Tomohiko; Tanaka, Yuko

    1998-01-01

    Real-time and volumetric acquisition of X-ray CT, MR, and SPECT is the latest trend of the medical imaging devices. A clinical challenge is to use these multi-modality volumetric information complementary on patient in the entire diagnostic and surgical processes. The intraoperative image and patient integration intents to establish a common reference frame by image in diagnostic and surgical processes. This provides a quantitative measure during surgery, for which we have been relied mostly on doctors' skills and experiences. The intraoperative image and patient integration involves various technologies, however, we think one of the most important elements is the development of markerless registration, which should be efficient and applicable to the preoperative multi-modality data sets, intraoperative image, and patient. We developed a registration system which integrates preoperative multi-modality images, intraoperative video image, and patient. It consists of a real-time registration of video camera for intraoperative use, a markerless surface sampling matching of patient and image, our previous works of markerless multi-modality image registration of X-ray CT, MR, and SPECT, and an image synthesis on video image. We think these techniques can be used in many applications which involve video camera like devices such as video camera, microscope, and image Intensifier. (author)

  15. Image-guided surgery and therapy: current status and future directions

    Peters, Terence M.

    2001-05-01

    Image-guided surgery and therapy is assuming an increasingly important role, particularly considering the current emphasis on minimally-invasive surgical procedures. Volumetric CT and MR images have been used now for some time in conjunction with stereotactic frames, to guide many neurosurgical procedures. With the development of systems that permit surgical instruments to be tracked in space, image-guided surgery now includes the use of frame-less procedures, and the application of the technology has spread beyond neurosurgery to include orthopedic applications and therapy of various soft-tissue organs such as the breast, prostate and heart. Since tracking systems allow image- guided surgery to be undertaken without frames, a great deal of effort has been spent on image-to-image and image-to- patient registration techniques, and upon the means of combining real-time intra-operative images with images acquired pre-operatively. As image-guided surgery systems have become increasingly sophisticated, the greatest challenges to their successful adoption in the operating room of the future relate to the interface between the user and the system. To date, little effort has been expended to ensure that the human factors issues relating to the use of such equipment in the operating room have been adequately addressed. Such systems will only be employed routinely in the OR when they are designed to be intuitive, unobtrusive, and provide simple access to the source of the images.

  16. A Single-Institution Experience in Percutaneous Image-Guided Biopsy of Malignant Pleural Mesothelioma

    Welch, B. T.; Eiken, P. W.; Atwell, T. D.; Peikert, T.; Yi, E. S.; Nichols, F.; Schmit, G. D.

    2017-01-01

    PurposeMesothelioma has been considered a difficult pathologic diagnosis to achieve via image-guided core needle biopsy. The purpose of this study was to assess the diagnostic sensitivity of percutaneous image-guided biopsy for diagnosis of pleural mesothelioma.Materials and MethodsRetrospective review was performed to identify patients with a confirmed diagnosis of pleural mesothelioma and who underwent image-guided needle biopsy between January 1, 2002, and January 1, 2016. Thirty-two patients with pleural mesothelioma were identified and included for analysis in 33 image-guided biopsy procedures. Patient, procedural, and pathologic characteristics were recorded. Complications were characterized via standardized nomenclature [Common Terminology for Clinically Adverse Events (CTCAE)].ResultsPercutaneous image-guided biopsy was associated with an overall sensitivity of 81%. No CTCAE clinically significant complications were observed. No image-guided procedures were complicated by pneumothorax or necessitated chest tube placement. No patients had tumor seeding of the biopsy tract.ConclusionPercutaneous image-guided biopsy can achieve high sensitivity for pathologic diagnosis of pleural mesothelioma with a low procedural complication rate, potentially obviating need for surgical biopsy.

  17. A Single-Institution Experience in Percutaneous Image-Guided Biopsy of Malignant Pleural Mesothelioma

    Welch, B. T., E-mail: Welch.brian@mayo.edu; Eiken, P. W.; Atwell, T. D. [Mayo Clinic, Department of Radiology (United States); Peikert, T. [Mayo Clinic, Department of Pulmonary and Critical Care Medicine (United States); Yi, E. S. [Mayo Clinic, Department of Pathology (United States); Nichols, F. [Mayo Clinic, Department of Thoracic Surgery (United States); Schmit, G. D. [Mayo Clinic, Department of Radiology (United States)

    2017-06-15

    PurposeMesothelioma has been considered a difficult pathologic diagnosis to achieve via image-guided core needle biopsy. The purpose of this study was to assess the diagnostic sensitivity of percutaneous image-guided biopsy for diagnosis of pleural mesothelioma.Materials and MethodsRetrospective review was performed to identify patients with a confirmed diagnosis of pleural mesothelioma and who underwent image-guided needle biopsy between January 1, 2002, and January 1, 2016. Thirty-two patients with pleural mesothelioma were identified and included for analysis in 33 image-guided biopsy procedures. Patient, procedural, and pathologic characteristics were recorded. Complications were characterized via standardized nomenclature [Common Terminology for Clinically Adverse Events (CTCAE)].ResultsPercutaneous image-guided biopsy was associated with an overall sensitivity of 81%. No CTCAE clinically significant complications were observed. No image-guided procedures were complicated by pneumothorax or necessitated chest tube placement. No patients had tumor seeding of the biopsy tract.ConclusionPercutaneous image-guided biopsy can achieve high sensitivity for pathologic diagnosis of pleural mesothelioma with a low procedural complication rate, potentially obviating need for surgical biopsy.

  18. Diabetic mastopathy: Imaging features and the role of image-guided biopsy in its diagnosis

    Kim, Jong Hyeon; Kim, Eun Kyung; Kim, Min Jung; Moon, Hee Jung; Yoon, Jung Hyun

    2016-01-01

    The goal of this study was to evaluate the imaging features of diabetic mastopathy (DMP) and the role of image-guided biopsy in its diagnosis. Two experienced radiologists retrospectively reviewed the mammographic and sonographic images of 19 pathologically confirmed DMP patients. The techniques and results of the biopsies performed in each patient were also reviewed. Mammograms showed negative findings in 78% of the patients. On ultrasonography (US), 13 lesions were seen as masses and six as non-mass lesions. The US features of the mass lesions were as follows: irregular shape (69%), oval shape (31%), indistinct margin (69%), angular margin (15%), microlobulated margin (8%), well-defined margin (8%), heterogeneous echogenicity (62%), hypoechoic echogenicity (38%), posterior shadowing (92%), parallel orientation (100%), the absence of calcifications (100%), and the absence of vascularity (100%). Based on the US findings, 17 lesions (89%) were classified as Breast Imaging Reporting and Data System category 4 and two (11%) as category 3. US-guided core biopsy was performed in 18 patients, and 10 (56%) were diagnosed with DMP on that basis. An additional vacuum-assisted biopsy was performed in seven patients and all were diagnosed with DMP. The US features of DMP were generally suspicious for malignancy, whereas the mammographic findings were often negative or showed only focal asymmetry. Core biopsy is an adequate method for initial pathological diagnosis. However, since it yields non-diagnostic results in a considerable number of cases, the evaluation of correlations between imaging and pathology plays an important role in the diagnostic process

  19. Diabetic mastopathy: Imaging features and the role of image-guided biopsy in its diagnosis

    Kim, Jong Hyeon; Kim, Eun Kyung; Kim, Min Jung; Moon, Hee Jung; Yoon, Jung Hyun [Dept. of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-03-15

    The goal of this study was to evaluate the imaging features of diabetic mastopathy (DMP) and the role of image-guided biopsy in its diagnosis. Two experienced radiologists retrospectively reviewed the mammographic and sonographic images of 19 pathologically confirmed DMP patients. The techniques and results of the biopsies performed in each patient were also reviewed. Mammograms showed negative findings in 78% of the patients. On ultrasonography (US), 13 lesions were seen as masses and six as non-mass lesions. The US features of the mass lesions were as follows: irregular shape (69%), oval shape (31%), indistinct margin (69%), angular margin (15%), microlobulated margin (8%), well-defined margin (8%), heterogeneous echogenicity (62%), hypoechoic echogenicity (38%), posterior shadowing (92%), parallel orientation (100%), the absence of calcifications (100%), and the absence of vascularity (100%). Based on the US findings, 17 lesions (89%) were classified as Breast Imaging Reporting and Data System category 4 and two (11%) as category 3. US-guided core biopsy was performed in 18 patients, and 10 (56%) were diagnosed with DMP on that basis. An additional vacuum-assisted biopsy was performed in seven patients and all were diagnosed with DMP. The US features of DMP were generally suspicious for malignancy, whereas the mammographic findings were often negative or showed only focal asymmetry. Core biopsy is an adequate method for initial pathological diagnosis. However, since it yields non-diagnostic results in a considerable number of cases, the evaluation of correlations between imaging and pathology plays an important role in the diagnostic process.

  20. Intelligent Image Analysis for Image-Guided Laser Hair Removal and Skin Therapy

    Walker, Brian; Lu, Thomas; Chao, Tien-Hsin

    2012-01-01

    We present the development of advanced automatic target recognition (ATR) algorithms for the hair follicles identification in digital skin images to accurately direct the laser beam to remove the hair. The ATR system first performs a wavelet filtering to enhance the contrast of the hair features in the image. The system then extracts the unique features of the targets and sends the features to an Adaboost based classifier for training and recognition operations. The ATR system automatically classifies the hair, moles, or other skin lesion and provides the accurate coordinates of the intended hair follicle locations. The coordinates can be used to guide a scanning laser to focus energy only on the hair follicles. The intended benefit would be to protect the skin from unwanted laser exposure and to provide more effective skin therapy.

  1. Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions

    Schmitz, A.C.; Gianfelice, D.; Daniel, B.L.; Mali, W.P.T.M.; Bosch, M.A.A.J. van den

    2008-01-01

    Image-guided focussed ultrasound (FUS) ablation is a noninvasive procedure that has been used for treatment of benign or malignant breast tumours. Image-guidance during ablation is achieved either by using real-time ultrasound (US) or magnetic resonance imaging (MRI). The past decade phase I

  2. IMRT for Image-Guided Single Vocal Cord Irradiation

    Osman, Sarah O.S.; Astreinidou, Eleftheria; Boer, Hans C.J. de; Keskin-Cambay, Fatma; Breedveld, Sebastiaan; Voet, Peter; Al-Mamgani, Abrahim; Heijmen, Ben J.M.; Levendag, Peter C.

    2012-01-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose ± standard deviation to the planning target volume was 67 ± 1 Gy. The contralateral vocal cord dose was reduced from 66 ± 1 Gy in the conventional plans to 39 ± 8 Gy and 36 ± 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.

  3. IMRT for Image-Guided Single Vocal Cord Irradiation

    Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Astreinidou, Eleftheria; Boer, Hans C.J. de; Keskin-Cambay, Fatma; Breedveld, Sebastiaan; Voet, Peter; Al-Mamgani, Abrahim; Heijmen, Ben J.M.; Levendag, Peter C. [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands)

    2012-02-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.

  4. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    Siewerdsen, J. [Johns Hopkins University (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  5. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    Siewerdsen, J.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  6. Image-guided, Laser-based Fabrication of Vascular-derived Microfluidic Networks

    Heintz, Keely A.; Mayerich, David; Slater, John H.

    2017-01-01

    This detailed protocol outlines the implementation of image-guided, laser-based hydrogel degradation for the fabrication of vascular-derived microfluidic networks embedded in PEGDA hydrogels. Here, we describe the creation of virtual masks that allow for image-guided laser control; the photopolymerization of a micromolded PEGDA hydrogel, suitable for microfluidic network fabrication and pressure head-driven flow; the setup and use of a commercially available laser scanning confocal microscope...

  7. Percutaneous Image-guided radiofrequency ablation of tumors in inoperable patients - immediate complications and overall safety

    Anubha Sahay

    2016-01-01

    Conclusions: Percutaneous image-guided RFA is an option in patients where most other tumor management modalities have been exhausted or rejected. RFA may not be free from side effects such as postablation syndrome, pain, and there may be other serious complications such as bleeding, but based on our observations, percutaneous image-guided RFA of tumors is a safe palliative and therapeutic treatment option.

  8. MRT letter: Guided filtering of image focus volume for 3D shape recovery of microscopic objects.

    Mahmood, Muhammad Tariq

    2014-12-01

    In this letter, a shape from focus (SFF) method is proposed that utilizes the guided image filtering to enhance the image focus volume efficiently. First, image focus volume is computed using a conventional focus measure. Then each layer of image focus volume is filtered using guided filtering. In this work, the all-in-focus image, which can be obtained from the initial focus volume, is used as guidance image. Finally, improved depth map is obtained from the filtered image focus volume by maximizing the focus measure along the optical axis. The proposed SFF method is efficient and provides better depth maps. The improved performance is highlighted by conducting several experiments using image sequences of simulated and real microscopic objects. The comparative analysis demonstrates the effectiveness of the proposed SFF method. © 2014 Wiley Periodicals, Inc.

  9. Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system.

    Andreozzi, Jacqueline M; Mooney, Karen E; Brůža, Petr; Curcuru, Austen; Gladstone, David J; Pogue, Brian W; Green, Olga

    2018-06-01

    Tools to perform regular quality assurance of magnetic resonance image-guided radiotherapy (MRIgRT) systems should ideally be independent of interference from the magnetic fields. Remotely acquired optical Cherenkov imaging-based dosimetry measurements in water were investigated for this purpose, comparing measures of dose accuracy, temporal dynamics, and overall integrated IMRT delivery. A 40 × 30.5 × 37.5 cm 3 water tank doped with 1 g/L of quinine sulfate was imaged using an intensified charge-coupled device (ICCD) to capture the Cherenkov emission while being irradiated by a commercial MRIgRT system (ViewRay™). The ICCD was placed down-bore at the end of the couch, 4 m from treatment isocenter and behind the 5-Gauss line of the 0.35-T MRI. After establishing optimal camera acquisition settings, square beams of increasing size (4.2 × 4.2 cm 2 , 10.5 × 10.5 cm 2 , and 14.7 × 14.7 cm 2 ) were imaged at 0.93 frames per second, from an individual cobalt-60 treatment head, to develop projection measures related to percent depth dose (PDD) curves and cross beam profiles (CPB). These Cherenkov-derived measurements were compared to ionization chamber (IC) and radiographic film dosimetry data, as well as simulation data from the treatment planning system (TPS). An intensity-modulated radiotherapy (IMRT) commissioning plan from AAPM TG-119 (C4:C-Shape) was also imaged at 2.1 frames per second, and the single linear sum image from 509 s of plan delivery was compared to the dose volume prediction generated by the TPS using gamma index analysis. Analysis of standardized test target images (1024 × 1024 pixels) yielded a pixel resolution of 0.37 mm/pixel. The beam width measured from the Cherenkov image-generated projection CBPs was within 1 mm accuracy when compared to film measurements for all beams. The 502 point measurements (i.e., pixels) of the Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to p

  10. Commissioning an image-guided localization system for radiotherapy

    Phillips, Mark H.; Singer, Karen; Miller, Elizabeth; Stelzer, Keith

    2000-01-01

    Purpose: To describe the design and commissioning of a system for the treatment of classes of tumors that require highly accurate target localization during a course of fractionated external-beam therapy. This system uses image-guided localization techniques in the linac vault to position patients being treated for cranial tumors using stereotactic radiotherapy, conformal radiotherapy, and intensity-modulated radiation therapy techniques. Design constraints included flexibility in the use of treatment-planning software, accuracy and precision of repeat localization, limits on the time and human resources needed to use the system, and ease of use. Methods and Materials: A commercially marketed, stereotactic radiotherapy system, based on a system designed at the University of Florida, Gainesville, was adapted for use at the University of Washington Medical Center. A stereo pair of cameras in the linac vault were used to detect the position and orientation of an array of fiducial markers that are attached to a patient's biteblock. The system was modified to allow the use of either a treatment-planning system designed for stereotactic treatments, or a general, three-dimensional radiation therapy planning program. Measurements of the precision and accuracy of the target localization, dose delivery, and patient positioning were made using a number of different jigs and devices. Procedures were developed for the safe and accurate clinical use of the system. Results: The accuracy of the target localization is comparable to that of other treatment-planning systems. Gantry sag, which cannot be improved, was measured to be 1.7 mm, which had the effect of broadening the dose distribution, as confirmed by a comparison of measurement and calculation. The accuracy of positioning a target point in the radiation field was 1.0 ± 0.2 mm. The calibration procedure using the room-based lasers had an accuracy of 0.76 mm, and using a floor-based radiosurgery system it was 0.73 mm

  11. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    Deng Jun; Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior–inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT–contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  12. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States); Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior-inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT-contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  13. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-01-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer...

  14. Image-guided pain therapy. Sympathicolysis; Bildgestuetzte Schmerztherapie. Sympathikolyse

    Burbelko, M.; Wagner, H.J. [Vivantes Klinikum im Friedrichshain, Institut fuer Radiologie und Interventionelle Therapie, Berlin (Germany); Gutberlet, M.; Grothoff, M. [Universitaet Leipzig - Herzzentrum, Abteilung fuer Diagnostische und Interventionelle Radiologie, Leipzig (Germany)

    2015-06-15

    In the autonomic nerve system most sympathetic neurons synapse peripherally in the ganglia of the sympathetic trunk. A reduction in sympathicotonia by partial elimination of these ganglia is a therapeutic approach that has been used for more than 100 years. In the early 1920s the first attempts at percutaneous sympathicolysis (SL) were carried out. Nowadays, minimally invasive image-guided SL has become an integral part of interventional radiology. Established indications for SL are hyperhidrosis, critical limb ischemia and the complex regional pain syndrome. The standard imaging guidance modality in SL is computed tomography (CT) which allows the exact placement of the puncture needle in the target area under visualization of the surrounding structures. Ethanol is normally used for chemical lysis, which predominantly eliminates the unmyelinated autonomic axons. In order to visualize the distribution of the ethanol during application, iodine-containing contrast medium is added. The sympathetic nervous system (SNS) controls sweat secretion via the efferent neurons; therefore, effective therapy of idiopathic palmar, axillary and plantar hyperhidrosis can be achieved when SL is performed at the corresponding level of the sympathetic trunk. Furthermore, due to the vasomotor innervation of most blood vessels, by reduction of the sympathicotonus an atony of the smooth muscles and therefore vasodilatation occurs, which is used as a palliative therapeutic option in patients with critical limb ischemia. By elimination of the afferent sensory fibers this also results in pain relief. This principle is also used in the SL therapy of the complex regional pain syndrome. After the introduction of CT guidance, major complications have become rare events. In addition to the usual risks of percutaneous interventions there are, however, a number of specific complications, such as syncope caused by irritation of cardiac sympathetic nerves in thoracic SL and ureteral injury in lumbar

  15. A quantitative image quality comparison of four different image guided radiotherapy devices

    Stuetzel, Julia; Oelfke, Uwe; Nill, Simeon

    2008-01-01

    Purpose: A study to quantitatively compare the image quality of four different image guided radiotherapy (IGRT) devices based on phantom measurements with respect to the additional dose delivered to the patient. Methods: Images of three different head-sized phantoms (diameter 16-18 cm) were acquired with the following four IGRT-CT solutions: (i) the Siemens Primatom single slice fan beam computed tomography (CT) scanner with an acceleration voltage of 130 kV, (ii) a Tomotherapy HI-ART II unit using a fan beam scanner with an energy of 3.5 MeV and (iii) the Siemens Artiste prototype, providing the possibility to perform kV (121 kV) and MV (6 MV) cone beam (CB) CTs. For each device three scan protocols (named low, normal, high) were selected to yield the same weighted computed tomography dose index (CTDI w ). Based on the individual inserts of the different phantoms the image quality achieved with each device at a certain dose level was characterized in terms of homogeneity, spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and electron density-to-CT-number conversion. Results: Based on the current findings for head-sized phantoms all devices show an electron density-to-CT-number conversion almost independent of the imaging parameters and hence can be suited for treatment planning purposes. The evaluation of the image quality, however, points out clear differences due to the different energies and geometries. The Primatom standard CT scanner shows throughout the best performance, especially for soft tissue contrast and spatial resolution with low imaging doses. Reasonable soft tissue contrast can be obtained with slightly higher doses compared to the CT scanner with the kVCB and the Tomotherapy unit. In order to get similar results with the MVCB system a much higher dose needs to be applied to the patient. Conclusion: Considering the entire investigations, especially in terms of contrast and spatial resolution, a rough tendency for

  16. Urban guides: image and space invention in Mexico City

    Héctor Mendoza Vargas

    2016-03-01

    Full Text Available This article analyzes the urban guides of Mexico City from a wide time-lapse perspective, from the end ofthe eighteenth century to the nineteenth century and up to 1940, in order to detect major themes and the change of urban perception. In foreigner’s guide outlines, from 1792 to 1793, the Cathedral’s central position conferred strength to the maps inserted in such editions. It is worth noting the subliminal role of this document regarding urban perception, social behavior and the maintenance of religious devotion in the capital of New Spain. After Mexico’s independence these guides lacked novelty. During the years between 1842 and 1854, this editorial genre was reactivated in the Mexican capital. In those years the guides were included in an attempt to fulfill the increasing need for information about the city regarding political, judicial, ecclesiastical and military aspects including, as the main novelty, the continuously expansive commercial sector. While guide editions were modified in order to satisfy the consumption and preferences of the nascent urban bourgeoisie, both editors and authors detected novel concerns among readers, not only about commercial life but they also looked for pleasant and ludic experiences in the city.

  17. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    Farahani, K. [National Cancer Institute (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  18. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    Farahani, K.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  19. Ultrasound/Magnetic Resonance Image Fusion Guided Lumbosacral Plexus Block – A Clinical Study

    Strid, JM; Pedersen, Erik Morre; Søballe, Kjeld

    2014-01-01

    in a double-blinded randomized controlled trial with crossover design. MR datasets will be acquired and uploaded in an advanced US system (Epiq7, Phillips, Amsterdam, Netherlands). All volunteers will receive SSPS blocks with lidocaine added gadolinium contrast guided by US/MR image fusion and by US one week......Background and aims Ultrasound (US) guided lumbosacral plexus block (Supra Sacral Parallel Shift [SSPS]) offers an alternative to general anaesthesia and perioperative analgesia for hip surgery.1 The complex anatomy of the lumbosacral region hampers the accuracy of the block, but it may be improved...... by guidance of US and magnetic resonance (MR) image fusion and real-time 3D electronic needle tip tracking.2 We aim to estimate the effect and the distribution of lidocaine after SSPS guided by US/MR image fusion compared to SSPS guided by ultrasound. Methods Twenty-four healthy volunteers will be included...

  20. Optimizing MR imaging-guided navigation for focused ultrasound interventions in the brain

    Werner, B.; Martin, E.; Bauer, R.; O'Gorman, R.

    2017-03-01

    MR imaging during transcranial MR imaging-guided Focused Ultrasound surgery (tcMRIgFUS) is challenging due to the complex ultrasound transducer setup and the water bolus used for acoustic coupling. Achievable image quality in the tcMRIgFUS setup using the standard body coil is significantly inferior to current neuroradiologic standards. As a consequence, MR image guidance for precise navigation in functional neurosurgical interventions using tcMRIgFUS is basically limited to the acquisition of MR coordinates of salient landmarks such as the anterior and posterior commissure for aligning a stereotactic atlas. Here, we show how improved MR image quality provided by a custom built MR coil and optimized MR imaging sequences can support imaging-guided navigation for functional tcMRIgFUS neurosurgery by visualizing anatomical landmarks that can be integrated into the navigation process to accommodate for patient specific anatomy.

  1. Image-guided radiotherapy and motion management in lung cancer

    Korreman, Stine

    2015-01-01

    In this review, image guidance and motion management in radiotherapy for lung cancer is discussed. Motion characteristics of lung tumours and image guidance techniques to obtain motion information are elaborated. Possibilities for management of image guidance and motion in the various steps...

  2. On-line MRI guidance for Radiotherapy

    Crijns, S.P.M.

    2013-01-01

    Image-guided radiotherapy has the potential to increase success of treatment by decreasing uncertainties concerning tumour position and shape. MRI is the modality of choice when it comes to imaging for tumour delineation and characterisation, set-up correction, treatment plan adaptation, response

  3. A comparison of kV and MV imaging in head and neck image guided radiotherapy

    Devereux, B. [Radiation Oncology Queensland, 280 North St, Toowoomba 4350 (Australia)], E-mail: beth.devereux@roq.net.au; Frantzis, J.; Sisson, T.; Jones, M.; Martin, J.; Middleton, M. [Radiation Oncology Queensland, 280 North St, Toowoomba 4350 (Australia)

    2010-02-15

    Purpose: To compare and assess kV and MV imaging modalities and their role in image guided radiotherapy (IGRT) for head and neck cancer patients. Method: Twelve patients receiving radical radiotherapy to the head and neck were analysed in this study. Six patients undertook MV daily online intervention and a further six patients undertook kV daily online intervention. Pre-intervention field placement data were collected from three separate observers' image match analysis for each patient. The radiotherapy collective involved in the daily online image match analysis formed the fourth observer in the study. The primary end point was to establish the difference in inter- and intra-observer variance between kV and MV imaging modalities. Results: The range of the standard deviations of systematic set-up error for MV imaging calculated was 1.47-2.33 mm (MV) and 1.61-1.64 mm (kV) for the right-left (RL), 2.10-2.17 mm (MV) and 1.53-1.84 mm (kV) for the cranio-caudal (CC) and 1.43-1.63 mm (MV) and 1.02-1.11 mm (kV) for the anterior-posterior (AP). The mean inter-observer variance was 0.21 mm (MV) and 0.41 mm (kV) for the RL, 0.53 mm (MV) and 0.55 mm (kV) for the CC and 0.23 mm (MV) and 0.16 mm (kV) for the AP direction. Intra-observer mean variance was in the order of 0.60 mm (MV) and 0.16 mm (kV) for the RL, 1.41 mm (MV) and 0.05 mm (kV) for the CC and 1.41 mm (MV) and 0.08 mm (kV) for the AP. Discussion: The data in this study suggest both inter- and intra-observer consistency across kV and MV imaging modalities were comparable. However, it is felt that the improved clarity and quality of kV imaging allows all observers to analyse images in a consistent manner, identifying and acting on potential field placement moves. Conclusion: The introduction of kV imaging has maintained the high levels of inter- and intra-observer consistency achieved with MV imaging. This in turn further enables positive verification outcomes and supports the implementation of potential

  4. Five-year follow-up using a prostate stent as fiducial in image-guided radiotherapy of prostate cancer.

    Carl, Jesper; Sander, Lotte

    2015-06-01

    To report results from the five-year follow-up on a previously reported study using image-guided radiotherapy (IGRT) of localized or locally advanced prostate cancer (PC) and a removable prostate stent as fiducial. Patients with local or locally advanced PC were treated using five-field 3D conformal radiotherapy (3DRT). The clinical target volumes (CTV) were treated to 78 Gy in 39 fractions using daily on-line image guidance (IG). Late genito-urinary (GU) and gastro-intestinal (GI) toxicities were scored using the radiotherapy oncology group (RTOG) score and the common toxicity score of adverse events (CTC) score. Urinary symptoms were also scored using the international prostate symptom score (IPSS). Median observation time was 5.4 year. Sixty-two of the 90 patients from the original study cohort were eligible for toxicity assessment. Overall survival, cancer-specific survival and biochemical freedom from failure were 85%, 96% and 80%, respectively at five years after radiotherapy. Late toxicity GU and GI RTOG scores≥2 were 5% and 0%. Comparing pre- and post-radiotherapy IPSS scores indicate that development in urinary symptoms after radiotherapy may be complex. Prostate image-guided radiotherapy using a prostate stent demonstrated survival data comparable with recently published data. GU and GI toxicities at five-year follow-up were low and comparable to the lowest toxicity rates reported. These findings support that the precision of the prostate stent technique is at least as good as other techniques. IPSS revealed a complex development in urinary symptoms after radiotherapy.

  5. An invertebrate embryologist's guide to routine processing of confocal images.

    von Dassow, George

    2014-01-01

    It is almost impossible to use a confocal microscope without encountering the need to transform the raw data through image processing. Adherence to a set of straightforward guidelines will help ensure that image manipulations are both credible and repeatable. Meanwhile, attention to optimal data collection parameters will greatly simplify image processing, not only for convenience but for quality and credibility as well. Here I describe how to conduct routine confocal image processing tasks, including creating 3D animations or stereo images, false coloring or merging channels, background suppression, and compressing movie files for display.

  6. Multi-modal brain imaging software for guiding invasive treatment of epilepsy

    Ossenblok, P.P.W.; Marien, S.; Meesters, S.P.L.; Florack, L.M.J.; Hofman, P.; Schijns, O.E.M.G.; Colon, A.

    2017-01-01

    Purpose: The surgical treatment of patients with complex epilepsies is changing more and more from open, invasive surgery towards minimally invasive, image guided treatment. Multi-modal brain imaging procedures are developed to delineate preoperatively the region of the brain which is responsible

  7. Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy

    Ven, W.J.M. van de; Hu, Y.; Barentsz, J.O.; Karssemeijer, N.; Barratt, D.; Huisman, H.J.

    2015-01-01

    Adding magnetic resonance (MR)-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound (US) by using MR-US registration. A common approach is to use surface-based

  8. Microencapsulation of indocyanine green for potential applications in image-guided drug delivery.

    Zhu, Zhiqiang; Si, Ting; Xu, Ronald X

    2015-02-07

    We present a novel process to encapsulate indocyanine green (ICG) in liposomal droplets at high concentration for potential applications in image-guided drug delivery. The microencapsulation process follows two consecutive steps of droplet formation by liquid-driven coaxial flow focusing (LDCFF) and solvent removal by oil phase dewetting. These biocompatible lipid vesicles may have important applications in drug delivery and fluorescence imaging.

  9. Determination of tolerances in the positioning of the treatment table from an image-guided system

    Perez Moreno, J. M.; Zucca Aparicio, D.; Fernandez leton, P.; Garcia Ruiz-Zorrilla, J.; Minanbres Moro, A.

    2011-01-01

    The use of techniques of image-guided radiotherapy (TGRT) aims to reduce the uncertainties associated with patient positioning. One of the techniques more recent development is the cone beam CT (CBCT), consisting of the acquisition of volumetric images of the patient by a detector integrated into the linear accelerator. By analyzing the results of all sessions of treatment to all patients in which the positioning has been carried out with image-guided system MV CBCT have been determined tolerance tables for translational coordinates of the table treatment based on pathology and immobilization system used. (Author)

  10. Image-guided macular laser therapy: design considerations and progress toward implementation

    Berger, Jeffrey W.; Shin, David S.

    1999-06-01

    Laser therapy is currently the only treatment of proven benefit for exudative age related macular degeneration and diabetic retinopathy. To guide treatment for macular diseases, investigations were initiated to permit overlay of previously-stored angiographic images and image sequences superimposed onto the real-time biomicroscopic fundus image. Prior to treatment, a set of partially overlapping fundus images is acquired and montaged in order to provide a map for subsequent tracking operations. A binocular slit-lamp biomicroscope interfaced to a CCD camera, framegrabber board, and PC permits acquisition and rendering of retinal images. Computer-vision algorithms facilitate robust tracking, registration, and near-video-rate image overlay of previously-stored retinal photographic and angiographic images onto the real-time fundus image. Laser treatment is guided in this augmented reality environment where the borders of the treatment target--for example, the boundaries of a choroidal neovascularization complex--are easily identified through overlay of angiographic information superimposed on, and registered with, the real-time fundus image. During periods of misregistration as judged by the amplitude of the tracking similarity metric, laser function is disabled, affording additional safety. Image-guided macular laser therapy should facilitate accurate targeting of treatable lesions and less unintentional retinal injury when compared with standard techniques.

  11. A Practical Guide to Multi-image Alignment

    Aguerrebere, Cecilia; Delbracio, Mauricio; Bartesaghi, Alberto; Sapiro, Guillermo

    2018-01-01

    Multi-image alignment, bringing a group of images into common register, is an ubiquitous problem and the first step of many applications in a wide variety of domains. As a result, a great amount of effort is being invested in developing efficient multi-image alignment algorithms. Little has been done, however, to answer fundamental practical questions such as: what is the comparative performance of existing methods? is there still room for improvement? under which conditions should one techni...

  12. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy

    Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy

    2011-08-01

    Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.

  13. Robust surface registration using salient anatomical features for image-guided liver surgery: Algorithm and validation

    Clements, Logan W.; Chapman, William C.; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2008-01-01

    A successful surface-based image-to-physical space registration in image-guided liver surgery (IGLS) is critical to provide reliable guidance information to surgeons and pertinent surface displacement data for use in deformation correction algorithms. The current protocol used to perform the image-to-physical space registration involves an initial pose estimation provided by a point based registration of anatomical landmarks identifiable in both the preoperative tomograms and the intraoperati...

  14. Technique for Targeting Arteriovenous Malformations Using Frameless Image-Guided Robotic Radiosurgery

    Hristov, Dimitre; Liu, Lina; Adler, John R.; Gibbs, Iris C.; Moore, Teri; Sarmiento, Marily; Chang, Steve D.; Dodd, Robert; Marks, Michael; Do, Huy M.

    2011-01-01

    Purpose: To integrate three-dimensional (3D) digital rotation angiography (DRA) and two-dimensional (2D) digital subtraction angiography (DSA) imaging into a targeting methodology enabling comprehensive image-guided robotic radiosurgery of arteriovenous malformations (AVMs). Methods and Materials: DRA geometric integrity was evaluated by imaging a phantom with embedded markers. Dedicated DSA acquisition modes with preset C-arm positions were configured. The geometric reproducibility of the presets was determined, and its impact on localization accuracy was evaluated. An imaging protocol composed of anterior-posterior and lateral DSA series in combination with a DRA run without couch displacement between acquisitions was introduced. Software was developed for registration of DSA and DRA (2D-3D) images to correct for: (a) small misalignments of the C-arm with respect to the estimated geometry of the set positions and (b) potential patient motion between image series. Within the software, correlated navigation of registered DRA and DSA images was incorporated to localize AVMs within a 3D image coordinate space. Subsequent treatment planning and delivery followed a standard image-guided robotic radiosurgery process. Results: DRA spatial distortions were typically smaller than 0.3 mm throughout a 145-mm x 145-mm x 145-mm volume. With 2D-3D image registration, localization uncertainties resulting from the achievable reproducibility of the C-arm set positions could be reduced to about 0.2 mm. Overall system-related localization uncertainty within the DRA coordinate space was 0.4 mm. Image-guided frameless robotic radiosurgical treatments with this technique were initiated. Conclusions: The integration of DRA and DSA into the process of nidus localization increases the confidence with which radiosurgical ablation of AVMs can be performed when using only an image-guided technique. Such an approach can increase patient comfort, decrease time pressure on clinical and

  15. Concomitant Imaging Dose and Cancer Risk in Image Guided Thoracic Radiation Therapy

    Zhang, Yibao; Wu, Hao [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing (China); Chen, Zhe [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Knisely, Jonathan P.S. [Department of Radiation Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York (United States); Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Feng, Zhongsu [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing (China); Bao, Shanglian [Beijing Key Laboratory of Medical Physics and Engineering, Peking University, Beijing (China); Deng, Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States)

    2015-11-01

    Purpose: Kilovoltage cone beam computed tomography (CT) (kVCBCT) imaging guidance improves the accuracy of radiation therapy but imposes an extra radiation dose to cancer patients. This study aimed to investigate concomitant imaging dose and associated cancer risk in image guided thoracic radiation therapy. Methods and Materials: The planning CT images and structure sets of 72 patients were converted to CT phantoms whose chest circumferences (C{sub chest}) were calculated retrospectively. A low-dose thorax protocol on a Varian kVCBCT scanner was simulated by a validated Monte Carlo code. Computed doses to organs and cardiac substructures (for 5 selected patients of various dimensions) were regressed as empirical functions of C{sub chest}, and associated cancer risk was calculated using the published models. The exposures to nonthoracic organs in children were also investigated. Results: The structural mean doses decreased monotonically with increasing C{sub chest}. For all 72 patients, the median doses to the heart, spinal cord, breasts, lungs, and involved chest were 1.68, 1.33, 1.64, 1.62, and 1.58 cGy/scan, respectively. Nonthoracic organs in children received 0.6 to 2.8 cGy/scan if they were directly irradiated. The mean doses to the descending aorta (1.43 ± 0.68 cGy), left atrium (1.55 ± 0.75 cGy), left ventricle (1.68 ± 0.81 cGy), and right ventricle (1.85 ± 0.84 cGy) were significantly different (P<.05) from the heart mean dose (1.73 ± 0.82 cGy). The blade shielding alleviated the exposure to nonthoracic organs in children by an order of magnitude. Conclusions: As functions of patient size, a series of models for personalized estimation of kVCBCT doses to thoracic organs and cardiac substructures have been proposed. Pediatric patients received much higher doses than did the adults, and some nonthoracic organs could be irradiated unexpectedly by the default scanning protocol. Increased cancer risks and disease adverse events in the

  16. Characteristics and performance of a micro-MOSFET: An 'imageable' dosimeter for image-guided radiotherapy

    Rowbottom, Carl G.; Jaffray, David A.

    2004-01-01

    The performance and characteristics of a miniature metal oxide semiconductor field effect transistor (micro-MOSFET) detector was investigated for its potential application to integral system tests for image-guided radiotherapy. In particular, the position of peak response to a slit of radiation was determined for the three principal axes to define the co-ordinates for the center of the active volume of the detector. This was compared to the radiographically determined center of the micro-MOSFET visible using cone-beam CT. Additionally, the angular sensitivity of the micro-MOSFET was measured. The micro-MOSFETs are clearly visible on the cone-beam CT images, and produce no artifacts. The center of the active volume of the micro-MOSFET aligned with the center of the visible micro-MOSFET on the cone-beam CT images for the x and y axes to within 0.20 mm and 0.15 mm, respectively. In z, the long axis of the detector, the peak response was found to be 0.79 mm from the tip of the visible micro-MOSFET. Repeat experiments verified that the position of the peak response of the micro-MOSFET was reproducible. The micro-MOSFET response for 360 deg. of rotation in the axial plane to the micro-MOSFET was ±2%, consistent with values quoted by the manufacturer. The location of the active volume of the micro-MOSFETs under investigation can be determined from the centroid of the visible micro-MOSFET on cone-beam CT images. The CT centroid position corresponds closely to the center of the detector response to radiation. The ability to use the cone-beam CT to locate the active volume to within 0.20 mm allows their use in an integral system test for the imaging of and dose delivery to a phantom containing an array of micro-MOSFETs. The small angular sensitivity allows the investigation of noncoplanar beams

  17. Image-guided navigation system for placing dental implants.

    Casap, Nardy; Wexler, Alon; Lustmann, Joshua

    2004-10-01

    Navigation-guided surgery has recently been introduced into various surgical disciplines, including oral and maxillofacial surgery. Since the advent of dental implants, dental computed tomography (CT) scans have been used as a diagnostic tool for preoperative planning, but not as part of the surgical phase. This article explains the principles of computer-assisted surgery and describes the use of a computer-guided navigation system in dental implantology. The system uses preoperative dental CT scans for planning and as an integral part of the surgical procedure. This system allows continuous intraoperative coordination of the implantation phase with the preoperative plan, optimizing the accuracy of implant surgery. Deviations from the planned location of the implants are minimal. Several cases are discussed.

  18. Head and neck imaging: An atlas and diagnostic guide

    Noyek, A.; Wortzman, G.

    1987-01-01

    This book presents an illustrated guide to the radiologic diagnosis of specific clinical problems. It combines the atlas format with a focus on making the diagnosis with the help of decision trees, strategies, and work-up protocols that include CT, ultrasound, and other modalities. It emphasizes communication between radiologists and otolaryngologists. It reviews radiologic evaluation of such clinical problems as the congenital ear, traumatic lesions, osteomyelitis, facial paralysis, local manifestations of systemic disease and post-surgical disorders

  19. Gamma Imaging-Guided Minimally Invasive Breast Biopsy: Initial Clinical Experience.

    Brem, Rachel F; Mehta, Anita K; Rapelyea, Jocelyn A; Akin, Esma A; Bazoberry, Adriana M; Velasco, Christel D

    2018-03-01

    The purpose of this study was to evaluate our initial experience with gamma imaging-guided vacuum-assisted breast biopsy in women with abnormal findings. A retrospective review of patients undergoing breast-specific gamma imaging (BSGI), also known as molecular breast imaging (MBI), between April 2011 and October 2015 found 117 nonpalpable mammographically and sonographically occult lesions for which gamma imaging-guided biopsies were recommended. Biopsy was performed with a 9-gauge vacuum-assisted device with subsequent placement of a titanium biopsy site marker. Medical records and pathologic findings were evaluated. Of the 117 biopsies recommended, 104 were successful and 13 were canceled. Of the 104 performed biopsies, 32 (30.8%) had abnormal pathologic findings. Of those 32 biopsies, nine (28.1%) found invasive cancers, six (18.8%) found ductal carcinoma in situ (DCIS), and 17 (53.1%) found high-risk lesions. Of the 17 high-risk lesions, there were three (17.6%) lobular carcinomas in situ, five (29.4%) atypical ductal hyperplasias, two (11.8%) atypical lobular hyperplasias, one (5.9%) flat epithelial atypia, and six (35.3%) papillomas. Two cases of atypical ductal hyperplasia were upgraded to DCIS at surgery. The overall cancer detection rate for gamma imaging-guided biopsy was 16.3%. In this study, gamma imaging-guided biopsy had a positive predictive value of total successful biopsies of 16.3% for cancer and 30.8% for cancer and high-risk lesions. Gamma imaging-guided biopsy is a viable approach to sampling BSGI-MBI-detected lesions without sonographic or mammographic correlate. Our results compare favorably to those reported for MRI-guided biopsy.

  20. Practical guide to quality assurance in medical imaging

    Moores, M.; Watkinson, S.; Pearcy, J.; Henshaw, E.T.

    1987-01-01

    This volume forms an important part of the response to a growing need to ensure the same and cost-effective use of ionizing radiations for the benefit of both staff and patients. The authors provide guidance to implementing and running quality assurance programs in medical imaging departments. The treatment provides an overview of all the tests which need to be carried out in medical imaging, and the text contains step-by-step guidance as to how to perform and interpret the results of medical imaging

  1. Feasibility and effectiveness of image-guided percutaneous biopsy of the urinary bladder.

    Butros, Selim Reha; McCarthy, Colin James; Karaosmanoğlu, Ali Devrim; Shenoy-Bhangle, Anuradha S; Arellano, Ronald S

    2015-08-01

    To evaluate the indications, technique, results, and complications of image-guided percutaneous biopsy of the urinary bladder. This retrospective study included 15 patients (10 male, 5 female) who underwent image-guided percutaneous biopsy of the urinary bladder between January 1999 and December 2013. The medical records, imaging studies, procedural details, and long-term follow-up of each patient were reviewed in detail to assess the feasibility of percutaneous bladder biopsy. Ten patients had focal bladder masses and 5 patients had asymmetric or diffuse bladder wall thickening. Eleven patients had either negative or unsatisfactory cystoscopies prior to the biopsy. Percutaneous biopsies were performed under computed tomography guidance in 12 patients and ultrasound in 3 patients. All procedures were technically successful and there were no procedural complications. Malignancy was confirmed in 8 patients, among whom 6 had transitional cell carcinoma, 1 cervical cancer, and 1 prostate cancer metastasis. Seven patients had a benign diagnosis, including 3 that were later confirmed by pathology following surgery and 2 patients with a false-negative result. The overall sensitivity was 80% and accuracy was 87%. Image-guided percutaneous biopsy of the urinary bladder is a safe and technically feasible procedure with a high sensitivity and accuracy rate. Although image-guided bladder biopsy is an uncommon procedure, it should be considered in selected cases when more traditional methods of tissue sampling are either not possible or fail to identify abnormalities detected by cross-sectional imaging.

  2. Transthoracic CT-guided biopsy with multiplanar reconstruction image improves diagnostic accuracy of solitary pulmonary nodules

    Ohno, Yoshiharu; Hatabu, Hiroto; Takenaka, Daisuke; Imai, Masatake; Ohbayashi, Chiho; Sugimura, Kazuro

    2004-01-01

    Objective: To evaluate the utility of multiplanar reconstruction (MPR) image for CT-guided biopsy and determine factors of influencing diagnostic accuracy and the pneumothorax rate. Materials and methods: 390 patients with 396 pulmonary nodules underwent transthoracic CT-guided aspiration biopsy (TNAB) and transthoracic CT-guided cutting needle core biopsy (TCNB) as follows: 250 solitary pulmonary nodules (SPNs) underwent conventional CT-guided biopsy (conventional method), 81 underwent CT-fluoroscopic biopsy (CT-fluoroscopic method) and 65 underwent conventional CT-guided biopsy in combination with MPR image (MPR method). Success rate, overall diagnostic accuracy, pneumothorax rate and total procedure time were compared in each method. Factors affecting diagnostic accuracy and pneumothorax rate of CT-guided biopsy were statistically evaluated. Results: Success rates (TNAB: 100.0%, TCNB: 100.0%) and overall diagnostic accuracies (TNAB: 96.9%, TCNB: 97.0%) of MPR were significantly higher than those using the conventional method (TNAB: 87.6 and 82.4%, TCNB: 86.3 and 81.3%) (P<0.05). Diagnostic accuracy were influenced by biopsy method, lesion size, and needle path length (P<0.05). Pneumothorax rate was influenced by pathological diagnostic method, lesion size, number of punctures and FEV1.0% (P<0.05). Conclusion: The use of MPR for CT-guided lung biopsy is useful for improving diagnostic accuracy with no significant increase in pneumothorax rate or total procedure time

  3. Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform); Applications cliniques de la radiotherapie guidee par l'image (RTGI)

    Sorcini, B.; Tilikidis, A. [Karolinska Univ. Hospital, Dept. of Medical Physics, Stockholm (Sweden)

    2006-09-15

    Image-guided radiation therapy (IGRT) can be used to measure and correct positional errors for target and critical structures immediately prior to or during treatment delivery. Some of the most recent available methods applied for target localization are: trans-abdominal ultrasound, implanted markers with in room MV or kV X-rays, optical surface tracking systems, implantable electromagnetic markers, in room CT such as kVCT on rail, kilo-voltage or mega-voltage cone-beam CT (CBCT) and helical megavoltage CT. The verification of the accurate treatment position in conjunction with detailed anatomical information before every fraction can be essential for the outcome of the treatment. In this paper we present the on-board imager (OBI, Varian Medical Systems, Palo Alto, CA) that has been in routine clinical use at the Karolinska University Hospital since June 2004. The OBI has been used for on-line set-up correction of prostate patients using internal gold markers. Displacements of these markers can be monitored radiographically during the treatment course and the registered marker shifts act as a surrogate for prostate motion. For this purpose, on-board kV-kV seems to be an ideal system in terms of image quality. The CBCT function of OBI was installed in March 2005 at our department. It focuses on localizing tumors based on internal anatomy, not just on the conventional external marks or tattoos. The CBCT system provides the capacity for soft tissue imaging in the treatment position and real-time radiographic monitoring during treatment delivery. (authors)

  4. Evaluation of Setup Error Correction for Patients Using On Board Imager in Image Guided Radiation Therapy

    Kang, Soo Man [Dept. of Radiation Oncology, Kosin University Gospel Hospital, Busan (Korea, Republic of)

    2008-09-15

    To reduce side effects in image guided radiation therapy (IGRT) and to improve the quality of life of patients, also to meet accurate SETUP condition for patients, the various SETUP correction conditions were compared and evaluated by using on board imager (OBI) during the SETUP. Each 30 cases of the head, the neck, the chest, the belly, and the pelvis in 150 cases of IGRT patients was corrected after confirmation by using OBI at every 2-3 day. Also, the difference of the SETUP through the skin-marker and the anatomic SETUP through the OBI was evaluated. General SETUP errors (Transverse, Coronal, Sagittal) through the OBI at original SETUP position were Head and Neck: 1.3 mm, Brain: 2 mm, Chest: 3 mm, Abdoman: 3.7 mm, Pelvis: 4 mm. The patients with more that 3 mm in the error range were observed in the correction devices and the patient motions by confirming in treatment room. Moreover, in the case of female patients, the result came from the position of hairs during the Head and Neck, Brain tumor. Therefore, after another SETUP in each cases of over 3 mm in the error range, the treatment was carried out. Mean error values of each parts estimated after the correction were 1 mm for the head, 1.2 mm for the neck, 2.5 mm for the chest, 2.5 mm for the belly, and 2.6 mm for the pelvis. The result showed the correction of SETUP for each treatment through OBI is extremely difficult because of the importance of SETUP in radiation treatment. However, by establishing the average standard of the patients from this research result, the better patient satisfaction and treatment results could be obtained.

  5. Evaluation of Setup Error Correction for Patients Using On Board Imager in Image Guided Radiation Therapy

    Kang, Soo Man

    2008-01-01

    To reduce side effects in image guided radiation therapy (IGRT) and to improve the quality of life of patients, also to meet accurate SETUP condition for patients, the various SETUP correction conditions were compared and evaluated by using on board imager (OBI) during the SETUP. Each 30 cases of the head, the neck, the chest, the belly, and the pelvis in 150 cases of IGRT patients was corrected after confirmation by using OBI at every 2-3 day. Also, the difference of the SETUP through the skin-marker and the anatomic SETUP through the OBI was evaluated. General SETUP errors (Transverse, Coronal, Sagittal) through the OBI at original SETUP position were Head and Neck: 1.3 mm, Brain: 2 mm, Chest: 3 mm, Abdoman: 3.7 mm, Pelvis: 4 mm. The patients with more that 3 mm in the error range were observed in the correction devices and the patient motions by confirming in treatment room. Moreover, in the case of female patients, the result came from the position of hairs during the Head and Neck, Brain tumor. Therefore, after another SETUP in each cases of over 3 mm in the error range, the treatment was carried out. Mean error values of each parts estimated after the correction were 1 mm for the head, 1.2 mm for the neck, 2.5 mm for the chest, 2.5 mm for the belly, and 2.6 mm for the pelvis. The result showed the correction of SETUP for each treatment through OBI is extremely difficult because of the importance of SETUP in radiation treatment. However, by establishing the average standard of the patients from this research result, the better patient satisfaction and treatment results could be obtained.

  6. Extreme Hypofractionated Image-Guided Radiotherapy for Prostate Cancer

    Carlo Greco

    2013-09-01

    Full Text Available An emerging body of data suggests that hypofractionated radiation schedules, where a higher dose per fraction is delivered in a smaller number of sessions, may be superior to conventional fractionation schemes in terms of both tumour control and toxicity profile in the management of adenocarcinoma of the prostate. However, the optimal hypofractionation scheme is still the subject of scientific debate. Modern computer-driven technology enables the safe implementation of extreme hypo fractionation (often referred to as stereotactic body radiation therapy [SBRT]. Several studies are currently being conducted to clarify the yet unresolved issues regarding treatment techniques and fractionation regimens. Recently, the American Society for Radiation Oncology (ASTRO issued a model policy indicating that data supporting the use of SBRT for prostate cancer have matured to a point where SBRT could be considered an appropriate alternative for select patients with low-to-intermediate risk disease. The present article reviews some of the currently available data and examines the impact of tracking technology to mitigate intra-fraction target motion, thus, potentially further improving the clinical outcomes of extreme hypofractionated radiation therapy in appropriately selected prostate cancer patients. The Champalimaud Centre for the Unknown (CCU’s currently ongoing Phase I feasibility study is described; it delivers 45 Gy in five fractions using prostate fixation via a rectal balloon, and urethral sparing via catheter placement with on-line intra-fractional motion tracking through beacon transponder technology.

  7. Cost minimisation analysis: kilovoltage imaging with automated repositioning versus electronic portal imaging in image-guided radiotherapy for prostate cancer.

    Gill, S; Younie, S; Rolfo, A; Thomas, J; Siva, S; Fox, C; Kron, T; Phillips, D; Tai, K H; Foroudi, F

    2012-10-01

    To compare the treatment time and cost of prostate cancer fiducial marker image-guided radiotherapy (IGRT) using orthogonal kilovoltage imaging (KVI) and automated couch shifts and orthogonal electronic portal imaging (EPI) and manual couch shifts. IGRT treatment delivery times were recorded automatically on either unit. Costing was calculated from real costs derived from the implementation of a new radiotherapy centre. To derive cost per minute for EPI and KVI units the total annual setting up and running costs were divided by the total annual working time. The cost per IGRT fraction was calculated by multiplying the cost per minute by the duration of treatment. A sensitivity analysis was conducted to test the robustness of our analysis. Treatment times without couch shift were compared. Time data were analysed for 8648 fractions, 6057 from KVI treatment and 2591 from EPI treatment from a total of 294 patients. The median time for KVI treatment was 6.0 min (interquartile range 5.1-7.4 min) and for EPI treatment it was 10.0 min (interquartile range 8.3-11.8 min) (P value time for EPI was 8.8 min and for KVI was 5.1 min. Treatment time is less on KVI units compared with EPI units. This is probably due to automation of couch shift and faster evaluation of imaging on KVI units. Annual running costs greatly outweigh initial setting up costs and therefore the cost per fraction was less with KVI, despite higher initial costs. The selection of appropriate IGRT equipment can make IGRT practical within radiotherapy departments. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. The mathematics of medical imaging a beginner’s guide

    Feeman, Timothy G

    2015-01-01

    The basic mathematics of computerized tomography, the CT scan, are aptly presented for an audience of undergraduates in mathematics and engineering. Assuming no prior background in advanced mathematical analysis, topics such as the Fourier transform, sampling, and discrete approximation algorithms are introduced from scratch and are developed within the context of medical imaging. A chapter on magnetic resonance imaging focuses on manipulation of the Bloch equation, the system of differential equations that is the foundation of this important technology. Extending the ideas of the acclaimed first edition, new material has been added to render an even more accessible textbook for course usage. This edition includes new discussions of the Radon transform, the Dirac delta function and its role in X-ray imaging, Kacmarz’s method and least squares approximation, spectral filtering,  and more.  Copious examples and exercises, several new computer-based exercises, and additional graphics have been added to fur...

  9. The clinician's guide to diagnostic imaging: Cost effective pathways

    Grossman, Z.D.; Chew, F.S.; Ellis, D.A.; Brigham, S.C.

    1987-01-01

    This book presents logical, step-by-step imaging sequences for 47 medical, surgical, and pediatric problems. Topics considered include breast cancer screening, acute spinal trauma, search for primary cancer of unknown origin, acute anuria, blunt chest trauma, new onset seizures, and spinal cord compression from metastases. Other chapters have been rewritten to enhance the clarity of presentation and to incorporate new techniques such as magnetic resonance imaging, dipyridamole stress testing, and single photon emission computed tomography. The book highlights the expanding role of CT in evaluation of thoracic and abdominal problems, the emergence of magnetic resonance imaging as a vital diagnostic tool for the central nervous system, and the clinical utility of many newly developed radiopharmaceuticals

  10. Image-guided cancer surgery using near-infrared fluorescence

    Vahrmeijer, Alexander L.; Hutteman, Merlijn; van der Vorst, Joost R.; van de Velde, C.J.H.; Frangioni, John V.

    2013-01-01

    Paradigm shifts in surgery arise when surgeons are empowered to perform surgery faster, better, and/or less expensively. Optical imaging that exploits invisible near-infrared fluorescent light has the potential to improve cancer surgery outcomes while minimizing anesthesia time and lowering healthcare costs. Because of this, the last few years have witnessed an explosion of proof-of-concept clinical trials in the field. In this review, we introduce the concept of near-infrared fluorescence imaging for cancer surgery, review the clinical trial literature to date, outline the key issues pertaining to imaging system and contrast agent optimization, discuss limitations and leverage, and provide a framework for making the technology available for the routine care of cancer patients in the near future. PMID:23881033

  11. Imaging: Guiding the Clinical Translation of Cardiac Stem Cell Therapy

    Nguyen, Patricia K.; Lan, Feng; Wang, Yongming; Wu, Joseph C.

    2011-01-01

    Stem cells have been touted as the holy grail of medical therapy with promises to regenerate cardiac tissue, but it appears the jury is still out on this novel therapy. Using advanced imaging technology, scientists have discovered that these cells do not survive nor engraft long-term. In addition, only marginal benefit has been observed in large animal studies and human trials. However, all is not lost. Further application of advanced imaging technology will help scientists unravel the mysteries of stem cell therapy and address the clinical hurdles facing its routine implementation. In this review, we will discuss how advanced imaging technology will help investigators better define the optimal delivery method, improve survival and engraftment, and evaluate efficacy and safety. Insights gained from this review may direct the development of future preclinical investigations and clinical trials. PMID:21960727

  12. New real-time MR image-guided surgical robotic system for minimally invasive precision surgery

    Hashizume, M.; Yasunaga, T.; Konishi, K. [Kyushu University, Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Fukuoka (Japan); Tanoue, K.; Ieiri, S. [Kyushu University Hospital, Department of Advanced Medicine and Innovative Technology, Fukuoka (Japan); Kishi, K. [Hitachi Ltd, Mechanical Engineering Research Laboratory, Hitachinaka-Shi, Ibaraki (Japan); Nakamoto, H. [Hitachi Medical Corporation, Application Development Office, Kashiwa-Shi, Chiba (Japan); Ikeda, D. [Mizuho Ikakogyo Co. Ltd, Tokyo (Japan); Sakuma, I. [The University of Tokyo, Graduate School of Engineering, Bunkyo-Ku, Tokyo (Japan); Fujie, M. [Waseda University, Graduate School of Science and Engineering, Shinjuku-Ku, Tokyo (Japan); Dohi, T. [The University of Tokyo, Graduate School of Information Science and Technology, Bunkyo-Ku, Tokyo (Japan)

    2008-04-15

    To investigate the usefulness of a newly developed magnetic resonance (MR) image-guided surgical robotic system for minimally invasive laparoscopic surgery. The system consists of MR image guidance [interactive scan control (ISC) imaging, three-dimensional (3-D) navigation, and preoperative planning], an MR-compatible operating table, and an MR-compatible master-slave surgical manipulator that can enter the MR gantry. Using this system, we performed in vivo experiments with MR image-guided laparoscopic puncture on three pigs. We used a mimic tumor made of agarose gel and with a diameter of approximately 2 cm. All procedures were successfully performed. The operator only advanced the probe along the guidance device of the manipulator, which was adjusted on the basis of the preoperative plan, and punctured the target while maintaining the operative field using robotic forceps. The position of the probe was monitored continuously with 3-D navigation and 2-D ISC images, as well as the MR-compatible laparoscope. The ISC image was updated every 4 s; no artifact was detected. A newly developed MR image-guided surgical robotic system is feasible for an operator to perform safe and precise minimally invasive procedures. (orig.)

  13. New real-time MR image-guided surgical robotic system for minimally invasive precision surgery

    Hashizume, M.; Yasunaga, T.; Konishi, K.; Tanoue, K.; Ieiri, S.; Kishi, K.; Nakamoto, H.; Ikeda, D.; Sakuma, I.; Fujie, M.; Dohi, T.

    2008-01-01

    To investigate the usefulness of a newly developed magnetic resonance (MR) image-guided surgical robotic system for minimally invasive laparoscopic surgery. The system consists of MR image guidance [interactive scan control (ISC) imaging, three-dimensional (3-D) navigation, and preoperative planning], an MR-compatible operating table, and an MR-compatible master-slave surgical manipulator that can enter the MR gantry. Using this system, we performed in vivo experiments with MR image-guided laparoscopic puncture on three pigs. We used a mimic tumor made of agarose gel and with a diameter of approximately 2 cm. All procedures were successfully performed. The operator only advanced the probe along the guidance device of the manipulator, which was adjusted on the basis of the preoperative plan, and punctured the target while maintaining the operative field using robotic forceps. The position of the probe was monitored continuously with 3-D navigation and 2-D ISC images, as well as the MR-compatible laparoscope. The ISC image was updated every 4 s; no artifact was detected. A newly developed MR image-guided surgical robotic system is feasible for an operator to perform safe and precise minimally invasive procedures. (orig.)

  14. Aplikasi E-Tour Guide dengan Fitur Pengenalan Image Menggunakan Metode Haar Classifier

    Derwin Suhartono

    2013-12-01

    Full Text Available Smartphone has became an important instrument in modern society as it is used for entertainment and information searching except for communication. Concerning to this condition, it is needed to develop an application in order to improve smart phone functionality. The objective of this research is to create an application named E-Tour Guide as a tool for helping to plan and manage tourism activity equipped with image recognition feature. Image recognition method used is the Haar Classifier method. The feature is used to recognize historical objects. From the testing result done to 20 images sample, 85% accuracy is achieved for the image recognition feature.

  15. The Omega Ring Imaging Cerenkov Detector readout system user's guide

    Hallewell, G.

    1984-11-01

    The manual describes the electronic readout system of the Ring Imaging Cerenkov Detector at the CERN Omega Spectrometer. The system is described in its configuration of September 1984 after the Rich readout system had been used in two Omega experiments. (U.K.)

  16. External Prior Guided Internal Prior Learning for Real-World Noisy Image Denoising

    Xu, Jun; Zhang, Lei; Zhang, David

    2018-06-01

    Most of existing image denoising methods learn image priors from either external data or the noisy image itself to remove noise. However, priors learned from external data may not be adaptive to the image to be denoised, while priors learned from the given noisy image may not be accurate due to the interference of corrupted noise. Meanwhile, the noise in real-world noisy images is very complex, which is hard to be described by simple distributions such as Gaussian distribution, making real noisy image denoising a very challenging problem. We propose to exploit the information in both external data and the given noisy image, and develop an external prior guided internal prior learning method for real noisy image denoising. We first learn external priors from an independent set of clean natural images. With the aid of learned external priors, we then learn internal priors from the given noisy image to refine the prior model. The external and internal priors are formulated as a set of orthogonal dictionaries to efficiently reconstruct the desired image. Extensive experiments are performed on several real noisy image datasets. The proposed method demonstrates highly competitive denoising performance, outperforming state-of-the-art denoising methods including those designed for real noisy images.

  17. Cost-Effectiveness Comparison of Imaging-Guided Prostate Biopsy Techniques: Systematic Transrectal Ultrasound, Direct In-Bore MRI, and Image Fusion

    Venderink, W.; Govers, T.M.; Rooij, M. de; Futterer, J.J.; Sedelaar, J.P.M.

    2017-01-01

    OBJECTIVE: Three commonly used prostate biopsy approaches are systematic transrectal ultrasound guided, direct in-bore MRI guided, and image fusion guided. The aim of this study was to calculate which strategy is most cost-effective. MATERIALS AND METHODS: A decision tree and Markov model were

  18. CERN Video News on line

    2003-01-01

    The latest CERN video news is on line. In this issue : an interview with the Director General and reports on the new home for the DELPHI barrel and the CERN firemen's spectacular training programme. There's also a vintage video news clip from 1954. See: www.cern.ch/video or Bulletin web page

  19. Image Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain Cancer

    Price, Ryan G. [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States); Kim, Joshua P.; Zheng, Weili [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States); Glide-Hurst, Carri, E-mail: churst2@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States)

    2016-07-15

    Purpose: The development of synthetic computed tomography (CT) (synCT) derived from magnetic resonance (MR) images supports MR-only treatment planning. We evaluated the accuracy of synCT and synCT-generated digitally reconstructed radiographs (DRRs) relative to CT and determined their performance for image guided radiation therapy (IGRT). Methods and Materials: Magnetic resonance simulation (MR-SIM) and CT simulation (CT-SIM) images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantom synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images (n=37) were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4 ± 0.5 mm (range, −0.6 to 1.6 mm), 0.0 ± 0.5 mm (range, −0.9 to 1.2 mm), and 0.1 ± 0.3 mm (range, −0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6 ± 0.4 mm (range, −0.2 to 1.6 mm), 0.2 ± 0.4 mm (range, −0.3 to 1.2 mm), and 0.2 ± 0

  20. Image Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain Cancer

    Price, Ryan G.; Kim, Joshua P.; Zheng, Weili; Chetty, Indrin J.; Glide-Hurst, Carri

    2016-01-01

    Purpose: The development of synthetic computed tomography (CT) (synCT) derived from magnetic resonance (MR) images supports MR-only treatment planning. We evaluated the accuracy of synCT and synCT-generated digitally reconstructed radiographs (DRRs) relative to CT and determined their performance for image guided radiation therapy (IGRT). Methods and Materials: Magnetic resonance simulation (MR-SIM) and CT simulation (CT-SIM) images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantom synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images (n=37) were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4 ± 0.5 mm (range, −0.6 to 1.6 mm), 0.0 ± 0.5 mm (range, −0.9 to 1.2 mm), and 0.1 ± 0.3 mm (range, −0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6 ± 0.4 mm (range, −0.2 to 1.6 mm), 0.2 ± 0.4 mm (range, −0.3 to 1.2 mm), and 0.2 ± 0

  1. Imaging-guided hyperstimulation analgesia in low back pain

    Gorenberg M

    2013-06-01

    Full Text Available Miguel Gorenberg,1,2 Kobi Schwartz31Department of Nuclear Medicine, B'nai Zion Medical Center, Haifa, Israel; 2The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; 3Department of Physical Therapy, B'nai Zion Medical Center, Haifa, IsraelAbstract: Low back pain in patients with myofascial pain syndrome is characterized by painful active myofascial trigger points (ATPs in muscles. This article reviews a novel, noninvasive modality that combines simultaneous imaging and treatment, thus taking advantage of the electrodermal information available from imaged ATPs to deliver localized neurostimulation, to stimulate peripheral nerve endings (Aδ fibers and in turn, to release endogenous endorphins. "Hyperstimulation analgesia" with localized, intense, low-rate electrical pulses applied to painful ATPs was found to be effective in 95% patients with chronic nonspecific low back pain, in a clinical validation study.Keywords: myofascial, noninvasive, electrical, impedance

  2. Neural stimulators: A guide to imaging and postoperative appearances

    Adams, A.; Shand-Smith, J.; Watkins, L.; McEvoy, A.W.; Elneil, S.; Zrinzo, L.; Davagnanam, I.

    2014-01-01

    Implantable neural stimulators have been developed to aid patients with debilitating neurological conditions that are not amenable to other therapies. The aim of this article is to improve understanding of correct anatomical placement as well as the relevant imaging methods used to assess these devices. Potential complications following their insertion and an overview of the current indications and potential mechanism of action of these devices is provided

  3. An image-guided tool to prevent hospital acquired infections

    Nagy, Melinda; Szilágyi, László; Lehotsky, Ákos; Haidegger, Tamás; Benyó, Balázs

    2011-03-01

    Hospital Acquired Infections (HAI) represent the fourth leading cause of death in the United States, and claims hundreds of thousands of lives annually in the rest of the world. This paper presents a novel low-cost mobile device|called Stery-Hand|that helps to avoid HAI by improving hand hygiene control through providing an objective evaluation of the quality of hand washing. The use of the system is intuitive: having performed hand washing with a soap mixed with UV re ective powder, the skin appears brighter in UV illumination on the disinfected surfaces. Washed hands are inserted into the Stery-Hand box, where a digital image is taken under UV lighting. Automated image processing algorithms are employed in three steps to evaluate the quality of hand washing. First, the contour of the hand is extracted in order to distinguish the hand from the background. Next, a semi-supervised clustering algorithm classies the pixels of the hand into three groups, corresponding to clean, partially clean and dirty areas. The clustering algorithm is derived from the histogram-based quick fuzzy c-means approach, using a priori information extracted from reference images, evaluated by experts. Finally, the identied areas are adjusted to suppress shading eects, and quantied in order to give a verdict on hand disinfection quality. The proposed methodology was validated through tests using hundreds of images recorded in our laboratory. The proposed system was found robust and accurate, producing correct estimation for over 98% of the test cases. Stery-Hand may be employed in general practice, and it may also serve educational purposes.

  4. Diffuse optical tomography for breast cancer imaging guided by computed tomography: A feasibility study.

    Baikejiang, Reheman; Zhang, Wei; Li, Changqing

    2017-01-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as hemoglobin, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer imaging. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at the wavelength of 650 nm and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements and width of measurement patch, have been investigated. Our results indicate that an air-cooling EMCCD camera is good enough for the transmission mode DOT imaging. We have also found that measurements at six angular projections are sufficient for DOT to reconstruct the optical targets with 2 and 4 times absorption contrast when the CT guidance is applied. Finally, we have described our future research plan on integration of a multispectral DOT imaging system into a breast CT scanner.

  5. Multi-centre experience of implementing image-guided intensity-modulated radiotherapy using the TomoTherapy platform

    Dean, J.C.; Tudor, G.S.J.; Mott, J.H.; Dunlop, P.R.; Morris, S.L.; Harron, E.C.; Christian, J.A.; Sanghera, P.; Elsworthy, M.; Burnet, N.G.

    2013-01-01

    Use of image guided (IG) intensity modulated radiotherapy (IMRT) is increasing, and helical tomotherapy provides an effective, integrated solution. Practical experience of implementation, shared at a recent UK TomoTherapy Users' meeting, may help centres introducing these techniques using TomoTherapy or other platforms. Seven centres participated, with data shared from 6, varying from 2500 - 4800 new patients per year. Case selection of patients “most likely” to benefit from IG-IMRT was managed in all centres by multi-professional groups comprising clinical oncologists, physicists, treatment planners and radiographers. Radical treatments ranged from 94% to 100%. The proportions of tumour types varied substantially: head and neck: range 0%–100% (mean of centres 50%), prostate: 3%–96% (mean of centres 28%). Head and neck cases were considered most likely to benefit from IMRT, prostate cases from IGRT, or IG-IMRT if pelvic nodes were being treated. IMRT was also selected for complex target volumes, to avoid field junctions, for technical treatment difficulties, and retreatments. Across the centres, every patient was imaged every day, with positional correction before treatment. In one centre, for prostate patients including pelvic treatment, the pelvis was also imaged weekly. All centres had designed a ‘ramp up’ of patient numbers, which was similar in 5. One centre, treating 96% prostate patients, started with 3 and increased to 36 patients per day within 3 months. The variation in case mix implies wide applicability of IG-IMRT. Daily on-line IGRT with IMRT can be routinely implemented into busy departments

  6. Improving CT-guided transthoracic biopsy of mediastinal lesions by diffusion-weighted magnetic resonance imaging

    Guimaraes, Marcos Duarte; TyngI, Chiang Cheng; Bitencourt, Almir Galvao Vieira; Gross, Jefferson Luiz; Zurstrassen, Charles Edouard, E-mail: marcosduarte500@gmail.com [AC Camargo Cancer Center, Sao Paulo, SP (Brazil); Hochhegger, Bruno [Universidade Federal de Ciencias da Saude de Porto Alegre (UFCSPA), RS (Brazil). Dept. de Radiologia; Benveniste, Marcelo Felipe Kuperman; Odisio, Bruno Calazans [University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Marchiori, Edson [Universidade Federal do Rio de Janeiro (UFRJ), Petropolis, RJ (Brazil)

    2014-11-15

    Objectives: to evaluate the preliminary results obtained using diffusion-weighted magnetic resonance imaging and the apparent diffusion coefficient for planning computed tomography-guided biopsies of selected mediastinal lesions. Methods: eight patients with mediastinal lesions suspicious for malignancy were referred for computed tomography-guided biopsy. Diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient measurement were performed to assist in biopsy planning with diffusion/computed tomography fused images. We selected mediastinal lesions that could provide discordant diagnoses depending on the biopsy site, including large heterogeneous masses, lesions associated with lung atelectasis or consolidation, lesions involving large mediastinal vessels and lesions for which the results of biopsy using other methods and histopathological examination were divergent from the clinical and radiological suspicion. Results: in all cases, the biopsy needle was successfully directed to areas of higher signal intensity on diffusion weighted sequences and the lowest apparent diffusion coefficient within the lesion (mean, 0.8 [range, 0.6–1.1]610{sup -3} mm{sup 2}/s), suggesting high cellularity. All biopsies provided adequate material for specific histopathological diagnoses of four lymphomas, two sarcomas and two thymoma s. Conclusion: functional imaging tools, such as diffusion-weighted imaging and the apparent diffusion coefficient, are promising for implementation in noninvasive and imaging-guided procedures. However, additional studies are needed to confirm that mediastinal biopsy can be improved with these techniques. (author)

  7. Phantom evaluation of a commercially available three modality image guided radiation therapy system

    Ploquin, Nicolas; Rangel, Alejandra; Dunscombe, Peter

    2008-01-01

    The authors describe a detailed evaluation of the capabilities of imaging and image registration systems available with Varian linear accelerators for image guided radiation therapy (IGRT). Specifically, they present modulation transfer function curves for megavoltage planar, kilovoltage (kV) planar, and cone beam computed tomography imaging systems and compare these with conventional computed tomography. While kV planar imaging displayed the highest spatial resolution, all IGRT imaging techniques were assessed as adequate for their intended purpose. They have also characterized the image registration software available for use in conjunction with these imaging systems through a comprehensive phantom study involving translations in three orthogonal directions. All combinations of imaging systems and image registration software were found to be accurate, although the planar kV imaging system with automatic registration was generally superior, with both accuracy and precision of the order of 1 mm, under the conditions tested. Based on their phantom study, the attainable accuracy for rigid body translations using any of the features available with Varian equipment will more likely be limited by the resolution of the couch readouts than by inherent limitations in the imaging systems and image registration software. Overall, the accuracy and precision of currently available IGRT technology exceed published experience with the accuracy and precision of contouring for planning.

  8. Automated tru-cut imaging-guided core needle biopsy of canine ...

    The purpose of this study was to evaluate the diagnostic value of imaging-guided core needle biopsy for canine orbital mass diagnosis. A second excisional biopsy obtained during surgery or necropsy was used as the reference standard. A prospective feasibility study was conducted in 23 canine orbital masses at a single ...

  9. Guide-09-1998. Quality control of darkrooms and image display devices

    2015-01-01

    This guide is applicable to process darkrooms relieved and receiving devices and image displays. A number of methods which require the appointed instrumentation described, some of which can be implemented in own radiology services in the country given the low complexity of themselves and others that require specific equipment and can be performed by specialized groups external to these units.

  10. Assisting in Radiology/Imaging. Instructor's Guide, Student's Manual, and Student Learning Activities.

    Fair, Helena J.

    The instructor's guide, the first of three documents in this package, is designed for a course to help students who are investigating the activities within a radiology department or considering any of the imaging technologies as a career. The material is designed to relate training experience to information studied in the classroom. This…

  11. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy

    Smitsmans, Monique H. P.; de Bois, Josien; Sonke, Jan-Jakob; Betgen, Anja; Zijp, Lambert J.; Jaffray, David A.; Lebesque, Joos V.; van Herk, Marcel

    2005-01-01

    PURPOSE: Previously, we developed an automatic three-dimensional gray-value registration (GR) method for fast prostate localization that could be used during online or offline image-guided radiotherapy. The method was tested on conventional computed tomography (CT) scans. In this study, the

  12. Image-guided diagnosis of prostate cancer can increase detection of tumors

    In the largest prospective study to date of image-guided technology for identifying suspicious regions of the prostate to biopsy, researchers compared the ability of this technology to detect high-risk prostate cancer with that of the current standard of

  13. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery

    Webers, V.S.C.; Bauer, N.J.C.; Visser, N.; Berendschot, T.T.J.M.; van den Biggelaar, F.J.H.M.; Nuijts, R.M.M.A.

    2017-01-01

    Purpose To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. Setting University Eye Clinic Maastricht, Maastricht, the Netherlands. Design Prospective randomized clinical trial. Methods Eyes with

  14. 3D object reconstruction in image-guided interventions using multi-view X-ray

    Papalazarou, C.

    2012-01-01

    In the last two decades, minimally-invasive interventions have replaced traditional surgery in many clinical scenarios. In these interventions, the doctor manipulates small devices inside the patient through a small incision, while guided by live imaging. In many cases, this guidance is provided by

  15. MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.

    Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James; Jiang, Steve B; Mason, Ralph P; Stojadinovic, Strahinja

    2018-01-01

    Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol

  16. Functional image guided radiation therapy planning in volumetric modulated arc therapy for patients with malignant pleural mesothelioma

    Yoshiko Doi, MD

    2017-04-01

    Conclusions: Significant reductions in fV5, fV10, fMLD, V5, and MLD were achieved with the functional image guided VMAT plan without negative effects on other factors. LAA-based functional image guided radiation therapy planning in VMAT is a feasible method to spare the functional lung in patients with MPM.

  17. Image guided IMRT dosimetry using anatomy specific MOSFET configurations.

    Amin, Md Nurul; Norrlinger, Bern; Heaton, Robert; Islam, Mohammad

    2008-06-23

    We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobile MOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within -0.26 +/- 0.88% and 0.06 +/- 1.94% (1 sigma) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X-Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47 +/- 2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans.

  18. Image-guided focal therapies for breast cancer

    Marqa, Mohamad-Feras

    2011-01-01

    Breast cancer is the most common in women, affecting one in ten women, by geographic area. Accelerated Partial Breast Irradiation (APBI) is a new concept of postoperative irradiation after breast conserving surgery for cancer at low risk of local recurrence. In the first chapter of this thesis, we present the rational use of the APBI method as an alternative to the whole breast irradiation and then we discuss the principles, the benefits, and the drawbacks of the different techniques used. One of these techniques is the multi catheters high dose rate (HDR) interstitial brachytherapy. Multi catheter interstitial brachytherapy was the originally employed APBI technique and as a consequence has generated clinical experience with the longest follow-up duration, and with encouraging results. The accuracy of treatment planning system (TPS) in the source location and the dose calculation is absolutely necessary to ensure the planned dose. Sievert Integral and TG43 formalism provide quick and easy methods to check and to verify the dose calculated by the TPS. In the second chapter, we discuss a dose calculation and optimization tool for the APBI method using HDR sources. This tool simulates the dose from the parameters defined by the physicist. Often, the radiotherapist performs during the procedure a mental re-adjustment of catheters positions simulated on the CT images. This operation could lead to errors due to differences in breast form and catheters positions on the intra-operative ultrasound images compared to the planed one on CT images. In chapter three of this thesis, we propose a registration method between data from planning and the one from intra-operative ultrasound images as a solution that will allow to the radiotherapist to report planning data automatically on the brachytherapy template to visualize all data on the computer monitor. The APBI technique is considered an invasive and expensive method due to radiation protection reasons. Laser Interstitial

  19. Flexible radioluminescence imaging for FDG-guided surgery

    King, Martin T., E-mail: mking@lroc.harvard.edu; Jenkins, Cesare H.; Cheng, Kai; Le, Quynh-Thu; Pratx, Guillem; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Sun, Conroy [College of Pharmacy, Oregon State University, Corvallis, Oregon 97331 (United States); Carpenter, Colin M. [Siris Medical, Mountain View, California 94043 (United States); Ma, Xiaowei [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China); Sunwoo, John B. [Department of Otolaryngology, Stanford University, Stanford, California 94305 (United States); Cheng, Zhen [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2016-10-15

    Purpose: Flexible radioluminescence imaging (Flex-RLI) is an optical method for imaging {sup 18}F-fluorodeoxyglucose (FDG)-avid tumors. The authors hypothesize that a gadolinium oxysulfide: terbium (GOS:Tb) flexible scintillator, which loosely conforms to the body contour, can enhance tumor signal-to-background ratio (SBR) compared with RLI, which utilizes a flat scintillator. The purpose of this paper is to characterize flex-RLI with respect to alternative modalities including RLI, beta-RLI (RLI with gamma rejection), and Cerenkov luminescence imaging (CLI). Methods: The photon sensitivity, spatial resolution, and signal linearity of flex-RLI were characterized with in vitro phantoms. In vivo experiments utilizing 13 nude mice inoculated with the head and neck (UMSCC1-Luc) cell line were then conducted in accordance with the institutional Administrative Panel on Laboratory Animal Care. After intravenous injection of {sup 18}F-FDG, the tumor SBR values for flex-RLI were compared to those for RLI, beta-RLI, and CLI using the Wilcoxon signed rank test. Results: With respect to photon sensitivity, RLI, beta-RLI, and flex-RLI produced 1216.2, 407.0, and 98.6 times more radiance per second than CLI. Respective full-width half maximum values across a 0.5 mm capillary tube were 6.9, 6.4, 2.2, and 1.5 mm, respectively. Flex-RLI demonstrated a near perfect correlation with {sup 18}F activity (r = 0.99). Signal uniformity for flex-RLI improved after more aggressive homogenization of the GOS powder with the silicone elastomer during formulation. In vivo, the SBR value for flex-RLI (median 1.29; interquartile range 1.18–1.36) was statistically greater than that for RLI (1.08; 1.02–1.14; p < 0.01) by 26%. However, there was no statistically significant difference in SBR values between flex-RLI and beta-RLI (p = 0.92). Furthermore, there was no statistically significant difference in SBR values between flex-RLI and CLI (p = 0.11) in a more limited dataset. Conclusions: Flex

  20. Prospective Evaluation of Dual-Energy Imaging in Patients Undergoing Image Guided Radiation Therapy for Lung Cancer: Initial Clinical Results

    Sherertz, Tracy; Hoggarth, Mark; Luce, Jason; Block, Alec M.; Nagda, Suneel; Harkenrider, Matthew M.; Emami, Bahman; Roeske, John C.

    2014-01-01

    Purpose: A prospective feasibility study was conducted to investigate the utility of dual-energy (DE) imaging compared to conventional x-ray imaging for patients undergoing kV-based image guided radiation therapy (IGRT) for lung cancer. Methods and Materials: An institutional review board-approved feasibility study enrolled patients with lung cancer undergoing IGRT and was initiated in September 2011. During daily setup, 2 sequential respiration-gated x-ray images were obtained using an on-board imager. Imaging was composed of 1 standard x-ray image at 120 kVp (1 mAs) and a second image obtained at 60 kVp (4 mAs). Weighted logarithmic subtraction of the 2 images was performed offline to create a soft tissue-selective DE image. Conventional and DE images were evaluated by measuring relative contrast and contrast-to-noise ratios (CNR) and also by comparing spatial localization, using both approaches. Imaging dose was assessed using a calibrated ion chamber. Results: To date, 10 patients with stage IA to IIIA lung cancer were enrolled and 57 DE images were analyzed. DE subtraction resulted in complete suppression of overlying bone in all 57 DE images, with an average improvement in relative contrast of 4.7 ± 3.3 over that of 120 kVp x-ray images (P<.0002). The improvement in relative contrast with DE imaging was seen for both smaller (gross tumor volume [GTV] ≤5 cc) and larger tumors (GTV >5 cc), with average relative contrast improvement ratios of 3.4 ± 4.1 and 5.4 ± 3.6, respectively. Moreover, the GTV was reliably localized in 95% of the DE images versus 74% of the single energy (SE images, (P=.004). Mean skin dose per DE image set was 0.44 ± 0.03 mGy versus 0.43 ± 0.03 mGy, using conventional kV imaging parameters. Conclusions: Initial results of this feasibility study suggest that DE thoracic imaging may enhance tumor localization in lung cancer patients receiving kV-based IGRT without increasing imaging dose

  1. Image-guided radiofrequency ablation (RFA) of spinal tumors

    Gevargez, Athour; Groenemeyer, Dietrich H.W.

    2008-01-01

    Purpose: To evaluate retrospectively the efficacy and safety of radiofrequency ablation (RFA) in patients with spinal tumors. Materials and methods: Forty-one patients (25 men, 16 women; age range, 46-82 years) with nonresectable primary or secondary tumor involvement of the spine unresponsive to chemo- and radiotherapy received RFA treatment. Two radiofrequency ablation systems, one with a cool-tip electrode and one with an expandable electrode catheter, were used. Both systems work impedance controlled with a power output of 150- 200 W. Each coagulation cycle lasted 12-15 min depending on tumor impedance. Several single RFA cycles of 15 min each were used for overlapping RFAs in tumors with diameters of more than 3 cm. Temperature was kept between 50 deg. C and 120 deg. C and was chosen according to spinal cord distance and patient heat tolerance during the ablation. Multi-slice computed tomography (CT) combined with C-arm fluoroscopy guided the intervention. Efficacy outcomes were assessed after about 6 weeks, 6 months, and more than 6 months using standardized questionnaires and indices regarding tumor pain, pain disability, functional activities, quality of life, neurological status, and tumor progression. Results: RFA significantly reduced tumor-induced pain within 6 weeks, improved daily activities, and maintained quality of life. Mean time to tumor progression was 730 ± 54 days (Kaplan-Meier estimate). No RFA-associated complications were reported. Conclusion: RFA of primary and secondary spinal tumors, which were unresponsive to chemo- and radiotherapy and prone to progression, is a safe, resource-saving, and highly effective percutaneous technique in patients with nonresectable spinal tumors

  2. Percutaneous image-guided needle biopsy in children - summary of our experience with 57 children

    Sklair-Levy, M.; Lebensart, P.D.; Applbaum, Y.H.; Bar-Ziv, J.; Libson, E.; Ramu, N.; Freeman, A.; Gozal, D.; Gross, E.; Sherman, Y.

    2001-01-01

    Background: Percutaneous image-guided needle biopsy in children has been slower to gain acceptance than in adults where it is regarded as the standard clinical practice in screening suspicious masses. Objectives: To report our experience with percutaneous image-guided needle biopsy in the pediatric population and assess its clinical use, efficacy and limitations. Material and methods: Sixty-nine percutaneous image-guided needle biopsies were performed in 57 children. The age of the children ranged from 4 days to 14 years (mean 5.6 years). We used 16- to-20-gauge cutting-edge needles. Sixty-two biopsies were core-needle biopsies and 7 fine-needle aspiration biopsies. Results: There were 50 malignant lesions, 10 benign lesions and 2 infectious lesions. In 55 (88.7 %) lesions the needle biopsy was diagnostic. In 7 (11.3 %) the biopsy was non-diagnostic and the diagnosis was made by surgery. Core-needle biopsy was diagnostic in 47 of 50 (94 %) of the malignant solid tumors. In 3 out of 5 children with lymphoma, an accurate diagnosis was obtained with needle aspiration. Seven children underwent a repeated core-needle biopsy, (5 for Wilms' tumor and 2 for neuroblastoma) that was diagnostic in all cases. All the biopsies were performed without complications. Conclusion: Percutaneous image-guided needle biopsy is a simple, minimally invasive, safe and accurate method for the evaluation of children with suspicious masses. These data suggest that image-guided needle biopsy is an excellent tool for diagnosing solid tumors in the pediatric population. Negative studies should be considered nondiagnostic and followed by excisional surgical biopsies when clinical suspicion of malignancy is high. (orig.)

  3. On-line moisture analysis

    Cutmore, N G

    2002-01-01

    Measurement of the moisture content of iron ore has become a key issue for controlling moisture additions for dust suppression. In most cases moisture content is still determined by manual or automatic sampling of the ore stream, followed by conventional laboratory analysis by oven drying. Although this procedure enables the moisture content to be routinely monitored, it is too slow for control purposes. This has generated renewed interest in on-line techniques for the accurate and rapid measurement of moisture in iron ore on conveyors. Microwave transmission techniques have emerged over the past 40 years as the dominant technology for on-line measurement of moisture in bulk materials, including iron ores. Alternative technologies have their limitations. Infra-red analysers are used in a variety of process industries, but rely on the measurement of absorption by moisture in a very thin surface layer. Consequently such probes may be compromised by particle size effects and biased presentation of the bulk mater...

  4. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Siewerdsen, Jeffrey H.

    2011-01-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  5. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room 718, 720 Rutland Avenue, Baltimore, MD 21205 (United States)

    2011-08-21

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  6. Nonsurgical, image-guided, minimally invasive therapy for thyroid nodules

    Gharib, Hossein; Hegedüs, Laszlo; Pacella, Claudio Maurizio

    2013-01-01

    evaluation. These techniques have also been applied to recurrent locoregional cervical thyroid cancer with encouraging initial results, although still limited data. Conclusions: Surgery and radioiodine remain as conventional and established treatments for nodular goiters. However, the new image......Context: Nodular thyroid disease is very common. Most nodules are asymptomatic, are benign by fine-needle aspiration, remain stable, and can be followed by observation alone in the majority of the patients. Occasionally, nodules grow or cause symptoms requiring treatment. So far, surgery has been...... our main option for treatment. Objective: In this review, we discuss nonsurgical, minimally invasive approaches for small thyroid masses, including indications, efficacy, side effects, and costs. Evidence Acquisition: We selected recent publications related to minimally invasive thyroid techniques...

  7. Robotically-adjustable microstereotactic frames for image-guided neurosurgery

    Kratchman, Louis B.; Fitzpatrick, J. Michael

    2013-03-01

    Stereotactic frames are a standard tool for neurosurgical targeting, but are uncomfortable for patients and obstruct the surgical field. Microstereotactic frames are more comfortable for patients, provide better access to the surgical site, and have grown in popularity as an alternative to traditional stereotactic devices. However, clinically available microstereotactic frames require either lengthy manufacturing delays or expensive image guidance systems. We introduce a robotically-adjusted, disposable microstereotactic frame for deep brain stimulation surgery that eliminates the drawbacks of existing microstereotactic frames. Our frame can be automatically adjusted in the operating room using a preoperative plan in less than five minutes. A validation study on phantoms shows that our approach provides a target positioning error of 0.14 mm, which exceeds the required accuracy for deep brain stimulation surgery.

  8. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling

    Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.

    2017-09-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. [Figure not available: see fulltext.

  9. Bladder cancer diagnosis with fluorescence-image-guided optical coherence tomography

    Wang, Z. G.; Durand, D. B.; Adler, H.; Pan, Y. T.

    2006-02-01

    A fluorescence-image-guided OCT (FIG-OCT) system is described, and its ability to enhance the sensitivity and specificity is examined in an animal bladder cancer model. Total 97 specimens were examined by fluorescence imaging, OCT and histological microscopy. The sensitivity and specificity of FIG-OCT is 100% and 93% respectively, compared to 79% and 53% for fluorescence imaging, while the OCT examination time has been dramatically decreased by 3~4 times. In combination of endoscopic OCT, FIG-OCT is a promising technique for effective early bladder cancer diagnosis.

  10. Atlas of PET/CT. A quick guide to image interpretation

    Fanti, Stefano [Bologna Univ. (Italy). PET; Farsad, Mohsen [Central Hospital of Bolzano (Italy). Nuclear Medicine; Mansi, Luigi [Second Univ. of Naples (Italy). Nuclear Medicine

    2009-07-01

    This user-friendly atlas, featuring about 500 images, should be a quick guide to interpreting PET/CT images with FDG in oncology. It also illustrates how to recognize normal, para-physiological, and benign pathological uptakes in a case-based practical manner. The text, which includes most relevant technical and pathophysiological premises, covers the main clinical applications and clearly articulates learning points and pitfalls. This atlas aims to become a standard text for nuclear medicine physicians and radiologists, residents and technicians whose work involves PET/CT imaging. This book is also suitable for both undergraduate and postgraduate courses. (orig.)

  11. An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization

    Grimson, W.E.L.; Lozano-Perez, T.; White, S.J.; Wells, W.M. III; Kikinis, R.

    1996-01-01

    There is a need for frameless guidance systems to help surgeons plan the exact location for incisions, to define the margins of tumors, and to precisely identify locations of neighboring critical structures. The authors have developed an automatic technique for registering clinical data, such as segmented magnetic resonance imaging (MRI) or computed tomography (CT) reconstructions, with any view of the patient on the operating table. They demonstrate on the specific example of neurosurgery. The method enables a visual mix of live video of the patient and the segmented three-dimensional (3-D) MRI or CT model. This supports enhanced reality techniques for planning and guiding neurosurgical procedures and allows them to interactively view extracranial or intracranial structures nonintrusively. Extensions of the method include image guided biopsies, focused therapeutic procedures, and clinical studies involving change detection over time sequences of images

  12. Image-guided interventions and computer-integrated therapy: Quo vadis?

    Peters, Terry M; Linte, Cristian A

    2016-10-01

    Significant efforts have been dedicated to minimizing invasiveness associated with surgical interventions, most of which have been possible thanks to the developments in medical imaging, surgical navigation, visualization and display technologies. Image-guided interventions have promised to dramatically change the way therapies are delivered to many organs. However, in spite of the development of many sophisticated technologies over the past two decades, other than some isolated examples of successful implementations, minimally invasive therapy is far from enjoying the wide acceptance once envisioned. This paper provides a large-scale overview of the state-of-the-art developments, identifies several barriers thought to have hampered the wider adoption of image-guided navigation, and suggests areas of research that may potentially advance the field. Copyright © 2016. Published by Elsevier B.V.

  13. Hard and soft nanoparticles for image-guided surgery in nanomedicine

    Locatelli, Erica; Monaco, Ilaria; Comes Franchini, Mauro, E-mail: mauro.comesfranchini@unibo.it [University of Bologn, Department of Industrial Chemistry, “Toso Montanari” (Italy)

    2015-08-15

    The use of hard and/or soft nanoparticles for therapy, collectively called nanomedicine, has great potential in the battle against cancer. Major research efforts are underway in this area leading to development of new drug delivery approaches and imaging techniques. Despite this progress, the vast majority of patients who are affected by cancer today sadly still need surgical intervention, especially in the case of solid tumors. An important perspective for researchers is therefore to provide even more powerful tools to the surgeon for pre- and post-operative approaches. In this context, image-guided surgery, in combination with nanotechnology, opens a new strategy to win this battle. In this perspective, we will analyze and discuss the recent progress with nanoparticles of both metallic and biomaterial composition, and their use to develop powerful systems to be applied in image-guided surgery.

  14. Automatic detection of solar features in HSOS full-disk solar images using guided filter

    Yuan, Fei; Lin, Jiaben; Guo, Jingjing; Wang, Gang; Tong, Liyue; Zhang, Xinwei; Wang, Bingxiang

    2018-02-01

    A procedure is introduced for the automatic detection of solar features using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. Guided filter is adopted to enhance the edges of solar features and restrain the solar limb darkening, which is first introduced into the astronomical target detection. Then specific features are detected by Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedures, our procedure has some advantages such as real time and reliability as well as no need of local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result shows that the number of features detected by our procedure is well consistent with the manual one.

  15. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy

    Pablico-Lansigan, Michele H.; Situ, Shu F.; Samia, Anna Cristina S.

    2013-05-01

    Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.

  16. Value of MR contrast media in image-guided body interventions.

    Saeed, Maythem; Wilson, Mark

    2012-01-28

    In the past few years, there have been multiple advances in magnetic resonance (MR) instrumentation, in vivo devices, real-time imaging sequences and interventional procedures with new therapies. More recently, interventionists have started to use minimally invasive image-guided procedures and local therapies, which reduce the pain from conventional surgery and increase drug effectiveness, respectively. Local therapy also reduces the systemic dose and eliminates the toxic side effects of some drugs to other organs. The success of MR-guided procedures depends on visualization of the targets in 3D and precise deployment of ablation catheters, local therapies and devices. MR contrast media provide a wealth of tissue contrast and allows 3D and 4D image acquisitions. After the development of fast imaging sequences, the clinical applications of MR contrast media have been substantially expanded to include pre- during- and post-interventions. Prior to intervention, MR contrast media have the potential to localize and delineate pathologic tissues of vital organs, such as the brain, heart, breast, kidney, prostate, liver and uterus. They also offer other options such as labeling therapeutic agents or cells. During intervention, these agents have the capability to map blood vessels and enhance the contrast between the endovascular guidewire/catheters/devices, blood and tissues as well as direct therapies to the target. Furthermore, labeling therapeutic agents or cells aids in visualizing their delivery sites and tracking their tissue distribution. After intervention, MR contrast media have been used for assessing the efficacy of ablation and therapies. It should be noted that most image-guided procedures are under preclinical research and development. It can be concluded that MR contrast media have great value in preclinical and some clinical interventional procedures. Future applications of MR contrast media in image-guided procedures depend on their safety, tolerability

  17. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery.

    Webers, Valentijn S C; Bauer, Noel J C; Visser, Nienke; Berendschot, Tos T J M; van den Biggelaar, Frank J H M; Nuijts, Rudy M M A

    2017-06-01

    To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. University Eye Clinic Maastricht, Maastricht, the Netherlands. Prospective randomized clinical trial. Eyes with regular corneal astigmatism of at least 1.25 diopters (D) that required cataract surgery and toric IOL implantation (Acrysof SN6AT3-T9) were randomly assigned to the image-guided group or the manual-marking group. The primary outcome was the alignment of the toric IOL based on preoperative images and images taken immediately after surgery. Secondary outcome measures were residual astigmatism, uncorrected distance visual acuity (UDVA), and complications. The study enrolled 36 eyes (24 patients). The mean toric IOL misalignment was significantly less in the image-guided group than in the manual group 1 hour (1.3 degrees ± 1.6 [SD] versus 2.8 ± 1.8 degrees; P = .02) and 3 months (1.7 ± 1.5 degrees versus 3.1 ± 2.1 degrees; P image-guided group and manual group, respectively (P > .05). The mean UDVA was 0.03 ± 0.10 logarithm of minimum angle of resolution (logMAR) and 0.04 ± 0.09 logMAR, respectively (both P > .05). No intraoperative complications occurred during any surgery. The IOL misalignment was significantly less with digital marking than with manual marking; this did not result in a better UDVA or lower residual refractive astigmatism. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Ultrasound-guided identification of cardiac imaging windows.

    Liu, Garry; Qi, Xiu-Ling; Robert, Normand; Dick, Alexander J; Wright, Graham A

    2012-06-01

    Currently, the use of cine magnetic resonance imaging (MRI) to identify cardiac quiescent periods relative to the electrocardiogram (ECG) signal is insufficient for producing submillimeter-resolution coronary MR angiography (MRA) images. In this work, the authors perform a time series comparison between tissue Doppler echocardiograms of the interventricular septum (IVS) and concurrent biplane x-ray angiograms. Our results indicate very close agreement between the diastasis gating windows identified by both the IVS and x-ray techniques. Seven cath lab patients undergoing diagnostic angiograms were simultaneously scanned during a breath hold by ultrasound and biplane x-ray for six to eight heartbeats. The heart rate of each patient was stable. Dye was injected into either the left or right-coronary vasculature. The IVS was imaged using color tissue Doppler in an apical four-chamber view. Diastasis was estimated on the IVS velocity curve. On the biplane angiograms, proximal, mid, and distal regions were identified on the coronary artery (CA). Frame by frame correlation was used to derive displacement, and then velocity, for each region. The quiescent periods for a CA and its subsegments were estimated based on velocity. Using Pearson's correlation coefficient and Bland-Altman analysis, the authors compared the start and end times of the diastasis windows as estimated from the IVS and CA velocities. The authors also estimated the vessel blur across the diastasis windows of multiple sequential heartbeats of each patient. In total, 17 heartbeats were analyzed. The range of heart rate observed across patients was 47-79 beats per minute (bpm) with a mean of 57 bpm. Significant correlations (R > 0.99; p windows. The mean difference in the starting times between IVS and CA quiescent windows was -12.0 ms. The mean difference in end times between IVS and CA quiescent windows was -3.5 ms. In contrast, the correlation between RR interval and both the start and duration of the x

  19. Current Brachytherapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    Williamson, Jeffrey F.

    2008-01-01

    In the past decade, brachytherapy has shifted from the traditional surgical paradigm to more modern three-dimensional image-based planning and delivery approaches. The role of intraoperative and multimodality image-based planning is growing. Published American Association of Physicists in Medicine, American College of Radiology, European Society for Therapeutic Radiology and Oncology, and International Atomic Energy Agency quality assurance (QA) guidelines largely emphasize the QA of planning and delivery devices rather than processes. These protocols have been designed to verify compliance with major performance specifications and are not risk based. With some exceptions, complete and clinically practical guidance exists for sources, QA instrumentation, non-image-based planning systems, applicators, remote afterloading systems, dosimetry, and calibration. Updated guidance is needed for intraoperative imaging systems and image-based planning systems. For non-image-based brachytherapy, the American Association of Physicists in Medicine Task Group reports 56 and 59 provide reasonable guidance on procedure-specific process flow and QA. However, improved guidance is needed even for established procedures such as ultrasound-guided prostate implants. Adaptive replanning in brachytherapy faces unsolved problems similar to that of image-guided adaptive external beam radiotherapy

  20. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-08-01

    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.

  1. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-01-01

    Abstract. There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here. PMID:27533438

  2. Dosimetric evaluation of the OneDoseTM MOSFET for measuring kilovoltage imaging dose from image-guided radiotherapy procedures.

    Ding, George X; Coffey, Charles W

    2010-09-01

    The purpose of this study is to investigate the feasibility of using a single-use dosimeter, OneDose MOSFET designed for in vivo patient dosimetry, for measuring the radiation dose from kilovoltage (kV) x rays resulting from image-guided procedures. The OneDose MOSFET dosimeters were precalibrated by the manufacturer using Co-60 beams. Their energy response and characteristics for kV x rays were investigated by using an ionization chamber, in which the air-kerma calibration factors were obtained from an Accredited Dosimetry Calibration Laboratory (ADCL). The dosimetric properties have been tested for typical kV beams used in image-guided radiation therapy (IGRT). The direct dose reading from the OneDose system needs to be multiplied by a correction factor ranging from 0.30 to 0.35 for kilovoltage x rays ranging from 50 to 125 kVp, respectively. In addition to energy response, the OneDose dosimeter has up to a 20% reduced sensitivity for beams (70-125 kVp) incident from the back of the OneDose detector. The uncertainty in measuring dose resulting from a kilovoltage beam used in IGRT is approximately 20%; this uncertainty is mainly due to the sensitivity dependence of the incident beam direction relative to the OneDose detector. The ease of use may allow the dosimeter to be suitable for estimating the dose resulting from image-guided procedures.

  3. Algorithm-enabled exploration of image-quality potential of cone-beam CT in image-guided radiation therapy

    Han, Xiao; Sidky, Emil Y; Pan, Xiaochuan; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Bian, Junguo

    2015-01-01

    Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics. (paper)

  4. Depletion of new neurons by image guided irradiation

    Yao-Fang eTan

    2011-04-01

    Full Text Available Ionizing radiation continues to be a relevant tool in both imaging and the treatment of cancer. Experimental uses of focal irradiation have recently been expanded to studies of new neurons in the adult brain. Such studies have shown cognitive deficits following radiation treatment and raised caution as to possible unintentional effects that may occur in humans. Conflicting outcomes of the effects of irradiation on adult neurogenesis suggest that the effects are either transient or permanent. In this study, we used an irradiation apparatus employed in the treatment of human tumors to assess radiation effects on rat neurogenesis. For subjects we used adult male rats (Sprague-Dawley under anesthesia. The irradiation beam was directed at the hippocampus, a center for learning and memory and the site of neurogenic activity in adult brain. The irradiation was applied at a dose-rate 0.6 Gy/min for total single-fraction, doses ranging from 0.5-10.0 Gy. The animals were returned to home cages and recovered with no sign of any side effects. The neurogenesis was measured either 1 week or 6 weeks after the irradiation. At 1 week, the number of neuronal progenitors was reduced in a dose-dependent manner with the 50% reduction at 0.78 Gy. The dose-response curve was well fitted by a double exponential suggesting two processes. Examination of the tissue with quantitative immunohistochemistry revealed a dominant low-dose effect on neuronal progenitors resulting in 80% suppression of neurogenesis. This effect was partially reversible, possibly due to compensatory proliferation of the remaining precursors. At higher doses (> 5Gy there was additional, nearly complete block of neurogenesis without compensatory proliferation. We conclude that notwithstanding the usefulness of irradiation for experimental purposes, the exposure of human subjects to doses often used in radiotherapy treatment could be damaging and cause cognitive impairments.

  5. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform

    Liu, Xiaomin; Que, Ivo; Kong, Xianggui; Zhang, Youlin; Tu, Langping; Chang, Yulei; Wang, Tong Tong; Chan, Alan; Löwik, Clemens W. G. M.; Zhang, Hong

    2015-09-01

    A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, 1O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm-2) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy.A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii

  6. Real-time single image dehazing based on dark channel prior theory and guided filtering

    Zhang, Zan

    2017-10-01

    Images and videos taken outside the foggy day are serious degraded. In order to restore degraded image taken in foggy day and overcome traditional Dark Channel prior algorithms problems of remnant fog in edge, we propose a new dehazing method.We first find the fog area in the dark primary color map to obtain the estimated value of the transmittance using quadratic tree. Then we regard the gray-scale image after guided filtering as atmospheric light map and remove haze based on it. Box processing and image down sampling technology are also used to improve the processing speed. Finally, the atmospheric light scattering model is used to restore the image. A plenty of experiments show that algorithm is effective, efficient and has a wide range of application.

  7. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures

    Shin, Kwangsoo; Choi, Jin Woo; Ko, Giho; Baik, Seungmin; Kim, Dokyoon; Park, Ok Kyu; Lee, Kyoungbun; Cho, Hye Rim; Han, Sang Ihn; Lee, Soo Hong; Lee, Dong Jun; Lee, Nohyun; Kim, Hyo-Cheol; Hyeon, Taeghwan

    2017-07-01

    Tissue adhesives have emerged as an alternative to sutures and staples for wound closure and reconnection of injured tissues after surgery or trauma. Owing to their convenience and effectiveness, these adhesives have received growing attention particularly in minimally invasive procedures. For safe and accurate applications, tissue adhesives should be detectable via clinical imaging modalities and be highly biocompatible for intracorporeal procedures. However, few adhesives meet all these requirements. Herein, we show that biocompatible tantalum oxide/silica core/shell nanoparticles (TSNs) exhibit not only high contrast effects for real-time imaging but also strong adhesive properties. Furthermore, the biocompatible TSNs cause much less cellular toxicity and less inflammation than a clinically used, imageable tissue adhesive (that is, a mixture of cyanoacrylate and Lipiodol). Because of their multifunctional imaging and adhesive property, the TSNs are successfully applied as a hemostatic adhesive for minimally invasive procedures and as an immobilized marker for image-guided procedures.

  8. IMAGE-GUIDED EVALUATION AND MONITORING OF TREATMENT RESPONSE IN PATIENTS WITH DRY EYE DISEASE

    Hamrah, Pedram

    2014-01-01

    Dry eye disease (DED) is one of the most common ocular disorders worldwide. The pathophysiological mechanisms involved in the development of DED are not well understood and thus treating DED has been a significant challenge for ophthalmologists. Most of the currently available diagnostic tests demonstrate low correlation to patient symptoms and have low reproducibility. Recently, sophisticated in vivo imaging modalities have become available for patient care, namely, in vivo confocal microscopy (IVCM) and optical coherence tomography (OCT). These emerging modalities are powerful and non-invasive, allowing real-time visualization of cellular and anatomical structures of the cornea and ocular surface. Here we discuss how, by providing both qualitative and quantitative assessment, these techniques can be used to demonstrate early subclinical disease, grade layer-by-layer severity, and allow monitoring of disease severity by cellular alterations. Imaging-guided stratification of patients may also be possible in conjunction with clinical examination methods. Visualization of subclinical changes and stratification of patients in vivo, allows objective image-guided evaluation of tailored treatment response based on cellular morphological alterations specific to each patient. This image-guided approach to DED may ultimately improve patient outcomes and allow studying the efficacy of novel therapies in clinical trials. PMID:24696045

  9. User-guided segmentation for volumetric retinal optical coherence tomography images

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  10. Localized irradiation of mouse legs using an image-guided robotic linear accelerator.

    Kufeld, Markus; Escobar, Helena; Marg, Andreas; Pasemann, Diana; Budach, Volker; Spuler, Simone

    2017-04-01

    To investigate the potential of human satellite cells in muscle regeneration small animal models are useful to evaluate muscle regeneration. To suppress the inherent regeneration ability of the tibialis muscle of mice before transplantation of human muscle fibers, a localized irradiation of the mouse leg should be conducted. We analyzed the feasibility of an image-guided robotic irradiation procedure, a routine treatment method in radiation oncology, for the focal irradiation of mouse legs. After conducting a planning computed tomography (CT) scan of one mouse in its customized mold a three-dimensional dose plan was calculated using a dedicated planning workstation. 18 Gy have been applied to the right anterior tibial muscle of 4 healthy and 12 mice with immune defect in general anesthesia using an image-guided robotic linear accelerator (LINAC). The mice were fixed in a customized acrylic mold with attached fiducial markers for image guided tracking. All 16 mice could be irradiated as prevised without signs of acute radiation toxicity or anesthesiological side effects. The animals survived until scarification after 8, 21 and 49 days as planned. The procedure was straight forward and the irradiation process took 5 minutes to apply the dose of 18 Gy. Localized irradiation of mice legs using a robotic LINAC could be conducted as planned. It is a feasible procedure without recognizable side effects. Image guidance offers precise dose delivery and preserves adjacent body parts and tissues.

  11. Subacute posteromedial impingement of the ankle in athletes: MR imaging evaluation and ultrasound guided therapy

    Messiou, Christina; Robinson, Philip; O'Connor, Philip J.; Grainger, Andrew

    2006-01-01

    To describe the use of MR imaging and efficacy of ultrasound-guided steroid injection in the diagnosis and management of athletes with clinical posteromedial impingement of the ankle. A retrospective analysis of imaging findings on MR was undertaken in nine elite athletes with clinical posteromedial ankle impingement. MR studies from six professional athletes with posterolateral pain were also reviewed as an imaging control group. The two reviewing radiologists were blinded to the clinical details and the proportion of control and study subjects. The nine study athletes also underwent diagnostic ultrasound and ultrasound-guided injection of steroid and anaesthetic into the posteromedial capsular abnormality. Follow-up was by telephone interview. Posteromedial capsular thickening was seen only in athletes with posteromedial impingement (7/9). Posteromedial synovitis was present in all athletes with posteromedial impingement; however, posterior and posterolateral synovitis was also seen in these athletes. Mild posteromedial synovitis was present in two control athletes. Ultrasound identified abnormal posteromedial soft tissue thickening deep to tibialis posterior between the medial malleolus and talus in all nine athletes. After injection all athletes returned to their previous level of sport, with eight of the nine not experiencing any residual or recurrent symptoms. If MR imaging excludes significant coexistent abnormality, ultrasound can localise posteromedial soft tissue abnormality and guide injection therapy, allowing return to athletic activity without surgical intervention. (orig.)

  12. On-line nuclear orientation

    Krane, K.S.

    1990-01-01

    This grant has as its overall goal the pursuit of on-line nuclear orientation experiments for the purpose of eliciting details of nuclear structure from the decays of neutron-deficient nuclei, such as those produced by the Holifield Heavy-Ion Research Facility at Oak Ridge and extracted by the UNISOR Isotope Separator. This paper discusses: refrigerator development; the decay of 184 Au; the decay of 191 Hg to 191 Au; the decay of 189 Pt to 189 Ir; the decays of 109,111 Pd; the decay of 172 Er; and solid angle corrections

  13. Surgical neuro navigator guided by preoperative magnetic resonance images, based on a magnetic position sensor

    Perini, Ana Paula; Siqueira, Rogerio Bulha; Carneiro, Antonio Adilton Oliveira; Oliveira, Lucas Ferrari de; Machado, Helio Rubens

    2009-01-01

    Image guided neurosurgery enables the neurosurgeon to navigate inside the patient's brain using pre-operative images as a guide and a tracking system, during a surgery. Following a calibration procedure, three-dimensional position and orientation of surgical instruments may be transmitted to computer. The spatial information is used to access a region of interest, in the pre-operative images, displaying them to the neurosurgeon during the surgical procedure. However, when a craniotomy is involved and the lesion is removed, movements of brain tissue can be a significant source of error in these conventional navigation systems. The architecture implemented in this work intends the development of a system to surgical planning and orientation guided by ultrasound image. For surgical orientation, the software developed allows the extraction of slices from the volume of the magnetic resonance images (MRI) with orientation supplied by a magnetic position sensor (Polhemus R ). The slices extracted with this software are important because they show the cerebral area that the neurosurgeon is observing during the surgery, and besides they can be correlated with the intra-operative ultrasound images to detect and to correct the deformation of brain tissue during the surgery. Also, a tool for per-operative navigation was developed, providing three orthogonal planes through the image volume. In the methodology used for the software implementation, the Python tm programming language and the Visualization Toolkit (VTK) graphics library were used. The program to extract slices of the MRI volume allowed the application of transformations in the volume, using coordinates supplied by the position sensor. (author)

  14. Treatment of malignant brain tumor. Today and tomorrow. Image-guided neurosurgery for brain tumor. A current perspective

    Kajita, Yasukazu; Fujii, Masazumi; Yoshida, Jun; Maesawa, Satoshi

    2008-01-01

    Although usefulness of the image-guided neurosurgery is well documented, there are scarce facilities having the actually operating system in Japan. Since 2006, authors' Nagoya University Hospital has had an operating room named ''Brain THEATER'', where an open MRI system APERTO (Hitachi-Medical Co.) and a navigation system Vector Vision (BrainLAB) are connected to conduct the complete image-guided neurosurgery for brain tumor by using the intraoperative MRI for continuously updating the residual tumor tissue to be dissected out. The room is pre- and intra-operatively supported by Departments of image analysis and of radiation technology in the University, and as well, is connected by net-working with another image-guided surgical room ''Brain Suite'' (Siemens 1.5 T MRI system: BrainLAB) in the neighboring facility, Nagoya Central Hospital. This paper describes the circumstances of the introduction of these systems in the Hospital, details of the image-guided surgery in the operation rooms with illustration of actual photos of the rooms and of pre-, intra- and post-operative images, outcomes of image-guided neurosurgery for brain tumor reported hitherto, image-guided neurosurgery for brain tumor's future perspectives involving robotic surgery and operation on the virtual 3D image including the net-worked one. Efforts should be made to further spread the system for performing the more non-invasive and precise surgery, and for conducting the diagnosis united with treatment. (R.T.)

  15. Precise image-guided irradiation of small animals: a flexible non-profit platform

    Tillner, Falk; Thute, Prasad; Löck, Steffen; Dietrich, Antje; Fursov, Andriy; Haase, Robert; Lukas, Mathias; Krause, Mechthild; Baumann, Michael; Bütof, Rebecca; Enghardt, Wolfgang; Rimarzig, Bernd; Sobiella, Manfred

    2016-01-01

    Preclinical in vivo studies using small animals are essential to develop new therapeutic options in radiation oncology. Of particular interest are orthotopic tumour models, which better reflect the clinical situation in terms of growth patterns and microenvironmental parameters of the tumour as well as the interplay of tumours with the surrounding normal tissues. Such orthotopic models increase the technical demands and the complexity of preclinical studies as local irradiation with therapeutically relevant doses requires image-guided target localisation and accurate beam application. Moreover, advanced imaging techniques are needed for monitoring treatment outcome. We present a novel small animal image-guided radiation therapy (SAIGRT) system, which allows for precise and accurate, conformal irradiation and x-ray imaging of small animals. High accuracy is achieved by its robust construction, the precise movement of its components and a fast high-resolution flat-panel detector. Field forming and x-ray imaging is accomplished close to the animal resulting in a small penumbra and a high image quality. Feasibility for irradiating orthotopic models has been proven using lung tumour and glioblastoma models in mice. The SAIGRT system provides a flexible, non-profit academic research platform which can be adapted to specific experimental needs and therefore enables systematic preclinical trials in multicentre research networks. (paper)

  16. Multimodal scanning laser ophthalmoscopy for image guided treatment of age-related macular degeneration

    Hammer, Daniel X.; Ferguson, R. D.; Patel, Ankit H.; Iftimia, Nicusor V.; Mujat, Mircea; Husain, Deeba

    2009-02-01

    Subretinal neovascular membranes (SRNM) are a deleterious complication of laser eye injury and retinal diseases such as age-related macular degeneration (AMD), choroiditis, and myopic retinopathy. Photodynamic therapy (PDT) and anti-vascular endothelial growth factor (VEGF) drugs are approved treatment methods. PDT acts by selective dye accumulation, activation by laser light, and disruption and clotting of the new leaky vessels. However, PDT surgery is currently not image-guided, nor does it proceed in an efficient or automated manner. This may contribute to the high rate of re-treatment. We have developed a multimodal scanning laser ophthalmoscope (SLO) for automated diagnosis and image-guided treatment of SRNMs associated with AMD. The system combines line scanning laser ophthalmoscopy (LSLO), fluorescein angiography (FA), indocyanine green angiography (ICGA), PDT laser delivery, and retinal tracking in a compact, efficient platform. This paper describes the system hardware and software design, performance characterization, and automated patient imaging and treatment session procedures and algorithms. Also, we present initial imaging and tracking measurements on normal subjects and automated lesion demarcation and sizing analysis of previously acquired angiograms. Future pre-clinical testing includes line scanning angiography and PDT treatment of AMD subjects. The automated acquisition procedure, enhanced and expedited data post-processing, and innovative image visualization and interpretation tools provided by the multimodal retinal imager may eventually aid in the diagnosis, treatment, and prognosis of AMD and other retinal diseases.

  17. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  18. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr [Graduate school, School of Mechanical Engineering, Pusan National University (Korea, Republic of); Cho, Younho [School of Mechanical Engineering, Pusan National University (Korea, Republic of); Krishnaswamy, Sridhar [Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL (United States)

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  19. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  20. Imaging-guided and nonimaging-guided fine needle aspiration of liver lesions: experience with 406 patients.

    Edoute, Y; Tibon-Fisher, O; Ben-Haim, S A; Malberger, E

    1991-12-01

    The aim of the present study was to determine the diagnostic accuracy of different modes of fine needle aspiration (FNA) of liver lesions. A total of 492 FNAs were performed on 406 patients in order to confirm or to rule out focal or multifocal neoplastic disease: 29% under ultrasound (US) guidance, 3% with computed tomographic (CT) guidance, 67% preoperatively, and 1% intraoperatively without imaging guidance. Based on histologic, cytologic, and clinical findings, final diagnoses were reached in 387 patients, of whom 264 had malignant liver disease and 123 had benign liver disease. Of 321 aspirations performed in patients with malignant liver disease, the cytologic findings suggested malignancy in 225 (70.1%), suspected malignancy in 25 (7.8%), and did not reveal malignancy in 71 aspirations (22.1%). Among the 123 patients with benign liver disease, the cytologic findings were reported as benign in all but two patients, who had false-positive cytologic findings. The overall sensitivity, specificity, positive, and negative predictive values for cytologic findings were 85.6, 98.4, 99.1, and 76.1%, respectively. The overall diagnostic accuracy was 89.7%. In one patient, fatal intraperitoneal bleeding due to chronic intravascular coagulation complicated the FNA procedure. We conclude that imaging-guided FNA as well as nonguided FNA for cytologic diagnosis of liver lesions are highly accurate and only rarely may be associated with a fatal complication.

  1. Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2018-04-01

    Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.

  2. Imaging guided interventional procedures in paediatric uroradiology--a case based overview

    Riccabona, M. E-mail: michael.riccabona@kfunigraz.ac.at; Sorantin, E.; Hausegger, K

    2002-08-01

    Objective: To describe the potential and application of interventional image guided procedures in the paediatric urinary tract. Patients and methods: The different techniques are illustrated using case reports. The examples comprise established indications such as percutaneous nephrostomy for compromised kidneys in obstructive uropathy and infection, sonographic guided renal biopsy including monitoring or treatment of complications after biopsy, and evaluation and balloon dilatation of childhood renal artery stenosis. There are new applications such as treatment of stenosis in cutaneous ureterostomy or sonographically guided catheterism for deployment of therapeutic agents. Results: Generally, the procedures are safe and successful. However, complications may occur, and peri-/post-interventional monitoring is mandatory to insure early detection and adequate management. Sometimes additional treatment such as percutaneous embolisation of a symptomatic post biopsy arterio-venous fistula, or a second biopsy for recurrent disease may become necessary. Conclusion: Imaging guided interventional procedures are performed successfully in a variety of diseases of the paediatric urinary tract. They can be considered a valuable additional modality throughout infancy and childhood.

  3. Imaging guided interventional procedures in paediatric uroradiology--a case based overview

    Riccabona, M.; Sorantin, E.; Hausegger, K.

    2002-01-01

    Objective: To describe the potential and application of interventional image guided procedures in the paediatric urinary tract. Patients and methods: The different techniques are illustrated using case reports. The examples comprise established indications such as percutaneous nephrostomy for compromised kidneys in obstructive uropathy and infection, sonographic guided renal biopsy including monitoring or treatment of complications after biopsy, and evaluation and balloon dilatation of childhood renal artery stenosis. There are new applications such as treatment of stenosis in cutaneous ureterostomy or sonographically guided catheterism for deployment of therapeutic agents. Results: Generally, the procedures are safe and successful. However, complications may occur, and peri-/post-interventional monitoring is mandatory to insure early detection and adequate management. Sometimes additional treatment such as percutaneous embolisation of a symptomatic post biopsy arterio-venous fistula, or a second biopsy for recurrent disease may become necessary. Conclusion: Imaging guided interventional procedures are performed successfully in a variety of diseases of the paediatric urinary tract. They can be considered a valuable additional modality throughout infancy and childhood

  4. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  5. In-room CT techniques for image-guided radiation therapy

    Ma, C.-M. Charlie; Paskalev, Kamen M.S.

    2006-01-01

    Accurate patient setup and target localization are essential to advanced radiation therapy treatment. Significant improvement has been made recently with the development of image-guided radiation therapy, in which image guidance facilitates short treatment course and high dose per fraction radiotherapy, aiming at improving tumor control and quality of life. Many imaging modalities are being investigated, including x-ray computed tomography (CT), ultrasound imaging, positron emission tomography, magnetic resonant imaging, magnetic resonant spectroscopic imaging, and kV/MV imaging with flat panel detectors. These developments provide unique imaging techniques and methods for patient setup and target localization. Some of them are different; some are complementary. This paper reviews the currently available kV x-ray CT systems used in the radiation treatment room, with a focus on the CT-on-rails systems, which are diagnostic CT scanners moving on rails installed in the treatment room. We will describe the system hardware including configurations, specifications, operation principles, and functionality. We will review software development for image fusion, structure recognition, deformation correction, target localization, and alignment. Issues related to the clinical implementation of in-room CT techniques in routine procedures are discussed, including acceptance testing and quality assurance. Clinical applications of the in-room CT systems for patient setup, target localization, and adaptive therapy are also reviewed for advanced radiotherapy treatments

  6. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  7. Radiation resistivity of pure silica core image guides for industrial fiberscopes

    Okamoto, Shinichi; Ohnishi, Tokuhiro; Kanazawa, Tamotsu; Tsuji, Yukio; Hayami, Hiroyuki; Ishitani, Tadayoshi; Akutsu, Takeji; Suzuki, Koichi.

    1991-01-01

    Industrial fiberscopes incorporating pure silica core image guides have been extensively used for remote visual inspection in radiation fields including nuclear power plants, owing to their superior radiation resistivity. The authors have been intensively conducting R and D on improving radiation resistivity of pure silica core image guides. This paper reports the results of experiments to compare the effects of core materials on radiation resistivity and to investigate the dependence of radiation resistivity on total dose, does rate, and support pipe material. The results confirmed the superior radiation resistivity of the core material containing fluorine at any irradiation condition and indicated the existence of a critical dose rate at which radiation-induced deterioration was stabilized. No difference in radiation resistivity attributable to support layer material was observed. (author)

  8. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy.

    Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping

    2014-04-01

    The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.

  9. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics

    Jiang, Shan; Win, Khin Yin; Liu, Shuhua; Teng, Choon Peng; Zheng, Yuangang; Han, Ming-Yong

    2013-03-01

    In this article, the very recent progress of various functional inorganic nanomaterials is reviewed including their unique properties, surface functionalization strategies, and applications in biosensing and imaging-guided therapeutics. The proper surface functionalization renders them with stability, biocompatibility and functionality in physiological environments, and further enables their targeted use in bioapplications after bioconjugation via selective and specific recognition. The surface-functionalized nanoprobes using the most actively studied nanoparticles (i.e., gold nanoparticles, quantum dots, upconversion nanoparticles, and magnetic nanoparticles) make them an excellent platform for a wide range of bioapplications. With more efforts in recent years, they have been widely developed as labeling probes to detect various biological species such as proteins, nucleic acids and ions, and extensively employed as imaging probes to guide therapeutics such as drug/gene delivery and photothermal/photodynamic therapy.

  10. Image-guided urologic surgery: intraoperative optical imaging and tissue interrogation (Conference Presentation)

    Liao, Joseph C.

    2017-02-01

    Emerging optical imaging technologies can be integrated in the operating room environment during minimally invasive and open urologic surgery, including oncologic surgery of the bladder, prostate, and kidney. These technologies include macroscopic fluorescence imaging that provides contrast enhancement between normal and diseased tissue and microscopic imaging that provides tissue characterization. Optical imaging technologies that have reached the clinical arena in urologic surgery are reviewed, including photodynamic diagnosis, near infrared fluorescence imaging, optical coherence tomography, and confocal laser endomicroscopy. Molecular imaging represents an exciting future arena in conjugating cancer-specific contrast agents to fluorophores to improve the specificity of disease detection. Ongoing efforts are underway to translate optimal targeting agents and imaging modalities, with the goal to improve cancer-specific and functional outcomes.

  11. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Wong, John; Iordachita, Iulian; Siewerdsen, Jeffrey

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  12. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    Abdollahi, H

    2014-06-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.

  13. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  14. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    Abdollahi, H

    2014-01-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging

  15. [Image guided and robotic treatment--the advance of cybernetics in clinical medicine].

    Fosse, E; Elle, O J; Samset, E; Johansen, M; Røtnes, J S; Tønnessen, T I; Edwin, B

    2000-01-10

    The introduction of advanced technology in hospitals has changed the treatment practice towards more image guided and minimal invasive procedures. Modern computer and communication technology opens up for robot aided and pre-programmed intervention. Several robotic systems are in clinical use today both in microsurgery and in major cardiac and orthopedic operations. As this trend develops, professions which are new in this context such as physicists, mathematicians and cybernetic engineers will be increasingly important in the treatment of patients.

  16. Craniospinal treatment with IMRT multi-isocentric and image-guided linear accelerator based on Gantry

    Sanz Beltran, M.; Caballero Perea, B.; Rodriguez Rodriguez, C.; Arminio Diaz, E.; Lopez Fernandez, A.; Gomez Fervienza, J. R.; Crespo Diez, P.; Cantarero Valenzuela, N.; Alvarez Sanchez, M.; Martin Martin, G.; Gomez Fervienza, J. r.; Crespo Diez, P.; Cantarero Valenzuela, N.; Alvarez Sanchez, M.; Martin Martin, G.

    2011-01-01

    The objective is the realization of craniospinal treatment with a linear accelerator equipped with gantry based on MLC, carbon fiber table and Image Guided capability. The great length of treatment (patient l,80m in height) was a great difficulty for want of full length of the longitudinal movement of the table to adequately cover the PTV, plus free metallic screws fastening the head of the table extender preventing further incidents.

  17. The role of contrast-enhanced ultrasonography in image-guided liver ablations

    Pescatori, Lorenzo Carlo; Sconfienza, Luca Maria; Mauri, Giovanni

    2016-01-01

    We read with great interest the paper by Kim et al. entitled “Local ablation therapy with contrast enhanced ultrasonography for hepatocellular carcinoma: a practical review,” recently published in Ultrasonography. We think that contrast-enhanced ultrasonography (CEUS), together with the development of reliable navigation systems, is likely to represent one of the most important advances in image-guided ablations in recent years. Thus, we offer some considerations on the topic

  18. Magnetic resonance imaging guided reirradiation of recurrent and second primary head and neck cancer

    Chen, Allen M.; Cao, Minsong; Hsu, Sophia; Lamb, James; Mikaeilian, Argin; Yang, Yingli; Agazaryan, Nzhde; Low, Daniel A.; Steinberg, Michael L.

    2017-01-01

    Purpose: To report a single-institutional experience using magnetic resonance imaging (MRI) guided radiation therapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and materials: Between October 2014 and August 2016, 13 consecutive patients with recurrent or new primary cancers of the head and neck that occurred in a previously irradiated field were prospectively enrolled in an institutional registry trial to investigate the feasibility and efficacy of ...

  19. Noninvasive Label-Free Detection of Micrometastases in the Lymphatics with Ultrasound-Guided Photoacoustic Imaging

    2015-10-01

    imaging can be used to guide dissection. We have also successfully integrated a programmable ultrasound machine ( Verasonics Vantage ) and tunable pulsed...Mobile HE) with the programmable ultrasound machine ( Verasonics Vantage ). We have synchronized the signals to enable interleaved acquisition of US...transducer (L11-4v, Verasonics Inc.) and build a housing which effectively couples fiber optic light delivery. o What opportunities for training and

  20. Image-guided radiotherapy in near real time with intensity-modulated radiotherapy megavoltage treatment beam imaging.

    Mao, Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing, Lei; Solberg, Timothy

    2009-10-01

    To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  1. Image-Guided Radiotherapy in Near Real Time With Intensity-Modulated Radiotherapy Megavoltage Treatment Beam Imaging

    Mao Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing Lei; Solberg, Timothy

    2009-01-01

    Purpose: To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Methods and Materials: Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Results: Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. Conclusions: This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  2. Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery.

    Miga, Michael I

    2016-01-01

    With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.

  3. Behaviors study of image registration algorithms in image guided radiation therapy

    Zou Lian; Hou Qing

    2008-01-01

    Objective: Study the behaviors of image registration algorithms, and analyze the elements which influence the performance of image registrations. Methods: Pre-known corresponding coordinates were appointed for reference image and moving image, and then the influence of region of interest (ROI) selection, transformation function initial parameters and coupled parameter spaces on registration results were studied with a software platform developed in home. Results: Region of interest selection had a manifest influence on registration performance. An improperly chosen ROI resulted in a bad registration. Transformation function initial parameters selection based on pre-known information could improve the accuracy of image registration. Coupled parameter spaces would enhance the dependence of image registration algorithm on ROI selection. Conclusions: It is necessary for clinic IGRT to obtain a ROI selection strategy (depending on specific commercial software) correlated to tumor sites. Three suggestions for image registration technique developers are automatic selection of the initial parameters of transformation function based on pre-known information, developing specific image registration algorithm for specific image feature, and assembling real-time image registration algorithms according to tumor sites selected by software user. (authors)

  4. TU-C-BRD-01: Image Guided SBRT I: Multi-Modality 4D Imaging

    Cai, J; Mageras, G; Pan, T

    2014-01-01

    Motion management is one of the critical technical challenges for radiation therapy. 4D imaging has been rapidly adopted as essential tool to assess organ motion associated with respiratory breathing. A variety of 4D imaging techniques have been developed and are currently under development based on different imaging modalities such as CT, MRI, PET, and CBCT. Each modality provides specific and complementary information about organ and tumor respiratory motion. Effective use of each different technique or combined use of different techniques can introduce a comprehensive management of tumor motion. Specifically, these techniques have afforded tremendous opportunities to better define and delineate tumor volumes, more accurately perform patient positioning, and effectively apply highly conformal therapy techniques such as IMRT and SBRT. Successful implementation requires good understanding of not only each technique, including unique features, limitations, artifacts, imaging acquisition and process, but also how to systematically apply the information obtained from different imaging modalities using proper tools such as deformable image registration. Furthermore, it is important to understand the differences in the effects of breathing variation between different imaging modalities. A comprehensive motion management strategy using multi-modality 4D imaging has shown promise in improving patient care, but at the same time faces significant challenges. This session will focuses on the current status and advances in imaging respiration-induced organ motion with different imaging modalities: 4D-CT, 4D-MRI, 4D-PET, and 4D-CBCT/DTS. Learning Objectives: Understand the need and role of multimodality 4D imaging in radiation therapy. Understand the underlying physics behind each 4D imaging technique. Recognize the advantages and limitations of each 4D imaging technique

  5. Supervised guiding long-short term memory for image caption generation based on object classes

    Wang, Jian; Cao, Zhiguo; Xiao, Yang; Qi, Xinyuan

    2018-03-01

    The present models of image caption generation have the problems of image visual semantic information attenuation and errors in guidance information. In order to solve these problems, we propose a supervised guiding Long Short Term Memory model based on object classes, named S-gLSTM for short. It uses the object detection results from R-FCN as supervisory information with high confidence, and updates the guidance word set by judging whether the last output matches the supervisory information. S-gLSTM learns how to extract the current interested information from the image visual se-mantic information based on guidance word set. The interested information is fed into the S-gLSTM at each iteration as guidance information, to guide the caption generation. To acquire the text-related visual semantic information, the S-gLSTM fine-tunes the weights of the network through the back-propagation of the guiding loss. Complementing guidance information at each iteration solves the problem of visual semantic information attenuation in the traditional LSTM model. Besides, the supervised guidance information in our model can reduce the impact of the mismatched words on the caption generation. We test our model on MSCOCO2014 dataset, and obtain better performance than the state-of-the- art models.

  6. A study on the ferrite image guide for Ka-band

    Arestova, Iliyana

    2018-01-01

    A ferrite image guide (FIG) has been investigated experimentally in the frequency range 26÷40 GHz by cavity resonator method (CRM) and theoretically by finite element method (FEM). The FIG’s wavelengths have been obtained and compared in a demagnetized state as well as in three different cases of homogeneous magnetization: 1) magnetization, which is perpendicular to the direction of propagation and parallel to the ground plane (Case 1); 2) magnetization, which is perpendicular to the direction of propagation and the ground plane (Case 2); 3) magnetization, which is parallel to the direction of propagation (Case 3). The distribution of the electric field magnitude in these three cases of magnetization has been verified by numerical simulations. Our investigations have shown that Case 2 seems to be the most promising from a point of view of practical realization of millimetre wave non reciprocal devices. Only in this case an asymmetrical shift of the maximum of the electric field magnitude has been observed, which fully corresponds to non reciprocal behaviour of coupled ferrite-dielectric image guide structures in millimetre wave range. Key words: ferrite devices, image guide, cavity resonator method, finite element method, millimetre waves

  7. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  8. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation.

  9. Imaging osteoarthritis in the knee joints using x-ray guided diffuse optical tomography

    Zhang, Qizhi; Yuan, Zhen; Sobel, Eric S.; Jiang, Huabei

    2010-02-01

    In our previous studies, near-infrared (NIR) diffuse optical tomography (DOT) had been successfully applied to imaging osteoarthritis (OA) in the finger joints where significant difference in optical properties of the joint tissues was evident between healthy and OA finger joints. Here we report for the first time that large joints such as the knee can also be optically imaged especially when DOT is combined with x-ray tomosynthesis where the 3D image of the bones from x-ray is incorporated into the DOT reconstruction as spatial a priori structural information. This study demonstrates that NIR light can image large joints such as the knee in addition to finger joints, which will drastically broaden the clinical utility of our x-ray guided DOT technique for OA diagnosis.

  10. Compensated Row-Column Ultrasound Imaging System Using Multilayered Edge Guided Stochastically Fully Connected Random Fields.

    Ben Daya, Ibrahim; Chen, Albert I H; Shafiee, Mohammad Javad; Wong, Alexander; Yeow, John T W

    2017-09-06

    The row-column method received a lot of attention for 3-D ultrasound imaging. By reducing the number of connections required to address the 2-D array and therefore reducing the amount of data to handle, this addressing method allows for real time 3-D imaging. Row-column still has its limitations: the issues of sparsity, speckle noise inherent to ultrasound, the spatially varying point spread function, and the ghosting artifacts inherent to the row-column method must all be taken into account when building a reconstruction framework. In this research, we build on a previously published system and propose an edge-guided, compensated row-column ultrasound imaging system that incorporates multilayered edge-guided stochastically fully connected conditional random fields to address the limitations of the row-column method. Tests carried out on simulated and real row-column ultrasound images show the effectiveness of our proposed system over other published systems. Visual assessment show our proposed system's potential at preserving edges and reducing speckle. Quantitative analysis shows that our proposed system outperforms previously published systems when evaluated with metrics such as Peak Signal-to-Noise Ratio, Coefficient of Correlation, and Effective Number of Looks. These results show the potential of our proposed system as an effective tool for enhancing 3-D row-column imaging.

  11. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (design, patient stability in the SBF should be verified with portal imaging.

  12. Ultrasound-guided image fusion with computed tomography and magnetic resonance imaging. Clinical utility for imaging and interventional diagnostics of hepatic lesions

    Clevert, D.A.; Helck, A.; Paprottka, P.M.; Trumm, C.; Reiser, M.F.; Zengel, P.

    2012-01-01

    Abdominal ultrasound is often the first-line imaging modality for assessing focal liver lesions. Due to various new ultrasound techniques, such as image fusion, global positioning system (GPS) tracking and needle tracking guided biopsy, abdominal ultrasound now has great potential regarding detection, characterization and treatment of focal liver lesions. Furthermore, these new techniques will help to improve the clinical management of patients before and during interventional procedures. This article presents the principle and clinical impact of recently developed techniques in the field of ultrasound, e.g. image fusion, GPS tracking and needle tracking guided biopsy and discusses the results based on a feasibility study on 20 patients with focal hepatic lesions. (orig.) [de

  13. In vivo quantification of fluorescent molecular markers in real-time by ratio Imaging for diagnostic screening and image-guided surgery

    Bogaards, A.; Sterenborg, H. J. C. M.; Trachtenberg, J.; Wilson, B. C.; Lilge, L.

    2007-01-01

    Future applications of "molecular diagnostic screening" and "molecular image-guided surgery" will demand images of molecular markers with high resolution and high throughput (similar to >= 30 frames/second). MRI, SPECT, PET, optical fluorescence tomography, hyper-spectral fluorescence imaging, and

  14. On-line moisture analysis

    Cutmore, N.G.; Mijak, D.G

    2002-01-01

    Measurement of the moisture content of iron ore has become a key issue for controlling moisture additions for dust suppression. In most cases moisture content is still determined by manual or automatic sampling of the ore stream, followed by conventional laboratory analysis by oven drying. Although this procedure enables the moisture content to be routinely monitored, it is too slow for control purposes. This has generated renewed interest in on-line techniques for the accurate and rapid measurement of moisture in iron ore on conveyors. Microwave transmission techniques have emerged over the past 40 years as the dominant technology for on-line measurement of moisture in bulk materials, including iron ores. Alternative technologies have their limitations. Infra-red analysers are used in a variety of process industries, but rely on the measurement of absorption by moisture in a very thin surface layer. Consequently such probes may be compromised by particle size effects and biased presentation of the bulk material. Nuclear-based analysers measure the total hydrogen content in the sample and do not differentiate between free and combined moisture. Such analysers may also be sensitive to material presentation and elemental composition. Very low frequency electromagnetic probes, such as capacitance or conductance probes, operate in the frequency region where the DC conductivity dominates much of the response, which is a function not only of moisture content but also of ionic composition and chemistry. These problems are overcome using microwave transmission techniques, which also have the following advantages, as a true bulk moisture analysis is obtained, because a high percentage of the bulk material is analysed; the moisture estimate is mostly insensitive to any biased presentation of moisture, for example due to stratification of bulk material with different moisture content and because no physical contact is made between the sensor and the bulk material. This is

  15. MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.

    Tsuicheng D Chiu

    Full Text Available Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT imaging alone. In this study, we characterized a research magnetic resonance (MR scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This

  16. Designing a wearable navigation system for image-guided cancer resection surgery.

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2014-11-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure.

  17. Complexity and accuracy of image registration methods in SPECT-guided radiation therapy

    Yin, L S; Duzenli, C; Moiseenko, V [Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada); Tang, L; Hamarneh, G [Computing Science, Simon Fraser University, 9400 TASC1, Burnaby, BC, V5A 1S6 (Canada); Gill, B [Medical Physics, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Celler, A; Shcherbinin, S [Department of Radiology, University of British Columbia, 828 West 10th Ave, Vancouver, BC, V5Z 1L8 (Canada); Fua, T F; Thompson, A; Sheehan, F [Radiation Oncology, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Liu, M [Radiation Oncology, Fraser Valley Cancer Centre, BC Cancer Agency, 13750 9th Ave, Surrey, BC, V3V 1Z2 (Canada)], E-mail: lyin@bccancer.bc.ca

    2010-01-07

    The use of functional imaging in radiotherapy treatment (RT) planning requires accurate co-registration of functional imaging scans to CT scans. We evaluated six methods of image registration for use in SPECT-guided radiotherapy treatment planning. Methods varied in complexity from 3D affine transform based on control points to diffeomorphic demons and level set non-rigid registration. Ten lung cancer patients underwent perfusion SPECT-scans prior to their radiotherapy. CT images from a hybrid SPECT/CT scanner were registered to a planning CT, and then the same transformation was applied to the SPECT images. According to registration evaluation measures computed based on the intensity difference between the registered CT images or based on target registration error, non-rigid registrations provided a higher degree of accuracy than rigid methods. However, due to the irregularities in some of the obtained deformation fields, warping the SPECT using these fields may result in unacceptable changes to the SPECT intensity distribution that would preclude use in RT planning. Moreover, the differences between intensity histograms in the original and registered SPECT image sets were the largest for diffeomorphic demons and level set methods. In conclusion, the use of intensity-based validation measures alone is not sufficient for SPECT/CT registration for RTTP. It was also found that the proper evaluation of image registration requires the use of several accuracy metrics.

  18. Histopathological Breast Cancer Image Classification by Deep Neural Network Techniques Guided by Local Clustering.

    Nahid, Abdullah-Al; Mehrabi, Mohamad Ali; Kong, Yinan

    2018-01-01

    Breast Cancer is a serious threat and one of the largest causes of death of women throughout the world. The identification of cancer largely depends on digital biomedical photography analysis such as histopathological images by doctors and physicians. Analyzing histopathological images is a nontrivial task, and decisions from investigation of these kinds of images always require specialised knowledge. However, Computer Aided Diagnosis (CAD) techniques can help the doctor make more reliable decisions. The state-of-the-art Deep Neural Network (DNN) has been recently introduced for biomedical image analysis. Normally each image contains structural and statistical information. This paper classifies a set of biomedical breast cancer images (BreakHis dataset) using novel DNN techniques guided by structural and statistical information derived from the images. Specifically a Convolutional Neural Network (CNN), a Long-Short-Term-Memory (LSTM), and a combination of CNN and LSTM are proposed for breast cancer image classification. Softmax and Support Vector Machine (SVM) layers have been used for the decision-making stage after extracting features utilising the proposed novel DNN models. In this experiment the best Accuracy value of 91.00% is achieved on the 200x dataset, the best Precision value 96.00% is achieved on the 40x dataset, and the best F -Measure value is achieved on both the 40x and 100x datasets.

  19. Information Recovery Algorithm for Ground Objects in Thin Cloud Images by Fusing Guide Filter and Transfer Learning

    HU Gensheng

    2018-03-01

    Full Text Available Ground object information of remote sensing images covered with thin clouds is obscure. An information recovery algorithm for ground objects in thin cloud images is proposed by fusing guide filter and transfer learning. Firstly, multi-resolution decomposition of thin cloud target images and cloud-free guidance images is performed by using multi-directional nonsubsampled dual-tree complex wavelet transform. Then the decomposed low frequency subbands are processed by using support vector guided filter and transfer learning respectively. The decomposed high frequency subbands are enhanced by using modified Laine enhancement function. The low frequency subbands output by guided filter and those predicted by transfer learning model are fused by the method of selection and weighting based on regional energy. Finally, the enhanced high frequency subbands and the fused low frequency subbands are reconstructed by using inverse multi-directional nonsubsampled dual-tree complex wavelet transform to obtain the ground object information recovery images. Experimental results of Landsat-8 OLI multispectral images show that, support vector guided filter can effectively preserve the detail information of the target images, domain adaptive transfer learning can effectively extend the range of available multi-source and multi-temporal remote sensing images, and good effects for ground object information recover are obtained by fusing guide filter and transfer learning to remove thin cloud on the remote sensing images.

  20. Image-Based Monitoring of Magnetic Resonance-Guided Thermoablative Therapies for Liver Tumors

    Rempp, Hansjoerg, E-mail: hansjoerg.rempp@med.uni-tuebingen.de; Clasen, Stephan [Eberhard Karls University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Pereira, Philippe L. [SLK-Kliniken, Clinic for Radiology, Nuclear Medicine, and Minimal Invasive Therapies (Germany)

    2012-12-15

    Minimally invasive treatment options for liver tumor therapy have been increasingly used during the last decade because their benefit has been proven for primary and inoperable secondary liver tumors. Among these, radiofrequency ablation has gained widespread consideration. Optimal image-guidance offers precise anatomical information, helps to position interventional devices, and allows for differentiation between already-treated and remaining tumor tissue. Patient safety and complete ablation of the entire tumor are the overriding objectives of tumor ablation. These may be achieved most elegantly with magnetic resonance (MR)-guided therapy, where monitoring can be performed based on precise soft-tissue imaging and additional components, such as diffusion-weighted imaging and temperature mapping. New MR scanner types and newly developed sequence techniques have enabled MR-guided intervention to move beyond the experimental phase. This article reviews the current role of MR imaging in guiding radiofrequency ablation. Signal characteristics of primary and secondary liver tumors are identified, and signal alteration during therapy is described. Diffusion-weighted imaging (DWI) and temperature mapping as special components of MR therapy monitoring are introduced. Practical information concerning coils, sequence selection, and parameters, as well as sequence gating, is given. In addition, sources of artifacts are identified and techniques to decrease them are introduced, and the characteristic signs of residual tumor in T1-, T2-, and DWI are described. We hope to enable the reader to choose MR sequences that allow optimal therapy monitoring depending on the initial signal characteristics of the tumor as well as its size and location in the liver.

  1. Image-Based Monitoring of Magnetic Resonance-Guided Thermoablative Therapies for Liver Tumors

    Rempp, Hansjörg; Clasen, Stephan; Pereira, Philippe L.

    2012-01-01

    Minimally invasive treatment options for liver tumor therapy have been increasingly used during the last decade because their benefit has been proven for primary and inoperable secondary liver tumors. Among these, radiofrequency ablation has gained widespread consideration. Optimal image-guidance offers precise anatomical information, helps to position interventional devices, and allows for differentiation between already-treated and remaining tumor tissue. Patient safety and complete ablation of the entire tumor are the overriding objectives of tumor ablation. These may be achieved most elegantly with magnetic resonance (MR)-guided therapy, where monitoring can be performed based on precise soft-tissue imaging and additional components, such as diffusion-weighted imaging and temperature mapping. New MR scanner types and newly developed sequence techniques have enabled MR-guided intervention to move beyond the experimental phase. This article reviews the current role of MR imaging in guiding radiofrequency ablation. Signal characteristics of primary and secondary liver tumors are identified, and signal alteration during therapy is described. Diffusion-weighted imaging (DWI) and temperature mapping as special components of MR therapy monitoring are introduced. Practical information concerning coils, sequence selection, and parameters, as well as sequence gating, is given. In addition, sources of artifacts are identified and techniques to decrease them are introduced, and the characteristic signs of residual tumor in T1-, T2-, and DWI are described. We hope to enable the reader to choose MR sequences that allow optimal therapy monitoring depending on the initial signal characteristics of the tumor as well as its size and location in the liver.

  2. Just-in-time tomography (JiTT): a new concept for image-guided radiation therapy

    Pang, G; Rowlands, J A [Toronto-Sunnybrook Regional Cancer Centre, 2075 Bayview Avenue, Toronto M4N 3M5 (Canada); Imaging Research, Sunnybrook and Women' s College Health Sciences Centre, Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto (Canada)

    2005-11-07

    Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room and guide the radiation therapy treatment. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus it is not adequate for imaging targets with intrafraction motion. In this note, a new approach for image-guided radiation therapy-just-in-time tomography (JiTT)-is proposed. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. (note)

  3. Just-in-time tomography (JiTT): a new concept for image-guided radiation therapy

    Pang, G; Rowlands, J A

    2005-01-01

    Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room and guide the radiation therapy treatment. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus it is not adequate for imaging targets with intrafraction motion. In this note, a new approach for image-guided radiation therapy-just-in-time tomography (JiTT)-is proposed. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. (note)

  4. An investigation into the use of CMOS active pixel technology in image-guided radiotherapy

    Osmond, J P F; Holland, A D; Harris, E J; Ott, R J; Evans, P M; Clark, A T

    2008-01-01

    The increased intelligence, read-out speed, radiation hardness and potential large size of CMOS active pixel sensors (APS) gives them a potential advantage over systems currently used for verification of complex treatments such as IMRT and the tracking of moving tumours. The aim of this work is to investigate the feasibility of using an APS-based system to image the megavoltage treatment beam produced by a linear accelerator (Linac), and to demonstrate the logic which may ultimately be incorporated into future sensor and FPGA design to evaluate treatment and track motion. A CMOS APS was developed by the MI 3 consortium and incorporated into a megavoltage imaging system using the standard lens and mirror configuration employed in camera-based EPIDs. The ability to resolve anatomical structure was evaluated using an Alderson RANDO head phantom, resolution evaluated using a quality control (QC3) phantom and contrast using an in-house developed phantom. A complex intensity-modulated radiotherapy (IMRT) treatment was imaged and two algorithms were used to determine the field-area and delivered dose, and the position of multi-leaf collimator (MLC) leaves off-line. Results were compared with prediction from the prescription and found to agree within a single image frame time for dose delivery and 0.02-0.03 cm for the position of collimator leaves. Such a system therefore shows potential as the basis for an on-line verification system capable of treatment verification and monitoring patient motion

  5. Assessment of color parameters of composite resin shade guides using digital imaging versus colorimeter.

    Yamanel, Kivanc; Caglar, Alper; Özcan, Mutlu; Gulsah, Kamran; Bagis, Bora

    2010-12-01

    This study evaluated the color parameters of resin composite shade guides determined using a colorimeter and digital imaging method. Four composite shade guides, namely: two nanohybrid (Grandio [Voco GmbH, Cuxhaven, Germany]; Premise [KerrHawe SA, Bioggio, Switzerland]) and two hybrid (Charisma [Heraeus Kulzer, GmbH & Co. KG, Hanau, Germany]; Filtek Z250 [3M ESPE, Seefeld, Germany]) were evaluated. Ten shade tabs were selected (A1, A2, A3, A3,5, A4, B1, B2, B3, C2, C3) from each shade guide. CIE Lab values were obtained using digital imaging and a colorimeter (ShadeEye NCC Dental Chroma Meter, Shofu Inc., Kyoto, Japan). The data were analyzed using two-way analysis of variance and Bonferroni post hoc test. Overall, the mean ΔE values from different composite pairs demonstrated statistically significant differences when evaluated with the colorimeter (p 6.8). For all shade pairs evaluated, the most significant shade mismatches were obtained between Grandio-Filtek Z250 (p = 0.021) and Filtek Z250-Premise (p = 0.01) regarding ΔE mean values, whereas the best shade match was between Grandio-Charisma (p = 0.255) regardless of the measurement method. The best color match (mean ΔE values) was recorded for A1, A2, and A3 shade pairs in both methods. When proper object-camera distance, digital camera settings, and suitable illumination conditions are provided, digital imaging method could be used in the assessment of color parameters. Interchanging use of shade guides from different composite systems should be avoided during color selection. © 2010, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2010, WILEY PERIODICALS, INC.

  6. SU-E-J-248: Comparative Study of Two Image Registration for Image-Guided Radiation Therapy in Esophageal Cancer

    Shang, K; Wang, J; Liu, D; Li, R; Cao, Y; Chi, Z [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, CN, Shijiazhuang, Hebei (China)

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is one of the major treatment of esophageal cancer. Gray value registration and bone registration are two kinds of image registration, the purpose of this work is to compare which one is more suitable for esophageal cancer patients. Methods: Twenty three esophageal patients were treated by Elekta Synergy, CBCT images were acquired and automatically registered to planning kilovoltage CT scans according to gray value or bone registration. The setup errors were measured in the X, Y and Z axis, respectively. Two kinds of setup errors were analysed by matching T test statistical method. Results: Four hundred and five groups of CBCT images were available and the systematic and random setup errors (cm) in X, Y, Z directions were 0.35, 0.63, 0.29 and 0.31, 0.53, 0.21 with gray value registration, while 0.37, 0.64, 0.26 and 0.32, 0.55, 0.20 with bone registration, respectively. Compared with bone registration and gray value registration, the setup errors in X and Z axis have significant differences. In Y axis, both measurement comparison results of T value is 0.256 (P value > 0.05); In X axis, the T value is 5.287(P value < 0.05); In Z axis, the T value is −5.138 (P value < 0.05). Conclusion: Gray value registration is recommended in image-guided radiotherapy for esophageal cancer and the other thoracic tumors. Manual registration could be applied when it is necessary. Bone registration is more suitable for the head tumor and pelvic tumor department where composed of redundant interconnected and immobile bone tissue.

  7. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo

    2014-01-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)

  8. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  9. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.

    Besharati Tabrizi, Leila; Mahvash, Mehran

    2015-07-01

    An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2-7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.

  10. SU-E-J-181: Magnetic Resonance Image-Guided Radiation Therapy Workflow: Initial Clinical Experience

    Green, O; Kashani, R; Santanam, L; Wooten, H; Li, H; Rodriguez, V; Hu, Y; Mutic, S; Hand, T; Victoria, J; Steele, C

    2014-01-01

    Purpose: The aims of this work are to describe the workflow and initial clinical experience treating patients with an MRI-guided radiotherapy (MRIGRT) system. Methods: Patient treatments with a novel MR-IGRT system started at our institution in mid-January. The system consists of an on-board 0.35-T MRI, with IMRT-capable delivery via doubly-focused MLCs on three 60 Co heads. In addition to volumetric MR-imaging, real-time planar imaging is performed during treatment. So far, eleven patients started treatment (six finished), ranging from bladder to lung SBRT. While the system is capable of online adaptive radiotherapy and gating, a conventional workflow was used to start, consisting of volumetric imaging for patient setup using visible tumor, evaluation of tumor motion outside of PTV on cine images, and real-time imaging. Workflow times were collected and evaluated to increase efficiency and evaluate feasibility of adding the adaptive and gating features while maintaining a reasonable patient throughput. Results: For the first month, physicians attended every fraction to provide guidance on identifying the tumor and an acceptable level of positioning and anatomical deviation. Average total treatment times (including setup) were reduced from 55 to 45 min after physician presence was no longer required and the therapists had learned to align patients based on soft-tissue imaging. Presently, the source strengths were at half maximum (7.7K Ci each), therefore beam-on times will be reduced after source replacement. Current patient load is 10 per day, with increase to 25 anticipated in the near future. Conclusion: On-board, real-time MRI-guided RT has been incorporated into clinical use. Treatment times were kept to reasonable lengths while including volumetric imaging, previews of tumor movement, and physician evaluation. Workflow and timing is being continuously evaluated to increase efficiency. In near future, adaptive and gating capabilities of the system will be

  11. Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria—A 10-Year Update

    Solbiati, Luigi; Brace, Christopher L.; Breen, David J.; Callstrom, Matthew R.; Charboneau, J. William; Chen, Min-Hua; Choi, Byung Ihn; de Baère, Thierry; Dodd, Gerald D.; Dupuy, Damian E.; Gervais, Debra A.; Gianfelice, David; Gillams, Alice R.; Lee, Fred T.; Leen, Edward; Lencioni, Riccardo; Littrup, Peter J.; Livraghi, Tito; Lu, David S.; McGahan, John P.; Meloni, Maria Franca; Nikolic, Boris; Pereira, Philippe L.; Liang, Ping; Rhim, Hyunchul; Rose, Steven C.; Salem, Riad; Sofocleous, Constantinos T.; Solomon, Stephen B.; Soulen, Michael C.; Tanaka, Masatoshi; Vogl, Thomas J.; Wood, Bradford J.; Goldberg, S. Nahum

    2014-01-01

    Image-guided tumor ablation has become a well-established hallmark of local cancer therapy. The breadth of options available in this growing field increases the need for standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison among treatments that use different technologies, such as chemical (eg, ethanol or acetic acid) ablation, thermal therapies (eg, radiofrequency, laser, microwave, focused ultrasound, and cryoablation) and newer ablative modalities such as irreversible electroporation. This updated consensus document provides a framework that will facilitate the clearest communication among investigators regarding ablative technologies. An appropriate vehicle is proposed for reporting the various aspects of image-guided ablation therapy including classification of therapies, procedure terms, descriptors of imaging guidance, and terminology for imaging and pathologic findings. Methods are addressed for standardizing reporting of technique, follow-up, complications, and clinical results. As noted in the original document from 2003, adherence to the recommendations will improve the precision of communications in this field, leading to more accurate comparison of technologies and results, and ultimately to improved patient outcomes. © RSNA, 2014 Online supplemental material is available for this article. PMID:24927329

  12. Magnetic Nanoparticle Facilitated Drug Delivery for Cancer Therapy with Targeted and Image-Guided Approaches.

    Huang, Jing; Li, Yuancheng; Orza, Anamaria; Lu, Qiong; Guo, Peng; Wang, Liya; Yang, Lily; Mao, Hui

    2016-06-14

    With rapid advances in nanomedicine, magnetic nanoparticles (MNPs) have emerged as a promising theranostic tool in biomedical applications, including diagnostic imaging, drug delivery and novel therapeutics. Significant preclinical and clinical research has explored their functionalization, targeted delivery, controllable drug release and image-guided capabilities. To further develop MNPs for theranostic applications and clinical translation in the future, we attempt to provide an overview of the recent advances in the development and application of MNPs for drug delivery, specifically focusing on the topics concerning the importance of biomarker targeting for personalized therapy and the unique magnetic and contrast-enhancing properties of theranostic MNPs that enable image-guided delivery. The common strategies and considerations to produce theranostic MNPs and incorporate payload drugs into MNP carriers are described. The notable examples are presented to demonstrate the advantages of MNPs in specific targeting and delivering under image guidance. Furthermore, current understanding of delivery mechanisms and challenges to achieve efficient therapeutic efficacy or diagnostic capability using MNP-based nanomedicine are discussed.

  13. Intracranial depth electrodes implantation in the era of image-guided surgery

    Ricardo Silva Centeno

    2011-08-01

    Full Text Available The advent of modern image-guided surgery has revolutionized depth electrode implantation techniques. Stereoelectroencephalography (SEEG, introduced by Talairach in the 1950s, is an invasive method for three-dimensional analysis on the epileptogenic zone based on the technique of intracranial implantation of depth electrodes. The aim of this article is to discuss the principles of SEEG and their evolution from the Talairach era to the image-guided surgery of today, along with future prospects. Although the general principles of SEEG have remained intact over the years, the implantation of depth electrodes, i.e. the surgical technique that enables this method, has undergone tremendous evolution over the last three decades, due the advent of modern imaging techniques, computer systems and new stereotactic techniques. The use of robotic systems, the constant evolution of imaging and computing techniques and the use of depth electrodes together with microdialysis probes will open up enormous prospects for applying depth electrodes and SEEG both for investigative use and for therapeutic use. Brain stimulation of deep targets and the construction of "smart" electrodes may, in the near future, increase the need to use this method.

  14. Intracranial depth electrodes implantation in the era of image-guided surgery.

    Centeno, Ricardo Silva; Yacubian, Elza Márcia Targas; Caboclo, Luis Otávio Sales Ferreira; Júnior, Henrique Carrete; Cavalheiro, Sérgio

    2011-08-01

    The advent of modern image-guided surgery has revolutionized depth electrode implantation techniques. Stereoelectroencephalography (SEEG), introduced by Talairach in the 1950s, is an invasive method for three-dimensional analysis on the epileptogenic zone based on the technique of intracranial implantation of depth electrodes. The aim of this article is to discuss the principles of SEEG and their evolution from the Talairach era to the image-guided surgery of today, along with future prospects. Although the general principles of SEEG have remained intact over the years, the implantation of depth electrodes, i.e. the surgical technique that enables this method, has undergone tremendous evolution over the last three decades, due the advent of modern imaging techniques, computer systems and new stereotactic techniques. The use of robotic systems, the constant evolution of imaging and computing techniques and the use of depth electrodes together with microdialysis probes will open up enormous prospects for applying depth electrodes and SEEG both for investigative use and for therapeutic use. Brain stimulation of deep targets and the construction of "smart" electrodes may, in the near future, increase the need to use this method.

  15. Development of automatic navigation measuring system using template-matching software in image guided neurosurgery

    Watanabe, Yohei; Hayashi, Yuichiro; Fujii, Masazumi; Wakabayashi, Toshihiko; Kimura, Miyuki; Tsuzaka, Masatoshi; Sugiura, Akihiro

    2010-01-01

    An image-guided neurosurgery and neuronavigation system based on magnetic resonance imaging has been used as an indispensable tool for resection of brain tumors. Therefore, accuracy of the neuronavigation system, provided by periodic quality assurance (QA), is essential for image-guided neurosurgery. Two types of accuracy index, fiducial registration error (FRE) and target registration error (TRE), have been used to evaluate navigation accuracy. FRE shows navigation accuracy on points that have been registered. On the other hand, TRE shows navigation accuracy on points such as tumor, skin, and fiducial markers. This study shows that TRE is more reliable than FRE. However, calculation of TRE is a time-consuming, subjective task. Software for QA was developed to compute TRE. This software calculates TRE automatically by an image processing technique, such as automatic template matching. TRE was calculated by the software and compared with the results obtained by manual calculation. Using the software made it possible to achieve a reliable QA system. (author)

  16. A compact bio-inspired visible/NIR imager for image-guided surgery (Conference Presentation)

    Gao, Shengkui; Garcia, Missael; Edmiston, Chris; York, Timothy; Marinov, Radoslav; Mondal, Suman B.; Zhu, Nan; Sudlow, Gail P.; Akers, Walter J.; Margenthaler, Julie A.; Liang, Rongguang; Pepino, Marta; Achilefu, Samuel; Gruev, Viktor

    2016-03-01

    Inspired by the visual system of the morpho butterfly, we have designed, fabricated, tested and clinically translated an ultra-sensitive, light weight and compact imaging sensor capable of simultaneously capturing near infrared (NIR) and visible spectrum information. The visual system of the morpho butterfly combines photosensitive cells with spectral filters at the receptor level. The spectral filters are realized by alternating layers of high and low dielectric constant, such as air and cytoplasm. We have successfully mimicked this concept by integrating pixelated spectral filters, realized by alternating silicon dioxide and silicon nitrate layers, with an array of CCD detectors. There are four different types of pixelated spectral filters in the imaging plane: red, green, blue and NIR. The high optical density (OD) of all spectral filters (OD>4) allow for efficient rejections of photons from unwanted bands. The single imaging chip weighs 20 grams with form factor of 5mm by 5mm. The imaging camera is integrated with a goggle display system. A tumor targeted agent, LS301, is used to identify all spontaneous tumors in a transgenic PyMT murine model of breast cancer. The imaging system achieved sensitivity of 98% and selectivity of 95%. We also used our imaging sensor to locate sentinel lymph nodes (SLNs) in patients with breast cancer using indocyanine green tracer. The surgeon was able to identify 100% of SLNs when using our bio-inspired imaging system, compared to 93% when using information from the lymphotropic dye and 96% when using information from the radioactive tracer.

  17. Cost-effectiveness of MR Imaging-guided Strategies for Detection of Prostate Cancer in Biopsy-Naive Men.

    Pahwa, Shivani; Schiltz, Nicholas K; Ponsky, Lee E; Lu, Ziang; Griswold, Mark A; Gulani, Vikas

    2017-10-01

    Purpose To evaluate the cost-effectiveness of multiparametric diagnostic magnetic resonance (MR) imaging examination followed by MR imaging-guided biopsy strategies in the detection of prostate cancer in biopsy-naive men presenting with clinical suspicion of cancer for the first time. Materials and Methods A decision-analysis model was created for biopsy-naive men who had been recommended for prostate biopsy on the basis of abnormal digital rectal examination results or elevated prostate-specific antigen levels (age groups: 41-50 years, 51-60 years, and 61-70 years). The following three major strategies were evaluated: (a) standard transrectal ultrasonography (US)-guided biopsy; (b) diagnostic MR imaging followed by MR imaging-targeted biopsy, with no biopsy performed if MR imaging findings were negative; and (c) diagnostic MR imaging followed by MR imaging-targeted biopsy, with a standard biopsy performed when MR imaging findings were negative. The following three MR imaging-guided biopsy strategies were further evaluated in each MR imaging category: (a) biopsy with cognitive guidance, (b) biopsy with MR imaging/US fusion guidance, and (c) in-gantry MR imaging-guided biopsy. Model parameters were derived from the literature. The primary outcome measure was net health benefit (NHB), which was measured as quality-adjusted life-years (QALYs) gained or lost by investing resources in a new strategy compared with a standard strategy at a willingness-to-pay (WTP) threshold of $50 000 per QALY gained. Probabilistic sensitivity analysis was performed by using Monte Carlo simulations. Results Noncontrast MR imaging followed by cognitively guided MR biopsy (no standard biopsy if MR imaging findings were negative) was the most cost-effective approach, yielding an additional NHB of 0.198 QALY compared with the standard biopsy approach. Noncontrast MR imaging followed by in-gantry MR imaging-guided biopsy (no standard biopsy if MR imaging findings were negative) led to the

  18. Image super-resolution reconstruction based on regularization technique and guided filter

    Huang, De-tian; Huang, Wei-qin; Gu, Pei-ting; Liu, Pei-zhong; Luo, Yan-min

    2017-06-01

    In order to improve the accuracy of sparse representation coefficients and the quality of reconstructed images, an improved image super-resolution algorithm based on sparse representation is presented. In the sparse coding stage, the autoregressive (AR) regularization and the non-local (NL) similarity regularization are introduced to improve the sparse coding objective function. A group of AR models which describe the image local structures are pre-learned from the training samples, and one or several suitable AR models can be adaptively selected for each image patch to regularize the solution space. Then, the image non-local redundancy is obtained by the NL similarity regularization to preserve edges. In the process of computing the sparse representation coefficients, the feature-sign search algorithm is utilized instead of the conventional orthogonal matching pursuit algorithm to improve the accuracy of the sparse coefficients. To restore image details further, a global error compensation model based on weighted guided filter is proposed to realize error compensation for the reconstructed images. Experimental results demonstrate that compared with Bicubic, L1SR, SISR, GR, ANR, NE + LS, NE + NNLS, NE + LLE and A + (16 atoms) methods, the proposed approach has remarkable improvement in peak signal-to-noise ratio, structural similarity and subjective visual perception.

  19. Standardised imaging technique for guided M-mode and Doppler echocardiography in the horse.

    Long, K J; Bonagura, J D; Darke, P G

    1992-05-01

    Eighteen echocardiographic images useful for diagnostic imaging, M-mode echocardiography, and Doppler echocardiography of the equine heart were standardised by relating the position of the axial beam to various intracardiac landmarks. The transducer orientation required for each image was recorded in 14 adult horses by describing the degree of sector rotation and the orientation of the axial beam relative to the thorax. Repeatable images could be obtained within narrow limits of angulation and rotation for 14 of the 18 standardised images evaluated. Twenty-seven National Hunt horses were subsequently examined using this standardised technique. Selected cardiac dimensions were measured from two-dimensional and guided M-mode studies. Satisfactory results were achieved in 26 of the 27 horses. There was no linear correlation between any of the measured cardiac values and bodyweight. There was no significant difference between measurements taken from the left and the right hemithorax. Six horses were imaged on three consecutive days to assess the repeatability of the measurements. No significant difference was found between measurements obtained on different days. This study demonstrates a method for standardised echocardiographic evaluation of the equine heart that is repeatable, valuable for teaching techniques of equine echocardiography, applicable for diagnostic imaging and quantification of cardiac size, and useful for the evaluation of blood-flow patterns by Doppler ultrasound.

  20. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.

    Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru

    2018-01-10

    We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy.

  1. Exclusive image guided IMRT vs. radical prostatectomy followed by postoperative IMRT for localized prostate cancer: a matched-pair analysis based on risk-groups

    Azelie, Caroline; Créhange, Gilles; Gauthier, Mélanie; Mirjolet, Céline; Cormier, Luc; Martin, Etienne; Peignaux-Casasnovas, Karine; Truc, Gilles; Chamois, Jérôme; Maingon, Philippe

    2012-01-01

    To investigate whether patients treated for a localized prostate cancer (PCa) require a radical prostatectomy followed by postoperative radiotherapy or exclusive radiotherapy, in the modern era of image guided IMRT. 178 patients with PCa were referred for daily exclusive image guided IMRT (IG-IMRT) using an on-line 3D ultra-sound based system and 69 patients were referred for postoperative IMRT without image guidance after radical prostatectomy (RP + IMRT). Patients were matched in a 1:1 ratio according to their baseline risk group before any treatment. Late toxicity was scored using the CTV v3.0 scale. Biochemical failure was defined as a postoperative PSA ≤ 0.1 ng/mL followed by 1 consecutive rising PSA for the postoperative group of patients and by the Phoenix definition (nadir + 2 ng/mL) for the group of patients treated with exclusive radiotherapy. A total of 98 patients were matched (49:49). From the start of any treatment, the median follow-up was 56.6 months (CI 95% = [49.6-61.2], range [18.2-115.1]). No patient had late gastrointestinal grade ≥ 2 toxicity in the IG-IMRT group vs. 4% in the RP + IMRT group. Forty two percent of the patients in both groups had late grade ≥ 2 genitourinary toxicity. The 5-year FFF rates in the IG-IMRT group and in the RP + IMRT groups were 93.1% [80.0-97.8] and 76.5% [58.3-87.5], respectively (p = 0.031). Patients with a localized PCa treated with IG-IMRT had better oncological outcome than patients treated with RP + IMRT. Further improvements in postoperative IMRT using image guidance and dose escalation are urgently needed

  2. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-01-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  3. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Morrow, Natalya V.; Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Qi, X. Sharon [Department of Radiation Oncology, University of Colorado Denver, Denver, Colorado (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  4. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: A preliminary report

    Yamada, Yoshiya; Lovelock, D. Michael; Yenice, Kamil M.; Bilsky, Mark H.; Hunt, Margaret A.; Zatcky, Joan; Leibel, Steven A.

    2005-01-01

    Purpose: The use of image-guided and stereotactic intensity-modulated radiotherapy (IMRT) techniques have made the delivery of high-dose radiation to lesions within close proximity to the spinal cord feasible. This report presents clinical and physical data regarding the use of IMRT coupled with noninvasive body frames (stereotactic and image-guided) for multifractionated radiotherapy. Methods and Materials: The Memorial Sloan-Kettering Cancer Center (Memorial) stereotactic body frame (MSBF) and Memorial body cradle (MBC) have been developed as noninvasive immobilizing devices for paraspinal IMRT using stereotactic (MSBF) and image-guided (MBC) techniques. Patients were either previously irradiated or prescribed doses beyond spinal cord tolerance (54 Gy in standard fractionation) and had unresectable gross disease involving the spinal canal. The planning target volume (PTV) was the gross tumor volume with a 1 cm margin. The PTV was not allowed to include the spinal cord contour. All treatment planning was performed using software developed within the institution. Isocenter verification was performed with an in-room computed tomography scan (MSBF) or electronic portal imaging devices, or both. Patients were followed up with serial magnetic resonance imaging every 3-4 months, and no patients were lost to follow-up. Kaplan-Meier statistics were used for analysis of clinical data. Results: Both the MSBF and MBC were able to provide setup accuracy within 2 mm. With a median follow-up of 11 months, 35 patients (14 primary and 21 secondary malignancies) underwent treatment. The median dose previously received was 3000 cGy in 10 fractions. The median dose prescribed for these patients was 2000 cGy/5 fractions (2000-3000 cGy), which provided a median PTV V100 of 88%. In previously unirradiated patients, the median prescribed dose was 7000 cGy (5940-7000 cGy) with a median PTV V100 of 90%. The median Dmax to the cord was 34% and 68% for previously irradiated and never

  5. On-line data display

    Lang, Sherman Y. T.; Brooks, Martin; Gauthier, Marc; Wein, Marceli

    1993-05-01

    A data display system for embedded realtime systems has been developed for use as an operator's user interface and debugging tool. The motivation for development of the On-Line Data Display (ODD) have come from several sources. In particular the design reflects the needs of researchers developing an experimental mobile robot within our laboratory. A proliferation of specialized user interfaces revealed a need for a flexible communications and graphical data display system. At the same time the system had to be readily extensible for arbitrary graphical display formats which would be required for data visualization needs of the researchers. The system defines a communication protocol transmitting 'datagrams' between tasks executing on the realtime system and virtual devices displaying the data in a meaningful way on a graphical workstation. The communication protocol multiplexes logical channels on a single data stream. The current implementation consists of a server for the Harmony realtime operating system and an application written for the Macintosh computer. Flexibility requirements resulted in a highly modular server design, and a layered modular object- oriented design for the Macintosh part of the system. Users assign data types to specific channels at run time. Then devices are instantiated by the user and connected to channels to receive datagrams. The current suite of device types do not provide enough functionality for most users' specialized needs. Instead the system design allows the creation of new device types with modest programming effort. The protocol, design and use of the system are discussed.

  6. Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice.

    Yan Gong

    Full Text Available The mouse model of laser-induced choroidal neovascularization (CNV has been used in studies of the exudative form of age-related macular degeneration using both the conventional slit lamp and a new image-guided laser system. A standardized protocol is needed for consistent results using this model, which has been lacking. We optimized details of laser-induced CNV using the image-guided laser photocoagulation system. Four lesions with similar size were consistently applied per eye at approximately double the disc diameter away from the optic nerve, using different laser power levels, and mice of various ages and genders. After 7 days, the mice were sacrificed and retinal pigment epithelium/choroid/sclera was flat-mounted, stained with Isolectin B4, and imaged. Quantification of the area of the laser-induced lesions was performed using an established and constant threshold. Exclusion criteria are described that were necessary for reliable data analysis of the laser-induced CNV lesions. The CNV lesion area was proportional to the laser power levels. Mice at 12-16 weeks of age developed more severe CNV than those at 6-8 weeks of age, and the gender difference was only significant in mice at 12-16 weeks of age, but not in those at 6-8 weeks of age. Dietary intake of omega-3 long-chain polyunsaturated fatty acid reduced laser-induced CNV in mice. Taken together, laser-induced CNV lesions can be easily and consistently applied using the image-guided laser platform. Mice at 6-8 weeks of age are ideal for the laser-induced CNV model.

  7. SU-E-J-10: Imaging Dose and Cancer Risk in Image-Guided Radiotherapy of Cancers

    Zhou, L; Bai, S; Zhang, Y; Deng, J

    2015-01-01

    Purpose: To systematically evaluate imaging doses and cancer risks to organs-at-risk as a Result of cumulative doses from various radiological imaging procedures in image-guided radiotherapy (IGRT) in a large cohort of cancer patients. Methods: With IRB approval, imaging procedures (computed tomography, kilo-voltage portal imaging, megavoltage portal imaging and kilo-voltage cone-beam computed tomography) of 4832 cancer patients treated during 4.5 years were collected with their gender, age and circumference. Correlations between patient’s circumference and Monte Carlo simulated-organ dose were applied to estimate organ doses while the cancer risks were reported as 1+ERR using BEIR VII models. Results: 80 cGy or more doses were deposited to brain, lungs and RBM in 273 patients (maximum 136, 278 and 267 cGy, respectively), due largely to repetitive imaging procedures and non-personalized imaging settings. Regardless of gender, relative cancer risk estimates for brain, lungs, and RBM were 3.4 (n = 55), 2.6 (n = 49), 1.8 (n = 25) for age group of 0–19; 1.2 (n = 87), 1.4 (n = 98), 1.3 (n = 51) for age group of 20–39; 1.0 (n = 457), 1.1 (n = 880), 1.8 (n=360) for age group of 40–59; 1.0 (n = 646), 1.1 (n = 1400), 2.3 (n = 716) for age group of 60–79 and 1.0 (n = 108),1.1 (n = 305),1.6 (n = 147) for age group of 80–99. Conclusion: The cumulative imaging doses and associated cancer risks from multi-imaging procedures were patient-specific and site-dependent, with up to 2.7 Gy imaging dose deposited to critical structures in some pediatric patients. The associated cancer risks in brain and lungs for children of age 0 to 19 were 2–3 times larger than those for adults. This study indicated a pressing need for personalized imaging protocol to maximize its clinical benefits while reducing associated cancer risks. Sichuan University Scholarship

  8. High-Performance 3D Image Processing Architectures for Image-Guided Interventions

    2008-01-01

    define the correspondence between the original and the transformed image. The basis functions may be defined in either Fourier or Wavelet domain...and the deformation field is modeled using trigonometric or wavelet basis functions, respectively. Ashburner and Friston [54] have reported a method...K. Kyriacou, C. Davatzikos, S. J. Zinreich, and R. N. Bryan, "Nonlinear elastic registration of brain images with tumor pathology using a

  9. A novel magnetic resonance imaging-compatible motor control method for image-guided robotic surgery

    Suzuki, Takashi; Liao, Hongen; Kobayashi, Etsuko; Sakuma, Ichiro

    2006-01-01

    For robotic surgery assistance systems that use magnetic resonance imaging (MRI) for guidance, the problem of electromagnetic interference is common. Image quality is particularly degraded if motors are running during scanning. We propose a novel MRI-compatible method considering the pulse sequence of imaging. Motors are driven for a short time when the MRI system stops signal acquisition (i.e., awaiting relaxation of the proton), so the image does not contain noise from the actuators. The MRI system and motor are synchronized using a radio frequency pulse signal (8.5 MHz) as the trigger, which is acquired via a special antenna mounted near the scanner. This method can be widely applied because it only receives part of the scanning signal and neither hardware nor software of the MRI system needs to be changed. As a feasibility evaluation test, we compared the images and signal-to-noise ratios between the cases with and without this method, under the condition that a piezoelectric motor was driven during scanning as a noise source, which was generally used as a MRI-compatible actuator. The results showed no deterioration in image quality and the benefit of the new method even though the choice of available scanning sequences is limited. (author)

  10. Intrafractional prostate motion during online image guided intensity-modulated radiotherapy for prostate cancer

    Budiharto, Tom; Slagmolen, Pieter; Haustermans, Karin; Maes, Frederik; Junius, Sara; Verstraete, Jan; Oyen, Raymond; Hermans, Jeroen; Van den Heuvel, Frank

    2011-01-01

    Introduction: Intrafractional motion consists of two components: (1) the movement between the on-line repositioning procedure and the treatment start and (2) the movement during the treatment delivery. The goal of this study is to estimate this intrafractional movement of the prostate during prostate cancer radiotherapy. Material and methods: Twenty-seven patients with prostate cancer and implanted fiducials underwent a marker match procedure before a five-field IMRT treatment. For all fields, in-treatment images were obtained and then processed to enable automatic marker detection. Combining the subsequent projection images, five positions of each marker were determined using the shortest path approach. The residual set-up error (RSE) after kV-MV based prostate localization, the prostate position as a function of time during a radiotherapy session and the required margins to account for intrafractional motion were determined. Results: The mean RSE and standard deviation in the antero-posterior, cranio-caudal and left-right direction were 2.3 ± 1.5 mm, 0.2 ± 1.1 mm and -0.1 ± 1.1 mm, respectively. Almost all motions occurred in the posterior direction before the first treatment beam as the percentage of excursions >5 mm was reduced significantly when the RSE was not accounted for. The required margins for intrafractional motion increased with prolongation of the treatment. Application of a repositioning protocol after every beam could decrease the 1 cm margin from CTV to PTV by 2 mm. Conclusions: The RSE is the main contributor to intrafractional motion. This RSE after on-line prostate localization and patient repositioning in the posterior direction emphasizes the need to speed up the marker match procedure. Also, a prostate IMRT treatment should be administered as fast as possible, to ensure that the pre-treatment repositioning efforts are not erased by intrafractional prostate motion. This warrants an optimized workflow with the use of faster treatment

  11. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  12. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy

    Bian, Junguo; Sharp, Gregory C.; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-01

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.

  13. Prussian blue nanocubes: multi-functional nanoparticles for multimodal imaging and image-guided therapy (Conference Presentation)

    Cook, Jason R.; Dumani, Diego S.; Kubelick, Kelsey P.; Luci, Jeffrey; Emelianov, Stanislav Y.

    2017-03-01

    Imaging modalities utilize contrast agents to improve morphological visualization and to assess functional and molecular/cellular information. Here we present a new type of nanometer scale multi-functional particle that can be used for multi-modal imaging and therapeutic applications. Specifically, we synthesized monodisperse 20 nm Prussian Blue Nanocubes (PBNCs) with desired optical absorption in the near-infrared region and superparamagnetic properties. PBNCs showed excellent contrast in photoacoustic (700 nm wavelength) and MR (3T) imaging. Furthermore, photostability was assessed by exposing the PBNCs to nearly 1,000 laser pulses (5 ns pulse width) with up to 30 mJ/cm2 laser fluences. The PBNCs exhibited insignificant changes in photoacoustic signal, demonstrating enhanced robustness compared to the commonly used gold nanorods (substantial photodegradation with fluences greater than 5 mJ/cm2). Furthermore, the PBNCs exhibited superparamagnetism with a magnetic saturation of 105 emu/g, a 5x improvement over superparamagnetic iron-oxide (SPIO) nanoparticles. PBNCs exhibited enhanced T2 contrast measured using 3T clinical MRI. Because of the excellent optical absorption and magnetism, PBNCs have potential uses in other imaging modalities including optical tomography, microscopy, magneto-motive OCT/ultrasound, etc. In addition to multi-modal imaging, the PBNCs are multi-functional and, for example, can be used to enhance magnetic delivery and as therapeutic agents. Our initial studies show that stem cells can be labeled with PBNCs to perform image-guided magnetic delivery. Overall, PBNCs can act as imaging/therapeutic agents in diverse applications including cancer, cardiovascular disease, ophthalmology, and tissue engineering. Furthermore, PBNCs are based on FDA approved Prussian Blue thus potentially easing clinical translation of PBNCs.

  14. Orientation guide for imaging examinations. Recommendation of the radiation protection commission. 2. rev. ed.

    2012-01-01

    Due to the wide range of medical diagnostic method that include partially high radiation exposures of the patients (for instance CT examinations) the mean radiation exposure of the public is increasing in Germany. In 2006 the German Strahlenschutzkommission (radiation protection commission) has published a catalogue for the different diagnostic questions including recommendations for the best imaging technique. This orientation guide was actualized in 2012. The catalogue is aimed to avoid unnecessary radiation exposure and to simultaneously improve the medical diagnostics. Nevertheless the applying physician has to justify and document the selected diagnostic technique for the individual case. The guide covers the following issues: head, neck, spinal cord, skeleton and muscles, cardiovascular system, thorax, digestive system, urogenital tract, gynecology, mammary glands, trauma, oncology, pediatrics, interventional radiology.

  15. Image-guided intracranial cannula placement for awake in vivo microdialysis in nonhuman primates

    Chen, Antong; Bone, Ashleigh; Hines, Catherine D. G.; Dogdas, Belma; Montgomery, Tamara O.; Michener, Maria; Winkelmann, Christopher T.; Ghafurian, Soheil; Lubbers, Laura S.; Renger, John; Bagchi, Ansuman; Uslaner, Jason M.; Johnson, Colena; Zariwala, Hatim A.

    2016-03-01

    Intracranial microdialysis is used for sampling neurochemicals and large peptides along with their metabolites from the interstitial fluid (ISF) of the brain. The ability to perform this in nonhuman primates (NHP) e.g., rhesus could improve the prediction of pharmacokinetic (PK) and pharmacodynamics (PD) action of drugs in human. However, microdialysis in rhesus brains is not as routinely performed as in rodents. One challenge is that the precise intracranial probe placement in NHP brains is difficult due to the richness of the anatomical structure and the variability of the size and shape of brains across animals. Also, a repeatable and reproducible ISF sampling from the same animal is highly desirable when combined with cognitive behaviors or other longitudinal study end points. Toward that end, we have developed a semi-automatic flexible neurosurgical method employing MR and CT imaging to (a) derive coordinates for permanent guide cannula placement in mid-brain structures and (b) fabricate a customized recording chamber to implant above the skull for enclosing and safeguarding access to the cannula for repeated experiments. In order to place the intracranial guide cannula in each subject, the entry points in the skull and the depth in the brain were derived using co-registered images acquired from MR and CT scans. The anterior/posterior (A/P) and medial-lateral (M/L) rotation in the pose of the animal was corrected in the 3D image to appropriately represent the pose used in the stereotactic frame. An array of implanted fiducial markers was used to transform stereotactic coordinates to the images. The recording chamber was custom fabricated using computer-aided design (CAD), such that it would fit the contours of the individual skull with minimum error. The chamber also helped in guiding the cannula through the entry points down a trajectory into the depth of the brain. We have validated our method in four animals and our results indicate average placement error

  16. Virtual Reality Aided Positioning of Mobile C-Arms for Image-Guided Surgery

    Zhenzhou Shao

    2014-06-01

    Full Text Available For the image-guided surgery, the positioning of mobile C-arms is a key technique to take X-ray images in a desired pose for the confirmation of current surgical outcome. Unfortunately, surgeons and patient often suffer the radiation exposure due to the repeated imaging when the X-ray image is of poor quality or not captured at a good projection view. In this paper, a virtual reality (VR aided positioning method for the mobile C-arm is proposed by the alignment of 3D surface model of region of interest and preoperative anatomy, so that a reference pose of the mobile C-arm with respect to the inside anatomy can be figured out from outside view. It allows a one-time imaging from the outside view to greatly reduce the additional radiation exposure. To control the mobile C-arm to the desired pose, the mobile C-arm is modeled as a robotic arm with a movable base. Experiments were conducted to evaluate the accuracy of appearance model and precision of mobile C-arm positioning. The appearance model was reconstructed with the average error of 2.16 mm. One-time imaging of mobile C-arm was achieved, and new modeling of mobile C-arm with 8 DoFs enlarges the working space in the operating room.

  17. Automatic analysis of image quality control for Image Guided Radiation Therapy (IGRT) devices in external radiotherapy

    Torfeh, Tarraf

    2009-01-01

    On-board imagers mounted on a radiotherapy treatment machine are very effective devices that improve the geometric accuracy of radiation delivery. However, a precise and regular quality control program is required in order to achieve this objective. Our purpose consisted of developing software tools dedicated to an automatic image quality control of IGRT devices used in external radiotherapy: 2D-MV mode for measuring patient position during the treatment using high energy images, 2D-kV mode (low energy images) and 3D Cone Beam Computed Tomography (CBCT) MV or kV mode, used for patient positioning before treatment. Automated analysis of the Winston and Lutz test was also proposed. This test is used for the evaluation of the mechanical aspects of treatment machines on which additional constraints are carried out due to the on-board imagers additional weights. Finally, a technique of generating digital phantoms in order to assess the performance of the proposed software tools is described. Software tools dedicated to an automatic quality control of IGRT devices allow reducing by a factor of 100 the time spent by the medical physics team to analyze the results of controls while improving their accuracy by using objective and reproducible analysis and offering traceability through generating automatic monitoring reports and statistical studies. (author) [fr

  18. Magnetic resonance imaging - guided vacuum-assisted breast biopsy: an initial experience in a community hospital

    Friedman, P.; Enis, S.; Pinyard, J.

    2009-01-01

    To evaluate the effectiveness in diagnosing mammographically and sonographically occult breast lesions by using magnetic resonance imaging (MRI) guided vacuum-assisted breast biopsy in patients who presented to a community-based hospital with a newly established breast MRI program. The records of 142 consecutive patients, median age of 55 years, who had undergone MRI-guided biopsy at our institution between July 2006 and July 2007 were reviewed. From these patients, 197 mammographically and sonographically occult lesions were biopsied at the time of discovery. The pathology was then reviewed and correlated with the MRI findings. Cancer was present and subsequently discovered in 8% of the previously occult lesions (16/197) or 11% of the women studied (16/142). Of the cancerous lesions, 56% were invasive carcinomas (9/16) and 44% were ductal carcinomas in situ (7/16). Fourteen percent of the discovered lesions (28/197) were defined as high risk and included atypical ductal hyperplasia, atypical lobular hyperplasia, lobular carcinoma in situ, and radial scar. In total, occult cancerous and high-risk lesions were discovered in 22% of the found lesions (44/197) or 31% of the women who underwent MRI-guided biopsy (44/142). This study demonstrated that detection of cancerous and high-risk lesions can be significantly increased when an MRI-guided biopsy program is introduced at a community-based hospital. We believe that as radiologists gain confidence in imaging and histologic correlation, community-based hospitals can achieve similar rates of occult lesion diagnosis as those found in data emerging from academic institutions. (author)

  19. Magnetic resonance imaging - guided vacuum-assisted breast biopsy: an initial experience in a community hospital

    Friedman, P.; Enis, S.; Pinyard, J., E-mail: jpinyard@gmail.com [Morristown Memorial Hospital, The Carol W. and Julius A. Rippel Breast Center, The Carol G. Simon Cancer Centre, Morristown, New Jersey (United States)

    2009-10-15

    To evaluate the effectiveness in diagnosing mammographically and sonographically occult breast lesions by using magnetic resonance imaging (MRI) guided vacuum-assisted breast biopsy in patients who presented to a community-based hospital with a newly established breast MRI program. The records of 142 consecutive patients, median age of 55 years, who had undergone MRI-guided biopsy at our institution between July 2006 and July 2007 were reviewed. From these patients, 197 mammographically and sonographically occult lesions were biopsied at the time of discovery. The pathology was then reviewed and correlated with the MRI findings. Cancer was present and subsequently discovered in 8% of the previously occult lesions (16/197) or 11% of the women studied (16/142). Of the cancerous lesions, 56% were invasive carcinomas (9/16) and 44% were ductal carcinomas in situ (7/16). Fourteen percent of the discovered lesions (28/197) were defined as high risk and included atypical ductal hyperplasia, atypical lobular hyperplasia, lobular carcinoma in situ, and radial scar. In total, occult cancerous and high-risk lesions were discovered in 22% of the found lesions (44/197) or 31% of the women who underwent MRI-guided biopsy (44/142). This study demonstrated that detection of cancerous and high-risk lesions can be significantly increased when an MRI-guided biopsy program is introduced at a community-based hospital. We believe that as radiologists gain confidence in imaging and histologic correlation, community-based hospitals can achieve similar rates of occult lesion diagnosis as those found in data emerging from academic institutions. (author)

  20. Feasibility of intermittent pneumatic compression for venous thromboembolism prophylaxis during magnetic resonance imaging-guided interventions

    Maybody, Majid, E-mail: maybodym@mskcc.org [Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Taslakian, Bedros, E-mail: bt05@aub.edu.lb [Department of Diagnostic Radiology, American University of Beirut Medical Center, Riad El-Solh, 1107 2020 Beirut (Lebanon); Durack, Jeremy C., E-mail: durackj@mskcc.org [Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Kaye, Elena A., E-mail: kayee@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Erinjeri, Joseph P., E-mail: erinjerj@mskcc.org [Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Srimathveeravalli, Govindarajan, E-mail: srimaths@mskcc.org [Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Solomon, Stephen B., E-mail: solomons@mskcc.org [Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States)

    2015-04-15

    Highlights: •The controller of a standard SCD is labeled as an “MR-unsafe”. •No commercially available “MR-safe” SCDs. •Standard SCDs can be used in iMRI by placing the device outside the MRI scanner room. •Using serial extension tubing did not cause device failure. -- Abstract: Purpose: Venous thromboembolism (VTE) is a common cause of morbidity and mortality in hospitalized and surgical patients. To reduce risk, perioperative VTE prophylaxis is recommended for cancer patients undergoing surgical or interventional procedures. Magnetic resonance imaging (MRI) is increasingly used in interventional oncology when alternative imaging modalities do not adequately delineate malignancies. Extended periods of immobilization during MRI-guided interventions necessitate an MR compatible sequential compression device (SCD) for intra-procedural mechanical VTE prophylaxis. Such devices are not commercially available. Materials and methods: A standard SCD routinely used at our institution for VTE prophylaxis during interventional procedures was used. To satisfy MR safety requirements, the SCD controller was placed in the MR control room and connected to the compression sleeves in the magnet room through the wave guide using tubing extensions. The controller pressure sensor was used to monitor adequate pressure delivery and detect ineffective low or abnormal high pressure delivery. VTE prophylaxis was provided using the above mentioned device for 38 patients undergoing MR-guided ablations. Results: There was no evidence of device failure due to loss of pressure in the extension tubing assembly. No interference with the anesthesia or interventional procedures was documented. Conclusion: Although the controller of a standard SCD is labeled as “MR-unsafe”, the SCD can be used in interventional MR settings by placing the device outside the MR scanner room. Using serial tubing extensions did not cause device failure. The described method can be used to provide

  1. Registration of angiographic image on real-time fluoroscopic image for image-guided percutaneous coronary intervention.

    Kim, Dongkue; Park, Sangsoo; Jeong, Myung Ho; Ryu, Jeha

    2018-02-01

    In percutaneous coronary intervention (PCI), cardiologists must study two different X-ray image sources: a fluoroscopic image and an angiogram. Manipulating a guidewire while alternately monitoring the two separate images on separate screens requires a deep understanding of the anatomy of coronary vessels and substantial training. We propose 2D/2D spatiotemporal image registration of the two images in a single image in order to provide cardiologists with enhanced visual guidance in PCI. The proposed 2D/2D spatiotemporal registration method uses a cross-correlation of two ECG series in each image to temporally synchronize two separate images and register an angiographic image onto the fluoroscopic image. A guidewire centerline is then extracted from the fluoroscopic image in real time, and the alignment of the centerline with vessel outlines of the chosen angiographic image is optimized using the iterative closest point algorithm for spatial registration. A proof-of-concept evaluation with a phantom coronary vessel model with engineering students showed an error reduction rate greater than 74% on wrong insertion to nontarget branches compared to the non-registration method and more than 47% reduction in the task completion time in performing guidewire manipulation for very difficult tasks. Evaluation with a small number of experienced doctors shows a potentially significant reduction in both task completion time and error rate for difficult tasks. The total registration time with real procedure X-ray (angiographic and fluoroscopic) images takes [Formula: see text] 60 ms, which is within the fluoroscopic image acquisition rate of 15 Hz. By providing cardiologists with better visual guidance in PCI, the proposed spatiotemporal image registration method is shown to be useful in advancing the guidewire to the coronary vessel branches, especially those difficult to insert into.

  2. Diffusion-weighted imaging-guided MR spectroscopy in breast lesions using readout-segmented echo-planar imaging

    Sun, Kun; Chai, Weimin; Zhan, Ying; Luo, Xianfu; Yan, Fuhua [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); Fu, Caixia [Siemens MRI Center, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen (China); Shen, Kunwei [Shanghai Jiao Tong University School of Medicine, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai (China)

    2016-06-15

    To investigate the feasibility and effectiveness of diffusion-weighted imaging (DWI)-guided magnetic resonance spectroscopy (MRS) using readout-segmented echo-planar imaging (RS-EPI) to characterise breast lesions. A total of 258 patients with 258 suspicious breast lesions larger than 1 cm in diameter were examined using DWI-guided, single-voxel MRS with RS-EPI. The mean total choline-containing compound (tCho) signal-to-noise ratio (SNR) and concentration were used for the interpretation of MRS data. T-tests, χ{sup 2}-tests, receiver operating characteristic (ROC) curve analyses and Pearson correlations were conducted for statistical analysis. Histologically, 183 lesions were malignant, and 75 lesions were benign. Both the mean tCho SNR and concentration of malignant lesions were higher than those of benign lesions (6.23 ± 3.30 AU/mL vs. 1.26 ± 1.75 AU/mL and 3.17 ± 2.03 mmol/kg vs. 0.86 ± 0.83 mmol/kg, respectively; P < 0.0001). For a tCho SNR of 2.0 AU/mL and a concentration of 1.76 mmol/kg, the corresponding areas under the ROC curves were 0.93 and 0.90, respectively. The mean tCho SNR and concentration negatively correlated with apparent diffusion coefficients calculated from RS-EPI, with correlation coefficients of -0.54 and -0.48, respectively. DWI-guided MRS using RS-EPI is feasible and accurate for characterising breast lesions. (orig.)

  3. Measurement of cone beam CT coincidence with megavoltage isocentre and image sharpness using the QUASAR Penta-Guide phantom.

    Sykes, J R; Lindsay, R; Dean, C J; Brettle, D S; Magee, D R; Thwaites, D I

    2008-10-07

    For image-guided radiotherapy (IGRT) systems based on cone beam CT (CBCT) integrated into a linear accelerator, the reproducible alignment of imager to x-ray source is critical to the registration of both the x-ray-volumetric image with the megavoltage (MV) beam isocentre and image sharpness. An enhanced method of determining the CBCT to MV isocentre alignment using the QUASAR Penta-Guide phantom was developed which improved both precision and accuracy. This was benchmarked against our existing method which used software and a ball-bearing (BB) phantom provided by Elekta. Additionally, a method of measuring an image sharpness metric (MTF(50)) from the edge response function of a spherical air cavity within the Penta-Guide phantom was developed and its sensitivity was tested by simulating misalignments of the kV imager. Reproducibility testing of the enhanced Penta-Guide method demonstrated a systematic error of <0.2 mm when compared to the BB method with near equivalent random error (s=0.15 mm). The mean MTF(50) for five measurements was 0.278+/-0.004 lp mm(-1) with no applied misalignment. Simulated misalignments exhibited a clear peak in the MTF(50) enabling misalignments greater than 0.4 mm to be detected. The Penta-Guide phantom can be used to precisely measure CBCT-MV coincidence and image sharpness on CBCT-IGRT systems.

  4. Patient positioning with X-ray detector self-calibration for image guided therapy

    Selby, B.P.; Sakas, G.; Stilla, U.; Groch, W.-D.

    2011-01-01

    Full text: Automatic alignment estimation from projection images has a range of applications, but misaligned cameras induce inaccuracies. Calibration methods for optical cameras requiring calibration bodies or detectable features have been a matter of research for years. Not so for image guided therapy, although exact patient pose recovery is crucial. To image patient anatomy, X-ray instead of optical equipment is used. Feature detection is often infeasible. Furthermore, a method not requiring a calibration body, usable during treatment, would be desirable to improve accuracy of the patient alignment. We present a novel approach not relying on image features but combining intensity based calibration with 3D pose recovery. A stereoscopic X-ray camera model is proposed, and effects of erroneous parameters on the patient alignment are evaluated. The relevant camera parameters are automatically computed by comparison of X-ray to CT images and are incorporated in the patient alignment computation. The methods were tested with ground truth data of an anatomic phantom with artificially produced misalignments and available real-patient images from a particle therapy machine. We show that our approach can compensate patient alignment errors through mis-calibration of a camera from more than 5 mm to below 0.2 mm. Usage of images with artificial noise shows that the method is robust against image degradation of 2-5%. X-ray camera sel calibration improves accuracy when cameras are misaligned. We could show that rigid body alignment was computed more accurately and that self-calibration is possible, even if detection of corresponding image features is not. (author)

  5. SU-F-J-194: Development of Dose-Based Image Guided Proton Therapy Workflow

    Pham, R; Sun, B; Zhao, T; Li, H; Yang, D; Grantham, K; Goddu, S; Santanam, L; Bradley, J; Mutic, S; Kandlakunta, P; Zhang, T [Washington University School of Medicine, Saint Louis, MO (United States)

    2016-06-15

    Purpose: To implement image-guided proton therapy (IGPT) based on daily proton dose distribution. Methods: Unlike x-ray therapy, simple alignment based on anatomy cannot ensure proper dose coverage in proton therapy. Anatomy changes along the beam path may lead to underdosing the target, or overdosing the organ-at-risk (OAR). With an in-room mobile computed tomography (CT) system, we are developing a dose-based IGPT software tool that allows patient positioning and treatment adaption based on daily dose distributions. During an IGPT treatment, daily CT images are acquired in treatment position. After initial positioning based on rigid image registration, proton dose distribution is calculated on daily CT images. The target and OARs are automatically delineated via deformable image registration. Dose distributions are evaluated to decide if repositioning or plan adaptation is necessary in order to achieve proper coverage of the target and sparing of OARs. Besides online dose-based image guidance, the software tool can also map daily treatment doses to the treatment planning CT images for offline adaptive treatment. Results: An in-room helical CT system is commissioned for IGPT purposes. It produces accurate CT numbers that allow proton dose calculation. GPU-based deformable image registration algorithms are developed and evaluated for automatic ROI-delineation and dose mapping. The online and offline IGPT functionalities are evaluated with daily CT images of the proton patients. Conclusion: The online and offline IGPT software tool may improve the safety and quality of proton treatment by allowing dose-based IGPT and adaptive proton treatments. Research is partially supported by Mevion Medical Systems.

  6. Image to physical space registration of supine breast MRI for image guided breast surgery

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  7. Magnetic resonance imaging guided reirradiation of recurrent and second primary head and neck cancer.

    Chen, Allen M; Cao, Minsong; Hsu, Sophia; Lamb, James; Mikaeilian, Argin; Yang, Yingli; Agazaryan, Nzhde; Low, Daniel A; Steinberg, Michael L

    2017-01-01

    To report a single-institutional experience using magnetic resonance imaging (MRI) guided radiation therapy for the reirradiation of recurrent and second cancers of the head and neck. Between October 2014 and August 2016, 13 consecutive patients with recurrent or new primary cancers of the head and neck that occurred in a previously irradiated field were prospectively enrolled in an institutional registry trial to investigate the feasibility and efficacy of MRI guided radiation therapy using a 0.35-T MRI scanner with a cobalt-60 radiation therapy source called the ViewRay system (ViewRay Inc., Cleveland, OH). Eligibility criteria included biopsy-proven evidence of recurrent or new primary squamous cell carcinoma of the head and neck, measurable disease, and previous radiation to >60 Gy. MRI guided reirradiation was delivered either using intensity modulated radiation therapy with conventional fractionation to a median dose of 66 Gy or stereotactic body radiation therapy (SBRT) using 7 to 8 Gy fractions on nonconsecutive days to a median dose of 40 Gy. Two patients (17%) received concurrent chemotherapy. The 1- and 2-year estimates of in-field control were 72% and 72%, respectively. A total of 227 daily MRI scans were obtained to guide reirradiation. The 2-year estimates of overall survival and progression-free survival were 53% and 59%, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis and/or conjunctivitis, and 1 case of aspiration pneumonia. Our preliminary findings show that reirradiation with MRI guided radiation therapy results in effective disease control with relatively low morbidity for patients with recurrent and second primary cancers of the head and neck. The superior soft tissue resolution of the MRI scans that were used for planning and delivery has the potential to improve the therapeutic ratio.

  8. Nanoscale Metal-Organic Frameworks Decorated with Graphene Oxide for Magnetic Resonance Imaging Guided Photothermal Therapy.

    Meng, Jing; Chen, Xiujin; Tian, Yang; Li, Zhongfeng; Zheng, Qingfeng

    2017-12-11

    Imaging-guided photothermal therapy (PTT) provides an attractive way to treat cancer. A composite material of a nanoscale metal-organic framework (NMOF) and graphene oxide (GO) has been prepared for potential use in tumor-guided PTT with magnetic resonance imaging (MRI). The NMOFs containing Fe 3+ were prefabricated with an octahedral morphology through a solvothermal reaction to offer a strong T 2 -weighted contrast in MRI. Then the NMOFs were decorated with GO nanosheets, which had good photothermal properties. After decoration, zeta-potential characterization shows that the aqueous stability of the composite material is enhanced, UV/Vis and near-infrared (NIR) spectra confirm that NIR absorption is also increased, and photothermal experiments reveal that the composite materials express higher photothermal conversion effects and conversion stability. The fabricated NMOF/GO shows low cytotoxicity, effective T 2 -weighted contrast of MRI, and positive PTT behavior for a tumor model in vitro. The performance of the composite NMOF/GO for MRI and PTT was also tested upon injection into A549 tumor-bearing mice. The studies in vivo revealed that the fabricated NMOF/GO was efficient in T 2 -weighted imaging and ablation of the A549 tumor with low cytotoxicity, which implied that the prepared composite contrast agent was a potential multifunctional nanotheranostic agent. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The clinical utility of multimodal MR image-guided needle biopsy in cerebral gliomas.

    Yao, Chengjun; Lv, Shunzeng; Chen, Hong; Tang, Weijun; Guo, Jun; Zhuang, Dongxiao; Chrisochoides, Nikos; Wu, Jinsong; Mao, Ying; Zhou, Liangfu

    2016-01-01

    Our aim was to evaluate the diagnostic value of multimodal Magnetic Resonance (MR) Image in the stereotactic biopsy of cerebral gliomas, and investigate its implications. Twenty-four patients with cerebral gliomas underwent (1)H Magnetic Resonance Spectroscopy ((1)H-MRS)- and intraoperative Magnetic Resonance Imaging (iMRI)-supported stereotactic biopsy, and 23 patients underwent only the preoperative MRI-guided biopsy. The diagnostic yield, morbidity and mortality rates were analyzed. In addition, 20 patients underwent subsequent tumor resection, thus the diagnostic accuracy of the biopsy was further evaluated. The diagnostic accuracies of biopsies evaluated by tumor resection in the trial groups were better than control groups (92.3% and 42.9%, respectively, p = 0.031). The diagnostic yield in the trial groups was better than the control groups, but the difference was not statistically significant (100% and 82.6%, respectively, p = 0.05). The morbidity and mortality rates were similar in both groups. Multimodal MR image-guided glioma biopsy is practical and valuable. This technique can increase the diagnostic accuracy in the stereotactic biopsy of cerebral gliomas. Besides, it is likely to increase the diagnostic yield but requires further validation.

  10. Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.

    Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig

    2017-06-01

    Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.

  11. Image-guided biopsy in patients with suspected ovarian carcinoma: a safe and effective technique?

    Griffin, Nyree; Grant, Lee A.; Freeman, Susan J.; Berman, Laurence H.; Sala, Evis; Jimenez-Linan, Mercedes; Earl, Helena; Ahmed, Ahmed Ashour; Crawford, Robin; Brenton, James

    2009-01-01

    In patients with suspected advanced ovarian carcinoma, a precise histological diagnosis is required before commencing neo-adjuvant chemotherapy. This study aims to determine the diagnostic accuracy and complication rate of percutaneous biopsies performed under ultrasound or computed tomography guidance. Between 2002 to 2007, 60 consecutive image-guided percutaneous biopsies were performed in patients with suspected ovarian cancer. The following variables were recorded: tissue biopsied, imaging technique, experience of operator, biopsy needle gauge, number of passes, complications, and final histology. Forty-seven patients had omental biopsies, 12 pelvic mass biopsies, and 1 para-aortic lymph node biopsy. Thirty-five biopsies were performed under ultrasound, 25 under computed tomography guidance. Biopsy needle gauges ranged from 14-20 swg with two to five passes for each patient. There were no complications. Histology was obtained in 52 (87%) patients. Percutaneous image-guided biopsy of peritoneal disease or pelvic mass is safe with high diagnostic accuracy. The large-gauge biopsy needle is as safe as the small gauge needle, but has the added value of obtaining tissue samples for immunohistochemistry and genomic studies. (orig.)

  12. Clinical practice of image-guided spine radiosurgery - results from an international research consortium

    Guckenberger Matthias

    2011-12-01

    Full Text Available Abstract Background Spinal radiosurgery is a quickly evolving technique in the radiotherapy and neurosurgical communities. However, the methods of spine radiosurgery have not been standardized. This article describes the results of a survey about the methods of spine radiosurgery at five international institutions. Methods All institutions are members of the Elekta Spine Radiosurgery Research Consortium and have a dedicated research and clinical focus on image-guided radiosurgery. The questionnaire consisted of 75 items covering all major steps of spine radiosurgery. Results Strong agreement in the methods of spine radiosurgery was observed. In particular, similarities were observed with safety and quality assurance playing an important role in the methods of all institutions, cooperation between neurosurgeons and radiation oncologists in case selection, dedicated imaging for target- and organ-at-risk delineation, application of proper safety margins for the target volume and organs-at-risk, conformal planning and precise image-guided treatment delivery, and close clinical and radiological follow-up. In contrast, three major areas of uncertainty and disagreement were identified: 1 Indications and contra-indications for spine radiosurgery; 2 treatment dose and fractionation and 3 tolerance dose of the spinal cord. Conclusions Results of this study reflect the current practice of spine radiosurgery in large academic centers. Despite close agreement was observed in many steps of spine radiosurgery, further research in form of retrospective and especially prospective studies is required to refine the details of spinal radiosurgery in terms of safety and efficacy.

  13. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  14. Image-guided therapy and minimally invasive surgery in children: a merging future

    Shlomovitz, Eran; Amaral, Joao G.; Chait, Peter G.

    2006-01-01

    Minimally invasive image-guided therapy for children, also known as pediatric interventional radiology (PIR), is a new and exciting field of medicine. Two key elements that helped the rapid evolution and dissemination of this specialty were the creation of devices appropriate for the pediatric population and the development of more cost-effective and minimally invasive techniques. Despite its clear advantages to children, many questions are raised regarding who should be performing these procedures. Unfortunately, this is a gray zone with no clear answer. Surgeons fear that interventional radiologists will take over additional aspects of the surgical/procedural spectrum. Interventional radiologists, on the other hand, struggle to avoid becoming highly specialized technicians rather than physicians who are responsible for complete care of their patients. In this article, we briefly discuss some of the current aspects of minimally invasive image-guided therapy in children and innovations that are expected to be incorporated into clinical practice in the near future. Then, we approach the current interspecialty battles over the control of this field and suggest some solutions to these issues. Finally, we propose the development of a generation of physicians with both surgical and imaging skills. (orig.)

  15. Image Guided Radiation Therapy (IGRT) Practice Patterns and IGRT's Impact on Workflow and Treatment Planning: Results From a National Survey of American Society for Radiation Oncology Members

    Nabavizadeh, Nima, E-mail: nabaviza@ohsu.edu [Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon (United States); Elliott, David A. [Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon (United States); Chen, Yiyi [Division of Biostatistics, Department of Public Health and Preventative Medicine, Oregon Health & Science University, Portland, Oregon (United States); Kusano, Aaron S. [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Mitin, Timur; Thomas, Charles R.; Holland, John M. [Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon (United States)

    2016-03-15

    Purpose: To survey image guided radiation therapy (IGRT) practice patterns, as well as IGRT's impact on clinical workflow and planning treatment volumes (PTVs). Methods and Materials: A sample of 5979 treatment site–specific surveys was e-mailed to the membership of the American Society for Radiation Oncology (ASTRO), with questions pertaining to IGRT modality/frequency, PTV expansions, method of image verification, and perceived utility/value of IGRT. On-line image verification was defined as images obtained and reviewed by the physician before treatment. Off-line image verification was defined as images obtained before treatment and then reviewed by the physician before the next treatment. Results: Of 601 evaluable responses, 95% reported IGRT capabilities other than portal imaging. The majority (92%) used volumetric imaging (cone-beam CT [CBCT] or megavoltage CT), with volumetric imaging being the most commonly used modality for all sites except breast. The majority of respondents obtained daily CBCTs for head and neck intensity modulated radiation therapy (IMRT), lung 3-dimensional conformal radiation therapy or IMRT, anus or pelvis IMRT, prostate IMRT, and prostatic fossa IMRT. For all sites, on-line image verification was most frequently performed during the first few fractions only. No association was seen between IGRT frequency or CBCT utilization and clinical treatment volume to PTV expansions. Of the 208 academic radiation oncologists who reported working with residents, only 41% reported trainee involvement in IGRT verification processes. Conclusion: Consensus guidelines, further evidence-based approaches for PTV margin selection, and greater resident involvement are needed for standardized use of IGRT practices.

  16. MO-DE-202-00: Image-Guided Interventions: Advances in Intraoperative Imaging, Guidance, and An Emerging Role for Medical Physics in Surgery

    NONE

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  17. A new robust markerless method for automatic image-to-patient registration in image-guided neurosurgery system.

    Liu, Yinlong; Song, Zhijian; Wang, Manning

    2017-12-01

    Compared with the traditional point-based registration in the image-guided neurosurgery system, surface-based registration is preferable because it does not use fiducial markers before image scanning and does not require image acquisition dedicated for navigation purposes. However, most existing surface-based registration methods must include a manual step for coarse registration, which increases the registration time and elicits some inconvenience and uncertainty. A new automatic surface-based registration method is proposed, which applies 3D surface feature description and matching algorithm to obtain point correspondences for coarse registration and uses the iterative closest point (ICP) algorithm in the last step to obtain an image-to-patient registration. Both phantom and clinical data were used to execute automatic registrations and target registration error (TRE) calculated to verify the practicality and robustness of the proposed method. In phantom experiments, the registration accuracy was stable across different downsampling resolutions (18-26 mm) and different support radii (2-6 mm). In clinical experiments, the mean TREs of two patients by registering full head surfaces were 1.30 mm and 1.85 mm. This study introduced a new robust automatic surface-based registration method based on 3D feature matching. The method achieved sufficient registration accuracy with different real-world surface regions in phantom and clinical experiments.

  18. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    Shekhar, R. [Children’s National Health System (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  19. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    Shekhar, R.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  20. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    Hu, Yanle, E-mail: Hu.Yanle@mayo.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 and Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona 85054 (United States); Rankine, Leith; Green, Olga L.; Kashani, Rojano; Li, H. Harold; Li, Hua; Rodriguez, Vivian; Santanam, Lakshmi; Wooten, H. Omar; Mutic, Sasa [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States); Nana, Roger; Shvartsman, Shmaryu; Victoria, James; Dempsey, James F. [ViewRay, Inc., Oakwood Village, Ohio 44146 (United States)

    2015-10-15

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm{sup 3} spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19

  1. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    Hu, Yanle; Rankine, Leith; Green, Olga L.; Kashani, Rojano; Li, H. Harold; Li, Hua; Rodriguez, Vivian; Santanam, Lakshmi; Wooten, H. Omar; Mutic, Sasa; Nana, Roger; Shvartsman, Shmaryu; Victoria, James; Dempsey, James F.

    2015-01-01

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm 3 spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19

  2. TU-AB-BRA-12: Quality Assurance of An Integrated Magnetic Resonance Image Guided Adaptive Radiotherapy Machine Using Cherenkov Imaging

    Andreozzi, J; Bruza, P; Saunders, S; Pogue, B [Dartmouth College, Hanover, NH (United States); Mooney, K; Curcuru, A; Green, O [Washington University School of Medicine, Saint Louis, MO (United States); Gladstone, D [Dartmouth-Hitchcock Med. Ctr., Lebanon, NH (Lebanon)

    2016-06-15

    Purpose: To investigate the viability of using Cherenkov imaging as a fast and robust method for quality assurance tests in the presence of a magnetic field, where other instruments can be limited. Methods: Water tank measurements were acquired from a clinically utilized adaptive magnetic resonance image guided radiation therapy (MR-IGRT) machine with three multileaf-collimator equipped 60Co sources. Cherenkov imaging used an intensified charge coupled device (ICCD) camera placed 3.5m from the treatment isocenter, looking down the bore of the 0.35T MRI into a water tank. Images were post-processed to make quantitative comparison between Cherenkov light intensity with both film and treatment planning system predictions, in terms of percent depth dose curves as well as lateral beam profile measurements. A TG-119 commissioning test plan (C4: C-Shape) was imaged in real-time at 6.33 frames per second to investigate the temporal and spatial resolution of the Cherenkov imaging technique. Results: A .33mm/pixel Cherenkov image resolution was achieved across 1024×1024 pixels in this setup. Analysis of the Cherenkov image of a 10.5×10.5cm treatment beam in the water tank successfully measured the beam width at the depth of maximum dose within 1.2% of the film measurement at the same point. The percent depth dose curve for the same beam was on average within 2% of ionization chamber measurements for corresponding depths between 3–100mm. Cherenkov video of the TG-119 test plan provided qualitative agreement with the treatment planning system dose predictions, and a novel temporal verification of the treatment. Conclusions: Cherenkov imaging was successfully used to make QA measurements of percent depth dose curves and cross beam profiles of MRI-IGRT radiotherapy machines after only several seconds of beam-on time and data capture; both curves were extracted from the same data set. Video-rate imaging of a dynamic treatment plan provided new information regarding temporal

  3. Five Fraction Image-Guided Radiosurgery for Primary and Recurrent Meningiomas

    Eric Karl Oermann

    2013-08-01

    Full Text Available Purpose: Benign tumors that arise from the meninges can be difficult to treat due to their potentially large size and proximity to critical structures such as cranial nerves and sinuses. Single fraction radiosurgery may increase the risk of symptomatic peritumoral edema. In this study, we report our results on the efficacy and safety of five fraction image-guided radiosurgery for benign meningiomas. Materials/Methods: Clinical and radiographic data from 38 patients treated with five fraction radiosurgery were reviewed retrospectively. Mean tumor volume was 3.83mm3 (range, 1.08-20.79 mm3. Radiation was delivered using the CyberKnife, a frameless robotic image-guided radiosurgery system with a median total dose of 25 Gy (range, 25 Gy-35 Gy. Results: The median follow-up was 20 months. Acute toxicity was minimal with eight patients (21% requiring a short course of steroids for headache at the end of treatment. Pre-treatment neurological symptoms were present in 24 patients (63.2%. Post treatment, neurological symptoms resolved completely in 14 patients (58.3%, and were persistent in eight patients (33.3%. There were no local failures, 24 tumors remained stable (64% and 14 regressed (36%. Pre-treatment peritumoral edema was observed in five patients (13.2%. Post-treatment asymptomatic peritumoral edema developed in five additional patients (13.2%. On multivariate analysis, pre-treatment peritumoral edema and location adjacent to a large vein were significant risk factors for radiographic post-treatment edema (p = 0.001 and p = 0.026 respectively. Conclusions: These results suggest that five fraction image-guided radiosurgery is well tolerated with a response rate for neurologic symptoms that is similar to other standard treatment options. Rates of peritumoral edema and new cranial nerve deficits following five fraction radiosurgery were low. Longer follow-up is required to validate the safety and long-term effectiveness of this treatment approach.

  4. Site-specific induction of lymphatic malformations in a rat model for image-guided therapy

    Short, Robert F.; Shiels, William E. [Ohio State University College of Medicine and Public Health, Department of Radiology, The Children' s Radiological Institute, Children' s Hospital, Columbus, OH (United States); Sferra, Thomas J. [Ohio State University College of Medicine and Public Health, Department of Gastroenterology, The Columbus Children' s Research Institute, Children' s Hospital, Columbus, OH (United States); Nicol, Kathleen K. [Ohio State University College of Medicine and Public Health, Department of Pathology, Children' s Hospital, Columbus, OH (United States); Schofield, Minka; Wiet, Gregory J. [Ohio State University College of Medicine and Public Health, Department of Otolaryngology, Children' s Hospital, Columbus, OH (United States)

    2007-06-15

    Lymphatic malformation is a common benign mass in children and adults and is representative of a derangement in lymphangiogenesis. These lesions have high recurrence rates and significant morbidity associated with surgery. Several sclerotherapy regimens have been developed clinically to treat lymphatic malformations; however, an animal model has not been developed that is adequate to test the efficacy of image-guided therapeutic interventions. To develop an animal model suitable for evaluation of percutaneous treatments of lymphatic malformations. Male Harlan Sprague-Dawley rats (n = 9) received two US-guided injections of Incomplete Freund's Adjuvant (IFA) over a 2-week period. All nine rats were injected twice into the peritoneum (IP); a subgroup (n = 3) received additional injections into the neck. Three animals that received IP injections of saline were used as controls. The injection sites were monitored for the development of lesions by high-resolution ultrasonography at 2-week intervals for 100 days. High-resolution (4.7 Tesla) magnetic resonance imaging was then performed on two animals noted to have developed masses. The rats were sacrificed and histologic examination of the identified lesions was performed, including immunohistochemical staining for vascular (CD31) and lymphatic (Flt-4 and Prox-1) endothelium. All animals injected with IFA developed cystic lesions. The three animals injected at dual sites were noted to have both microcystic and macrocystic malformations in the neck and microcystic plaque-like lesions in the peritoneum. The macrocystic malformations ({>=}5 mm) in the neck were detected by ultrasonography and grossly later during necropsy. Histopathologic analysis revealed the cystic spaces to be lined by lymphatic endothelium supported by a connective tissue stroma. Control animals did not exhibit detectable lesions with either ultrasonography or necropsy. This model represents a promising tool for translational development of image-guided

  5. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. MR imaging-guided percutaneous cryotherapy for lung tumors: initial experience.

    Liu, Shangang; Ren, Ruimei; Liu, Ming; Lv, Yubo; Li, Bin; Li, Chengli

    2014-09-01

    To evaluate prospectively the initial clinical experience of magnetic resonance (MR) imaging-guided percutaneous cryotherapy of lung tumors. MR imaging-guided percutaneous cryotherapy was performed in 21 patients with biopsy-proven lung tumors (12 men, 9 women; age range, 39-79 y). Follow-up consisted of contrast-enhanced chest computed tomography (CT) scan performed at 3-month intervals to assess tumor control; CT scanning was carried out for 12 months or until death. Cryotherapy procedures were successfully completed in all 21 patients. Pneumothorax occurred in 7 (33.3%) of 21 patients. Chest tube placement was required in one (4.8%) case. Hemoptysis was exhibited by 11 (52.4%) patients, and pleural effusion occurred in 6 (28.6%) patients. Other complications were observed in 14 (66.7%) patients. The mean follow-up period was 10.5 months (range, 9-12 mo) in patients who died. At month 12 of follow-up, 7 (33.3%) patients had a complete response to therapy, and 10 (47.6%) patients showed a partial response. In addition, two patients had stable disease, and two patients developed progressive disease; one patient developed a tumor in the liver, and the other developed a tumor in the brain. The 1-year local control rate was 81%, and 1-year survival rate was 90.5%. MR imaging-guided percutaneous cryotherapy appears feasible, effective, and minimally invasive for lung tumors. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  7. Site-specific induction of lymphatic malformations in a rat model for image-guided therapy

    Short, Robert F.; Shiels, William E.; Sferra, Thomas J.; Nicol, Kathleen K.; Schofield, Minka; Wiet, Gregory J.

    2007-01-01

    Lymphatic malformation is a common benign mass in children and adults and is representative of a derangement in lymphangiogenesis. These lesions have high recurrence rates and significant morbidity associated with surgery. Several sclerotherapy regimens have been developed clinically to treat lymphatic malformations; however, an animal model has not been developed that is adequate to test the efficacy of image-guided therapeutic interventions. To develop an animal model suitable for evaluation of percutaneous treatments of lymphatic malformations. Male Harlan Sprague-Dawley rats (n = 9) received two US-guided injections of Incomplete Freund's Adjuvant (IFA) over a 2-week period. All nine rats were injected twice into the peritoneum (IP); a subgroup (n = 3) received additional injections into the neck. Three animals that received IP injections of saline were used as controls. The injection sites were monitored for the development of lesions by high-resolution ultrasonography at 2-week intervals for 100 days. High-resolution (4.7 Tesla) magnetic resonance imaging was then performed on two animals noted to have developed masses. The rats were sacrificed and histologic examination of the identified lesions was performed, including immunohistochemical staining for vascular (CD31) and lymphatic (Flt-4 and Prox-1) endothelium. All animals injected with IFA developed cystic lesions. The three animals injected at dual sites were noted to have both microcystic and macrocystic malformations in the neck and microcystic plaque-like lesions in the peritoneum. The macrocystic malformations (≥5 mm) in the neck were detected by ultrasonography and grossly later during necropsy. Histopathologic analysis revealed the cystic spaces to be lined by lymphatic endothelium supported by a connective tissue stroma. Control animals did not exhibit detectable lesions with either ultrasonography or necropsy. This model represents a promising tool for translational development of image-guided

  8. Evaluation of image-guided helical tomotherapy for the retreatment of spinal metastasis

    Mahan, Stephen L.; Ramsey, Chester R.; Scaperoth, Daniel D.; Chase, Daniel J.; Byrne, Thomas E.

    2005-01-01

    Introduction: Patients with vertebral metastasis that receive radiation therapy are typically treated to the spinal cord tolerance dose. As such, it is difficult to successfully deliver a second course of radiation therapy for patients with overlapping treatment volumes. In this study, an image-guided helical tomotherapy system was evaluated for the retreatment of previously irradiated vertebral metastasis. Methods and Materials: Helical tomotherapy dose gradients and maximum cord doses were measured in a cylindrical phantom for geometric test cases with separations between the planning target volume (PTV) and the spinal cord organ at risk (OAR) of 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm. Megavoltage computed tomography (CT) images were examined for their ability to localize spinal anatomy for positioning purposes by repeat imaging of the cervical spine in an anthropomorphic phantom. In addition to the phantom studies, 8 patients with cord compressions that had received previous radiation therapy were retreated to a mean dose of 28 Gy using conventional fractionation. Results and Discussion: Megavoltage CT images were capable of positioning an anthropomorphic phantom to within ±1.2 mm (2σ) superior-inferiorly and within ±0.6 mm (2σ) anterior-posteriorly and laterally. Dose gradients of 10% per mm were measured in phantom while PTV uniformity indices of less than 11% were maintained. The calculated maximum cord dose was 25% of the prescribed dose for a 10-mm PTV-to-OAR separation and 71% of the prescribed dose for a PTV-to-OAR separation of 2 mm. Eight patients total have been treated without radiation-induced myelopathy or any other adverse effects from treatment. Conclusions: A technique has been evaluated for the retreatment of vertebral metastasis using image-guided helical tomotherapy. Phantom and patient studies indicated that a tomotherapy system is capable of delivering dose gradients of 10% per mm and positioning the patient within 1.2 mm without the use of

  9. A new fiducial marker for Image-guided radiotherapy of prostate cancer: Clinical experience

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Hoejkjaer Larsen, Erik; Fabrin, Knud; Fisker, Rune V. (Dept. of Medical Physics, Oncology, Aalborg Hospital (Denmark))

    2008-08-15

    Background. A new fiducial marker for image guided radiotherapy (IGRT) based on a removable prostate stent made of Ni Ti has been developed during two previous clinical feasibility studies. The marker is currently being evaluated for IGRT treatment in a third clinical study. Method. The new marker is used to co-register MR and planning CT scans with high accuracy in the region around the prostate. The co-registered MR-CT volumes are used for delineation of GTV before planning. In each treatment session the IGRT system is used to position the patient before treatment. The IGRT system use a stereo pair of kV images matched to corresponding Digital Reconstructed Radiograms (DRR) from the planning CT scan. The match is done using mutual gray scale information. The pair of DRR's for positioning is created in the IGRT system with a threshold in the Look Up Table (LUT). The resulting match provides the necessary shift in couch coordinates to position the stent with an accuracy of 1-2 mm within the planned position. Results. At the present time 39 patients have received the new marker. Of the 39 one has migrated to the bladder. Deviations of more than 5 mm between CTV outlined on CT and MR are seen in several cases and in anterior-posterior (AP), left-right (LR) and cranial-caudal (CC) directions. Intra-fraction translation movements up to +/- 3 mm are seen as well. As the stent is also clearly visible on images taken with high voltage x-rays using electronic portal images devices (EPID), the positioning has been verified independently of the IGRT system. Discussion. The preliminary result of an on going clinical study of a Ni Ti prostate stent, potentially a new fiducial marker for image guided radiotherapy, looks promising. The risk of migration appears to be much lower compared to previous designs

  10. A new fiducial marker for Image-guided radiotherapy of prostate cancer: clinical experience.

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Højkjaer Larsen, Erik; Fabrin, Knud; Fisker, Rune V

    2008-01-01

    A new fiducial marker for image guided radiotherapy (IGRT) based on a removable prostate stent made of Ni Ti has been developed during two previous clinical feasibility studies. The marker is currently being evaluated for IGRT treatment in a third clinical study. The new marker is used to co-register MR and planning CT scans with high accuracy in the region around the prostate. The co-registered MR-CT volumes are used for delineation of GTV before planning. In each treatment session the IGRT system is used to position the patient before treatment. The IGRT system use a stereo pair of kV images matched to corresponding Digital Reconstructed Radiograms (DRR) from the planning CT scan. The match is done using mutual gray scale information. The pair of DRR's for positioning is created in the IGRT system with a threshold in the Look Up Table (LUT). The resulting match provides the necessary shift in couch coordinates to position the stent with an accuracy of 1-2 mm within the planned position. At the present time 39 patients have received the new marker. Of the 39 one has migrated to the bladder. Deviations of more than 5 mm between CTV outlined on CT and MR are seen in several cases and in anterior-posterior (AP), left-right (LR) and cranial-caudal (CC) directions. Intra-fraction translation movements up to +/- 3 mm are seen as well. As the stent is also clearly visible on images taken with high voltage x-rays using electronic portal images devices (EPID), the positioning has been verified independently of the IGRT system. The preliminary result of an on going clinical study of a Ni Ti prostate stent, potentially a new fiducial marker for image guided radiotherapy, looks promising. The risk of migration appears to be much lower compared to previous designs.

  11. Image-guided percutaneous removal of ballistic foreign bodies secondary to air gun injuries.

    Rothermund, Jacob L; Rabe, Andrew J; Zumberge, Nicholas A; Murakami, James W; Warren, Patrick S; Hogan, Mark J

    2018-01-01

    Ballistic injuries with retained foreign bodies from air guns is a relatively common problem, particularly in children and adolescents. If not removed in a timely fashion, the foreign bodies can result in complications, including pain and infection. Diagnostic methods to identify the presence of the foreign body run the entire gamut of radiology, particularly radiography, ultrasound (US) and computed tomography (CT). Removal of the foreign bodies can be performed by primary care, emergency, surgical, and radiologic clinicians, with or without imaging guidance. To evaluate the modalities of radiologic detection and the experience of image-guided ballistic foreign body removal related to air gun injuries within the interventional radiology department of a large pediatric hospital. A database of more than 1,000 foreign bodies that were removed with imaging guidance by the interventional radiologists at our institution was searched for ballistic foreign bodies from air guns. The location, dimensions, diagnostic modality, duration, complications and imaging modality used for removal were recorded. In addition, the use of sedation and anesthesia required for the procedures was also recorded. Sixty-one patients with ballistic foreign bodies were identified. All foreign bodies were metallic BBs or pellets. The age of the patients ranged from 5 to 20 years. The initial diagnostic modality to detect the foreign bodies was primarily radiography. The primary modality to assist in removal was US, closely followed by fluoroscopy. For the procedure, 32.7% of the patients required some level of sedation. Only two patients had an active infection at the time of the removal. The foreign bodies were primarily in the soft tissues; however, successful removal was also performed from intraosseous, intraglandular and intratendinous locations. All cases resulted in successful removal without complications. Image-guided removal of ballistic foreign bodies secondary to air guns is a very

  12. Biologic targets identified from dynamic 18FDG-PET and implications for image-guided therapy

    Rusten, Espen; Malinen, Eirik; Roedal, Jan; Bruland, Oeyvind S.

    2013-01-01

    Purpose: The outcome of biologic image-guided radiotherapy depends on the definition of the biologic target. The purpose of the current work was to extract hyper perfused and hypermetabolic regions from dynamic positron emission tomography (D-PET) images, to dose escalate either region and to discuss implications of such image guided strategies. Methods: Eleven patients with soft tissue sarcomas were investigated with D-PET. The images were analyzed using a two-compartment model producing parametric maps of perfusion and metabolic rate. The two image series were segmented and exported to a treatment planning system, and biological target volumes BTV per and BTV met (perfusion and metabolism, respectively) were generated. Dice's similarity coefficient was used to compare the two biologic targets. Intensity-modulated radiation therapy (IMRT) plans were generated for a dose painting by contours regime, where planning target volume (PTV) was planned to 60 Gy and BTV to 70 Gy. Thus, two separate plans were created for each patient with dose escalation of either BTV per or BTV met . Results: BTV per was somewhat smaller than BTV met (209 ±170 cm 3 against 243 ±143 cm 3 , respectively; population-based mean and s.d.). Dice's coefficient depended on the applied margin, and was 0.72 ±0.10 for a margin of 10 mm. Boosting BTV per resulted in mean dose of 69 ±1.0 Gy to this region, while BTV met received 67 ±3.2 Gy. Boosting BTV met gave smaller dose differences between the respective non-boost DVHs (such as D 98 ). Conclusions: Dose escalation of one of the BTVs results in a partial dose escalation of the other BTV as well. If tumor aggressiveness is equally pronounced in hyper perfused and hypermetabolic regions, this should be taken into account in the treatment planning

  13. A new fiducial marker for Image-guided radiotherapy of prostate cancer: Clinical experience

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Hoejkjaer Larsen, Erik; Fabrin, Knud; Fisker, Rune V.

    2008-01-01

    Background. A new fiducial marker for image guided radiotherapy (IGRT) based on a removable prostate stent made of Ni Ti has been developed during two previous clinical feasibility studies. The marker is currently being evaluated for IGRT treatment in a third clinical study. Method. The new marker is used to co-register MR and planning CT scans with high accuracy in the region around the prostate. The co-registered MR-CT volumes are used for delineation of GTV before planning. In each treatment session the IGRT system is used to position the patient before treatment. The IGRT system use a stereo pair of kV images matched to corresponding Digital Reconstructed Radiograms (DRR) from the planning CT scan. The match is done using mutual gray scale information. The pair of DRR's for positioning is created in the IGRT system with a threshold in the Look Up Table (LUT). The resulting match provides the necessary shift in couch coordinates to position the stent with an accuracy of 1-2 mm within the planned position. Results. At the present time 39 patients have received the new marker. Of the 39 one has migrated to the bladder. Deviations of more than 5 mm between CTV outlined on CT and MR are seen in several cases and in anterior-posterior (AP), left-right (LR) and cranial-caudal (CC) directions. Intra-fraction translation movements up to +/- 3 mm are seen as well. As the stent is also clearly visible on images taken with high voltage x-rays using electronic portal images devices (EPID), the positioning has been verified independently of the IGRT system. Discussion. The preliminary result of an on going clinical study of a Ni Ti prostate stent, potentially a new fiducial marker for image guided radiotherapy, looks promising. The risk of migration appears to be much lower compared to previous designs

  14. Target Coverage in Image-Guided Stereotactic Body Radiotherapy of Liver Tumors

    Wunderink, Wouter; Romero, Alejandra Mendez; Osorio, Eliana M. Vasquez; Boer, Hans C.J. de; Brandwijk, Rene P.; Levendag, Peter C.; Heijmen, Ben

    2007-01-01

    Purpose: To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. Methods and Materials: By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV + ) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV + , derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Results: Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (≥99%) ITV + coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (≤2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Conclusion: Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging

  15. Nerve-Highlighting Fluorescent Contrast Agents for Image-Guided Surgery

    Summer L. Gibbs-Strauss

    2011-03-01

    Full Text Available Nerve damage is the major morbidity of many surgeries, resulting in chronic pain, loss of function, or both. The sparing of nerves during surgical procedures is a vexing problem because surrounding tissue often obscures them. To date, systemically administered nerve-highlighting contrast agents that can be used for nerve-sparing image-guided surgery have not been reported. In the current study, physicochemical and optical properties of 4,4‘-[(2-methoxy-1,4-phenylenedi-(1E-2,1-ethenediyl]bis-benzenamine (BMB and a newly synthesized, red-shifted derivative 4-[(1E-2-[4-[(1E-2-[4-aminophenyl]ethenyl]-3-methoxyphenyl]ethenyl]-benzonitrile (GE3082 were characterized in vitro and in vivo. Both agents crossed the blood-nerve barrier and blood-brain barrier and rendered myelinated nerves fluorescent after a single systemic injection. Although both BMB and GE3082 also exhibited significant uptake in white adipose tissue, GE3082 underwent a hypsochromic shift in adipose tissue that provided a means to eliminate the unwanted signal using hyperspectral deconvolution. Dose and kinetic studies were performed in mice to determine the optimal dose and drug-imaging interval. The results were confirmed in rat and pig, with the latter used to demonstrate, for the first time, simultaneous fluorescence imaging of blood vessels and nerves during surgery using the FLARE™ (Fluorescence-Assisted Resection and Exploration imaging system. These results lay the foundation for the development of ideal nerve-highlighting fluorophores for image-guided surgery.

  16. Thermographic Sensing For On-Line Industrial Control

    Holmsten, Dag

    1986-10-01

    It is today's emergence of thermoelectrically cooled, highly accurate infrared linescanners and imaging systems that has definitely made on-line Infraread Thermography (IRT) possible. Specifically designed for continuous use, these scanners are equipped with dedicated software capable of monitoring and controlling highly complex thermodynamic situations. This paper will outline some possible implications of using IRT on-line by describing some uses of this technology in the steel-making (hot rolling) and automotive industries (machine-vision). A warning is also expressed that IRT technology not originally designed for automated applications e.g. high resolution, imaging systems, should not be directly applied to an on-line measurement situation without having its measurement resolution, accuracy and especially its repeatability, reliably proven. Some suitable testing procedures are briefly outlined at the end of the paper.

  17. X-ray volumetric imaging in image-guided radiotherapy: The new standard in on-treatment imaging

    McBain, Catherine A.; Henry, Ann M.; Sykes, Jonathan; Amer, Ali; Marchant, Tom; Moore, Christopher M.; Davies, Julie; Stratford, Julia; McCarthy, Claire; Porritt, Bridget; Williams, Peter; Khoo, Vincent S.; Price, Pat

    2006-01-01

    Purpose: X-ray volumetric imaging (XVI) for the first time allows for the on-treatment acquisition of three-dimensional (3D) kV cone beam computed tomography (CT) images. Clinical imaging using the Synergy System (Elekta, Crawley, UK) commenced in July 2003. This study evaluated image quality and dose delivered and assessed clinical utility for treatment verification at a range of anatomic sites. Methods and Materials: Single XVIs were acquired from 30 patients undergoing radiotherapy for tumors at 10 different anatomic sites. Patients were imaged in their setup position. Radiation doses received were measured using TLDs on the skin surface. The utility of XVI in verifying target volume coverage was qualitatively assessed by experienced clinicians. Results: X-ray volumetric imaging acquisition was completed in the treatment position at all anatomic sites. At sites where a full gantry rotation was not possible, XVIs were reconstructed from projection images acquired from partial rotations. Soft-tissue definition of organ boundaries allowed direct assessment of 3D target volume coverage at all sites. Individual image quality depended on both imaging parameters and patient characteristics. Radiation dose ranged from 0.003 Gy in the head to 0.03 Gy in the pelvis. Conclusions: On-treatment XVI provided 3D verification images with soft-tissue definition at all anatomic sites at acceptably low radiation doses. This technology sets a new standard in treatment verification and will facilitate novel adaptive radiotherapy techniques

  18. Patient dose in image guided radiotherapy: Monte Carlo study of the CBCT dose contribution

    Leotta, Salvatore; Amato, Ernesto; Settineri, Nicola; Basile, Emilia; Italiano, Antonio; Auditore, Lucrezia; Santacaterina, Anna; Pergolizzi, Stefano

    2018-01-01

    Image Guided RadioTherapy (IGRT) is a technique whose diffusion is growing thanks to the well-recognized gain in accuracy of dose delivery. However, multiple Cone Beam Computed Tomography (CBCT) scans add dose to patients, and its contribution has to be assessed and minimized. Aim of our work was to evaluate, through Monte Carlo simulations, organ doses in IGRT due to CBCT and therapeutic MV irradiation in head-neck, thorax and pelvis districts. We developed a Monte Carlo simulation in GAMOS ...

  19. Quality assurance (QA) and quality control (QC) of image guided radiotherapy (IGRT). Osaka Rosai Hospital experience

    Tsuboi, Kazuki; Yagi, Masayuki; Fujiwara, Kanta

    2013-01-01

    The linear accelerator with image guided radiation therapy (IGRT) was introduced in May 2010. We performed the verification of the IGRT system, id est (i.e.), acceptance test and our original performance test and confirmed the acceptability for clinical use. We also performed daily QA/QC program before the start of treatment. One-year experience of QA/QC program showed excellent stability of IGRT function compared with our old machine. We further hope to establish the more useful management system and QA/QC program. (author)

  20. Effect of image-guided hypofractionated stereotactic radiotherapy on peripheral non-small-cell lung cancer

    Wang SW

    2016-08-01

    Full Text Available Shu-wen Wang,1 Juan Ren,1 Yan-li Yan,2 Chao-fan Xue,2 Li Tan,2 Xiao-wei Ma2 1Department of Radiotherapy, First Affiliated Hospital of Xian Jiaotong University, 2Medical School of Xian Jiaotong University, Xi’an, Shaanxi, People’s Republic of China Abstract: The objective of this study was to compare the effects of image-guided hypofractionated radiotherapy and conventional fractionated radiotherapy on non-small-cell lung cancer (NSCLC. Fifty stage- and age-matched cases with NSCLC were randomly divided into two groups (A and B. There were 23 cases in group A and 27 cases in group B. Image-guided radiotherapy (IGRT and stereotactic radiotherapy were conjugately applied to the patients in group A. Group A patients underwent hypofractionated radiotherapy (6–8 Gy/time three times per week, with a total dose of 64–66 Gy; group B received conventional fractionated radiotherapy, with a total dose of 68–70 Gy five times per week. In group A, 1-year and 2-year local failure survival rate and 1-year local failure-free survival rate were significantly higher than in group B (P<0.05. The local failure rate (P<0.05 and distant metastasis rate (P>0.05 were lower in group A than in group B. The overall survival rate of group A was significantly higher than that of group B (P=0.03, and the survival rate at 1 year was 87% vs 63%, (P<0.05. The median survival time of group A was longer than that of group B. There was no significant difference in the incidence of complications between the two groups (P>0.05. Compared with conventional fractionated radiation therapy, image-guided hypofractionated stereotactic radiotherapy in NSCLC received better treatment efficacy and showed good tolerability. Keywords: non-small-cell lung cancer, hypofractionated radiotherapy, stereotactic radiotherapy, segmentation, intensity-modulated radiotherapy, image-guided radiation therapy technology

  1. Image-guided percutaneous disc sampling: impact of antecedent antibiotics on yield

    Agarwal, V.; Wo, S.; Lagemann, G.M.; Tsay, J.; Delfyett, W.T.

    2016-01-01

    Aim: To evaluate the effect of antecedent antimicrobial therapy on diagnostic yield from percutaneous image-guided disc-space sampling. Materials and methods: A retrospective review of the electronic health records of all patients who underwent image-guided percutaneous sampling procedures for suspected discitis/osteomyelitis over a 5-year period was performed. One hundred and twenty-four patients were identified. Demographics, medical history, and culture results were recorded as well as duration of presenting symptoms and whether antecedent antibiotic therapy had been administered. Results: Of the 124 patients identified who underwent image-guided percutaneous disc-space sampling, 73 had received antecedent antibiotic treatment compared with 51 who had not. The overall positive culture rate for the present study population was 24% (n=30). The positive culture rate from patients previously on antibiotics was 21% (n=15) compared with 29% (n=15) for patients who had not received prior antibiotic treatment, which is not statistically significant (p=0.26). Eighty-six percent (n=63) of patients who had antecedent antibiotics received treatment for 4 or more days prior to their procedure, whereas 14% (n=10) received treatment for 1–3 days prior to their procedure. The difference in culture positivity rate between these two groups was not statistically significant (p=0.43). Culture results necessitated a change in antibiotic therapy in a third of the patients who had received antecedent antibiotic therapy. Conclusion: Antecedent antibiotic therapy, regardless of duration, did not result in significantly diminished diagnostic yield from percutaneous sampling for suspected discitis/osteomyelitis. The present results suggest that percutaneous biopsy may nonetheless yield positive diagnostic information despite prior antimicrobial therapy. If the diagnostic information may impact choice of therapeutic regimen, percutaneous biopsy should still be considered in cases where

  2. Anaphylaxis at image-guided epidural pain block secondary to corticosteroid compound.

    Moran, Deirdre E

    2012-09-01

    Anaphylaxis during image-guided interventional procedures is a rare but potentially fatal event. Anaphylaxis to iodinated contrast is an established and well-recognized adverse effect. However, anaphylaxis to some of the other frequently administered medications given during interventional procedures, such as corticosteroids, is not common knowledge. During caudal epidural injection, iodinated contrast is used to confirm needle placement in the epidural space at the level of the sacral hiatus. A combination of corticosteroid, local anesthetic, and saline is subsequently injected. We describe a very rare case of anaphylaxis to a component of the steroid medication instilled in the caudal epidural space.

  3. A cost effective and high fidelity fluoroscopy simulator using the Image-Guided Surgery Toolkit (IGSTK)

    Gong, Ren Hui; Jenkins, Brad; Sze, Raymond W.; Yaniv, Ziv

    2014-03-01

    The skills required for obtaining informative x-ray fluoroscopy images are currently acquired while trainees provide clinical care. As a consequence, trainees and patients are exposed to higher doses of radiation. Use of simulation has the potential to reduce this radiation exposure by enabling trainees to improve their skills in a safe environment prior to treating patients. We describe a low cost, high fidelity, fluoroscopy simulation system. Our system enables operators to practice their skills using the clinical device and simulated x-rays of a virtual patient. The patient is represented using a set of temporal Computed Tomography (CT) images, corresponding to the underlying dynamic processes. Simulated x-ray images, digitally reconstructed radiographs (DRRs), are generated from the CTs using ray-casting with customizable machine specific imaging parameters. To establish the spatial relationship between the CT and the fluoroscopy device, the CT is virtually attached to a patient phantom and a web camera is used to track the phantom's pose. The camera is mounted on the fluoroscope's intensifier and the relationship between it and the x-ray source is obtained via calibration. To control image acquisition the operator moves the fluoroscope as in normal operation mode. Control of zoom, collimation and image save is done using a keypad mounted alongside the device's control panel. Implementation is based on the Image-Guided Surgery Toolkit (IGSTK), and the use of the graphics processing unit (GPU) for accelerated image generation. Our system was evaluated by 11 clinicians and was found to be sufficiently realistic for training purposes.

  4. Rectal dose variation during the course of image-guided radiation therapy of prostate cancer

    Chen Lili; Paskalev, Kamen; Xu Xiu; Zhu, Jennifer; Wang Lu; Price, Robert A.; Hu Wei; Feigenberg, Steven J.; Horwitz, Eric M.; Pollack, Alan; Charlie Ma, C.M.

    2010-01-01

    Background and purpose: To investigate the change in rectal dose during the treatment course for intensity-modulated radiotherapy (IMRT) of prostate cancer with image-guidance. Materials and methods: Twenty prostate cancer patients were recruited for this retrospective study. All patients have been treated with IMRT. For each patient, MR and CT images were fused for target and critical structure delineation. IMRT treatment planning was performed on the simulation CT images. Inter-fractional motion during the course of treatment was corrected using a CT-on-rails system. The rectum was outlined on both the original treatment plan and the subsequent daily CT images from the CT-on-rails by the same investigator. Dose distributions on these daily CT images were recalculated with the isocenter shifts relative to the simulation CT images using the leaf sequences/MUs based on the original treatment plan. The rectal doses from the subsequent daily CTs were compared with the original doses planned on the simulation CT using our clinical acceptance criteria. Results: Based on 20 patients with 139 daily CT sets, 28% of the subsequent treatment dose distributions did not meet our criterion of V 40 65 < 17%. The inter-fractional rectal volume variation is significant for some patients. Conclusions: Due to the large inter-fractional variation of the rectal volume, it is more favorable to plan prostate IMRT based on an empty rectum and deliver treatment to patients with an empty rectum. Over 70% of actual treatments showed better rectal doses than our clinical acceptance criteria. A significant fraction (27%) of the actual treatments would benefit from adaptive image-guided radiotherapy based on daily CT images.

  5. DeepInfer: open-source deep learning deployment toolkit for image-guided therapy

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-03-01

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research work ows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

  6. Design and implementation of a PC-based image-guided surgical system.

    Stefansic, James D; Bass, W Andrew; Hartmann, Steven L; Beasley, Ryan A; Sinha, Tuhin K; Cash, David M; Herline, Alan J; Galloway, Robert L

    2002-11-01

    In interactive, image-guided surgery, current physical space position in the operating room is displayed on various sets of medical images used for surgical navigation. We have developed a PC-based surgical guidance system (ORION) which synchronously displays surgical position on up to four image sets and updates them in real time. There are three essential components which must be developed for this system: (1) accurately tracked instruments; (2) accurate registration techniques to map physical space to image space; and (3) methods to display and update the image sets on a computer monitor. For each of these components, we have developed a set of dynamic link libraries in MS Visual C++ 6.0 supporting various hardware tools and software techniques. Surgical instruments are tracked in physical space using an active optical tracking system. Several of the different registration algorithms were developed with a library of robust math kernel functions, and the accuracy of all registration techniques was thoroughly investigated. Our display was developed using the Win32 API for windows management and tomographic visualization, a frame grabber for live video capture, and OpenGL for visualization of surface renderings. We have begun to use this current implementation of our system for several surgical procedures, including open and minimally invasive liver surgery.

  7. A small animal image guided irradiation system study using 3D dosimeters

    Qian, Xin; Wuu, Cheng-Shie; Admovics, John

    2015-01-01

    In a high resolution image-guided small animal irradiation platform, a cone beam computed tomography (CBCT) is integrated with an irradiation unit for precise targeting. Precise quality assurance is essential for both imaging and irradiation components. The conventional commissioning techniques with films face major challenges due to alignment uncertainty and labour intensive film preparation and scanning. In addition, due to the novel design of this platform the mouse stage rotation for CBCT imaging is perpendicular to the gantry rotation for irradiation. Because these two rotations are associated with different mechanical systems, discrepancy between rotation isocenters exists. In order to deliver x-ray precisely, it is essential to verify coincidence of the imaging and the irradiation isocenters. A 3D PRESAGE dosimeter can provide an excellent tool for checking dosimetry and verifying coincidence of irradiation and imaging coordinates in one system. Dosimetric measurements were performed to obtain beam profiles and percent depth dose (PDD). Isocentricity and coincidence of the mouse stage and gantry rotations were evaluated with starshots acquired using PRESAGE dosimeters. A single PRESAGE dosimeter can provide 3 -D information in both geometric and dosimetric uncertainty, which is crucial for translational studies

  8. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.

    Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro

    2015-12-01

    Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits.

  9. SU-E-J-123: Targeting Accuracy of Image-Guided Radiosurgery for Intracranial Lesions

    Huang, Y; Wen, N; Zhao, B; Kim, J; Gordon, J; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: To evaluate the setup accuracies of image-guided intracranial radiosurgery across several different linear accelerator platforms. Methods: A CT scan with a slice thickness of 1.0 mm was acquired of a Rando head phantom (The Phantom Laboratory) in a U-frame mask (BrainLAB AG). The phantom had three embedded BBs, simulating a central, left, and anterior lesion. The phantom was setup with each BB placed at the radiation isocenter under image guidance. Four different setup procedures were investigated: (1) NTX-ExacTrac: 6 degree-of-freedom (6D) correction on a Novalis Tx (BrainLAB AG) with ExacTrac localization (BrainLAB AG); (2) NTX-CBCT: 4D correction on the Novalis Tx with cone-beam computed tomography (CBCT); (3) TrueBeam-CBCT: 4D correction on a TrueBeam (Varian) with CBCT; (4) Edge-CBCT: 6D correction on an Edge (Varian) with CBCT. The experiment was repeated 5 times with different initial setup error at each BB location on each platform, and the mean (μ) and one standard deviation (σ) of the residual error was compared.The congruence between radiation and imaging isocenters on each platform was evaluated by acquiring Winston Lutz (WL) images of a WL jig followed by imaging using ExacTrac or CBCT. The difference in coordinates of the jig relative to radiation and imaging isocenters was then recorded. Results: Averaged over all three BB locations, the residual vector setup errors (μ±σ) of the phantom in mm were 0.6±0.2, 1.0±0.5, 0.2±0.1, and 0.3±0.1 on NTX-ExacTrac, NTX-CBCT, TrueBeam-CBCT, and Edge-CBCT, with their ranges in mm being 0.4∼1.1, 0.4∼1.9, 0.1∼0.5, and 0.2∼0.6, respectively. And imaging isocenter was found stable relative to radiation isocenter, with the congruence to radiation isocenter in mm being 0.6±0.1, 0.7±0.1, 0.3±0.1, 0.2±0.1, respectively, on the four systems in the same order. Conclusion: Millimeter accuracy can be achieved with image-guided radiosurgery for intracranial lesions based on this set of experiments.

  10. Portal hypertension: Imaging of portosystemic collateral pathways and associated image-guided therapy.

    Bandali, Murad Feroz; Mirakhur, Anirudh; Lee, Edward Wolfgang; Ferris, Mollie Clarke; Sadler, David James; Gray, Robin Ritchie; Wong, Jason Kam

    2017-03-14

    Portal hypertension is a common clinical syndrome, defined by a pathologic increase in the portal venous pressure. Increased resistance to portal blood flow, the primary factor in the pathophysiology of portal hypertension, is in part due to morphological changes occurring in chronic liver diseases. This results in rerouting of blood flow away from the liver through collateral pathways to low-pressure systemic veins. Through a variety of computed tomographic, sonographic, magnetic resonance imaging and angiographic examples, this article discusses the appearances and prevalence of both common and less common portosystemic collateral channels in the thorax and abdomen. A brief overview of established interventional radiologic techniques for treatment of portal hypertension will also be provided. Awareness of the various imaging manifestations of portal hypertension can be helpful for assessing overall prognosis and planning proper management.

  11. Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study

    Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar

    2009-01-01

    Introduction: Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. Materials and methods: We investigated image quality parameters for three devices over a period of 16 months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. Results: All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Discussion: Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning.

  12. Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study.

    Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar

    2009-10-01

    Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. We investigated image quality parameters for three devices over a period of 16months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning.

  13. The Argentine Guide of Recommendations for the Correct Indications of Diagnostic Imaging Examinations

    Buzzi, Alfredo; Rojas, Roberto; Touzet, Rodolfo E.

    2008-01-01

    of the Guide (developing stage); the fourth is the evaluation of the results and presentation of a report to the health authorities justifying its mandatory use; and the fifth is to obtain the emission by the competent authorities of requirements that assure the extended use of the Guide. The initial goal was the development of the 'Guide of Recommendations for the Correct Indications of Diagnostic Imaging Examinations' by Argentine professionals. The intention of this Guide is to improve the clinical practice supporting the task of the prescriptor physician. The Guide PR/118 (from the European Community, based on a first British initiative) and the equivalent Guide prepared by the French Society of Radiology were used as a model. To adapt the European model to Argentina, the Argentine Society of Radiology summoned 12 commissions of experts in 12 areas (Head and Neck, Spine and Locomotive, Circulatory, Thorax, Digestive, Adrenal and Urinary, Gynaecology and Obstetrics, Breast, Trauma, Cancer, Paediatrics, and Nuclear Medicine), organised by a General Coordinator. The Guide was presented at the 2007 Argentine Congress of Radiology, during the 3 rd . Meeting of Patient Radiological Protection. (author)

  14. Improvement of an X-ray imaging detector based on a scintillating guides screen

    Badel, X; Linnros, J; Kleimann, P; Froejdh, C; Petersson, C S

    2002-01-01

    An X-ray imaging detector has been developed for dental applications. The principle of this detector is based on application of a silicon charge coupled device covered by a scintillating wave-guide screen. Previous studies of such a detector showed promising results concerning the spatial resolution but low performance in terms of signal to noise ratio (SNR) and sensitivity. Recent results confirm the wave-guiding properties of the matrix and show improvement of the detector in terms of response uniformity, sensitivity and SNR. The present study is focussed on the fabrication of the scintillating screen where the principal idea is to fill a matrix of Si pores with a CsI scintillator. The photoluminescence technique was used to prove the wave-guiding property of the matrix and to inspect the filling uniformity of the pores. The final detector was characterized by X-ray evaluation in terms of spatial resolution, light output and SNR. A sensor with a spatial resolution of 9 LP/mm and a SNR over 50 has been achie...

  15. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding

  16. Initial Results With Image-guided Cochlear Implant Programming in Children.

    Noble, Jack H; Hedley-Williams, Andrea J; Sunderhaus, Linsey; Dawant, Benoit M; Labadie, Robert F; Camarata, Stephen M; Gifford, René H

    2016-02-01

    Image-guided cochlear implant (CI) programming can improve hearing outcomes for pediatric CI recipients. CIs have been highly successful for children with severe-to-profound hearing loss, offering potential for mainstreamed education and auditory-oral communication. Despite this, a significant number of recipients still experience poor speech understanding, language delay, and, even among the best performers, restoration to normal auditory fidelity is rare. Although significant research efforts have been devoted to improving stimulation strategies, few developments have led to significant hearing improvement over the past two decades. Recently introduced techniques for image-guided CI programming (IGCIP) permit creating patient-customized CI programs by making it possible, for the first time, to estimate the position of implanted CI electrodes relative to the nerves they stimulate using CT images. This approach permits identification of electrodes with high levels of stimulation overlap and to deactivate them from a patient's map. Previous studies have shown that IGCIP can significantly improve hearing outcomes for adults with CIs. The IGCIP technique was tested for 21 ears of 18 pediatric CI recipients. Participants had long-term experience with their CI (5 mo to 13 yr) and ranged in age from 5 to 17 years old. Speech understanding was assessed after approximately 4 weeks of experience with the IGCIP map. Using a two-tailed Wilcoxon signed-rank test, statistically significant improvement (p < 0.05) was observed for word and sentence recognition in quiet and noise, as well as pediatric self-reported quality-of-life (QOL) measures. Our results indicate that image guidance significantly improves hearing and QOL outcomes for pediatric CI recipients.

  17. TU-A-304-01: Introduction and Workflow of Image-Guided SBRT

    Salter, B.

    2015-01-01

    Increased use of SBRT and hypo fractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide updated knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT or IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional (3D and 4D) and multi-modality (CT, beam-level X-ray imaging, pre- and on-treatment 3D/4D MRI, PET, robotic ultrasound, etc.) for reliable guidance of SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. Discuss treatment planning and quality assurance issues specific to SBRT. Research grant from Varian Medical Systems

  18. TU-A-304-01: Introduction and Workflow of Image-Guided SBRT

    Salter, B. [University of Utah Huntsman Cancer Institute (United States)

    2015-06-15

    Increased use of SBRT and hypo fractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide updated knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT or IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional (3D and 4D) and multi-modality (CT, beam-level X-ray imaging, pre- and on-treatment 3D/4D MRI, PET, robotic ultrasound, etc.) for reliable guidance of SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. Discuss treatment planning and quality assurance issues specific to SBRT. Research grant from Varian Medical Systems.

  19. Image-guided chemoport insertion by interventional radiologists: A single-center experience on periprocedural complications

    Yaacob, Yazmin; Nguyen, Dang V; Mohamed, Zahiah; Ralib, A Razali A; Zakaria, Rozman; Muda, Sobri

    2013-01-01

    To report our early experience in image-guided chemoport insertions by interventional radiologists. This was a cross-sectional study conducted in a tertiary center with 161 chemoport insertions done from June 2008 to June 2010. The chemoports were inserted either at the angiography suite or at the mobile operation theater unit. Ninety percent of the chemoports had right internal jugular vein (IJV) as the entry site. Other entry sites included the left IJV, subclavian veins and the inferior vena cava. Immediate and early complications were recorded. All insertions were performed under image guidance with the aid of ultrasound and fluoroscopy. The technical success rate was 99.4%. In terms of immediate complications, there were only two cases of arterial puncture that resolved with local compression. No pneumothorax or air embolism was documented. Twenty-six early complications were recorded. The most common early complication was catheter blockage (12/161; 7.4%), followed by catheter-related infection (9/161; 5.6%). Other complications were catheter malposition, venous thrombosis and catheter dislodgement or leak. A total of 11 (6.8%) chemoports had to be removed within 30 days; most of them were due to infections that failed to respond to systemic antibiotic therapy. In terms of place of procedure, there were no significant differences in complication rates between the angiography suite and the mobile operation theater unit. Image-guided chemoport insertion by interventional radiologist gives low periprocedural complication rates. Using right IJV as the entry site, the image guidance gives good success rate with least complication

  20. Saliency-Guided Change Detection of Remotely Sensed Images Using Random Forest

    Feng, W.; Sui, H.; Chen, X.

    2018-04-01

    Studies based on object-based image analysis (OBIA) representing the paradigm shift in change detection (CD) have achieved remarkable progress in the last decade. Their aim has been developing more intelligent interpretation analysis methods in the future. The prediction effect and performance stability of random forest (RF), as a new kind of machine learning algorithm, are better than many single predictors and integrated forecasting method. In this paper, we present a novel CD approach for high-resolution remote sensing images, which incorporates visual saliency and RF. First, highly homogeneous and compact image super-pixels are generated using super-pixel segmentation, and the optimal segmentation result is obtained through image superimposition and principal component analysis (PCA). Second, saliency detection is used to guide the search of interest regions in the initial difference image obtained via the improved robust change vector analysis (RCVA) algorithm. The salient regions within the difference image that correspond to the binarized saliency map are extracted, and the regions are subject to the fuzzy c-means (FCM) clustering to obtain the pixel-level pre-classification result, which can be used as a prerequisite for superpixel-based analysis. Third, on the basis of the optimal segmentation and pixel-level pre-classification results, different super-pixel change possibilities are calculated. Furthermore, the changed and unchanged super-pixels that serve as the training samples are automatically selected. The spectral features and Gabor features of each super-pixel are extracted. Finally, superpixel-based CD is implemented by applying RF based on these samples. Experimental results on Ziyuan 3 (ZY3) multi-spectral images show that the proposed method outperforms the compared methods in the accuracy of CD, and also confirm the feasibility and effectiveness of the proposed approach.

  1. SALIENCY-GUIDED CHANGE DETECTION OF REMOTELY SENSED IMAGES USING RANDOM FOREST

    W. Feng

    2018-04-01

    Full Text Available Studies based on object-based image analysis (OBIA representing the paradigm shift in change detection (CD have achieved remarkable progress in the last decade. Their aim has been developing more intelligent interpretation analysis methods in the future. The prediction effect and performance stability of random forest (RF, as a new kind of machine learning algorithm, are better than many single predictors and integrated forecasting method. In this paper, we present a novel CD approach for high-resolution remote sensing images, which incorporates visual saliency and RF. First, highly homogeneous and compact image super-pixels are generated using super-pixel segmentation, and the optimal segmentation result is obtained through image superimposition and principal component analysis (PCA. Second, saliency detection is used to guide the search of interest regions in the initial difference image obtained via the improved robust change vector analysis (RCVA algorithm. The salient regions within the difference image that correspond to the binarized saliency map are extracted, and the regions are subject to the fuzzy c-means (FCM clustering to obtain the pixel-level pre-classification result, which can be used as a prerequisite for superpixel-based analysis. Third, on the basis of the optimal segmentation and pixel-level pre-classification results, different super-pixel change possibilities are calculated. Furthermore, the changed and unchanged super-pixels that serve as the training samples are automatically selected. The spectral features and Gabor features of each super-pixel are extracted. Finally, superpixel-based CD is implemented by applying RF based on these samples. Experimental results on Ziyuan 3 (ZY3 multi-spectral images show that the proposed method outperforms the compared methods in the accuracy of CD, and also confirm the feasibility and effectiveness of the proposed approach.

  2. Retractor-induced brain shift compensation in image-guided neurosurgery

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  3. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    Mitrović, Uroš [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000, Slovenia and Cosylab, Control System Laboratory, Teslova ulica 30, Ljubljana 1000 (Slovenia); Pernuš, Franjo [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000 (Slovenia); Likar, Boštjan; Špiclin, Žiga, E-mail: ziga.spiclin@fe.uni-lj.si [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000, Slovenia and Sensum, Computer Vision Systems, Tehnološki Park 21, Ljubljana 1000 (Slovenia)

    2015-11-15

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and

  4. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image.

    Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik

    2015-01-01

    Spatial normalization is a prerequisite step for analyzing positron emission tomography (PET) images both by using volume-of-interest (VOI) template and voxel-based analysis. Magnetic resonance (MR) or ligand-specific PET templates are currently used for spatial normalization of PET images. We used computed tomography (CT) images acquired with PET/CT scanner for the spatial normalization for [18F]-N-3-fluoropropyl-2-betacarboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) PET images and compared target-to-cerebellar standardized uptake value ratio (SUVR) values with those obtained from MR- or PET-guided spatial normalization method in healthy controls and patients with Parkinson's disease (PD). We included 71 healthy controls and 56 patients with PD who underwent [18F]-FP-CIT PET scans with a PET/CT scanner and T1-weighted MR scans. Spatial normalization of MR images was done with a conventional spatial normalization tool (cvMR) and with DARTEL toolbox (dtMR) in statistical parametric mapping software. The CT images were modified in two ways, skull-stripping (ssCT) and intensity transformation (itCT). We normalized PET images with cvMR-, dtMR-, ssCT-, itCT-, and PET-guided methods by using specific templates for each modality and measured striatal SUVR with a VOI template. The SUVR values measured with FreeSurfer-generated VOIs (FSVOI) overlaid on original PET images were also used as a gold standard for comparison. The SUVR values derived from all four structure-guided spatial normalization methods were highly correlated with those measured with FSVOI (P normalization methods provided reliable striatal SUVR values comparable to those obtained with MR-guided methods. CT-guided methods can be useful for analyzing dopamine transporter PET images when MR images are unavailable.

  5. A technique for adaptive image-guided helical tomotherapy for lung cancer

    Ramsey, Chester R.; Langen, Katja M.; Kupelian, Patrick A.; Scaperoth, Daniel D.; Meeks, Sanford L.; Mahan, Stephen L.; Seibert, Rebecca M.

    2006-01-01

    Purpose: The gross tumor volume (GTV) for many lung cancer patients can decrease during the course of radiation therapy. As the tumor reduces in size during treatment, the margin added around the GTV effectively becomes larger, which can result in the excessive irradiation of normal lung tissue. The specific goal of this study is to evaluate the feasibility of using image-guided adaptive radiation therapy to adjust the planning target volume weekly based on the previous week's CT image sets that were used for image-guided patient setup. Methods and Materials: Megavoltage computed tomography (MVCT) images of the GTV were acquired daily on a helical tomotherapy system. These images were used to position the patient and to measure reduction in GTV volume. A planning study was conducted to determine the amount of lung-sparing that could have been achieved if adaptive therapy had been used. Treatment plans were created in which the target volumes were reduced after tumor reduction was measured. Results: A total of 158 MVCT imaging sessions were performed on 7 lung patients. The GTV was reduced by 60-80% during the course of treatment. The tumor reduction in the first 60 days of treatment can be modeled using the second-order polynomial R 0.0002t 2 - 0.0219t + 1.0, where R is the percent reduction in GTV, and t is the number of elapsed days. Based on these treatment planning studies, the absolute volume of ipsilateral lung receiving 20 Gy can be reduced between 17% and 23% (21% mean) by adapting the treatment delivery. The benefits of adaptive therapy are the greatest for tumor volumes ≥25 cm 3 and are directly dependent on GTV reduction during treatment. Conclusions: Megavoltage CT-based image guidance can be used to position lung cancer patients daily. This has the potential to decrease margins associated with daily setup error. Furthermore, the adaptive therapy technique described in this article can decrease the volume of healthy lung tissue receiving above 20 Gy

  6. Quality Assurance of Multiport Image-Guided Minimally Invasive Surgery at the Lateral Skull Base

    Maria Nau-Hermes

    2014-01-01

    Full Text Available For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG, which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.

  7. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery.

    Yu, Zhan; Vanstalle, Marie; La Tessa, Chiara; Jiang, Guo-Liang; Durante, Marco

    2012-07-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1-10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery.

  8. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery

    Yu, Z.; Vanstalle, M.; La Tessa, C.; Durante, M.; Jiang Guoliang

    2012-01-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1-10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery. (author)

  9. Active illumination based 3D surface reconstruction and registration for image guided medialization laryngoplasty

    Jin, Ge; Lee, Sang-Joon; Hahn, James K.; Bielamowicz, Steven; Mittal, Rajat; Walsh, Raymond

    2007-03-01

    The medialization laryngoplasty is a surgical procedure to improve the voice function of the patient with vocal fold paresis and paralysis. An image guided system for the medialization laryngoplasty will help the surgeons to accurately place the implant and thus reduce the failure rates of the surgery. One of the fundamental challenges in image guided system is to accurately register the preoperative radiological data to the intraoperative anatomical structure of the patient. In this paper, we present a combined surface and fiducial based registration method to register the preoperative 3D CT data to the intraoperative surface of larynx. To accurately model the exposed surface area, a structured light based stereo vision technique is used for the surface reconstruction. We combined the gray code pattern and multi-line shifting to generate the intraoperative surface of the larynx. To register the point clouds from the intraoperative stage to the preoperative 3D CT data, a shape priori based ICP method is proposed to quickly register the two surfaces. The proposed approach is capable of tracking the fiducial markers and reconstructing the surface of larynx with no damage to the anatomical structure. We used off-the-shelf digital cameras, LCD projector and rapid 3D prototyper to develop our experimental system. The final RMS error in the registration is less than 1mm.

  10. Image guided surgery innovation with graduate students - a new lecture format

    Friebe Michael

    2015-09-01

    Full Text Available In Image Guided Surgeries (IGS, incremental innovation is normally not a technology push (technology delivered but rather a pull (by learning and working with the clinical users from understanding how these surgeries are performed. Engineers need to understand that only through proper observation, procedure know-how and subsequent analysis and evaluation, clinically relevant innovation can be generated. And, it is also essential to understand the associated health economics that could potentially come with new technological approaches. We created a new lecture format (6 ECTS for graduate students that combined the basics of image guided procedures with innovation tools (Design Thinking, Lean Engineering, Value Proposition Canvas, Innovation Games and actual visits of a surgical procedure. The students had to attend these procedures in small groups and had to identify and work on one or more innovation projects based on their observations and based on a prioritisation of medical need, pains and gains of the stakeholders, and ease of implementation. Almost 200 graduate students completed this training in the past 5 years with excellent results for the participating clinicians, and for the future engineers. This paper presents the lecture content, the setup, some statistics and results with the hope that other institutions will follow to offer similar programs that not only help the engineering students identify what clinically relevant innovation is (invention x clinical implementation, but that also pave the path for future interdisciplinary teams that will lead to incremental and disruptive innovation.

  11. MR imaging-guided cryoablation of metastatic brain tumours: initial experience in six patients

    Li, Chengli; Wu, Lebin; Song, Jiqing; Liu, Ming; Lv, Yubo; Sequeiros, Roberto Blanco

    2010-01-01

    The objective was to evaluate the initial experience and safety of magnetic resonance imaging (MRI)-guided transcranial cryoablation in cystic metastatic brain tumours. Seven cystic metastatic brain tumours in six patients were treated with cryoablation. The approval from the local ethics committee and individual patient consent were acquired before the study. Before the procedure the tumours were detected with conventional CT or MRI. The procedure was performed under local anaesthesia and conscious sedation. A 0.23-T open MRI system with optical tracking was used for procedural planning, instrument guidance and procedural monitoring of the ice ball formation. An MR-compatible, argon-based cryoablation system was used. The schedule of follow-up imaging ranged from 12 days to 12 months. Seven treatment sessions were performed. All the cryoprobes were successfully inserted into the target with one pass. All the patients tolerated the procedure well without experiencing any neurological deficits during the treatment phase or during the immediate post-treatment period. One patient died 12 days after cryoablation. MR-guided and monitored metastasis brain tumour cryoablation is technically feasible and may represent an alternative treatment in selected patients. (orig.)

  12. Image-guided conformation arc therapy for prostate cancer: Early side effects

    Soete, Guy; Verellen, Dirk; Michielsen, Dirk; Rappe, Bernard; Keuppen, Frans; Storme, Guy

    2006-01-01

    Purpose: To evaluate early side effects in prostate cancer patients treated with image-guided conformation arc therapy (IGCAT) using a minimultileaf collimator and daily X-ray-assisted patient positioning. Methods and Materials: Between May 2000 and November 2004, 238 cT1-T3N0M0 tumors were treated with doses of 70 or 78 Gy. Seventy patients also received neoadjuvant or concurrent hormonal treatment. Median follow-up is 18 months (range, 4-55 months). Radiation Therapy Oncology Group and the European Organization for Research and Treatment of Cancer toxicity scoring system was used to evaluate early side effects. Results: Grade 1, 2, and >2 acute side effects occurred in 19, 6, and 0% (gastrointestinal) and 37, 16, and 0% (genitourinary) of the patients. No relation between radiation dose and early side effects was observed. Conclusion: Patients treated with image-guided conformation arc therapy experience a low rate of Grade 2 (i.e., requiring medication) early side effects. The definitive evaluation of late side effects and biochemical control requires further follow-up

  13. Quality assurance of multiport image-guided minimally invasive surgery at the lateral skull base.

    Nau-Hermes, Maria; Schmitt, Robert; Becker, Meike; El-Hakimi, Wissam; Hansen, Stefan; Klenzner, Thomas; Schipper, Jörg

    2014-01-01

    For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG), which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.

  14. Reliability of the Bony Anatomy in Image-Guided Stereotactic Radiotherapy of Brain Metastases

    Guckenberger, Matthias; Baier, Kurt; Guenther, Iris; Richter, Anne; Wilbert, Juergen; Sauer, Otto; Vordermark, Dirk; Flentje, Michael

    2007-01-01

    Purpose: To evaluate whether the position of brain metastases remains stable between planning and treatment in cranial stereotactic radiotherapy (SRT). Methods and Materials: Eighteen patients with 20 brain metastases were treated with single-fraction (17 lesions) or hypofractionated (3 lesions) image-guided SRT. Median time interval between planning and treatment was 8 days. Before treatment a cone-beam CT (CBCT) and a conventional CT after application of i.v. contrast were acquired. Setup errors using automatic bone registration (CBCT) and manual soft-tissue registration of the brain metastases (conventional CT) were compared. Results: Tumor size was not significantly different between planning and treatment. The three-dimensional setup error (mean ± SD) was 4.0 ± 2.1 mm and 3.5 ± 2.2 mm according to the bony anatomy and the lesion itself, respectively. A highly significant correlation between automatic bone match and soft-tissue registration was seen in all three directions (r ≥ 0.88). The three-dimensional distance between the isocenter according to bone match and soft-tissue registration was 1.7 ± 0.7 mm, maximum 2.8 mm. Treatment of intracranial pressure with steroids did not influence the position of the lesion relative to the bony anatomy. Conclusion: With a time interval of approximately 1 week between planning and treatment, the bony anatomy of the skull proved to be an excellent surrogate for the target position in image-guided SRT

  15. Effectiveness of imaging-guided intra-articular injection: a comparison study between fluoroscopy and ultrasound.

    Furtado, Rita Nely Vilar; Pereira, Daniele Freitas; da Luz, Karine Rodrigues; dos Santos, Marla Francisca; Konai, Monique Sayuri; Mitraud, Sonia de Aguiar Vilela; Rosenfeld, Andre; Fernandes, Artur da Rocha Correa; Natour, Jamil

    2013-01-01

    Compare the effectiveness of ultrasound and fluoroscopy to guide intra-articular injections (IAI) in selected cases. A prospective study in our outpatient clinics at the Rheumatology Division at Universidade Federal de São Paulo (UNIFESP), Brazil, was conducted to compare the short-term (4 weeks) effectiveness of ultrasound and fluoroscopy-guided IAI in patients with rheumatic diseases. Inclusion criteria were: adults with refractory synovitis undergoing IAI with glucocorticoid. All patients had IAI performed with triamcinolone hexacetonide (20mg/ml) with varying doses according to the joint injected. A total of 71 rheumatic patients were evaluated (52 women, 44 whites). Mean age was 51.9 ± 13 years and 47 of them (66.2%) were on regular DMARD use. Analysis of the whole sample (71 patients) and hip sub-analysis (23 patients) showed that significant improvement was observed for both groups in terms of pain (P < 0.001). Global analysis also demonstrated better outcomes for patients in the FCG in terms of joint flexion (P < 0.001) and percentage change in joint flexion as compared to the USG. Likert scale score analyses demonstrated better results for the patients in the USG as compared to the FCG at the end of the study (P < 0.05). No statistically significant difference between groups was observed for any other study variable. Imaging-guided IAI improves regional pain in patients with various types of synovitis in the short term. For the vast majority of variables, no significant difference in terms of effectiveness was observed between fluoroscopy and ultrasound guided IAI.

  16. MO-DE-210-03: Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities

    Ding, K.

    2015-01-01

    Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities. It is inexpensive, portable and provides good soft tissue contrast. For challenging soft tissue targets such as pancreatic cancer, ultrasound imaging can be used in combination with pre-treatment MRI and/or CT to transfer important anatomical features for target localization at time of treatment. The non-invasive and non-ionizing nature of ultrasound imaging is particularly powerful for intra-fraction localization and monitoring. Recognizing these advantages, efforts are being made to incorporate novel robotic approaches to position and manipulate the ultrasound probe during irradiation. These recent enabling developments hold potential to bring ultrasound imaging to a new level of IGRT applications. However, many challenges, not limited to image registration, robotic deployment, probe interference and image acquisition rate, need to be addressed to realize the full potential of IGRT with ultrasound imaging. Learning Objectives: Understand the benefits and limitations in using ultrasound to augment MRI and/or CT for motion monitoring during radiation therapy delivery. Understanding passive and active robotic approaches to implement ultrasound imaging for intra-fraction monitoring. Understand issues of probe interference with radiotherapy treatment. Understand the critical clinical workflow for effective and reproducible IGRT using ultrasound guidance. The work of X.L. is supported in part by Elekta; J.W. and K.D. is supported in part by a NIH grant R01 CA161613 and by Elekta; D.H. is support in part by a NIH grant R41 CA174089

  17. MO-DE-210-03: Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities

    Ding, K. [Johns Hopkins University: Development of Intra-Fraction Soft Tissue Monitoring with Ultrasound Imaging (United States)

    2015-06-15

    Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities. It is inexpensive, portable and provides good soft tissue contrast. For challenging soft tissue targets such as pancreatic cancer, ultrasound imaging can be used in combination with pre-treatment MRI and/or CT to transfer important anatomical features for target localization at time of treatment. The non-invasive and non-ionizing nature of ultrasound imaging is particularly powerful for intra-fraction localization and monitoring. Recognizing these advantages, efforts are being made to incorporate novel robotic approaches to position and manipulate the ultrasound probe during irradiation. These recent enabling developments hold potential to bring ultrasound imaging to a new level of IGRT applications. However, many challenges, not limited to image registration, robotic deployment, probe interference and image acquisition rate, need to be addressed to realize the full potential of IGRT with ultrasound imaging. Learning Objectives: Understand the benefits and limitations in using ultrasound to augment MRI and/or CT for motion monitoring during radiation therapy delivery. Understanding passive and active robotic approaches to implement ultrasound imaging for intra-fraction monitoring. Understand issues of probe interference with radiotherapy treatment. Understand the critical clinical workflow for effective and reproducible IGRT using ultrasound guidance. The work of X.L. is supported in part by Elekta; J.W. and K.D. is supported in part by a NIH grant R01 CA161613 and by Elekta; D.H. is support in part by a NIH grant R41 CA174089.

  18. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning

    Arabi, H.; Koutsouvelis, N.; Rouzaud, M.

    2016-01-01

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial t......-CT images from conventional Dixon MRI sequences with improved bone extraction accuracy. The approach is promising for potential use in PET AC and MRI-only or hybrid PET/MRI-guided RT treatment planning. © 2016 Institute of Physics and Engineering in Medicine.......Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron em