WorldWideScience

Sample records for on-line corrosion monitoring

  1. On-line corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2004-01-01

    ), Electrochemical Noise (EN) and Zero Resistance Ammetry (ZRA). Electrochemical Resistance (ER) has also been used to measure corrosion. The method traditionally only measures corrosion off-line but with newly developed high-sensitive ER technique developed by MetriCorr in Denmark, on-line monitoring is possible...... complicates the chemistry of the environment. Hydrogen sulphide is present in geothermal systems and can be formed as a by-product of sulphate-reducing-bacteria (SRB). The application of electrochemical methods makes on-line monitoring possible. These methods include: Linear Polarization Resistance (LPR....... In order to assess both general corrosion and localized corrosion, it is necessary to apply more than one monitoring technique simultaneously, ZRA or EN for measuring localized corrosion and LPR or ER for measuring general corrosion rate. The advantage of monitoring localized corrosion is indisputable...

  2. On-line Corrosion Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress, ......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project.......The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress...

  3. On-line electrochemical monitoring of microbially influenced corrosion

    International Nuclear Information System (INIS)

    Dowling, N.J.E.; Stansbury, E.E.; White, D.C.; Borenstein, S.W.; Danko, J.C.

    1989-01-01

    Newly emerging electrochemical measurement techniques can provide on-line, non-destructive monitoring of the average corrosion rate and indications of localized pitting corrosion together with insight into fundamental electrochemical mechanisms responsible for the corrosion process. This information is relevant to evaluating, monitoring, understanding and controlling microbially influenced corrosion (MIC). MIC of coupons exposed in sidestream devices on site or in laboratory-based experiments, where the corrosion response is accelerated by exposure to active consortia of microbes recovered from specific sites, can be utilized to evaluate mitigation strategies. The average corrosion rates can be determined by small amplitude cyclic voltametry (SACV), and AC impedance spectroscopy (EIS). EIS can also give insight into the mechanisms of the MIC and indications of localized corrosion. Pitting corrosion can be detected non-destructively with open circuit potential monitoring (OCP). OCP also responds to bacterial biofilm activities such as oxygen depletion and other electrochemical activities. Utilizing these methods, accelerated tests can be designed to direct the selection of materials, surface treatments of materials, and welding filler materials, as well as the optimization of chemical and mechanical countermeasures with the microbial consortia recovered and characterized from the specific sites of interest

  4. On-line corrosion monitoring in geothermal district heating systems

    DEFF Research Database (Denmark)

    Richter, S.; Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2006-01-01

    General corrosion rates in the geothermal district heating systems in Iceland are generally low, of the magnitude 1 lm/y. The reason is high pH (9.5), low-conductivity (200 lm/y) and negligible dissolved oxygen. The geothermal hot water is either used directly from source or to heat up cold ground...

  5. On-line monitoring system development for single-phase flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, Na Young; Lee, Seung Gi; Ryu, Kyung Ha; Hwang, Il Soon

    2007-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover a wide area in an on-line application. We suggest an integrated approach to monitor the flow accelerated corrosion (FAC) susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible and that cover wide area, since we do not know where the FAC occurs. For this purpose, we introduce the wearing rate model which focuses on the electrochemical parameters. Using this model, we can predict the wearing rate and then compare testing results. Through analysis we identified feasibility and then developed electrochemical sensors for high temperature application; we also introduced a mechanical monitoring system which is still under development. To support the validation of the monitored results, we adopted high temperature ultrasonic transducer (UT), which shows good resolution in the testing environment. As such, all the monitored results can be compared in terms of thickness. Our validation tests demonstrated the feasibility of sensors. To support direct thickness measurement for a wide-area, the direct current potential drop (DCPD) method will be researched to integrate into the developed framework

  6. Development of on-line monitoring system for flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, N.Y.; Lee, S.G.; Hwang, I.S.; Kim, J.T.; Luk, V.K.

    2005-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover wide area in the on-line application. We suggested integrated approach to monitor the FAC-susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible, and that cover wide area, since we don't know where the FAC occurs. For this purpose, we introduced wearing rate model, which concentrates on the electrochemical parameters. By the model, we can predict the wearing rate and then can compare the testing result. After we identified feasibility by analytical way, we developed electrochemical sensors for high temperature application, and introduced mechanical monitoring system, which is still under development. To support the validation of the monitored results, we adopted high temperature UT, which shows good resolution in the testing environment. By this way, all the monitored results can be compared in terms of thickness. Validation test shows the feasibility of sensors. To support direct thickness measurement for wide-area, Direct Current Potential Drop method will be researched to integrate to the developed framework. (authors)

  7. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    International Nuclear Information System (INIS)

    Stellwag, B.; Aaltonen, P.; Hickling, J.

    1997-01-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ''on-line'' and ''in-situ'' characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. For confirmation, a complete set of sensors

  8. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Stellwag, B [Siemens AG Unternehmensbereich KWU, Erlangen (Germany); Aaltonen, P [Technical Research Centre of Finland, Espoo (Finland); Hickling, J [CML GmbH, Erlangen (Germany)

    1997-02-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ``on-line`` and ``in-situ`` characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. (Abstract Truncated)

  9. A demonstration of on-line plant corrosion monitoring using thin layer activation

    International Nuclear Information System (INIS)

    Asher, J.; Webb, J.W.; Wilkins, N.J.M.; Lawrence, P.F.; UKAEA Atomic Energy Research Establishment, Harwell. Materials Development Div.)

    1981-12-01

    The corrosion of a 1 inch water pipe in an evaporative cooling system has been monitored over three periods of plant operation using thin layer activation (TLA). The corrosion rate was followed at a sensitivity of about 1 μm and clearly reflected changes in plant operation. Examination of the test section after removal, both by autoradiography and metallography revealed the extent of corrosion and pitting over the active area. (author)

  10. On-line internal corrosion monitoring and data management for remote pipelines: a technology update

    Energy Technology Data Exchange (ETDEWEB)

    Wold, Kjell; Stoen, Roar; Jenssen, Hallgeir [Roxar Flow Measurement AS, Stavanger (Norway); Carvalho, Anna Maria [Roxar do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Internal corrosion monitoring of remote pipelines can be costly and demanding on resources. Online and non-intrusive monitoring directly on the pipe wall can improve the quality of measurements, make installation more convenient and allow more efficient communication of data. The purpose of this paper is to describe a non-intrusive technology, and show examples on field installations of the system. Furthermore, the non-intrusive technology data can be stored, interpreted and combined with conventional (intrusive) system information, in order to get a full picture of internal corrosion profile, corrosion rate and trends regarding the pipeline being monitored. (author)

  11. On-line water chemistry monitoring for corrosion prevention in ageing nuclear power plants

    International Nuclear Information System (INIS)

    Aaltonen, P.; Jaernstroem, R.; Kvarnstroem, R.; Chanfreau, E.

    1991-01-01

    General corrosion and consequently radiation buildup in nuclear power plants are controlled by the selection of material and the chemical environment. In power plants useful information concerning the kinetics of chemical reactions can be obtained by using high temperature, high pressure measurements for pH, conductivity and electrochemical potentials (ECP) of construction materials or redox-potential. The rates of general or uniform corrosion of materials in contact with the primary coolant are quite low and do not compromise the integrity of the primary circuit. Chemistry control should be applied in the first hand to minimize the dissolution and the transport and subsequent deposition of activated corrosion products to out-of-core regions. A computerized monitoring system for high temperature high pressure pH and electrochemical potential (ECP) has been in continuous use at the Loviisa power plant since 1988. Special emphasis has been put on learning the effect of pH and ECP control during cooldown process in order to further reduce background radiation buildup. During the shutdown for refueling outage in summer 1989 the high temperature water chemistry parameters were monitored. In addition to the high temperature water chemistry parameters concentrations of dissolved corrosion products as well as the activities of the corrosion products were measured. In this paper the results obtained through simultaneous monitoring of water chemistry parameters and concentrations of dissolved corrosion products as well as the activity measurements are presented and discussed. (author)

  12. Proceedings: On-line monitoring of corrosion an water chemistry for the electric power utility industry: An EPRI workshop held during the 12th International Corrosion Congress

    International Nuclear Information System (INIS)

    Licina, G.

    1994-03-01

    A two-day EPRI workshop on On-line Monitoring of Corrosion and Water Chemistry for the Electric Power Utility Industry included discussions on a variety of methods for the online monitoring of corrosion and water chemistry in a power plant environment. The workshop was held September 22 and 23, 1993 in Houston, Texas, as a part of the 12th International Corrosion Congress sponsored by NACE International. Methods in various stages of development, from laboratory demonstrations to in-plant monitoring, were presented by authors from all over the world. Recent developments in corrosion monitoring and the detection of specific chemical species in power plant environments have utilized a variety of electrochemical methods (both AC and DC), electrical resistance techniques, and potential drop techniques to evaluate crack extension. Other approaches, such as Raman spectroscopy of corroding surfaces, Specific ion detectors, and X-ray fluorescence and ion chromatography to analyze corrosion products have been demonstrated in the laboratory. Techniques that were described in the twenty-three technical papers included: Electrochemical noise, Electrical resistance, Field signature method, Linear polarization resistance, Neutron activation, Corrosion potential monitoring, Electrochemical detection of biofilm activity, Analysis of corrosion products by X-ray fluorescence, Potential drop method for assessing environmentally assisted crack growth, Harmonic impedance spectroscopy, Contact electric resistance, Conductivity and hydrogen sensors, Solid state methods for tracking oxygen and pH, and Raman spectroscopy. Individual papers are indexed separately

  13. On-line monitoring of wear and/or corrosion processes by thin layer activation technique

    International Nuclear Information System (INIS)

    Alexandreanu, B.; Popa-Simil, L.; Voiculescu, D.; Racolta, P.M.

    1995-01-01

    The Thin Layer Activation (TLA) principle consists in creating a radioactive layer by ion beam irradiation of a machine part subjected to wear. The method is based on the determination of the increasing radioactivity in the lubricant due to suspended wear particles and has a sensitivity threshold of about 40 μ g / cm 2 . The most used radioactive markers are 56 Co, 57 Co, 65 Zn, 51 Cr, 48 V, 124 Sb. In this paper, we have chosen to present an on-line wear level determination experiment performed for a thermal engine. The study of possible influence of a SR3 added lubricant upon the wear level of a Dacia 1410 car engine is presented, illustrating the on-line TLA based monitoring of wear for industrial uses. The examples presented outline the advantages of this method over the conventional one, like the fast response and the high sensitivity, while no dismantling of the engine is implied. (author)

  14. Development of an on-line ultrasonic system to monitor flow-accelerated corrosion of piping in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, N.Y.; Bahn, C.B.; Lee, S.G.; Kim, J.H.; Hwang, I.S.; Lee, J.H.; Kim, J.T.; Luk, V.

    2004-01-01

    Designs of contemporary nuclear power plants (NPPs) are concentrated on improving plant life as well as safety. As the nuclear industry prepares for continued operation beyond the design lifetime of existing NPP, aging management through advanced monitoring is called for. Therefore, we suggested two approaches to develop the on-line piping monitoring system. Piping located in some position is reported to go through flow accelerated corrosion (FAC). One is to monitor electrochemical parameters, ECP and pH, which can show occurrence of corrosion. The other is to monitor mechanical parameters, displacement and acceleration. These parameters are shown to change with thickness. Both measured parameters will be combined to quantify the amount of FAC of a target piping. In this paper, we report the progress of a multidisciplinary effort on monitoring of flow-induced vibration, which changes with reducing thickness. Vibration characteristics are measured using accelerometers, capacitive sensor and fiber optic sensors. To theoretically support the measurement, we analyzed the vibration mode change in a given thickness with the aid of finite element analysis assuming FAC phenomenon is represented only as thickness change. A high temperature flow loop has been developed to simulate the NPP secondary condition to show the applicability of new sensors. Ultrasonic transducer is introduced as validation purpose by directly measuring thickness. By this process, we identify performance and applicability of chosen sensors and also obtain base data for analyzing measured value in unknown conditions. (orig.)

  15. Assessment of corrosion in the flue gas cleaning system using on-line monitoring

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vendelbo Nielsen, Lars; Berggreen Petersen, Michael

    2015-01-01

    Amager unit 1 is a 350 MW multifuel suspension-fired plant commissioned in 2009 to fire biomass (straw and wood pellets). Increasing corrosion problems in the flue gas cleaning system were observed in the gas-gas preheater (GAFO), the booster fan and flue gas ducts. Chlorine containing corrosion ...

  16. Utilization of on-line corrosion monitoring in the flue gas cleaning system

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Nielsen, Lars V.; Petersen, Michael B.

    2015-01-01

    fan. The corrosion rates measured with respect to time were correlated to plant data such as load, temperature, gas composition, water content as well as change in the fuel used. From these results it is clear that many shutdowns/start-ups influence corrosion and therefore cause decreased lifetime...

  17. High temperature on-line monitoring of water chemistry and corrosion control in water cooled power reactors. Report of a co-ordinated research project 1995-1999

    International Nuclear Information System (INIS)

    2002-07-01

    This report documents the results of the Co-ordinated Research Project (CRP) on High Temperature On-line Monitoring of Water Chemistry and Corrosion in Water Cooled Power Reactors (1995-1999). This report attempts to provide both an overview of the state of the art with regard to on-line monitoring of water chemistry and corrosion in operating reactors, and technical details of the important contributions made by programme participants to the development and qualification of new monitoring techniques. The WACOL CRP is a follow-up to the WACOLIN (Investigations on Water Chemistry Control and Coolant Interaction with Fuel and Primary Circuit Materials in Water Cooled Power Reactors) CRP conducted by the IAEA from 1986 to 1991. The WACOLIN CRP, which described chemistry, corrosion and activity-transport aspects, clearly showed the influence of water chemistry on corrosion of both fuel and reactor primary-circuit components, as well as on radiation fields. It was concluded that there was a fundamental need to monitor water-chemistry parameters in real time, reliably and accurately. The objectives of the WACOL CRP were to establish recommendations for the development, qualification and plant implementation of methods and equipment for on-line monitoring of water chemistry and corrosion. Chief investigators from 18 organizations representing 15 countries provided a variety of contributions aimed at introducing proven monitoring techniques into plants on a regular basis and filling the gaps between plant operator needs and available monitoring techniques. The CRP firmly demonstrated that in situ monitoring is able to provide additional and valuable information to plant operators, e.g. ECP, high temperature pH and conductivity. Such data can be obtained promptly, i.e. in real time and with a high degree of accuracy. Reliable techniques and sensor devices are available which enable plant operators to obtain additional information on the response of structural materials in

  18. Effect of water chemistry on flow accelerated corrosion rate of carbon steel measured by on-line corrosion-monitoring system

    International Nuclear Information System (INIS)

    Fujiwara, K.; Domae, M.; Yoneda, K.; Inada, F.

    2010-01-01

    Flow Accelerated Corrosion (FAC) of carbon steel is one of the most important subjects in coolant systems of power plants. FAC is influenced by material, flow condition, temperature, and water chemistry. Iron and chromium solubility should be the most effective factor to determine the effect of water chemistry on the FAC. It is very important to evaluate the correlation between the solubility and the FAC rate of the carbon steel. In the present study, the effects of pH and Cr concentration of material on the FAC rate of carbon steel were evaluated by using high temperature loop equipment with on-line corrosion-monitoring system. Effect of dissolved oxygen concentration at pH 7 was also evaluated. The experimental FAC rates were compared with the calculation result, which was obtained from a FAC model developed previously by the authors' group. The tube specimens made of STPT 480 carbon steel were used for the FAC tests. The Cr concentration of STPT 480 was specially adjusted to 0.001 and 0.08 %. The inner diameters of the tubes were 1.6, 2.4, and 3.2 mm. The solutions were fed to the specimens with the flow rate of 1.5 l/min. The temperature of the solution at the specimen was controlled at 140 o C. Test solutions were demineralized water or NH 3 solutions of pH 8.0, 9.2, and 10.0. The increase in pH more than 9 decreased the FAC rates of both 0.001 and 0.08 % Cr specimens at 140 o C. Increase of the Cr concentration of the material decreased the FAC rate in the solution of pH 7.0, 8.0, 9.2, and 10.0. The FAC model reproduced well dependence of the experimental FAC behavior on water chemistry. It was confirmed that effect of pH and Cr concentration of material on the FAC rate were closely related to the solubility and diffusion of iron and chromium. (author)

  19. Corrosion Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Russ Braunling

    2004-10-31

    The Corrosion Monitoring System (CMS) program developed and demonstrated a continuously on-line system that provides real-time corrosion information. The program focused on detecting pitting corrosion in its early stages. A new invention called the Intelligent Ultrasonic Probe (IUP) was patented on the program. The IUP uses ultrasonic guided waves to detect small defects and a Synthetic Aperture Focusing Technique (SAFT) algorithm to provide an image of the pits. Testing of the CMS demonstrated the capability to detect pits with dimensionality in the sub-millimeter range. The CMS was tested in both the laboratory and in a pulp and paper industrial plant. The system is capable of monitoring the plant from a remote location using the internet.

  20. Corrosion strength monitoring of NPP component residual lifetime

    International Nuclear Information System (INIS)

    Denisov, V.G.; Belous, V.N.; Arzhaev, A.I.; Shuvalov, V.A.

    1994-01-01

    Importance of corrosion and fatigue monitoring; types of corrosion determine the NPP equipment life; why automated on-line corrosion and fatigue monitoring is preferable; major stages of lifetime monitoring system development; major groups of sensors for corrosion and strength monitoring system; high temperature on-line monitoring of water chemistry and corrosion; the RBMK-1000 NPP unit automatic water chemistry and corrosion monitoring scheme; examples of pitting, crevice and general corrosion forecast calculations on the basis of corrosion monitoring data; scheme of an experimental facility for water chemistry and corrosion monitoring sensor testing. 2 figs., 4 tabs

  1. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...

  2. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques......Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  3. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion......Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  4. Assessment of multi-phase movements in a gas-gathering pipeline and the relevance to on-line, real-time corrosion monitoring and inhibitor injection

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.A.; Asperger, R.G.

    1988-01-01

    A study was conducted to determine the time required for aqueous fluid to travel 100 miles (160 km) from an offshore platform in the Gulf of Mexico to landfill. If this time is short, the corrosivity of the water at landfall may be used as the basis for setting the offshore corrosion inhibitor injection rates. But, for this particular system, the traveling time was found to be long, greater than 65 days. Therefore, the corrosivity as measured on-shore can not be used for online, real-time adjustments of the offshore, corrosion inhibitor chemical pumps.

  5. On-line monitoring for calibration reduction

    International Nuclear Information System (INIS)

    Hoffmann, M.

    2005-09-01

    On-Line Monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Elimination or reduction of unnecessary field calibrations can reduce associated labour costs, reduce personnel radiation exposure, and reduce the potential for calibration errors. On-line calibration monitoring is an important technique to implement a state-based maintenance approach and reduce unnecessary field calibrations. In this report we will look at how the concept is currently applied in the industry and what the arising needs are as it becomes more commonplace. We will also look at the PEANO System, a tool developed by the Halden Project to perform signal validation and on-line calibration monitoring. Some issues will be identified that are being addressed in the further development of these tools to better serve the future needs of the industry in this area. An outline for how to improve these points and which aspects should be taken into account is described in detail. (Author)

  6. On-line monitoring for calibration reduction

    International Nuclear Information System (INIS)

    Hoffmann, Mario; Gran, Frauke Schmitt; Thunem, Harald P-J.

    2004-04-01

    On-Line Monitoring (OLM) of a channel's calibration state evaluates instrument channel performance by assessing its consistency with other plant indications. Industry and experience at several plants has shown this overall approach to be very effective in identifying instrument channels that are exhibiting degrading or inconsistent performance characteristics. The Halden Reactor Project has developed the signal validation system PEANO, which can be used to assist with the tasks of OLM. To further enhance the PEANO System for use as a calibration reduction tool, the following two additional modules have been developed; HRP Prox, which performs pre-processing and statistical analysis of signal data, Batch Monitoring Module (BMM), which is an off-line batch monitoring and reporting suite. The purpose and functionality of the HRP Prox and BMM modules are discussed in this report, as well as the improvements made to the PEANO Server to support these new modules. The Halden Reactor Project has established a Halden On-Line Monitoring User Group (HOLMUG), devoted to the discussion and implementation of on-line monitoring techniques in power plants. It is formed by utilities, vendors, regulatory bodies and research institutes that meet regularly to discuss implementation aspects of on-line monitoring, technical specification changes, cost-benefit analysis and regulatory issues. (Author)

  7. A new corrosion monitoring technique

    International Nuclear Information System (INIS)

    Brown, Gerald K.

    2000-01-01

    Internal Corrosion Monitoring has relied upon 5 basic techniques. Little improvement in performance has been achieved in any of these. Many newer internal corrosion monitoring techniques have proved of little value in the field although some have instances of success in the laboratory. Industry has many high value hydrocarbon applications requiring corrosion rate monitoring for real-time problem solving and control. The high value of assets and the cost of asset replacement makes it necessary to practice cost effective process and corrosion control with sensitivity beyond the 5 basic techniques. This new metal loss technology offers this sensitivity. Traditional metal loss technology today provides either high sensitivity with short life, or conversely, long life but with substantially reduced sensitivity. The new metal loss technology offers an improved working life of sensors without significantly compromising performance. The paper discusses the limitations of existing on-line technologies and describes the performance of a new technology. This new metal loss technology was introduced at NACE Corrosion 99'. Since that time several field projects have been completed or are ongoing. This paper will discuss the new metal loss technology and report on some of the data that has been obtained.(author)

  8. On-line chemistry monitoring for the secondary side

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Babcock and Wilcox (B and W) has developed a computerized water chemistry data acquisition and management system for nuclear plant secondary coolant systems. The Integrated Water Chemistry Monitoring System (IWCMS) provides on-line monitoring of conditions and rapid trend analysis of sampled data. So far it has been installed at GPU Three Mile Island unit 1 and at Toledo Edison Davis-Besse. The IWCMS meets the following utility needs for monitoring power plant chemistry: control of chemistry conditions to minimize corrosion and extend component/system life; continuous analysis of data from on-line detectors and grab samples; expediting of transient recovery actions with trend, alarm and evaluation capability; provision for rapid sharing of useful operational chemistry information; concentration of attention on evaluation instead of data manipulation. The system is composed of three functional parts: data acquisition hardware; PC-based computer system and customised system software. (author)

  9. The Corrosion Inhibition Characteristics of Sodium Nitrite Using an On-line Corrosion Rate Measurement System

    International Nuclear Information System (INIS)

    Park, Mal-Yong; Kang, Dae-Jin; Moon, Jeon-Soo

    2015-01-01

    An on-line corrosion rate measurement system was developed using a personal computer, a data acquisition board and program, and a 2-electrode corrosion probe. Reliability of the developed system was confirmed with through comparison test. With this system, the effect of sodium nitrite (NaNO 2 ) as a corrosion inhibitor were studied on iron and aluminum brass that were immersed in sodium chloride (NaCl) solution. Corrosion rate was measured based on the linear polarization resistance method. The corrosion rates of aluminum brass and iron in 1% NaCl solutions were measured to be 0.290 mm per year (mmpy) and 0.2134 mmpy, respectively. With the addition of 200 ppm of NO 2 - , the corrosion rates decreased to 0.0470 mmpy and 0.0254 mmpy. The addition of NO 2 - caused a decrease in corrosion rates of both aluminum brass and iron, yet the NO 2 - acted as a more effective corrosion inhibitor for iron. than aluminum brass

  10. Robust on-line monitoring of biogas processes; Robusta maettekniker on-line foer optimerad biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Aake; Hansson, Mikael; Kanerot, Mija; Krozer, Anatol; Loefving, Bjoern; Sahlin, Eskil

    2010-03-15

    Although demand for biomethane in Sweden is higher than ever, many Swedish codigestion plants are presently operated below their designed capacity. Efforts must be taken to increase the loading rate and guarantee stable operation and high availability of the plants. There are currently no commercial systems for on-line monitoring, and due to the characteristics of the material, including corrosion and tearing, robust applications have to be developed. The objective of this project was to identify and study different monitoring technologies with potential for on-line monitoring of both substrate mixtures and anaerobic digester content. Based on the prerequisites and demands at Boraas Energi och Miljoe AB's (BEMAB, the municipal energy and waste utility in the city of Boraas, Sweden) biogas plant, the extent of the problems, measurement variables and possible ways of managing these issues have been identified and prioritized. The substrate mixtures in question have a high viscosity and are inhomogeneous with variation in composition, which calls for further homogenization, dilution and filtration to achieve high precision in the necessary analyses. Studies of using different mixers and mills showed that the particle size (800 mum) needed for on-line COD measurement could not be achieved. The problem of homogenization can be avoided if indirect measurement methods are used. Laboratory tests with NIR (near-infra red spectroscopy) showed that VS can be predicted (R2=0,78) in the interval of 2-9% VS. Furthermore, impedance can give a measurement of soluble components. However, impedance is not sensitive enough to give a good measurement of total TS. Microwave technology was installed at the production plant and showed a faster response to changes in TS than the existing TS-sensor. However, due to technical problems, the evaluation only could be done during a limited period of ten days. BEMAB will continue the measurements and evaluation of the instrument. The

  11. Corrosion Monitors for Embedded Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Casias, Adrian L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

  12. DOE-EPRI On-Line Monitoring Implementation Guidelines

    International Nuclear Information System (INIS)

    E. Davis, R. Bickford

    2003-01-01

    Industry and EPRI experience at several plants has shown on-line monitoring to be very effective in identifying out-of-calibration instrument channels or indications of equipment-degradation problems. The EPRI implementation project for on-line monitoring has demonstrated the feasibility of on-line monitoring at several participating nuclear plants. The results have been very encouraging, and substantial progress is anticipated in the coming years

  13. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...

  14. On-line alkali monitoring - Part 1

    International Nuclear Information System (INIS)

    Andersson, Christer; Ljung, P.; Woxlin, H.

    1997-02-01

    As a consequence of the increased knowledge of the environmental impact of combustion based heat and power generation, the use of renewable biofuels will be increased. An obstacle associated to biofuel combustion compared to other fuels is the large release of alkali. Alkali compounds in flue gases are known to cause severe operational problems. Three of the major problems are; fouling of superheating tubes (causing reduced heat transfer and possibly corrosion), agglomeration of the bed material in fluidized beds, and poisoning of SCR catalysts. Yet another alkali related problem arises when, in order to increase the electric efficiency of combustion power plants, combined-cycle technology is used. Alkali vapour present in the fuel gas for the gas turbine is condensed to particles which increase corrosion and erosion of the turbine blades. The research on ash related operational problems has to be extended in order to ensure future use of biofuels in heat and power generation. In all successful research, adequate tools are necessary. To investigate ash related problems the key issue is to be able to perform continuous alkali measurements. This pilot study has investigated the need of continuous alkali measurements, which alkali species are harmful in the different applications and also available instrumentation capable of measuring the specific alkali species. The report gives a short summary presenting alkali related operational problems. In addition a schematic overview is given, showing the alkali species that possibly can exist in various parts of the power plant. 48 refs, 13 figs, 4 tabs

  15. On-line process control monitoring system

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Van Hare, D.R.; Prather, W.S.

    1992-01-01

    This patent describes apparatus for monitoring at a plurality of locations within a system the concentration of at least one chemical substance involved in a chemical process. It comprises plurality of process cells; first means for carrying the light; second means for carrying the light; means for producing a spectrum from the light received by the second carrying means; multiplexing means for selecting one process cell of the plurality of process cells at a time so that the producing means can produce a process spectrum from the one cell of the process cells; a reference cell for producing a reference spectrum for comparison to the process spectrum; a standard cell for producing a standard spectrum for comparison to the process spectrum; and means for comparing the reference spectrum, the standard spectrum and the process spectrum and determining the concentration of the chemical substance in the process cell

  16. An on-line adaptive core monitoring system

    International Nuclear Information System (INIS)

    Verspeek, J.A.; Bruggink, J.C.; Karuza, J.

    1997-01-01

    An on-line core monitoring system has been in operation for three years in the Dodewaard Nuclear Power Plant. The core monitor uses the on-line measured reactor data as an input for a power distribution calculation. The measurements are frequently performed. The system is used for monitoring as well as for predicting purposes. The limiting thermal hydraulic parameters are monitored as well as the pellet-clad interaction limits. The data are added to a history file used for cycle burn-up calculations and trending of parameters. The reactor states are presented through a convenient graphical user interface. (authors)

  17. Corrosion monitoring using FSM technology

    International Nuclear Information System (INIS)

    Strommen, R.; Horn, H.; Gartland, P.O.; Wold, K.; Haroun, M.

    1995-01-01

    FSM is a non-intrusive monitoring technique based on a patented principle, developed for the purpose of detection and monitoring of both general and localized corrosion, erosion, and cracking in steel and metal structures, piping systems, and vessels. Since 1991, FSM has been used for a wide range of applications, including for buried and open pipelines, process piping offshore, subsea pipelines and flowlines, applications in the nuclear power industry, and in materials, research in general. This paper describes typical applications of the FSM technology, and presents operational experience from some of the land-based and subsea installations. The paper also describes recent enhancements in the FSM technology and in the analysis of FSM readings, allowing for monitoring and detailed quantification of pitting and mesa corrosion, and of corrosion in welds

  18. Online, real-time corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress, ......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project.......The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress...

  19. Thin layer activation : on-line monitoring of metal loss in process plant

    International Nuclear Information System (INIS)

    Boulton, L.H.; Wallace, G.

    1993-01-01

    Corrosion, erosion and wear of metals is a common cause of failure in some process plant and equipment. Monitoring of these destructive effects has been done for many years to help plant engineers minimise the damage, in order to avoid unexpected failures and unscheduled shutdowns. Traditional methods of monitoring, such as standard NDT techniques, inform the engineer of what has happened, providing data such as culmulative loss of wall thickness. The modern approach to monitoring however, is to employ a technique which gives both current loss rates as well as integrated losses. Thin Layer Activation (TLA) provides on-line monitoring of corrosion, erosion and wear of metals, to a high degree of accuracy. It also gives cumulative information which can be backed up with weight-loss results if required. Thus current rather than historical loss rates are measured before any significant loss of metal has occurred. (author). 14 refs., 2 figs

  20. On-line biofilm monitoring by "BIOX" electrochemical probe.

    Science.gov (United States)

    Mollica, A; Cristiani, P

    2003-01-01

    The innovative electrochemical monitoring probe (BIOX) recently developed to improve the antifouling treatments of cooling systems in industrial plants is presented. On the basis of the good results obtained from applications on marine sites, some research has been stated to validate this technique in biofilm growth and prevention of microbial corrosion in fresh and drinking waters.

  1. Initiating Events Modeling for On-Line Risk Monitoring Application

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.

    1998-01-01

    In order to make on-line risk monitoring application of Probabilistic Risk Assessment more complete and realistic, a special attention need to be dedicated to initiating events modeling. Two different issues are of special importance: one is how to model initiating events frequency according to current plant configuration (equipment alignment and out of service status) and operating condition (weather and various activities), and the second is how to preserve dependencies between initiating events model and rest of PRA model. First, the paper will discuss how initiating events can be treated in on-line risk monitoring application. Second, practical example of initiating events modeling in EPRI's Equipment Out of Service on-line monitoring tool will be presented. Gains from application and possible improvements will be discussed in conclusion. (author)

  2. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    Energy Technology Data Exchange (ETDEWEB)

    Braga, T.G.; Asperger, R.G.

    1987-01-01

    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed in relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.

  3. An on-line monitoring system for navigation equipment

    Science.gov (United States)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  4. On-line plant-wide monitoring using neural networks

    International Nuclear Information System (INIS)

    Turkcan, E.; Ciftcioglu, O.; Eryurek, E.; Upadhyaya, B.R.

    1992-06-01

    The on-line signal analysis system designed for a multi-level mode operation using neural networks is described. The system is capable of monitoring the plant states by tracking different number of signals up to 32 simultaneously. The data used for this study were acquired from the Borssele Nuclear Power Plant (PWR type), and using the on-line monitoring system. An on-line plant-wide monitoring study using a multilayer neural network model is discussed in this paper. The back-propagation neural network algorithm is used for training the network. The technique assumes that each physical state of the power plant can be represented by a unique pattern of instrument readings which can be related to the condition of the plant. When disturbance occurs, the sensor readings undergo a transient, and form a different set of patterns which represent the new operational status. Diagnosing these patterns can be helpful in identifying this new state of the power plant. To this end, plant-wide monitoring with neutral networks is one of the new techniques in real-time applications. (author). 9 refs.; 5 figs

  5. On-line fouling monitor for heat exchangers

    International Nuclear Information System (INIS)

    Tsou, J.L.

    1995-01-01

    Biological and/or chemical fouling in utility service water system heat exchangers adversely affects operation and maintenance costs, and reduced heat transfer capability can force a power deaerating or even a plant shut down. In addition, service water heat exchanger performance is a safety issue for nuclear power plants, and the issue was highlighted by NRC in Generic Letter 89-13. Heat transfer losses due to fouling are difficult to measure and, usually, quantitative assessment of the impact of fouling is impossible. Plant operators typically measure inlet and outlet water temperatures and flow rates and then perform complex calculations for heat exchanger fouling resistance or ''cleanliness''. These direct estimates are often imprecise due to inadequate instrumentation. Electric Power Research Institute developed and patented an on-line condenser fouling monitor. This monitor may be installed in any location within the condenser; does not interfere with routine plant operations, including on-line mechanical and chemical treatment methods; and provides continuous, real-time readings of the heat transfer efficiency of the instrumented tube. This instrument can be modified to perform on-line monitoring of service water heat exchangers. This paper discusses the design, construction of the new monitor, and algorithm used to calculate service water heat exchanger fouling

  6. On-line Monitoring System for Power Transformers

    Directory of Open Access Journals (Sweden)

    Alexandru HOTEA

    2016-12-01

    Full Text Available Power transformers are the most important and expensive equipment from the electricity transmission system, so it is very important to know the real state of health of such equipment in every moment. De-energizing the power transformer accidentally due to internal defects can generate high costs. Annual maintenance proved to be ineffective in many cases to determine the internal condition of the equipment degradation due to faults rapidly evolving. An On-line Monitoring System for Power Transformers help real-time condition assessment and to detect errors early enough to take action to eliminate or minimize them. After abnormality detected, it is still important to perform full diagnostic tests to determine the exact condition of the equipment. On-line monitoring systems can help increase the level of availability and reliability of power transformers and lower costs of accidental interruption. This paper presents cases studies on several power transformers equipped with on-line monitoring systems from Transelectrica substation.

  7. Stress corrosion and corrosion fatigue crack growth monitoring in metals

    International Nuclear Information System (INIS)

    Senadheera, T.; Shipilov, S.A.

    2003-01-01

    Environmentally assisted cracking (including stress corrosion cracking and corrosion fatigue) is one of the major causes for materials failure in a wide variety of industries. It is extremely important to understand the mechanism(s) of environmentally assisted crack propagation in structural materials so as to choose correctly from among the various possibilities-alloying elements, heat treatment of steels, parameters of cathodic protection, and inhibitors-to prevent in-service failures due to stress corrosion cracking and corrosion fatigue. An important step towards understanding the mechanism of environmentally assisted crack propagation is designing a testing machine for crack growth monitoring and that simultaneously provides measurement of electrochemical parameters. In the present paper, a direct current (DC) potential drop method for monitoring crack propagation in metals and a testing machine that uses this method and allows for measuring electrochemical parameters during stress corrosion and corrosion fatigue crack growth are described. (author)

  8. On-line monitoring system for utility boiler diagnostics

    International Nuclear Information System (INIS)

    Radovanovic, P.M.; Afgan, N.H.; Caralho, M.G.

    1997-01-01

    The paper deals with the new developed modular type Monitoring System for Utility Boiler Diagnostics. Each module is intended to assess the specific process and can be used as a stand alone application. Four modules are developed, namely: LTC - module for the on-line monitoring of parameters related to the life-time consumption of selected boiler components; TRD - module for the tube rupture detection by the position and working fluid Ieakage quantity; FAM - module for the boiler surfaces fouling (slagging) assessment and FLAP - module for visualization of the boiler furnace flame position. All four modules are tested on respective pilot plants built oil the 200 and 300 MWe utility boilers. Monitoring System is commercially available and can be realized in any combination of its modules depending on demands induced by the operational problems of specific boiler. Further development of Monitoring System is performed in accordance with the respective EU project on development of Boiler Expert System. (Author)

  9. On-line monitoring of main coolant pump seals

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; Glass, S.W.; Sommerfield, G.A.; Harrison, D.

    1984-06-01

    The Babcock and Wilcox Company has developed and implemented a Reactor Coolant Pump Monitoring and Diagnostic System (RCPM and DS). The system has been installed at Toledo Edison Company's Davis-Besse Nuclear Power Station Unit 1. The RCPM and PS continuously monitors a number of indicators of pump performance and notifies the plant operator of out-of-tolerance conditions or pump performance trending toward out-of-tolerance conditions. Pump seal parameters being monitored include pump internal pressures, temperatures, and flow rates. Rotordynamic performanvce and plant operating conditions are also measured with a variety of dynamic sensors. This paper describes the implementation of the system and the results of on-line monitoring of four RC pumps

  10. In plant corrosion potential monitoring

    International Nuclear Information System (INIS)

    Rosborg, B.; Molander, A.

    1997-01-01

    Examples of in plant redox and corrosion potential monitoring in light water reactors are given. All examples are from reactors in Sweden. The measurements have either been performed in side-stream autoclaves connected to the reactor systems by sampling lines, or in-situ in the system piping itself. Potential monitoring can give quite different results depending upon the experimental method. For environments with small concentrations of oxidants sampling lines can introduce large errors. During such circumstances in-situ measurements are necessary. Electrochemical monitoring is a valuable technique as a complement to conventional water chemistry follow-up in plants. It can be used for water chemistry surveillance and can reveal unintentional and harmful water chemistry transients. (author). 15 figs

  11. In plant corrosion potential monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, B; Molander, A [Studsvik Material AB, Nykoeping (Sweden)

    1997-02-01

    Examples of in plant redox and corrosion potential monitoring in light water reactors are given. All examples are from reactors in Sweden. The measurements have either been performed in side-stream autoclaves connected to the reactor systems by sampling lines, or in-situ in the system piping itself. Potential monitoring can give quite different results depending upon the experimental method. For environments with small concentrations of oxidants sampling lines can introduce large errors. During such circumstances in-situ measurements are necessary. Electrochemical monitoring is a valuable technique as a complement to conventional water chemistry follow-up in plants. It can be used for water chemistry surveillance and can reveal unintentional and harmful water chemistry transients. (author). 15 figs.

  12. Ultrasonic monitoring of pitting corrosion

    Science.gov (United States)

    Jarvis, A. J. C.; Cegla, F. B.; Bazaz, H.; Lozev, M.

    2013-01-01

    Exposure to corrosive substances in high temperature environments can cause damage accumulation in structural steels, particularly in the chemical and petrochemical industries. The interaction mechanisms are complex and varied; however initial damage propagation often manifests itself in the form of localized areas of increased material loss. Recent development of an ultrasonic wall thickness monitoring sensor capable of withstanding temperatures in excess of 500°C has allowed permanent monitoring within such hostile environments, providing information on how the shape of a pulse which has reflected from a corroding surface can change over time. Reconstructing localized corrosion depth and position may be possible by tracking such changes in reflected pulse shape, providing extra information on the state of the backwall and whether process conditions should be altered to increase plant life. This paper aims to experimentally investigate the effect certain localized features have on reflected pulse shape by `growing' artificial defects into the backwall while wall thickness is monitored using the sensor. The size and complexity of the three dimensional scattering problem lead to the development of a semi-analytical simulation based on the distributed point source method (DPSM) which is capable of simulating pulse reflection from complex surfaces measuring approximately 17×10λ Comparison to experimental results show that amplitude changes are predicted to within approximately 1dB and that pulse shape changes are accurately modelled. All experiments were carried out at room temperature, measurements at high temperature will be studied in the future.

  13. Development of an On-Line Uranium Enrichment Monitor

    International Nuclear Information System (INIS)

    Xuesheng, L.; Guorong, L.; Yonggang, Z.; Xueyuan, H. X.-Y.

    2015-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF6 flowing through the processing pipes in centrifuge uranium enrichment plant. A NaI(Tl) detector was used to measure the count rates of the 186 keV gamma ray emitted from 235U, and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride. The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber. There are two working models for the monitor. The monitor works normally in the continuous model, When the gas's pressure in the pipe fluctuates greatly, it can work in the intermittent model, and the measurement result is very well. The background of the monitor can be measured automatically periodically. It can control automatically electromagnetic valves open and close, so as to change the gas's quantity in the chamber. It is a kind of unattended and remote monitor, all of data can be transfer to central control room. It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant by using the monitor to monitor Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade continuously. (author)

  14. On-line monitoring and inservice inspection in codes

    International Nuclear Information System (INIS)

    Bartonicek, J.; Zaiss, W.; Bath, H.R.

    1999-01-01

    The relevant regulatory codes determine the ISI tasks and the time intervals for recurrent components testing for evaluation of operation-induced damaging or ageing in order to ensure component integrity on the basis of the last available quality data. In-service quality monitoring is carried out through on-line monitoring and recurrent testing. The requirements defined by the engineering codes elaborated by various institutions are comparable, with the KTA nuclear engineering and safety codes being the most complete provisions for quality evaluation and assurance after different, defined service periods. German conventional codes for assuring component integrity provide exclusively for recurrent inspection regimes (mainly pressure tests and optical testing). The requirements defined in the KTA codes however always demanded more specific inspections relying on recurrent testing as well as on-line monitoring. Foreign codes for ensuring component integrity concentrate on NDE tasks at regular time intervals, with time intervals scope of testing activities being defined on the basis of the ASME code, section XI. (orig./CB) [de

  15. Development of an on-line radon monitoring system

    International Nuclear Information System (INIS)

    Guo Huiping; Shang Aiguo; Liu Junfeng; Zhou Chunlin; Di Yuming

    2004-01-01

    Of the actual demand by the strategic missile troops, the author has successfully developed a specially designed passive diffusion collecting chamber to collect the decay products of radon by high voltage static electricity, and using the single-chip microcomputer to reckon the radon concentration in air, which is actually a portable, continuous and automatic on-line monitoring instrument. It was made into a four-slot standard plug-in board of a NIM, and it functions as auto data memory, data process, display, over-threshold alarming and so on. (authors)

  16. On-line core monitoring with CORE MASTER / PRESTO

    International Nuclear Information System (INIS)

    Lindahl, S.O.; Borresen, S.; Ovrum, S.

    1986-01-01

    Advanced calculational tools are instrumental in improving reactor plant capacity factors and fuel utilization. The computer code package CORE MASTER is an integrated system designed to achieve this objective. The system covers all main activities in the area of in-core fuel management for boiling water reactors; design, operation support, and on-line core monitoring. CORE MASTER operates on a common data base, which defines the reactor and documents the operating history of the core and of all fuel bundles ever used

  17. Core on-line monitoring and computerized procedures systems

    International Nuclear Information System (INIS)

    Gangloff, W.C.

    1986-01-01

    The availability of operating nuclear power plants has been affected significantly by the difficulty people have in coping with the complexity of the plants and the operating procedures. Two ways to use modern computer technology to ease the burden of coping are discussed in this paper, an on-line core monitoring system with predictive capability and a computerized procedures system using live plant data. These systems reduce human errors by presenting information rather than simply data, using the computer to manipulate the data, but leaving the decisions to the plant operator

  18. On-line fatigue monitoring and margins probabilistic assessment

    International Nuclear Information System (INIS)

    Fournier, I.; Morilhat, P.

    1993-01-01

    An on-line computer aided system has been developed by Electricite de France, the French utility, for a fatigue monitoring of critical locations in the nuclear steam supply system. This tool, called fatiguemeter, includes as input data only existing plant parameters and is based on some conservative assumptions at several steps of the damage assessment (thermal boundary conditions, stress computation...). This paper presents recent developments performed toward a better assessing of margins involved in the complete analysis. The methodology is enlightened with an example showing the influence of plant parameters incertitude on the final stress computed at a PWR 900 MW unit pressurizer surge line nozzle. (author)

  19. On-line monitoring of low-level plutonium concentrations

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Huff, G.A.; Rebagay, T.V.

    1979-10-01

    An on-line monitor has been developed to assay plutonium in nitric acid solutions. The performance of the monitor has been assessed by a laboratory experimentation program using solutions with plutonium concentrations from 0.1 to 10 g/l. These conditions are typical of the plutonium solutions in an input stream to a plutonium-purification cycle in a reprocessing plant following uranium/plutonium partitioning. The monitoring system can be fully automated and shows great promise for detecting and quantifying plutonium in situ, thus minimizing the reliance on traditional sampling and laboratory-analysis techniques. The total concentration and isotopic abundance of plutonium are determined by measuring the absolute intensities of the low-energy gamma rays characteristics of 238 Pu, 239 Pu, and 240 Pu nuclides by direct gamma-ray spectroscopy and computer analysis of the spectral data. The addition of a monitoring system of this type to the input stream of a plutonium-purification cycle along with other suitable monitors on the waste streams and on the product stream provides the basis for a near real-time materials control and inventory system. Results of the laboratory-evaluation program employing plutonium in solutions with isotopic compositions typical of those involved in processing light water reactor fuels are presented. The detailed design of a monitoring cell and detection system is given. The precision and accuracy of the results relative to those measured by mass spectrometry and controlled potential coulometry are also summarized

  20. Operational experience of water quality improvement accompanied by monitoring with on-line ion chromatograph

    International Nuclear Information System (INIS)

    Kobayashi, M.; Maeda, K.; Hashimoto, H.; Ishibe, T.; Usui, N.; Osumi, K.; Ishigure, K.

    1997-01-01

    Hamaoka Unit No.1 (BWR 540 MWe) of Chubu Electric Power Company, Inc. had experienced fuel failures caused by fuel cladding corrosion at the cycle 11 in 1990. This cladding corrosion was considered to be caused by a combination of cladding material susceptibility to corrosion and anomalous reactor water quality. Based on the intensive investigations on the causes of anomalous reactor water quality, several countermeasures were proposed to improve the reactor water quality for the subsequent cycles operation. As the results of countermeasures, reactor water quality of Hamaoka Unit No.1 in the cycle 12 became much better than that of any other previous cycles and neither failure nor accelerated corrosion was found in the subsequent annual inspection. As one of the countermeasures for water quality improvement, an on-line ion chromatograph has been installed on Hamaoka Unit No.1 to reinforce reactor water quality monitoring, that has enabled us to identify ion species in reactor water and to evaluate reactor water behaviour in detail. (author). 3 refs, 8 figs, 2 tab

  1. Operational experience of water quality improvement accompanied by monitoring with on-line ion chromatograph

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M; Maeda, K [Toshiba Corp., Yokohama (Japan); Hashimoto, H; Ishibe, T [Chubu Electric Power Co. Inc., Nagoya (Japan); Usui, N [Hitachi Engineering Co. Ltd., Ibaraki (Japan); Osumi, K [Hitachi Ltd., Hitachi (Japan); Ishigure, K [Tokyo Univ. (Japan)

    1997-02-01

    Hamaoka Unit No.1 (BWR 540 MWe) of Chubu Electric Power Company, Inc. had experienced fuel failures caused by fuel cladding corrosion at the cycle 11 in 1990. This cladding corrosion was considered to be caused by a combination of cladding material susceptibility to corrosion and anomalous reactor water quality. Based on the intensive investigations on the causes of anomalous reactor water quality, several countermeasures were proposed to improve the reactor water quality for the subsequent cycles operation. As the results of countermeasures, reactor water quality of Hamaoka Unit No.1 in the cycle 12 became much better than that of any other previous cycles and neither failure nor accelerated corrosion was found in the subsequent annual inspection. As one of the countermeasures for water quality improvement, an on-line ion chromatograph has been installed on Hamaoka Unit No.1 to reinforce reactor water quality monitoring, that has enabled us to identify ion species in reactor water and to evaluate reactor water behaviour in detail. (author). 3 refs, 8 figs, 2 tab.

  2. Optimising corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.; Andersen, A.

    2002-01-01

    A three-year project - financially supported by the Nordic Industrial Fund - on monitoring of corrosion in district heating systems has been initiated with participation of researchers and industrial partners in Denmark, Finland, Iceland, Norway and Sweden. The primary objective of the project...... is to improve the quality control in district heating systems by corrosion monitoring. In Danish systems electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR), high-sensitive electrical resistance (ER) technology, crevice corrosion probes, as well as weight loss coupons...

  3. On-line Monitoring of Instrumentation in Research Reactors

    International Nuclear Information System (INIS)

    2017-12-01

    This publication is the result of a benchmarking effort undertaken under the IAEA coordinated research project on improved instrumentation and control (I&C) maintenance techniques for research reactors. It lays the foundation for implementation of on-line monitoring (OLM) techniques and establishment of the validity of those for improved maintenance practices in research reactors for a number of applications such as change to condition based calibration, performance monitoring of process instrumentation systems, detection of process anomalies and to distinguish between process problems/effects and instrumentation/sensor issues. The techniques and guidance embodied in this publication will serve the research reactor community in providing the technical foundation for implementation of OLM techniques. It is intended to be used by Member States to implement I&C maintenance and to improve performance of research reactors.

  4. The Monitor System for the LHCb on-line farm

    CERN Document Server

    Bonifazi, F; Carbone, A; Galli, D; Gregori, D; Marconi, U; Peco, G; Vagnoni, V

    2005-01-01

    The aim of the LHCb on-line farm Monitor System is to keep under control all the working indicators which are relevant for the farm operation, and to set the appropriate alarms whenever an error or a critical condition comes up. Since the most stressing tasks of the farm are the data transfer and processing, relevant indicators includes the CPU and the memory load of the system, the network interface and the TCP/IP stack parameters, the rates of the interrupts raised by the network interface card and the detailed status of the running processes. The monitoring of computers’ physical conditions (temperatures, fan speeds and motherboard voltages) are the subject of a separate technical note, since they are accessed in a different way, by using the IPMI protocol.

  5. PHEBUS on-line aerosol monitor development test program

    International Nuclear Information System (INIS)

    Sprenger, M.H.; Pentecost, C.G.

    1992-03-01

    EG ampersand G Idaho, Inc. developed an on-line aerosol monitor (OLAM) for the French PHEBUS Fission Product Project. Part of the development was to manufacture and test an OLAM prototype. This report presents the results of the testing which determined the mechanical integrity of the monitor at operating temperature and pressure and performed a preliminary test of the optical system. A series of twenty different tests was conducted during the prototype testing sequence. Since no leaks were detected, the OLAM demonstrated that it could provide a pressure boundary at required test conditions. The optical and electrical system also proved its integrity by exceeding the design requirement of less than 105 optical signal drift during an actual two-hour test sequence

  6. On-line monitoring of boiling crevice chemistry evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, C.B.; Oh, S.; Park, B.G.; Hwang, I.S. [Department of Nuclear Engineering, Seoul National Univ. (Korea, Republic of); Rhee, I.H. [Department of Chemical Engineering, Soonchunhyang Univ. (Korea, Republic of); Kim, U.C.; Na, J.W. [Korea Atomic Energy Research Inst., Daejon (Korea, Republic of)

    2002-07-01

    In a locally restricted geometry on the secondary side of steam generator (SG) in a pressurized water reactor (PWR), impurities in bulk water can be concentrated by boiling process to extreme pH that may then accelerate the corrosion of tubing and adjacent materials. To simulate a real SG tubesheet crevice, a high temperature/high pressure (HT/HP) crevice simulation system was constructed. Primary water was pumped at a high flow rate through a 3/4'' outer-diameter tubing and a crevice section was made on the outer diameter (OD) side of the tubing. The simulated crevice area was monitored with thermocouples and electrodes for the measurement of temperature and electrochemical corrosion potential (ECP), respectively, in the crevice as well as free span. A secondary solution composed of 50 ppm Na and 200 ppb hydrogen (H{sub 2}) was supplied at a flow rate of about 4 L/hr. In an open tubesheet crevice with 0.15 mm radial gap and 40 mm depth, axial distributions of temperature and ECP were measured as a function of time and available superheat. Sodium hydroxide (NaOH) concentration process in the crevice and the resultant evolution of crevice boiling regions were characterized from temperature and ECP data. Measured data for an open crevice showed a similar behavior to predictions by a thermodynamic equilibrium code. Magnetite-packed crevice had much longer time to reach a steady state than open crevice. (authors)

  7. Calibration through on-line monitoring of instruments channels

    International Nuclear Information System (INIS)

    James, R.W.

    1996-01-01

    Plant technical specifications require periodic calibration of instrument channels, and this has traditionally meant calibration at fixed time intervals for nearly all instruments. Experience has shown that unnecessarily frequent calibrations reduce channel availability and reliability, impact outage durations, and increase maintenance costs. An alternative approach to satisfying existing requirements for periodic calibration consists of on-line monitoring and quantitative comparison of instrument channels during operation to identify instrument degradation and failure. A Utility Working Group has been formed by EPRI to support the technical activities necessary to achieve generic NRC acceptance of on-line monitoring of redundant instrument channels as a basis for determining when to perform calibrations. A topical report proposing NRC acceptance of this approach was submitted in August 1995, and the Working Group is currently resolving NRC technical questions. This paper describes the proposed approach and the current status of the topical report with regard to NRC review. While these activities will not preclude utilities from continuing to use existing calibration approaches, successful acceptance of this performance-based approach will allow utilities to substantially reduce the number of calibrations which are performed. Concurrent benefits will include reduced I ampersand C impact on outage durations and improved sensitivity to instrument channel performance

  8. The Westinghouse BEACON on-line core monitoring system

    International Nuclear Information System (INIS)

    Buechel, Robert J.; Boyd, William A.; Casadei, Alberto L.

    1995-01-01

    BEACON (Best Estimate Analysis of Core Operations - Nuclear), a core monitoring and operational support package developed by Westinghouse, has been installed at many operating PWRs worldwide. The BEACON system is a real-time monitoring system which can be used in plants with both fixed and movable incore detector systems and utilizes an on-line nodal model combined with core instrumentation data to provide continuous core power distribution monitoring. In addition, accurate core-predictive capabilities utilizing a full core nodal model updated according to plant operating history can be made to provide operational support. Core history information is kept and displayed to help operators anticipate core behavior and take pro-active control actions. The BEACON system has been licensed by the U.S. Nuclear Regulatory Commission for direct, continuous monitoring of DNBR and peak linear heat rate. This allows BEACON to be integrated into the plant technical specifications to permit significant relaxation of operating limitations defined by conventional technical specifications. (author). 4 refs, 2 figs, 1 tab

  9. On-line monitoring system for I-131 manufacturing labs

    International Nuclear Information System (INIS)

    Osovizky, A.; Malamud, Y.; Paran, Y.; Tal, N.; Turgeman, S.; Weinstein, M.

    1997-01-01

    An on-line monitoring and safety system has been installed in a lab for manufacturing 1-131 capsules for nuclear medicine use. Production of up to 100mCi batches is performed in shielded glove boxes. The safety system is based on a unique, 'Medi SMARTS' system (Medical Survey Mapping Automatic Radiation Tracing System), that collects continuously the radiation measurements for processing, display, and storage for future retrieval. Radiation is measured by GM tubes, data is transferred to a data processing unit, and then via a RS-485 communication line to a computer. In addition to the operational advantages and radiation levels storage, the system is being evaluated for the purpose of identifying risky stages in the process. (authors)

  10. On-line fatigue monitoring system for reactor pressure vessel

    International Nuclear Information System (INIS)

    Tokunaga, K.; Sakai, A.; Aoki, T.; Ranganath, S.; Stevens, G.L.

    1994-01-01

    A workstation-based, on-line fatigue monitoring system for tracking fatigue usage applied to an operating boiling water reactor (BWR), Tsuruga Unit-1, is described. The system uses the influence function approach and determines component stresses using temperature, pressure, and flow rate data that are made available via signal taps from previously existing plant sensors. Using plant unique influence functions developed specifically for the feedwater nozzle location, the system calculates stresses as a function of time and computed fatigue usage. The analysis method used to compute fatigue usage complies with MITI Code Notification No.501. Fatigue usage results for an entire fuel cycle are presented and compared to assumed design basis events to confirm that actual plant thermal duty is significantly less severe than originally estimated in the design basis stress report. As a result, the system provides the technical basis to more accurately evaluate actual reactor conditions as well as the justification for plant life extension. (author)

  11. On-line fatigue monitoring and probabilistic assessment of margins

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, I. [Electricite de France, 93 - Saint-Denis (France). Direction des Etudes et Recherches; Morilhat, P. [Electricite de France, 93 - Saint-Denis (France). Direction des Etudes et Recherches

    1995-01-01

    An on-line computer-aided system has been developed by Electricite de France, the French utility, for fatigue monitoring of critical locations in the nuclear steam supply system. This tool, called a fatigue meter, includes as input data plant parameters and is based on some conservative assumptions at several steps of the damage assessment (thermal boundary conditions, stress computation,..). In this paper we present recent developments performed towards a better assessment of margins involved in the complete analysis. The methodology is illustrated with an example showing the influence of uncertainty in plant parameters on the final stress computed at a pressurized water reactor 900MW unit pressurizer surge line nozzle. A second example is shown to illustrate the possibility of defining some transient archetypes. ((orig.)).

  12. Development of on-line monitoring system using smart material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung; Lee, Sang Pill; Park, Yi Hyun [Dongeui Univ., Busan (Korea, Republic of); Park, Young Chul [Donga Univ., Busan (Korea, Republic of)

    2003-07-01

    A hot press method was used to create the optimal fabrication condition for a Shape Memory Alloy(SMA) composite. The bonding strength between the matrix and the reinforcement within the SMA composite by the hot press method was more increased by cold rolling. In this study, the objective was to develop an on-line monitoring system in order to prevent the crack initiation and propagation by shape memory effect in SMA composite. Shape memory effect was used to prevent the SMA composite from crack propagation. For this system an optimal AE parameter should be determined according to the degree of damage and crack initiation. When the SMA composite was heated by the plate heater attached at the composite, the propagating cracks could be controlled by the compressive force of SMA.

  13. Development of on-line monitoring system using smart material

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Lee, Sang Pill; Park, Yi Hyun; Park, Young Chul

    2003-01-01

    A hot press method was used to create the optimal fabrication condition for a Shape Memory Alloy(SMA) composite. The bonding strength between the matrix and the reinforcement within the SMA composite by the hot press method was more increased by cold rolling. In this study, the objective was to develop an on-line monitoring system in order to prevent the crack initiation and propagation by shape memory effect in SMA composite. Shape memory effect was used to prevent the SMA composite from crack propagation. For this system an optimal AE parameter should be determined according to the degree of damage and crack initiation. When the SMA composite was heated by the plate heater attached at the composite, the propagating cracks could be controlled by the compressive force of SMA

  14. Feasibility analysis of marine ecological on-line integrated monitoring system

    Science.gov (United States)

    Chu, D. Z.; Cao, X.; Zhang, S. W.; Wu, N.; Ma, R.; Zhang, L.; Cao, L.

    2017-08-01

    The in-situ water quality sensors were susceptible to biological attachment. Moreover, sea water corrosion and wave impact damage, and many sensors scattered distribution would cause maintenance inconvenience. The paper proposed a highly integrated marine ecological on-line integrated monitoring system, which can be used inside monitoring station. All sensors were reasonably classified, the similar in series, the overall in parallel. The system composition and workflow were described. In addition, the paper proposed attention issues of the system design and corresponding solutions. Water quality multi-parameters and 5 nutrient salts as the verification index, in-situ and systematic data comparison experiment were carried out. The results showed that the data consistency of nutrient salt, PH and salinity was better. Temperature and dissolved oxygen data trend was consistent, but the data had deviation. Turbidity fluctuated greatly; the chlorophyll trend was similar with it. Aiming at the above phenomena, three points system optimization direction were proposed.

  15. Corrosion monitoring during a chemical cleaning

    International Nuclear Information System (INIS)

    Delepine, J.; Feron, D.; Roy, M.

    1994-01-01

    In order to estimate the possible corrosion induced by the chemical cleaning, a corrosion monitoring has been realized during the cleaning of the secondary circuit (including the model boiler) of ORION loop. It included coupons and electrodes and has required a preliminary setting in laboratory. The electrochemical device which was used during the chemical cleaning included two reference electrodes (Ag/AgCl) and eight metallic electrodes (carbon steel, stainless steel, Alloy 600 and Alloy 690) for free corrosion potential monitoring, three other carbon steel electrodes for instantaneous corrosion rate measurements by polarization resistance and three coupling devices with different surface ratios between carbon steel and Alloy 600. The results showed a good agreement between corrosion rates measured by weight losses on coupons or by electrochemistry (polarization resistance), and an increase of the carbon steel corrosion rate when it was coupled with Alloy 600. (authors). 5 figs., 2 tabs., 3 refs

  16. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Monitoring. 192.477... Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons... internal corrosion. Each coupon or other means of monitoring internal corrosion must be checked two times...

  17. An on-line tritium-in-water monitor

    International Nuclear Information System (INIS)

    Singh, A.N.; Ratnakaran, M.; Vohra, K.G.

    1985-01-01

    The paper describes the development and operation of a continuous on-line tritium-in-water monitor for the detection of heavy water leaks into the secondary coolant light water of a heavy water power reactor. The heart of the instrument is its plastic scintillator sponge detector, made from 5 μm thick plastic scintillator films. The sponge weighs only about 1 g and is in the form of disc of 48 mm diameter and 8 mm thickness. The total surface area of the films is about 3000 cm 2 . In the coincidence mode of counting, the detector gives 1000 cps for the passage of 3.7 x 10 4 Bq/cm 3 (1 μCi/cm 3 ) of tritiated water. The background in 6 cm thick lead shielding in the laboratory is 0.2 cps, and inside the reactor building it is below 1 cps. The monitor presently scans 18 sample lines in sequence for 5 min each and gives a printout for the activity in each line. (orig.)

  18. An on-line tritium-in-water monitor

    Science.gov (United States)

    Singh, A. N.; Ratnakaran, M.; Vohra, K. G.

    1985-05-01

    The paper describes the development and operation of a continuous on-line tritium-in-water monitor for the detection of heavy water leaks into the secondary coolant light water of a heavy water power reactor. The heart of the instrument is its plastic scintillator sponge detector, made from 5 μm thick plastic scintillator films. The sponge weighs only about 1 g and is in the form of disc of 48 mm diameter and 8 mm thickness. The total surface area of the films is about 3000 cm 2. In the coincidence mode of counting, the detector gives 1000 cps for the passage of 3.7 × 10 4 Bq/cm 3 (1 μCi/cm 3) of tritiated water. The background in 6 cm thick lead shielding in the laboratory is 0.2 cps, and inside the reactor building it is below 1 cps. The monitor presently scans 18 sample lines in sequence for 5 min each and gives a printout for the activity in each line.

  19. Corrosion potential monitoring in nuclear power environments

    International Nuclear Information System (INIS)

    Molander, A.

    2004-01-01

    Full text of publication follows: corrosion monitoring. The corrosion potential is usually an important parameter or even the prime parameter for many types of corrosion processes. One typical example of the strong influence of the corrosion potential on corrosion performance is stress corrosion of sensitized stainless steel in pure high temperature water corresponding to boiling water conditions. The use of in-plant monitoring to follow the effect of hydrogen addition to mitigate stress corrosion in boiling water reactors is now a well-established technique. However, different relations between the corrosion potential of stainless steel and the oxidant concentration have been published and only recently an improved understanding of the electrochemical reactions and other conditions that determine the corrosion potential in BWR systems have been reached. This improved knowledge will be reviewed in this paper. Electrochemical measurements has also been performed in PWR systems and mainly the feedwater system on the secondary side of PWRs. The measurements performed so far have shown that electrochemical measurements are a very sensitive tool to detect and follow oxygen transients in the feedwater system. Also determinations of the minimum hydrazine dosage to the feedwater have been performed. However, PWR secondary side monitoring has not yet been utilized to the same level as BWR hydrogen water chemistry surveillance. The future potential of corrosion potential monitoring will be discussed. Electrochemical measurements are also performed in other reactor systems and in other types of reactors. Experiences will be briefly reviewed. In a BWR on hydrogen water chemistry and in the PWR secondary system the corrosion potentials show a large variation between different system parts. To postulate the material behavior at different locations the local chemical and electrochemical conditions must be known. Thus, modeling of chemical and electrochemical conditions along

  20. Knowledge-based on-line vibration monitoring diagnose

    International Nuclear Information System (INIS)

    Johansson, L.G.; Karlsson, A.; Noeremark, A.

    1990-01-01

    ABB STAL developed some years ago a knowledge-based on-line vibration analysis system (working-name KOVA). KOVA is intended to work together with some type of vibration monitoring system, at present it is adapted to TVM 300. KOVA has no controlling function. It will only diagnose the actual situation and give the user explanations and proposals for actions to be taken. During the developing work, great experience has been gained of the features this type of system demands. This paper will present the outlines of the application and also discuss how to make diagnoses based both on general rules as well as on historical vibration cases for that particular unit (or identical units9. Another subject that this paper will outline, is the representation and evaluation of knowledge. KOVA serves as a decision-support system for the operator. Since KOVA will often give the operator more than one possible diagnosis as the cause of a fault, it is of great importance to give the operator comprehensive explanations and as many facts as possible. It is also important to rank the suggested diagnoses in some way. In KOVA these demands are effectively supported. The models and tools used to realize this functionality will be described in this paper

  1. On-line monitoring of lithium carbonate dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhu; Song, Xingfu; Wang, Jin; Luo, Yan; Yu, Jianguo [National Engineering Research Center for Integrated Utilization Salt Lake Resources, East China University of Science and Technology, Shanghai (China)

    2009-11-15

    Dissolution of lithium carbonate (Li{sub 2}CO{sub 3}) in aqueous solution was investigated using three on-line apparatuses: the concentration of Li{sub 2}CO{sub 3} was measured by electrical conductivity equipment; CLD (Chord Length Distribution) was monitored by FBRM (Focused Beam Reflectance Measurement); crystal image was observed by PVM (Particle Video Microscope). Results show dissolution rate goes up with a decrease of particle size, and with an increase in temperature; stirring speed causes little impact on dissolution; ultrasound facilitates dissolution obviously. The CLD evolution and crystal images of Li{sub 2}CO{sub 3}powders in stirred fluid were observed detailedly by FBRM and PVM during dissolution. Experimental data were fitted to Avrami model, through which the activation energy was found to be 34.35 kJ/mol. PBE (Population Balance Equation) and moment transform were introduced to calculate dissolution kinetics, obtaining correlation equations of particle size decreasing rate as a function of temperature and undersaturation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. On-line confidence monitoring during decision making.

    Science.gov (United States)

    Dotan, Dror; Meyniel, Florent; Dehaene, Stanislas

    2018-02-01

    Humans can readily assess their degree of confidence in their decisions. Two models of confidence computation have been proposed: post hoc computation using post-decision variables and heuristics, versus online computation using continuous assessment of evidence throughout the decision-making process. Here, we arbitrate between these theories by continuously monitoring finger movements during a manual sequential decision-making task. Analysis of finger kinematics indicated that subjects kept separate online records of evidence and confidence: finger deviation continuously reflected the ongoing accumulation of evidence, whereas finger speed continuously reflected the momentary degree of confidence. Furthermore, end-of-trial finger speed predicted the post-decisional subjective confidence rating. These data indicate that confidence is computed on-line, throughout the decision process. Speed-confidence correlations were previously interpreted as a post-decision heuristics, whereby slow decisions decrease subjective confidence, but our results suggest an adaptive mechanism that involves the opposite causality: by slowing down when unconfident, participants gain time to improve their decisions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sensors for on-line monitoring of water chemistry parameters for NPP`s

    Energy Technology Data Exchange (ETDEWEB)

    Alltonen, P; Maekelae, K [Technical Research Centre of Finland, Espoo (Finland)

    1997-02-01

    The on-line monitoring of the water chemistry parameters of aqueous solutions in nuclear power plants is considered essential to control corrosion phenomena. New sensors and electrodes that can be used under plant operating conditions are key components to the application of this technology. The research and development programs are running to develop practical instruments. The experimental capabilities available to research high temperature and pressure phenomena is growing rapidly. It is now possible to experimentally measure all information needed to make estimations and predictions concerning reactions taking place in the coolant of an operating reactor. However, further development of devices and practical experiences are needed to meet the requirement of power stations. (author). 8 refs, 8 figs.

  4. Sensors for on-line monitoring of water chemistry parameters for NPP's

    International Nuclear Information System (INIS)

    Alltonen, P.; Maekelae, K.

    1997-01-01

    The on-line monitoring of the water chemistry parameters of aqueous solutions in nuclear power plants is considered essential to control corrosion phenomena. New sensors and electrodes that can be used under plant operating conditions are key components to the application of this technology. The research and development programs are running to develop practical instruments. The experimental capabilities available to research high temperature and pressure phenomena is growing rapidly. It is now possible to experimentally measure all information needed to make estimations and predictions concerning reactions taking place in the coolant of an operating reactor. However, further development of devices and practical experiences are needed to meet the requirement of power stations. (author). 8 refs, 8 figs

  5. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    Science.gov (United States)

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  6. The influence of water chemistry and biocide additions on the response of an on-line biofilm monitor

    International Nuclear Information System (INIS)

    Licina, G.J.; Nekoksa, G.

    1995-01-01

    Microbiologically influenced corrosion (MIC) is a significant cause of degradation of piping and heat transfer surfaces in cooling water systems. The interaction between the metabolic processes of microorganisms attached to metallic surfaces and corrosion processes can lead to localized corrosion and rapid penetration of piping and heat exchanger tubes. On-line Monitoring of biofilm formation on Metallic Surfaces is a key both for automatic control equipment and for system operators so that mitigation activities can be initiated well before the structural integrity of piping or components is jeopardized. In addition, tracking of biofilm activity on line provides feedback useful for evaluating the effectiveness of biocide additions and optimizing the concentrations and addition schedules of biocides and other control chemicals. A probe has been developed to provide a method for determining the onset of biofilm formation on metal surfaces and tracking biofilm activity on line in a power plant or industrial environment; in fresh water and seawater environments. Experience with the system in a variety of water chemistries, and system responses to biofilm growth and subsequent destruction by biocide additions are described

  7. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    OpenAIRE

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-01-01

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is ...

  8. Integrated sensor array for on-line monitoring micro bioreactors

    NARCIS (Netherlands)

    Krommenhoek, E.E.

    2007-01-01

    The “Fed��?batch on a chip��?��?project, which was carried out in close cooperation with the Technical University of Delft, aims to miniaturize and parallelize micro bioreactors suitable for on-line screening of micro-organisms. This thesis describes an electrochemical sensor array which has been

  9. Denmark's on - line early warning radiation monitoring network

    International Nuclear Information System (INIS)

    Walmod-Larsen, O.; Lippert, J.

    1990-01-01

    In Denmark an emergency response coordination committee was set up to cope with the problems after the Chernobyl accident with participation of all relevant authorities. For help in an emergency situation the ARGOS (Accident Reporting and Guiding Operational System), system will be put into use. The ARGOS emergency evaluation computer system, which has been developed in cooperation with the Danish Environmental Protection Agency, is in operation in connection with the emergency planning for the east region of Denmark with regard to the Swedish nuclear power plant operating at Barseback. Inputs of measurement data are on-line available on data screens for evaluation in the emergency coordination centers, presented on suitable geographical maps, showing iso-contours calculated from the input. In case of an alert situation other systems can be put in operation, f.ex. mobile measuring units from the CDEPA's local, operational emergency centers. Their readings can then be put into the computing system parallel to the on-line stations and be presented by the ARGOS-system for evaluation in the emergency command centers. If another national authority in an alert situation requests a transfer of measurement data, and if this is agreed upon by the competent Danish authority, then the transfer can be arranged from the ARGOS-system, through agreed transmission channels. At present the ARGOS system is being improved and expanded by RNL to cover the whole Danish region and to present measurements from the on-line warning system

  10. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    International Nuclear Information System (INIS)

    Timmermans, E.A.H.; Groote, F.P.J. de; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly fluctuating gas composition, a high gas temperature and the presence of fly ash and corrosive effluents. Since the setup is primarily intended for the analysis of combustion gases with extremely high concentrations of pollutants, not much effort has been made to achieve low detection limits. It was found that an inductively coupled argon plasma was too sensitive to molecular gas introduction. Therefore, a microwave induced plasma torch, compromising both the demands of a high durability and an effective evaporation and excitation of the analyte was used as excitation source. The analysis system has been installed at an industrial hazardous waste incinerator and successfully tested on combustion gases present above the incineration process. Abundant elements as zinc, lead and sodium could be easily monitored

  11. High sensitivity on-line monitor for radioactive effluent

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Toshimi [Tohoku Electric Power Co. Ltd., Sendai (Japan); Ishizuka, Akira; Abe, Eisuke; Inoue, Yasuhiko; Fujii, Masaaki; Kitaguchi, Hiroshi; Doi, Akira

    1983-04-01

    A new approach for a highly sensitive effluent monitor is presented. The free flow type monitor, which consists of a straightener, nozzle, monitoring section and ..gamma..-ray detector, is demonstrated to be effective in providing long term stability. The 160 start-and-stop cycles of effluent discharge were repeated in a 120-h testing period. Results showed a background increase was not observed for the free flow type monitor. The background count rate was calibrated to the lowest detection limit to be 2.2 x 10/sup -2/ Bq/ml for a 300 s measurement time.

  12. Robust signal extraction for on-line monitoring data

    NARCIS (Netherlands)

    Davies, P.L.; Fried, R.; Gather, U.

    2004-01-01

    Data from the automatic monitoring of intensive care patients exhibits trends, outliers, and level changes as well as periods of relative constancy. All this is overlaid with a high level of noise and there are dependencies between the different items measured. Current monitoring systems tend to

  13. On-line monitoring applications at nuclear power plants. A risk informed approach to calibration reduction

    International Nuclear Information System (INIS)

    Shankar, Ramesh; Hussey, Aaron; Davis, Eddie

    2003-01-01

    On-line monitoring of instrument channels provides increased information about the condition of monitored channels through accurate, more frequent evaluation of each cannel's performance over time. This type of performance monitoring is a methodology that offers an alternate approach to traditional time-directed calibration. EPRI's strategic role in on-line monitoring is to facilitate its implementation and cost-effective use in numerous applications at power plants. To this end, EPRI has sponsored an on-line monitoring implementation project at multiple nuclear plants specifically intended to install and use on-line monitoring technology. The selected on-line monitoring method is based on the Multivariate State Estimation Technique. The project has a planned three-year life; seven plants are participating in the project. The goal is to apply on-line monitoring to all types of power plant applications and document all aspects of the implementation process in a series of EPRI reports. These deliverables cover installation, modeling, optimization, and proven cost-benefit. This paper discusses the actual implementation of on-line monitoring to various nuclear plant instrument systems. Examples of detected instrument drift are provided. (author)

  14. On-line defected fuel monitoring using GFP data

    International Nuclear Information System (INIS)

    Livingstone, S.; Lewis, B.J.

    2008-01-01

    This paper describes the initial development of an on-line defected fuel diagnostic tool. The tool is based on coolant activity, and uses a quantitative and qualitative approach from existing mechanistic fission product release models, and also empirical rules based on commercial and experimental experience. The model departs from the usual methodology of analyzing steady-state fission product coolant activities, and instead uses steady-state fission product release rates calculated from the transient coolant activity data. An example of real-time defected fuel analysis work is presented using a prototype of this tool with station data. The model is in an early developmental stage, and this paper demonstrates the promising potential of this technique. (author)

  15. System for corrosion monitoring in pipeline applying fuzzy logic mathematics

    Science.gov (United States)

    Kuzyakov, O. N.; Kolosova, A. L.; Andreeva, M. A.

    2018-05-01

    A list of factors influencing corrosion rate on the external side of underground pipeline is determined. Principles of constructing a corrosion monitoring system are described; the system performance algorithm and program are elaborated. A comparative analysis of methods for calculating corrosion rate is undertaken. Fuzzy logic mathematics is applied to reduce calculations while considering a wider range of corrosion factors.

  16. Acoustic Emission for on-line reactor pressure boundary monitoring

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Pappas, R.A.

    1985-01-01

    The program objective is to develop AE for continuous surveillance to assess flaw growth in reactor pressure boundaries. Technology in the laboratory is being evaluated on structures. Results have demonstrated basic feasibility of the program objective. AE monitoring a long term fatigue test of a pressure vessel demonstrated an instrument system, and the ability to detect unexpected as well as well as known fatigue cracks. Monitoring a nuclear reactor system shows that the coolant flow noise problem is manageable and AE can be detected under simulated operating conditions

  17. On-line monitoring of methane in sewer air.

    Science.gov (United States)

    Liu, Yiwen; Sharma, Keshab R; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-10-16

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R(2) > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air.

  18. Monitoring corrosion in reinforced concrete structures

    Science.gov (United States)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  19. Ultrasonic guided wave for monitoring corrosion of steel bar

    Science.gov (United States)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  20. Monitoring corrosion and biofilm formation in nuclear plants using electrochemical methods

    International Nuclear Information System (INIS)

    Licina, G.J.; Nekoksa, G.; Ward, G.L.; Howard, R.L.; Cubicciotti, D.

    1993-01-01

    During the 1980's, degradation of piping, heat exchangers, and other components in raw water cooled systems by a variety of corrosion mechanisms became an important in the reliability and cost effectiveness of U.S. nuclear plants. General and localized corrosion, including pitting and crevice corrosion, have all been shown to be operative in nuclear plant cooling systems. Microbiologically influenced corrosion (MIC) also afflicts nuclear cooling water and service water systems. The prediction of locations to be inspected, selection of mitigation measures, and control of water treatments and maintenance planning rely upon the accuracy and sensitivity of monitoring techniques. Electrochemical methods can provide rapid measurements of corrosion and biological activity on line. The results from a corrosion monitoring study in a service water system at a fresh water cooled nuclear plant are presented. This study utilized determinations of open circuit potential and reversed potentiodynamic scans on carbon steels, Admiralty, and stainless steels (Types 304 and 316 as well as high chromium, high molybdenum ferritic and austenitic grades) to evaluate the rate and form of corrosion to be anticipated in typical service. An electrochemical method that permits the monitoring of biofilm activity on-line has been developed. Results from laboratory and in-plant exposure in a nuclear power plant system are presented

  1. On line instrument systems for monitoring steam turbogenerators

    Science.gov (United States)

    Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.

    A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.

  2. Overview of on-line core monitoring system BEACON

    International Nuclear Information System (INIS)

    Dai Qing; Chen Xiaosong

    2013-01-01

    After more than 20 years of development, key technologies embedded with such system have reached a certain degree of maturity among some foreign countries. However, domestically, there is no comparable system yet. Through in-depth research and analysis on the most widely used core monitoring system in the world, BEACON, it's hope that this will provide guidance on our independent development of the first core monitoring system in China. Excore detectors, core outlet thermocouples and incore movable detectors are used to provide measure data on the status of the core for BEACON. Under the assumption of nodal homogeneity, an effective fast group model is used to solve the diffusion equation, followed by core-wise interpolation by Green's function. Finally, reconstruction of a calculated core is fitted with measured data using the surface spline function. The most significant technological advances are core monitoring during unstable core conditions, the use of nodal expansion method to improve accuracy and the adoption of single point calibration to increase the period of recalibration for the whole core. (authors)

  3. On-line data analysis and monitoring for H1 drift chambers

    Science.gov (United States)

    Düllmann, Dirk

    1992-05-01

    The on-line monitoring, slow control and calibration of the H1 central jet chamber uses a VME multiprocessor system to perform the analysis and a connected Macintosh computer as graphical interface to the operator on shift. Task of this system are: - analysis of event data including on-line track search, - on-line calibration from normal events and testpulse events, - control of the high voltage and monitoring of settings and currents, - monitoring of temperature, pressure and mixture of the chambergas. A program package is described which controls the dataflow between data aquisition, differnt VME CPUs and Macintosh. It allows to run off-line style programs for the different tasks.

  4. Research progress of on-line automatic monitoring of chemical oxygen demand (COD) of water

    Science.gov (United States)

    Cai, Youfa; Fu, Xing; Gao, Xiaolu; Li, Lianyin

    2018-02-01

    With the increasingly stricter control of pollutant emission in China, the on-line automatic monitoring of water quality is particularly urgent. The chemical oxygen demand (COD) is a comprehensive index to measure the contamination caused by organic matters, and thus it is taken as one important index of energy-saving and emission reduction in China’s “Twelve-Five” program. So far, the COD on-line automatic monitoring instrument has played an important role in the field of sewage monitoring. This paper reviews the existing methods to achieve on-line automatic monitoring of COD, and on the basis, points out the future trend of the COD on-line automatic monitoring instruments.

  5. Semi-on-line analysis for fast and precise monitoring of bioreaction processes

    DEFF Research Database (Denmark)

    Christensen, L.H.; Marcher, J.; Schulze, Ulrik

    1996-01-01

    Monitoring of substrates and products during fermentation processes can be achieved either by on-line, in situ sensors or by semi-on-line analysis consisting of an automatic sampling step followed by an ex situ analysis of the retrieved sample. The potential risk of introducing time delays...

  6. Monitoring of fission products through on-line gamma spectrometry

    International Nuclear Information System (INIS)

    Montagnon, F.; Warlop, R.

    1989-01-01

    Under normal operating conditions, the monitoring of the possible deterioration of the pressurized water reactor core fuel rods is achieved through analysis of the radioactive fission products carried by the primary system. For acquiring results of spectrometric analyses in real time, and avoiding risks of errors linked to manual operations, CEA/DMG and EDF/SEPTEN have jointly developed an entirely automatic system. This system allows measuring permanently the primary system activity of two coupled units, with no human operation nor any handling of active coolant specimens. The PIGAL facility has been set up in the nuclear auxiliary building, common to the two units, and it is used on a demonstration basis for units 2 and 3 of the BUGEY site. This device has been patented

  7. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; Li, X.; Ottens, M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; van der Wielen, L.A.M.; Heijnen, J.J.; van den Berg, Albert

    2007-01-01

    This paper describes the design, modeling, and experimental characterization of an electrochemical sensor array for on-line monitoring of fermentor conditions in both miniaturized cell assays and in industrial scale fertnentations. The viable biomass concentration is determined from impedance

  8. Advanced on-line monitoring of power plant water/steam quality

    Energy Technology Data Exchange (ETDEWEB)

    Perboni, G.; Rocchini, G.; Sigon, F. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-03-01

    To improve the behaviour and resistance of materials in the water-steam cycle critical components (steam generator, condensate heaters, turbine) it is necessary to adopt proper actions for promoting formation and integrity of surface protective oxide layers and preventing general and localised corrosion and transport processes of corrosion products throughout the cycle. In this report two important topics are reported: steam side corrosion in the low pressure turbines induced by the `first condensate` in the final stages of the turbine, and the stability of the oxides layers as a function of the condensate chemistry, with particular attention to the transport of corrosion products to the boiler. Furthermore an innovative technique for monitoring some physico-chemical parameters at the actual fluid temperature (150-300C) using new electrochemical sensors improved by ENEL/CRAM is studied: pH, conductivity, corrosion rate, corrosion and redox potentials.ENEL/CRAM validated on lab-scale testing loops these sensors and carried out the following programs: calibration procedures, reliability of the response, long-term stability and assessment of a reduced maintenance. Applications of the electrochemical methods to fossil fired units have demonstrated their validity for monitoring the cycle chemistry and the resistance to corrosion of structural materials in real time.

  9. A Review of Field Corrosion Control and Monitoring Techniques of ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... to make informed decision and timely respond to corrosion threat before failures. Keywords: cathodic protection, corrosion mechanism, control and monitoring, ...

  10. A corrosion monitoring system for existing reinforced concrete structures.

    Science.gov (United States)

    2015-05-01

    This study evaluated a multi-parameter corrosion monitoring system for existing reinforced concrete structures in chloride-laden service environments. The system was fabricated based on a prototype concrete corrosion measurement system that : had bee...

  11. On-line Bayesian model updating for structural health monitoring

    Science.gov (United States)

    Rocchetta, Roberto; Broggi, Matteo; Huchet, Quentin; Patelli, Edoardo

    2018-03-01

    Fatigue induced cracks is a dangerous failure mechanism which affects mechanical components subject to alternating load cycles. System health monitoring should be adopted to identify cracks which can jeopardise the structure. Real-time damage detection may fail in the identification of the cracks due to different sources of uncertainty which have been poorly assessed or even fully neglected. In this paper, a novel efficient and robust procedure is used for the detection of cracks locations and lengths in mechanical components. A Bayesian model updating framework is employed, which allows accounting for relevant sources of uncertainty. The idea underpinning the approach is to identify the most probable crack consistent with the experimental measurements. To tackle the computational cost of the Bayesian approach an emulator is adopted for replacing the computationally costly Finite Element model. To improve the overall robustness of the procedure, different numerical likelihoods, measurement noises and imprecision in the value of model parameters are analysed and their effects quantified. The accuracy of the stochastic updating and the efficiency of the numerical procedure are discussed. An experimental aluminium frame and on a numerical model of a typical car suspension arm are used to demonstrate the applicability of the approach.

  12. On-line monitoring of water amount in fresh concrete by radioactive-wave method

    International Nuclear Information System (INIS)

    Kemi, T.; Arai, M.; Enomoto, S.; Suzki, K.; Kumahara, Y.

    2003-01-01

    The committee on nondestructive inspection for steel reinforced concrete structures in the Federation of Construction Materials Industries, Japan has published a proposed standard for on-line monitoring of water amount in fresh concrete by the radioactive wave method. By applying a neutron technique, water amount in fresh concrete is estimated continuously from the energy consumption of neutron due to hydrogen. A standard is discussed along with results of verification tests. Thus, on-line monitoring for water amount is proposed

  13. On-Line Monitoring of Instrument Channel Performance in Nuclear Power Plant Using PEANO

    International Nuclear Information System (INIS)

    Fantoni, Paolo F.; Hoffmann, Mario; Shankar, Ramesh; Davis, Eddie L.

    2002-01-01

    On-Line monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Industry and EPRI experience at several plants has shown this overall approach to be very effective in identifying instrument channels that are exhibiting degrading or inconsistent performance characteristics. On-Line monitoring of instrument channels provides information about the condition of the monitored channels through accurate, more frequent monitoring of each channel's performance over time. This type of performance monitoring is a methodology that offers an alternate approach to traditional time-directed calibration. On-line monitoring of these channels can provide an assessment of instrument performance and provide a basis for determining when adjustments are necessary. Elimination or reduction of unnecessary field calibrations can reduce associated labor costs, reduce personnel radiation exposure and reduce the potential for miss-calibration. PEANO is a system for on-line calibration monitoring developed in the years 1995-2000 at the Institutt for energiteknikk (IFE), Norway, which makes use of Artificial Intelligence techniques for its purpose. The system has been tested successfully in Europe in off-line tests with EDF (France), Tecnatom (Spain) and ENEA (Italy). PEANO is currently installed and used for on-line monitoring at the HBWR reactor in Halden. This paper describes the results of performance tests on PEANO with real data from a US PWR plant, in the framework of a co-operation among IFE, EPRI and Edan Engineering, to evaluate the potentials of PEANO for future installations in US nuclear plants. (authors)

  14. Development of an on-line radon monitoring apparatus and design of the on-line radon monitoring platform based on CAN bus

    International Nuclear Information System (INIS)

    Guo Huiping; Lu Ning; Shang Aiguo; Zhou Chunlin; Chen Yingfen; Yu Hongwei

    2004-12-01

    For actual demand, an idea of 'on-line monitoring' is put forward as a way of radon monitoring, instead of traditional so called 'off-line monitoring'. In this way, the apparatus has some automatic functions such as continuous monitoring, real-time alarm; thereby, there is no need for operators' intervention in each monitoring process. With technique of hardware and software design in automation's field, the authors have successfully developed the prototype and finished the scale of it in a standard radon-chamber. This apparatus is composed of detector part and secondary-instrument. The detector part is made up of a passive diffusion collecting chamber, high voltage static electricity, semiconductor detector, charge-sensitive preamplifier and forming circuit. The secondary-instrument is actually a micro-controller system, which consists of a single-chip micro-controller cored measure-controlling unit, display unit, printing unit and alarming unit. Taking this apparatus as a cell, a 'on-line Radon Monitoring Platform' based on CAN bus has been put forward, which can realize multi-points environmental radioactivity real-time monitoring radioactivity and data process. (authors)

  15. Improved hydrogen monitoring helps control corrosion

    International Nuclear Information System (INIS)

    Strauss, S.D.

    1985-01-01

    Hydrogen analyzers have long been used for corrosion monitoring in both fossil-fired boilers and nuclear steam generators. The most recent stimulus for hydrogen monitoring has been provided by cracking of recirculation piping in water reactors. This paper examines the Hydran 202N, which represents an adaption of one instrument that has been used to monitor the degradation of transformer oils and fiberoptic cables. The sensing probe consists of a flow-through cell, an isolating membrane, and a miniature hydrogen/air fuel cell. The use of Hydran 202N at several fossil-fired and nuclear plants is described and the fossilplant application related to the effectiveness of water-chemistry control for a 400 psig oil-fired boiler is examined at a refinery

  16. On-line monitoring of heavy-ion therapy using PET

    International Nuclear Information System (INIS)

    Pavlovic, M.

    2004-01-01

    In this presentation authors present results of on-line monitoring of heavy-ion therapy using PET. It is concluded that in-beam positron emission tomography is a feasible and valuable method for in-situ and non-invasive monitoring of heavy-ion therapy

  17. On-line bioprocess monitoring - an academic discipline or an industrial tool?

    DEFF Research Database (Denmark)

    Olsson, Lisbeth; Schulze, Ulrik; Nielsen, Jens Bredal

    1998-01-01

    Bioprocess monitoring capabilities are gaining increasing Importance bath in physiological studies and in bioprocess development, The present article focuses on on-line analytical systems since these represent the backbone of most bioprocess monitoring systems, both in academia and in industry. W...

  18. Electrochemical noise based corrosion monitoring: FY 2001 final report

    International Nuclear Information System (INIS)

    EDGAR, C.

    2001-01-01

    Underground storage tanks made of mild steel are used to contain radioactive waste generated by plutonium production at the Hanford Site. Corrosion of the walls of these tanks is a major issue. Corrosion monitoring and control are currently provided at the Hanford Site through a waste chemistry sampling and analysis program. In this process, tank waste is sampled, analyzed and compared to a selection of laboratory exposures of coupons in simulated waste. Tank wall corrosion is inferred by matching measured tank chemistries to the results of the laboratory simulant testing. This method is expensive, time consuming, and does not yield real-time data. Corrosion can be monitored through coupon exposure studies and a variety of electrochemical techniques. A small number of these techniques have been tried at Hanford and elsewhere within the DOE complex to determine the corrosivity of nuclear waste stored in underground tanks [1]. Coupon exposure programs, linear polarization resistance (LPR), and electrical resistance techniques have all been tried with limited degrees of success. These techniques are most effective for monitoring uniform corrosion, but are not well suited for early detection of localized forms of corrosion such as pitting and stress corrosion cracking (SCC). Pitting and SCC have been identified as the most likely modes of corrosion failure for Hanford Double Shell Tanks (DST'S) [2-3]. Over the last 20 years, a new corrosion monitoring system has shown promise in detecting localized corrosion and measuring uniform corrosion rates in process industries [4-20]. The system measures electrochemical noise (EN) generated by corrosion. The term EN is used to describe low frequency fluctuations in current and voltage associated with corrosion. In their most basic form, EN-based corrosion monitoring systems monitor and record fluctuations in current and voltage over time from electrodes immersed in an environment of interest. Laboratory studies and field

  19. Engineering Task Plan for Fourth Generation Hanford Corrosion Monitoring System

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Engineering Task Plan (ETP) describes the activities associated with the installation of cabinets containing corrosion monitoring equipment on tanks 241-AN-102 and 241-AN-107. The new cabinets (one per tank) will be installed adjacent to existing corrosion probes already installed in riser WST-RISER-016 on both tanks. The corrosion monitoring equipment to be installed utilizes the technique of electrochemical noise (EN) for monitoring waste tank corrosion. Typically, EN consists of low frequency (4 Hz) and small amplitude signals that are spontaneously generated by electrochemical reactions occurring at corroding or other surfaces. EN analysis is well suited for monitoring and identifying the onset of localized corrosion, and for measuring uniform corrosion rates. A typical EN based corrosion-monitoring system measures instantaneous fluctuations in corrosion current and potential between three nominally identical electrodes of the material of interest immersed in the environment of interest. Time-dependent fluctuations in corrosion current are described by electrochemical current noise, and time-dependent fluctuations of corrosion potential are described by electrochemical noise. The corrosion monitoring systems are designed to detect the onset of localized corrosion phenomena if tank conditions should change to allow these phenomena to occur. In addition to the EN technique, the systems also facilitate the use of the Linear Polarization Resistance (LPR) technique to collect uniform corrosion rate information. LPR measures the linearity at the origin of the polarization curve for overvoltages up to a few millivolts away from the rest potential or natural corrosion potential. The slope of the current vs. voltage plot gives information on uniform corrosion rates

  20. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  1. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  2. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  3. Acceptance Test Plan for Fourth-Generation Corrosion Monitoring Cabinet

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation

  4. On-line, real-time monitoring for petrochemical and pipeline process control applications

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Russell D.; Eden, D.C.; Cayard, M.S.; Eden, D.A.; Mclean, D.T. [InterCorr International, Inc., 14503 Bammel N. Houston, Suite 300, Houston Texas 77014 (United States); Kintz, J. [BASF Corporation, 602 Copper Rd., Freeport, Texas 77541 (United States)

    2004-07-01

    Corrosion problems in petroleum and petrochemical plants and pipeline may be inherent to the processes, but costly and damaging equipment losses are not. With the continual drive to increase productivity, while protecting both product quality, safety and the environment, corrosion must become a variable that can be continuously monitored and assessed. This millennium has seen the introduction of new 'real-time', online measurement technologies and vast improvements in methods of electronic data handling. The 'replace when it fails' approach is receding into a distant memory; facilities management today is embracing new technology, and rapidly appreciating the value it has to offer. It has offered the capabilities to increase system run time between major inspections, reduce the time and expense associated with turnaround or in-line inspections, and reduce major upsets which cause unplanned shut downs. The end result is the ability to know on a practical basis of how 'hard' facilities can be pushed before excessive corrosion damage will result, so that process engineers can understand the impact of their process control actions and implement true asset management. This paper makes reference to use of a online, real-time electrochemical corrosion monitoring system - SmartCET 1- in a plant running a mostly organic process media. It also highlights other pertinent examples where similar systems have been used to provide useful real-time information to detect system upsets, which would not have been possible otherwise. This monitoring/process control approach has operators and engineers to see, for the first time, changes in corrosion behavior caused by specific variations in process parameters. Process adjustments have been identified that reduce corrosion rates while maintaining acceptable yields and quality. The monitoring system has provided a new window into the chemistry of the process, helping chemical engineers improve their process

  5. An expert system for corrosion rate monitoring and diagnosis in the heating circuits of nuclear power plants

    International Nuclear Information System (INIS)

    Balducelli, C.; Conte, E.; Federico, A.G.; Tripi, A.; Ronchetti, C.

    1988-01-01

    The radiation field of out of core components of a water reactor primary plant depends on corrosion product equilibria. The computer programs that try to simulate the behaviour of the corrosion products and the radiation build up didn't provide good results, especially in describing several different plants with the same program. In order to obtain better results the authors decided to use a different approach, building an expert system, which performs on-line corrosion rate monitoring by means of a number of probes connected to an automatic corrosimeter, evaluates expected corrosion rate values and behaviours, and, if there are discrepancies, performs a diagnosis, providing suggestions to overcome the difficulty. (author)

  6. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    Science.gov (United States)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  7. On-Line Monitoring of Fermentation Processes by Near Infrared and Fluorescence Spectroscopy

    DEFF Research Database (Denmark)

    Svendsen, Carina

    Monitoring and control of fermentation processes is important to ensure high product yield, product quality and product consistency. More knowledge on on-line analytical techniques such as near infrared and fluorescence spectroscopy is desired in the fermentation industry to increase the efficiency...... of on-line monitoring systems. The primary aim of this thesis is to elucidate and explore the dynamics in fermentation processes by spectroscopy. Though a number of successful on-line lab-scale monitoring systems have been reported, it seems that several challenges are still met, which limits the number...... of full-scale systems implemented in industrial fermentation processes. This thesis seeks to achieve a better understanding of the techniques near infrared and fluorescence spectroscopy and thereby to solve some of the challenges that are encountered. The thesis shows the advantages of applying real...

  8. On-line data analysis and monitoring for H1 drift chambers

    International Nuclear Information System (INIS)

    Duellmann, D.

    1992-01-01

    The on-line monitoring, slow control and calibration of the H1 central jet chamber uses a VME multiprocessor system to perform the analysis and a connected Macintosh computer as graphical interface to the operator on shift. Tasks of this system are: Analysis of event data including on-line track search; on-line calibration from normal events and testpulse events; control of the high voltage and monitoring of settings and currents; monitoring of temperature, pressure and mixture of the chambergas. A program package is described which controls the dataflow between data aquisition, different VME CPUs and Macintosh. It allows to run off-line style programs for the different tasks. (orig.)

  9. Review of Artificial Neural Networks (ANN) applied to corrosion monitoring

    International Nuclear Information System (INIS)

    Mabbutt, S; Picton, P; Shaw, P; Black, S

    2012-01-01

    The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.

  10. A novel, optical, on-line bacteria sensor for monitoring drinking water quality

    DEFF Research Database (Denmark)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen

    2016-01-01

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been...... and quantifying bacteria and particles in pure and mixed suspensions, and the quantification correlates with total bacterial counts. Several field applications have demonstrated that the technology can monitor changes in the concentration of bacteria, and is thus well suited for rapid detection of critical...... conditions such as pollution events in drinking water....

  11. Monitoring on corrosion behavior of steam generator tubings

    International Nuclear Information System (INIS)

    Takamatsu, H.; Isobe, S.; Sato, M.; Arioka, K.; Tsuruta, T.

    1988-01-01

    The importance of chemistry in high temperature aqueous solutions is widely recognized for understanding corrosion phenomena in PWR SG crevice environments. Potential and pH are two important parameters, among other environmental factors affecting localized corrosion processes, such as IGA and/or SCC in SG crevices. In this article, we discuss the potential-pH-IGA/SCC diagram of Alloy 600 as a basis for evaluating the corrosion behavior of SG tubings, and two examples of monitoring, corrosion potential monitoring in the bulk secondary water and pH monitoring in simulated SG crevices. (author)

  12. On-line sodium and cover as purity monitors gas operating tools at EBR-II

    International Nuclear Information System (INIS)

    Smith, C.R.F.; Richardson, W.J.; Holmes, J.T.

    1976-01-01

    Plugging temperature indicators, electrochemical oxygen meters and hydrogen diffusion meters are the on-line sodium purity monitors now in use at EBR-II. On-line gas chromatographs are used to monitor helium, hydrogen, oxygen and nitrogen impurities in the argon cover gases. Monitors for tritium-in-sodium and for hydrocarbons-in-cover gas have been developed and are scheduled for installation in the near future. An important advantage of on-line monitors over the conventional grab-sampling techniques is the speed of response to changing reactor conditions. This helps us to identify the source of the impurity, whether the cause may be transient or constant, and take corrective action as necessary. The oxygen meter is calibrated monthly against oxygen in sodium determined by the vanadium wire equilibration method. The other instruments either do not require calibration or are self-calibrating. The ranges, sensitivity and response times of all of the on-line purity monitors has proven satisfactory under EBR-II operating conditions

  13. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Guodong Sun

    2013-12-01

    Full Text Available This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source, which monitors the corrosion events in reinforced concrete (RC structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  14. Events as power source: wireless sustainable corrosion monitoring.

    Science.gov (United States)

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  15. 40 CFR 141.42 - Special monitoring for corrosivity characteristics.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Special monitoring for corrosivity characteristics. 141.42 Section 141.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Regulations and Prohibition on Lead Use § 141.42 Special monitoring for corrosivity characteristics. (a)-(c...

  16. A new on-line leakage current monitoring system of ZnO surge arresters

    International Nuclear Information System (INIS)

    Lee, Bok-Hee; Kang, Sung-Man

    2005-01-01

    This paper presents a new on-line leakage current monitoring system of zinc oxide (ZnO) surge arresters. To effectively diagnose the deterioration of ZnO surge arresters, a new algorithm and on-line leakage current detection device, which uses the time-delay addition method, for discriminating the resistive and capacitive currents was developed to use in the aging test and durability evaluation for ZnO arrester blocks. A computer-based measurement system of the resistive leakage current, the on-line monitoring device can detect accurately the leakage currents flowing through ZnO surge arresters for power frequency ac applied voltages. The proposed on-line leakage current monitoring device of ZnO surge arresters is more highly sensitive and gives more linear response than the existing devices using the detection method of the third harmonic leakage currents. Therefore, the proposed leakage current monitoring device can be useful for predicting the defects and performance deterioration of ZnO surge arresters in power system applications

  17. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    NARCIS (Netherlands)

    Timmermans, E.A.H.; de Groote, F.P.J.; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, van der J.J.A.M.

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly

  18. On-line system for monitoring of boiling in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Tuerkcan, E.; Kozma, R.; Verhoef, J.P.; Nabeshima, K.

    1996-01-01

    An important goal of nuclear reactor instrumentation is the continuous monitoring of the state of the reactor and the detection of deviations from the normal behaviour at an early stage. Early detection of anomalies enables one to make the necessary steps in order to prevent further damage of nuclear fuel. In the present paper, an on-line core monitoring system is described by means of which boiling anomaly in nuclear reactor fuel assemblies can be detected. (author). 9 refs, 7 figs

  19. An electrochemical method for on-line monitoring of biofilm activity in cooling water using the BIoGEORGE trademark probe

    International Nuclear Information System (INIS)

    Licina, G.J.; Nekoksa, G.; Howard, R.L.

    1994-01-01

    The presence of active microorganisms on piping and components in cooling water systems can have a profound effect on the corrosion performance of such systems. Microbiologically influenced corrosion (MIC) can result in premature failures of critical and support systems, increased downtime of equipment for repairs and maintenance, and increased operating costs associated with mitigation measures. In some cases, MIC has forced premature replacement of tanks, heat exchangers, and piping systems with a severe effect on plant availability. Monitoring methods that alert plant operators that biofilm formation is occurring on pipe work and components permit the operators to initiate mitigation actions before biofouling becomes severe or MIC has occurred. An electrochemical probe to permit on-line monitoring of biofilm activity under power plant or other industrial exposure conditions is under development. This device, the BIoGEORGE trademark electrochemical biofilm monitor, permits on-line evaluations of the effects of biofilm formation upon the surfaces of passive alloys such as stainless steels exposed to cooling water environments. Benchtop experiments have shown that biofilm formation on stainless steel surfaces can be detected by an electrochemical indication well in advance of any visual evidence of biofilm or corrosion on the electrodes. The design of the probe, results of benchtop experiments, and a description of its installation at the Browns Ferry Nuclear Plant are described

  20. The design and implementation of on-line monitoring system for UHV compact shunt capacitors

    Science.gov (United States)

    Tao, Weiliang; Ni, Xuefeng; Lin, Hao; Jiang, Shengbao

    2017-08-01

    Because of the large capacity and compact structure of the UHV compact shunt capacitor, it is difficult to take effective measures to detect and prevent the faults. If the fault capacitor fails to take timely maintenance, it will pose a threat to the safe operation of the system and the life safety of the maintenance personnel. The development of UHV compact shunt capacitor on-line monitoring system can detect and record the on-line operation information of UHV compact shunt capacitors, analyze and evaluate the early fault warning signs, find out the fault capacitor or the capacitor with fault symptom, to ensure safe and reliable operation of the system.

  1. Reducing BWR O and M costs through on-line performance monitoring

    International Nuclear Information System (INIS)

    Jonas, T.; Gross, R.; Logback, F.; Josyula, R.

    1995-01-01

    Competition in the electric power industry has placed significant emphasis on reducing operating and maintenance (O and M) costs at nuclear facilities. Therefore, on-line performance monitoring to locate power losses for boiling water reactor (BWR) plants is creating tremendous interest. In addition, the ability to automate activities such as data collection, analysis, and reporting increases the efficiency of plant engineers and gives them more time to concentrate on solving plant efficiency problems. This capability is now available with a unique software product called GEBOPS. GE Nuclear Energy, in conjunction with Joint Venture partner Black and Veatch, has undertaken development of the General Electric/Black and Veatch On-line Performance System (GEBOPS), an on-line performance monitoring system for BWR plants. The experience and expertise of GE Nuclear Energy with BWR plants, coupled with the proven on-line monitoring software development experience and capability of Black and Veatch, provide the foundation for a unique product which addresses the needs of today's BWR plants

  2. Non-destructive elecrochemical monitoring of reinforcement corrosion

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn

    been widely accepted as a non-destructive ”state of the art” technique for detection of corrosion in concrete structures. And, over the last decade, the trend in corrosion monitoring has moved towards quantitative non-destructive monitoring of the corrosion rate of the steel reinforcement. A few...... corrosion rate measurement instruments have been developed and are commercially available. The main features of these instruments are the combined use of an electrochemical technique for determining the corrosion rate and a so-called ”confinement technique”, which in principle controls the polarised surface...... area of the reinforcement, i.e. the measurement area. Both on-site investigations and laboratory studies have shown that varying corrosion rates are obtained when the various commercially available instruments are used. And in the published studies, conflicting explanations are given illustrating...

  3. On-line valve monitoring at the Ormen Lange gas plant

    Energy Technology Data Exchange (ETDEWEB)

    Greenlees, R.; Hale, S. [Score Atlanta Inc., Kennesaw, Georgia (United States)

    2011-07-01

    The purpose of this presentation is to discuss replacing time and labor intensive nuclear outage activities with on line condition monitoring solutions, primarily the periodic verification of MOV functionality discussed in USNRC Generic Letter 96.05. This regulation requires that MOV age related performance degradations are properly identified and accounted for, causing utilities to have to retest valves periodically for the duration of the plants operating license. AECL designed CANDU reactors have a world class performance and safety record, with typical average annual capacity factors of 90%. The CANDU reactor design has the ability to refuel on line, as a result (a) it can be a challenge scheduling all required valve testing into limited duration outage work windows, (b) at multi unit sites, Unit 0 valves can be difficult to test because they are rarely ever out of service, (c) deuterium-oxide (heavy water) moderator is expensive to manufacture, as a result, effective through valve leakage monitoring is essential. These three factors alone make CANDU sites the most suitable candidates for on line valve monitoring systems. Nuclear industry regulations have been instrumental in the development of 'at the valve' diagnostic systems, but diagnostic testing has not typically been utilized to the same degree in other less regulated industries. However, that trend is changing, and the move toward valve diagnostics and condition monitoring has moved fastest in the offshore oil and gas industry on the Norwegian side of the North Sea. The Ormen Lange plant, located on Nyhamna Island on the west coast of Norway, operated by Shell, is one of the worlds most advanced gas processing plants. A stated maintenance goal for the plant is that 70% of the maintenance budget and spend should be based on the results of on line condition monitoring, utilizing monitoring systems equipped with switch sensing, strain gages, hydraulic and pneumatic pressure transducers and

  4. On-line valve monitoring at the Ormen Lange gas plant

    International Nuclear Information System (INIS)

    Greenlees, R.; Hale, S.

    2011-01-01

    The purpose of this presentation is to discuss replacing time and labor intensive nuclear outage activities with on line condition monitoring solutions, primarily the periodic verification of MOV functionality discussed in USNRC Generic Letter 96.05. This regulation requires that MOV age related performance degradations are properly identified and accounted for, causing utilities to have to retest valves periodically for the duration of the plants operating license. AECL designed CANDU reactors have a world class performance and safety record, with typical average annual capacity factors of 90%. The CANDU reactor design has the ability to refuel on line, as a result (a) it can be a challenge scheduling all required valve testing into limited duration outage work windows, (b) at multi unit sites, Unit 0 valves can be difficult to test because they are rarely ever out of service, (c) deuterium-oxide (heavy water) moderator is expensive to manufacture, as a result, effective through valve leakage monitoring is essential. These three factors alone make CANDU sites the most suitable candidates for on line valve monitoring systems. Nuclear industry regulations have been instrumental in the development of 'at the valve' diagnostic systems, but diagnostic testing has not typically been utilized to the same degree in other less regulated industries. However, that trend is changing, and the move toward valve diagnostics and condition monitoring has moved fastest in the offshore oil and gas industry on the Norwegian side of the North Sea. The Ormen Lange plant, located on Nyhamna Island on the west coast of Norway, operated by Shell, is one of the worlds most advanced gas processing plants. A stated maintenance goal for the plant is that 70% of the maintenance budget and spend should be based on the results of on line condition monitoring, utilizing monitoring systems equipped with switch sensing, strain gages, hydraulic and pneumatic pressure transducers and acoustic leakage

  5. Corrosion penetration monitoring of advanced ceramics in hot aqueous fluids

    Directory of Open Access Journals (Sweden)

    Klaus G. Nickel

    2004-03-01

    Full Text Available Advanced ceramics are considered as components in energy related systems, because they are known to be strong, wear and corrosion resistant in many environments, even at temperatures well exceeding 1000 °C. However, the presence of additives or impurities in important ceramics, for example those based on Silicon Nitride (Si3N4 or Al2O3 makes them vulnerable to the corrosion by hot aqueous fluids. The temperatures in this type of corrosion range from several tens of centigrade to hydrothermal conditions above 100 °C. The corrosion processes in such media depend on both pH and temperature and include often partial leaching of the ceramics, which cannot be monitored easily by classical gravimetric or electrochemical methods. Successful corrosion penetration depth monitoring by polarized reflected light optical microscopy (color changes, Micro Raman Spectroscopy (luminescence changes and SEM (porosity changes will be outlined. The corrosion process and its kinetics are monitored best by microanalysis of cross sections, Raman spectroscopy and eluate chemistry changes in addition to mass changes. Direct cross-calibrations between corrosion penetration and mechanical strength is only possible for severe corrosion. The methods outlined should be applicable to any ceramics corrosion process with partial leaching by fluids, melts or slags.

  6. On line performance monitoring for predictive maintenance [Paper No.: VIA - 2

    International Nuclear Information System (INIS)

    Gupta, R.K.; Chandra, Rajesh

    1981-01-01

    There will always be progressive deterioration in the performance of dynamic equipment due to normal inevitable wear, malfunctions, failures and other reasons. In most cases it is possible to monitor some parameters of a system which would get progressively affected with the deterioration in the health of the system. By on-line monitoring of such predetermined parameters, compared with preset base data generated for a healthy system earlier, would prove very helpful in avoiding breakdowns and in proper planning of preventive and predictive maintenance. With increasing use of on-line computerised controls the generation of design base data and also the in-built self checking feature of monitoring the equipment health can be achieved by incorporating suitable software. This type of system will be helpful in: (a) predicting the life of component, (b) prewarning the operator about impending malfunctions, (c) establishing a maintenance schedule and spare inventory, and (d) analysing the failures. This type of centralised predictive maintenance is increasingly becoming important where: (a) the number of equipments are large, (b) the operation of equipment is critical from safety criteria, and (c) the minimum safety margin in the performance of the component is to be maintained. Keeping this in mind, the Fuel Handling System of Narora Atomic Power Project and the future power plants having computerised controls will have facility for on-line performance monitoring for predictive maintenance. The paper also describes methodology of the technique in detail, with a few representative cases. (author)

  7. Development of the advanced on-line BWR core monitoring system TiARA

    International Nuclear Information System (INIS)

    Kobayashi, Yoko; Yamazaki, Hiroshi

    1996-01-01

    Development of an integrated computer environment to support plant operators and station nuclear engineers is a recent activity. In achieving this goal, an advanced on-line boiling water reactor (BWR) core monitoring system: TiARA has been developed by Toden Software. An integrated design approach was performed through the introduction of recent computer technologies, a sophisticated human/machine interface (HMI) and an advanced nodal method. The first prototype of TiARA was ready in early 1996. This prototype is now undergoing a field test at Kashiwazaki-Kariwa unit 6. After successful completion of this test, the authors will have achieved the following goals: (1) consistency between on-line core monitoring system and off-line core management system; (2) an enhanced HMI and database; (3) user-friendly operability and maintainability; (4) system development from the utilities' standpoint to fully satisfy operator needs

  8. On-line monitoring of fermentation processes using multi-wavelength fluorescence

    DEFF Research Database (Denmark)

    Odman, Peter; Petersen, Nanna; Johansen, Claus Lindvald

    2007-01-01

    . The model system considered in this work is the antibiotic production by Streptomyces coelicolor, a filamentous bacterium. In addition to predicting concentrations of biomass in the fermentation broth, the data allowed detection of different physiological states, i.e. growth phase and phosphate limitation......Fermentation processes often suffer from a lack of real-time methods for on-line determination of variables like the concentrations of nutrients and products. This work aims at investigating the possibilities of implementing an on-line fermentation monitoring system based on multi......-wavelength fluorescence (MWF). This type of sensor has previously showed promising accuracy and selectivity for in situ monitoring of cell mass and certain metabolites in bioreactors (Lantz et al., 2006). The sensor generates multivariate data outputs, which necessitate chemometric modeling for signal interpretation...

  9. A novel, optical, on-line bacteria sensor for monitoring drinking water quality.

    Science.gov (United States)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen; Smith, Christian; Dahlqvist, Mathis

    2016-04-04

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been developed. The sensor is based on 3D image recognition, and the obtained pictures are analyzed with algorithms considering 59 quantified image parameters. The sensor counts individual suspended particles and classifies them as either bacteria or abiotic particles. The technology is capable of distinguishing and quantifying bacteria and particles in pure and mixed suspensions, and the quantification correlates with total bacterial counts. Several field applications have demonstrated that the technology can monitor changes in the concentration of bacteria, and is thus well suited for rapid detection of critical conditions such as pollution events in drinking water.

  10. The use of PEANO for on-line monitoring of fossil power plants

    International Nuclear Information System (INIS)

    Fantoni, Paolo F.; Zanetta, Gian Antonio; Gregori, Luca

    2004-01-01

    This paper describes the results of the use of a combined approach of artificial neural network and fuzzy logic, implemented in the computer code PEANO, to the on-line monitoring of the steam-water cycle of a 320 MW fossil plant in Italy. First, a short review of the underlying theory is reported. Then some results are illustrated of data pre-processing, aimed at selecting the appropriate data and to address the neural networks architecture. Finally the simulation of continuous monitoring is documented and data reconciliation capability of the code is discussed in some detail. These results demonstrate that the approach provided by PEANO is very effective to validate measured signals and to track a process on-line, giving the plant operator an immediate insight of the evolution of a possible fault in sensors or system components. (Author)

  11. Instrument calibration reduction through on-line monitoring in the USA. Annex IV

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2008-01-01

    Nuclear power plants are required to calibrate important instruments once every fuel cycle. This requirement dates back more than 30 years, when commercial nuclear power plants began to operate. Based on calibration data accumulated over this period, it has been determined that the calibration of some instruments, such as pressure transmitters, do not drift enough to warrant calibration as often as once every fuel cycle. This fact, combined with human resources limitations and reduced maintenance budgets, has provided the motivation for the nuclear industry to develop new technologies for identifying drifting instruments during plant operation. Implementing these technologies allows calibration efforts to be focused on the instruments that have drifted out of tolerance, as opposed to current practice, which calls for calibration verification of almost all instruments every fuel cycle. To date, an array of technologies, referred to collectively as 'on-line calibration monitoring', has been developed to meet this objective. These technologies are based on identifying outlier sensors using techniques that compare a particular sensor's output to a calculated estimate of the actual process the sensor is measuring. If on-line monitoring data are collected during plant startup and/or shutdown periods as well as normal operation, the on-line monitoring approach can help verify the calibration of instruments over their entire operating range. Although on-line calibration monitoring is applicable to most sensors and can cover an entire instrument channel, the main application of this approach in nuclear power plants is currently for pressure transmitters (including level and flow transmitters). (author)

  12. Review of techniques for on-line monitoring and inspection of laser welding

    International Nuclear Information System (INIS)

    Shao, J; Yan, Y

    2005-01-01

    Laser welding has been applied to various industries, in particular, automotive, aerospace and microelectronics. However, traditional off-line testing of the welds is costly and inefficient. Therefore, on-line inspection systems with low cost have being developed to increase productivity and maintain high welding quality. This paper presents the applications of acoustic, optical, visual, thermal and ultrasonic techniques and latest development of laser welding monitoring. The advantages and limitations of these techniques are also discussed

  13. On-line Monitoring and Calibration Techniques in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Years of research, testing and experience in the field of sensor diagnostics have yielded many technologies which offer financial as well as operational benefits to the nuclear industry. Among these technologies are On-Line Monitoring (OLM) and On-Line Calibration of critical process monitoring sensors such as resistance temperature detectors (RTD), thermocouples, and pressure transmitters to name a few. The remote access and verification of these sensors have been shown to limit the exposure of maintenance personnel to harsh environments while at the same time effectively and efficiently diagnosing the health and performance of these sensors. In addition to sensors, technologies exist in determining not only the health of instrumentation and control (I and C) cabling that carries the signals from these sensors, but also these same cable testing techniques can be used in the remote evaluation of many end devices used in safety related operations as well. Given these advances in sensor system monitoring techniques it would seem to follow that nuclear utilities from around the world would be applying these tried and true techniques to optimize up time and to provide additional confidence in the output of processing sensors. However, although several of the world's regulatory bodies have approved of the concept of these techniques, few utilities have undertaken to fully embrace on-line monitoring and on-line calibration of nuclear process sensors. In the United States efforts are now underway, with representatives of the U.S. nuclear industry and nuclear power plant vendors to obtain generic NRC licensing for the use of OLM in nuclear power plants. If approved, generic licensing will help pave the way toward greater implementation of OLM and its related calibration techniques. (author)

  14. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    International Nuclear Information System (INIS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-01-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance ( C 2 ) and resistance ( R 2 ) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process. (paper)

  15. Unattended reaction monitoring using an automated microfluidic sampler and on-line liquid chromatography.

    Science.gov (United States)

    Patel, Darshan C; Lyu, Yaqi Fara; Gandarilla, Jorge; Doherty, Steve

    2018-04-03

    In-process sampling and analysis is an important aspect of monitoring kinetic profiles and impurity formation or rejection, both in development and during commercial manufacturing. In pharmaceutical process development, the technology of choice for a substantial portion of this analysis is high-performance liquid chromatography (HPLC). Traditionally, the sample extraction and preparation for reaction characterization have been performed manually. This can be time consuming, laborious, and impractical for long processes. Depending on the complexity of the sample preparation, there can be variability introduced by different analysts, and in some cases, the integrity of the sample can be compromised during handling. While there are commercial instruments available for on-line monitoring with HPLC, they lack capabilities in many key areas. Some do not provide integration of the sampling and analysis, while others afford limited flexibility in sample preparation. The current offerings provide a limited number of unit operations available for sample processing and no option for workflow customizability. This work describes development of a microfluidic automated program (MAP) which fully automates the sample extraction, manipulation, and on-line LC analysis. The flexible system is controlled using an intuitive Microsoft Excel based user interface. The autonomous system is capable of unattended reaction monitoring that allows flexible unit operations and workflow customization to enable complex operations and on-line sample preparation. The automated system is shown to offer advantages over manual approaches in key areas while providing consistent and reproducible in-process data. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A methodology for on-line fatigue life monitoring of Indian nuclear power plant components

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushawaha, H.S.

    1992-01-01

    Fatigue is one of the most important aging effects of nuclear power plant components. Information about accumulation of fatigue helps in assessing structural degradation of the components. This assists in-service inspection and maintenance and may also support future life extension program of a plant. In the present report a methodology is being proposed for monitoring on line fatigue life of nuclear power plant components using available plant instrumentations. Major factors affecting fatigue life of a nuclear power plant components are the fluctuations of temperature, pressure and flow rate. Green's function technique is used in on line fatigue monitoring as computation time is much less than finite element method. A code has been developed which computes temperature and stress Green's functions in 2-D and axisymmetric structure by finite element method due to unit change in various fluid parameters. A post processor has also been developed which computes the temperature and stress responses using corresponding Green's functions and actual fluctuation in fluid parameters. In this post processor, the multiple site problem is solved by superimposing single site Green's function technique. It is also shown that Green's function technique is best suited for on line fatigue life monitoring of nuclear power plant components. (author). 6 refs., 43 figs

  17. On-Line Enrichment Monitor for UF{sub 6} Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, K. D.; Boyer, B.; Favalli, A.; Goda, J. M.; Hill, T.; Keller, C.; Lombardi, M.; Paffett, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.; Parker, R.; Smith, M. K.; Swinhoe, M. T. [Los Alamos National Laboratory, Los Alamos (United States)

    2012-06-15

    This paper is a continuation of the Advanced Enrichment Monitoring Technology for UF{sub 6} Gas Centrifuge Enrichment Plant (GCEP) work, presented in the 2010 IAEA Safeguards Symposium. Here we will present the system architecture for a planned side-by-side field trial test of passive (186-keV line spectroscopy and pressure-based correction for UF{sub 6} gas density) and active (186-keV line spectroscopy and transmission measurement based correction for UF{sub 6} gas density) enrichment monitoring systems in URENCO's enrichment plant in Capenhurst. Because the pressure and transmission measurements of UF{sub 6} are complementary, additional information on the importance of the presence of light gases and the UF{sub 6} gas temperature can be obtained by cross-correlation between simultaneous measurements of transmission, pressure and 186-keV intensity. We will discuss the calibration issues and performance in the context of accurate, on-line enrichment measurement. It is hoped that a simple and accurate on-line enrichment monitor can be built using the UF{sub 6} gas pressure provided by the Operator, based on online mass spectrometer calibration, assuming a negligible (a small fraction of percent) contribution of wall deposits. Unaccounted-for wall deposits present at the initial calibration will lead to unwanted sensitivity to changes in theUF{sub 6} gas pressure and thus to error in the enrichment results. Because the accumulated deposits in the cascade header pipe have been identified as an issue for Go/No Go measurements with the Cascade Header Enrichment Monitor (CHEM) and Continuous Enrichment Monitor (CEMO), it is important to explore their effect. Therefore we present the expected uncertainty on enrichment measurements obtained by propagating the errors introduced by deposits, gas density, etc. and will discuss the options for a deposit correction during initial calibration of an On-Line Enrichment Monitor (OLEM).

  18. On-line surveillance system for Borssele nuclear power plant monitoring and diagnostics

    International Nuclear Information System (INIS)

    Tuerkcan, E.; Ciftcioglu, Oe.

    1993-08-01

    An operating on-line surveillance and diagnostic system is described where information processing for monitoring and fault diagnosis and plant maintenance are addressed. The surveillance system by means of its realtime multiprocessing, multitasking execution capabilities can perform plant-wide and wide-range monitoring for enhanced plant safety and operational reliability as well as enhanced maintenance. At the same time the system provides the possibilities for goal-oriented research and development such as estimation, filtering, verification and validation and neural networks. (orig./HP)

  19. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work to investigate acoustic emission as a non-intrusive monitor of corrosion and degradation of cemented wasteforms where the waste is a potentially reactive metal. The acoustic data collected shows good correlation with the corrosion rate as measured by hydrogen gas evolution rates and the electrochemically measured corrosion rates post cement hardening. The technique has been shown to be sensitive in detecting stress caused by expansive corrosion product within the cemented wasteform. The attenuation of the acoustic signal by the wasteform reduced the signal received by the monitoring equipment by a factor of 10 over a distance of approximately 150-400 mm, dependent on the water level in the cement. Full size packages were successfully monitored. It is concluded that the technique offers good potential for monitoring cemented containers of the more reactive metals, for example Magnox and aluminium. (author)

  20. Real time nanogravimetric monitoring of corrosion in radioactive environments

    OpenAIRE

    Tzagkaroulakis, Ioannis; Boxall, Colin

    2017-01-01

    Monitoring and understanding the mechanism of metal corrosion throughout the nuclear fuel cycle play a key role in the safe asset management of facilities. They also provide information essential for making an informed choice regarding the selection of decontamination methods for steel plant and equipment scheduled for decommissioning. Recent advances in Quartz Crystal Nanobalance (QCN) technology offer the means of monitoring corrosion in-situ, in radiologically harsh environments, in real t...

  1. On-Line Monitoring of Instrument Channel Performance: Volume 3: Applications to Nuclear Power Plant Technical Specification Instrumentation

    International Nuclear Information System (INIS)

    Davis, E.; Rasmussen, B.

    2004-01-01

    This report is a guide for a technical specification change submittal and subsequent implementation of on-line monitoring for safety-related applications. This report is the third in a three-volume set. Volume 1, ''Guidelines for Model Development and Implementation'', presents the various tasks that must be completed to prepare models for and to implement an on-line monitoring system

  2. Operation related on-line measurements of low temperature fire side corrosion during co-combustion of biomass and oil; Driftrelaterad direktmaetning av laagtemperaturkorrosion i en braensleeldad kraftvaermeanlaeggning

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Thomas [Studsvik Nuclear AB, Nykoeping (Sweden)

    2000-05-01

    A number of combustion plants have experienced corrosion attack on air preheaters and economisers when fired with biomass fuels. In certain plants the problems are great and reconstruction has been performed so that exposed components can be exchanged during operation. The electrochemical techniques offer on-line measurements of the changes in corrosion rate in the low temperature region in a waste incinerator. The purpose with this study was to evaluate the technique in a biomass fired boiler where the corrosion rate is considerable lower compared to a waste incinerator. Experiments were performed at the Haesselby plant, boiler 3, which was fired with pure biomass as well as a mixture of biomass and oil during the test period. It was found that the electrochemical technique is a useful tool for on-line measurements of the changes in corrosion rate in biomass fired utilities. Since the corrosion rate in the low temperature region is dependent on the boiler construction, electrochemical measurements give valuable information on the corrosion rate during optimisation of the fuel mixture, SNCR and temperature or the low temperature components. This is of special importance when introducing new fuels or fuel mixtures. Soot blowing is of prime importance for the total corrosion. During a few minutes an individual soot blower can initiate such a high corrosion rate that it represents the total corrosion. The material temperature is another important parameter. Above a certain temperature the corrosion rate is negligible. During co-combustion this temperature was found to be in the region 65-85 deg C. The influence of the SNCR with ammonia, with respect to corrosion, is dependent on the fuel mixture used. In utilities where acidic combustion products are formed, ammonia has a neutralising effect e.g. in Hoegdalen. At the Haesselby plant this neutralising effect was not found. During cocombustion with oil the ammonia forms ammoniahydrosulphate which increases the corrosion

  3. Development of an on-line tritium monitor with gamma-ray rejection and energy discrimination

    International Nuclear Information System (INIS)

    Cox, S.A.; Yule, T.J.; Bennett, E.F.

    1981-01-01

    With the prospect of large fusion facilities coming on-line in the not-too-distant future, it is becoming increasingly important that an on-line tritium-monitoring system be developed which is capable of detecting small amounts of released tritium. Since tritium oxide is some 400 times as hazardous as elemental tritium, it is necessary to distinguish between the two in order to properly evaluate the hazard. Presently available on-line instrumentation has marginal sensitivity, is unable to distinguish between the two forms of tritium, and has poor discrimination against background gamma radiation and air activation products. The objective of our program is to develop a monitoring system with the capability of distinguishing between the two forms of tritium, detecting tritium with a sensitivity of a fraction of an MPC/sub a/ (1 MPC/sub a/ = 5. x 10 - 6 Ci/M 3 ) for the oxide, and discriminating against gamma activity and airborne activity other than tritium

  4. On-line monitoring of monoclonal antibody formation in high density perfusion culture using FIA.

    Science.gov (United States)

    Fenge, C; Fraune, E; Freitag, R; Scheper, T; Schügerl, K

    1991-05-01

    An automated flow injection system for on-line analysis of proteins in real fermentation fluids was developed by combining the principles of stopped-flow, merging zones flow injection analysis (FIA) with antigen-antibody reactions. IgG in the sample reacted with its corresponding antibody (a-IgG) in the reagent solution. Formation of insoluble immunocomplexes resulted in an increase of the turbidity which was determined photometrically. This system was used to monitor monoclonal antibody production in high cell density perfusion culture of hybridoma cells. Perfusion was performed with a newly developed static filtration unit equipped with hydrophilic microporous tubular membranes. Different sampling devices were tested to obtain a cell-free sample stream for on-line product analysis of high molecular weight (e.g., monoclonal antibodies) and low molecular weight (e.g., glucose, lactate) medium components. In fermentation fluids a good correlation (coefficient: 0.996) between the FIA method and an ELISA test was demonstrated. In a high density perfusion cultivation process mAb formation was successfully monitored on-line over a period of 400 h using a reliable sampling system. Glucose and lactate were measured over the same period of time using a commercially available automatic analyser based on immobilized enzyme technology.

  5. The importance of on-line monitoring systems within the environmental monitoring program of the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Koenig, L.A.; Winter, M.; Schmitt, A.

    1980-10-01

    The two on-line monitoring systems used in KfK environmental monitoring should be taken as measures of accident precaution and they are restricted to measurement of gamma local dose rates and of the (β + γ)-radiation levels. One of the systems serves to monitor the KfK operational area, the second serves to monitor the surrounding communities up to a radius of 8 km. By use of two different types of detectors the first system covers a range of measurement of 10 μrem/h to 1000 rem/h. By the second system only increases in the radiation level can be detected. It allows to record accidents in which countermeasures must be taken very urgently. The two monitoring systems are described which have been operated and partly been developed at the KfK. The possibilities and limits of using them for environmental monitoring are discussed. (orig./HP) [de

  6. Development of the integrated core on-line monitoring and protection aid surveillance system

    International Nuclear Information System (INIS)

    Cho, Byung Oh; In, Wang Kee; Song, Jae Seung; Zee, Sung Quun

    1998-01-01

    The integrated Core On-line Monitoring and Protection Aid Surveillance System (COMPASS) is developed for the purpose of supporting the reactor operation, based on the three-dimensional nodal design code, MASTER. The heart of COMPASS is an adaptive nodal core simulator for the on-line calculation of three-dimensional assembly and pin power distributions which are used for the evaluation of the thermal margins and for the guide in operation. In this paper, the overall structures and the solution methods of COMPASS are described. The uncertainty of COMPASS for SMART core was also evaluated by comparing that of MASTER. The results showed that COMPASS uncertainty in power shape prediction is identical to that of the design code system, MASTER. The application of COMPASS to the analysis of peaking factor for SMART core resulted with about 4% gain in peaking factor margin when compared to COLSS

  7. Development of on-line monitoring device to detect the presence/absence of sodium vapor

    International Nuclear Information System (INIS)

    Wolson, R.D.; McPheeters, C.C.; Kremesec, V.J.; Kolba, V.M.

    1983-03-01

    A process is being developed by the Sodium Waste Technology Program at ANL-W to remove metallic sodium from scrap and waste. The final step in the process is the removal of residual metallic sodium by evaporation at temperatures up to 482 0 C (900 0 F) and at pressures of about 10 - 2 torr (1.3 Pa). Efficient operation of this process requires that the operators have a method to indicate the completion of the evaporation. This end point would signify when the chamber and scrap and waste is free of metallic sodium. It was determined that a measure of the vacuum was not sufficiently sensitive, and a research effort was undertaken to select an on-line monitoring device. In this effort, three promising methods were reviewed. The use of quadrupole mass spectrometer was recommended and an on-line device was designed for use in a Sodium Process Demonstration (SPD) Plant

  8. On-line monitoring of fluid bed granulation by photometric imaging.

    Science.gov (United States)

    Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko

    2014-11-01

    This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Design of on-line steam generator leak monitoring system based on Cherenkov counting technique

    International Nuclear Information System (INIS)

    Dileep, B.N.; D'Cruz, S.J.; Biju, P.; Jashi, K.B.; Prabhakaran, V.; Venkataramana, K.; Managanvi, S.S.

    2006-01-01

    The methodology developed by Nuclear Power Corporation of India Ltd. for identification of leaky Steam Generator (SG) by monitoring 134 I activity in the blow down water is a very high sensitive method. However, this technique can not be put into use as an on-line system. A new method of on-line detection of SG leak and identify the offending SG based on Cherenkov counting technique is explained in this paper. It identifies the leak by detecting Cherenkov radiation produced by the hard beta emitting radio nuclides escaped into feed water during leak in an operating reactor. A simulated system shows that a leak rate of 2 kg/h can be detected by the proposed system, while coolant 134 I activity is 3.7 MBq/l (100μCi/l). (author)

  10. An improved, computer-based, on-line gamma monitor for plutonium anion exchange process control

    International Nuclear Information System (INIS)

    Pope, N.G.; Marsh, S.F.

    1987-06-01

    An improved, low-cost, computer-based system has replaced a previously developed on-line gamma monitor. Both instruments continuously profile uranium, plutonium, and americium in the nitrate anion exchange process used to recover and purify plutonium at the Los Alamos Plutonium Facility. The latest system incorporates a personal computer that provides full-feature multichannel analyzer (MCA) capabilities by means of a single-slot, plug-in integrated circuit board. In addition to controlling all MCA functions, the computer program continuously corrects for gain shift and performs all other data processing functions. This Plutonium Recovery Operations Gamma Ray Energy Spectrometer System (PROGRESS) provides on-line process operational data essential for efficient operation. By identifying abnormal conditions in real time, it allows operators to take corrective actions promptly. The decision-making capability of the computer will be of increasing value as we implement automated process-control functions in the future. 4 refs., 6 figs

  11. Inexpensive on-line alcohol sensor for fermentation monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Birch, S W; Turner, A P.F.; Ashby, R E

    1987-01-01

    An inorganic electrochemical fuel cell sensor was interfaced to a microcomputer and used to measure on-line the alcohol concentration in the off-gas of a fermentor. A calibration curve was obtained for methanol (linear range 0-9 g/l) and ethanol (linear range 0-6 g/l) to relate the alcohol concentration in the fermentor liquid with that in the off-gas. The consumption of methanol in a batch fermentation of the methylotroph Ps.BB1 was monitored (sampling frequency of 5 minutes) and compared with samples taken for off-line analysis by GLC. On-line control of the methanol concentration in a fed-batch fermentation was achieved by proportional and integral control. 24 references.

  12. Alternating current techniques for corrosion monitoring in water reactor systems

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Weeks, J.R.

    1977-01-01

    Corrosion in both nuclear and fossil fueled steam generators is generally a consequence of the presence of aggressive impurities introduced into the coolant system through condenser leakage. The impurities concentrate in regions of the steam generator protected from coolant flow, in crevices or under deposited corrosion products and adjacent to heat transfer surfaces. These three factors, the aggressive impurity, crevice type areas and heat transfer surfaces appear to be the requirements for the onset of rapid corrosion. Under conditions where coolant impurities do not concentrate the corrosion rates are low, easily measured and can be accounted for by allowances in the design of the steam generator. Rapid corrosion conditions cannot be designed for and must be suppressed. The condition of the surfaces when rapid corrosion develops must be markedly different from those during normal operation and these changes should be observable using electrochemical techniques. This background formed the basis of a design of a corrosion monitoring device, work on which was initiated at BNL. The basic principles of the technique are described. The object of the work is to develop a corrosion monitoring device which can be operated with PWR steam generator secondary coolant feed water

  13. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring.

    Science.gov (United States)

    Su, Cui; Liang, Zhenhu; Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Six MSPE algorithms-derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis-were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation

  14. Steamgenerators corrosion monitoring and chemical cleanings

    International Nuclear Information System (INIS)

    Otchenashev, G.

    2001-01-01

    One of the most important secondary side water chemistry objectives is optimization of chemistry conditions to reduce materials corrosion and their products transport into steam generators. Corrosion products (mainly iron and copper oxides) can form deposits on the SG's tubes and essentially decrease their operating resource. The transport of corrosion products by the constant flowrate of feed and blowdown water depends only on their content in these streams. All the internal surfaces (walls, collectors, tubes) were covered with the tough deposit firmly connected with the surface. Corrosion under this deposit was not detected. In some places sludge unconnected with the surface was detected. The lower tubes are located the more unconnected sludge was detected. On SG bottom near the hatch the sludge thickness was about 3 cm. (R.P.)

  15. On-line liquid-effluent monitoring of sewage at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Dreicer, M.; Cate, J.L.; Rueppel, D.W.; Huntzinger, C.J.; Gonzalez, M.A.

    1982-01-01

    An automatic on line sewage effluent monitoring system has been developed. A representative fraction of the total waste stream leaving the site is monitored for pH, radiation, and metals as it passes through a detection assembly. This assembly consists of an industrial pH probe, NaI radiation detectors, and an x-ray fluorescence metal detector. A microprocessor collects, reduces and analyzes the data to determine if the levels are acceptable by established environmental limits. Currently, if preset levels are exceeded, a sample of the suspect sewage is automatically collected for further analysis, and an alarm is sent to a station where personnel can be alerted to respond on a 24-hour basis. Since at least four hours pass before LLNL effluent reaches the treatment plant, sufficient time is available to alert emergency personnel, evaluate the situation, and if necessary arrange for diversion of the material to emergency holding basins at the treatment plant. Information on the current system is presented, and progress is reported in developing an on-line tritium monitor as an addition to the assembly

  16. The development of on-line thermal performance monitors in Nuclear Electric Company's stations

    International Nuclear Information System (INIS)

    Conner, A.S.

    1992-01-01

    The paper examines the economic benefits of using on-line monitoring techniques in assisting Station Staff with the task of optimising the efficient use of reactor fuel. The role of thermal performance monitoring for detecting changes in plant condition is also examined and the way in which the data can be used by engineers to assist with the preparation of operating and maintenance programmes. To enable genuine gradual changes in plant performance to be detected when operating against a background of changing plant signal accuracy conditions, plant transducers have to be calibrated on a regular basis. This can be both costly and labour intensive. To reduce this requirement for regular calibrations, an automatic software signal verification program has been developed for use in on-line monitoring schemes. It forms part of the total unit performance calculation package and uses a whole plant model to verify plant signals. All plant signals used to calculate unit heat rate are verified typically every 15 minutes with signals going outside predetermined limits being automatically reported to the user. The program is interactive allowing the user to interrogate the condition of the signal, with respect to both its error magnitude and rate of drift outside signal limits. The program runs in real time mode on a Workstation connected directly to the plant

  17. On-line monitoring of Glucose and penicillin by sequential injection analysis

    DEFF Research Database (Denmark)

    Min, R.W.; Nielsen, Jens Bredal; Villadsen, John

    1996-01-01

    and a detector. The glucose analyzer is based on an enzymatic reaction using glucose oxidase, which converts glucose to glucono-lactone with formation of hydrogen peroxide and subsequent detection of H2O2 by a chemiluminescence reaction involving luminol. The penicillin analysis is based on formation......A sequential injection analysis (SIA) system has been developed for on-line monitoring of glucose and penicillin during cultivations of the filamentous fungus Penicillium chrysogenum. The SIA system consists of a peristaltic pump, an injection valve, two piston pumps, two multi-position valves...

  18. Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Hansen, Ole; Petersen, Peter Kalsen

    2006-01-01

    Dielectrophoresis (DEP) and flow cytometry are powerful technologies and widely applied in microfluidic systems for handling and measuring cells and particles. Here, we present a novel microchip with a DEP selective filter integrated with two microchip flow cytometers (FCs) for on-line monitoring...... of cell sorting processes. On the microchip, the DEP filter is integrated in a microfluidic channel network to sort yeast cells by positive DER The two FCs detection windows are set upstream and downstream of the DEP filter. When a cell passes through the detection windows, the light scattered by the cell...

  19. Investigation of the stochastic subspace identification method for on-line wind turbine tower monitoring

    Science.gov (United States)

    Dai, Kaoshan; Wang, Ying; Lu, Wensheng; Ren, Xiaosong; Huang, Zhenhua

    2017-04-01

    Structural health monitoring (SHM) of wind turbines has been applied in the wind energy industry to obtain their real-time vibration parameters and to ensure their optimum performance. For SHM, the accuracy of its results and the efficiency of its measurement methodology and data processing algorithm are the two major concerns. Selection of proper measurement parameters could improve such accuracy and efficiency. The Stochastic Subspace Identification (SSI) is a widely used data processing algorithm for SHM. This research discussed the accuracy and efficiency of SHM using SSI method to identify vibration parameters of on-line wind turbine towers. Proper measurement parameters, such as optimum measurement duration, are recommended.

  20. Corrosion monitoring using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  1. On-line monitoring system of PV array based on internet of things technology

    Science.gov (United States)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  2. Sensor Systems for Corrosion Monitoring in Concrete Structures

    Directory of Open Access Journals (Sweden)

    K.Kumar

    2006-05-01

    Full Text Available It is a need of permanently embedded corrosion monitoring devices to monitor the progress of corrosion problems on a new or existing reinforced concrete structures before embarking on repair or rehabilitation of the structures. Numerous devices are available for investigating corrosion problems, because no single technique exists which tells an engineer what he needs to know, namely how much damage there is on a structure now and how rapidly the damage will grow with time. In this investigation the studies on the sensors systems based on the measurements of half cell potential of rebars inside the concrete, resistivity of concrete, corrosion rate of rebars by eddy current measurements and sensing of chloride ions are reported. An integrated system consists of above sensors are fabricated and embedded into concrete. The response from each sensor was acquired and analyzed by NI hardware through LabVIEW software.

  3. Steel Bar corrosion monitoring based on encapsulated piezoelectric sensors

    Science.gov (United States)

    Xu, Ying; Tang, Tianyou

    2018-05-01

    The durability of reinforced concrete has a great impact on the structural bearing capacity, while the corrosion of steel bars is the main reason for the degradation of structural durability. In this paper, a new type of encapsulated cement based piezoelectric sensor is developed and its working performance is verified. The consistency of the finite element simulation and the experimental results shows the feasibility of monitoring the corrosion of steel bars using encapsulated piezoelectric sensors. The research results show that the corrosion conditions of the steel bars can be determined by the relative amplitude of the measured signal through the encapsulated piezoelectric sensor.

  4. An on-line monitoring system for a micro electrical discharge machining (micro-EDM) process

    International Nuclear Information System (INIS)

    Liao, Y S; Chang, T Y; Chuang, T J

    2008-01-01

    A pulse-type discriminating system to monitor the process of micro electrical discharge machining (micro-EDM) is developed and implemented. The specific features are extracted and the pulses from a RC-type power source are classified into normal, effective arc, transient short circuit and complex types. An approach to discriminate the pulse type according to three durations measured at three pre-determined voltage levels of a pulse is proposed. The developed system is verified by using simulated signals. Discrimination of the pulse trains in actual machining processes shows that the pulses are mainly the normal type for micro wire-EDM and micro-EDM milling. The pulse-type distribution varies during the micro-EDM drilling process. The percentage of complex-type pulse increases monotonically with the drilling depth. It starts to drop when the gap condition is seriously deteriorated. Accordingly, an on-line monitoring strategy for the micro-EDM drilling process is proposed

  5. Integrating shallow and deep knowledge in the design of an on-line process monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Gallanti, M.; Gilardoni, L.; Guida, G.; Stefanini, A.; Tomada, L.

    1989-01-01

    Monitoring and malfunctions diagnosis of complex industrial plants involves, in addition to shallow empirical knowledge about plant operation, also deep knowledge about structure and function. This paper presents the results obtained in the design and experimentation of PROP and PROP-2 systems, devoted to on-line monitoring and diagnosis of pollution phenomena in the cycle water of a thermal power plant. In particular, it focuses on PROP-2 architecture, with encompasses a four-level hierarchical knowledge base including both empirical knowledge and a deep model of the plant. Shallow knowledge is represented by production rules and event-graphs (a formalism for expressing procedural knowledge), while deep knowledge is expressed using a representation language based on the concept of component. One major contribution of the proposed approach has been to show in a running experimental system that a suitable blend of shallow and deep knowledge can offer substantial advantages over a single paradigm.

  6. Diagnosis and on-line displacement monitoring for critical pipe of fossil power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heo, J. S.; Hyun, J. S. [Korea Electric Power Corporation, Seoul (Korea, Republic of); Heo, J. R.; Lee, S. K.; Cho, S. Y. [Korea South-East Power Co., Ltd., Seoul (Korea, Republic of)

    2009-07-01

    High temperature steam pipes of fossil power plant are subject to a severe thermal range and usually operates well into the creep range. Cyclic operation of the plant subjects the piping system to mechanical and thermal fatigue mechanisms and poor or malfunctional support assemblies can impose massive loads or stress onto the piping system. In order to prevent the serious damage and failure of the critical pipe system, various inspection methods such as visual inspection, computational analysis and on-line piping displacement monitoring were developed. 3-Dimensional piping displacement monitoring system was developed with using he aluminum alloy rod and rotary encoder type sensors, this system was installed and operated on the 'Y' fossil power plant successfully. It is expected that this study will contribute to the safety of piping system, which could minimize stress and extend the actual life of critical piping.

  7. The BEACON on-line core monitoring system. Functional upgrades and applications

    International Nuclear Information System (INIS)

    Boyd, W.A.; Miller, R.W.

    1997-01-01

    The BEACON TM core monitor system has been in commercial operation since 1989 and was licensed by the USNRC for on-line core power distribution and thermal power limit monitoring in 1994. Since that time BEACON has been installed at 17 plants. Each of these customers has a different perspective on the use of data from BEACON and a different approach on the application of BEACON to support their plant operations. To support these varied needs and approaches the BEACON system has been divided into three operational levels to better match the system functions to the customer needs and approaches to system integration. Based on customer feedback, the BEACON system was upgraded in some areas and streamlined in other areas to better support the needs of each customer. The three operational levels of the BEACON system, the major product upgrades and system evolution that has taken place to support the needs and applications of our customers are discussed. (authors)

  8. Westinghouse Electric Company experiences in chemistry on-line monitoring in Eastern European nuclear power plants

    International Nuclear Information System (INIS)

    Balavage, J.

    2001-01-01

    Westinghouse Electric Company has provided a number of Chemistry On-Line Monitoring (OLM) Systems to Nuclear Power Plants in Eastern Europe. Eleven systems were provided to the Temelin Nuclear Power Plant in the south of the Czech Republic. Four systems were provided to the Russian NPP at Novovoronezh. In addition, a system design was developed for primary side chemistry monitoring for units 5 and 6 of another eastern European VVER. The status of the Temelin OLM systems is discussed including updates to the Temelin designs, and the other Eastern European installations and designs are also described briefly. Some of the problems encountered and lessons learned from these projects are also discussed. (R.P.)

  9. Design of an on-line monitoring system for radioactive wastewater

    International Nuclear Information System (INIS)

    Qin Guoxiu; Youning Xu; Lei Wang; Xuesong Zhang; Wenping Zhou; Weizhe Li

    2017-01-01

    An on-line monitoring system for radioactive wastewater was designed to discriminate the type and concentration of the radionuclides discharged from nuclear facilities. An HPGe semiconductor was used as the detector in the system for continuous monitoring by pumping wastewater. The minimum detectable activity for 137 Cs was 0.4 Bq L -1 after 10 min of measuring wastewater with the system. The system can detect excessive radioactivity in the wastewater and quickly and effectively alert personnel. Based on the experimental measurements and the Monte Carlo simulation, the detection efficiency of the system was calibrated, and an efficiency curve was determined for the energy range from 50 to 2754 keV. (author)

  10. Development of on-line uranium enrichment monitor of gaseous UF6 for uranium enrichment plant

    International Nuclear Information System (INIS)

    Lu Xuesheng; Liu Guorong; Jin Huimin; Zhao Yonggang; Li Jinghuai; Hao Xueyuan; Ying Bin; Yu Zhaofei

    2013-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF 6 , flowing through the processing pipes in uranium enrichment plant. A Nal (Tl) detector was used to measure the count rates of the 185.7 keV γ-ray emitted from 235 U, and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride. The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber. Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade can be monitored continuously by using the device. It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant. (authors)

  11. Status of Database for Electrochemical Noise Based Corrosion Monitoring

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    Underground storage tanks made of mild steel are used to contain radioactive waste generated by plutonium production at the Hanford Site. Corrosion of the walls of these tanks is a major issue. Corrosion-related failure of waste tank walls could lead to the leakage of radioactive contaminants to the soil and groundwater. It is essential to monitor corrosion conditions of the tank walls to determine tank integrity and ensure safe waste storage until retrieval and final waste disposal can be accomplished. Corrosion monitoring/control is currently provided at the Hanford Site through a waste chemistry sampling and analysis program. In this process, tank waste is sampled, analyzed and compared to a selection of laboratory exposures of coupons in simulated waste. Tank wall corrosion is inferred by matching measured tank chemistries to the results of the laboratory simulant testing. This method is expensive, time consuming, and does not yield real-time data. A project to improve the Hanford Site's corrosion monitoring strategy was started in 1995

  12. Smart Sensor Network for Aircraft Corrosion Monitoring

    Science.gov (United States)

    2010-02-01

    Network Elements – Hub, Network capable application processor ( NCAP ) – Node, Smart transducer interface module (STIM)  Corrosion Sensing and...software Transducer software Network Protocol 1451.2 1451.3 1451.5 1451.6 1451.7 I/O Node -processor Power TEDS Smart Sensor Hub ( NCAP ) IEEE 1451.0 and

  13. Characterization of appendage weld quality by on line monitoring of electrical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Setty, D.S.; Somani, A.K.; Ram, A.M.; Rao, A.R.; Jayaraj, R.N.; Kalidas, R. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2005-07-01

    Resistance projection welding of zirconium alloy appendages is one of the most critical processes in the PHWR fuel fabrication. Appendages like Spacers and Bearing pads having multi projections are joined to the fuel sheath using capacitor discharge power source. Variations in the projection sizes, weld parameters and cleanliness of the work pieces have significant effect on the weld quality, in addition to material properties like hardness, tensile strength and surface finish. Defects like metal expulsion and weak welds are occasionally observed in appendage welding process, which need to be identified and segregated. Though numerous off-line inspection methods are available for the weld quality evaluation, on-line monitoring of weld quality is essential for identifying defective welds. For this purpose, various monitoring techniques like acoustic emission, analyzing derived electrical parameters and weld upset/deformation measurements are employed. The derived electrical parameters like A{sup 2}-Sec and Ohm-Sec can also be monitored. The present paper highlights development of suitable acceptance criteria for the monitoring technique by employing derived electrical parameters covering a wide range of weld variables like watt-sec and squeeze force. Excellent correlation could be achieved in identifying the weak welds and weld expulsion defects in mass production. (author)

  14. Design of a tracking device for on-line dose monitoring in hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Battistoni, G. [INFN Sezione di Milano, Milano (Italy); Collamati, F.; De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Faccini, R. [Dipartimento di Fisica, “La Sapienza” Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Marafini, M. [INFN Sezione di Roma, Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Mattei, I. [INFN Sezione di Milano, Milano (Italy); Muraro, S., E-mail: silvia.muraro@mi.infn.it [INFN Sezione di Milano, Milano (Italy); Paramatti, R. [INFN Sezione di Roma, Roma (Italy); Patera, V. [INFN Sezione di Roma, Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Dipartimento di Scienze di Base e Applicate per Ingegneria, “La Sapienza” Università di Roma, Roma (Italy); Pinci, D. [INFN Sezione di Roma, Roma (Italy); Rucinski, A. [INFN Sezione di Roma, Roma (Italy); Dipartimento di Scienze di Base e Applicate per Ingegneria, “La Sapienza” Università di Roma, Roma (Italy); Russomando, A. [Dipartimento di Fisica, “La Sapienza” Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Roma (Italy); and others

    2017-02-11

    Hadrontherapy is a technique for cancer treatment that exploits ion beams (mostly protons and carbons). A critical issue is the accuracy that is achievable when monitoring the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a tracking device, developed in the framework of the INSIDE project , capable of monitoring in real time the longitudinal profile of the dose delivered in the patient. This is possible by detecting the secondary particles produced by the interaction of the beam in the tissues. The position of the Bragg peak can be correlated to the charged particles emission point distribution measurement. The tracking device will be able to provide a fast response on the dose pattern by tracking the secondary charged fragments. The tracks are detected using 6 planes of scintillating fibers, providing the 3D coordinates of the track intersection with each plane. The fibers planes are followed by a plastic scintillator and by a small calorimeter built with a pixelated Lutetium Fine Silicate (LFS) crystal. A complete detector simulation, followed by the event reconstruction, has been performed to determine the achievable monitoring spatial resolution. - Highlights: • On-line range monitoring in hadrontherapy. • New approach: detection of charged secondary particles escaping the patient. • Correlation of longitudinal emission profile of secondaries with the beam range. • New detector integrated in a multi-modal system to be tested in clinical operation.

  15. On-line Monitoring of VoIP Quality Using IPFIX

    Directory of Open Access Journals (Sweden)

    Petr Matousek

    2014-01-01

    Full Text Available The main goal of VoIP services is to provide a reliable and high-quality voice transmission over packet networks. In order to prove the quality of VoIP transmission, several approaches were designed. In our approach, we are concerned about on-line monitoring of RTP and RTCP traffic. Based on these data, we are able to compute main VoIP quality metrics including jitter, delay, packet loss, and finally R-factor and MOS values. This technique of VoIP quality measuring can be directly incorporated into IPFIX monitoring framework where an IPFIX probe analyses RTP/RTCP packets, computes VoIP quality metrics, and adds these metrics into extended IPFIX flow records. Then, these extended data are stored in a central IPFIX monitoring system called collector where can be used for monitoring purposes. This paper presents a functional implementation of IPFIX plugin for VoIP quality measurement and compares the results with results obtained by other tools.

  16. On-line monitoring and inservice inspection in codes; Betriebsueberwachung und wiederkehrende Pruefungen in den Regelwerken

    Energy Technology Data Exchange (ETDEWEB)

    Bartonicek, J.; Zaiss, W. [Gemeinschaftskernkraftwerk Neckar GmbH, Neckarwestheim (Germany); Bath, H.R. [Bundesamt fuer Strahlenschutz, Salzgitter (Germany). Geschaeftsstelle des Kerntechnischen Ausschusses (KTA)

    1999-08-01

    The relevant regulatory codes determine the ISI tasks and the time intervals for recurrent components testing for evaluation of operation-induced damaging or ageing in order to ensure component integrity on the basis of the last available quality data. In-service quality monitoring is carried out through on-line monitoring and recurrent testing. The requirements defined by the engineering codes elaborated by various institutions are comparable, with the KTA nuclear engineering and safety codes being the most complete provisions for quality evaluation and assurance after different, defined service periods. German conventional codes for assuring component integrity provide exclusively for recurrent inspection regimes (mainly pressure tests and optical testing). The requirements defined in the KTA codes however always demanded more specific inspections relying on recurrent testing as well as on-line monitoring. Foreign codes for ensuring component integrity concentrate on NDE tasks at regular time intervals, with time intervals scope of testing activities being defined on the basis of the ASME code, section XI. (orig./CB) [Deutsch] Fuer die Komponentenintegritaet sind die Schaedigungsmechanismen mit dem nach den Regelwerken einzuhaltenden Abstand abzusichern. Dabei ist die jeweils vorhandene (Ist-) Qualitaet als Ausgangspunkt entscheidend. Die Absicherung der vorhandenen Qualitaet im weiteren Betrieb erfolgt durch geeignete Betriebsueberwachung und wiederkehrende Pruefungen. Die Anforderungen der Regelwerke sind vergleichbar, wobei die Bestimmung der vorhandenen Qualitaet nach einer bestimmten Betriebszeit sowie deren Absicherung im weiteren Betrieb am vollstaendigsten auf Basis des KTA-Regelwerkes moeglich ist. Die Absicherung der Komponentenintegritaet im Betrieb beruht in deutschen konventionellen Regelwerken nur auf den wiederkehrenden Pruefungen (hauptsaechlich Druckpruefungen und Sichtpruefungen). Das KTA-Regelwerk forderte hier schon immer qualifizierte

  17. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work carried out to investigate acoustic emission as a monitor of corrosion and degradation of wasteforms where the waste is potentially reactive metal. Electronic monitoring equipment has been designed, built and tested to allow long-term monitoring of a number of waste packages simultaneously. Acoustic monitoring experiments were made on a range of 1 litre cemented Magnox and aluminium samples cast into canisters comparing the acoustic events with hydrogen gas evolution rates and electrochemical corrosion rates. The attenuation of the acoustic signals by the cement grout under a range of conditions has been studied to determine the volume of wasteform that can be satisfactorily monitored by one transducer. The final phase of the programme monitored the acoustic events from full size (200 litre) cemented, inactive, simulated aluminium swarf wastepackages prepared at the AEA waste cementation plant at Winfrith. (Author)

  18. ON-Line Monitoring of Instrument Channel Performance: Volume 3: Applications to Nuclear Power Plant Technical Specification Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    E Davis, B Rasmussen

    2004-12-31

    This report is a guide for a technical specification change submittal and subsequent implementation of on-line monitoring for safety-related applications. This report is the third in a three-volume set. Volume 1, ''Guidelines for Model Development and Implementation'', presents the various tasks that must be completed to prepare models for and to implement an on-line monitoring system.

  19. Plant applications of online corrosion monitoring: CO2 capture amine plant case study

    NARCIS (Netherlands)

    Kane, R.D.; Srinivasan, S.; Khakharia, P.M.; Goetheer, E.L.V.; Mertens, J.; Vroey, S. de

    2015-01-01

    Over the past several years, there has been a significant effort to bring corrosion monitoring into the realm of online, real-time management with plant process control technology. As part of this new direction in corrosion monitoring, corrosion data (e.g. information on corrosion rate, measured

  20. FPGA implementation of a hybrid on-line process monitoring in PC based real-time systems

    Directory of Open Access Journals (Sweden)

    Jovanović Bojan

    2011-01-01

    Full Text Available This paper presents one way of FPGA implementation of hybrid (hardware-software based on-line process monitoring in Real-Time systems (RTS. The reasons for RTS monitoring are presented at the beginning. The summary of different RTS monitoring approaches along with its advantages and drawbacks are also exposed. Finally, monitoring module is described in details. Also, FPGA implementation results and some useful monitoring system applications are mentioned.

  1. Corrosion monitoring along infrastructures using distributed fiber optic sensing

    Science.gov (United States)

    Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2016-04-01

    Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.

  2. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Cong Du

    2018-04-01

    Full Text Available This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.

  3. Monitoring Cathodic Shielding and Corrosion under Disbonded Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Varela, F.; Tan, M. Y. J.; Hinton, B.; Forsyth, M. [Deakin University, Victoria (Australia)

    2017-06-15

    Monitoring of corrosion is in most cases based on simulation of environmental conditions on a large and complex structure such as a buried pipeline using a small probe, and the measurement of thermodynamics and kinetics of corrosion processes occurring on the probe surface. This paper presents a hybrid corrosion monitoring probe designed for simulating deteriorating conditions wrought by disbonded coatings and for measuring current densities and distribution of such densities on a simulated pipeline surface. The concept of the probe was experimentally evaluated using immersion tests under cathodic protection (CP) in high resistivity aqueous solution. Underneath the disbonded area, anodic currents and cathodic currents were carefully measured. Anodic current densities were used to calculate metal loss according to Faraday’s law. Calculated corrosion patterns were compared with corrosion damage observed at the surface of the probe after a series of stringent tests. The capability of the probe to measure anodic current densities under CP, without requiring interruption, was demonstrated in high resistivity aqueous solution. The pattern of calculated metal loss correlated well with corrosion products distribution observed at the array surface. Working principles of the probe are explained in terms of electrochemistry.

  4. Early corrosion monitoring of prestressed concrete piles using acoustic emission

    Science.gov (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul H.

    2013-04-01

    The depassivation and corrosion of bonded prestressing steel strands in concrete bridge members may lead to major damage or collapse before visual inspections uncover evident signs of damage, and well before the end of the design life. Recognizing corrosion in its early stage is desirable to plan and prioritize remediation strategies. The Acoustic Emission (AE) technique is a rational means to develop structural health monitoring and prognosis systems for the early detection and location of corrosion in concrete. Compelling features are the sensitivity to events related to micro- and macrodamage, non-intrusiveness, and suitability for remote and wireless applications. There is little understanding of the correlation between AE and the morphology and extent of early damage on the steel surface. In this paper, the evidence collected from prestressed concrete (PC) specimens that are exposed to salt water is discussed vis-à-vis AE data from continuous monitoring. The specimens consist of PC strips that are subjected to wet/dry salt water cycles, representing portions of bridge piles that are exposed to tidal action. Evidence collected from the specimens includes: (a) values of half-cell potential and linear polarization resistance to recognize active corrosion in its early stage; and (b) scanning electron microscopy micrographs of steel areas from two specimens that were decommissioned once the electrochemical measurements indicated a high probability of active corrosion. These results are used to evaluate the AE activity resulting from early corrosion.

  5. Hanford double shell tank corrosion monitoring instrument tree prototype

    International Nuclear Information System (INIS)

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion

  6. ''PSAD'' on-line monitoring and aid to diagnosis workstation: a monitoring tool for EDF power plants

    International Nuclear Information System (INIS)

    Morel, J.; Mazalerat, J.M.; Monnier, B.; Cordier, R.

    1993-01-01

    Like other electricity utilities, Electricite de France seeks to enhance the safety and availability of its nuclear power plants. To this end, for over ten years EDF has been installing on each plant unit two monitoring systems of its own design, one to monitor the primary cooling system, and the other, the turbogenerator set. Since the beginning of this project, widespread progress has been made in techniques of signal acquisition and processing, and in diagnosis using artificial intelligence methods. EDF has decided to call on these advanced techniques in developing its new-generation monitoring equipment, and to integrate them in its development of a workstation for on-line monitoring and diagnosis-support (PSAD: Poste de Surveillance et d'Aide au Diagnostic). PSAD will be a tool for on-line monitoring of the main components in nuclear power plants (initially the main coolant pumps and turbogenerator sets, and soon thereafter, monitoring of internal structures, detection of loose parts in the primary cooling system, etc.). PSAD will provide plant personnel with indispensable support in their diagnosis of the condition of plant equipment. It will integrate user-friendly, high-performance systems that also free the operator from many day-to-day tasks. PSAD will have a flexible architecture, for optimum distribution of the computing power where it is most needed, thereby improving the quality of the data. This paper presents the project objectives and describes work currently under way to implement EDF's diagnosis-support strategy for the years to come. (authors). 5 figs., 6 refs

  7. On line system monitoring and analysis for efficient maintenance management [Paper No.: I-10

    International Nuclear Information System (INIS)

    Verma, R.M.P.

    1981-01-01

    Continuously operating chemical plants and nuclear reactors with huge investments cannot afford unscheduled shut down, costly down time, undesired exposure of people to radiation and high cost of inventory. To obtain cost effectiveness in terms of increased plant availability with increased quality, safety and reliability of plant operations a good maintenance system is required. A preventive maintenance programme, though successful to a greater extent, has got the limitations of being based upon elapsed time, subjective approach or statistical data. Hence, maintenance action is mistimed. Preventive maintenance can become very effective if rational and scientific data on equipment under working conditions are available. It can be achieved through on-line predictive instruments like sound level and vibration analyzers, probologs, corrosmeters, strain gages, thermographic infrared sensors, on-line ferrographs, chromatographs, acoustic emission, eddy current ultrasonic and wireless sensors etc. Instruments help maintenance engineer to diagnose, inspect, monitor, and help in forecasting failures and scheduling the frequencies optimally for overhauls, replacements, lubrication etc. They are also helpful in establishing work load, manpower, resource planning and inventory control. This paper discusses real time computer based system as well as conventional instruments and techniques. (author)

  8. On-line iron ore slurry monitoring using laser induced plasma spectroscopy

    International Nuclear Information System (INIS)

    Barrette, L.; Turmel, S.; Boivin, J.-A.; Sabsabi, M.; Martinovic, T.I.; Ouellet, G.

    1999-01-01

    In response to the need for a better control [Lb1] of the various additives used in the iron ore pellet making process, Laser-Induced Plasma Spectroscopy (LIPS) has been tested for the on-line monitoring of Si, AI, Ca, Mg, and C. This work shows that factors such as laser beam focusing, particle size, slurry density and mineralogical composition have to be taken into account to meet precision and accuracy requirements. An internal standardization (peak ratio) and an original multivariate calibration technique based on fuzzy logic concepts [Lb2] are [Lb3] used to minimize the effect of these factors. This paper describes the experimental set-up, the effect of influence factors and the results obtained both in the laboratory and in an iron ore plant. (author)

  9. Development of On-line Monitoring System for Shape Memory Alloy Composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Park, Young Chul; Lee, Min Rae; Lee, Dong Hwa; Lee, Kyu Chang

    2003-01-01

    A hot press method was use for the optimal manufacturing condition for a shape memory alloy(SMA) composite. The bonding between the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In this study, the objective was to develop an on-line monitoring system for the prevention of the crack initiation and propagation by shape memory effort of SMA composite. Shape memory effect was used to prevent the SMA composite from cracking. For the system to be developed, an optimal hE parameter should be determined based on the degree of damage and crack initiation. When the SHA composite was heated by the plate heater attached at the composite, the propagating cracks appeared to be controlled by the compressive force of SMA

  10. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    International Nuclear Information System (INIS)

    Baldwin, Thomas; Tawfik, Magdy; Bond, Leonard

    2010-01-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R and D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R and D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10-12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I and C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy's Light Water Reactor Sustainability Program. DOE

  11. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has

  12. Application of classical versus bayesian statistical control charts to on-line radiological monitoring

    International Nuclear Information System (INIS)

    DeVol, T.A.; Gohres, A.A.; Williams, C.L.

    2009-01-01

    False positive and false negative incidence rates of radiological monitoring data from classical and Bayesian statistical process control chart techniques are compared. The on-line monitoring for illicit radioactive material with no false positives or false negatives is the goal of homeland security monitoring, but is unrealistic. However, statistical fluctuations in the detector signal, short detection times, large source to detector distances, and shielding effects make distinguishing between a radiation source and natural background particularly difficult. Experimental time series data were collected using a 1' x 1' LaCl 3 (Ce) based scintillation detector (Scionix, Orlando, FL) under various simulated conditions. Experimental parameters include radionuclide (gamma-ray) energy, activity, density thickness (source to detector distance and shielding), time, and temperature. All statistical algorithms were developed using MATLAB TM . The Shewhart (3-σ) control chart and the cumulative sum (CUSUM) control chart are the classical procedures adopted, while the Bayesian technique is the Shiryayev-Roberts (S-R) control chart. The Shiryayev-Roberts method was the best method for controlling the number of false positive detects, followed by the CUSUM method. However, The Shiryayev-Roberts method, used without modification, resulted in one of the highest false negative incidence rates independent of the signal strength. Modification of The Shiryayev-Roberts statistical analysis method reduced the number of false negatives, but resulted in an increase in the false positive incidence rate. (author)

  13. Data Analysis and reduction in Hanford's corrosion monitoring systems

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A project to improve the Hanford Site's corrosion monitoring strategy was started in 1995. The project is designed to integrate EN-based corrosion monitoring into the site's corrosion monitoring strategy. In order to monitor multiple tanks, a major focus of this project has been to automate the data collection and analysis process. Data collection and analysis from the early EN corrosion monitoring equipment (241-AZ-101 and 241-AN-107) was primarily performed manually by a trained operator skilled in the analysis of EN data. Thousands of raw data files were collected, manually sorted and stored. Further statistical analysis of these files was performed by manually stripping out data from thousands of raw data files and calculating statistics in a spreadsheet format. Plotting and other graphical display analyses were performed by manually exporting data from the data files or spreadsheet into another plotting or presentation software package. In 1999, an Amulet/PRP system was procured and employed on the 241-AN-102 corrosion monitoring system. A duplicate system was purchased for use on the upcoming 241-AN-105 system. A third system has been procured and will eventually be used to upgrade the 241-AN-107 system. The Amulet software has greatly improved the automation of waste tank EN data analysis. In contrast with previous systems, the Amulet operator no longer has to manually collect, sort, store, and analyze thousands of raw EN data files. Amulet writes all data to a single database. Statistical analysis, uniform corrosion rate, and other derived parameters are automatically calculated in Amulet from the raw data while the raw data are being collected. Other improvements in plotting and presentation make inspection of the data a much quicker and relatively easy task. These and other improvements have greatly improved the speed at which EN data can be analyzed in addition to improving the quality of the final interpretation. The increase in data automation offered

  14. Monitoring and control of enzymic sucrose hydrolysis using on-line biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Mandenius, C F; Buelow, L; Danielsson, B; Mosbach, K

    1985-02-01

    Previously reported flow microcalorimeter devices for enzymic reaction heat measurement, enzyme thermistors, have here been extended with systems for on-line sample treatment. Glucose analysis was performed by intermittent flow injection of 50 ..mu..l samples through such an enzyme thermistor device containing immobilized glucose oxidase and catalase. Sucrose analysis was performed by allowing diluted samples to continuously pass through an additional enzyme thermistor containing immobilized invertase. The reaction heats were recorded as temperature changes in the order of 10-50 m degrees C for concentration of 0.05-0.30 M glucose or sucrose present in the original non-diluted samples. The performance of this system was investigated by its ability to follow concentration changes obtained from a gradient mixer. The system was applied to monitoring and controlling the hydrolysis of sucrose to glucose and fructose in a plug-flow reactor with immobilized invertase. The reactor was continuously fed by a flow of sucrose of up to 0.3 M (100 g/l). Glucose and remaining sucrose were monitored in the effluent of the column. By using flow rate controlled feed pumps for sucrose and diluent the influent concentration of sucrose was varied while the overall flow rate remained constant. On-line control of the effluent concentration of glucose and sucrose was achieved by a proportional and integral regulator implemented on a microcomputer. Present concentration of glucose in the effluent could be maintained over an extended period of time despite changes in the overall capacity of the invertase reactor. Long delay times in the sensor system and the enzyme column made it necessary to carefully tune the control parameters. Changes of set-point value and temperature disturbances were used to verify accuracy of controlling performance. 32 references.

  15. On-Line Monitoring for Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Billing, Justin M.; Casella, Amanda J.; Johnsen, Amanda M.; Peterson, James M.

    2009-01-01

    Advanced techniques enabling enhanced safeguarding of the spent fuel reprocessing plants are urgently needed. Our approach is based on prerequisite that real time monitoring of the solvent extraction flowsheets provides unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The methods used to monitor these processes must be robust and must be able to withstand harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements and featuring Raman spectroscopy combined with a Coriolis and conductivity probes, has been recently developed by our research team. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine content generated during retrieval activities from Hanford nuclear waste storage tanks. The nature of the radiochemical streams at the spent fuel reprocessing plant calls for additional spectroscopic information, which can be gained by the utilization of UV-vis-NIR capabilities. Raman and UV-vis-NIR spectroscopies are analytical techniques that have extensively been extensively applied for measuring the various organic and inorganic compounds including actinides. The corresponding spectrometers used under the laboratory conditions are easily convertible to the process-friendly configurations allowing remote measurements under the flow conditions. A fiber optic Raman probe allows monitoring of the high concentration species encountered in both aqueous and organic phases within the UREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. The actinides and lanthanides are monitored remotely by UV-vis-NIR spectroscopy in aqueous and organic phases. In this report, we will present our recent results on spectroscopic measurements of simulant flowsheet solutions and commercial fuels available at

  16. EMBEDDED CAPACITOR SENSOR FOR MONITORING CORROSION OF REINFORCEMENT IN CONCRETE

    Directory of Open Access Journals (Sweden)

    SITI FATIMAH ABDUL RAHMAN

    2012-04-01

    Full Text Available Corrosion of reinforcement can affect durability and integrity of reinforced concrete structures. Repair cost for a badly corroded structure can be very costly and time consuming. In this paper, several capacitor sensors were developed to monitor corrosion potential of reinforcement in concrete. The impedance capacitive of sensors was tested in various acid and alkali solutions using Agilent 4284A Precision LCR meter. The other sensors were tied to reinforcements and embedded in concrete specimen contaminated with 5% chloride to measure corrosion potential. The specimens were exposed to the corrosion chamber and indoor environments. From the research, it was found that the sensor can measure the impedance capacitive at different frequencies in the aggressive solutions. Besides, it was observed that the patterns of corrosion potential shown by the embedded sensors were similar to the SRI sensor. The output values from embedded sensor are in a range of recommendation by the ASTM-C876. Eventually, the bars were found corroded from the broken specimens that confirmed the detection of corrosion activities as recorded by the sensors.

  17. Corrosion induced strain monitoring through fibre optic sensors

    International Nuclear Information System (INIS)

    Grattan, S K T; Basheer, P A M; Taylor, S E; Zhao, W; Sun, T; Grattan, K T V

    2007-01-01

    The use of strain sensors is commonplace within civil engineering. Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges. In this paper the use of fibre optic strain sensors and electrical resistance gauges to monitor the production of corrosion by-products has been investigated and reported

  18. Hanford double shell tank corrosion monitoring instrument trees

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1995-03-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks - (DSTs and SSTS). Westinghouse Hanford Company is considering installation of a prototype corrosion monitoring instrument tree in at least one DST in the summer of 1995. The instrument tree will have the ability to detect and discriminate between uniform corrosion, stress corrosion cracking (SCC), and pitting. Additional instrument trees will follow in later years. Proof-of-technology testing is currently underway for the use of commercially available electric field pattern (EFP) analysis and electrochemical noise (EN) corrosion monitoring equipment. Creative use and combinations of other existing technologies is also being considered. Successful demonstration of these technologies will be followed by the development of a Hanford specific instrument tree. The first instrument tree will incorporate one of these technologies. Subsequent trees may include both technologies, as well as a more standard assembly of corrosion coupons. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other U.S. Department of Energy (DOE) sites

  19. Corrosion monitoring in insulated pipes using x-ray radiography

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Razak Hamzah; Abd Aziz Mohamed; Abd Nasir Ibrahim; Suffian Saad; Shaharuddin Sayuti; Shukri Ahmad

    2000-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as very challenging tasks. In general, this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Besides the thickness, types of corrosion can also be identified easily. Result of this study is presented and discussed in this paper. (Author)

  20. On-line dynamic monitoring automotive exhausts: using BP-ANN for distinguishing multi-components

    Science.gov (United States)

    Zhao, Yudi; Wei, Ruyi; Liu, Xuebin

    2017-10-01

    Remote sensing-Fourier Transform infrared spectroscopy (RS-FTIR) is one of the most important technologies in atmospheric pollutant monitoring. It is very appropriate for on-line dynamic remote sensing monitoring of air pollutants, especially for the automotive exhausts. However, their absorption spectra are often seriously overlapped in the atmospheric infrared window bands, i.e. MWIR (3 5μm). Artificial Neural Network (ANN) is an algorithm based on the theory of the biological neural network, which simplifies the partial differential equation with complex construction. For its preferable performance in nonlinear mapping and fitting, in this paper we utilize Back Propagation-Artificial Neural Network (BP-ANN) to quantitatively analyze the concentrations of four typical industrial automotive exhausts, including CO, NO, NO2 and SO2. We extracted the original data of these automotive exhausts from the HITRAN database, most of which virtually overlapped, and established a mixed multi-component simulation environment. Based on Beer-Lambert Law, concentrations can be retrieved from the absorbance of spectra. Parameters including learning rate, momentum factor, the number of hidden nodes and iterations were obtained when the BP network was trained with 80 groups of input data. By improving these parameters, the network can be optimized to produce necessarily higher precision for the retrieved concentrations. This BP-ANN method proves to be an effective and promising algorithm on dealing with multi-components analysis of automotive exhausts.

  1. Field Trial of LANL On-Line Advanced Enrichment Monitor for UF6 GCEP

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, Kiril D. [Los Alamos National Laboratory; Lombardi, Marcie [Los Alamos National Laboratory; MacArthur, Duncan W. [Los Alamos National Laboratory; Parker, Robert F. [Los Alamos National Laboratory; Smith, Morag K. [Los Alamos National Laboratory; Keller, Clifford [Los Alamos National Laboratory; Friend, Peter [URENCO; Dunford, Andrew [URENCO

    2012-07-13

    The outline of this presentation is: (1) Technology basis of on-line enrichment monitoring; (2) Timescale of trial; (3) Description of installed equipment; (4) Photographs; (5) Results; (6) Possible further development; and (7) Conclusions. Summary of the good things about the Advanced Enrichment Monitor (AEM) performance is: (1) High accuracy - normally better than 1% relative, (2) Active system as accurate as passive system, (3) Fast and accurate detection of enrichment changes, (4) Physics is well understood, (5) Elegant method for capturing pressure signal, and (6) Data capture is automatic, low cost and fast. A couple of negative things are: (1) Some jumps in measured passive enrichment - of around +2% relative (due to clock errors?); and (2) Data handling and evaluation is off-line, expensive and very slow. Conclusions are: (1) LANL AEM is being tested on E23 plant at Capenhurst; (2) The trial is going very well; (3) AEM could detect production of HEU at potentially much lower cost than existing CEMO; (4) AEM can measure {sup 235}U assay accurately; (5) Active system using X-Ray source would avoid need for pressure measurement; (6) Substantial work lies ahead to go from current prototype to a production instrument.

  2. A study on the computerization of secondary side on-line chemistry monitoring system of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kyung Lin; Lee, Eun Heui [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    A computer system for on-line chemistry monitoring system located in secondary side of PWR plant is under developing. Keithley 500 A mainframe and AMM1A and AIM3A modules are used for data acquisition and scientific and engineering software package of ASYST is used for developing software program. The contents are as follows: (1) Data acquisition and real-time display. The output signals of monitoring chemical sensors are stored in PC showing real-time data display as true values and graphics. (2) Data management and trending graphs. The data stored in PC are outcoming in various graphic mode for data management such as simple trending graphs screen display, time duration plot and histogram plot. (3) Daily basis data manual input. The chemical analysis data of grab sample are stored in PC by manual input for supplement data. (4) Tabular data report preparation. Summarized daily, weekly, monthly, quarterly and yearly reports are prepared with various mode of graphic display. 6 figs, 9 tabs, 8 refs. (Author).

  3. A study on the computerization of secondary side on-line chemistry monitoring system of PWR

    International Nuclear Information System (INIS)

    Yang, Kyung Lin; Lee, Eun Heui

    1994-12-01

    A computer system for on-line chemistry monitoring system located in secondary side of PWR plant is under developing. Keithley 500 A mainframe and AMM1A and AIM3A modules are used for data acquisition and scientific and engineering software package of ASYST is used for developing software program. The contents are as follows: 1) Data acquisition and real-time display. The output signals of monitoring chemical sensors are stored in PC showing real-time data display as true values and graphics. 2) Data management and trending graphs. The data stored in PC are outcoming in various graphic mode for data management such as simple trending graphs screen display, time duration plot and histogram plot. 3) Daily basis data manual input. The chemical analysis data of grab sample are stored in PC by manual input for supplement data. 4) Tabular data report preparation. Summarized daily, weekly, monthly, quarterly and yearly reports are prepared with various mode of graphic display. 6 figs, 9 tabs, 8 refs. (Author)

  4. Nuclear plant's virtual simulation for on-line radioactive environment monitoring and dose assessment for personnel

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos A.; Jorge, Carlos Alexandre F.; Lapa, Celso Marcelo F.

    2009-01-01

    This paper reports the use of nuclear plant's simulation for online dose rate monitoring and dose assessment for personnel, using virtual reality technology. The platform used for virtual simulation was adapted from a low cost game engine, taking advantage of all its image rendering capabilities, as well as the physics for movement and collision, and networking capabilities for multi-user interactive navigation. A real nuclear plant was virtually modeled and simulated, so that a number of users can navigate simultaneously in this virtual environment in first or third person view, each one receiving visual information about both the radiation dose rate in each actual position, and the radiation dose received. Currently, this research and development activity has been extended to consider also on-line measurements collected from radiation monitors installed in the real plant that feed the simulation platform with dose rate data, through a TCP/IP network. Results are shown and commented, and other improvements are discussed, as the execution of a more detailed dose rate mapping campaign.

  5. Statistical evaluation of the on line core monitoring effectiveness for limiting the consequences of the fuel assembly misloading event

    International Nuclear Information System (INIS)

    Molnar, A.; Kereszturi, A.; Temesvari, E.; Korpas, L.

    2007-01-01

    In WWER-440 type reactors, on line core monitoring is used for the early indication of such abnormal events like fuel assembly misloading, inadvertent misalignment of Control Assemblies, blockage of coolant channels. The paper is focusing on the assembly misloading, which can not be indicated by other measurements. A Monte Carlo method was developed and applied to evaluate the on line core monitoring effectiveness for the indication of this abnormal event during the power increase in due time, when the consequences are still acceptable. The investigations proved the satisfactory effectiveness of the online core monitoring down to 55 % power even in case when 75 % of the temperature measurements was only available (Authors)

  6. On-line monitoring of solar cell module production by ellipsometry technique

    International Nuclear Information System (INIS)

    Fried, M.

    2014-01-01

    Non-destructive analyzing tools are needed at all stages of thin film photovoltaic (PV) development, and on production lines. In thin film PV, layer thicknesses, micro-structure, composition, layer optical properties, and their uniformity (because each elementary cell is connected electrically in series within a big panel) serve as an important starting point in the evaluation of the performance of the cell or module. An important focus is to express the dielectric functions of each component material in terms of a handful of wavelength independent parameters whose variation can cover all process variants of that material. With the resulting database, spectroscopic ellipsometry coupled with multilayer analysis can be developed for on-line point-by-point mapping and on-line line-by-line imaging. This work tries to review the investigations of different types of PV-layers (anti-reflective coating, transparent-conductive oxide (TCO), multi-diode-structure, absorber and window layers) showing the existing dielectric function databases for the thin film components of CdTe, CuInGaSe 2 , thin Si, and TCO layers. Off-line point-by-point mapping can be effective for characterization of non-uniformities in full scale PV panels in developing labs but it is slow in the on-line mode when only 15 points can be obtained (within 1 min) as a 120 cm long panel moves by the mapping station. In the last years [M. Fried et al., Thin Solid Films 519, 2730 (2011)], instrumentation was developed that provides a line image of spectroscopic ellipsometry (wl = 350–1000 nm) data. Up to now a single 30 point line image can be collected in 10 s over a 15 cm width of PV material. This year we are building a 30 and a 60 cm width expanded beam ellipsometer the speed of which will be increased by 10 ×. Then 1800 points can be mapped in a 1 min traverse of a 60 ∗ 120 cm PV panel or flexible roll-to-roll substrate. - Highlights: • Instrumentation developed provides a line image of

  7. On-line monitoring of solar cell module production by ellipsometry technique

    Energy Technology Data Exchange (ETDEWEB)

    Fried, M., E-mail: fried@mfa.kfki.hu

    2014-11-28

    Non-destructive analyzing tools are needed at all stages of thin film photovoltaic (PV) development, and on production lines. In thin film PV, layer thicknesses, micro-structure, composition, layer optical properties, and their uniformity (because each elementary cell is connected electrically in series within a big panel) serve as an important starting point in the evaluation of the performance of the cell or module. An important focus is to express the dielectric functions of each component material in terms of a handful of wavelength independent parameters whose variation can cover all process variants of that material. With the resulting database, spectroscopic ellipsometry coupled with multilayer analysis can be developed for on-line point-by-point mapping and on-line line-by-line imaging. This work tries to review the investigations of different types of PV-layers (anti-reflective coating, transparent-conductive oxide (TCO), multi-diode-structure, absorber and window layers) showing the existing dielectric function databases for the thin film components of CdTe, CuInGaSe{sub 2}, thin Si, and TCO layers. Off-line point-by-point mapping can be effective for characterization of non-uniformities in full scale PV panels in developing labs but it is slow in the on-line mode when only 15 points can be obtained (within 1 min) as a 120 cm long panel moves by the mapping station. In the last years [M. Fried et al., Thin Solid Films 519, 2730 (2011)], instrumentation was developed that provides a line image of spectroscopic ellipsometry (wl = 350–1000 nm) data. Up to now a single 30 point line image can be collected in 10 s over a 15 cm width of PV material. This year we are building a 30 and a 60 cm width expanded beam ellipsometer the speed of which will be increased by 10 ×. Then 1800 points can be mapped in a 1 min traverse of a 60 ∗ 120 cm PV panel or flexible roll-to-roll substrate. - Highlights: • Instrumentation developed provides a line image of

  8. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    NARCIS (Netherlands)

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a

  9. Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Center for Photonics Technology, Blacksburgh, VA (United States); Yu, Zhihao [Center for Photonics Technology, Blacksburgh, VA (United States)

    2015-11-30

    This report summarizes technical progress on the program “Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The scope of work entails analyses of traveling grating generation technologies in an optical fiber, as well as the interrogation of the gratings to infer a distributed temperature along the fiber, for the purpose of developing a real-time refractory health condition monitoring technology for coal gasifiers. During the project period, which is from 2011-2015, three different sensing principles were studied, including four-wave mixing (FWM), coherent optical time-domain reflectometer (C-OTDR) and Brillouin optical time-domain analysis (BOTDA). By comparing the three methods, the BOTDA was selected for further development into a complete bench-top sensing system for the proposed high-temperature sensing application. Based on the input from Eastman Chemical, the industrial collaborator on this project, a cylindrical furnace was designed and constructed to simulate typical gasifier refractory temperature conditions in the laboratory, and verify the sensor’s capability to fully monitor refractory conditions on the back-side at temperatures up to 1000°C. In the later stages of the project, the sensing system was tested in the simulated environment for its sensing performance and high-temperature survivability. Through theoretical analyses and experimental research on the different factors affecting the sensor performance, a sensor field deployment strategy was proposed for possible future sensor field implementations.

  10. Corrosion monitoring using high-frequency guided waves

    Science.gov (United States)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  11. A method for on-line reactivity monitoring in nuclear reactors

    International Nuclear Information System (INIS)

    Dulla, S.; Nervo, M.; Ravetto, P.

    2014-01-01

    Highlights: • The problem of the on-line monitoring of reactivity in a source-free nuclear reactor is considered. • A relationship between the system stable period and the power, its derivative and its integral is derived. • The reactivity can be reconstructed at each time instant from the measured power-related quantities. • A study on the sensitivity of the reactivity to the uncertainty on the values of the integral parameters is performed. • The spatial effects are investigated by applying the method to the interpretation of flux signals. - Abstract: In the present work the problem of the on-line monitoring of the reactivity in a source-free nuclear reactor is considered. The method is based on the classic point kinetic model of reactor physics. A relationship between the instantaneous value of the system stable period and the values of the neutron flux amplitude (or the power), of its derivative and of the integral convolution term determining the instantaneous value of the effective delayed neutron concentration is derived. The reactivity can then be evaluated through the application of the inhour equation, assuming the effective delayed neutron fraction and prompt generation time are known from independent measurements. Since the power related quantities can be assumed to be experimental observables at each instant, the reactivity can be easily reconstructed. The method is tested at first through the interpretation of power histories simulated by the solution of the point kinetic equations; the effect of the time interval between power detections on the accuracy is studied, proving the excellent performance of the procedure. The work includes also a study on the sensitivity of the reactivity forecast to the uncertainty on the values of the effective delayed neutron fraction and prompt generation time. The spatial effects are investigated by applying the method to the interpretation of flux evolution histories generated by a numerical code solving

  12. Monitoring corrosion and chemistry phenomena in supercritical aqueous systems

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Pang, J.; Liu, C.; Kriksunov, L.; Medina, E.; Villa, J.; Bueno, J.

    1994-01-01

    The in situ monitoring of the chemistry and electrochemistry of aqueous heat transport fluids in thermal (nuclear and fossil) power plants is now considered essential if adequate assessment and close control of corrosion and mass transfer phenomena are to be achieved. Because of the elevated temperatures and pressures involved. new sensor technologies are required that are able to measure key parameters under plant operating conditions for extended periods of time. In this paper, the authors outline a research and development program that is designed to develop practical sensors for use in thermal power plants. The current emphasis is on sensors for measuring corrosion potential, pH, the concentrations of oxygen and hydrogen, and the electrochemical noise generated by corrosion processes at temperatures ranging from ∼250 C to 500 C. The program is currently at the laboratory stage, but testing of prototype sensors in a coal-fired supercritical power plant in Spain will begin shortly

  13. Establishment of X-ray Measurement System for On-line Monitoring of Water Content in Powder

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J. S. [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Choi, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, B. J. [Idealsystem Co., Daegu (Korea, Republic of)

    2012-05-15

    On-line process monitoring is of critical importance in many industries, and therefore a variety of the state-of-the-art physical and chemical measurement techniques have been proposed. But, these techniques have their own pros and cons under the field process environments. Because the field process environments are very different from the well-organized chemical laboratories, many factors should be considered in order to optimize the process monitoring system. However, there have been few studies on the on-line measurement of water content in powder materials. For that reason, the X-ray measurement system based on the X-ray scattering technique, which was first proposed in 2011 as a new method for the determination of water content in powder, has been improved. in the present study, our original X-ray measurement system has been modified for more rapid, simple, and adequate for maximizing the field applicability of the on-line monitoring system

  14. On-line vibration and loose parts monitoring of nuclear power stations as a preventive maintenance tool

    International Nuclear Information System (INIS)

    An equipment for on-line monitoring of vibrations and loose parts of nuclear power plants is described. The unit consists of piezoelectric transducers, preamplifiers, a data processor, and peripherals. It secures on-line measurement without interfering with the operation of the power plant. A diagram is given showing the monitor of vibrations and loose parts for pressurized water reactors and the Spectra-Scan equipment for the automatic recording and computer processing of noise signals is described. A survey is given of diagnostic methods for internal vibrations, noise and oscillations and procedures for the analysis of recordings are described. The experiences of Atomica International with the observation of vibrations in nuclear power plants are described and an economic assessment is presented of the efficiency of on-line monitoring of these vibrations. A cost-benefit analysis is made of such equipment which justifies their introduction. (B.S.)

  15. A methodology for on line fatigue life monitoring : rainflow cycle counting method

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushwaha, H.S.

    1992-01-01

    Green's function technique is used in on line fatigue life monitoring to convert plant data to stress versus time data. This technique converts plant data most efficiently to stress versus time data. To compute the fatigue usage factor the actual number of cycles experienced by the component is to be found out from stress versus time data. Using material fatigue properties the fatigue usage factor is to be computed from the number of cycles. Generally the stress response is very irregular in nature. To convert an irregular stress history to stress frequency spectra rainflow cycle counting method is used. This method is proved to be superior to other counting methods and yields best fatigue estimates. A code has been developed which computes the number of cycles experienced by the component from stress time history using rainflow cycle counting method. This postprocessor also computes the accumulated fatigue usage factor from material fatigue properties. The present report describes the development of a code to compute fatigue usage factor using rainflow cycle counting technique and presents a real life case study. (author). 10 refs., 10 figs

  16. Development and calibration of an on-line aerosol monitor for PHEBUS test FPT1

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Carmack, W.J.; Sprenger, M.H.; Thurston, G.C.; Hunt, J.L.

    1994-10-01

    An on-line aerosol monitor (OLAM2) has been developed and tested for PHEBUS test FPT1. OLAM2 utilizes new detachable fiber optic cables and sapphire light pipes for light transmission between the OLAM and the electronics. This light transmission system was tested and found to provide better signal-to-noise performance than was achieved with the continuous fibers used for test FPT0. An additional advantage of the detachable fiber/light pipe system is ease of installation. Aerosol testing (OLAM calibration) was performed in order to verify adequate signal-to-noise performance of the new fiber optic system over the specified operating conditions and to check the quantitative light attenuation measurements against theoretical predictions. Results of the testing indicated that light extinction measurements obtained during Phebus tests could be used to estimate aerosol volume concentrations, if diamond window fouling can be avoided. OLAM2 was also subjected to a proof pressure test and a long-term thermal stability test. These tests verified the mechanical and thermal integrity of the OLAM within design specifications. Long-term output signal stability was also verified with the system maintained at design temperature and half-design pressure

  17. Comparison of process estimation techniques for on-line calibration monitoring

    International Nuclear Information System (INIS)

    Shumaker, B. D.; Hashemian, H. M.; Morton, G. W.

    2006-01-01

    The goal of on-line calibration monitoring is to reduce the number of unnecessary calibrations performed each refueling cycle on pressure, level, and flow transmitters in nuclear power plants. The effort requires a baseline for determining calibration drift and thereby the need for a calibration. There are two ways to establish the baseline: averaging and modeling. Averaging techniques have proven to be highly successful in the applications when there are a large number of redundant transmitters; but, for systems with little or no redundancy, averaging methods are not always reliable. That is, for non-redundant transmitters, more sophisticated process estimation techniques are needed to augment or replace the averaging techniques. This paper explores three well-known process estimation techniques; namely Independent Component Analysis (ICA), Auto-Associative Neural Networks (AANN), and Auto-Associative Kernel Regression (AAKR). Using experience and data from an operating nuclear plant, the paper will present an evaluation of the effectiveness of these methods in detecting transmitter drift in actual plant conditions. (authors)

  18. A system for on-line monitoring of light element concentration distributions in thin samples

    Energy Technology Data Exchange (ETDEWEB)

    Brands, P.J.M. E-mail: p.j.m.brands@tue.nl; Mutsaers, P.H.A.; Voigt, M.J.A. de

    1999-09-02

    At the Cyclotron Laboratory, a scanning proton microprobe is used to determine concentration distributions in biomedical samples. The data acquired in these measurements used to be analysed in a time consuming off-line analysis. To avoid the loss of valuable measurement and analysis time, DYANA was developed. DYANA is an on-line method for the analysis of data from biomedical measurements. By using a database of background shapes, light elements such as Na and Mg, can be fitted even more precisely than in conventional fitting procedures. The entire analysis takes only several seconds and is performed while the acquisition system is gathering a new subset of data. Data acquisition must be guaranteed and may not be interfered by other parallel processes. Therefore, the analysis, the data acquisition and the experiment control is performed on a PCI-based Pentium personal computer (PC), running a real-time operating system. A second PC is added to run a graphical user interface for interaction with the experimenter and the monitoring of the analysed results. The system is here illustrated using atherosclerotic tissue but is applicable to all kinds of thin samples.

  19. Quantitative on-line age monitoring system for power generation industries

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushwaha, H.S.

    1994-01-01

    The degradation effect of various components of power generation industries is an important information for safe and cost effective running of the plant. Among the various such aging effects, fatigue, fatigue creep interaction and crack growth are commonly responsible for most of the failures. Information about various aging effects help in assessing structural degradation of the components. This provides actual plant transients to future designers, guidelines for in-service inspection and maintenance programmes and may also support future life extension of a power plant. In the present paper, development of a quantitative on-line age monitoring methodology using the available plant instrumentations is presented. Green's function technique is used to convert plant data to temperature and stress versus time data. Fatigue usage factor is computed using rain flow cycle counting algorithm using the material fatigue data. The effect of creep is considered adopting life fraction rule using material creep data. Crack growth rate is predicted using linear elastic fracture mechanics and time dependent C t approach. The present paper describes the detailed steps of this methodology, the development of various codes and the case studies carried out. (author). 3 figs

  20. On-Line Fission Gas Release Monitoring System in the High Flux Reactor Petten

    International Nuclear Information System (INIS)

    Laurie, M.; Fuetterer, M. A.; Appelman, K.H.; Lapetite, J.-M.; Marmier, A.; Knol, S.; Best, J.

    2013-06-01

    For HTR fuel irradiation tests in the HFR Petten a specific installation was designed and installed dubbed the 'Sweep Loop Facility' (SLF). The SLF is tasked with three functions, namely temperature control by gas mixture technique, surveillance of safety parameters (temperature, pressure, radioactivity etc.) and analysis of fission gas release for three individual capsules in two separate experimental rigs. The SLF enables continuous and independent surveillance of all gas circuits. The release of volatile fission products (FP) from the in-pile experiments is monitored by continuous gas purging. The fractional release of these FP, defined as the ratio between release rate of a gaseous fission isotope (measured) to its instantaneous birth rate (calculated), is a licensing-relevant test for HTR fuel. The developed gamma spectrometry station allows for higher measurement frequencies, thus enabling follow-up of rapid and massive release transients. The designed stand-alone system was tested and fully used through the final irradiation period of the HFR-EU1 experiment which was terminated on 18 February 2010. Its robustness allowed the set up to be used as extra safety instrumentation. This paper describes the gas activity measurement technique based on HPGe gamma spectrometry and illustrates how qualitative and quantitative analysis of volatile FP can be performed on-line. (authors)

  1. Turbidimetric Measurement for On-line Monitoring of SiO2 Particles

    International Nuclear Information System (INIS)

    Kim, In Sook; Lim, H. B.; Kim, Yang Sun

    2004-01-01

    In this work, the fundamental study of on-line monitoring of SiO 2 particles in the size range of 40 nm to 725 nm was carried out using turbidimetry. The size of particle was measured using a field emission scanning electron microscope (FE-SEM). The factors affecting on the turbidity were discussed, for example, wavelength, size, and concentration. In order to observe the dependence of turbidity on the wavelength, a turbidimetric system equipped with charged coupled detector (CCD) was built. The shape of the transmitted peak was changed and the peak maximum was shifted to the red when the concentration of particle was increased. This result indicates that the turbidity is related to the wavelength, which corresponds to the characteristic of the Mie extinction coefficient, Q, that is a function of not only particle diameter and refractive index but also wavelength. It is clear that a linear calibration curve for each particle in different size can be obtained at an optimized wavelength

  2. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    Science.gov (United States)

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  3. Modeling and Analysis Methods for an On-line Enrichment Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leon E.; Jarman, Kenneth D.; Wittman, Richard S.; Zalavadia, Mital A.; March-Leuba, Jose A.

    2016-05-30

    The International Atomic Energy Agency (IAEA) has developed an On-Line Enrichment Monitor (OLEM) as one possible component in a new generation of safeguards measures for uranium enrichment plants. The OLEM measures 235U emissions from the UF6 gas flowing through a unit header pipe using NaI(Tl) spectrometers, and corrects for gas density changes using pressure and temperature sensors in order to determine the enrichment of the gas as a function of time. In parallel with the OLEM instrument development, a Virtual OLEM (VOLEM) software tool has been developed that is capable of producing synthetic gamma-ray, pressure, and temperature data representative of a wide range of enrichment plant operating conditions. VOLEM complements instrument development activities and allows the study of OLEM for scenarios that will be difficult or impossible to evaluate empirically. Uses of VOLEM include: investigation of hardware design options; inter-comparison of candidate gamma-ray spectral analysis and enrichment estimation algorithms; uncertainty budget analysis and performance prediction for typical and atypical operational scenarios; and testing of the OLEM data acquisition, analysis and reporting software. This paper describes the technical foundations of VOLEM and illustrates how it can be used. An overview of the nominal instrument design and deployment scenario for OLEM is provided, with emphasis on the key online-assay measurement challenge: accurately determining the portion of the total 235U signal that comes from a background that includes solid uranium deposits on the piping walls. Monte Carlo modeling tools, data analysis algorithms and uncertainty quantification methods are described. VOLEM is then used to quantitatively explore the uncertainty budgets and predicted instrument performance for a plausible range of typical plant operating parameters, and one set of candidate analysis algorithms. Additionally, a series of VOLEM case studies illustrates how an online

  4. Component wall thinning and a corrosion-erosion monitoring system

    International Nuclear Information System (INIS)

    Bogard, T.; Batt, T.; Roarty, D.

    1989-01-01

    Since a 1986 incident involving failure of a piping elbow due to erosion-corrosion, the electric utility industry has been actively developing technology for implementing long term programs to address corrosion-erosion. This paper describes a typical corrosion-erosion monitoring program, the types of non-destructive examinations (NDE) performed on components, and the extensive NDE data obtained when the program is applied to components in a power plant. To facilitate evaluation of the NDE data on components, an automated NDE data manipulation and data display system is advisable and perhaps necessary due to the large amounts of NDE data typically obtained during a program. Such a comprehensive corrosion-erosion monitoring system (CEMS) needs to be integral with methods for selection of inspection locations and perform NDE data analysis to help in replace, repair, or run decisions. The structure for one CEMS is described which uses IBM PC compatible hardware and a set of software addressing most data evaluation and decision making needs. CEMS features include automated input/output for typical NDE devices, database structuring, graphics outputs including color 2-D or 3-D contour plots of components, trending and predictive evaluations for future inspection planning, EC severity determination, integration of piping isometrics and component properties, and desktop publishing capabilities

  5. Design of multi-function Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank

  6. On-line monitoring and control of animal-cell cultures

    NARCIS (Netherlands)

    Pol, van der J.J.

    1996-01-01


    On-line analysis and control of biotechnological processes is still the stepchild in industry. In general, only parameters as dissolved-oxygen concentration, pH and temperature are controlled on-line. Important parameters as substrate and inhibitor concentrations are only measured

  7. Performace Of Multi-Probe Corrosion Monitoring Systems At The Hanford Site

    International Nuclear Information System (INIS)

    Carothers, K.D.; Boomer, K.D.; Anda, V.S.; Dahl, M.M.; Edgemon, G.L.

    2010-01-01

    Between 2007 and 2009, several different multi-probe corrosion monitoring systems were designed and installed in high-level nuclear waste tanks at the U.S. Department of Energy's Hanford Site in WaShington State. The probe systems are being monitored to ensure waste tanks operate in regions that minimize localized corrosion (i.e., pitting) and stress corrosion cracking. The corrosion monitoring systems have been installed in wastes with different chemistry types. An ongoing effort during the same time period has generated non-radioactive simulants that are tested in the laboratory to establish baseline corrosion monitoring system performance and characterize data to allow interpretation of readings from the multiple corrosion monitoring systems. Data collection from these monitoring systems has reached the point where the results allow comparison with the laboratory testing. This paper presents analytical results from the corrosion monitoring system development program.

  8. A fixed incore based system for an on line core margin monitoring

    International Nuclear Information System (INIS)

    Mourlevat, J. L.; Carrasco, M.

    2002-01-01

    FRAMATOME-ANP has developed a new core monitoring system which is based on measurements coming from fixed incore sensors and on a 3D power distribution on line reconstruction. After selecting the rhodium self powered neutron detectors as fixed incore sensors, a first step of this development consisted in testing this kind of sensors in the French Golfech Unit 2 reactor (4L, 1300 MWe). (Author)

  9. Development and Validation of an On-Line Water Toxicity Sensor with Immobilized Luminescent Bacteria for On-Line Surface Water Monitoring.

    Science.gov (United States)

    Woutersen, Marjolijn; van der Gaag, Bram; Abrafi Boakye, Afua; Mink, Jan; Marks, Robert S; Wagenvoort, Arco J; Ketelaars, Henk A M; Brouwer, Bram; Heringa, Minne B

    2017-11-22

    Surface water used for drinking water production is frequently monitored in The Netherlands using whole organism biomonitors, with for example Daphnia magna or Dreissena mussels, which respond to changes in the water quality. However, not all human-relevant toxic compounds can be detected by these biomonitors. Therefore, a new on-line biosensor has been developed, containing immobilized genetically modified bacteria, which respond to genotoxicity in the water by emitting luminescence. The performance of this sensor was tested under laboratory conditions, as well as under field conditions at a monitoring station along the river Meuse in The Netherlands. The sensor was robust and easy to clean, with inert materials, temperature control and nutrient feed for the reporter organisms. The bacteria were immobilized in sol-gel on either an optical fiber or a glass slide and then continuously exposed to water. Since the glass slide was more sensitive and robust, only this setup was used in the field. The sensor responded to spikes of genotoxic compounds in the water with a minimal detectable concentration of 0.01 mg/L mitomycin C in the laboratory and 0.1 mg/L mitomycin C in the field. With further optimization, which should include a reduction in daily maintenance, the sensor has the potential to become a useful addition to the currently available biomonitors.

  10. Development and Validation of an On-Line Water Toxicity Sensor with Immobilized Luminescent Bacteria for On-Line Surface Water Monitoring

    Directory of Open Access Journals (Sweden)

    Marjolijn Woutersen

    2017-11-01

    Full Text Available Surface water used for drinking water production is frequently monitored in The Netherlands using whole organism biomonitors, with for example Daphnia magna or Dreissena mussels, which respond to changes in the water quality. However, not all human-relevant toxic compounds can be detected by these biomonitors. Therefore, a new on-line biosensor has been developed, containing immobilized genetically modified bacteria, which respond to genotoxicity in the water by emitting luminescence. The performance of this sensor was tested under laboratory conditions, as well as under field conditions at a monitoring station along the river Meuse in The Netherlands. The sensor was robust and easy to clean, with inert materials, temperature control and nutrient feed for the reporter organisms. The bacteria were immobilized in sol-gel on either an optical fiber or a glass slide and then continuously exposed to water. Since the glass slide was more sensitive and robust, only this setup was used in the field. The sensor responded to spikes of genotoxic compounds in the water with a minimal detectable concentration of 0.01 mg/L mitomycin C in the laboratory and 0.1 mg/L mitomycin C in the field. With further optimization, which should include a reduction in daily maintenance, the sensor has the potential to become a useful addition to the currently available biomonitors.

  11. Engineering Task Plan for the 241-AN-105 Multi-Function Corrosion Monitoring System

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    This Engineering Task Plan (ETP) describes the activities associated with the installation of the corrosion probe assembly into riser WST-RISER-016 (formerly 15B) of tank 241-AN-105. The corrosion monitoring system utilizes the technique of electrochemical noise (EN) for monitoring waste tank corrosion. Typically, EN consists of low frequency (4 Hz) and small amplitude signals that are spontaneously generated by electrochemical reactions occurring at corroding or other surfaces. EN analysis is well suited for monitoring and identifying the onset of localized corrosion, and for measuring uniform corrosion rates. A typical EN based corrosion-monitoring system measures instantaneous fluctuations in corrosion current and potential between three nominally identical electrodes of the material of interest immersed in the environment of interest. Time-dependent fluctuations in corrosion current are described by electrochemical current noise, and time-dependent fluctuations of corrosion potential are described by electrochemical noise. The corrosion monitoring system is designed to detect the onset of localized corrosion phenomena if tank conditions should change to allow these phenomena to occur. In addition to the EN technique, the system also facilitates the use of the Linear Polarization Resistance (LPR) technique to collect uniform corrosion rate information. LPR measures the linearity at the origin of the polarization curve for overvoltages up to a few millivolts away from the rest potential or natural corrosion potential. The slope of the current vs. voltage plot gives information on uniform corrosion rates

  12. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    Science.gov (United States)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  13. Principal components based support vector regression model for on-line instrument calibration monitoring in NPPs

    International Nuclear Information System (INIS)

    Seo, In Yong; Ha, Bok Nam; Lee, Sung Woo; Shin, Chang Hoon; Kim, Seong Jun

    2010-01-01

    In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method

  14. Implementation of automated, on-line fatigue monitoring in a boiling water reactor

    International Nuclear Information System (INIS)

    Sakai, Takeshi; Tokunaga, Katsumi; Stevens, G.L.; Ranganath, S.

    1993-01-01

    A workstation-based, on-line fatigue monitoring system for tracking fatigue usage applied to a Japanese operating boiling water reactor (BWR), Tsuruga Unit 1, is described. The system uses the influence function approach and rainflow cycle counting methodology, operates on a workstation computer, and determines component stresses using temperature, pressure, and flow rate data that are made available via signal taps from previously existing plant sensors. Using plant-unique influence functions developed specifically for the feedwater nozzle location, the system calculates stresses as a function of time and computes the fatigue usage. The analysis method used to compute fatigue usage complies with MITI Code Notification number-sign 501. Fatigue values are saved automatically on files at times defined by the user for use at a later time. Of particular note, this paper describes some of the details involved with implementing such a system from the utility perspective. Utility installation details, as well as why such a system was chosen for implementation are presented. Fatigue results for an entire fuel cycle are presented and compared to assumed design basis events to confirm that actual plant thermal duty is significantly less severe than originally estimated in the design basis stress report. Although the system is specifically set up to address fatigue duty for the feedwater nozzle location, a generic shell structure was implemented so that any other components could be added at a future time without software modifications. As a result, the system provides the technical basis to more accurately evaluate actual reactor conditions as well as the justification for plant life extension

  15. Evaluation on the model of performance predictions for on-line monitoring system for combined-cycle power plant

    International Nuclear Information System (INIS)

    Kim, Si Moon

    2002-01-01

    This paper presents the simulation model developed to predict design and off-design performance of an actual combined cycle power plant(S-Station in Korea), which would be running combined with on-line performance monitoring system in an on-line real-time fashion. The first step in thermal performance analysis is to build an accurate performance model of the power plant, in order to achieve this goal, GateCycle program has been employed in developing the model. This developed models predict design and off-design performance with a precision of one percent over a wide range of operating conditions so that on-line real-time performance monitoring can accurately establish both current performance and expected performance and also help the operator identify problems before they would be noticed

  16. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Corrosion of steel is one of the most important durability issues in reinforced concrete (RC) structures because aggressive ions such as chloride ions permeate concrete and corrode steel, consequently accelerating the destruction of structures, especially in marine environments. There are many practical methods for corrosion monitoring in RC structures, mostly focusing on electrochemical-based sensors for monitoring the chloride ion which is thought as one of the most important factors resulting in steel corrosion. In this work, we report a fiber-optic chloride chemical sensor based on long period gratings inscribed in a photonic crystal fiber (PCF) with a chloride sensitive thin film. Numerical simulation is performed to determine the characteristics and resonance spectral response versus the refractive indices of the analyte solution flowing through into the holes in the PCF. The effective refractive index of the cladding mode of the LPGs changes with variations of the analyte solution concentration, resulting in a shift of the resonance wavelength, hence providing the sensor signal. This fiber-optic chemical sensor has a fast response, is easy to prepare and is not susceptible to electromagnetic environment, and can therefore be of use for structural health monitoring of RC structures subjected to such aggressive environments.

  17. Determination of the delivered hemodialysis dose using standard methods and on-line clearance monitoring

    Directory of Open Access Journals (Sweden)

    Vlatković Vlastimir

    2006-01-01

    Full Text Available Background/aim: Delivered dialysis dose has a cumulative effect and significant influence upon the adequacy of dialysis, quality of life and development of co-morbidity at patients on dialysis. Thus, a great attention is given to the optimization of dialysis treatment. On-line Clearance Monitoring (OCM allows a precise and continuous measurement of the delivered dialysis dose. Kt/V index (K = dialyzer clearance of urea; t = dialysis time; V = patient's total body water, measured in real time is used as a unit for expressing the dialysis dose. The aim of this research was to perform a comparative assessment of the delivered dialysis dose by the application of the standard measurement methods and a module for continuous clearance monitoring. Methods. The study encompassed 105 patients who had been on the chronic hemodialysis program for more than three months, three times a week. By random choice, one treatment per each controlled patient was taken. All the treatments understood bicarbonate dialysis. The delivered dialysis dose was determined by the calculation of mathematical models: Urea Reduction Ratio (URR singlepool index Kt/V (spKt/V and by the application of OCM. Results. Urea Reduction Ratio was the most sensitive parameter for the assessment and, at the same time, it was in the strongest correlation with the other two, spKt/V indexes and OCM. The values pointed out an adequate dialysis dose. The URR values were significantly higher in women than in men, p < 0.05. The other applied model for the delivered dialysis dose measurement was Kt/V index. The obtained values showed that the dialysis dose was adequate, and that, according to this parameter, the women had significantly better dialysis, then the men p < 0.05. According to the OCM, the average value was slightly lower than the adequate one. The women had a satisfactory dialysis according to this index as well, while the delivered dialysis dose was insufficient in men. The difference

  18. A study of the long-range inspection method for on-line monitoring of pipes in nuclear power plants

    International Nuclear Information System (INIS)

    Eom, Heung Seop; Lim, Sa Hoe; Kim, Jae Hee; Kim, Young H.; Song, Sung Jin

    2005-01-01

    Deployment of an advanced on-line monitoring of the component integrity offers the prospect of an improved performance, enhanced safety, and reduced overall cost for nuclear power plants (NPPs). Also ultrasonic guided ultrasonic wave has been known as one of the promising techniques that could be utilized for on-line monitoring, because it enables us to undertake a long-range inspection of structures such as plates and pipes. The present work is aimed at developing a new method using ultrasonic guided waves for the on-line monitoring of pipes. For this purpose we fabricated the necessary hardware and carried out transmitter tuning, group velocity measurement, receiver tuning, and mode identification. Finally we carried out an experiment on a long-range inspection with the developed hardware and the techniques. In the experiment, we could detect the flaws at a distance of about 20M from the transmitter, and we could verify the possibility of using the developed hardware and techniques for on-line monitoring of pipes in NPPs

  19. NDE of stainless steel and on-line leak monitoring of LWRs. Annual report, October 1984-September 1985. Volume 2

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Claytor, T.N.; Mathieson, T.; Prine, D.W.

    1986-02-01

    This progress report summarizes work performed by the Argonne National Laboratory and GARD, Inc. (Division of Chamberlain Mfg. Corp.) as subcontractor on NDE of stainless steel and on-line leak monitoring of LWRs during the 12 months from October 1984 to September 1985. 15 refs., 36 figs

  20. Feasibility study of applying a multi-channel analysis model to on-line core monitoring system

    International Nuclear Information System (INIS)

    In, W. K.; Yoo, Y. J.; Hwang, D. H.; Jun, T. H.

    1998-01-01

    A feasibility study was performed to evaluate the effect of implementing a multi-channel analysis model in on-line core monitoring system. A simplified thermal-hydraulic model has been used in the on-line core monitoring system of digital PWR. The design procedure, core thermal margin and computation time were investigated in case of replacing the simplified model with the multi-channel analysis model. For the given ranges of limiting conditions for operation in Yonggwang Unit 3 Cycle 1, the minimum DNBR of the simplified thermal-hydraulic code CETOP-D was compared to that of the multi-channel analysis code MATRA. A CETOP-D tuning is additionally required to ensure the accurate and conservative DNBR calculation but the MATRA tuning is not necessary. MATRA appeared to increase the DNBR overpower margin from 2.5% to 6% over the CETOP-D margin. MATRA took approximately 1 second to compute DNBR on the HP9000 workstation system, which is longer than the DNBR computation time of CETOP-D. It is, however, fast enough to perform the on-line monitoring of DNBR. It can be therefore concluded that the application of the multi-channel analysis model MATRA in the on-line core monitoring system is feasible

  1. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    OpenAIRE

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a minute-to-minute basis from July 2002 until April 2003. Data collected included, amongst others, crop transpiration from lysimeter data (2 m2), canopy temperature using infrared sensors, rockwool water...

  2. Design of second generation Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    Edgemon, G.L.

    1998-01-01

    The Hanford Site has 177 underground waste tanks that store approximately 253 million liters of radioactive waste from 50 years of plutonium production. Twenty-eight tanks have a double shell and are constructed of welded ASTM A537-Class 1 (UNS K02400), ASTM A515-Grade 60 (UNS K02401), or ASTM A516-Grade 60 (UNS K02100) material. The inner tanks of the double-shell tanks (DSTS) were stress relieved following fabrication. One hundred and forty-nine tanks have a single shell, also constructed of welded mild steel, but not stress relieved following fabrication. Tank waste is in liquid, solid, and sludge forms. Tanks also contain a vapor space above the solid and liquid waste regions. The composition of the waste varies from tank to tank but generally has a high pH (>12) and contains sodium nitrate, sodium hydroxide, sodium nitrite, and other minor radioactive constituents resulting from plutonium separation processes. Leaks began to appear in the single-shell tanks shortly after the introduction of nitrate-based wastes in the 1950s. Leaks are now confirmed or suspected to be present in a significant number of single-shell tanks. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking (SCC) and pitting. Previous efforts to monitor internal corrosion of waste tank systems have included linear polarization resistance (LPR) and electrical resistance techniques. These techniques are most effective for monitoring uniform corrosion, but are not well suited for detection of localized corrosion (pitting and SCC). The Savannah River Site (SRS) investigated the characterization of electrochemical noise (EN) for monitoring waste tank corrosion in 1993, but the tests were not conclusive. The SRS effort has recently been revived and additional testing is underway. For many years, EN has been observed during corrosion and other electrochemical reactions, and the phenomenon is well established. Typically, EN consists of low frequency (< 1 Hz) and

  3. On-line monitoring of crack propagation by the acoustic emission method

    International Nuclear Information System (INIS)

    Chung, M.K.; Park, D.Y.; Choi, S.P.; Kim, H.J.; Moon, Y.S.; Shon, G.H.; Kim, T.S.

    1983-01-01

    Stress corrosion cracking experiment was carried out to find out the acoustic emission (AE) characteristics of Al 5052 and SCM-4 steel in 3.5% NaCl-H 2 O solution. In advance of the above test, some mechanical properties of these materials were investigated through the tensile test with standard round tensile specimens and WOL specimens which were originaly designed for the stress corrosion cracking experiment. About 5mm fatigue crack was given to WOL specimen by MTS system. We measure the relationship between stress intensity factor and AE count rate under various temperature of the solution such as 15degC, 33 degC, 45 degC and compared their AE characteristics of two materials. While AE count rate of Al 5052 is even higher than that of SCM-4 steel by one order or two, velocity of corrosion crack is much slow. The AE generation rate of SCM-4 steel is discrete and about 0.25 mm corrosion growth corresponds to 10 3 counts. Also location of defects in linear specimen was studied. (Author)

  4. Corrosion monitoring of insulated pipe using radiographic technique

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Aziz Mohamed; Abd Razak Hamzah; Mohd Pauzi Ismail; Abd Nassir Ibrahim; Shaharudin Sayuti; Shukri Ahmad

    2001-01-01

    In petrochemical and power plants, detection of corrosion and evaluation of deposit in insulated pipes using radiographic technique are considered as very challenging tasks. In general this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is he wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  5. Emulsion (Co)polymerization of styrene and butyl acrylate monitored by On-line Raman Spectroscopy

    NARCIS (Netherlands)

    van den Brink, H.J.T.; Pepers, M.L.H.; Herk, van A.M.; German, A.L.

    2000-01-01

    The homo- and copolymerizations of styrene and n-butyl acrylate were studied by on-line in-situ Raman spectroscopy.Results from the solution (homo)polymerizations proved to be very useful in the quantification of the Raman data from the emulsion homopolymerization. From the homopolymerization data

  6. Monitoring the metering performance of an electronic voltage transformer on-line based on cyber-physics correlation analysis

    International Nuclear Information System (INIS)

    Zhang, Zhu; Li, Hongbin; Hu, Chen; Jiao, Yang; Tang, Dengping

    2017-01-01

    Metering performance is the key parameter of an electronic voltage transformer (EVT), and it requires high accuracy. The conventional off-line calibration method using a standard voltage transformer is not suitable for the key equipment in a smart substation, which needs on-line monitoring. In this article, we propose a method for monitoring the metering performance of an EVT on-line based on cyber-physics correlation analysis. By the electrical and physical properties of a substation running in three-phase symmetry, the principal component analysis method is used to separate the metering deviation caused by the primary fluctuation and the EVT anomaly. The characteristic statistics of the measured data during operation are extracted, and the metering performance of the EVT is evaluated by analyzing the change in statistics. The experimental results show that the method successfully monitors the metering deviation of a Class 0.2 EVT accurately. The method demonstrates the accurate evaluation of on-line monitoring of the metering performance on an EVT without a standard voltage transformer. (paper)

  7. Monitoring the metering performance of an electronic voltage transformer on-line based on cyber-physics correlation analysis

    Science.gov (United States)

    Zhang, Zhu; Li, Hongbin; Tang, Dengping; Hu, Chen; Jiao, Yang

    2017-10-01

    Metering performance is the key parameter of an electronic voltage transformer (EVT), and it requires high accuracy. The conventional off-line calibration method using a standard voltage transformer is not suitable for the key equipment in a smart substation, which needs on-line monitoring. In this article, we propose a method for monitoring the metering performance of an EVT on-line based on cyber-physics correlation analysis. By the electrical and physical properties of a substation running in three-phase symmetry, the principal component analysis method is used to separate the metering deviation caused by the primary fluctuation and the EVT anomaly. The characteristic statistics of the measured data during operation are extracted, and the metering performance of the EVT is evaluated by analyzing the change in statistics. The experimental results show that the method successfully monitors the metering deviation of a Class 0.2 EVT accurately. The method demonstrates the accurate evaluation of on-line monitoring of the metering performance on an EVT without a standard voltage transformer.

  8. On-Line Monitoring for Process Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plants

    International Nuclear Information System (INIS)

    Bryan, S.; Levitskaia, T.; Casella, A.

    2015-01-01

    The International Atomic Energy Agency (IAEA) has established international safe- guards standards for fissionable material at spent nuclear fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) techniques in conjunction with the traditional and highly precise DA methods may provide a more timely, cost-effective and resource-efficient means for MC&A verification at such facilities. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including a spectroscopy-based monitoring system, to potentially reduce the time and re- source burden associated with current techniques. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using ultra-violet and visible, near infrared and Raman spectroscopy. This paper will provide an overview of the methods and report our on-going efforts to develop and demonstrate the technologies. Our ability to identify material intentionally diverted from a liquid-liquid solvent extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion, and detection of that diversion, from a solvent extraction scheme was demonstrated using a centrifugal contactor system operating with the PUREX flowsheet. A portion of the feed from a counter-current extraction system was diverted while a continuous extraction experiment was underway. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of

  9. Steam side corrosion-erosion monitoring and control improvements performed at the Kalinin NPP in the frame of the CEC Tacis'92 program

    International Nuclear Information System (INIS)

    1994-01-01

    The TACIS program (Technical Assistance to the Community of Independent States), funded by the CEC, is aimed at improving the reliability and safety of the VVER NPPs operation. The program consists of the following two phases: upgrading the on-line water chemistry monitoring and laboratory analytical equipment; implementation of generic studies to assess the corrosion risks in the steam side sensitive areas and to set-up the most appropriate strategy to monitor and to control the corrosion-erosion phenomena in the secondary side. 3 figs., 2 tabs

  10. Potential drop technique for monitoring stress corrosion cracking growth

    International Nuclear Information System (INIS)

    Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Moreira, Pedro A.L.D.P.L.P.

    2002-01-01

    Stress corrosion cracking is one of most severe damage mechanisms influencing the lifetime of components in the operation of nuclear power plants. To assess the initiation stages and kinetics of crack growth as the main parameters coming to residual lifetime determination, the testing facility should allow active loading of specimens in the environment which is close to the real operation conditions of assessed component. Under cooperation of CDTN/CNEN and International Atomic Energy Agency a testing system has been developed by Nuclear Research Institute, Czech Republic, that will be used for the environmentally assisted cracking testing at CDTN/CNEN. The facility allows high temperature autoclave corrosion mechanical testing in well-defined LWR water chemistry using constant load, slow strain rate and rising displacement techniques. The facility consists of autoclave and refreshing water loop enabling testing at temperatures up to 330 deg C. Active loading system allows the maximum load on a specimen as high as 60 kN. The potential drop measurement is used to determine the instant crack length and its growth rate. The paper presents the facility and describes the potential drop technique, that is one of the most used techniques to monitor crack growth in specimens under corrosive environments. (author)

  11. Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring

    Science.gov (United States)

    Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert

    2009-03-01

    In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.

  12. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    On-line monitoring of high-voltage electrical equipment (HV-EE) aiming to detect faults effectively has become crucial to avoid serious accidents. Moreover, highly reliable power supplies are the key component for the wireless sensors equipped in such on-line monitoring systems. Therefore......, in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...... power is able to be delivered to the wireless sensor through the designed MR-WPS, and therefore the theoretical analysis and design is verified....

  13. Analytical techniques for in-line/on-line monitoring of uranium and plutonium in process solutions : a brief literature survey

    International Nuclear Information System (INIS)

    Marathe, S.G.; Sood, D.D.

    1991-01-01

    In-line/on-line monitoring of various parameters such as uranium-plutonium-fission product concentration, acidity, density etc. plays an important role in quickly understanding the efficiency of processes in a reprocessing plant. Efforts in studying and installation of such analytical instruments are going on since more than three decades with adaptation of newer methods and technologies. A review on the developement of in-line analytical instrumentation was carried out in this laboratory about two decades ago. This report presents a very short literature survey of the work in the last two decades. The report includes an outline of principles of the main techniques employed in the in-line/on-line monitoring. (author). 77 refs., 6 tabs

  14. Corrosion in systems for storage and transportation of petroleum products and biofuels identification, monitoring and solutions

    CERN Document Server

    Groysman, Alec

    2014-01-01

    This book treats corrosion as it occurs and affects processes in real-world situations, and thus points the way to practical solutions. Topics described include the conditions in which petroleum products are corrosive to metals; corrosion mechanisms of petroleum products; which parts of storage tanks containing crude oils and petroleum products undergo corrosion; dependence of corrosion in tanks on type of petroleum products; aggressiveness of petroleum products to polymeric material; how microorganisms take part in corrosion of tanks and pipes containing petroleum products; which corrosion monitoring methods are used in systems for storage and transportation of petroleum products; what corrosion control measures should be chosen; how to choose coatings for inner and outer surfaces of tanks containing petroleum products; and how different additives (oxygenates, aromatic solvents) to petroleum products and biofuels influence metallic and polymeric materials. The book is of interest to corrosion engineers, mat...

  15. Acceptance Test Report for Fourth-Generation Hanford Corrosion Monitoring Cabinet

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation

  16. Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity.

    Science.gov (United States)

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S

    2012-06-27

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species in and around human tissues, leading to oxidative stress. We report here a system employing a microfluidic electrochemical sensor coupled directly to a particle-into-liquid sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol (DTT) assay, where, after being oxidized by PM, the remaining reduced DTT is analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane)-based microfluidic device. Cobalt(II) phthalocyanine-modified carbon paste was used as the working electrode material, allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R(2) from 0.86 to 0.97) with a time resolution of approximately 3 min.

  17. Application of a chronoamperometric measurement to the on-line monitoring of a lithium metal reduction for uranium oxide

    International Nuclear Information System (INIS)

    Kim, Tack-Jin; Cho, Young-Hwan; Choi, In-Kyu; Kang, Jun-Gill; Song, Kyuseok; Jee, Kwang-Yong

    2008-01-01

    Both a potentiometric and a chronoamperometric electrochemical technique have been applied in an attempt to develop an efficient method for an on-line monitoring of a lithium metal reduction process of uranium oxides at a high-temperature in a molten salt medium. As a result of this study, it was concluded that the chronoamperometric method provided a simple and effective way for a direct on-line monitoring measurement of a lithium metal reduction process of uranium oxides at 650 o C by the measuring electrical currents dependency on a variation of the reduction time for the reaction. A potentiometric method, by adopting a homemade oxide ion selective electrode made of ZrO 2 stabilized by a Y 2 O 3 doping, however, was found to be inappropriate for an on-line monitoring of the reduction reaction of uranium oxide in the presence of lithium metal due to an abnormal behavior of the adopted electrodes. The observed experimental results were discussed in detail by comparing them with previously published experimental data

  18. A PAT approach for the on-line monitoring of pharmaceutical co-crystals formation with near infrared spectroscopy.

    Science.gov (United States)

    Sarraguça, Mafalda C; Ribeiro, Paulo R S; Santos, Adenilson O; Silva, Marta C D; Lopes, João A

    2014-08-25

    Cocrystals represent a class of crystalline solids consisting of two or more molecular species usually held together by non-covalent bonds. Pharmaceutical cocrystals can alter the physicochemical properties of the active pharmaceutical ingredient to improve solubility, dissolution rate, particle properties and stability. This work presents a process analytical technology (PAT) approach to monitor on-line the cocrystallization of furosemide and adenine by solvent evaporation using near infrared spectroscopy (NIRS). Furosemide and adenine were added to a small volume of methanol in a beaker and stirred on an orbital stirring table during 8h at room temperature. The on-line monitoring was performed with a FT-NIR spectrometer fitted with a reflectance fiber optic probe. Monitoring was performed with the probe tip placed 1cm above the cocrystallization medium to avoid interference with the cocrystallization process. Cocrystals were vacuum dried to remove residual solvent and characterized off-line by NIRS, MIRS, DSC and XRPD. Results demonstrate that it was possible to follow the main cocrystallization events on-line. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    OpenAIRE

    Chew, D.; Fromme, P.

    2014-01-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along...

  20. Progress for on-line acoustic emission monitoring of cracks in reactor systems

    International Nuclear Information System (INIS)

    Hutton, P.H.; Friesel, M.A.; Kurtz, R.J.

    1985-10-01

    This paper reviews FY1985 accomplishments and FY1986 plans for the NRC sponsored research program concerned with ''Acoustic Emission/Flaw Relationships for Inservice Monitoring of Nuclear Reactor Pressure Boundaries''. The objective of the acoustic emission (AE) monitoring program is to develop and validate the use of AE methods for continuous surveillance of reactor pressure boundaries to detect flaw growth. Topics discussed include testing AE monitoring on reactors, refinement of an AE signal identification relationship, study of slow crack growth rate effects on AE generation, and activity to produce an ASTM standard for AE monitoring and to gain ASME code acceptance of AE monitoring

  1. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  2. On-line alkali monitoring - Part 1; Kontinuerlig alkalimaetning - Etapp 1

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Ljung, P; Woxlin, H

    1997-02-01

    As a consequence of the increased knowledge of the environmental impact of combustion based heat and power generation, the use of renewable biofuels will be increased. An obstacle associated to biofuel combustion compared to other fuels is the large release of alkali. Alkali compounds in flue gases are known to cause severe operational problems. Three of the major problems are; fouling of superheating tubes (causing reduced heat transfer and possibly corrosion), agglomeration of the bed material in fluidized beds, and poisoning of SCR catalysts. Yet another alkali related problem arises when, in order to increase the electric efficiency of combustion power plants, combined-cycle technology is used. Alkali vapour present in the fuel gas for the gas turbine is condensed to particles which increase corrosion and erosion of the turbine blades. The research on ash related operational problems has to be extended in order to ensure future use of biofuels in heat and power generation. In all successful research, adequate tools are necessary. To investigate ash related problems the key issue is to be able to perform continuous alkali measurements. This pilot study has investigated the need of continuous alkali measurements, which alkali species are harmful in the different applications and also available instrumentation capable of measuring the specific alkali species. The report gives a short summary presenting alkali related operational problems. In addition a schematic overview is given, showing the alkali species that possibly can exist in various parts of the power plant. 48 refs, 13 figs, 4 tabs

  3. Development and evaluation of an instantaneous atmospheric corrosion rate monitor

    Science.gov (United States)

    Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.

    1985-06-01

    A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.

  4. Expanded beam spectro-ellipsometry for big area on-line monitoring

    Science.gov (United States)

    Fried, M.; Major, C.; Juhasz, G.; Petrik, P.; Horvath, Z.

    2015-05-01

    Non-destructive analysing tools are needed at all stages of thin film process-development, especially photovoltaic (PV) development, and on production lines. In the case of thin films, layer thicknesses, micro-structure, composition, layer optical properties, and their uniformity are important parameters. An important focus is to express the dielectric functions of each component material in terms of a handful of wavelength independent parameters whose variation can cover all process variants of that material. With the resulting database, spectroscopic ellipsometry coupled with multilayer analysis can be developed for on-line point-by-point mapping and on-line line-by-line imaging. Off-line point-by-point mapping can be effective for characterization of non-uniformities in full scale PV panels or big area (even 450 mm diameter) Si-wafers in developing labs but it is slow in the on-line mode when only 15 points can be obtained (within 1 min) as a 120 cm long panel moves by the mapping station. Last years [M. Fried et al, Thin Solid Films 519, 2730 (2011)], a new instrumentation was developed that provides a line image of spectroscopic ellipsometry (wl=350- 1000 nm) data. Earlier a single 30 point line image could be collected in 10 s over a 15 cm width of PV material. Recent years we have built a 30, a 45 and a 60 cm width expanded beam ellipsometer which speed is increased by 10x. Now, 1800 points can be mapped in a 1 min traverse of a 60*120 cm PV panel or flexible roll-to-roll substrate.

  5. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Fu; Hope, A D; Javed, M [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1998-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  6. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Fu Pan; Hope, A.D.; Javed, M. [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1997-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  7. Study of the Sensor for On-line Lubricating Oil Debris Monitoring

    Directory of Open Access Journals (Sweden)

    Huiqin Zhan

    2014-07-01

    Full Text Available Mechanical parts such as gears and bearings used in mechanical equipment have a finite lifetime because of corrosion and wear. If the parts are in abnormal operation and is not detected, it may cause catastrophic component failure during operation. One effective approach to detect signs of potential failure of the mechanical equipment is to examine the debris particles in its lubricating oil. This article presented an inductive debris sensor which is designed on the basis of the principle of inductance balance. The structure design and the principle of it are studied. The intensity distribution of its magnetic induction is simulated by the use of simulation software Ansoft Maxwell. The mathematical model when there is a debris particle passing through the sensor is analyzed and the characteristics of the sensor’s induction signal is gotten. Experiments have shown that debris particles can be detected by this sensor.

  8. NDE of stainless steel and on-line leak monitoring of LWRs

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Claytor, T.N.; Mathieson, T.; Prine, D.W.

    1985-10-01

    The GARD/ANL acoustic leak detection system is under evaluation in the laboratory. Results of laboratory tests with simulated acoustic leak signals and acoustic signals from field-induced intergranular stress corrosion cracks (IGSCCs) indicate that cross-correlation techniques can be used to locate the position of a leak. Leaks from a 2-in. ball valve and a flange were studied and compared with leaks from IGSCCs and fatigue cracks. The dependence of acoustic signal on flow rate and frequency for the valve and the flange was comparable to that of fatigue cracks (thermal and mechanical) and different from that of IGSCCs. Two pipe-to-endcap weldments with overlays were examined. Because the amount of cracking in the specimens was limited, the emphasis was on trying understand the nature of crack overcalling. Four 60-mm-thick cast stainless steel plates with microstructures ranging from equiaxed to primarily columnar grains have been examined with ultrasonic waves. 13 refs., 23 figs

  9. On-line use of personal computers to monitor and evaluate important parameters in the research reactor DHRUVA

    International Nuclear Information System (INIS)

    Sharma, S.K.; Sengupta, S.N.; Darbhe, M.D.; Agarwal, S.K.

    1998-01-01

    The on-line use of Personal Computers in research reactors, with custom made applications for aiding the operators in analysing plant conditions under normal and abnormal situations, has become extremely popular. A system has been developed to monitor and evaluate important parameters for the research reactor DHRUVA, a 100 MW research reactor located at the Bhabha Atomic Research Centre, Trombay. The system was essentially designed for on-line computation of the following parameters: reactor thermal power, reactivity load due to Xenon, core reactivity balance and performance monitoring of shut-down devices. Apart from the on-line applications, the system has also been developed to cater some off-line applications with Local Area Network in the Dhruva complex. The microprocessor based system is designed to function as an independent unit, parallel dumping the acquired data to a PC for application programmes. The user interface on the personal computer is menu driven application software written in 'C' language. The main input parameters required for carrying out the options given in the above menu are: Reactor power, Moderator level, Coolant inlet temperature to the core, Secondary coolant flow rate, temperature rise of secondary coolant across the heat exchangers, heavy water level in the Dump tank and Drop time of individual shut off rods. (author)

  10. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Science.gov (United States)

    Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  11. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F. [CEA, DEN, Cadarache, SPEx/LDCI, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lopez, A. Legrand [CEA, DEN, Saclay, SIREN/LECSI, F-91400 Saclay (France)

    2011-03-15

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10{sup 20} n/cm{sup 2}. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  12. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    International Nuclear Information System (INIS)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F.; Vermeeren, L.; Lopez, A. Legrand

    2011-01-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10 20 n/cm 2 . A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  13. Control and monitoring of On-line Trigger Algorithms using gaucho

    CERN Document Server

    Van Herwijnen, Eric

    2005-01-01

    In the LHCb experiment, the trigger decisions are computed by Gaudi (the LHCb software framework) algorithms running on an event filter farm of around 2000 PCs. The control and monitoring of these algorithms has to be integrated in the overall experiment control system (ECS). To enable and facilitate this integration Gaucho, the GAUdi Component Helping Online, was developed. Gaucho consists of three parts: a C++ package integrated with Gaudi, the communications package DIM, and a set of PVSS panels and libraries. PVSS is a commercial SCADA system chosen as toolkit and framework for the LHCb controls system. The C++ package implements monitor service interface (IMonitorSvc) following the Gaudi specifications, with methods to declare variables and histograms for monitoring. Algorithms writers use them to indicate which quantities should be monitored. Since the interface resides in the GaudiKernel the code does not need changing if the monitoring services are not present. The Gaudi main job implements a state ma...

  14. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Geiker, Mette Rica

    2011-01-01

    To test the applicability of the x-ray attenuation method to monitor the movement of corrosion products as well as the formation and propagation of cracks in cementitious materials reinforced mortar samples were prepared and tested under accelerated corrosion conditions. It is evident from the ex...... of the corrosion products averaged through the specimen thickness. The total mass loss of steel, obtained by the x-ray attenuation method, was found to be in very good agreement with the mass loss obtained by gravimetric method as well as Faraday's law....

  15. WARMS - a continuous on-line environmental and emergency radiation monitoring system

    International Nuclear Information System (INIS)

    Ramsden, D.

    1984-01-01

    The Winfrith Airborne Release Monitoring System (WARMS) is used to monitor the environment around the Winfrith reactor site. It operates continuously monitoring the background radiation at 16 outstations and can provide rapid information should an accidental release occur. WARMS was developed jointly by the Radiological Safety Division and the Control and Instrumentation Division at Winfrith in association with the Safety and Reliability Directorate at Culcheth which developed the software. The system became operational in the autumn of 1983 and has since demonstrated a high degree of reliability and effectiveness. (author)

  16. An application of on-line battery monitoring to the Vulcano PV plant

    Energy Technology Data Exchange (ETDEWEB)

    Buonarota, A.; Menga, P.; Ostano, P.; Scarioni, V.

    1988-05-01

    The reliable knowledge of the state-of-charge (SOC) of the battery of a photovoltaic (PV) plant can contribute to improve system management. Unfortunately, the technologies currently adopted to determine the battery SOC are not fully satisfactory. The experience obtained by ENEL (Italian Electricity Board) on traction lead-acid batteries, operating under cyclic conditions, led to the formulation of a simple model capable of describing the relationships among the operating conditions (profile of current, temperature, etc.) and the internal SOC of the battery. This model was extended to the stationary accumulators to the Vulcano PV plant of ENEL, and checked by means of laboratory tests at the CESI (Italy) laboratories. Relevant to this work, an automatic system for the on-line evaluation of the SOC of the battery has recently been set up and installed at Vulcano. This paper presents the basis of the methodology, the layout of the system, and the preliminary results.

  17. On-line condition monitoring of nuclear systems via symbolic time series analysis

    International Nuclear Information System (INIS)

    Rajagopalan, V.; Ray, A.; Garcia, H. E.

    2006-01-01

    This paper provides a symbolic time series analysis approach to fault diagnostics and condition monitoring. The proposed technique is built upon concepts from wavelet theory, symbolic dynamics and pattern recognition. Various aspects of the methodology such as wavelet selection, choice of alphabet and determination of depth of D-Markov Machine are explained in the paper. The technique is validated with experiments performed in a Machine Condition Monitoring (MCM) test bed at the Idaho National Laboratory. (authors)

  18. On-line Cutting Tool Condition Monitoring in Machining Processes Using Artificial Intelligence

    OpenAIRE

    Vallejo, Antonio J.; Morales-Menéndez, Rub&#;n; Alique, J.R.

    2008-01-01

    This chapter presented new ideas for monitoring and diagnosis of the cutting tool condition with two different algorithms for pattern recognition: HMM, and ANN. The monitoring and diagnosis system was implemented for peripheral milling process in HSM, where several Aluminium alloys and cutting tools were used. The flank wear (VB) was selected as the criterion to evaluate the tool's life and four cutting tool conditions were defined to be recognized: New, half new, half worn, and worn conditio...

  19. Experience of MAPS in monitoring of personnel movement with on-line database management system

    International Nuclear Information System (INIS)

    Rajendran, T.S.; Anand, S.D.

    1992-01-01

    As a part of physical protection system, access control system has been installed in Madras Atomic Power Station(MAPS) to monitor and regulate the movement of persons within MAPS. The present system in its original form was meant only for security monitoring. A PC based database management system was added to this to computerize the availability of work force for actual work. (author). 2 annexures

  20. On-line, continuous monitoring in solar cell and fuel cell manufacturing using spectral reflectance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, Bhushan; Rupnowski, Przemyslaw; Ulsh, Michael

    2016-01-12

    A monitoring system 100 comprising a material transport system 104 providing for the transportation of a substantially planar material 102, 107 through the monitoring zone 103 of the monitoring system 100. The system 100 also includes a line camera 106 positioned to obtain multiple line images across a width of the material 102, 107 as it is transported through the monitoring zone 103. The system 100 further includes an illumination source 108 providing for the illumination of the material 102, 107 transported through the monitoring zone 103 such that light reflected in a direction normal to the substantially planar surface of the material 102, 107 is detected by the line camera 106. A data processing system 110 is also provided in digital communication with the line camera 106. The data processing system 110 is configured to receive data output from the line camera 106 and further configured to calculate and provide substantially contemporaneous information relating to a quality parameter of the material 102, 107. Also disclosed are methods of monitoring a quality parameter of a material.

  1. On-line core monitoring system based on buckling corrected modified one group model

    International Nuclear Information System (INIS)

    Freire, Fernando S.

    2011-01-01

    Nuclear power reactors require core monitoring during plant operation. To provide safe, clean and reliable core continuously evaluate core conditions. Currently, the reactor core monitoring process is carried out by nuclear code systems that together with data from plant instrumentation, such as, thermocouples, ex-core detectors and fixed or moveable In-core detectors, can easily predict and monitor a variety of plant conditions. Typically, the standard nodal methods can be found on the heart of such nuclear monitoring code systems. However, standard nodal methods require large computer running times when compared with standards course-mesh finite difference schemes. Unfortunately, classic finite-difference models require a fine mesh reactor core representation. To override this unlikely model characteristic we can usually use the classic modified one group model to take some account for the main core neutronic behavior. In this model a course-mesh core representation can be easily evaluated with a crude treatment of thermal neutrons leakage. In this work, an improvement made on classic modified one group model based on a buckling thermal correction was used to obtain a fast, accurate and reliable core monitoring system methodology for future applications, providing a powerful tool for core monitoring process. (author)

  2. Electrochemical corrosion potential monitoring in boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Hettiarachchi, S.; Hale, D.H.; Law, R.J.

    1998-01-01

    The electrochemical corrosion potential (ECP) is defined as the measured voltage between a metal and a standard reference electrode converted to the standard hydrogen electrode (SHE) scale. This concept is shown schematically in Figure 1. The measurement of ECP is of primary importance for both evaluating the stress corrosion cracking susceptibility of a component and for assuring that the specification for hydrogen water chemistry, ECP < -230 mV, SHE is being met. In practice, only a limited number of measurement locations are available in the BWR and only a few reference electrode types are robust enough for BWR duty. Because of the radiolysis inherent in the BWR, local environment plays an important role in establishing the ECP of a component. This paper will address the strategies for obtaining representative measurements, given these stated limitations and constraints. The paper will also address the ECP monitoring strategies for the noble metal chemical addition process that is being implemented in BWRs to meet the ECP specification at low hydrogen injection rates. (author)

  3. An update on corrosion monitoring in cylinder storage yards

    Energy Technology Data Exchange (ETDEWEB)

    Henson, H.M.; Newman, V.S.; Frazier, J.L. [Oak Ridge K-25 Site, TN (United States)

    1991-12-31

    Depleted uranium, from US uranium isotope enrichment activities, is stored in the form of solid uranium hexafluoride (UF{sub 6}) in A285 and A516 steel cylinders designed and manufactured to ASME Boiler and Pressure Vessel Code criteria. In general, storage facilities are open areas adjacent to the enrichment plants where the cylinders are exposed to weather. This paper describes the Oak Ridge program to determine the general corrosion behavior of UF{sub 6} cylinders, to determine cylinder yard conditions which are likely to affect long term storage of this material, and to assess cylinder storage yards against these criteria. This program is targeted at conditions specific to the Oak Ridge cylinder yards. Based on (a) determination of the current cylinder yard conditions, (b) determination of rusting behavior in regions of the cylinders showing accelerated attack, (c) monitoring of corrosion rates through periodic measurement of test coupons placed within the cylinder yards, and (d) establishment of a computer base to incorporate and retain these data, the technical division is working with the enrichment sites to implement an upgraded system for storage of this material until such time as it is used or converted.

  4. On-line estimation of physiological states for monitoring and control of bioprocesses

    Directory of Open Access Journals (Sweden)

    Velislava N Lyubenova

    2017-01-01

    Full Text Available An approach for monitoring of main physiological states of a class processes is proposed. This class is characterized by production and consumption of intermediate metabolite related to target product. The balance between these two phenomena is considered as key parameter for recognizing the process physiological states. A general structure of cascade software sensor of the key parameter is derived and applied for process monitoring and control. Two type processes are considered as case study. The first one is mono culture for simultaneous saccharification and fermentation of starch to ethanol by Saccharomyces cerevisiae and the second one is mixed culture for biopolymer production by L. delbrulckii and R. Eutropha. The good properties of the proposed monitoring and control schemes are demonstrated by simulation investigations.

  5. On-line acoustic monitoring of EDF nuclear plants in operation and loose-part diagnosis

    International Nuclear Information System (INIS)

    Morel, J.L.; Puyal, C.

    1991-05-01

    In order to detect incipient failures in nuclear power plant components, EDF has now put into operation more than 50 loose-part monitoring systems, on its 900 MW and 1 300 MW units. This paper first reviews the experience gained on the 900 MW reactors in recent years. It then focuses on the 1 300 MW loose part monitoring system (IDEAL) and to the tools developed for the diagnosis off site within a specific Expertise Laboratory at the Research and Development Division. New studies have been undertaken within the Monitoring and Aid to Diagnosis Station (PSAD) in order to extend the capabilities of loose part diagnosis on site. The new tools here presented integrate the recent progress in acquisition technology (SMART system) and in artificial intelligence (MIGRE expert system)

  6. Continuous realtime radioiodine monitor employing on-line methyl iodide conversion

    International Nuclear Information System (INIS)

    Fernandez, S.J.; Motes, B.G.

    1980-01-01

    An integrated 14 C, 129 I, and 85 Kr monitor was proposed by Fernandez, et al. that separates 129 I from 85 Kr by selective permeation across thin silicone rubber membranes. Subsequent studies of the permeation of CH 3 I and I 2 through silicone rubber membranes demonstrated that I 2 transport across the membranes is too slow to be useful in a realtime monitor. Transport of methyl iodide, however, is rapid and gives a separation factor of greater than 100 from 85 Kr

  7. Experience and evaluation of advanced on-line core monitoring system 'BEACON' at IKATA site

    International Nuclear Information System (INIS)

    Fujitsuka, Nobumichi; Tanouchi, Hideyuki; Imamura, Yasuhiro; Mizobuchil, Daisuke

    1997-01-01

    Shikoku Electric Power Company installed BEACON core monitoring system into IKATA unit 3 in May 1994. During its first cycle of core operation, various operational data were obtained including data of some anomalous reactor conditions introduced for the test objective of the plant start-up. This paper presents the evaluation of the BEACON system capability based on this experience. The system functions such as core monitoring and anomaly detection, prediction of future reactor conditions and increased efficiency of core management activities are discussed. Our future plan to utilize the system is also presented. (authors)

  8. Incorporating spectroscopic on-line monitoring as a method of detection for a Lewis cell setup

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Forrest D.; Casella, Amanda J.; Lumetta, Gregg J.; Nash, Kenneth L.; Sinkov, Sergey I.; Bryan, Samuel A.

    2017-01-01

    A Lewis cell was designed and constructed for investigating solvent extraction systems by spectrophotometrically monitoring both the organic and aqueous phases in real time. This new Lewis cell was tested and shown to perform well compared to other previously reported Lewis cell designs. The advantage of the new design is that the spectroscopic measurement allows determination of not only metal ion concentrations, but also information regarding chemical speciation—information not available with previous Lewis cell designs. For convenience, the new Lewis cell design was dubbed COSMOFLEX (COntinuous Spectroscopic MOnitoring of Forrest’s Liquid-liquid EXtraction cell).

  9. A biocompatible micro cell culture chamber for culturing and on-line monitoring of Eukaryotic cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2006-01-01

    Visualisering af cellulære processer over længere tidsperioder har været besværliggjort af cellernes krav til varme, fugtighed og et fysiologisk pH balanceret medie. Fremskridt indenfor mikro teknologi har muliggjort fabrikation af miniaturiserede celle kultur anordninger der er i stand til...... at holde celler i live over længere tidsperioder I det foreliggende arbejde præsenteres et nyt perfusions baseret mikro celle dyrknings kultur kammer med integreret termisk overvågning og regulering. Kammeret opretholdt både dyrkning og on-line overvågning af både kræft celler såvel som stam celler over...... at dyrknings betingelserne i kammeret var sammenlignelige med dem i konventionelle celle kultur dyrknings flaske, hvis lys intensiteten på mikroskopet og omgivelserne blev minimeret mest muligt. Overflade modificeringer af den strukturelle fotoresist SU-8, der ofte bliver brugt til fabrikation af mikro kanaler...

  10. Acoustic emission for on-line reactor monitoring: results from field tests

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.

    1984-09-01

    The objective of the acoustic emission (AE)/flaw characterization program is to develop use of the AE method on a continuous basis (during operation and during hydrotest) to detect and analyze flaw growth in reactor pressure vessels and primary piping. AE has the unique capability for continuous monitoring, high sensitivity, and remote flaw location

  11. NON-INVASIVE SPECTROSCOPIC ON-LINE METHODS TO MONITOR INDUSTRIAL PROCESSES

    DEFF Research Database (Denmark)

    Brooker, M. H.; Berg, Rolf W.

    2003-01-01

    and Raman spectroscopy to monitor discrete molecular species at concentrations on the 0.1% level or lower. A brief introduction to the art of modern vibrational spectroscopy is given, mainly by means of a list of important references, followed by a specific example (the liquid-liquid system CO2-water...

  12. Development of techniques for monitoring corrosion in Magnox plant

    International Nuclear Information System (INIS)

    Haines, N.F.; Whittle, I.; Wilson, R.

    1974-01-01

    Steel oxidation in Magnox reactors has led to the development of techniques for measuring oxide thicknesses. An account is given of the methods used by the CEGB for making non-destructive measurements of oxide coatings both in the laboratory and remotely in the core regions of reactors. Specific techniques include β back-scattering which is compared with conventional microscope or weight gain methods for particular applications. The laser corrosion monitor and an ultrasonic method are described and compared as in-reactor techniques. An eddy current method is being developed for reactor regions where access is extremely restricted. A discussion considers the effect of oxide form upon the response of the instruments. The necessary further work is described which establishes the usefulness of each instrument over a range of oxide thicknesses and steels of different physical properties. (author)

  13. Adaptive on-line calibration for around-view monitoring system using between-camera homography estimation

    Science.gov (United States)

    Lim, Sungsoo; Lee, Seohyung; Kim, Jun-geon; Lee, Daeho

    2018-01-01

    The around-view monitoring (AVM) system is one of the major applications of advanced driver assistance systems and intelligent transportation systems. We propose an on-line calibration method, which can compensate misalignments for AVM systems. Most AVM systems use fisheye undistortion, inverse perspective transformation, and geometrical registration methods. To perform these procedures, the parameters for each process must be known; the procedure by which the parameters are estimated is referred to as the initial calibration. However, when only using the initial calibration data, we cannot compensate misalignments, caused by changing equilibria of cars. Moreover, even small changes such as tire pressure levels, passenger weight, or road conditions can affect a car's equilibrium. Therefore, to compensate for this misalignment, additional techniques are necessary, specifically an on-line calibration method. On-line calibration can recalculate homographies, which can correct any degree of misalignment using the unique features of ordinary parking lanes. To extract features from the parking lanes, this method uses corner detection and a pattern matching algorithm. From the extracted features, homographies are estimated using random sample consensus and parameter estimation. Finally, the misaligned epipolar geographies are compensated via the estimated homographies. Thus, the proposed method can render image planes parallel to the ground. This method does not require any designated patterns and can be used whenever cars are placed in a parking lot. The experimental results show the robustness and efficiency of the method.

  14. On-line monitoring of milk electrical conductivity by fuzzy logic technology to characterise health status in dairy goats

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2014-04-01

    Full Text Available Intramammary infection affects the quality and quantity of dairy goat milk. Health status (HS and milk quality can be monitored by electrical conductivity (EC. The aim of the study was to determine the detection potential of EC when measured on-line on a daily basis and compared with readings from previous milkings. Milk yields (MYs were investigated with the same approach. To evaluate these relative traits, a multivariate model based on fuzzy logic technology – which provided interesting results in cows – was used. Two foremilk samples from 8 healthy Saanen goats were measured daily over the course of six months. Bacteriological tests and somatic cells counts were used to define the HS. On-line EC measurements for each gland and MYs were also considered. Predicted deviations of EC and MY were calculated using a moving-average model and entered in the fuzzy logic model. The reported accuracy has a sensitivity of 81% and a specificity of 69%. Conclusions show that fuzzy logic is an interesting approach for dairy goats, since it offered better accuracy than other methods previously published. Nevertheless, specificity was lower than in dairy cows, probably due to the lack of a significant decrease of MY in diseased glands. Still, results show that the detection of the HS characteristics with EC is improved, when measured on-line, daily and compared with the readings from previous milkings.

  15. A Review of Field Corrosion Control and Monitoring Techniques of ...

    African Journals Online (AJOL)

    OLUWASOGO

    corrosion attack and eventual failure of pipelines within oil and gas industry has been classified ... pipelines' commissioning which include design, material selection, protective ..... analyses after certain period to obtain corrosion information.

  16. Development of on-line condition monitoring system in aerospace structures using advanced composite materials

    International Nuclear Information System (INIS)

    Khan, Z.M.

    2005-01-01

    This research aims to develop condition monitoring systems for advanced aerospace composite structures. To perform these functions successfully a smart system is required that could autonomously respond to environmental changes. The integrated structure senses the environments, conveys the message to central processing unit and reacts instantaneously to external stimuli. Such structures not only monitor their own health but also for warn about onset of failures, fatigue and impending disasters. This required development of methods for embedding optical fibers in composite panels for sensing given defect. The thick and cylindrical composite structures have layer waviness due to fiber microbend defect. Such kind of defect is characteristically hard to detect. It leads to delamination, cracking and deterioration of mechanical properties. The experimental investigation revealed correlation of the intensity of light with the microbend defect in composite structure. (author)

  17. Radioactivity Monitoring System for TRIGA 2000 Reactor Water Tank with On-Line Gamma Spectrometer

    International Nuclear Information System (INIS)

    Prasetyo Basuki; Sudjatmi KA

    2009-01-01

    One of the requirements in radiological safety in the operating condition of research reactor are the absence of radionuclide from fission product released to reactor cooling water and environment. Early detection of fission product that released from fuel element can be done by monitoring radioactivity level on primary cooling water.Reactor cooling water can be used as an important indicator in detecting radioactivity level of material fission product, when the leakage occurs. Therefore, it needs to build a monitoring system for measuring radioactivity level of cooling water directly and simple. The idea of this system is counting radioactivity water flow from reactor tank to the marinelli cube that attached to the HPGe detector on gamma spectrometer. Cooling water from tank aimed on plastic pipe to the marinelli cube. Water flows in gravitational driven to the marinelli cube, with volume flow rate 5.1 liters/minute in the inlet and 2.2 liters/minute in output. (author)

  18. On-line monitoring of technological process of material abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Kinik, D.; Gánovská, B.; Hloch, Sergej; Monka, P.; Monková, K.; Hutyrová, Z.

    2015-01-01

    Roč. 22, č. 2 (2015), s. 351-357 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive water jet * vibrations * monitoring Subject RIV: JQ - Machines ; Tools Impact factor: 0.464, year: 2015 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=203519

  19. A wireless embedded passive sensor for monitoring the corrosion potential of reinforcing steel

    International Nuclear Information System (INIS)

    Bhadra, Sharmistha; Thomson, Douglas J; Bridges, Greg E

    2013-01-01

    Corrosion of reinforcing steel, which results in premature deterioration of reinforced concrete structures, is a worldwide problem. Most corrosion sensing techniques require some type of wired connection between the sensor and monitoring electronics. This causes significant problems in their installation and long-term use. In this paper we describe a new type of passive embeddable wireless sensor that is based on an LC coil resonator where the resonant frequency is changed by the corrosion potential of the reinforcing steel. The resonant frequency can be monitored remotely by an interrogator coil inductively coupled to the sensor coil. The sensor unit comprises an inductive coil connected in parallel with a voltage dependent capacitor (varactor) and a pair of corrosion electrodes consisting of a reinforcing steel sensing electrode and a stainless steel reference electrode. Change of potential difference between the electrodes due to variation of the corrosion potential of the reinforcing steel changes the capacitance of the varactor and shifts the resonant frequency of the sensor. A time-domain gating method was used for the interrogation of the inductively coupled corrosion sensor. Results of an accelerated corrosion test using the sensor indicate that the corrosion potential can be monitored with a resolution of less than 10 mV. The sensor is simple in design and requires no power source, making it an inexpensive option for long-term remote monitoring of the corrosion state of reinforcing steel. (paper)

  20. Use of on-line fatigue monitoring of nuclear reactor components as a tool for plant life extension

    International Nuclear Information System (INIS)

    Stevens, G.L.; Ranganath, S.

    1991-01-01

    In this paper the application of an on-line fatigue monitoring system for tracking fatigue usage in operating power plants is described. The system, like several others which have been developed, uses the influence function approach, operates on a microcomputer, and determines component stresses using temperature, pressure, and flow rate data that are typically available from plant computers. Using plant-unique influence functions developed specifically for each component location, the system calculates stresses as a function of time and computes the fatigue usage. Stress values are calculated at time internals defined by the user and the fatigue values are saved on files for use at a later time. The application of the GE Fatigue Monitoring System (GEFMS) to calculate fatigue usage in the feedwater nozzle of a GE boiling Water Reactor is described in this paper

  1. Near Infrared Spectroscopy for On-line Monitoring of Alkali- Free Cloth /Phenolic Resin Prepreg During Manufacture

    Directory of Open Access Journals (Sweden)

    Yu Dong Huang

    2007-06-01

    Full Text Available A NIR method was developed for the on-line monitoring of alkali-freecloth/phenolic resin prepreg during its manufacturing process. First, the sizing content ofthe alkali-free cloth was analyzed, and then the resin, soluble resin and volatiles content ofthe prepreg was analyzed simultaneously using the FT-NIR spectrometer. Partial leastsquare (PLS regression was used to develop the calibration models, which for the sizingcontent was preprocessed by 1stDER MSC, for the volatile content by 1stDER VN, forthe soluble resin content by 1stDER MSC and for the resin content by the VN spectraldata preprocessing method. RMSEP of the prediction model for the sizing content was0.732 %, for the resin content it was 0.605, for the soluble resin content it was 0.101 andfor volatiles content it was 0.127. The results of the paired t-test revealed that there was nosignificant difference between the NIR method and the standard method. The NIRspectroscopy method could be used to predict the resin, soluble resin and the volatilescontent of the prepreg simultaneously, as well as sizing content of alkali-free cloth. Theprocessing parameters of the prepreg during manufacture could be adjusted quickly withthe help of the NIR analysis results. The results indicated that the NIR spectroscopymethod was sufficiently accurate and effective for the on-line monitoring of alkali-freecloth/phenolic resin prepreg.

  2. An on-line monitor for cation exchange elution chromatography using lithium silicate glass beads as solid scintillator

    International Nuclear Information System (INIS)

    Zhu Rongbao; Yang Liucheng; Wei Liansheng; Ji Liqiang; Zhang Zengrui

    1988-03-01

    A new type of on-line monitoring system used to monitor radioactive nuclides with α or soft β radiation in the effluent from a high pressure ion exchange column is described. The beads made of cerium-impregnated lithium silicate glass are used as scientillation material. They are filled into a quartz glass tube to form a flow cell. By reducing the diameter of glass beads to more closly approximate the average range of α or soft β radiation in solution, the absolute counting efficiency for 241 Am, 242 Cm α radiation have reached and 85.8% and 92.8% respectively, for 14 C, 90 Sr- 90 Y β radiation, 62.1% and 88.6% respectively. These values can be comparable to those achieved with on-line liquid scientillation technique. When the total amount of 241 Am added into column is decreased to 7.4 Bq it is still possible to obtain a clear chromatography peak (half peak width = 0.22 mL)

  3. Hygrometric measurement for on-line monitoring of PWR vessel head penetrations

    International Nuclear Information System (INIS)

    Germain, J.L.; Loisy, F.; Apolzan, S.

    1994-06-01

    In September 1991, a small leak was found on one of the reactor's upper vessel head penetrations. After inspection, other non-throughwall cracks were localized in the lower part of the vessel head adapter in questions. The same type of crack was later found inside some adapters on other French PWR units. After repairs, the safety authorities granted approval to continue unit operation, with the specific provision that a system for ongoing monitoring of the penetrations be set up. Two types of system were selected to detect leaks through any potential cracks: the first is based on nitrogen-13 detection and the second on steam detection. Both systems call for sampling the air in a confined space above the vessel head. The number and distribution of sampling taps in the circuit, and the balancing of their respective flow rates, are factors in proper monitoring of all vessel head penetrations. Gas-injection holes are also installed in the confined space. These holes are used during the sampling system qualification tests to simulate leaks in various positions and calculate the effective performance of the sampling system. Leaks are simulated using a helium-base gas tracer and measuring tracer concentrations in the sampling system. The system for measuring steam levels in air samples uses chilled-mirror hygrometers. A microcomputer takes regular readings, drives the various automatic functions of the measurement system and automatically analyses the readings so as to monitor operations and trigger an alarm at the first sign of a leak. This system has now been installed for a year and a half on three French PWR units and is functioning satisfactorily. (authors). 5 figs

  4. On-line gamma spectroscopy measuring station for cover gas monitoring at KNK II

    International Nuclear Information System (INIS)

    Hoffmann, G.; Letz, K.D.

    1980-02-01

    An automated Ge-γ-spectrometer was developed for cover gas monitoring at KNK II which, by the gamma spectra measured, is to allow the following statements to be made on fuel cladding failure: Type, size, variation with time and subsequent development of the failure. In this report the hardware and software will be explained. Besides, an instruction manual was written for the measuring station, which allows to operate it without detailed knowledge of the manuals for the individual hardware components. (orig.) 891 HP/orig. 892 MKO [de

  5. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  6. On-line Monitoring System Based on Principle of Electro-acoustic Monitoring for Transformer Partial Discharge

    Directory of Open Access Journals (Sweden)

    Guang Ya LIU

    2014-02-01

    Full Text Available Partial discharge inside a transformer is mainly responsible for the insulation aging and damage of the transformer. However, partial discharge is usually accompanied by external signals like sound, light and electrical signals and detectable physical phenomena such as characteristical gas and dielectric loss. Therefore, it is of great significance to monitor online the external signals and phenomena formed during partial discharge of the transformer when the transformer diagnoses faults. This paper gives a comprehensive overview of the electro-acoustic joint monitoring principles and its monitoring systems and the judgment skills concerned, on the basis of which the monitoring system is designed.

  7. On-line H2S monitoring using near-infrared tunable diode laser spectroscopy

    International Nuclear Information System (INIS)

    Partin, J.K.; Jeffrey, C.L.

    1998-01-01

    The purpose of this project is to evaluate and demonstrate the technique of frequency-modulated, tunable diode laser spectroscopy for the monitoring of H 2 S gas in geothermal plant emissions. The geothermal power industry has an interest in the development of real-time techniques for monitoring these emissions, since improved measurement capabilities could lead to considerable cost savings through the optimization of the chemicals used for abatement. There are several locations throughout the plant at which this measurement could be performed. They vary from the main stream line which operates at a temperature of about 350 F (175 C) and a pressure of 100 psig to the cooling stack with a temperature of 80--100 F (27--38 C) at ambient pressure. Gas concentrations range from 0.1 ppm to 1,000's of ppms. The technical goal of this effort was to perform a series of scoping experiments to determine the effect of elevated pressure, temperature and water vapor on the sensitivity of this spectroscopic technique for the detection of H 2 S. The results of these experiments are presented, and the deployment options and system designs are discussed

  8. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review

    Energy Technology Data Exchange (ETDEWEB)

    Peris, Miguel, E-mail: mperist@qim.upv.es [Departamento de Química, Universidad Politécnica de Valencia, 46071 Valencia (Spain); Escuder-Gilabert, Laura [Departamento de Química Analítica, Universitat de Valencia, C/ Vicente Andrés Estellés s/n, E-46100 Burjasot, Valencia (Spain)

    2013-12-04

    Graphical abstract: -- Highlights: •This review paper deals with the applications of electronic noses and electronic tongues to the monitoring of fermentation processes. •Positive and negative aspects of the different approaches reviewed are analyzed. •Current and future endeavors in this field are also commented. -- Abstract: Fermentation processes are often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, close follow-up of this type of processes is critical for detecting unfavorable deviations as early as possible in order to save downtime, materials and resources. Nevertheless the use of traditional analytical techniques is often hindered by the need for expensive instrumentation and experienced operators and complex sample preparation. In this sense, one of the most promising ways of developing rapid and relatively inexpensive methods for quality control in fermentation processes is the use of chemical multisensor systems. In this work we present an overview of the most important contributions dealing with the monitoring of fermentation processes using electronic noses and electronic tongues. After a brief description of the fundamentals of both types of devices, the different approaches are critically commented, their strengths and weaknesses being highlighted. Finally, future trends in this field are also mentioned in the last section of the article.

  9. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review

    International Nuclear Information System (INIS)

    Peris, Miguel; Escuder-Gilabert, Laura

    2013-01-01

    Graphical abstract: -- Highlights: •This review paper deals with the applications of electronic noses and electronic tongues to the monitoring of fermentation processes. •Positive and negative aspects of the different approaches reviewed are analyzed. •Current and future endeavors in this field are also commented. -- Abstract: Fermentation processes are often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, close follow-up of this type of processes is critical for detecting unfavorable deviations as early as possible in order to save downtime, materials and resources. Nevertheless the use of traditional analytical techniques is often hindered by the need for expensive instrumentation and experienced operators and complex sample preparation. In this sense, one of the most promising ways of developing rapid and relatively inexpensive methods for quality control in fermentation processes is the use of chemical multisensor systems. In this work we present an overview of the most important contributions dealing with the monitoring of fermentation processes using electronic noses and electronic tongues. After a brief description of the fundamentals of both types of devices, the different approaches are critically commented, their strengths and weaknesses being highlighted. Finally, future trends in this field are also mentioned in the last section of the article

  10. On-line vibration monitoring for submerged vertical shaft pumps: Final report

    International Nuclear Information System (INIS)

    Walter, T.J.; Marchione, M.M.

    1988-03-01

    The overall goal of this project was to extend to vertical pumps the capability that presently exists to monitor and diagnose vibration problems in horizontal pumps. Specific objectives included the development of analytical techniques to interpret vibration measurements, the verification of these techniqeus by in-plant tests, and the development of recommendations for procuring submergible vibration sensors. A concurrent analytical and experimental approach was used to accomplish these objectives. Rotordynamic analyses of selected pumps were accomplished, and each pump was instrumented and monitored for extended periods of time. The models were used to determine important frequencies and optimum sensor locations and to predict the effect that wear, imbalance, misalighment, and other mechanical changes would have on measured vibration. The predictive ability of the models was confirmed by making changes to instrumented pumps and observing actual changes in pump vibration. Simplified guidelines have been developed to assist the interested user to develop a computer model that realistically predicts the rotordynamic performance of the installed pump. Based on the work accomplished, typical sensor locations have been established. Experience gained in application of commercially available submergible sensors is also related. 11 refs., 11 figs

  11. On-line monitoring of toxic materials in sewage at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Auyong, M.; Cate, J.L. Jr.; Rueppel, D.W.

    1980-01-01

    It is becoming increasingly important for industry to prevent releases of potentially toxic material to the environment. The Lawrence Livermore Laboratory has developed a system to monitor its sewage effluent on a continuous basis. A representative fraction of the total waste stream leaving the Plant is passed through a detection assembly consisting of an x-ray fluorescence unit which detects high levels of metals, sodium iodide crystal detectors that scan the sewage for the presence of elevated levels of radiation, and an industrial probe for pH monitoring. With the aid of a microprocessor, the data collected is reduced and analyzed to determine whether levels are approaching established environmental limits. Currently, if preset pH or radiation levels are exceeded, a sample of the suspect sewage is automatically collected for further analysis, and an alarm is sent to a station where personnel can be alerted to respond on a 24-hour basis. In the same manner, spectral data from the x-ray fluorescence unit will be routed through the 24-hour alarm system as soon as evaluation of the unit is complete. The design of the system and operational experience is discussed

  12. An On-Line Water Monitor for Low Level {beta}-Radioactivity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, E J.M.

    1968-05-15

    A detection system is described for the continuous monitoring of {beta}-radioactivity in the secondary cooling water at the Studsvik R2 reactor. Radiation emanating from a water surface is measured by a large area gas proportional detector. To protect the detector from splash caused by bursting bubbles a protective film and heater assembly is interposed between the detector and the water surface. A special feature is the programmed 'exercise' sequence for the magnetic valves which eliminates a tendency for them to stick after prolonged periods of idleness. The extent to which contamination affects the background counting rate has been studied. It is shown that for the duration of the tests described the monitor remains free from the effects of contamination so long as the scaler live time is suitably chosen. Minimum measurable specific activities obtainable in practice extend from 4 x 10{sup -6} to 3.86 x 10{sup -8} Ci/m{sup 3} depending on the {beta} end-point energy in the range 167 keV - 2.26 MeV.

  13. Spectroscopic and physicochemical measurements for on-line monitoring of used nuclear fuel separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Nee, Ko; Nilsson, M. [Department of Chemical Engineering and Material Science, University of California, 916 Engineering Tower, Irvine, CA 92697-2575 (United States); Bryan, S.; Levitskaia, T. [Pacific Northwest National Laboratory, PO BOX 999, Richland, CA 99352 (United States)

    2013-07-01

    Separation processes for used nuclear fuel are often complicated and challenging due to the high constraints in purity of the products and safeguards of the process streams. In order to achieve a safe, secure and efficient separation process, the liquid streams in the separation process require close monitoring. Due to the high radiation environment, sampling of the materials is difficult. Availability of a detection technique that is remote, non-destructive and can avoid time-delay caused by retrieving samples would be beneficial and could minimize the exposure to personnel and provide material accountancy to avoid diversion (non-proliferation). For example, Ultra Violet (UV), Visible (Vis), Near-Infrared (NIR) and Raman spectroscopy that detect and quantify elements present in used nuclear fuel, e.g. lanthanides, actinides and molecules such as nitrate, can be used. In this work, we have carried out NIR and Raman spectroscopy to study aqueous solutions composed of different concentrations of nitric acid, sodium nitrate, and neodymium at varied temperatures. A chemometric model for online monitoring based on the PLS-Toolbox (MATLAB) software has been developed and validated to provide chemical composition of process streams based on spectroscopic data. In conclusion, both of our NIR and Raman spectra were useful for H{sup +} and NO{sub 3} prediction, and only NIR was helpful for the Nd{sup 3+} prediction.

  14. The development on-line monitoring system of active magnetic bearings for HTR-10GT

    International Nuclear Information System (INIS)

    Shi Zhengang; Shi Lei; Zha Meisheng; Yu Suyuan

    2005-01-01

    High Temperature Gas-cooled Reactor (HTR) is recognized as an advanced type of reactor incorporating many design enhancements such as inherent safety features, fuel cycle flexibility, highly fuel utilization, highly efficient electricity generation and process heat application. The research and development of HTR started at the middle of the 1970's, and came to be a part of the Chinese High Technology Program in 1986. A plan to build a 10 MW High Temperature Gas-cooled Reactor (HTR-10) was approved by the State Science and Technology Commission in 1990, and in 1995 the construction was initiated at the Institute of Nuclear Energy Technology (INET), Tsinghua University. The full power 10 MW operation for 72 hours have reached in 2003, and have been checked and accepted by the State Science and Technology Commission. In order to advance the HTR-10 performance, the project of the Helium Gas Turbine Generator for the HTR-10 was authorized by the State Science and Technology Commission, and stared in 2003. In this project, active magnetic bearings (AMBs) are chosen to support the generator rotor and the turbocompressor rotor in the power conversion unit because of their numerous advantages over the conventional bearings. In order to detect how the AMB system works in operation and make diagnosis whether the system behaves normally or not, the monitoring system based on the virtual instruments is designed to monitor the working conditions of the PCU, and to ensure its normal operation. This monitoring system consists of the industry personal computer (PC), the data acquisition system, the measurement transmitters and the LabVIEW system platform. It is located at the PCU control room, and communicates with the master control room by Controller Area Net (CAN). The development is divided into the following three steps: First, a data acquisition platform to collect and acquire all the necessary and useful data from the operation of the AMB system is developed. Second, the

  15. Evaluation of statistical control charts for on-line radiation monitoring

    International Nuclear Information System (INIS)

    Hughes, L.D.; DeVol, T.A.

    2008-01-01

    Statistical control charts are presented for the evaluation of time series radiation counter data from flow cells used for monitoring of low levels of 99 TcO 4 - in environmental solutions. Control chart methods consisted of the 3-sigma (3σ) chart, the cumulative sum (CUSUM) chart, and the exponentially weighted moving average (EWMA) chart. Each method involves a control limit based on the detector background which constitutes the detection limit. Both the CUSUM and EWMA charts are suitable to detect and estimate sample concentration requiring less solution volume than when using a 3? control chart. Data presented here indicate that the overall accuracy and precision of the CUSUM method is the best. (author)

  16. Manageable and Extensible Video Streaming Systems for On-Line Monitoring of Remote Laboratory Experiments

    Directory of Open Access Journals (Sweden)

    Jian-Wei Lin

    2009-08-01

    Full Text Available To enable clients to view real-time video of the involved instruments during a remote experiment, two real-time video streaming systems are devised. One is for the remote experiments which instruments locate in one geographic spot and the other is for those which instruments scatter over different places. By means of running concurrent streaming processes at a server, multiple instruments can be monitored simultaneously by different clients. The proposed systems possess excellent extensibility, that is, the systems can easily add new digital cameras for instruments without modifying any software. Also they are well-manageable, meaning that an administrator can conveniently adjust the quality of the real-time video depending on system load and visual requirements. Finally, some evaluation concerning CPU utilization and bandwidth consumption of the systems have been evaluated to verify the effectiveness of the proposed solutions.

  17. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    International Nuclear Information System (INIS)

    Baglee, D; Knowles, M J

    2012-01-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  18. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    Science.gov (United States)

    Baglee, D.; Knowles, M. J.

    2012-05-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  19. Real time corrosion monitoring in atmosphere using automated battery driven corrosion loggers

    DEFF Research Database (Denmark)

    Prosek, T.; Kouril, M.; Hilbert, Lisbeth Rischel

    2008-01-01

    diminishes due to corrosion. Zinc, iron, copper and nickel sensors at several thicknesses are available. Sensitivity of the corrosion measurement varies from 1 to 10 nm depending on the type and thickness of the sensor. Changes in the air corrosivity can be thus detected within hours or even tens of minutes......A logger enabling continuous measurement of corrosion rate of selected metals in indoor and outdoor atmospheres has been developed. Principle of the measurement method is based on the increasing electrical resistance of a measuring element made of the material concerned as its cross-sectional area....... The logger lifetime in medium corrosive environments is designed to be 2 years with full autonomy. Data on the sensor corrosion rate are available any time through GPRS connection or by a non-contact inductive reading without the need of retracting the logger from the exposure site....

  20. Research on on-line monitoring technology for steel ball's forming process based on load signal analysis method

    Science.gov (United States)

    Li, Ying-jun; Ai, Chang-sheng; Men, Xiu-hua; Zhang, Cheng-liang; Zhang, Qi

    2013-04-01

    This paper presents a novel on-line monitoring technology to obtain forming quality in steel ball's forming process based on load signal analysis method, in order to reveal the bottom die's load characteristic in initial cold heading forging process of steel balls. A mechanical model of the cold header producing process is established and analyzed by using finite element method. The maximum cold heading force is calculated. The results prove that the monitoring on the cold heading process with upsetting force is reasonable and feasible. The forming defects are inflected on the three feature points of the bottom die signals, which are the initial point, infection point, and peak point. A novel PVDF piezoelectric force sensor which is simple on construction and convenient on installation is designed. The sensitivity of the PVDF force sensor is calculated. The characteristics of PVDF force sensor are analyzed by FEM. The PVDF piezoelectric force sensor is fabricated to acquire the actual load signals in the cold heading process, and calibrated by a special device. The measuring system of on-line monitoring is built. The characteristics of the actual signals recognized by learning and identification algorithm are in consistence with simulation results. Identification of actual signals shows that the timing difference values of all feature points for qualified products are not exceed ±6 ms, and amplitude difference values are less than ±3%. The calibration and application experiments show that PVDF force sensor has good static and dynamic performances, and is competent at dynamic measuring on upsetting force. It greatly improves automatic level and machining precision. Equipment capacity factor with damages identification method depends on grade of steel has been improved to 90%.

  1. On-line gross alpha radiation monitoring of natural waters with extractive scintillating resins

    International Nuclear Information System (INIS)

    Hughes, Lara; De Vol, T.A.

    2003-01-01

    Extractive scintillating resins, which are used to simultaneously separate and quantify radioactivity in aqueous solutions, were developed for low-level alpha radiation monitoring of natural waters. Resins were investigated with bis(2-ethylhexyl)methane-diphosphonic acid (H 2 DEH[MDP], Dipex[reg]) extractant, which has a strong affinity for tri-, tetra- and hexavalent actinides in dilute acids. Extractive scintillating resins were manifested (1) as a mixed bed of scintillating resin and extraction chromatographic resin and (2) by diffusing the organic fluor 2-(1-naphtyl)-5-phenyloxazole into macroporous polystyrene chromatographic resin, then coating with H 2 DEH[MDP], or by coating H 2 DEH[MDP] on scintillating polyvinyltoluene beads. The scintillation light was detected with a modified Hidex Triathler to allow for continuous flow measurements. The average detection efficiencies were 51.7±2.6% and 65.8±10.1% for natural uranium and 241 Am, respectively, for the extractant coated scintillator. The resin was stable for solution flow of up to 1000 ml resulting in rapid real-time quantification of natural uranium in groundwater down to 30 μg/ml

  2. A Novel Method To On-Line Monitor Reactor Nuclear Power And In-Core Thermal Environments

    International Nuclear Information System (INIS)

    Liu, Hanying; Miller, Don W.; Li, Dongxu; Radcliff, Thomas D.

    2002-01-01

    dynamic performance in the compensation mode. Therefore, a theoretical second order model was developed based on the structure of the sensor. The input variable in the developed second order model is technically transformed in order to easily determine the sensor transfer function. The sensor is also simulated using a numerical model. The simulation results are compared with the theoretical model in terms of the relation between the sensor dynamics and the thermal environment variables. This comparison verifies the feasibility of the proposed method using the compensation mode to on-line monitor in-core thermal environments and using the measurement mode to on-line measure nuclear power. (authors)

  3. Microbiologically influenced corrosion monitoring: Real world failures and how to avoid them

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.J.B.

    2000-01-01

    Monitoring for microbiologically influenced corrosion in industry commonly is practiced, but too often has failed to predict corrosion damage. Reports of failed monitoring seldom appear in the published literature, but hands-on experience and word-of-mouth communication indicate that the problem is widespread. The question of why so many monitoring programs are unsuccessful is investigated, and remedies for common problems are suggested. Failures can be attributed to three main causes: confusion over the goals of the monitoring program, inappropriate monitoring methods, and inadequate execution of the monitoring program.

  4. 49 CFR 195.573 - What must I do to monitor external corrosion control?

    Science.gov (United States)

    2010-10-01

    ... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.573 What must I do to... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to monitor external corrosion control? 195.573 Section 195.573 Transportation Other Regulations Relating to Transportation (Continued...

  5. 49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?

    Science.gov (United States)

    2010-10-01

    ... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to monitor atmospheric corrosion control? 195.583 Section 195.583 Transportation Other Regulations Relating to Transportation (Continued...

  6. On-line generation of core monitoring power distribution in the SCOMS couppled with core design code

    International Nuclear Information System (INIS)

    Lee, K. B.; Kim, K. K.; In, W. K.; Ji, S. K.; Jang, M. H.

    2002-01-01

    The paper provides the description of the methodology and main program module of power distribution calculation of SCOMS(SMART COre Monitoring System). The simulation results of the SMART core using the developed SCOMS are included. The planar radial peaking factor(Fxy) is relatively high in SMART core because control banks are inserted to the core at normal operation. If the conventional core monitoring method is adapted to SMART, highly skewed planar radial peaking factor Fxy yields an excessive conservatism and reduces the operation margin. In addition to this, the error of the core monitoring would be enlarged and thus operating margin would be degraded, because it is impossible to precalculate the core monitoring constants for all the control banks configurations taking into account the operation history in the design stage. To get rid of these drawbacks in the conventional power distribution calculation methodology, new methodology to calculate the three dimensional power distribution is developed. Core monitoring constants are calculated with the core design code (MASTER) which is on-line coupled with SCOMS. Three dimensional (3D) power distribution and the several peaking factors are calculated using the in-core detector signals and core monitoring constant provided at real time. Developed methodology is applied to the SMART core and the various core states are simulated. Based on the simulation results, it is founded that the three dimensional peaking factor to calculate the Linear Power Density and the pseudo hot-pin axial power distribution to calculate the Departure Nucleate Boiling Ratio show the more conservative values than those of the best-estimated core design code, and SCOMS adapted developed methodology can secures the more operation margin than the conventional methodology

  7. Development and Validation of an On-Line Water Toxicity Sensor with Immobilized Luminescent Bacteria for On-Line Surface Water Monitoring.

    NARCIS (Netherlands)

    Woutersen, Marjolijn; van der Gaag, Bram; Abrafi Boakye, Afua; Mink, Jan; Marks, Robert S; Wagenvoort, Arco J; Ketelaars, Henk A M; Brouwer, Bram; Heringa, Minne B

    2017-01-01

    Surface water used for drinking water production is frequently monitored in The Netherlands using whole organism biomonitors, with for exampleDaphnia magnaorDreissenamussels, which respond to changes in the water quality. However, not all human-relevant toxic compounds can be detected by these

  8. On-Line Junction Temperature Monitoring of Switching Devices with Dynamic Compact Thermal Models Extracted with Model Order Reduction

    Directory of Open Access Journals (Sweden)

    Fabio Di Napoli

    2017-02-01

    Full Text Available Residual lifetime estimation has gained a key point among the techniques that improve the reliability and the efficiency of power converters. The main cause of failures are the junction temperature cycles exhibited by switching devices during their normal operation; therefore, reliable power converter lifetime estimation requires the knowledge of the junction temperature time profile. Since on-line dynamic temperature measurements are extremely difficult, in this work an innovative real-time monitoring strategy is proposed, which is capable of estimating the junction temperature profile from the measurement of the dissipated powers through an accurate and compact thermal model of the whole power module. The equations of this model can be easily implemented inside a FPGA, exploiting the control architecture already present in modern power converters. Experimental results on an IGBT power module demonstrate the reliability of the proposed method.

  9. A multisyringe flow-through sequential extraction system for on-line monitoring of orthophosphate in soils and sediments

    DEFF Research Database (Denmark)

    Buanuam, Janya; Miró, Manuel; Hansen, Elo Harald

    2007-01-01

    A fully automated flow-through microcolumn fractionation system with on-line post-extraction derivatization is proposed for monitoring of orthophosphate in solid samples of environmental relevance. The system integrates dynamic sequential extraction using 1.0 mol l-1 NH4Cl, 0.1 mol l-1 NaOH and 0...... of the operational times from days to hours, highly temporal resolution of the leaching process, and the capability for immediate decision for stopping or proceeding with the ongoing extraction. Very importantly, accurate determination of the various orthophosphate pools is ensured by minimization of the hydrolysis...... of extracted organic phosphorus and condensed inorganic phosphates within the time frame of the assay. The potential of the novel system for accommodation of the harmonized protocol from the Standards, Measurement and Testing (SMT) Program of the Commission of the European Communities for inorganic phosphorus...

  10. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    A Kalman filter method is discussed for on-line estimation of radioactive release and atmospheric dispersion from a time series of off-site radiation monitoring data. The method is based on a state space approach, where a stochastic system equation describes the dynamics of the plume model...... parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...

  11. Development and evaluation of a long-term deposit probe for on-line monitoring of deposit growth

    Energy Technology Data Exchange (ETDEWEB)

    Brink, Anders; Lauren, Tor; Yrjas, Patrik; Hupa, Mikko [Process Chemistry Centre, Aabo Akademi University, Biskopsgatan 8, FI-20540 Turku (Finland); Friesenbichler, Joachim [Institute for Resource Efficient and Sustainable Systems, Technical University Graz Inffeldg. 21b, A-8010 Graz (Austria)

    2007-12-15

    A newly designed air-cooled probe for on-line monitoring of deposition growth has been tested in a boiler firing three woody fuels. Thermocouples are mounted on both sides of the tube wall enabling measurements of the heat flux through the probe wall. Knowing the heat flux through the probe wall, it is possible to measure the additional heat transfer resistance caused by the deposit and to estimate the properties of the deposit. Calculating the deposit thickness using the collected temperature data indicated the thinnest deposit when wood was fired, followed by bark and waste wood. The calculated deposit thickness was larger than those found when analysing the deposit thickness after the probe had been removed. Nevertheless, the ranking of fuels by deposit build-up rate was the same. (author)

  12. Improved Fuzzy Logic System to Evaluate Milk Electrical Conductivity Signals from On-Line Sensors to Monitor Dairy Goat Mastitis

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2016-07-01

    Full Text Available The aim of this study was to develop and test a new fuzzy logic model for monitoring the udder health status (HS of goats. The model evaluated, as input variables, the milk electrical conductivity (EC signal, acquired on-line for each gland by a dedicated sensor, the bandwidth length and the frequency and amplitude of the first main peak of the Fourier frequency spectrum of the recorded milk EC signal. Two foremilk gland samples were collected from eight Saanen goats for six months at morning milking (lactation stages (LS: 0–60 Days In Milking (DIM; 61–120 DIM; 121–180 DIM, for a total of 5592 samples. Bacteriological analyses and somatic cell counts (SCC were used to define the HS of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as not healthy (NH. For each EC signal, an estimated EC value was calculated and a relative deviation was obtained. Furthermore, the Fourier frequency spectrum was evaluated and bandwidth length, frequency and amplitude of the first main peak were identified. Before using these indexes as input variables of the fuzzy logic model a linear mixed-effects model was developed to evaluate the acquired data considering the HS, LS and LS × HS as explanatory variables. Results showed that performance of a fuzzy logic model, in the monitoring of mammary gland HS, could be improved by the use of EC indexes derived from the Fourier frequency spectra of gland milk EC signals recorded by on-line EC sensors.

  13. Continuous monitoring of bisulfide variation in microdialysis effluents by on-line droplet-based microfluidic fluorescent sensor.

    Science.gov (United States)

    Zhu, Xiaocui; Xu, Lei; Wu, Tongbo; Xu, Anqin; Zhao, Meiping; Liu, Shaorong

    2014-05-15

    We demonstrate a novel fluorescent sensor for real-time and continuous monitoring of the variation of bisulfide in microdialysis effluents by using a nanoparticle-glutathione-fluorescein isothiocyanate (AuNP-GSH-FITC) probe coupled with on-line droplet-based microfluidic chip. The AuNP-GSH-FITC fluorescent probe was firstly developed and used for bisulfide detection in bulk solution by quantitative real-time PCR, which achieved a linear working range from 0.1 μM to 5.0 μM and a limit of detection of ~50 nM. The response time was less than 2 min. With the aid of co-immobilized thiol-polyethylene glycol, the probe exhibited excellent stability and reproducibility in high salinity solutions, including artificial cerebrospinal fluids (aCSF). By adding 0.1% glyoxal to the probe solution, the assay allowed quantification of bisulfide in the presence of cysteine at the micro-molarity level. Using the AuNP-GSH-FITC probe, a droplet-based microfluidic fluorescent sensor was further constructed for online monitoring of bisulfide variation in the effluent of microdialysis. By using fluorescence microscope-charge-coupled device camera as the detector, the integrated microdialysis/microfluidic chip device achieved a detection limit of 2.0 μM and a linear response from 5.0 μM to 50 μM for bisulfide in the tested sample. The method was successfully applied for the on-line measurement of bisulfide variation in aCSF and serum samples. It will be a very useful tool for tracking the variation of bisulfide or hydrogen sulfide in extracellular fluids. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. On-line generation of three-dimensional core power distribution using incore detector signals to monitor safety limits

    International Nuclear Information System (INIS)

    Jang, Jin Wook; Lee, Ki Bog; Na, Man Gyun; Lee, Yoon Joon

    2004-01-01

    It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the Linear Power Density (LPD) and the Departure from Nucleate Boiling Ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER(Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. Through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation

  15. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Zeng, Qiang; Pan, Congyuan; Li, Chaoyang; Fei, Teng; Ding, Xiaokang; Du, Xuewei; Wang, Qiuping

    2018-04-01

    The corrosion behavior of structure materials in direct contact with molten metals is widespread in metallurgical industry. The corrosion of casting equipment by molten metals is detrimental to the production process, and the corroded materials can also contaminate the metals being produced. Conventional methods for studying the corrosion behavior by molten metal are offline. This work explored the application of laser-induced breakdown spectroscopy (LIBS) for online monitoring of the corrosion behavior of molten metal. The compositional changes of molten aluminum in crucibles made of 304 stainless steel were obtained online at 1000 °C. Several offline techniques were combined to determine the corrosion mechanism, which was highly consistent with previous studies. Results proved that LIBS was an efficient method to study the corrosion mechanism of solid materials in molten metal.

  16. Initial study and verification of a distributed fiber optic corrosion monitoring system for transportation structures.

    Science.gov (United States)

    2012-07-01

    For this study, a novel optical fiber sensing system was developed and tested for the monitoring of corrosion in : transportation systems. The optical fiber sensing system consists of a reference long period fiber gratings (LPFG) sensor : for corrosi...

  17. In-situ monitoring of undercoating corrosion damage by Direct Optical Interrogation (DOI)

    Science.gov (United States)

    Lopez-Garrity, Meng

    An approach referred to as "Direct Optical Interrogation" (DOI) has been developed as an extension of the thin film pitting approach developed and used by Frankel and others. Samples were prepared by depositing Al and Al-Cu alloy metallizations about 800 nm thick on glass substrates. These metallizations were then coated with various coatings and coating systems. Samples were introduced to aggressive environments and the progression of corrosion of the metallization under the coating was monitored in situ using low power videography. Because metallizations were thin, corrosion quickly penetrated through the metal layer to the glass substrate and then spread laterally. Measurement of the lateral spread of corrosion enabled non-electrochemical assessment of the corrosion kinetics. In Al-Cu thin films, both aged and as-deposited, corrosion sites are irregularly shaped because there is not enough cathodic current to propagate the entire corrosion site margin at equal rates. In a number of cases, corrosion propagates with a filamentary morphology resembling filiform corrosion. Cu played a strong role in determining under coating corrosion morphology and growth kinetics in experiments with Al-Cu thin films substrates. As-deposited Al-Cu metallizations were more corrosion resistant than aged metallization and both were more corrosion resistant than pure Al. Cu-rich dendrites were formed on the corrosion front. Corrosion rate (current density) was calculated using Faraday's law by collecting corrosion site perimeter and bottom area. Systematic exploration of the effects of a chromate and chromate-free conversion coatings, chromate and chromate-free primer coatings and the presence or absence of a polyurethane topcoat confirmed the extraordinary corrosion protection by chromates. A commercial praseodymium-pigmented primer coating was not particularly effective in retarding undercoating corrosion site growth unless paired with a chromate conversion coating. The presence of a

  18. Coaxial stub resonator for online monitoring early stages of corrosion

    NARCIS (Netherlands)

    Hoog-Antonyuk, N.A.; Mayer, Mateo J.J.; Miedema, Henk; Olthuis, Wouter; van den Berg, Albert

    2014-01-01

    Here we demonstrate the proof-of-principle of a new type of flow-through sensor to assess the corrosion rate of metal surfaces. The method can be applied to all situations where metals are exposed to a corrosive (fluidic) environment, including, for instance, the interior of pipes and tubes. Our

  19. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-11-01

    Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.

  20. Control and monitoring of the localized corrosion of zirconium in acidic chloride solutions

    International Nuclear Information System (INIS)

    Fahey, J.; Holmes, D.; Yau, T.L.

    1995-01-01

    Zirconium in acidic chloride solutions which are contaminated with ferric or cupric cations is prone to localized corrosion. This tendency can be reduced by ensuring that the zirconium surface is clean and smooth. In this paper, the effect of surface condition on the localized corrosion of zirconium in acidic chloride solutions is predicted with potentiodynamic scans. These predictions are confirmed by weight loss tests on various combinations of surface finish and acid concentrations. A real time indication of localized corrosion is seen by monitoring the electrochemical noise produced between two similar electrodes immersed in an acidic chloride solutions. Electrochemical noise monitoring correlates well with the predictions from potentiodynamic and weight loss experiments. The electrochemical noise results show that while an elevated (more anodic) potential caused by ferric ion contamination may be a necessary condition for localized corrosion, it is not a sufficient condition: A smooth, clean zirconium surface reduces the localized corrosion of zirconium

  1. On-Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Bourham, Mohamed A.

    2010-01-01

    Very High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (∼ 1-mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4%-10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

  2. Micro flow reactor chips with integrated luminescent chemosensors for spatially resolved on-line chemical reaction monitoring.

    Science.gov (United States)

    Gitlin, Leonid; Hoera, Christian; Meier, Robert J; Nagl, Stefan; Belder, Detlev

    2013-10-21

    Real-time chemical reaction monitoring in microfluidic environments is demonstrated using luminescent chemical sensors integrated in PDMS/glass-based microscale reactors. A fabrication procedure is presented that allows for straightforward integration of thin polymer layers with optical sensing functionality in microchannels of glass-PDMS chips of only 150 μm width and of 10 to 35 μm height. Sensor layers consisting of polystyrene and an oxygen-sensitive platinum porphyrin probe with film thicknesses of about 0.5 to 4 μm were generated by combining spin coating and abrasion techniques. Optimal coating procedures were developed and evaluated. The chip-integrated sensor layers were calibrated and investigated with respect to stability, reproducibility and response times. These microchips allowed observation of dissolved oxygen concentration in the range of 0 to over 40 mg L(-1) with a detection limit of 368 μg L(-1). The sensor layers were then used for observation of a model reaction, the oxidation of sulphite to sulphate in a microfluidic chemical reactor and could observe sulphite concentrations of less than 200 μM. Real-time on-line monitoring of this chemical reaction was realized at a fluorescence microscope setup with 405 nm LED excitation and CCD camera detection.

  3. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate

    Directory of Open Access Journals (Sweden)

    Oana-M. Buja

    2017-01-01

    Full Text Available A microfluidic setup which enables on-line monitoring of residues of malachite green (MG using surface-enhanced Raman scattering (SERS is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10−7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.

  4. Operative correction of judoists’ training loads on the base of on-line monitoring of heart beats rate

    Directory of Open Access Journals (Sweden)

    Yong Qiang Liu

    2015-04-01

    Full Text Available Purpose: ensure increase of effectiveness of training process’s control by means of operative correction of training loads of different qualification judo wrestlers’ heart beats rate indicators. Material: the research was conducted on the base of Brest SCJSOR № 1. Judo wrestlers of different sport qualification (age 17-19 years old, n=15 participated in the research. Monitoring of judo wrestlers’ heart beats rate was carried out with the help of system “Polar”. Results: we have found factorial structure of functional fitness in every profile of sportsmen. Model characteristics of judo wrestlers were supplemented with the most important sides of functional fitness. Analysis of indicators of restoration effectiveness indicators (REI in both groups of judo wrestlers showed high level of organism’s responsiveness to training load of special and power orientation in comparison with speed power load. We have worked out algorithm of operative correction of training loads by indicators of heart beats rate in training process, depending on orientation and intensity of loads’ physiological influence on judo wrestler. Conclusions: Telemetric on-line monitoring of sportsman’s heart beats rate and calculation of REI permit to objectively assess effectiveness of training’s construction and of micro-cycle in total and detect in due time the trend to development of over-loading and failure of adaptation.

  5. Operative correction of judoists’ training loads on the base of on-line monitoring of heart beats rate

    Directory of Open Access Journals (Sweden)

    Liu Yong Qiang

    2015-02-01

    Full Text Available Purpose: ensure increase of effectiveness of training process’s control by means of operative correction of training loads of different qualification judo wrestlers’ heart beats rate indicators. Material: the research was conducted on the base of Brest SCJSOR № 1. Judo wrestlers of different sport qualification (age 17-19 years old, n=15 participated in the research. Monitoring of judo wrestlers’ heart beats rate was carried out with the help of system “Polar”. Results: we have found factorial structure of functional fitness in every profile of sportsmen. Model characteristics of judo wrestlers were supplemented with the most important sides of functional fitness. Analysis of indicators of restoration effectiveness indicators (REI in both groups of judo wrestlers showed high level of organism’s responsiveness to training load of special and power orientation in comparison with speed power load. We have worked out algorithm of operative correction of training loads by indicators of heart beats rate in training process, depending on orientation and intensity of loads’ physiological influence on judo wrestler. Conclusions: Telemetric on-line monitoring of sportsman’s heart beats rate and calculation of REI permit to objectively assess effectiveness of training’s construction and of micro-cycle in total and detect in due time the trend to development of over-loading and failure of adaptation.

  6. The EOP Visualization Module Integrated into the Plasma On-Line Nuclear Power Plant Safety Monitoring and Assessment System

    International Nuclear Information System (INIS)

    Hornaes, Arne; Hulsund, John Einar; Vegh, Janos; Major, Csaba; Horvath, Csaba; Lipcsei, Sandor; Kapocs, Gyoergy

    2001-01-01

    An ambitious project to replace the unit information systems (UISs) at the Hungarian Paks nuclear power plant was started in 1998-99. The basic aim of the reconstruction project is to install a modern, distributed UIS architecture on all four Paks VVER-440 units. The new UIS includes an on-line plant safety monitoring and assessment system (PLASMA), which contains a critical safety functions monitoring module and provides extensive operator support during the execution of the new, symptom-oriented emergency operating procedures (EOPs). PLASMA includes a comprehensive EOP visualization module, based on the COPMA-III procedure-handling software developed by the Organization for Economic Cooperation and Development, Halden Reactor Project. Intranet technology is applied for the presentation of the EOPs with the use of a standard hypertext markup language (HTML) browser as a visualization tool. The basic design characteristics of the system, with a detailed description of its user interface and functions of the new EOP display module, are presented

  7. Atmospheric corrosion monitoring at the US Department of Energy's Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    Rao, M.

    1995-01-01

    Depleted uranium hexafluoride (UF 6 ) at the US Department of Energy's K-25 Site at Oak Ridge, TN has been stored in large steel cylinders which have undergone significant atmospheric corrosion damage over the last 35 years. A detailed experimental program to characterize and monitor the corrosion damage was initiated in 1992. Large amounts of corrosion scale and deep pits are found to cover cylinder surfaces. Ultrasonic wall thickness measurements have shown uniform corrosion losses up to 20 mils (0.5 mm) and pits up to 100 mils (2.5 mm) deep. Electrical resistance corrosion probes, time-of-wetness sensors and thermocouples have been attached to cylinder bodies. Atmospheric conditions are monitored using rain gauges, relative humidity sensors and thermocouples. Long-term (16 years) data are being obtained from mild steel corrosion coupons on test racks as well as attached directly to cylinder surfaces. Corrosion rates have been found to intimately related to the times-of-wetness, both tending to be higher on cylinder tops due to apparent sheltering effects. Data from the various tests are compared, discrepancies are discussed and a pattern of cylinder corrosion as a function of cylinder position and location is described

  8. Application of thin layer activation technique for monitoring corrosion of carbon steel in hydrocarbon processing environment.

    Science.gov (United States)

    Saxena, R C; Biswal, Jayashree; Pant, H J; Samantray, J S; Sharma, S C; Gupta, A K; Ray, S S

    2018-05-01

    Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Monitoring and modeling stress corrosion and corrosion fatigue damage in nuclear reactors

    International Nuclear Information System (INIS)

    Andresen, P.L.; Ford, F.P.; Solomon, H.D.; Taylor, D.F.

    1990-01-01

    Stress corrosion and corrosion fatigue are significant problems in many industries, causing economic penalties from decreased plant availability and component repair or replacement. In nuclear power reactors, environmental cracking occurs in a wide variety of components, including reactor piping and steam generator tubing, bolting materials and pressure vessels. Life assessment for these components is complicated by the belief that cracking is quite irreproducible. Indeed, for conditions which were once viewed as nominally similar, orders of magnitude variability in crack growth rates are observed for stress corrosion and corrosion fatigue of stainless steels and low-alloy steels in 288 degrees C water. This paper shows that design and life prediction approaches are destined to be overly conservative or to risk environmental failure if life is predicted by quantifying only the effects of mechanical parameters and/or simply ignoring or aggregating environmental and material variabilities. Examples include the Nuclear Regulatory Commission (NRC) disposition line for stress-corrosion cracking of stainless steel in boiling water reactor (BWR) water and the American Society of Mechanical Engineers' Section XI lines for corrosion fatigue

  10. Monitoring the corrosion process of Al alloys through pH induced fluorescence

    International Nuclear Information System (INIS)

    Pidaparti, R M; Neblett, E B; Miller, S A; Alvarez, J C

    2008-01-01

    A sensing and monitoring set-up based on electrochemical pH induced fluorescence to systematically control the electrochemical corrosion process has been developed for possible applications in the field of localized corrosion. The sensing and monitoring concept is based on exposing the corroding metal surface to solutions that contain selected redox chemicals which will react in local regions where anodic or cathodic polarizations occur. Redox couples that produce or consume protons in their electrochemical reactions were used so that local pH gradients can indicate electrochemical activity by inducing fluorescence in dyes. This approach has been applied to study the corrosion initiation in aircraft aluminum metal 2024-T3 in a controlled electrochemical cell. Preliminary results obtained suggest that monitoring of localized corrosion based on pH can be achieved for field applications

  11. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    Energy Technology Data Exchange (ETDEWEB)

    James F. Stubbins; Alan Bolind; Ziang Chen

    2010-02-25

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  12. Corrosion '98: 53. annual conference and exposition, proceedings

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    This conference was divided into the following sections: Corrosion in Gas Treating; Problems and Solutions in Commercial Building Water Systems; Green Corrosion/Scale Inhibitors; Atmospheric Corrosion; AIRPOL Update/98; Rubber Lining--Answers to Many Problems; Interference Problems; Environmental Assisted Cracking: Fundamental Research and Industrial Applications; Corrosion in Nuclear Systems; New Developments in Scale and Deposit Control; Corrosion and Corrosion Protection in the Transportation Industries; What's All the Noise About--Electrochemical That Is; Refining Industry Corrosion; Corrosion Problems in Military Hardware: Case Histories, Fixes and Lessons Learned; Cathodic Protection Test Methods and Instrumentation for Underground and On-grade Pipelines and Tanks; Recent Developments in Volatile Corrosion Inhibitors; Corrosion in Supercritical Fluids; Microbiologically Influenced Corrosion; Advances in Understanding and Controlling CO 2 Corrosion; Managing Corrosion with Plastics; Material Developments for Use in Exploration and Production Environments; Corrosion in Cold Regions; The Effect of Downsizing and Outsourcing on Cooling System Monitoring and Control Practices; New Developments in Mechanical and Chemical Industrial Cleaning; Mineral Scale Deposit Control in Oilfield Related Operations; Biocides in Cooling Water; Corrosion and Corrosion Control of Reinforced Concrete Structures; Materials Performance for Fossil Energy Conversion Systems; Marine corrosion; Thermal Spray--Coating and Corrosion Control; Flow Effects on Corrosion in Oil and Gas Production; Corrosion Measurement Technologies; Internal Pipeline Monitoring--Corrosion Monitoring, Intelligent Pigging and Leak Detection; Cathodic Protection in Natural Waters; Corrosion in Radioactive Liquid Waste Systems; On-line Hydrogen Permeation Monitoring Equipment and Techniques, State of the Art; Water Reuse and Recovery; Performance of Materials in High Temperature Environments; Advances in Motor

  13. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  14. Corrosion Monitoring of PEO-Pretreated Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gnedenkov, A. S.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Gnedenkov, S. V.; Sergienko, V. I. [Institute of Chemistry, Vladivostok (Russian Federation)

    2017-06-15

    The MA8 alloy (formula Mg-Mn-Ce) has been shown to have greater corrosion stability than the VMD10 magnesium alloy (formula Mg-Zn-Zr-Y) in chloride-containing solutions by Scanning Vibrating Electrode Technique (SVET) and by optical microscopy, gravimetry, and volumetry. It has been established that the crucial factor for the corrosion activity of these samples is the occurrence of microgalvanic coupling at the sample surface. The peculiarities of the kinetics and mechanism of the corrosion in the local heterogeneous regions of the magnesium alloy surface were investigated by localized electrochemical techniques. The stages of the corrosion process in artificial defects in the coating obtained by plasma electrolytic oxidation (PEO) at the surface of the MA8 magnesium alloy were also studied. The analysis of the experimental data enabled us to determine that the corrosion process in the defect zone develops predominantly at the magnesium/coating interface. Based on the measurements of the corrosion rate of the samples with PEO and composite polymer-containing coatings, the best anticorrosion properties were displayed by the composite polymer-containing coatings.

  15. On-line monitoring system of lactic acid fermentation by using integrated enzyme sons ors; Shusekika koso sensa wo mochiita nyusan hakko keisokuyo onrain monitaringu shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayasu; Kumagi, Takeshi; Nakashima, Yuuichi [Kyushu University, Fukuoka (Japan). Dept. of Biochemical Engineering and Science

    1999-03-10

    An on-line monitoring system for lactic acid fermentation is developed by using integrated micro enzyme sensors, a flow injection analysis system, and a micro dialysis system. The calibration curves of micro glucose, lactose and lactate sensors show good linearity in the concentration range below 70 mM. By combination with the micro dialysis system, the enzyme sensors can measure the whole concentration range of lactic acid fermentation, and interference by the medium can not be observed. The on-line sensor system is then applied to lactic acid fermentation of Lactobacillus delbrueckii. The sensor system can monitor the glucose and lactate concentrations simultaneously during 24-h fermentation, and the measurements show good agreement with those of the conventional colorimetric method. The sensor system can also be applied to on-line monitoring of lactose and lactate during Lactobacillus lactis fermentation. (author)

  16. Development and installation of a new on-line plant safety monitoring system for the Paks VVER-440 units

    International Nuclear Information System (INIS)

    Vegh, J.; Major, C.; Buerger, L.; Lipcsei, S.; Horvath, C.; Kapocs, G.; Eiler, J.; Hornaes, A.; Hulsund, J.E.

    2000-01-01

    The paper describes the architecture, modules, algorithms and human-machine interface of a new operator support system (OSS), which is integrated into the new, reconstructed Paks NPP plant computers. The main task of the new OSS is to perform continuous plant safety monitoring and assessment, it has the following basic functions: on-line evaluation and presentation of critical safety function (CSF) status trees, continuous evaluation and presentation of the actual safety status of the plant, displaying and browsing the new symptom-oriented EOPs, automatic displaying of those process signals which are quoted in the EOPs. The first version of the new operator support system was connected to the Paks NPP full scope simulator in October 1999. This configuration was later successfully applied for the simulator testing of the new symptom-oriented EOP set for the Paks NPP in November 1999. The installation process was continued in 2000: the new system started its operation on Unit 2 (June) and on Unit 1 (August), together with the reconstructed, new PCS. (author)

  17. Monitoring gradient profile on-line in micro- and nano-high performance liquid chromatography using conductivity detection.

    Science.gov (United States)

    Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong

    2016-08-19

    In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.

  18. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)

    2009-07-01

    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  19. Monitoring internal corrosion in natural gas pipelines; Monitoracao da corrosao interna em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Ana C.V.; Silva, Djalma R.; Pimenta, Gutemberg S. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Barbosa, Andrea F.F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    For susceptibilities to the corrosion of the pipelines and equipment made in carbon steel and used by the natural gas, it makes be necessary to identify the acting corrosive agents and monitoring them along time, controlling failures for internal corrosion. Also, of that process it origins the black powder (solid particles) that can not commit the structural integrity of the equipment, but it can also bring the company other implications very serious, like quality of the sold product, as well as stops due to blockages and wastes for erosion of the equipment. The monitoring methodology and control of the corrosion in field consisted of the use of corrosion test equipment, chemical characterization of samples of black powder and liquids and analysis of the operational data of processes and plants. Like this, it was identified for the gas pipeline in analysis the most responsible parameters for the corrosive action of the fluid, establishing a controlling methodology and operational actions to maintain the corrosion rates at safe levels and structural warranty of the same. (author)

  20. Corrosion monitoring in a straw-fired power plant using an electrochemical noise probe

    DEFF Research Database (Denmark)

    Cappeln, Frederik Vilhelm; Bjerrum, Niels; Petrushina, Irina

    2007-01-01

    Electrochemical Noise Measurements have been carried out in situ in a straw-fired power plant using an experimental probe constructed from alumina and AlSl 347 steel. Based on a framework of controlled laboratory experiments it has been found that electrochemical noise has the unique ability...... to provide in-situ monitoring of intergranular corrosion in progress. The probe had a lifetime of two months. It was shown that down-time corrosion in the boiler was negligible. Electrochemical noise data indicated that metal temperatures around 590 degrees C should be avoided as the intergranular corrosion...

  1. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions

    Directory of Open Access Journals (Sweden)

    Arpith Siddaiah

    2017-09-01

    Full Text Available Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  2. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.

    Science.gov (United States)

    Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L

    2017-09-28

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  3. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    Upadhyaya, Belle R.; Hines, J. Wesley

    2004-01-01

    Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acoustic time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line

  4. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acoustic time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line

  5. Corrosion probe. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned

  6. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle R. [Univ. of Tennessee, Knoxville, TN (United States); Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Lu, Baofu [Univ. of Tennessee, Knoxville, TN (United States)

    2005-06-03

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 September 2004. Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance.Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. Development of advanced signal processing methods using

  7. Monitoring dc stray current corrosion at sheet pile structures

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2012-01-01

    Steel is discarded by railway owners as a material for underground structures near railway lines, due to uncertainty over increased corrosion by DC stray currents stemming from the traction power system. This paper presents a large scale field test in which stray currents interference of a sheet

  8. Practical utility of on-line clearance and blood temperature monitors as noninvasive techniques to measure hemodialysis blood access flow.

    Science.gov (United States)

    Fontseré, Néstor; Blasco, Miquel; Maduell, Francisco; Vera, Manel; Arias-Guillen, Marta; Herranz, Sandra; Blanco, Teresa; Barrufet, Marta; Burrel, Marta; Montaña, Javier; Real, Maria Isabel; Mestres, Gaspar; Riambau, Vicenç; Campistol, Josep M

    2011-01-01

    Access blood flow (Qa) measurements are recommended by the current guidelines as one of the most important components in vascular access maintenance programs. This study evaluates the efficiency of Qa measurement with on-line conductivity (OLC-Qa) and blood temperature monitoring (BTM-Qa) in comparison with the gold standard saline dilution method (SDM-Qa). 50 long-term hemodialysis patients (42 arteriovenous fistulas/8 arteriovenous grafts) were studied. Bland-Altman and Lin's coefficient (ρ(c)) were used to study accuracy and precision. Mean values were 1,021.7 ± 502.4 ml/min SDM-Qa, 832.8 ± 574.3 ml/min OLC-Qa (p = 0.007) and 1,094.9 ± 491.9 ml/min with BTM-Qa (p = NS). Biases and ρ(c) obtained were -188.8 ml/min (ρ(c) 0.58) OLC-Qa and 73.2 ml/min (ρ(c) 0.89) BTM-Qa. The limits of agreement (bias ± 1.96 SD) obtained were from -1,119 to 741.3 ml/min (OLC-Qa) and -350.6 to 497.2 ml/min (BTM-Qa). BTM-Qa and OLC-Qa are valid noninvasive and practical methods to estimate Qa, although BTM-Qa was more accurate and had better concordance than OLC-Qa compared with SDM-Qa. Copyright © 2010 S. Karger AG, Basel.

  9. In situ corrosion monitoring of PC structures with distributed hybrid carbon fiber reinforced polymer sensors

    Science.gov (United States)

    Yang, C. Q.; Wu, Z. S.

    2007-08-01

    Firstly, the fabrication and sensing properties of hybrid carbon fiber reinforced polymer (HCFRP) composite sensors are addressed. In order to provide a distributed sensing manner, the HCFRP sensors were divided into multi-zones with electrodes, and each zone was regarded as a separate sensor. Secondly, their application is studied to monitor the steel corrosion of prestressed concrete (PC) beams. The HCFRP sensors with different gauge lengths were mounted on a PC tendon, steel bar and embedded in tensile and compressive sides of the PC beam. The experiment was carried out under an electric accelerated corrosion and a constant load of about 54 kN. The results reveal that the corrosion of the PC tendon can be monitored through measuring the electrical resistance (ER) change of the HCFRP sensors. For the sensors embedded in tensile side of the PC beam, their ER increases as the corrosion progresses, whereas for the sensors embedded in compressive side, their ER decreases with corrosion time. Moreover, the strains due to the corrosion can be obtained based on the ER change and calibration curves of HCFRP sensors. The strains measured with traditional strain gauges agree with the strains calculated from the ER changes of HCFRP sensors. The electrical behavior of the zones where the corrosion was performed is much different from those of the other zones. In these zones, either there exist jumps in ER, or the ER increases with a much larger rate than those of the other zones. Distributed corrosion monitoring for PC structures is thus demonstrated with the application of HCFRP sensors through a proper installation of multi-electrodes.

  10. On-line monitoring of trace compounds in the flue gas of an incineration pilot plant: Formation of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Heger, H. J.; Zimmermann, R.; Dorfner, R.; Kettrup, A.; Boesl, U.

    1998-01-01

    Laser mass spectrometry is applied for on-line analysis of PAHs from a complex flue gas matrix in the combustion chamber of an incineration plant. Process monitoring of industrial processes can be performed. New insights into the formation of toxic combustion byproducts are possible

  11. An LC-MS Assay with Isocratic Separation and On-Line Solid Phase Extraction to Improve the Routine Therapeutic Drug Monitoring of Busulfan in Plasma

    Directory of Open Access Journals (Sweden)

    Ialongo Cristiano

    2017-04-01

    Full Text Available Background: Busulfan (Bu requires therapeutic drug monitoring (TDM in subjects undergoing a conditioning regimen for hematopoietic stem cell transplantation (HSCT. To speed up the procedure and increase reproducibility, we improved our routine LC-MS/MS assay using the on-line solid-phase extraction (SPE of samples.

  12. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    Upadhyaya, Belle R.; Wesley Hines, J.

    2004-01-01

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal

  13. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal

  14. Evaluation of alternatives for upgrading double shell tank corrosion monitoring at Hanford

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1996-01-01

    Recent discovery of low hydroxide conditions in Double Shell Tanks have demonstrated that the current corrosion control system of waste sampling and analysis is inadequate to monitor and maintain specified chemistries for dilute and low volume waste tanks. Moreover, waste sampling alone cannot provide adequate information to resolve the questions raised regarding tank corrosion. This report evaluates available technologies which could be used to improve on the existing corrosion control system. The evaluation concludes that a multi-technique corrosion monitoring system is necessary, utilizing ultrasonic and visual examinations for direct evaluation of tank liner condition, probes for rapid detection (alarm) of corrosive conditions, and waste sampling and analysis for determination of corrective action. The probes would incorporate electrochemical noise and linear polarization resistance techniques. When removed from the waste tank, the probe electrodes would be physically examined as corrosion coupons. The probes would be used in addition to a modified regimen of waste sampling and the existing schedule for ultrasonic examination of the tank liners. Supporting information would be obtained by examination of in-tank equipment as it is removed

  15. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D. D.; Lvov, S. N.

    2000-01-01

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system

  16. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  17. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D.D.

    2000-01-01

    Super Critical Water Oxidation (SCWO) is a promising technology for destroying highly toxic organic waste (including physiological agents) and for reducing the volume of DOE's low-level nuclear waste. The major problem inhibiting the wide implementation of SCWO is the lack of fundamental knowledge about various physico-chemical and corrosion processes that occur in SCW environments. In particular, the lack of experimental techniques for accurately monitoring important parameters, such as pH, corrosion potential and corrosion rate, has severely hampered the development of a quantitative understanding of the degradation of materials in this extraordinarily aggressive environment. Accordingly, the principal objective of the present program has been to develop new, innovative methods for accurately measuring parameters that characterize corrosion processes under super critical conditions

  18. Selection of Corrosion Monitoring Equipment for Subsea Safety Joint

    OpenAIRE

    Ramachandran, Sajini

    2016-01-01

    Master Thesis in Offshore technology: Industrial asset management In Nature, most of all Metals evolve as stable ores of chemical compounds like oxides, sulphides or carbonates. Lot of energy is required to refine and make them useful for some means for every Industry. Corrosion on metals can reverse an unnatural process back to a lower state of energy, easily as simple. It eats away metal in outdoor furniture and automotive bodies, leaving the surface with bad appearance and if it is n...

  19. Corrosion monitoring of storage bins for radioactive calcines

    International Nuclear Information System (INIS)

    Hoffman, T.L.

    1975-01-01

    Highly radioactive liquid waste produced at the Idaho Chemical Processing Plant is calcined to a granular solid for long term storage in stainless steel bins. Corrosion evaluation of coupons withdrawn from these bins indicates excellent performance for the materials of construction of the bins. At exposure periods of up to six years the average penetration rates are 0.01 and 0.05 mils per year for Types 304 and 405 stainless steels, respectively. (auth)

  20. Real-time monitoring of copper corrosion at the Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo; Pan, Jinshan [Div. Corrosion Science, Royal Institute of Technology, Drottning Kristinas vaeg 51, SE - 100 44 Stockholm (Sweden); Eden, David [InterCorr International, Inc., 14503 Bammel-N Houston, Suite 300, Houston, TX 77014 (United States); Karnland, Ola [Clay Technology AB, Ideon Research Center, SE - 223 70 Lund (Sweden); Werme, Lars [Svensk Kaernbraenslehantering AB, P.O. Box 5864, SE - 102 40 Stockholm (Sweden)

    2004-07-01

    In Sweden the principal strategy for high-level radioactive waste disposal is to enclose the spent nuclear fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bed-rock. Initially, a limited amount of air will be left in a repository after emplacement. The entrapped oxygen will be consumed through reactions with minerals in the rock and the bentonite and also through microbial activity. After the oxygen has been consumed in the repository, after a few hundred years at the very most, corrosion will be controlled completely by the supply of dissolved sulphide to the canister. The present work concerns the oxic period after emplacement. The main hypothesis is that the average corrosion rate of the canister under oxic conditions will be less than 7 {mu}m/year, and that pitting will only be possible under these conditions. The Aespoe Hard Rock Laboratory offers a realistic environment for different experiments and tests under the conditions that will prevail in a deep repository. Real-time monitoring of copper corrosion is presently performed with polarization resistance, harmonic distortion analysis and electrochemical noise techniques. The first two techniques are used to derive information regarding the general corrosion rate and the third to derive information regarding localized corrosion. In order to support these measurements at Aespoe, laboratory work is also performed at the Royal Institute of Technology in Stockholm using the very same corrosion monitoring equipment and also other equipment and techniques. Copper coupons are also exposed at Aespoe. Results from the work at Aespoe and in Stockholm are presented with an emphasis on the gained information concerning localized corrosion. The recorded corrosion rates at Aespoe are well below the value given above, and the recorded localization factors are interpreted as indicating only a slight tendency to local attack. (authors)

  1. Real-time monitoring of copper corrosion at the Aespoe HRL

    International Nuclear Information System (INIS)

    Rosborg, Bo; Pan, Jinshan; Eden, David; Karnland, Ola; Werme, Lars

    2004-01-01

    In Sweden the principal strategy for high-level radioactive waste disposal is to enclose the spent nuclear fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bed-rock. Initially, a limited amount of air will be left in a repository after emplacement. The entrapped oxygen will be consumed through reactions with minerals in the rock and the bentonite and also through microbial activity. After the oxygen has been consumed in the repository, after a few hundred years at the very most, corrosion will be controlled completely by the supply of dissolved sulphide to the canister. The present work concerns the oxic period after emplacement. The main hypothesis is that the average corrosion rate of the canister under oxic conditions will be less than 7 μm/year, and that pitting will only be possible under these conditions. The Aespoe Hard Rock Laboratory offers a realistic environment for different experiments and tests under the conditions that will prevail in a deep repository. Real-time monitoring of copper corrosion is presently performed with polarization resistance, harmonic distortion analysis and electrochemical noise techniques. The first two techniques are used to derive information regarding the general corrosion rate and the third to derive information regarding localized corrosion. In order to support these measurements at Aespoe, laboratory work is also performed at the Royal Institute of Technology in Stockholm using the very same corrosion monitoring equipment and also other equipment and techniques. Copper coupons are also exposed at Aespoe. Results from the work at Aespoe and in Stockholm are presented with an emphasis on the gained information concerning localized corrosion. The recorded corrosion rates at Aespoe are well below the value given above, and the recorded localization factors are interpreted as indicating only a slight tendency to local attack. (authors)

  2. Application of a mechanistic model as a tool for on-line monitoring of pilot scale filamentous fungal fermentation processes-The importance of evaporation effects.

    Science.gov (United States)

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V

    2017-03-01

    A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs

  3. Corrosion Monitoring of Flexible Metallic Substrates for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Trystan Watson

    2013-01-01

    Full Text Available Two techniques for monitoring corrosion within a dye-sensitized solar cell (DSC system are presented, which enable continuous, high sensitivity, in situ measurement of electrolyte breakdown associated with DSCs fabricated on metals. The first method uses UV/Vis reflectance spectrophotometry in conjunction with encapsulation cells, which incorporate a 25 μm thick electrolyte layer, to provide highly resolved triiodide absorption data. The second method uses digital image capture to extract colour intensity data. Whilst the two methods provide very similar kinetic data on corrosion, the photographic method has the advantage that it can be used to image multiple samples in large arrays for rapid screening and is also relatively low cost. This work shows that the triiodide electrolyte attacks most metals that might be used for structural applications. Even a corrosion resistant metal, such as aluminium, can be induced to corrode through surface abrasion. This result should be set in the context with the finding reported here that certain nitrogen containing heterocyclics used in the electrolyte to enhance performance also act as corrosion inhibitors with significant stabilization for metals such as iron. These new techniques will be important tools to help develop corrosion resistant metal surfaces and corrosion inhibiting electrolytes for use in industrial scale devices.

  4. An optimised multi-baseline approach for on-line MR-temperature monitoring on commodity graphics hardware

    DEFF Research Database (Denmark)

    de Senneville, Baudouin Denis; Noe, Karsten Østergaard; Ries, Mario

    2008-01-01

    . They have required significant time to compute however, and have not been sufficiently fast for several real-time temperature mapping applications. This paper proposes to use modern graphics cards (GPUs) to assess on-line motion corrected thermal maps. The computation times obtained on the GPU are compared...

  5. Development of an On-Line Surgeon-Specific Operating Room Time Prediction System (Experience with the Michigan Surgical Monitors)

    OpenAIRE

    Brown, Allan C.D.; Schmidt, Nancy M.

    1984-01-01

    The development of a micro-computer application for the on-line prediction of surgeon-specific operating room time using an IBM - PCXT is described. The reasons leading to the project, together with an assessment of the Condor 20 relational database management system as the basis for the application are discussed.

  6. On-Line/At-Line Technetium Monitor Using Scintillating Ion Exchange Resins for the Savannah River Site

    International Nuclear Information System (INIS)

    Wach, S.T.

    2000-01-01

    The results of this study indicate that the combination of extraction chromatography and on-line flow-cell scintillation counting can exceed a 99Tc detection limit of 0.005 Ci/mL in the presence of 90Sr, 137Cs, and 239Pu in less than an 18 minute analysis time

  7. Corrosion monitoring for underground and submerged concrete structures - examples and interpretation issues

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Leegwater, G.

    2008-01-01

    Since about 1980 Corrosion Monitoring Systems have been used in many concrete structures in aggressive environmentworldwide. While these systemswork properly in aboveground environment, some questions have arisen for submerged conditions, e.g. the outer sides of tunnels, piers in seawater or

  8. Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors.

    Science.gov (United States)

    Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong

    2015-04-15

    Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions.

  9. CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS, DESIGN AND DATA FROM 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM

    International Nuclear Information System (INIS)

    ANDA, V.S.; EDGEMON, G.L.; HAGENSEN, A.R.; BOOMER, K.D.; CAROTHERS, K.G.

    2009-01-01

    In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation

  10. On-line control of the plasma spraying process by monitoring the temperature, velocity, and trajectory of in-flight particles

    International Nuclear Information System (INIS)

    Moreau, C.; Gougeon, P.; Lamontagne, M.; Lacasse, V.; Vaudreuil, G.; Cielo, P.

    1994-01-01

    This paper describes a new optical sensing device for on-line monitoring of the temperature, velocity and trajectory of in-flight particles during industrial coating production. Thermal radiation emitted by the in-flight particles is collected by a small and robust sensing head that can be attached to the plasma gun providing continuous monitoring of the spray process. The collected radiation is transmitted through optical fibers to a detection cabinet located away from the dusty environment around the operating plasma gun. On-line measurement of the particle velocity, temperature and trajectory can provide an efficient diagnostic tool to maintain optimum spraying conditions leading to a better reproducibility of the coating properties

  11. Generation of data base for on-line fatigue life monitoring of Indian nuclear power plant components: Part I - Generation of Green's functions for end fitting

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushwaha, H.S.

    1994-01-01

    Green's function technique is the heart of the on- line fatigue monitoring methodology. The plant transients are converted to stress and temperature response using this technique. To implement this methodology in a nuclear power plant, Green's functions are to be generated in advance. For structures of complex geometries, Green's functions are to be stored in a data base to convert on-line, the plant data to temperature/stress response, using a personal computer. End fitting, end shield, pressurizer, steam generator tube sheet are few such components of PHWR where fatigue monitoring is needed. In the present paper, Green's functions are generated for end fitting of a 235 MWe Indian PHWR using finite element method. End fitting has been analysed using both 3-D and 2-D (axisymmetric) finite element models. Temperature and stress Green's functions are generated at few critical locations using the code ABAQUS. (author). 10 refs., 11 figs

  12. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  13. High temperature corrosion control and monitoring for processing acidic crudes

    Energy Technology Data Exchange (ETDEWEB)

    Cross, C. [Betz/GE Water and Process Technologies, Woodlands, TX (United States)

    2009-07-01

    The challenge of processing heavy crudes and bitumen in a reliable and economical way was discussed. Many refiners use a conservative approach regarding the rate at which they use discounted crudes or depend upon capital-intensive upgrades to equipment. New strategies based on data-driven decisions are needed in order to obtain the greatest benefit from heavy feedstock. The feasibility of successfully processing more challenging feed can be estimated more accurately by better understanding the interactions between a particular feed and a particular crude unit. This presentation reviewed newly developed techniques that refiners can use to determine the feeds corrosion potential and the probability for this potential to manifest itself in a given crude unit. tabs., figs.

  14. A CDC 1700 on-line system for the analysis, data logging and monitoring of big bubble chamber pictures

    International Nuclear Information System (INIS)

    Guyonnet, J.-L.

    1975-01-01

    This work presents the analysis system of large bubble chamber such as Gargamelle, BEBC pictures realized in the heavy liquid bubble chamber group with scanning and measurement stations on-line with a CDC 1700 computer. This work deals with the general characteristics of these stations and of the computer, and puts emphasis on the conception and functions of the analysis programmes: scanning, measurement and data processing. The data acquisition system runs in a context of real time multiprogrammation [fr

  15. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...... showed that x-ray attenuation measurements allow determination of the actual concentrations of corrosion products averaged through the specimen thickness. The total mass loss of steel measured by x-ray attenuation was found to be in very good agreement with the calculated mass loss obtained by Faraday......’s law. Furthermore, experimental results demonstrated that the depth of penetration of corrosion products as well as time to corrosion-induced cracking is varying for the different water-to-cement ratios and applied corrosion current densities....

  16. Magnetic Carpet Probe for Large Area Instant Crack/Corrosion Detection and Health Monitoring

    International Nuclear Information System (INIS)

    Sun Yushi; Ouyang Tianhe; Yang Xinle; Zhu Haiou

    2007-01-01

    Recently a new NDE tool, Magnet Carpet Probe (MCP), has been developed by Innovative Materials Testing Technologies, Inc. supported by FAA to meet the demands of large area crack/corrosion detection and health monitoring. MCP is a two-dimensional coil array built on a piece of very thin flexible printed circuit board. A two-dimensional electromagnetic scan is going on within the MCP placed on top of a metallic surface under inspection. Therefore, one can finish the inspection, without moving anything, and see the crack/corrosion identification image on the instrument screen in a few second. Recent test results show that it can detect 0.030 x 0.016'' EDM notches on a Titanium standard; 0.024'' ∼ 0.036: real cracks on titanium standards, as well as penetrate through a 0.040'' aluminum layer for corrosion detection

  17. Membrane-Coated Electrochemical Sensor for Corrosion Monitoring in Natural Gas Pipelines

    Directory of Open Access Journals (Sweden)

    J. Beck

    2017-07-01

    Full Text Available Electrochemical sensors can be used for a wide range of online in- situ process monitoring applications. However, the lack of a consistent electrolyte layer has previously limited electrochemical monitoring in gas and supercritical fluid streams. A solid state sensor is being designed that uses an ion conducting membrane to perform conductivity and corrosion measurements in natural gas pipelines up to 1000 psi. Initial results show that membrane conductivity measurements can be correlated directly to water content down to dew points of 1°C with good linearity. Corrosion monitoring can also be performed using methods such as linear polarization resistance and electrochemical impedance spectroscopy (EIS, though care must be taken in the electrode design to minimize deviation between sensors.

  18. Development of metallic system multi-composite materials for compound environment and corrosion monitoring technology

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    1996-01-01

    For the structural materials used for the pressure boundary of nuclear power plants and others, the long term durability over several decades under the compound environment, in which the action of radiation and the corrosion and erosion in the environment of use are superposed, is demanded. To its controlling factors, the secular change of materials due to irradiation ageing and the chemical and physical properties of extreme compound environment are related complicatedly. In the first period of this research, the development of the corrosion-resistant alloys with the most excellent adaptability to environments was carried out by the combination of new alloy design and alloy manufacturing technology. In the second period, in order to heighten the adaptability as the pressure boundary materials between different compound environments, the creation of metallic system multi-composite materials has been advanced. Also corrosion monitoring technique is being developed. The stainless steel for water-cooled reactors, the wear and corrosion-resistant superalloy for reactor core, the corrosion-resistant alloy and the metallic refractory material for reprocessing nitric acid reaction vessels are reported. (K.I.)

  19. Development of corrosion condition sensing and monitoring system using radio-frequency identification devices (RFID)

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.P.; Zheng, W. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2008-05-15

    This study discussed the development of a corrosion sensing and monitoring system for military land vehicles. Radio-frequency identification device (RFID) technology uses radio waves to identify individual masses with RFID tags attached. A corrosion-sensing element was integrated with the RFID technology, which incorporated a galvanic corrosion cell designed to trigger RFID tags. Corrosion severity was then related to the galvanic current. The tag recorded the sensor reading and transmitted the data to an RFID reader. The tags consisted of a microchip and an antenna. A software development kit has also been developed to interface RFID data with existing applications. While it is currently not possible to modify the RFID tags to prevent security risks, further research is being conducted to assemble a data-logger system with corrosion probes to measure humidity, electrical resistance, and linear polarization resistance. Studies will also be conducted to assemble an active tag reader system and investigate potential modifications. 4 refs., 1 fig., 1 appendix.

  20. Combination of On-line pH and Oxygen Transfer Rate Measurement in Shake Flasks by Fiber Optical Technique and Respiration Activity MOnitoring System (RAMOS

    Directory of Open Access Journals (Sweden)

    Jochen Büchs

    2007-12-01

    Full Text Available Shake flasks are commonly used for process development in biotechnologyindustry. For this purpose a lot of information is required from the growth conditions duringthe fermentation experiments. Therefore, Anderlei et al. developed the RAMOS technology[1, 2], which proviedes on-line oxygen and carbondioxide transfer rates in shake flasks.Besides oxygen consumption, the pH in the medium also plays an important role for thesuccessful cultivation of micro-organisms and for process development. For online pHmeasurement fiber optical methods based on fluorophores are available. Here a combinationof the on-line Oxygen Transfer Rate (OTR measurements in the RAMOS device with anon-line, fiber optical pH measurement is presented. To demonstrate the application of thecombined measurement techniques, Escherichia coli cultivations were performed and on-line pH measurements were compared with off-line samples. The combination of on-lineOTR and pH measurements gives a lot of information about the cultivation and, therefore, itis a powerful technique for monitoring shake flask experiments as well as for processdevelopment.

  1. Development of a unit suitable for corrosion monitoring in district heating systems. Experiences with the LOCOR-cell test method

    DEFF Research Database (Denmark)

    Andersen, Asbjørn; Hilbert, Lisbeth Rischel

    2004-01-01

    A by-pass unit suitable for placement of a number of different probes for corrosion monitoring has been designed. Also measurements of water parameters are allowed in a side stream from the unit. The project is a part of the Nordic Innovation Fund project KORMOF. The by-pass unit has been installed...... in 6 pressurised circulating heating systems and in one cooling system. 7 different corrosion monitoring methods have been used to study corrosion rates and types in dependency of water chemistry. This paper describes the design of the by-pass unit including water analysis methods. It also describes...... the purpose, background and gained results of one of the used monitoring techniques, the crevice corrosion measurements obtained by the LOCOR-Cell„§. The crevice corrosion cell was developed by FORCE Technology in a previous district heating project financed by Nordic Industrial Fund (1)(2). Results from...

  2. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael

    2006-01-01

    culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...... on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...

  3. A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, A M

    2006-01-01

    culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...... on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...

  4. On-line near infrared monitoring of ammonium and dry matter in biosturry for robust biogas production

    DEFF Research Database (Denmark)

    Madsen, Michael; Ihunegbo, Felicia N.; Holm-Nielsen, Jens Bo

    2012-01-01

    was applied on-line in a re-circulating loop configuration operating identically as a full-scale setup. Ammonium could be modelled in the industrially relevant range 2.42 – 8.52 g L-1 with an excellent accuracy and precision, slope ~1.0, r2 = 0.97, corresponding toa relative Root Mean Square Error......Heterogeneous substrates fed into agricultural biogas plants originate from many sources with resulting quality fluctuations potentially inhibiting the process. Biogas yield can be substantially increased by optimisation of the organic dry matter load. In this study, near infrared spectroscopy...

  5. The Atlas Experiment On-Line Monitoring And Filtering As An Example Of Real-Time Application

    Directory of Open Access Journals (Sweden)

    K. Korcyl

    2008-01-01

    Full Text Available The ATLAS detector, recording LHC particles’ interactions, produces events with rate of40 MHz and size of 1.6 MB. The processes with new and interesting physics phenomena arevery rare, thus an efficient on-line filtering system (trigger is necessary. The asynchronouspart of that system relays on few thousands of computing nodes running the filtering software.Applying refined filtering criteria results in increase of processing times what may lead tolack of processing resources installed on CERN site. We propose extension to this part ofthe system based on submission of the real-time filtering tasks into the Grid.

  6. Corrosion of Steel in Concrete – Potential Monitoring and Electrochemical Impedance Spectroscopy during Corrosion Initiation and Propagation

    DEFF Research Database (Denmark)

    Küter, Andre; Mason, Thomas O.; Geiker, Mette Rica

    2005-01-01

    wires. The wires can act as both reference and counter electrode during EIS and, thus, no external electrode is required. The defined geometry solves reproducibility problems involved with application of an external reference electrode for EIS. Changes of the electromotive force (EMF) between rebar...... and titanium wires can be monitored immediately after preparation. The wire arrangement also allows investigation of local changes in the bulk mortar by EIS or by measuring the potential development of the titanium wires versus an external standard electrode. The specimen design was evaluated...... in an investigation on the effect of the steel quality and the steel surface properties on initiation and propagation of chloride-induced reinforcement corrosion. Besides untreated (as received) carbon rebars and stainless rebars, selected surface treatments and galvanization were investigated. The surface treatments...

  7. Data quality assurance in monitoring of wastewater quality: Univariate on-line and off-line methods

    DEFF Research Database (Denmark)

    Alferes, J.; Poirier, P.; Lamaire-Chad, C.

    To make water quality monitoring networks useful for practice, the automation of data collection and data validation still represents an important challenge. Efficient monitoring depends on careful quality control and quality assessment. With a practical orientation a data quality assurance proce...

  8. On-line monitoring the extract process of Fu-fang Shuanghua oral solution using near infrared spectroscopy and different PLS algorithms

    Science.gov (United States)

    Kang, Qian; Ru, Qingguo; Liu, Yan; Xu, Lingyan; Liu, Jia; Wang, Yifei; Zhang, Yewen; Li, Hui; Zhang, Qing; Wu, Qing

    2016-01-01

    An on-line near infrared (NIR) spectroscopy monitoring method with an appropriate multivariate calibration method was developed for the extraction process of Fu-fang Shuanghua oral solution (FSOS). On-line NIR spectra were collected through two fiber optic probes, which were designed to transmit NIR radiation by a 2 mm flange. Partial least squares (PLS), interval PLS (iPLS) and synergy interval PLS (siPLS) algorithms were used comparatively for building the calibration regression models. During the extraction process, the feasibility of NIR spectroscopy was employed to determine the concentrations of chlorogenic acid (CA) content, total phenolic acids contents (TPC), total flavonoids contents (TFC) and soluble solid contents (SSC). High performance liquid chromatography (HPLC), ultraviolet spectrophotometric method (UV) and loss on drying methods were employed as reference methods. Experiment results showed that the performance of siPLS model is the best compared with PLS and iPLS. The calibration models for AC, TPC, TFC and SSC had high values of determination coefficients of (R2) (0.9948, 0.9992, 0.9950 and 0.9832) and low root mean square error of cross validation (RMSECV) (0.0113, 0.0341, 0.1787 and 1.2158), which indicate a good correlation between reference values and NIR predicted values. The overall results show that the on line detection method could be feasible in real application and would be of great value for monitoring the mixed decoction process of FSOS and other Chinese patent medicines.

  9. Development of nuclear power plant monitoring system with neutral network using on-line PWR plant simulator

    International Nuclear Information System (INIS)

    Nabeshima Kunihiko; Suzuki Katsuo; Nose, Shoichi; Kudo, Kazuhiko

    1996-01-01

    The purpose of this paper is to demonstrate a nuclear power plant monitoring system using artificial neural network (ANN). The major advantages of the monitoring system are that a multi-output process system can be modelled using measurement information without establishing any mathematical expressions. The dynamics model of reactor plant was constructed by using three layered auto-associative neural network with backpropagation learning algorithm. The basic idea of anomaly detection method is to monitor the deviation between process signals measured from actual plant and corresponding output signals from the ANN plant model. The simulator used is a self contained system designed for training. Four kinds of simulated malfunction caused by equipment failure during steady state operation were used to evaluate the capability of the neural network monitoring system. The results showed that this monitoring system detected the symptom of small anomaly earlier than the prevailing alarm system. (author). 7 refs, 7 figs, 2 tabs

  10. Development of nuclear power plant monitoring system with neutral network using on-line PWR plant simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kunihiko, Nabeshima; Katsuo, Suzuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Nose, Shoichi; Kudo, Kazuhiko [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-12-31

    The purpose of this paper is to demonstrate a nuclear power plant monitoring system using artificial neural network (ANN). The major advantages of the monitoring system are that a multi-output process system can be modelled using measurement information without establishing any mathematical expressions. The dynamics model of reactor plant was constructed by using three layered auto-associative neural network with backpropagation learning algorithm. The basic idea of anomaly detection method is to monitor the deviation between process signals measured from actual plant and corresponding output signals from the ANN plant model. The simulator used is a self contained system designed for training. Four kinds of simulated malfunction caused by equipment failure during steady state operation were used to evaluate the capability of the neural network monitoring system. The results showed that this monitoring system detected the symptom of small anomaly earlier than the prevailing alarm system. (author). 7 refs, 7 figs, 2 tabs.

  11. On-line monitoring of base current and forward emitter current gain of the voltage regulator's serial pnp transistor in a radiation environment

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2012-01-01

    Full Text Available A method of on-line monitoring of the low-dropout voltage regulator's operation in a radiation environment is developed in this paper. The method had to enable detection of the circuit's degradation during exploitation, without terminating its operation in an ionizing radiation field. Moreover, it had to enable automatic measurement and data collection, as well as the detection of any considerable degradation, well before the monitored voltage regulator's malfunction. The principal parameters of the voltage regulator's operation that were monitored were the serial pnp transistor's base current and the forward emitter current gain. These parameters were procured indirectly, from the data on the voltage regulator's load and quiescent currents. Since the internal consumption current in moderately and heavily loaded devices was used, the quiescent current of a negligibly loaded voltage regulator of the same type served as a reference. Results acquired by on-line monitoring demonstrated marked agreement with the results acquired from examinations of the voltage regulator's maximum output current and minimum dropout voltage in a radiation environment. The results were particularly consistent in tests with heavily loaded devices. Results obtained for moderately loaded voltage regulators and the risks accompanying the application of the presented method, were also analyzed.

  12. The use of computers for chemistry and corrosion monitoring in the nuclear power industry

    International Nuclear Information System (INIS)

    Eber, K.

    1986-01-01

    Corrosion of steam generators in the nuclear power industry has caused increasingly expensive maintenance work during refueling outages. To assist in the control and monitoring of this problem, Northeast Utilities has developed computer programs for tracking steam generator water chemistry and steam generator eddy current inspection data. These programs have allowed detailed analytical studies to be performed which would have been extremely difficult without the use of computers. The paper discusses the capabilities and uses of a chemistry data management system. An example analysis of steam generator chemistry during plant startup is presented. The corrosion monitoring capabilities of several eddy current data analysis programs are also discussed. It is demonstrated how these programs allow a detailed analysis of the effects of a chemical cleaning operation to remove sludge from the steam generators. Applications of these analytical methods to other industries is also discussed

  13. Design and Development of a Relative Humidity and Room Temperature Measurement System with On Line Data Logging Feature for Monitoring the Fermentation Room of Tea Factory

    Directory of Open Access Journals (Sweden)

    Utpal SARMA

    2011-12-01

    Full Text Available The design and development of a Relative Humidity (RH and Room Temperature (RT monitoring system with on line data logging feature for monitoring fermentation room of a tea factory is presented in this paper. A capacitive RH sensor with on chip signal conditioner is taken as RH sensor and a temperature to digital converter (TDC is used for ambient temperature monitoring. An 8051 core microcontroller is the heart of the whole system which reads the digital equivalent of RH data with the help of a 12-bit Analog to Digital (A/D converter and synchronize TDC to get the ambient temperature. The online data logging is achieved with the help of RS-232C communication. Field performance is also studied by installing it in the fermentation room of a tea factory.

  14. Fibre Bragg grating sensors for reinforcement corrosion monitoring in civil engineering structures

    International Nuclear Information System (INIS)

    Grattan, S K T; Basheer, P; Taylor, S E; Zhao, W; Sun, T; Grattan, K T V

    2007-01-01

    Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges, yet are not widely used in civil engineering applications. The use of fibre optic strain sensors (with a cross comparison with the output of electrical resistance gauges) to monitor the production of corrosion by-products in civil engineering concrete structures containing reinforcement bars has been investigated and results reported

  15. Monitoring wear and corrosion in industrial machines and systems: A radiation tool

    International Nuclear Information System (INIS)

    Konstantinov, I.O.; Zatolokin, B.V.

    1994-01-01

    Industrial equipment and machines, transport systems, nuclear and conventional power plants, pipelines, and other materials is substantially influenced by degradation processes such as wear and corrosion. For safety and economic reasons, appropriately monitoring the damage could prevent dangerous accidents. When the surfaces of machine parts under investigation are not easy to reach or are concealed by overlying structures, nuclear methods have become powerful tools for examination. They include X-ray radiography, neutron radiography, and a technique known as thin layer activation (TLA)

  16. A Plan to Develop and Demonstrate Electrochemical Noise Based Corrosion Monitoring Systems in Hanford Site Waste Tanks

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This document describes changes that need to be made to the site's authorization basis and technical concerns that need to be resolved before proceduralized use of Electrochemical Noise based corrosion monitoring systems is fully possible at the Hanford Site

  17. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    Science.gov (United States)

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  18. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and

  19. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    International Nuclear Information System (INIS)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-01-01

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  20. On-line monitoring of extraction process of Flos Lonicerae Japonicae using near infrared spectroscopy combined with synergy interval PLS and genetic algorithm

    Science.gov (United States)

    Yang, Yue; Wang, Lei; Wu, Yongjiang; Liu, Xuesong; Bi, Yuan; Xiao, Wei; Chen, Yong

    2017-07-01

    There is a growing need for the effective on-line process monitoring during the manufacture of traditional Chinese medicine to ensure quality consistency. In this study, the potential of near infrared (NIR) spectroscopy technique to monitor the extraction process of Flos Lonicerae Japonicae was investigated. A new algorithm of synergy interval PLS with genetic algorithm (Si-GA-PLS) was proposed for modeling. Four different PLS models, namely Full-PLS, Si-PLS, GA-PLS, and Si-GA-PLS, were established, and their performances in predicting two quality parameters (viz. total acid and soluble solid contents) were compared. In conclusion, Si-GA-PLS model got the best results due to the combination of superiority of Si-PLS and GA. For Si-GA-PLS, the determination coefficient (Rp2) and root-mean-square error for the prediction set (RMSEP) were 0.9561 and 147.6544 μg/ml for total acid, 0.9062 and 0.1078% for soluble solid contents, correspondingly. The overall results demonstrated that the NIR spectroscopy technique combined with Si-GA-PLS calibration is a reliable and non-destructive alternative method for on-line monitoring of the extraction process of TCM on the production scale.

  1. Development of a magnetic resonance sensor for on-line monitoring of 99Tc and 23Na in tank waste cleanup processes: Final report and implementation plan

    International Nuclear Information System (INIS)

    Dieckman, S. L.; Jendrzejczyk, J. A.; Raptis, A. C.

    2000-01-01

    In response to US Department of Energy (DOE) requirements for advanced cross-cutting technologies, Argonne National Laboratory is developing an on-line sensor system for the real-time monitoring of 99 Tc and 23 Na in various locations throughout radioactive-waste processing facilities. Based on nuclear magnetic resonance spectroscopy, the highly automated sensor system can provide near-real-time response with minimal sampling. The technology, in the form of a flow-through nuclear-magnetic-resonance-based on-line process sensing and control system, can rapidly monitor 99 Tc speciation and concentration (from 0.1 molar to 10 micro molar) in the feedstocks and eluents of radioactive-waste treatment processes. The system is nonintrusive, capable of withstanding harsh plant environments, and reasonably immune to contaminants. Furthermore, the system is capable of operating over large variations in pH, conductivity, and salinity. This document describes design parameters, results from sensitivity studies, and initial results obtained from oxidation-reduction studies that were conducted on technetium standards and waste specimens obtained from DOE's Hanford site. A cursory investigation of the system's capabilities to monitor 23 Na at high concentrations are also reported, as are descriptions of site requirements, implementation recommendations, and testing techniques

  2. Experiences with non-intrusive monitoring of distribution transformers based on the on-line frequency response

    Directory of Open Access Journals (Sweden)

    Eduardo Gomez Luna

    2015-01-01

    Full Text Available The following article presents the results obtained in experiences that use the Impulse Frequency Response Analysis (IFRA method with a transformer in service. The IFRA method has been implemented in order to transform the transient signals to the frequency domain using Discrete Fourier Transform (DFT. However, it can be considered that the DFT is not the most suitable tool for this type of analysis, since, by definition, this tool is useful for processing stationary signals. Taking that into consideration, the analysis of transient signals could be hypothetically improved by using continuous wavelet transform (CWT, given their variable time/frequency resolution. The analysis of transient signals in Wavelet domain has improved the repeatability of the frequency response curves, as it has been ob-served in experimental results. The proposed on-line IFRA method, based on Wavelet transform, was validated under load and no-load conditions on a 150 kVA three-phase transformer 13200/225 Volts, in the Campus of the Universidad del Valle, Cali, Colombia.

  3. Surface quality monitoring for process control by on-line vibration analysis using an adaptive spline wavelet algorithm

    Science.gov (United States)

    Luo, G. Y.; Osypiw, D.; Irle, M.

    2003-05-01

    The dynamic behaviour of wood machining processes affects the surface finish quality of machined workpieces. In order to meet the requirements of increased production efficiency and improved product quality, surface quality information is needed for enhanced process control. However, current methods using high price devices or sophisticated designs, may not be suitable for industrial real-time application. This paper presents a novel approach of surface quality evaluation by on-line vibration analysis using an adaptive spline wavelet algorithm, which is based on the excellent time-frequency localization of B-spline wavelets. A series of experiments have been performed to extract the feature, which is the correlation between the relevant frequency band(s) of vibration with the change of the amplitude and the surface quality. The graphs of the experimental results demonstrate that the change of the amplitude in the selective frequency bands with variable resolution (linear and non-linear) reflects the quality of surface finish, and the root sum square of wavelet power spectrum is a good indication of surface quality. Thus, surface quality can be estimated and quantified at an average level in real time. The results can be used to regulate and optimize the machine's feed speed, maintaining a constant spindle motor speed during cutting. This will lead to higher level control and machining rates while keeping dimensional integrity and surface finish within specification.

  4. Investigation of monitoring technologies for heat transfer corrosion in reprocessing equipment

    International Nuclear Information System (INIS)

    Tsukatani, I.; Kiuchi, K.

    2004-01-01

    Two types of in-situ monitoring techniques using electrical resistance methods were developed for estimating the wall thinning of heat transfer tubes used in evaporators for Purex process on commercial reprocessing plants. The corrosion rate is accelerated with oxidizer ions formed by the thermal decomposition of nitric acid under heat flux. An in-situ corrosion sensor was developed for estimating the corrosion rate of heat transfer tubes using miniature heat transfer tube specimens under heat flux control. It is possible to simulate the heating condition as same as heat transfer tubes. The applicability was evaluated by setting it in gas-liquid separator in a mock-up evaporator for acid recovery. The sensitivity of electric resistance methods is increased with decreasing the residual thickness of probe tube. The other is the electrical potential drop method using direct current so-called the field signature method. It is applicable to estimate the corrosiveness of reprocessing nitric acid by setting it on the drain tube in evaporator. The sensitivity to the thinning rate of tubes wall machined artificially was obtained within ±10% to the wall thickness. It has the non-sensitive region nearly 0.1mm up to begin working. The practical applicability has been also evaluated by setting it in a mock-up evaporator. (author)

  5. PBL on Line: A Proposal for the Organization, Part-Time Monitoring and Assessment of PBL Group Activities

    Science.gov (United States)

    Marti, Enric; Gil, Debora; Gurguí, Antoni; Hernández-Sabaté, Aura; Rocarías, Jaume; Poveda, Ferran

    2015-01-01

    This report presents the organisation of PBL (Project Based Learning) for a subject included in the IT engineering degree course. It is the result of 10 years of experience of the implantation and continuous improvement of the PBL class structure. The latest innovations include the experience of part-time monitoring with PBL groups using the Open…

  6. Desgin of On-line Monitoring Device for MOA (Metal Oxide Arrestor Based on FPGA and C8051F

    Directory of Open Access Journals (Sweden)

    Xiaotong YAO

    2014-10-01

    Full Text Available Monitoring of metal oxide surge arresters (MOA due to aging, moisture and other components cause increased resistive current. Through a lot of practices, it has been proved that in the early days, MOA insulation damage and current increase is not obvious. The accurate working conditions of the MOA are also not obvious but it can reflect the aging or moisture of MOA. When the resistive current of the fundamental component increases, there is no increment in the harmonic components that is the general performance of a serious or moisture contamination. In the same way when the resistive current of harmonic components increases, the fundamental component is not increased and it is the general performance of aging. Therefore, this paper designed an experiment-based FPGA and C8051F-line monitoring device. This device uses resistive current as a detection target. The main monitoring parameters are the fundamental and peak value of resistive current, third harmonic content of the leakage current, phase angle difference and power consumption. Through laboratory tests, the device can be used with a network arrester line monitoring, maintenance, reduce the economic losses caused by power outages and improve the distribution network reliability.

  7. Air quality monitoring in the Bow Corridor : final report December 1999 to August 2001. On-line ed.

    International Nuclear Information System (INIS)

    2001-01-01

    Alberta Environment monitored the air quality of the Bow Corridor and the Cochrane area from December 1999 to August 2001 in an effort to address recent concerns about particulate emissions from industrial, natural and domestic sources as well as concerns about air pollution from traffic along Highway 1 and in communities in the corridor. The Mobile Air Monitoring Laboratory (MAML) monitored air quality at 22 sites in the Cochrane, Exshaw, Canmore and Banff areas. The work included monitoring for sulphur dioxide, particulates, oxides of nitrogen, ozone, hydrocarbons, carbon monoxide, hydrogen sulphide and ammonia using continuous analyzers. In addition, a stationary particulate sampler was used to monitor very small, respirable particulates (PM2.5) as well as larger, inhalable particulates (PM10). Weather parameters such as wind, temperature and relative humidity were also monitored. A passive (no power required) air quality monitoring network was also set up to collect monthly samples of sulphur dioxide at 7 sites and nitrogen dioxide and ozone at 11 different sites. The pollutant levels were compared with air quality levels to Alberta's Ambient Air Quality Guidelines which are some of the most stringent in North America. Maximum one-hour concentrations were : 53 per cent of the one-hour guideline for sulphur dioxide; 15 per cent of the one-hour guideline for nitrogen dioxide; 68 per cent of the one-hour guideline for ozone; 8 per cent of the one-hour guideline for carbon monoxide; 20 per cent of the one-hour guideline for hydrogen sulphide; and 2 per cent of the one-hour guideline for ammonia. These air quality levels were compared to other locations in Alberta. The sources of airborne particulates were wind-blown dust from natural sources, limestone mining operations, manufacturing plants (cement, lime and magnesia), vehicle exhaust from local traffic and Highway 1, and smoke from recreational burning and forest fires. The sources of oxides of nitrogen are

  8. Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sarraguca, Mafalda C.; Lopes, Joao A. [Universidade do Porto, REQUIMTE, Servico de Quimica-Fisica, Faculdade de Farmacia, Porto (Portugal); Paulo, Ana; Alves, Madalena M.; Dias, Ana M.A.; Ferreira, Eugenio C. [Universidade do Minho, IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Braga (Portugal)

    2009-10-15

    The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO{sub 3}{sup -}), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of {proportional_to}25% and correlation coefficients of {proportional_to}0.82 for COD and TSS and 0.87 for N-NO{sub 3}{sup -}. The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification. (orig.)

  9. Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy.

    Science.gov (United States)

    Sarraguça, Mafalda C; Paulo, Ana; Alves, Madalena M; Dias, Ana M A; Lopes, João A; Ferreira, Eugénio C

    2009-10-01

    The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO(3)(-)), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of approximately 25% and correlation coefficients of approximately 0.82 for COD and TSS and 0.87 for N-NO(3)(-) . The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification.

  10. Corrosion monitoring of the AA2024 alloy in NaCl solutions by electrochemical noise measurements

    International Nuclear Information System (INIS)

    Aballe, A.; Bethencourt, M.; Botana, F.J.; Marcos, M.; Rodriguez-Chacon, M.A.

    1998-01-01

    The behaviour of the AA2024 alloy against corrosion in 3.5% NaCl solution has been monitored. In this environment the alloy can be easily damaged under small anodic polarizations. Linear Polarization, electrochemical impedance, spectroscopy and electrochemical noise measurement have been used as experimental techniques. Data from ENM have been analyzed using statistical parameters and Chaos Theory. The results here obtained suggest that ENM is particularly useful to monitored systems that can be modified using other electrochemical techniques. (Author) 11 refs

  11. Concrete and corrosion monitoring during the 2nd supercontainer half-scale test

    International Nuclear Information System (INIS)

    Areias, L.; Troullinous, I.; Verstricht, J.; Iliopoulos, S.; Pyl, L.; Voet, E.; Van Ingelgem, Y.; Kursten, B.; Craeye, B.; Coppens, E.; Van Marcke, P.

    2015-01-01

    The Super-container (SC) is a reference design concept for the packaging of spent fuel (SF) and vitrified high-level radioactive waste (HLW). The SC conceptual design is based on a multiple barrier system consisting of an outer stainless steel envelope, a concrete buffer and a water-tight carbon steel overpack containing one or more waste canisters. The experimental test described in this paper uses a so called 'half-scale' model of the SC. A metal container containing an electrical heat source is used to simulate the heat-emitting waste of a real overpack. A total of 182 sensors have been installed to monitor the half-scale model. The majority of the sensors are embedded in the concrete materials, while a limited number of them are installed around the outside of the structure to measure the ambient temperature, relative humidity and air velocity. The instrumentation included the use of fibre optics to measure both distributed as well as semi-distributed temperature and strain in the three orthogonal directions, Digital Image Correlation (DIC) and Acoustic Emission (AE) to monitor microcrack initiation and evolution, and a new PermaZEN corrosion sensor to measure the active corrosion of the carbon steel overpack. The combined results of DIC and AE monitoring have enabled the detection and measurement of surface movement, captured the onset of micro crack formation and its propagation, and measured the displacement and strain fields at different levels across the height of the half-scale test as a function of time. In particular, the DIC measurements clearly identified the appearance of the first micro cracks formed on the concrete surface of the buffer with a crack width resolution of approximately 13 microns. The results of a laboratory test performed with the corrosion sensor show a rapid onset of corrosion at the beginning of the test followed by an equally rapid decrease in corrosion after only a few days of testing. The measured corrosion rates

  12. Thin layer activation: measuring wear and corrosion

    International Nuclear Information System (INIS)

    Delvigne, T.; Leyman, D.; Oxorn, K.

    1995-01-01

    The technique known as thin layer activation (TLA) is explained and assessed in this article. Widely used, in for example the automotive industry, TLA allows on-line monitoring of the loss of matter from a critical surface, by wear erosion and corrosion. The technique offers extremely high sensitivity thus leading to reduced test times. On-line wear phenomena can be assessed during operation of a mechanical process, even through thick engine walls. (UK)

  13. Development of a method of absorbed dose on-line monitoring at product processing by scanned electron beam

    International Nuclear Information System (INIS)

    Pomatsalyuk, R.I.; Shevchenko, V.A.; Tenishev, A.Eh.; Titov, D.V.; Uvarov, V.L.

    2016-01-01

    The conditions of the contact-free absorbed dose monitoring at industrial product processing by electron beam are investigated. The method is based on analysing the collected charge in a stack monitor (SM) mounted down-stream of irradiated object. Using computer simulation on the basis of a modified transport code PENELOPE-2008, it is shown that by placing a filter of low-energy electrons before SM it is possible to obtain the one-to-one correlation dependence between the monitor charge and absorbed energy of radiation in the processed object. At a certain surface density of the filter, this dependence takes on the form similar to linear. The possibility to use an air gap between the object and SM as such a filter has been demonstrated. For the conditions of radiation plant with an electron accelerator LU-10 of NSC KIPT, the optimum distance of the SM location has been established. For the practical range of the electron energy, beam scan width and surface density of the irradiated product, the constants of ''product absorbed energy-to- SM charge '' linear dependence have been determined. The capability to establish the average absorbed dose in the object moving trough the irradiation zone on the SM current is shown. The calculation data are in satisfactory agreement with the results of measurements.

  14. Optimization and verification of image reconstruction for a Compton camera towards application as an on-line monitor for particle therapy

    Science.gov (United States)

    Taya, T.; Kataoka, J.; Kishimoto, A.; Tagawa, L.; Mochizuki, S.; Toshito, T.; Kimura, M.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.

    2017-07-01

    Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ~ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.

  15. Simulation and System Analysis of Flow Pulsation at Normal and Emergency for Advanced On-line Monitoring and Control of NPP

    International Nuclear Information System (INIS)

    Proskouriakov, K.N.; Moukhine, V.S.

    2002-01-01

    In addition to investigation of thermal-hydraulic processes on NPP with use of computer codes the new system analysis of flow pulsation is worked out. System analysis shows that properties of heat rejection circuits of NPP as oscillatory system are not equal the sum of properties of its separate elements but gives the new properties which must be taken into account. Methods have been worked out for calculating and identifying the sources of thermal-hydraulic disturbances are intended to improve the means of early diagnostics of anomalies in the technological process, to forecast their development, to improve the efficiency of overhauling operations and safety in operation, and also to create advanced on-line monitoring and control of NPP. Conception of the control system development presents. Proposal for main topics R and D areas for advanced NPP monitoring, diagnostic and control are identified. (authors)

  16. Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    L. J. Bond; S. R. Doctor; R. W. Gilbert; D. B. Jarrell; F. L. Greitzer; R. J. Meador

    2000-09-01

    OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities.

  17. Development of signal processing electronics for self powered neutron detector signal with built-in on-line insulation monitoring [Paper No.:E3

    International Nuclear Information System (INIS)

    Das, Amitabha; Chaganty, S.P.

    1993-01-01

    Self powered neutron detectors (SPNDs) are employed to monitor in-core neutron flux in nuclear reactors for control, safety and mapping of in-core neutron flux. The d.c. current produced by SPND is converted into a proportional d.c. voltage, which in turn is used for various purposes stated above. This paper describes various features of the SPND amplifier developed in the Electronics Division of Bhabha Atomic Research Centre (BARC). It also outlines the principle of working of on-line monitoring of insulation resistance (IR) of the detector and associated mineral insulated (MI) and soft cables. The amplifier generates an alarm in case of the IR of the detector and the cable assembly falls below an accepted value or the cable is not connected to the amplifier and relieves the operator from periodic and manual checking of each of the individual detectors and ensures the validity of the signal for further processing. (author). 3 figs

  18. Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report

    International Nuclear Information System (INIS)

    Bond, L.G.; Doctor, S.R.; Gilbert, R.W.; Jarrell, D.B.; Greitzer, F.L.; Meador, R.J.

    2000-01-01

    OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities

  19. Monitoring on-line system for the lactic fermentation measurement using the integration enzyme sensor; Shusekika koso sensa wo mochiita nyusan hakko keisokuyo onrain monitringu shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayasu; Kumagaya, Tsuyoshi; Nakajima, Yoichi [Kyushu Institute of Technology, Fukuoka (Japan)

    1999-04-05

    The monitoring on-line system for the lactic fermentation measurement in which the simultaneous measurement of the substrate. Generation was possible was constructed without consuming the culture medium by using soliciting small enzyme sensor and flow injection analysis system integrate. There was the linearity that anyway was also range of concentration of 70mM or less and that it is good on the calibration curve of minute glucose, lactose, and lactic acid sensor. It became clear that it proved that all range of concentration of the substrate of these three which combining with the micro diary system, breaks in the lactic fermentation measurement with the necessity can be measured and not observe the interference by medium components, etc. either. Constructed monitoring on-line system is Lactobacillus delbrueckii and, it was applied to the lactic fermentation process of Lactobacillus lactis. Through the fermentation process for 24 hours, simultaneous measurement of glucose (or lactose) and lactic acid is possible. The measured value agreed well with the result of colorimetric method using the enzyme. (translated by NEDO)

  20. A low cost mid-infrared sensor for on line contamination monitoring of lubricating oils in marine engines

    Science.gov (United States)

    Ben Mohammadi, L.; Kullmann, F.; Holzki, M.; Sigloch, S.; Klotzbuecher, T.; Spiesen, J.; Tommingas, T.; Weismann, P.; Kimber, G.

    2010-04-01

    The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough- cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.

  1. Magnetic field effects on spectrally resolved lifetime of on-line oxygen monitoring using magneto-optic probes

    Science.gov (United States)

    Mermut, O.; Gallant, P.; Le Bouch, N.; Leclair, S.; Noiseux, I.; Vernon, M.; Morin, J.-F.; Diamond, K.; Patterson, M. S.; Samkoe, K.; Pogue, B.

    2009-02-01

    Multimodal agents that serve as both probes for contrast and light-activated effectors of cellular processes in diseased tissue were developed. These agents were introduced into multicellular tumor spheroids (3D tissue models) and in the chorioallantoic membrane (CAM) of a chicken embryo. The luminescence decay was examined using a novel technique involving a spectrally-resolved fluorescence lifetime apparatus integrated with a weak electromagnet. A spectrallyresolved lifetime setup was used to identify magneto-optic species sensitive to magnetic field effects and distinguish from background emissions. We demonstrate that the applied magnetic fields can alter reaction rates and product distribution of some dyes detected by time- and spectrally-resolved luminescence changes. We will discuss the use of exogenous magneto-optical probes taken up in tumors to both induce phototoxicity, a process that is governed by complex and dynamically evolving mechanisms involving reactive oxygen species, and monitor treatment progress. The magnetic field enhancement, measured over a range of weak fields (0-300 mT) is correlated to oxygenation and may be used to monitor dynamic changes occurring due to oxygen consumption over the course of photodynamic therapy. Such online measurements provide the possibility to derive real-time information about response to treatment via monitoring magnetic field enhancement/suppression of the time-resolved, spectrally-resolved luminescence of the probe at the site of the treatment directly. Magnetic perturbation of lifetime can serve as a status reporter, providing optical feedback of oxygen-mediated treatments in situ and allowing for real-time adjustment of a phototherapy treatment plan.

  2. On-Line Condition Monitoring System for High Level Trip Water in Steam Boiler’s Drum

    Directory of Open Access Journals (Sweden)

    Ismail Alnaimi Firas B.

    2014-07-01

    Full Text Available This paper presents a monitoring technique using Artificial Neural Networks (ANN with four different training algorithms for high level water in steam boiler’s drum. Four Back-Propagations neural networks multidimensional minimization algorithms have been utilized. Real time data were recorded from power plant located in Malaysia. The developed relevant variables were selected based on a combination of theory, experience and execution phases of the model. The Root Mean Square (RMS Error has been used to compare the results of one and two hidden layer (1HL, (2HL ANN structures

  3. On-line coupling of a miniaturized bioreactor with capillary electrophoresis, via a membrane interface, for monitoring the production of organic acids by microorganisms.

    Science.gov (United States)

    Ehala, S; Vassiljeva, I; Kuldvee, R; Vilu, R; Kaljurand, M

    2001-09-01

    Capillary electrophoresis (CE) can be a valuable tool for on-line monitoring of bioprocesses. Production of organic acids by phosphorus-solubilizing bacteria and fermentation of UHT milk were monitored and controlled by use of a membrane-interfaced dialysis device and a home-made microsampler for a capillary electrophoresis unit. Use of this specially designed sampling device enabled rapid consecutive injections without interruption of the high voltage. No additional sample preparation was required. The time resolution of monitoring in this particular work was approximately 2 h, but could be reduced to 2 min. Analytes were detected at low microg mL(-1) levels with a reproducibility of approximately 10%. To demonstrate the potential of CE in processes of biotechnological interest, results from monitoring phosphate solubilization by bacteria were submitted to qualitative and quantitative analysis. Fermentation experiments on UHT milk showed that monitoring of the processes by CE can provide good resolution of complex mixtures, although for more specific, detailed characterization the identification of individual substances is needed.

  4. Preliminary Characterization Tests of Detectors of on-Line Monitor Systems of the Italian National Center of Oncological Hadron-Therapy (CNAO

    Directory of Open Access Journals (Sweden)

    Abdolkazem Ansarinejad

    2013-03-01

    Full Text Available Introduction Hadron-therapy is an effective technique used to treat tumors that are located between or nearby vital organs. The Italian National Center of Oncological Hadron-therapy (CNAO has been realized as the first facility in Italy to treat very difficult tumors with protons and Carbon ions. The on-line monitor system for CNAO has been developed by the Department of Physics of the University of Torino and Italian National Institute of Nuclear Physics (INFN. The monitoring system performs the on-line checking of the beam intensity, dimension, and beam position. Materials and Methods The monitor system is based on parallel plate ionization chambers and is composed of five ionization chambers with the anodes fully integrated or segmented in pixels or strips that are placed in two boxes. A series of measurements were performed that involve the background current and the detectors have been characterized by means of a series of preliminary testes in order to verify reproducibility and uniformity of the chambers using an X-ray source. Results The measured background currents for StripX, StripY and Pixel chambers are five orders of magnitude smaller than the nominal treatment current. The reproducibility error of chambers is less than 1%. The analysis of the uniformity showed that the monitor devices have a spread in gain that varies, but only about 2%. Conclusion The reproducibility and the uniformity values are considered as a good result, taking into account that the X-ray energy range is several orders of magnitude smaller than the particle energies used at CNAO.

  5. Inhibitor selection for internal corrosion control of pipelines: experience with field monitoring and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Demoz, A.; Michaelian, K.H.; Donini, J. [Natural Resources Canada, CANMET Western Research Centre, Devon, AB (Canada); Papavinasam, S.; Revie, R.W. [Natural Resources Canada, CANMET Materials Technology Laboratory, Ottawa, ON (Canada)

    1999-07-01

    A loop of pipe consisting of pipe segments of 3 inches, 6 inches and 10 inches that could take the full flow of a production well was designed, constructed and put in-line close to a wellhead. The loop was able to simulate multiphase pipelines and had ports for coupons, some of which were used for electrochemical monitoring. Various techniques including electrochemical impedance spectroscopy (EIS), electrochemical noise (ECN), and linear polarization resistance (LPR) were employed, all of which gave corrosion rates that depended on the position of the coupons inside the loop (increasing from top to bottom, reflecting the media and flow to which coupons were exposed in a multiphase producing well). Results indicated that the general corrosion rates obtained were dependent on the method used for measurement, but following the relative trend of LPR>weight loss>EIS>ECN. 20 refs., 8 figs.

  6. On-line monitoring of Escherichia coli in raw water at Oset drinking water treatment plant, Oslo (Norway).

    Science.gov (United States)

    Tryland, Ingun; Eregno, Fasil Ejigu; Braathen, Henrik; Khalaf, Goran; Sjølander, Ingrid; Fossum, Marie

    2015-02-04

    The fully automated Colifast ALARM™ has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources.

  7. On-Line Monitoring of Escherichia coli in Raw Water at Oset Drinking Water Treatment Plant, Oslo (Norway

    Directory of Open Access Journals (Sweden)

    Ingun Tryland

    2015-02-01

    Full Text Available The fully automated Colifast ALARMTM has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources.

  8. A practical technique for on-line monitoring of a photovoltaic plant connected to a single-phase grid

    International Nuclear Information System (INIS)

    Yahyaoui, Imene; Segatto, Marcelo E.V.

    2017-01-01

    Highlights: • Automatic detection of main faults in PV systems is presented and tested. • Specific indicators detect bypass module, open-circuit string and partial shading. • The strategy efficiency is validated by experiments for two days. • The strategy allows the number of faulty PV modules and strings to be determined. • The method is effective and minimizes the use of sensors in the monitoring system. - Abstract: Improving the reliability and enhancing the performance of photovoltaic (PV) plants are important objectives that increase the competitiveness of the PV systems, especially for grid connected PV plants, for which, every kilowatt-hour is crucial, since only kilowatt-hours that are fed into the grid are remunerated. Therefore, monitoring and automatic faults detection during the PV panels operation are necessary to ensure the optimal use of the energy generated by the PV plant, and to provide a reliable power supply. In this research paper, two current and voltage indicators are used to analyze and to distinguish, in real-time, the faults related to bypassed PV modules, open-circuits strings and partial shading for a PV plant connected to a single-phase grid. Moreover, the presented strategy allows determining the total number of faulty PV modules and/or strings. The efficiencies of these indicators are tested by experiments, using a Control and Data Acquisition System, which proved the effectiveness of the proposed approach.

  9. Application of AE technique for on-line monitoring of quenching in racetrack superconducting coil at cryogenic environment

    International Nuclear Information System (INIS)

    Lee, Jun Hyun; Lee, Min Rae; Shon, Myung Hwan; Kwon, Young Kil

    1998-01-01

    An acoustic emission(AE) technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2 K. The ultimate goal is to ensure the safety and reliability of large superconducting magnet systems by being able to identity and locate the sources of quench in superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current. It was found in this study that there was good correlation between quench current and AE parameters. The source location of quenching in superconducting magnet was also discussed on the hashing of correlation between magnet voltage and AE energy.

  10. On-Line Enrichment Monitor (OLEM) Phase II Final Report Techniques and Equipment for Safeguards at Gas Centrifuge Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Younkin, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garner, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    Over the last five years, OLEM has been a collaborative development effort involving the IAEA, LANL, ORNL, URENCO, and the NNSA. The collective team has completed the following: design and modelling, software development, hardware integration, testing with the ORNL UF6 Flow Loop, a field trial at the Urenco facility in Almelo, the Netherlands, and a Demonstration at the Urenco USA facility in Eunice, New Mexico. This combined effort culminated in the deployment of several OLEM collection nodes in Iran. These OLEM units are one unattended monitoring system component of the Joint Comprehensive Plan of Action allowing the International Atomic Energy Agency to verify Iran’s compliance with the enrichment production aspects of the agreement.

  11. Atmospheric corrosion Monitoring with Time-of-Wetness (TOW) sensor and Thin Film Electric Resistance (TFER) sensor

    International Nuclear Information System (INIS)

    Jung, Sung Won; Kim, Young Geun; Song, Hong Seok; Lee, Seung Min; Kho, Young Tai

    2002-01-01

    In this study, TOW sensor was fabricated with the same P. J. Serada's in NRC and was evaluated according to pollutant amount and wet/dry cycle. Laboratorily fabricated thin film electric resistance (TFER) probes were applied in same environment for the measurement of corrosion rate for feasibility. TOW sensor could not differentiate the wet and dry time especially at polluted environment like 3.5% NaCl solution. This implies that wet/dry time monitoring by means of TOW sensor need careful application on various environment. TFER sensor could produce instant atmospheric corrosion rate regardless of environment condition. And corrosion rate obtained by TFER sensor could be differentiated according to wet/dry cycle, wet/dry cycle time variation and solution chemistry. Corrosion behaviors of TFER sensor showed that corrosion could proceed even after wet cycle because of remained electrolyte at the surface

  12. Remote erosion and corrosion monitoring of subsea pipelines using acoustic telemetry and wet-mate connector technology

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Howard; Barlow, Stewart [Teledyne ODI, Thousand Oaks, CA (United States); Clarke, Daniel [Teledyne Cormon, Thousand Oaks, CA (United States); Green, Dale [Teledyne Benthos, North Falmouth, MA (United States)

    2009-07-01

    This paper will present a novel approach for monitoring erosion and corrosion using proven sub sea technologies: intrusive erosion and corrosion monitoring, acoustic telemetry and wet-mateable connector technology. Intrusive metal loss based monitoring systems on sub sea pipelines are increasingly being used because of their ability to directly measure erosion and corrosion. These systems are integrated with the sub sea production control system or located close to the platform and hard-wired. However, locations remote from a sub sea control system or platform requires a dedicated communication system and long lengths of cable that can be cost prohibitive to procure and install. The system presented consists of an intrusive erosion or corrosion monitor with pressure and temperature transmitters, a retrievable electronics module with an acoustic modem, a data storage module, and a replaceable power module. Time-stamped erosion and corrosion data can be transmitted via an acoustic link to a surface platform, a vessel of opportunity or to a relaying modem. Acoustic signals can be transmitted up to 6 km from the monitoring location. The power module along with data module and acoustic modem are mounted on the erosion and corrosion module using wet-mateable connectors, allowing retrieval by remotely operated vehicles. The collected data can be used to assess the cumulative erosion and corrosion as well as use the real-time metal loss rate data to correlate with operational parameters. Benefits include optimization of corrosion inhibitor dosage rates, mitigation of damage caused by solids production, and increased flow assurance. (author)

  13. Corrosion control in electric power plants

    International Nuclear Information System (INIS)

    Syrett, B.C.

    1992-01-01

    This paper reports that corrosion of components in power plants costs the US electric power utility industry billions of dollars each year. Through the Electric Power Research Institute's (EPRI) research and development, several approaches have been developed to reduce these huge costs. They include improved materials selection procedures, coatings, cathodic protection, inhibitors, removal of aggressive species from the environment, and on-line corrosion monitoring. In addition, as part of an on-going technology transfer effort, EPRI is developing databases and expert systems that will help utilities obtain corrosion information and guide them in materials selection and failure analysis

  14. A Study on Structured Simulation Framework for Design and Evaluation of Human-Machine Interface System -Application for On-line Risk Monitoring for PWR Nuclear Power Plant-

    International Nuclear Information System (INIS)

    Zhan, J.; Yang, M.; Li, S.C.; Peng, M.J.; Yan, S.Y.; Zhang, Z.J.

    2006-01-01

    The operators in the main control room of Nuclear Power Plant (NPP) need to monitor plant condition through operation panels and understand the system problems by their experiences and skills. It is a very hard work because even a single fault will cause a large number of plant parameters abnormal and operators are required to perform trouble-shooting actions in a short time interval. It will bring potential risks if operators misunderstand the system problems or make a commission error to manipulate an irrelevant switch with their current operation. This study aims at developing an on-line risk monitoring technique based on Multilevel Flow Models (MFM) for monitoring and predicting potential risks in current plant condition by calculating plant reliability. The proposed technique can be also used for navigating operators by estimating the influence of their operations on plant condition before they take an action that will be necessary in plant operation, and therefore, can reduce human errors. This paper describes the risk monitoring technique and illustrates its application by a Steam Generator Tube Rupture (SGTR) accident in a 2-loop Pressurized Water Reactor (PWR) Marine Nuclear Power Plant (MNPP). (authors)

  15. Monitoring tumor motion with on-line mega-voltage cone-beam computed tomography imaging in a cine mode

    International Nuclear Information System (INIS)

    Reitz, Bodo; Gayou, Olivier; Parda, David S; Miften, Moyed

    2008-01-01

    Accurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes. In this work, the feasibility of using the MV-CBCT raw data as a fluoroscopic series of portal images to monitor tumor changes due to e.g. respiratory motion was investigated. A method was developed to read and convert the CB raw data into a cine. To improve the contrast-to-noise ratio on the MV-CB projection data, image post-processing with filtering techniques was investigated. Volumes of interest from the planning CT were projected onto the MV-cine. Because of the small exposure and the varying thickness of the patient depending on the projection angle, soft-tissue contrast was limited. Tumor visibility as a function of tumor size and projection angle was studied. The method was well suited in the upper chest, where motion of the tumor as well as of the diaphragm could be clearly seen. In the cases of patients with non-small cell lung cancer with medium or large tumor masses, we verified that the tumor mass was always located within the PTV despite respiratory motion. However for small tumors the method is less applicable, because the visibility of those targets becomes marginal. Evaluation of motion in non-superior-inferior directions might also be limited for small tumor masses. Viewing MV-CBCT data in a cine mode adds to the utility of MV-CBCT for verification of tumor motion and for deriving individualized treatment margins

  16. On-line near-infrared spectroscopy optimizing and monitoring biotransformation process of γ-aminobutyric acid

    Directory of Open Access Journals (Sweden)

    Guoyu Ding

    2016-06-01

    Full Text Available Near-infrared spectroscopy (NIRS with its fast and nondestructive advantages can be qualified for the real-time quantitative analysis. This paper demonstrates that NIRS combined with partial least squares (PLS regression can be used as a rapid analytical method to simultaneously quantify l-glutamic acid (l-Glu and γ-aminobutyric acid (GABA in a biotransformation process and to guide the optimization of production conditions when the merits of NIRS are combined with response surface methodology. The high performance liquid chromatography (HPLC reference analysis was performed by the o-phthaldialdehyde pre-column derivatization. NIRS measurements of two batches of 141 samples were firstly analyzed by PLS with several spectral pre-processing methods. Compared with those of the HPLC reference analysis, the resulting determination coefficients (R2, root mean square error of prediction (RMSEP and residual predictive deviation (RPD of the external validation for the l-Glu concentration were 99.5%, 1.62 g/L, and 11.3, respectively. For the GABA concentration, R2, RMSEP, and RPD were 99.8%, 4.00 g/L, and 16.4, respectively. This NIRS model was then used to optimize the biotransformation process through a Box-Behnken experimental design. Under the optimal conditions without pH adjustment, 200 g/L l-Glu could be catalyzed by 7148 U/L glutamate decarboxylase (GAD to GABA, reaching 99% conversion at the fifth hour. NIRS analysis provided timely information on the conversion from l-Glu to GABA. The results suggest that the NIRS model can not only be used for the routine profiling of enzymatic conversion, providing a simple and effective method of monitoring the biotransformation process of GABA, but also be considered to be an optimal tool to guide the optimization of production conditions.

  17. TANK 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

    International Nuclear Information System (INIS)

    TAYLOR T; HAGENSEN A; KIRCH NW

    2008-01-01

    During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency

  18. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...

  19. Autoadaptive Emailtest AZ90 for corrosion monitoring of glass-lined reactors

    International Nuclear Information System (INIS)

    Jean-Marie, H.

    1993-01-01

    In the Chemical and Pharmaceutical Industry, glass-lined vessels often contain very corrosive and harmful products. To prevent major problems such as batch contamination, leakages or explosions, it is important to detect as soon as possible a failure of the glass-lining. The well-known electrolytic method of detection has been improved by using a permanent comparison of a reference current passing between these electrodes and a defect in the glass-lining. This is made possible with the microprocessorized glass-guard to detect a leak rate independent of the product conductivity, to be self monitoring and to give an evaluation of the conductivity

  20. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    Science.gov (United States)

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. An on-line actinide-in-air monitor to operate at concentrations below 0.1 ICRP MPCsub(a)

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1985-11-01

    A prototype on-line actinide-in-air monitoring system has been built which has sufficient sensitivity to determine average concentrations as low as 0.04 dpm m -3 (8 x 10 -3 ICRP MPCsub(a)) over an 8 h shift. Routine measurements at 0.3 dmp m -3 (0.075 ICRP MPCsub(a)) can be made with a probability of < 1% per shift of a false alarm, even in the presence of unusually large concentrations of radon daughter products. The system uses a combination of inertial particle size separation, alpha energy discrimination and isotope decay analysis to achieve this performance, which is between 10 and 100 times better than commercially available equipment. (U.K.)

  2. Combined micro-droplet and thin-film-assisted pre-concentration of lead traces for on-line monitoring using anodic stripping voltammetry.

    Science.gov (United States)

    Belostotsky, Inessa; Gridin, Vladimir V; Schechter, Israel; Yarnitzky, Chaim N

    2003-02-01

    An improved analytical method for airborne lead traces is reported. It is based on using a Venturi scrubber sampling device for simultaneous thin-film stripping and droplet entrapment of aerosol influxes. At least threefold enhancement of the lead-trace pre-concentration is achieved. The sampled traces are analyzed by square-wave anodic stripping voltammetry. The method was tested by a series of pilot experiments. These were performed using contaminant-controlled air intakes. Reproducible calibration plots were obtained. The data were validated by traditional analysis using filter sampling. LODs are comparable with the conventional techniques. The method was successfully applied to on-line and in situ environmental monitoring of lead.

  3. Combined micro-droplet and thin-film-assisted pre-concentration of lead traces for on-line monitoring using anodic stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Belostotsky, Inessa; Gridin, Vladimir V.; Schechter, Israel; Yarnitzky, Chaim N. [Department of Chemistry, Technion Israel Institute of Technology, 32000, Haifa (Israel)

    2003-02-01

    An improved analytical method for airborne lead traces is reported. It is based on using a Venturi scrubber sampling device for simultaneous thin-film stripping and droplet entrapment of aerosol influxes. At least threefold enhancement of the lead-trace pre-concentration is achieved. The sampled traces are analyzed by square-wave anodic stripping voltammetry. The method was tested by a series of pilot experiments. These were performed using contaminant-controlled air intakes. Reproducible calibration plots were obtained. The data were validated by traditional analysis using filter sampling. LODs are comparable with the conventional techniques. The method was successfully applied to on-line and in situ environmental monitoring of lead. (orig.)

  4. ON-LINE MONITORING OF BIOMASS CONCENTRATION BASED ON A CAPACITANCE SENSOR: ASSESSING THE METHODOLOGY FOR DIFFERENT BACTERIA AND YEAST HIGH CELL DENSITY FED-BATCH CULTURES

    Directory of Open Access Journals (Sweden)

    A. C. L. Horta

    2015-12-01

    Full Text Available Abstract The performance of an in-situ capacitance sensor for on-line monitoring of biomass concentration was evaluated for some of the most important microorganisms in the biotechnology industry: Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Bacillus megaterium. A total of 33 batch and fed-batch cultures were carried out in a bench-scale bioreactor and biomass formation trends were followed by dielectric measurements during the growth phase as well as the induction phase, for 5 recombinant E. coli strains. Permittivity measurements and viable cellular concentrations presented a linear correlation for all the studied conditions. In addition, the permittivity signal was further used for inference of the cellular growth rate. The estimated specific growth rates mirrored the main trends of the metabolic states of the different cells and they can be further used for setting-up control strategies in fed-batch cultures.

  5. Spectroscopic On-Line Monitoring of Cu/W Contacts Erosion in HVCBs Using Optical-Fibre Based Sensor and Chromatic Methodology.

    Science.gov (United States)

    Wang, Zhixiang; Jones, Gordon R; Spencer, Joseph W; Wang, Xiaohua; Rong, Mingzhe

    2017-03-06

    Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs). On-line monitoring the contacts' erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA S F 6 live tank circuit breaker with copper-tungsten (28 wt % and 72 wt %) arcing contacts at atmospheric S F 6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated.

  6. Spectroscopic On-Line Monitoring of Cu/W Contacts Erosion in HVCBs Using Optical-Fibre Based Sensor and Chromatic Methodology

    Directory of Open Access Journals (Sweden)

    Zhixiang Wang

    2017-03-01

    Full Text Available Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs. On-line monitoring the contacts’ erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA S F 6 live tank circuit breaker with copper–tungsten (28 wt % and 72 wt % arcing contacts at atmospheric S F 6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated.

  7. On-line monitoring of in-vitro oral bioaccessibility tests as front-end to liquid chromatography for determination of chlorogenic acid isomers in dietary supplements.

    Science.gov (United States)

    Kremr, Daniel; Cocovi-Solberg, David J; Bajerová, Petra; Ventura, Karel; Miró, Manuel

    2017-05-01

    A novel fully automated in-vitro oral dissolution test assay as a front-end to liquid chromatography has been developed and validated for on-line chemical profiling and monitoring of temporal release profiles of three caffeoylquinic acid (CQA) isomers, namely, 3-CQA,4-CQA and 5-CQA, known as chlorogenic acids, in dietary supplements. Tangential-flow filtration is harnessed as a sample processing approach for on-line handling of CQA containing extracts of hard gelatin capsules and introduction of protein-free samples into the liquid chromatograph. Oral bioaccessibility/dissolution test assays were performed at 37.0±0.5°C as per US Pharmacopeia recommendations using pepsin with activity of ca. 749,000 USP units/L in 0.1mol/L HCl as the extraction medium and a paddle apparatus stirred at 50rpm. CQA release rates and steady-state dissolution conditions were determined accurately by fitting the chromatographic datasets, namely, the average cumulative concentrations of bioaccessible pools of every individual isomer monitored during 200min, with temporal resolutions of ≥10min, to a first-order dissolution kinetic model. Distinct solid-to-liquid phase ratios in the mimicry of physiological extraction conditions were assessed. Relative standard deviations for intra-day repeatability and inter-day intermediate precision of 5-CQA within the 5-40µg/mL concentration range were <3.4% and <5.5%, respectively. Trueness of the automatic flow method for determination of 5-CQA released from dietary supplements in gastric fluid surrogate was demonstrated by spike recoveries, spanning from 91.5-104.0%, upon completion of the dissolution process. The proposed hyphenated setup was resorted for evaluating potential differences in dissolution profiles and content of the three most abundant chlorogenic acid isomers in dietary supplements from varied manufacturers. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    International Nuclear Information System (INIS)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H 2 O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H 2 O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm −1 (1343.3 nm) and 7185.6 cm −1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H 2 O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H 2 O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis

  9. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  10. Monitoring of corrosion rates of Fe-Cu alloys under wet/dry condition in weakly alkaline environments

    International Nuclear Information System (INIS)

    Kim, Je Kyoung; Nishikata, Atsushi; Tsuru, Tooru

    2002-01-01

    When the steel, containing scrap elements like copper, is used as reinforcing steel bars for concrete, the steel is exposed to alkaline environments. in this study, AC impedance technique has been applied to the monitoring of corrosion rates of iron and several Fe-Cu (0.4, 10wt%) alloys in a wet-dry cycle condition. The wet-dry cycle was conducted by exposure to alternate conditions of 1 hour-immersion in a simulated pH10 concrete solution (Ca(OH) 2 ) containing 0.01M NaCl and 3 hour-drying at 298K and 50%RH. The corrosion rate of the iron is greatly accelerated by the wet-dry cycles. Because the active FeOOH species, which are produced by the oxidation of Fe(II, III)oxide in air during drying, act as very strong oxidants to the corrosion in the wet condition. As the drying progresses, iron shows a large increase in the corrosion rate and a small shift of the corrosion potential to the positive values. This can be explained by acceleration of oxygen transport through the thin electrolyte layer In contrast to iron, the Fe-Cu alloys show low corrosion rates and the high corrosion potentials in whole cycles

  11. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe

    International Nuclear Information System (INIS)

    Owen, Andrew W.; McAulay, Edith A.J.; Nordon, Alison; Littlejohn, David; Lynch, Thomas P.; Lancaster, J. Steven; Wright, Robert G.

    2014-01-01

    Highlights: • High efficiency thermal vaporiser designed and used for on-line reaction monitoring. • Concentration profiles of all reactants and products obtained from mass spectra. • By-product formed from the presence of an impurity detected by MS but not MIR. • Mass spectrometry can detect trace and bulk components unlike molecular spectrometry. - Abstract: A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min −1 , respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate

  12. Continuous monitoring of back-wall stress corrosion cracking propagation by means of potential drop techniques

    International Nuclear Information System (INIS)

    Sato, Yasumoto; Atsumi, Takeo; Shoji, Tetsuo

    2006-01-01

    In order to investigate the applicability of the potential drop techniques to the continuous monitoring of stress corrosion cracking (SCC) propagation, SCC tests were performed in a sodium thiosulfate solution at room temperature using plate specimens with weldments. The SCC propagation was monitored using the techniques of direct current potential drop (DCPD), alternating current potential drop (ACPD) and modified induced current potential drop (MICPD) on the reverse side that on which the SCC existed and effectiveness of each technique for the continuous monitoring from the reverse side of SCC was compared from the viewpoints of sensitivity to the crack propagation and measurement stability. The MICPD and DCPD techniques permit continuous monitoring of the back-wall SCC propagation, which initiates from a fatigue pre-crack at a depth of about 4 mm, from which it propagates through more than 80% of the specimen thickness. The MICPD technique can decrease the effect of the current flowing in the direction of the crack length by focusing the induced current into the local area of measurement using induction coils, so that the sensitivity of the continuous monitoring of the back wall SCC propagation is higher than that of the DCPD and ACPD techniques. (author)

  13. On-line monitoring of CO2 production in Lactococcus lactis during physiological pH decrease using membrane inlet mass spectrometry with dynamic pH calibration.

    Science.gov (United States)

    Andersen, Ann Zahle; Lauritsen, Frants Roager; Olsen, Lars Folke

    2005-12-20

    Monitoring CO2 production in systems, where pH is changing with time is hampered by the chemical behavior and pH-dependent volatility of this compound. In this article, we present the first method where the concentration and production rate of dissolved CO2 can be monitored directly, continuously, and quantitatively under conditions where pH changes rapidly ( approximately 2 units in 15 min). The method corrects membrane inlet mass spectrometry (MIMS) measurements of CO2 for pH dependency using on-line pH analysis and an experimentally established calibration model. It is valid within the pH range of 3.5 to 7, despite pH-dependent calibration constants that vary in a non-linear fashion with more than a factor of 3 in this interval. The method made it possible to determine the carbon dioxide production during Lactococcus lactis fermentations, where pH drops up to 3 units during the fermentation. The accuracy was approximately 5%. We used the method to investigate the effect of initial extracellular pH on carbon dioxide production during anarobic glucose fermentation by non-growing Lactocoocus lactis and demonstrated that the carbon dioxide production rate increases considerably, when the initial pH was increased from 6 to 6.8. (c) 2005 Wiley Periodicals, Inc.

  14. Web-based continuous internal corrosion monitoring of a sweet natural gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Cauchi, Sam; Vorozcovs, Andrew [Fiber Optic Systems Technology Inc. (FOX-TEK), Bedford, Nova Scotia (Canada)

    2009-07-01

    Inspection of pipelines susceptible to internal corrosion is a key ingredient in maintaining their reliable throughput. While conventional inspection consisting of in line inspection, radiography and ultrasound remain the mainstay of most integrity programs, challenging circumstances in some cases make the availability of such data inadequate, cost prohibitive, and at times entirely unavailable. These scenarios include aggressive internal corrosion, expensive excavation conditions, low or stagnant flow, and non-piggable pipeline segments. While some gas pipelines in these circumstances are considered relatively low risk and low consequence, due to the significant reclamation costs and cleanup time associated with liquid pipelines, those areas identified as being high-risk are often high-consequence and thus require a specialized inspection solution. For areas deemed to be at high-risk, or areas of low-risk with high consequence, Electrical Field Mapping (EFM) has provided a practical solution to safe operation without introducing expensive and potentially dangerous dig programs. Historically, however, this inspection approach has required manual data acquisition as part of a scheduled EFM site visit schedule. Due to the tedious nature of this data acquisition approach, the remoteness of some pipeline inspection sites and the complexity of data analysis, it has been difficult to closely monitor the most critical assets on a continuous basis. The manual component of this approach also often eliminates EFM as a practical solution due to lack of properly trained personnel. In this paper, we will discuss a new approach to data acquisition where data is acquired, transmitted, analyzed, and displayed completely automatically and remotely with virtually no human overhead or recurring operating costs. An overview of the PinPoint monitoring setup covering 180 degrees of pipe circumference is described. This advanced EFM system allows operators to observe, essentially in real

  15. Continuous on-line monitoring of left ventricular function with a new nonimaging detector:validation and clinical use in the evaluation of patients post angioplasty.

    Science.gov (United States)

    Breisblatt, W M; Schulman, D S; Follansbee, W P

    1991-06-01

    A new miniaturized nonimaging radionuclide detector (Cardioscint, Oxford, England) was evaluated for the continuous on-line assessment of left ventricular function. This cesium iodide probe can be placed on the patient's chest and can be interfaced to an IBM compatible personal computer conveniently placed at the patient's bedside. This system can provide a beat-to-beat or gated determination of left ventricular ejection fraction and ST segment analysis. In 28 patients this miniaturized probe was correlated against a high resolution gamma camera study. Over a wide range of ejection fraction (31% to 76%) in patients with and without regional wall motion abnormalities, the correlation between the Cardioscint detector and the gamma camera was excellent (r = 0.94, SEE +/- 2.1). This detector system has high temporal (10 msec) resolution, and comparison of peak filling rate (PFR) and time to peak filling (TPFR) also showed close agreement with the gamma camera (PFR, r = 0.94, SEE +/- 0.17; TPFR, r = 0.92, SEE +/- 6.8). In 18 patients on bed rest the long-term stability of this system for measuring ejection fraction and ST segments was verified. During the monitoring period (108 +/- 28 minutes) only minor changes in ejection fraction occurred (coefficient of variation 0.035 +/- 0.016) and ST segment analysis showed no significant change from baseline. To determine whether continuous on-line measurement of ejection fraction would be useful after coronary angioplasty, 12 patients who had undergone a successful procedure were evaluated for 280 +/- 35 minutes with the Cardioscint system.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents

    Directory of Open Access Journals (Sweden)

    Elsa Vaz Pereira

    2009-10-01

    Full Text Available This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 ºC has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established.

  17. Tracking the harmonic response of magnetically-soft sensors for wireless temperature, stress, and corrosive monitoring

    Science.gov (United States)

    Ong, Keat G.; Grimes, Craig A.

    2002-01-01

    This paper describes the application of magnetically-soft ribbon-like sensors for measurement of temperature and stress, as well as corrosive monitoring, based upon changes in the amplitudes of the higher-order harmonics generated by the sensors in response to a magnetic interrogation signal. The sensors operate independently of mass loading, and so can be placed or rigidly embedded inside nonmetallic, opaque structures such as concrete or plastic. The passive harmonic-based sensor is remotely monitored through a single coplanar interrogation and detection coil. Effects due to the relative location of the sensor are eliminated by tracking harmonic amplitude ratios, thereby, enabling wide area monitoring. The wireless, passive, mass loading independent nature of the described sensor platform makes it ideally suited for long-term structural monitoring applications, such as measurement of temperature and stress inside concrete structures. A theoretical model is presented to explain the origin and behavior of the higher-order harmonics in response to temperature and stress. c2002 Elsevier Science B.V. All rights reserved.

  18. On-line monitoring of benzene air concentrations while driving in traffic by means of isotopic dilution gas chromatography/mass spectrometry.

    Science.gov (United States)

    Davoli, E; Cappellini, L; Moggi, M; Ferrari, S; Fanelli, R

    1996-01-01

    There is no shortage of information about the average benzene concentrations in urban air, but there is very little about microenvironmental exposure, such as in-vehicle concentrations while driving in various traffic conditions, while refuelling, or while in a parking garage. The main reason for this lack of data is that no analytical instrumentation has been available to measure on-line trace amounts of benzene in such situations. We have recently proposed a highly accurate, high-speed cryofocusing gas chromatography/mass spectrometry (GC/MS) system for monitoring benzene concentrations in air. Accuracy of the analytical data is achieved by enrichment of the air sample before trapping, with a stable isotope permeation tube system. The same principles have been applied to a new instrument, specifically designed for operation on an electric vehicle (Ducato Elettra, Fiat). The zero emission vehicle and the fully transportable, battery-operated GC/MS system provide a unique possibility of monitoring benzene exposure in real everyday situations such as while driving, refuelling, or repairing a car. All power consumptions have been reduced so as to achieve a battery-operated GC/MS system. Liquid nitrogen cryofocusing has been replaced by a packed, inductively heated, graphitized charcoal microtrap. The instrument has been mounted on shock absorbers and installed in the van. The whole system has been tested in both fixed and mobile conditions. The maximum monitoring period without external power supply is 6 h. The full analytical cycle is 4 min, allowing close to real-time monitoring, and the minimum detectable level is 1 microgram/m3 for benzene. In-vehicle monitoring showed that, when recirculation was off and ventilation on, i.e., air from outside the vehicle was blown inside, concentrations varied widely in different driving conditions: moving from a parking lot into normal traffic on an urban traffic condition roadway yielded an increase in benzene concentration

  19. Pilot study on the corrosion monitoring and control of the crude oil refining system by thin layer activation (TLA) technique

    International Nuclear Information System (INIS)

    Choochartchaikulkarn, Bodin; Chueinta, Siripone; Santawamaitre, Todsadol

    2001-01-01

    This report represents a pilot study on application of Ta technique for measurement monitoring the corrosion rates occurring in the refinery crude oil overhead crude oil system at the Bangchak Petroleum Co., Ltd. in Thailand during mid 1999 to mid 2000. TLA coupons containing very low activity of 5 6 Co produced by the accelerator was attached to the used electrical resistance probe inserted into production system at the test position. Gamma intensity of 56 Co was routinely monitored at external cladding and corrosion rates calculated in comparison with the non corroded standard after decay correction. From the study, TLA technique provides accurate corrosion rates less than 75 mm/year as compared to the standard Electrical Resistance Probes (ERP) technique. (author)

  20. Development of corrosion condition sensing and monitoring system using radio-frequency identification devices (RFID) : progress report 2

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.P.; Li, J.; Liu, P.; Bibby, D.; Zheng, W.; Lo, J. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2008-12-15

    The development of a corrosion severity monitoring system that used radio-frequency identification device (RIFD) technology was discussed. A corrosion monitoring sensor was integrated with a tag modified to partially block the radio frequency signal. The metallic coating caused a frequency shift of the device's reader antenna in order to allow for the accurate characterization of metal coatings. Communications between the tag and the reader were re-established as the corrosion process gradually deteriorated the coating. The method was tested experimentally with 3 RFID systems using both active and passive tags were assembled. A passive tag was covered in aluminum foil. Results of the experiment showed that the metallic coating interfered with RFID signals. A cold-spray technology was used to coat tags with metal alloys. The surface morphology of the coatings was tested to determine optimum coating parameters. Further studies are being conducted to develop software for the technology. 4 refs., 11 figs.