WorldWideScience

Sample records for on-flight forecaster poff

  1. Forecast Combinations

    OpenAIRE

    Timmermann, Allan G

    2005-01-01

    Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this paper we analyse theoretically the factors that determine the advantages from combining forecasts (for example, the d...

  2. Forecast combinations

    OpenAIRE

    Aiolfi, Marco; Capistrán, Carlos; Timmermann, Allan

    2010-01-01

    We consider combinations of subjective survey forecasts and model-based forecasts from linear and non-linear univariate specifications as well as multivariate factor-augmented models. Empirical results suggest that a simple equal-weighted average of survey forecasts outperform the best model-based forecasts for a majority of macroeconomic variables and forecast horizons. Additional improvements can in some cases be gained by using a simple equal-weighted average of survey and model-based fore...

  3. Forecasting Skill

    Science.gov (United States)

    1981-01-01

    for the third and fourth day precipitation forecasts. A marked improvement was shown for the consensus 24 hour precipitation forecast, and small... Zuckerberg (1980) found a small long term skill increase in forecasts of heavy snow events for nine eastern cities. Other National Weather Service...and maximum temperature) are each awarded marks 2, 1, or 0 according to whether the forecast is correct, 8 - *- -**■*- ———"—- - -■ t0m 1 MM—IB I

  4. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  5. The Route Analysis Based On Flight Plan

    Science.gov (United States)

    Feriyanto, Nur; Saleh, Chairul; Fauzi, Achmad; Rachman Dzakiyullah, Nur; Riza Iwaputra, Kahfi

    2016-02-01

    Economic development effects use of air transportation since the business process in every aspect was increased. Many people these days was prefer using airplane because it can save time and money. This situation also effects flight routes, many airlines offer new routes to deal with competition. Managing flight routes is one of the problems that must be faced in order to find the efficient and effective routes. This paper investigates the best routes based on flight performance by determining the amount of block fuel for the Jakarta-Denpasar flight route. Moreover, in this work compares a two kinds of aircraft and tracks by calculating flight distance, flight time and block fuel. The result shows Jakarta-Denpasar in the Track II has effective and efficient block fuel that can be performed by Airbus 320-200 aircraft. This study can contribute to practice in making an effective decision, especially helping executive management of company due to selecting appropriate aircraft and the track in the flight plan based on the block fuel consumption for business operation.

  6. Exposure Forecaster

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Exposure Forecaster Database (ExpoCastDB) is EPA's database for aggregating chemical exposure information and can be used to help with chemical exposure...

  7. Strategic Forecasting

    DEFF Research Database (Denmark)

    Duus, Henrik Johannsen

    2016-01-01

    Purpose: The purpose of this article is to present an overview of the area of strategic forecasting and its research directions and to put forward some ideas for improving management decisions. Design/methodology/approach: This article is conceptual but also informed by the author’s long contact...... and collaboration with various business firms. It starts by presenting an overview of the area and argues that the area is as much a way of thinking as a toolbox of theories and methodologies. It then spells out a number of research directions and ideas for management. Findings: Strategic forecasting is seen...... as a rebirth of long range planning, albeit with new methods and theories. Firms should make the building of strategic forecasting capability a priority. Research limitations/implications: The article subdivides strategic forecasting into three research avenues and suggests avenues for further research efforts...

  8. Forecasting metal prices: Do forecasters herd?

    DEFF Research Database (Denmark)

    Pierdzioch, C.; Rulke, J. C.; Stadtmann, G.

    2013-01-01

    We analyze more than 20,000 forecasts of nine metal prices at four different forecast horizons. We document that forecasts are heterogeneous and report that anti-herding appears to be a source of this heterogeneity. Forecaster anti-herding reflects strategic interactions among forecasters...

  9. Pathfinder-Plus on flight over Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on flight over Hawaii. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50

  10. kosh Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kpdt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kewr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kiso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kpga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kbkw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. ktcl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. pgwt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kpsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kbih Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kdnl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kart Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kilm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kpne Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kabi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. ptpn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kblf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. panc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kpbi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kgdv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kcmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kdls Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. koaj Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. krhi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kbpk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. khuf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kbpi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. ktrk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kwmc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. katy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. tjmz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kdet Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kcxp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kbur Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. krkd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. pawg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kloz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kcec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kdec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. paor Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kavl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kdrt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kstl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kbfi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. khsv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. pafa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kekn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. tncm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kith Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kgnv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. ktoi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kgso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. nstu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kmgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. khib Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. pavd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kfar Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kluk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kwwr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. klse Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. ksts Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. koth Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kbfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. ksgf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kpkb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. krog Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kbjc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. ksea Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kbwi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kftw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kpuw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kabq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. ksny Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. khio Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. klaf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kfoe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. ksmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kipt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. klch Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kink Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. krut Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kbli Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kaoo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. klit Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. ktup Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. ktop Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. klax Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kprc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. katl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kmcn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kogb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kama Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. ptkk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kiwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kavp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kdca Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kbwg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kdfw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kssi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. pahn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. ksrq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kpvd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kisp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kttd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. pmdy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kont Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kyng Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kcwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kflg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. krsw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kmyl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. krbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kril Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. ksus Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. padq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kbil Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. krfd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kdug Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. ktix Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kcod Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kslk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kgfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kguc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kmlu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kbff Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. ksmn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kdro Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kmce Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. ktpa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kmot Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kcre Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. klws Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kotm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. khqm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kabr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. klal Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kelp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kecg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. khbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kpbf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. konp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. pkwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. ktvf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. paga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. khks Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kdsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kpsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kgrb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kgmu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. papg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. pamc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. klrd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. ksan Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. patk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kowb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. klru Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kfxe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kjct Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kcrg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. paaq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kaex Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. klbx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kmia Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kpit Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kcrw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. paen Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kast Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kuin Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kmht Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kcys Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kflo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. pakn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. pabt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. krdg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. khdn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kjac Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kphx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. Robust forecast comparison

    OpenAIRE

    Jin, Sainan; Corradi, Valentina; Swanson, Norman

    2015-01-01

    Forecast accuracy is typically measured in terms of a given loss function. However, as a consequence of the use of misspecified models in multiple model comparisons, relative forecast rankings are loss function dependent. This paper addresses this issue by using a novel criterion for forecast evaluation which is based on the entire distribution of forecast errors. We introduce the concepts of general-loss (GL) forecast superiority and convex-loss (CL) forecast superiority, and we establish a ...

  9. Forecaster Behaviour and Bias in Macroeconomic Forecasts

    OpenAIRE

    Roy Batchelor

    2007-01-01

    This paper documents the presence of systematic bias in the real GDP and inflation forecasts of private sector forecasters in the G7 economies in the years 1990–2005. The data come from the monthly Consensus Economics forecasting service, and bias is measured and tested for significance using parametric fixed effect panel regressions and nonparametric tests on accuracy ranks. We examine patterns across countries and forecasters to establish whether the bias reflects the inefficient use of i...

  10. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  11. The environmental effects of radiation on flight crews

    International Nuclear Information System (INIS)

    Connor, C.W.

    1991-01-01

    A review is presented of a continuing investigation of flight deck radiation and its potential effects on flight crews. Attention is given to the various critical factors concerned in UV radiation exposure and detection including skin cancer classifications, skin types, effectiveness of different sun protection factors, and flight deck color configuration and sunglasses. Consideration is given to both UV and ionizing radiation

  12. National Forecast Charts

    Science.gov (United States)

    code. Press enter or select the go button to submit request Local forecast by "City, St" or Prediction Center on Twitter NCEP Quarterly Newsletter WPC Home Analyses and Forecasts National Forecast to all federal, state, and local government web resources and services. National Forecast Charts

  13. Are Forecast Updates Progressive?

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); Ph.H.B.F. Franses (Philip Hans); M.J. McAleer (Michael)

    2010-01-01

    textabstractMacro-economic forecasts typically involve both a model component, which is replicable, as well as intuition, which is non-replicable. Intuition is expert knowledge possessed by a forecaster. If forecast updates are progressive, forecast updates should become more accurate, on average,

  14. Forecasting freight flows

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie

    2011-01-01

    Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...... constitute a valuable input to freight models for forecasting future capacity problems.......Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...

  15. Flood forecasting and uncertainty of precipitation forecasts

    International Nuclear Information System (INIS)

    Kobold, Mira; Suselj, Kay

    2004-01-01

    The timely and accurate flood forecasting is essential for the reliable flood warning. The effectiveness of flood warning is dependent on the forecast accuracy of certain physical parameters, such as the peak magnitude of the flood, its timing, location and duration. The conceptual rainfall - runoff models enable the estimation of these parameters and lead to useful operational forecasts. The accurate rainfall is the most important input into hydrological models. The input for the rainfall can be real time rain-gauges data, or weather radar data, or meteorological forecasted precipitation. The torrential nature of streams and fast runoff are characteristic for the most of the Slovenian rivers. Extensive damage is caused almost every year- by rainstorms affecting different regions of Slovenia' The lag time between rainfall and runoff is very short for Slovenian territory and on-line data are used only for now casting. Forecasted precipitations are necessary for hydrological forecast for some days ahead. ECMWF (European Centre for Medium-Range Weather Forecasts) gives general forecast for several days ahead while more detailed precipitation data with limited area ALADIN/Sl model are available for two days ahead. There is a certain degree of uncertainty using such precipitation forecasts based on meteorological models. The variability of precipitation is very high in Slovenia and the uncertainty of ECMWF predicted precipitation is very large for Slovenian territory. ECMWF model can predict precipitation events correctly, but underestimates amount of precipitation in general The average underestimation is about 60% for Slovenian region. The predictions of limited area ALADIN/Si model up to; 48 hours ahead show greater applicability in hydrological forecasting. The hydrological models are sensitive to precipitation input. The deviation of runoff is much bigger than the rainfall deviation. Runoff to rainfall error fraction is about 1.6. If spatial and time distribution

  16. Fuel cycle forecasting - there are forecasts and there are forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Puechl, K H

    1975-12-01

    The FORECAST-NUCLEAR computer program described recognizes that forecasts are made to answer a variety of questions and, therefore, that no single forecast is universally appropriate. Also, it recognizes that no two individuals will completely agree as to the input data that are appropriate for obtaining an answer to even a single simple question. Accordingly, the program was written from a utilitarian standpoint: it allows working with multiple projections; data inputting is simple to allow game-playing; computation time is short to minimize the cost of 'what if' assessements; and detail is internally carried to allow meaningful analysis.

  17. Fuel cycle forecasting - there are forecasts and there are forecasts

    International Nuclear Information System (INIS)

    Puechl, K.H.

    1975-01-01

    The FORECAST-NUCLEAR computer program described recognizes that forecasts are made to answer a variety of questions and, therefore, that no single forecast is universally appropriate. Also, it recognizes that no two individuals will completely agree as to the input data that are appropriate for obtaining an answer to even a single simple question. Accordingly, the program was written from a utilitarian standpoint: it allows working with multiple projections; data inputting is simple to allow game-playing; computation time is short to minimize the cost of 'what if' assessements; and detail is internally carried to allow meaningful analysis. (author)

  18. Robust Approaches to Forecasting

    OpenAIRE

    Jennifer Castle; David Hendry; Michael P. Clements

    2014-01-01

    We investigate alternative robust approaches to forecasting, using a new class of robust devices, contrasted with equilibrium correction models. Their forecasting properties are derived facing a range of likely empirical problems at the forecast origin, including measurement errors, implulses, omitted variables, unanticipated location shifts and incorrectly included variables that experience a shift. We derive the resulting forecast biases and error variances, and indicate when the methods ar...

  19. Inflation Forecast Contracts

    OpenAIRE

    Gersbach, Hans; Hahn, Volker

    2012-01-01

    We introduce a new type of incentive contract for central bankers: inflation forecast contracts, which make central bankers’ remunerations contingent on the precision of their inflation forecasts. We show that such contracts enable central bankers to influence inflation expectations more effectively, thus facilitating more successful stabilization of current inflation. Inflation forecast contracts improve the accuracy of inflation forecasts, but have adverse consequences for output. On balanc...

  20. Electricity demand forecasting techniques

    International Nuclear Information System (INIS)

    Gnanalingam, K.

    1994-01-01

    Electricity demand forecasting plays an important role in power generation. The two areas of data that have to be forecasted in a power system are peak demand which determines the capacity (MW) of the plant required and annual energy demand (GWH). Methods used in electricity demand forecasting include time trend analysis and econometric methods. In forecasting, identification of manpower demand, identification of key planning factors, decision on planning horizon, differentiation between prediction and projection (i.e. development of different scenarios) and choosing from different forecasting techniques are important

  1. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Containing 12 new chapters, this second edition contains offers increased-coverage of weather correction and normalization of forecasts, anticipation of redevelopment, determining the validity of announced developments, and minimizing risk from over- or under-planning. It provides specific examples and detailed explanations of key points to consider for both standard and unusual utility forecasting situations, information on new algorithms and concepts in forecasting, a review of forecasting pitfalls and mistakes, case studies depicting challenging forecast environments, and load models illustrating various types of demand.

  2. Inaccuracy in traffic forecasts

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent; Holm, Mette K. Skamris; Buhl, Søren Ladegaard

    2006-01-01

    This paper presents results from the first statistically significant study of traffic forecasts in transportation infrastructure projects. The sample used is the largest of its kind, covering 210 projects in 14 nations worth US$58 billion. The study shows with very high statistical significance...... that forecasters generally do a poor job of estimating the demand for transportation infrastructure projects. The result is substantial downside financial and economic risk. Forecasts have not become more accurate over the 30-year period studied. If techniques and skills for arriving at accurate demand forecasts...... forecasting. Highly inaccurate traffic forecasts combined with large standard deviations translate into large financial and economic risks. But such risks are typically ignored or downplayed by planners and decision-makers, to the detriment of social and economic welfare. The paper presents the data...

  3. FORECASTING MODELS IN MANAGEMENT

    OpenAIRE

    Sindelar, Jiri

    2008-01-01

    This article deals with the problems of forecasting models. First part of the article is dedicated to definition of the relevant areas (vertical and horizontal pillar of definition) and then the forecasting model itself is defined; as article presents theoretical background for further primary research, this definition is crucial. Finally the position of forecasting models within the management system is identified. The paper is a part of the outputs of FEM CULS grant no. 1312/11/3121.

  4. Forecasting in Planning

    OpenAIRE

    Ike, P.; Voogd, Henk; Voogd, Henk; Linden, Gerard

    2004-01-01

    This chapter begins with a discussion of qualitative forecasting by describing a number of methods that depend on judgements made by stakeholders, experts or other interested parties to arrive at forecasts. Two qualitative approaches are illuminated, the Delphi and scenario methods respectively. Quantitative forecasting is illustrated with a brief overview of time series methods. Both qualitative and quantitative methods are illustrated by an example. The role and relative importance of forec...

  5. The strategy of professional forecasting

    DEFF Research Database (Denmark)

    Ottaviani, Marco; Sørensen, Peter Norman

    2006-01-01

    We develop and compare two theories of professional forecasters’ strategic behavior. The first theory, reputational cheap talk, posits that forecasters endeavor to convince the market that they are well informed. The market evaluates their forecasting talent on the basis of the forecasts...... and the realized state. If the market expects forecasters to report their posterior expectations honestly, then forecasts are shaded toward the prior mean. With correct market expectations, equilibrium forecasts are imprecise but not shaded. The second theory posits that forecasters compete in a forecasting...... contest with pre-specified rules. In a winner-take-all contest, equilibrium forecasts are excessively differentiated...

  6. House Price Forecasts, Forecaster Herding, and the Recent Crisis

    Directory of Open Access Journals (Sweden)

    Christian Pierdzioch

    2012-11-01

    Full Text Available We used the Wall Street Journal survey data for the period 2006–2012 to analyze whether forecasts of house prices and housing starts provide evidence of (anti-herding of forecasters. Forecasts are consistent with herding (anti-herding of forecasters if forecasts are biased towards (away from the consensus forecast. We found that anti-herding is prevalent among forecasters of house prices. We also report that, following the recent crisis, the prevalence of forecaster anti-herding seems to have changed over time.

  7. House Price Forecasts, Forecaster Herding, and the Recent Crisis

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Ruelke

    2013-01-01

    We used the Wall Street Journal survey data for the period 2006–2012 to analyze whether forecasts of house prices and housing starts provide evidence of (anti-)herding of forecasters. Forecasts are consistent with herding (anti-herding) of forecasters if forecasts are biased towards (away from) t......) the consensus forecast. We found that anti-herding is prevalent among forecasters of house prices. We also report that, following the recent crisis, the prevalence of forecaster anti-herding seems to have changed over time....

  8. World Area Forecast System (WAFS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Area Forecast System (WAFS) is a worldwide system by which world area forecast centers provide aeronautical meteorological en-route forecasts in uniform...

  9. Forecasting in Planning

    NARCIS (Netherlands)

    Ike, P.; Voogd, Henk; Voogd, Henk; Linden, Gerard

    2004-01-01

    This chapter begins with a discussion of qualitative forecasting by describing a number of methods that depend on judgements made by stakeholders, experts or other interested parties to arrive at forecasts. Two qualitative approaches are illuminated, the Delphi and scenario methods respectively.

  10. Improving Garch Volatility Forecasts

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.

    1998-01-01

    Many researchers use GARCH models to generate volatility forecasts. We show, however, that such forecasts are too variable. To correct for this, we extend the GARCH model by distinguishing two regimes with different volatility levels. GARCH effects are allowed within each regime, so that our model

  11. On density forecast evaluation

    NARCIS (Netherlands)

    Diks, C.

    2008-01-01

    Traditionally, probability integral transforms (PITs) have been popular means for evaluating density forecasts. For an ideal density forecast, the PITs should be uniformly distributed on the unit interval and independent. However, this is only a necessary condition, and not a sufficient one, as

  12. Forecast Accuracy Uncertainty and Momentum

    OpenAIRE

    Bing Han; Dong Hong; Mitch Warachka

    2009-01-01

    We demonstrate that stock price momentum and earnings momentum can result from uncertainty surrounding the accuracy of cash flow forecasts. Our model has multiple information sources issuing cash flow forecasts for a stock. The investor combines these forecasts into an aggregate cash flow estimate that has minimal mean-squared forecast error. This aggregate estimate weights each cash flow forecast by the estimated accuracy of its issuer, which is obtained from their past forecast errors. Mome...

  13. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Spatial Electric Load Forecasting Consumer Demand for Power and ReliabilityCoincidence and Load BehaviorLoad Curve and End-Use ModelingWeather and Electric LoadWeather Design Criteria and Forecast NormalizationSpatial Load Growth BehaviorSpatial Forecast Accuracy and Error MeasuresTrending MethodsSimulation Method: Basic ConceptsA Detailed Look at the Simulation MethodBasics of Computerized SimulationAnalytical Building Blocks for Spatial SimulationAdvanced Elements of Computerized SimulationHybrid Trending-Simulation MethodsAdvanced

  14. About the National Forecast Chart

    Science.gov (United States)

    code. Press enter or select the go button to submit request Local forecast by "City, St" or Prediction Center on Twitter NCEP Quarterly Newsletter WPC Home Analyses and Forecasts National Forecast to all federal, state, and local government web resources and services. The National Forecast Charts

  15. Marine Point Forecasts

    Science.gov (United States)

    will link to the zone forecast and then allow further zooming to the point of interest whereas on the Honolulu, HI Chicago, IL Northern Indiana, IN Lake Charles, LA New Orleans, LA Boston, MA Caribou, ME

  16. Socioeconomic Forecasting : [Technical Summary

    Science.gov (United States)

    2012-01-01

    Because the traffic forecasts produced by the Indiana : Statewide Travel Demand Model (ISTDM) are driven by : the demographic and socioeconomic inputs to the model, : particular attention must be given to obtaining the most : accurate demographic and...

  17. NYHOPS Forecast Model Results

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 3D Marine Nowcast/Forecast System for the New York Bight NYHOPS subdomain. Currents, waves, surface meteorology, and water conditions.

  18. Inflow forecasting at BPA

    Energy Technology Data Exchange (ETDEWEB)

    McManamon, A. [Bonneville Power Administration, Portland, OR (United States)

    2007-07-01

    The Columbia River Power System operates with consideration for flood control, endangered species, navigation, irrigation, water supply, recreation, other fish and wildlife concerns and power production. The Bonneville Power Association (BPA) located in Portland, Oregon is responsible for 35-40 per cent of the power consumed within the region. This presentation discussed inflow power concerns at BPA. The presentation illustrated elevational relief of projects; annual and daily variability; the hydrologic cycle; national river service weather forecasting service (NRSWFS); components of NRSWFS; and hydrologic forecast locations. Project operations and inventory were included along with a comparison of the 71-year average unregulated flow with regulated flow at the Dalles. Consistency between short-term and long-term forecasts and long-term streamflow forecasts were also illustrated in graphical format. The presentation also discussed the issue of reducing model and parameter uncertainty; reducing initial conditions uncertainty; snow updating; and reducing meteorological uncertainty. tabs., figs.

  19. CCAA seasonal forecasting

    International Development Research Centre (IDRC) Digital Library (Canada)

    Integrating meteorological and indigenous knowledge-based seasonal climate forecasts in ..... Explanation is based on spiritual and social values. Taught by .... that provided medicine and food became the subject of strict rules and practices ...

  20. Forecast Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Forecast Icing Product (FIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The FIP algorithm uses...

  1. Conditional Probabilistic Population Forecasting

    OpenAIRE

    Sanderson, W.C.; Scherbov, S.; O'Neill, B.C.; Lutz, W.

    2003-01-01

    Since policy makers often prefer to think in terms of scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy makers it allows them to answer "what if"...

  2. Conditional probabilistic population forecasting

    OpenAIRE

    Sanderson, Warren; Scherbov, Sergei; O'Neill, Brian; Lutz, Wolfgang

    2003-01-01

    Since policy-makers often prefer to think in terms of alternative scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy-makers because it allows them...

  3. Conditional Probabilistic Population Forecasting

    OpenAIRE

    Sanderson, Warren C.; Scherbov, Sergei; O'Neill, Brian C.; Lutz, Wolfgang

    2004-01-01

    Since policy-makers often prefer to think in terms of alternative scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy-makers because...

  4. EU pharmaceutical expenditure forecast

    OpenAIRE

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and Objectives: With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States’ ph...

  5. Problems of Forecast

    OpenAIRE

    Kucharavy , Dmitry; De Guio , Roland

    2005-01-01

    International audience; The ability to foresee future technology is a key task of Innovative Design. The paper focuses on the obstacles to reliable prediction of technological evolution for the purpose of Innovative Design. First, a brief analysis of problems for existing forecasting methods is presented. The causes for the complexity of technology prediction are discussed in the context of reduction of the forecast errors. Second, using a contradiction analysis, a set of problems related to ...

  6. Pathfinder-Plus on flight over Hawaiian Islands

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4

  7. Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting

    Science.gov (United States)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be

  8. Space Weather Forecasting at IZMIRAN

    Science.gov (United States)

    Gaidash, S. P.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.

    2017-12-01

    Since 1998, the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) has had an operating heliogeophysical service—the Center for Space Weather Forecasts. This center transfers the results of basic research in solar-terrestrial physics into daily forecasting of various space weather parameters for various lead times. The forecasts are promptly available to interested consumers. This article describes the center and the main types of forecasts it provides: solar and geomagnetic activity, magnetospheric electron fluxes, and probabilities of proton increases. The challenges associated with the forecasting of effects of coronal mass ejections and coronal holes are discussed. Verification data are provided for the center's forecasts.

  9. Assessment of storm forecast

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Hahmann, Andrea N.; Huus Bjerge, Martin

    When wind speed exceeds a certain value, wind turbines shut-down in order to protect their structure. This leads to sudden wind plants shut down and to new challenges concerning the secure operation of the pan-European electric system with future large scale offshore wind power. This task aims...... stopped, completely or partially, producing due to extreme wind speeds. Wind speed and power measurements from those events are presented and compared to the forecast available at Energinet.dk. The analysis looked at wind speed and wind power forecast. The main conclusion of the analysis is that the wind...... to consider it an EWP) and that the available wind speed forecasts are given as a mean wind speed over a rather large area. At wind power level, the analysis shows that prediction of accurate production levels from a wind farm experiencing EWP is rather poor. This is partially because the power curve...

  10. Financial Analysts’ Forecasts

    DEFF Research Database (Denmark)

    Stæhr, Simone

    . The primary focus is on financial analysts in the task of conducting earnings forecasts while a secondary focus is on investors’ abilities to interpret and make use of these forecasts. Simply put, financial analysts can be seen as information intermediators receiving inputs to their analyses from firm...... in the decision making and the magnitude of these constraints does sometimes vary with personal traits. Therefore, to the extent that financial analysts are subjects to behavioral biases their outputs to the investors are likely to be biased by their interpretation of information. Because investors need accuracy...... management and providing outputs to the investors. Amongst various outputs from the analysts are forecasts of earnings. According to decision theories mostly from the literature in psychology all humans are affected by cognitive constraints to some degree. These constraints may lead to unintentional biases...

  11. Wind power forecast

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Rui [Rede Electrica Nacional (REN), S.A., Lisboa (Portugal). Dept. Systems and Development System Operator; Trancoso, Ana Rosa; Delgado Domingos, Jose [Univ. Tecnica de Lisboa (Portugal). Seccao de Ambiente e Energia

    2012-07-01

    Accurate wind power forecast are needed to reduce integration costs in the electric grid caused by wind inherent variability. Currently, Portugal has a significant wind power penetration level and consequently the need to have reliable wind power forecasts at different temporal scales, including localized events such as ramps. This paper provides an overview of the methodologies used by REN to forecast wind power at national level, based on statistical and probabilistic combinations of NWP and measured data with the aim of improving accuracy of pure NWP. Results show that significant improvement can be achieved with statistical combination with persistence in the short-term and with probabilistic combination in the medium-term. NWP are also able to detect ramp events with 3 day notice to the operational planning. (orig.)

  12. Forecast of auroral activity

    International Nuclear Information System (INIS)

    Lui, A.T.Y.

    2004-01-01

    A new technique is developed to predict auroral activity based on a sample of over 9000 auroral sites identified in global auroral images obtained by an ultraviolet imager on the NASA Polar satellite during a 6-month period. Four attributes of auroral activity sites are utilized in forecasting, namely, the area, the power, and the rates of change in area and power. This new technique is quite accurate, as indicated by the high true skill scores for forecasting three different levels of auroral dissipation during the activity lifetime. The corresponding advanced warning time ranges from 22 to 79 min from low to high dissipation levels

  13. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...

  14. Spatial load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Willis, H.L.; Engel, M.V.; Buri, M.J.

    1995-04-01

    The reliability, efficiency, and economy of a power delivery system depend mainly on how well its substations, transmission lines, and distribution feeders are located within the utility service area, and how well their capacities match power needs in their respective localities. Often, utility planners are forced to commit to sites, rights of way, and equipment capacities year in advance. A necessary element of effective expansion planning is a forecast of where and how much demand must be served by the future T and D system. This article reports that a three-stage method forecasts with accuracy and detail, allowing meaningful determination of sties and sizes for future substation, transmission, and distribution facilities.

  15. Forecasting Housing Approvals in Australia: Do Forecasters Herd?

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Rülke

    2012-01-01

    Price trends in housing markets may reflect herding of market participants. A natural question is whether such herding, to the extent that it occurred, reflects herding in forecasts of professional forecasters. Using more than 6,000 forecasts of housing approvals for Australia, we did not find...

  16. Bayesian Network Assessment Method for Civil Aviation Safety Based on Flight Delays

    OpenAIRE

    Huawei Wang; Jun Gao

    2013-01-01

    Flight delays and safety are the principal contradictions in the sound development of civil aviation. Flight delays often come up and induce civil aviation safety risk simultaneously. Based on flight delays, the random characteristics of civil aviation safety risk are analyzed. Flight delays have been deemed to a potential safety hazard. The change rules and characteristics of civil aviation safety risk based on flight delays have been analyzed. Bayesian networks (BN) have been used to build ...

  17. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  18. Are demand forecasting techniques applicable to libraries?

    OpenAIRE

    Sridhar, M. S.

    1984-01-01

    Examines the nature and limitations of demand forecasting, discuses plausible methods of forecasting demand for information, suggests some useful hints for demand forecasting and concludes by emphasizing unified approach to demand forecasting.

  19. Forecasting of superconducting compounds

    International Nuclear Information System (INIS)

    Savitskii, E.M.; Gribulya, V.G.; Kiseleva, N.N.

    1981-01-01

    In forecasting new superconducting intermetallic compounds of the A15 and Mo 3 Se types most promising from the viewpoint of high critical temperature Tsub(c), high critical magnetic fields Hsub(c), and high critical currents and in estimating their transition temperature it is proposed to apply cybernetic methods of computer learning

  20. Forecast of nuclear energetics

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1976-01-01

    The forecast concerning the development of nuclear energetics is presented. Some information on economics of nuclear power plants is given. The nuclear fuel reserves are estimated on the background of power resources of the world. The safety and environment protection problems are mentioned.

  1. Climate Forecast System

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Forecast System Home News Organization Web portal to all Federal, state and local government Web resources and services. The NCEP Climate when using the CFS Reanalysis (CFSR) data. Saha, Suranjana, and Coauthors, 2010: The NCEP Climate

  2. Foresight and Forecasts

    DEFF Research Database (Denmark)

    Kilbourn, Kyle; Bay, Marie Brøndum

    In predicting areas of growth, public innovation projects may rely on optimistic visions of technology still in development as a way of ensuring novelty for funding. This paper explores what happens when forecasts of robotic technology meets the practice of sterile supply in a preliminary stage...

  3. Hydrology and flow forecasting

    NARCIS (Netherlands)

    Vrijling, J.K.; Kwadijk, J.; Van Duivendijk, J.; Van Gelder, P.; Pang, H.; Rao, S.Q.; Wang, G.Q.; Huang, X.Q.

    2002-01-01

    We have studied and applied the statistic model (i.e. MMC) and hydrological models to Upper Yellow River. This report introduces the results and some conclusions from the model. The three models, MMC, MWBM and NAM, have be applied in the research area. The forecasted discharge by the three models

  4. NWS Marine Forecast Areas

    Science.gov (United States)

    of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA NWS Marine Forecast Areas

  5. The Latest Forecast.

    Science.gov (United States)

    Laurence, David

    2002-01-01

    Discusses the "latest forecast" for the future of English departments. Addresses departmental and institutional staffing practices, employment opportunities for PhDs, the acceleration of change in the institution, and the general state of the study and teaching of English. (RS)

  6. Ecological forecasts: An emerging imperative

    Science.gov (United States)

    James S. Clark; Steven R. Carpenter; Mary Barber; Scott Collins; Andy Dobson; Jonathan A. Foley; David M. Lodge; Mercedes Pascual; Roger Pielke; William Pizer; Cathy Pringle; Walter V. Reid; Kenneth A. Rose; Osvaldo Sala; William H. Schlesinger; Diana H. Wall; David Wear

    2001-01-01

    Planning and decision-making can be improved by access to reliable forecasts of ecosystem state, ecosystem services, and natural capital. Availability of new data sets, together with progress in computation and statistics, will increase our ability to forecast ecosystem change. An agenda that would lead toward a capacity to produce, evaluate, and communicate forecasts...

  7. Air Pollution Forecasts: An Overview

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Lu, Haiyan

    2018-01-01

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227

  8. Air Pollution Forecasts: An Overview.

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan

    2018-04-17

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  9. Air Pollution Forecasts: An Overview

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2018-04-01

    Full Text Available Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  10. Storm Prediction Center Forecast Products

    Science.gov (United States)

    select the go button to submit request Local forecast by "City, St" or "ZIP" City, St Archive NOAA Weather Radio Research Non-op. Products Forecast Tools Svr. Tstm. Events SPC Publications SPC services. Forecast Products Current Weather Watches This is the current graphic showing any severe

  11. Load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Aalborg Nielsen, Henrik

    This report presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. The load for refrigeration is the sum of all cabinets in the supermarket, both low and medium temperature cabinets, and spans a period of one year. As input to the forecasting models the ambient temperature observed near the supermarket together with weather forecasts are used. Every hour...

  12. Forecasting military expenditure

    Directory of Open Access Journals (Sweden)

    Tobias Böhmelt

    2014-05-01

    Full Text Available To what extent do frequently cited determinants of military spending allow us to predict and forecast future levels of expenditure? The authors draw on the data and specifications of a recent model on military expenditure and assess the predictive power of its variables using in-sample predictions, out-of-sample forecasts and Bayesian model averaging. To this end, this paper provides guidelines for prediction exercises in general using these three techniques. More substantially, however, the findings emphasize that previous levels of military spending as well as a country’s institutional and economic characteristics particularly improve our ability to predict future levels of investment in the military. Variables pertaining to the international security environment also matter, but seem less important. In addition, the results highlight that the updated model, which drops weak predictors, is not only more parsimonious, but also slightly more accurate than the original specification.

  13. The forecaster's added value

    Science.gov (United States)

    Turco, M.; Milelli, M.

    2009-09-01

    To the authors' knowledge there are relatively few studies that try to answer this topic: "Are humans able to add value to computer-generated forecasts and warnings ?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast (see for instance Baars et al., 2005, Charba et al., 2002, Doswell C., 2003, Roebber et al., 1996, Sanders F., 1986). Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human QPF) in terms of an areal average for each of the 13 regional warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS network of rain gauges available that makes possible a high resolution verification. In this context the most useful verification approach is the measure of the QPF and HQPF skills by first converting precipitation expressed as continuous amounts into ‘‘exceedance'' categories (yes-no statements indicating whether precipitation equals or exceeds selected thresholds) and then computing the performances for each threshold. In particular in this work we compare the performances of the latest three years of QPF derived from two meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the

  14. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Forecasting potential crises

    International Nuclear Information System (INIS)

    Neufeld, W.P.

    1984-01-01

    Recently, the Trend Analysis Program (TAP) of the American Council of Life Insurance commissioned the Futures Group of Glastonbury, Connecticut, to examine the potential for large-scale catastrophic events in the near future. TAP was specifically concerned with five potential crises: the warming of the earth's atmosphere, the water shortage, the collapse of the physical infrastructure, the global financial crisis, and the threat of nuclear war. We are often unprepared to take action; in these cases, we lose an advantage we might have otherwise had. This is the whole idea behind forecasting: to foresee possibilities and to project how we can respond. If we are able to create forecasts against which we can test policy options and choices, we may have the luxury of adopting policies ahead of events. Rather than simply fighting fires, we have the option of creating a future more to our choosing. Short descriptions of these five potential crises and, in some cases, possible solutions are presented

  16. Forecasting oilfield economic performance

    International Nuclear Information System (INIS)

    Bradley, M.E.; Wood, A.R.O.

    1994-01-01

    This paper presents a general method for forecasting oilfield economic performance that integrates cost data with operational, reservoir, and financial information. Practices are developed for determining economic limits for an oil field and its components. The economic limits of marginal wells and the role of underground competition receive special attention. Also examined is the influence of oil prices on operating costs. Examples illustrate application of these concepts. Categorization of costs for historical tracking and projections is recommended

  17. Frost Forecasting for Fruitgrowers

    Science.gov (United States)

    Martsolf, J. D.; Chen, E.

    1983-01-01

    Progress in forecasting from satellite data reviewed. University study found data from satellites displayed in color and used to predict frost are valuable aid to agriculture. Study evaluated scheme to use Earth-temperature data from Geostationary Operational Environmental Satellite in computer model that determines when and where freezing temperatures endanger developing fruit crops, such as apples, peaches and cherries in spring and citrus crops in winter.

  18. Uranium price forecasting methods

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1994-01-01

    This article reviews a number of forecasting methods that have been applied to uranium prices and compares their relative strengths and weaknesses. The methods reviewed are: (1) judgemental methods, (2) technical analysis, (3) time-series methods, (4) fundamental analysis, and (5) econometric methods. Historically, none of these methods has performed very well, but a well-thought-out model is still useful as a basis from which to adjust to new circumstances and try again

  19. PyForecastTools

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-22

    The PyForecastTools package provides Python routines for calculating metrics for model validation, forecast verification and model comparison. For continuous predictands the package provides functions for calculating bias (mean error, mean percentage error, median log accuracy, symmetric signed bias), and for calculating accuracy (mean squared error, mean absolute error, mean absolute scaled error, normalized RMSE, median symmetric accuracy). Convenience routines to calculate the component parts (e.g. forecast error, scaled error) of each metric are also provided. To compare models the package provides: generic skill score; percent better. Robust measures of scale including median absolute deviation, robust standard deviation, robust coefficient of variation and the Sn estimator are all provided by the package. Finally, the package implements Python classes for NxN contingency tables. In the case of a multi-class prediction, accuracy and skill metrics such as proportion correct and the Heidke and Peirce skill scores are provided as object methods. The special case of a 2x2 contingency table inherits from the NxN class and provides many additional metrics for binary classification: probability of detection, probability of false detection, false alarm ration, threat score, equitable threat score, bias. Confidence intervals for many of these quantities can be calculated using either the Wald method or Agresti-Coull intervals.

  20. Seismic forecast using geostatistics

    International Nuclear Information System (INIS)

    Grecu, Valeriu; Mateiciuc, Doru

    2007-01-01

    The main idea of this research direction consists in the special way of constructing a new type of mathematical function as being a correlation between a computed statistical quantity and another physical quantity. This type of function called 'position function' was taken over by the authors of this study in the field of seismology with the hope of solving - at least partially - the difficult problem of seismic forecast. The geostatistic method of analysis focuses on the process of energy accumulation in a given seismic area, completing this analysis by a so-called loading function. This function - in fact a temporal function - describes the process of energy accumulation during a seismic cycle from a given seismic area. It was possible to discover a law of evolution of the seismic cycles that was materialized in a so-called characteristic function. This special function will help us to forecast the magnitude and the occurrence moment of the largest earthquake in the analysed area. Since 2000, the authors have been evolving to a new stage of testing: real - time analysis, in order to verify the quality of the method. There were five large earthquakes forecasts. (authors)

  1. Statistical methods for forecasting

    CERN Document Server

    Abraham, Bovas

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists."This book, it must be said, lives up to the words on its advertising cover: ''Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.'' It does just that!"-Journal of the Royal Statistical Society"A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series ...

  2. Analysing UK real estate market forecast disagreement

    OpenAIRE

    McAllister, Patrick; Newell, G.; Matysiak, George

    2005-01-01

    Given the significance of forecasting in real estate investment decisions, this paper investigates forecast uncertainty and disagreement in real estate market forecasts. Using the Investment Property Forum (IPF) quarterly survey amongst UK independent real estate forecasters, these real estate forecasts are compared with actual real estate performance to assess a number of real estate forecasting issues in the UK over 1999-2004, including real estate forecast error, bias and consensus. The re...

  3. Effective Feature Preprocessing for Time Series Forecasting

    DEFF Research Database (Denmark)

    Zhao, Junhua; Dong, Zhaoyang; Xu, Zhao

    2006-01-01

    Time series forecasting is an important area in data mining research. Feature preprocessing techniques have significant influence on forecasting accuracy, therefore are essential in a forecasting model. Although several feature preprocessing techniques have been applied in time series forecasting...... performance in time series forecasting. It is demonstrated in our experiment that, effective feature preprocessing can significantly enhance forecasting accuracy. This research can be a useful guidance for researchers on effectively selecting feature preprocessing techniques and integrating them with time...... series forecasting models....

  4. EU pharmaceutical expenditure forecast.

    Science.gov (United States)

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States' pharmaceutical budgets. This model took into account population ageing, as well as current and future country-specific pricing, reimbursement, and market access policies (the project was performed for the European Commission; see http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). In order to have a representative heterogeneity of EU Member States, the following countries were selected for the analysis: France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. A forecasting period of 5 years (2012-2016) was chosen to assess the net pharmaceutical budget impact. A model for generics and biosimilars was developed for each country. The model estimated a separate and combined effect of the direct and indirect impacts of the patent cliff. A second model, estimating the sales development and the risk of development failure, was developed for new drugs. New drugs were reviewed individually to assess their clinical potential and translate it into commercial potential. The forecast was carried out according to three perspectives (healthcare public payer, society, and manufacturer), and several types of distribution chains (retail, hospital, and combined retail and hospital). Probabilistic and deterministic sensitivity analyses were carried out. According to the model, all countries experienced drug budget reductions except Poland (+€41 million). Savings were expected to be the highest in the United Kingdom (-€9,367 million), France (-€5,589 million), and, far behind them

  5. Evaluation of Probabilistic Disease Forecasts.

    Science.gov (United States)

    Hughes, Gareth; Burnett, Fiona J

    2017-10-01

    The statistical evaluation of probabilistic disease forecasts often involves calculation of metrics defined conditionally on disease status, such as sensitivity and specificity. However, for the purpose of disease management decision making, metrics defined conditionally on the result of the forecast-predictive values-are also important, although less frequently reported. In this context, the application of scoring rules in the evaluation of probabilistic disease forecasts is discussed. An index of separation with application in the evaluation of probabilistic disease forecasts, described in the clinical literature, is also considered and its relation to scoring rules illustrated. Scoring rules provide a principled basis for the evaluation of probabilistic forecasts used in plant disease management. In particular, the decomposition of scoring rules into interpretable components is an advantageous feature of their application in the evaluation of disease forecasts.

  6. Operational hydrological forecasting in Bavaria. Part I: Forecast uncertainty

    Science.gov (United States)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In Bavaria, operational flood forecasting has been established since the disastrous flood of 1999. Nowadays, forecasts based on rainfall information from about 700 raingauges and 600 rivergauges are calculated and issued for nearly 100 rivergauges. With the added experience of the 2002 and 2005 floods, awareness grew that the standard deterministic forecast, neglecting the uncertainty associated with each forecast is misleading, creating a false feeling of unambiguousness. As a consequence, a system to identify, quantify and communicate the sources and magnitude of forecast uncertainty has been developed, which will be presented in part I of this study. In this system, the use of ensemble meteorological forecasts plays a key role which will be presented in part II. Developing the system, several constraints stemming from the range of hydrological regimes and operational requirements had to be met: Firstly, operational time constraints obviate the variation of all components of the modeling chain as would be done in a full Monte Carlo simulation. Therefore, an approach was chosen where only the most relevant sources of uncertainty were dynamically considered while the others were jointly accounted for by static error distributions from offline analysis. Secondly, the dominant sources of uncertainty vary over the wide range of forecasted catchments: In alpine headwater catchments, typically of a few hundred square kilometers in size, rainfall forecast uncertainty is the key factor for forecast uncertainty, with a magnitude dynamically changing with the prevailing predictability of the atmosphere. In lowland catchments encompassing several thousands of square kilometers, forecast uncertainty in the desired range (usually up to two days) is mainly dependent on upstream gauge observation quality, routing and unpredictable human impact such as reservoir operation. The determination of forecast uncertainty comprised the following steps: a) From comparison of gauge

  7. Global Energy Forecasting Competition 2012

    DEFF Research Database (Denmark)

    Hong, Tao; Pinson, Pierre; Fan, Shu

    2014-01-01

    The Global Energy Forecasting Competition (GEFCom2012) attracted hundreds of participants worldwide, who contributed many novel ideas to the energy forecasting field. This paper introduces both tracks of GEFCom2012, hierarchical load forecasting and wind power forecasting, with details...... on the aspects of the problem, the data, and a summary of the methods used by selected top entries. We also discuss the lessons learned from this competition from the organizers’ perspective. The complete data set, including the solution data, is published along with this paper, in an effort to establish...

  8. Forecasting in Complex Systems

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification

  9. Flood Forecasting Based on TIGGE Precipitation Ensemble Forecast

    Directory of Open Access Journals (Sweden)

    Jinyin Ye

    2016-01-01

    Full Text Available TIGGE (THORPEX International Grand Global Ensemble was a major part of the THORPEX (Observing System Research and Predictability Experiment. It integrates ensemble precipitation products from all the major forecast centers in the world and provides systematic evaluation on the multimodel ensemble prediction system. Development of meteorologic-hydrologic coupled flood forecasting model and early warning model based on the TIGGE precipitation ensemble forecast can provide flood probability forecast, extend the lead time of the flood forecast, and gain more time for decision-makers to make the right decision. In this study, precipitation ensemble forecast products from ECMWF, NCEP, and CMA are used to drive distributed hydrologic model TOPX. We focus on Yi River catchment and aim to build a flood forecast and early warning system. The results show that the meteorologic-hydrologic coupled model can satisfactorily predict the flow-process of four flood events. The predicted occurrence time of peak discharges is close to the observations. However, the magnitude of the peak discharges is significantly different due to various performances of the ensemble prediction systems. The coupled forecasting model can accurately predict occurrence of the peak time and the corresponding risk probability of peak discharge based on the probability distribution of peak time and flood warning, which can provide users a strong theoretical foundation and valuable information as a promising new approach.

  10. Radiation exposure on flights; Strahlenexposition beim Fliegen. Ein Fall fuer den Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Blettner, Maria [Mainz Univ. (Germany). Inst. fuer Medizinische Biometrie, Epidemiologie und Informatik (IMBEI); Boehm, Theresia; Eberbach, Frieder [Vereinigung Cockpit e.V. Main Airport Center (MAC), Frankfurt (Germany). AG Strahlenschutz; Bottollier-Depois, Jean-Francois [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France); Clairand, Isabelle; Huet, Christelle [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France). Ionizing Radiation Dosimetry Lab.; Frasch, Gerhard [Bundesamt fuer Strahlenschutz, Oberschleissheim/Neuherberg (Germany). Beruflicher Strahlenschutz und Strahlenschutzregister; Hammer, Ga el P. [Laboratoire National de Sante E.P., Dudelange (Luxembourg). Registre Morphologique des Tumeurs; Mares, Vladimir; Ruehm, Werner [Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH, Neuherberg (Germany); Voelkle, Hansruedi [Fribourg Univ. (Switzerland). Physikdept.

    2014-09-01

    Extend and effects of radiation doses occuring during flights are treated under various aspects. Part of them are, in the first line, radiation exposure of the flying staff and the results of epidemiologic studies regarding the health consequences, as well as aspects of practical radiation protection for the flying staff. Computer programs for dose calculation on flights round off the theme. (orig.)

  11. FORECASTING NEW PRODUCT SALES

    Directory of Open Access Journals (Sweden)

    R. Siriram

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper tests the accuracy of using Linear regression, Logistics regression, and Bass curves in selected new product rollouts, based on sales data. The selected new products come from the electronics and electrical engineering and information and communications technology industries. The eight selected products are: electronic switchgear, electric motors, supervisory control and data acquisition systems, programmable logic controllers, cell phones, wireless modules, routers, and antennas. We compare the Linear regression, Logistics regression and Bass curves with respect to forecasting using analysis of variance. The accuracy of these three curves is studied and conclusions are drawn. We use an expert panel to compare the different curves and provide lessons for managers to improve forecasting new product sales. In addition, comparison between the two industries is drawn, and areas for further research are indicated.

    AFRIKAANSE OPSOMMING: Hierdie artikel toets die akkuraatheid van die gebruik van linêere regressie, logistiese regressie en Bass-krommes by die bekendstelling van nuwe produkte gebaseer op verkoopsdata. Die geselekteerde nuwe produkte is uit die elektriese en elektroniese asook informasietegnologie- en kommunikasie bedrywe. Linêere regressie, logistiese regressie en Bass-krommes word vergelyk ten opsigte van vooruitskatting deur variansie te ontleed. Die akkuraatheid word ontleed en gevolgtrekkings gemaak. Die doel is om vooruitskatting van nuwe produkverkope te verbeter.

  12. Issues in Forecasting CMEs

    Science.gov (United States)

    Pizzo, V. J.

    2017-12-01

    I will present my view of the current status of space weather forecasting abilities related to CMEs. This talk will address the large-scale aspects, but specifically not energetic particle phenomena. A key point is that all models, whether sophisticated numerical contraptions or quasi-empirical ones, are only as good as the data you feed them. Hence the emphasis will be on observations and analysis methods. First I will review where we stand with regard to the near-Sun quantitative data needed to drive any model, no matter how complex or simple-minded, and I will discuss technological roadblocks that suggest it may be some time before we see any meaningful improvements beyond what we have today. Then I cover issues related to characterizing CME propagation out through the corona and into interplanetary space, as well as to observational limitations in the vicinity of 1 AU. Since none of these observational constraints are likely to be resolved anytime soon, the real challenge is to make more informed use of what is available. Thus, this talk will focus on how we may identify and pursue the most profitable approaches, for both forecast and research applications. The discussion will highlight a number of promising leads, including those related to inclusion of solar backside information, joint magnetograph observations from L5 and Earth, how to use (not just run) ensembles, more rational use of HI observations, and suggestions for using cube-sats for deep space observations of CMEs and MCs.

  13. Global Ensemble Forecast System (GEFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  14. Guidelines for forecasting energy demand

    International Nuclear Information System (INIS)

    Sonino, T.

    1976-11-01

    Four methodologies for forecasting energy demand are reviewed here after considering the role of energy in the economy and the analysis of energy use in different economic sectors. The special case of Israel is considered throughout, and some forecasts for energy demands in the year 2000 are presented. An energy supply mix that may be considered feasible is proposed. (author)

  15. Regional-seasonal weather forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  16. Forecasting the future of biodiversity

    DEFF Research Database (Denmark)

    Fitzpatrick, M. C.; Sanders, Nate; Ferrier, Simon

    2011-01-01

    , but their application to forecasting climate change impacts on biodiversity has been limited. Here we compare forecasts of changes in patterns of ant biodiversity in North America derived from ensembles of single-species models to those from a multi-species modeling approach, Generalized Dissimilarity Modeling (GDM...... climate change impacts on biodiversity....

  17. Forecasts: uncertain, inaccurate and biased?

    DEFF Research Database (Denmark)

    Nicolaisen, Morten Skou; Ambrasaite, Inga; Salling, Kim Bang

    2012-01-01

    Cost Benefit Analysis (CBA) is the dominating methodology for appraisal of transport infrastructure projects across the globe. In order to adequately assess the costs and benefits of such projects two types of forecasts are crucial to the validity of the appraisal. First are the forecasts of cons....... It is recommended that more attention is given to monitoring completed projects so future forecasts can benefit from better data availability through systematic ex-post evaluations, and an example of how to utilize such data in practice is presented.......Cost Benefit Analysis (CBA) is the dominating methodology for appraisal of transport infrastructure projects across the globe. In order to adequately assess the costs and benefits of such projects two types of forecasts are crucial to the validity of the appraisal. First are the forecasts...... of construction costs, which account for the majority of total project costs. Second are the forecasts of travel time savings, which account for the majority of total project benefits. The latter of these is, inter alia, determined by forecasts of travel demand, which we shall use as a proxy for the forecasting...

  18. Ensemble hydromoeteorological forecasting in Denmark

    DEFF Research Database (Denmark)

    Lucatero Villasenor, Diana

    forecasts where a dampening of the differences of precipitation quality occurs. Seasonal meteorological forecasts are possible due to changes of large scale patterns of the ocean and land, such as el Niño, that evolve at a much slower pace than the atmosphere, which can have an impact on its evolution later...

  19. Now, Here's the Weather Forecast...

    Science.gov (United States)

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  20. Method of forecasting power distribution

    International Nuclear Information System (INIS)

    Kaneto, Kunikazu.

    1981-01-01

    Purpose: To obtain forecasting results at high accuracy by reflecting the signals from neutron detectors disposed in the reactor core on the forecasting results. Method: An on-line computer transfers, to a simulator, those process data such as temperature and flow rate for coolants in each of the sections and various measuring signals such as control rod positions from the nuclear reactor. The simulator calculates the present power distribution before the control operation. The signals from the neutron detectors at each of the positions in the reactor core are estimated from the power distribution and errors are determined based on the estimated values and the measured values to determine the smooth error distribution in the axial direction. Then, input conditions at the time to be forecast are set by a data setter. The simulator calculates the forecast power distribution after the control operation based on the set conditions. The forecast power distribution is corrected using the error distribution. (Yoshino, Y.)

  1. Energy forecasts, perspectives and methods

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J E; Mogren, A

    1984-01-01

    The authors have analyzed different methods for long term energy prognoses, in particular energy consumption forecasts. Energy supply and price prognoses are also treated, but in a less detailed manner. After defining and discussing the various methods/models used in forecasts, a generalized discussion of the influence on the prognoses from the perspectives (background factors, world view, norms, ideology) of the prognosis makers is given. Some basic formal demands that should be asked from any rational forecast are formulated and discussed. The authors conclude that different forecasting methodologies are supplementing each other. There is no best method, forecasts should be accepted as views of the future from differing perspectives. The primary prognostic problem is to show the possible futures, selecting the wanted future is a question of political process.

  2. Sirocco - Fukushima Forecast Description

    International Nuclear Information System (INIS)

    2011-01-01

    SYMPHONIE-NH is the non-hydrostatic ocean model following the Boussinesq hydrostatic SYMPHONIE-2010 model developed by the Sirocco system team (CNRS and Toulouse University). Both are using an Arakawa type finite difference method for the C grid. The R and D team generally gives priority to a physically based approach of modelling (global conservation of the mechanical energy, consistency of pressure and density, accuracy of the bottom pressure torque,...) that tends to favour low order and robust numerical schemes. Most of the physical and numerical options (Non-Hydrostatic, free surface, generalised coordinates combined to an ALE method,...) are particularly suitable for the coastal area. At the request of the International Atomic Energy Agency (IAEA, March 14, 2011), SIROCCO is delivering every day a real time 6-day forecast bulletin of the dispersion in seawater of radionuclides emitted by the Fukushima nuclear plant. The simulations are based on the S2010.18 release of the 3D SIROCCO ocean circulation model. The system is operational since March 24 and the bulletin is available on an 'open-access' basis since March 28. The model uses a stretched horizontal grid with a variable horizontal resolution: from 600 m x 600 m at the nearest grid point from Fukushima, to 5 km x 5 km offshore. The initial fields (T, S, U, V, SSH) and the lateral open boundary conditions are provided by the Mercator PSY4V1R3 system (one field per day, horizontal resolution 1/12 deg. x 1/12 deg.). At the sea surface, the ocean model is forced by the meteorological fluxes delivered every 3 hours by ECMWF.i The tidal forcing at the lateral open boundaries is provided by the T-UGO model, implemented for this purpose by the SIROCCO team on the Japanese Pacific coast. Some details are given on the methodology: Bathymetry, Initialization and large scale forcing, Tides, Atmospheric forcing, Forecast protocol, and Scenario for radioactive tracers

  3. Sirocco - Fukushima Forecast Description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-04-10

    SYMPHONIE-NH is the non-hydrostatic ocean model following the Boussinesq hydrostatic SYMPHONIE-2010 model developed by the Sirocco system team (CNRS and Toulouse University). Both are using an Arakawa type finite difference method for the C grid. The R and D team generally gives priority to a physically based approach of modelling (global conservation of the mechanical energy, consistency of pressure and density, accuracy of the bottom pressure torque,...) that tends to favour low order and robust numerical schemes. Most of the physical and numerical options (Non-Hydrostatic, free surface, generalised coordinates combined to an ALE method,...) are particularly suitable for the coastal area. At the request of the International Atomic Energy Agency (IAEA, March 14, 2011), SIROCCO is delivering every day a real time 6-day forecast bulletin of the dispersion in seawater of radionuclides emitted by the Fukushima nuclear plant. The simulations are based on the S2010.18 release of the 3D SIROCCO ocean circulation model. The system is operational since March 24 and the bulletin is available on an 'open-access' basis since March 28. The model uses a stretched horizontal grid with a variable horizontal resolution: from 600 m x 600 m at the nearest grid point from Fukushima, to 5 km x 5 km offshore. The initial fields (T, S, U, V, SSH) and the lateral open boundary conditions are provided by the Mercator PSY4V1R3 system (one field per day, horizontal resolution 1/12 deg. x 1/12 deg.). At the sea surface, the ocean model is forced by the meteorological fluxes delivered every 3 hours by ECMWF.i The tidal forcing at the lateral open boundaries is provided by the T-UGO model, implemented for this purpose by the SIROCCO team on the Japanese Pacific coast. Some details are given on the methodology: Bathymetry, Initialization and large scale forcing, Tides, Atmospheric forcing, Forecast protocol, and Scenario for radioactive tracers

  4. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  5. Climate Forecast System Version 2 (CFSv2) Operational Forecasts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Forecast System Version 2 (CFSv2) produced by the NOAA National Centers for Environmental Prediction (NCEP) is a fully coupled model representing the...

  6. Black Sea coastal forecasting system

    Directory of Open Access Journals (Sweden)

    A. I. Kubryakov

    2012-03-01

    Full Text Available The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast.

  7. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    Science.gov (United States)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  8. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  9. 25 years of time series forecasting

    NARCIS (Netherlands)

    de Gooijer, J.G.; Hyndman, R.J.

    2006-01-01

    We review the past 25 years of research into time series forecasting. In this silver jubilee issue, we naturally highlight results published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985 and International Journal of Forecasting 1985-2005). During

  10. Estimates of Uncertainty around the RBA's Forecasts

    OpenAIRE

    Peter Tulip; Stephanie Wallace

    2012-01-01

    We use past forecast errors to construct confidence intervals and other estimates of uncertainty around the Reserve Bank of Australia's forecasts of key macroeconomic variables. Our estimates suggest that uncertainty about forecasts is high. We find that the RBA's forecasts have substantial explanatory power for the inflation rate but not for GDP growth.

  11. Recurrent networks for wave forecasting

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper presents an application of the Artificial Neural Network, namely Backpropagation Recurrent Neural Network (BRNN) with rprop update algorithm for wave forecasting...

  12. Ensemble forecasting of species distributions.

    Science.gov (United States)

    Araújo, Miguel B; New, Mark

    2007-01-01

    Concern over implications of climate change for biodiversity has led to the use of bioclimatic models to forecast the range shifts of species under future climate-change scenarios. Recent studies have demonstrated that projections by alternative models can be so variable as to compromise their usefulness for guiding policy decisions. Here, we advocate the use of multiple models within an ensemble forecasting framework and describe alternative approaches to the analysis of bioclimatic ensembles, including bounding box, consensus and probabilistic techniques. We argue that, although improved accuracy can be delivered through the traditional tasks of trying to build better models with improved data, more robust forecasts can also be achieved if ensemble forecasts are produced and analysed appropriately.

  13. Forecasting and management of technology

    National Research Council Canada - National Science Library

    Roper, A. T

    2011-01-01

    .... The scope of this edition has broadened to include management of technology content that is relevant to now to executives in organizations while updating and strengthening the technology forecasting...

  14. Forecasting Croatian inbound tourism demand

    OpenAIRE

    Tica, Josip; Kožić, Ivan

    2015-01-01

    The aim of this paper is to present a forecasting model for the overnight stays of foreign tourists in Croatia. Tourism is one of the most important parts of the Croatian economy. It is particularly important in the context of the services sector. Regular and significant surpluses and the consumption of foreign guests are an important element of budget revenues, especially VAT. The ability to forecast the development of inbound tourism demand in a timely manner is crucial for both business...

  15. Preparing for an Uncertain Forecast

    Science.gov (United States)

    Karolak, Eric

    2011-01-01

    Navigating the world of government relations and public policy can be a little like predicting the weather. One can't always be sure what's in store or how it will affect him/her down the road. But there are common patterns and a few basic steps that can help one best prepare for a change in the forecast. Though the forecast is uncertain, early…

  16. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  17. Forecasting market developments

    International Nuclear Information System (INIS)

    Weller, T.

    1997-01-01

    Traditional planning in essence consists of linear extrapolation of established facts and experience. This approach was good enough until recently, when progress would be relatively foreseeable within a stable system. The situation has been changing with developments and modifications in the global economic sector proceeding at accelerated pace, so that conventional planning methods become hopelessly inadequate. The past is of low significance to emerging markets; planners today have to keep abreast with and take into account the possible and emerging influencing factors. Experience is a factor to be replaced by intelligent analysis and conclusion within the framework of system networks. Modern scenario modelling methods are based on this approach: They are able to simulate and forecast a whole range of ''possible futures'', derived from perceivable trends. The article illustrates the novel planning methodology by assessing the future of the renewable energy sources, applying a computerized planning method (vision design) which is based on intelligent comparative analysis of all relevant trends. (Orig./RHM) [de

  18. Quantile forecast discrimination ability and value

    DEFF Research Database (Denmark)

    Ben Bouallègue, Zied; Pinson, Pierre; Friederichs, Petra

    2015-01-01

    While probabilistic forecast verification for categorical forecasts is well established, some of the existing concepts and methods have not found their equivalent for the case of continuous variables. New tools dedicated to the assessment of forecast discrimination ability and forecast value are ...... is illustrated based on synthetic datasets, as well as for the case of global radiation forecasts from the high resolution ensemble COSMO-DE-EPS of the German Weather Service....

  19. Evaluating long term forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Lady, George M. [Department of Economics, College of Liberal Arts, Temple University, Philadelphia, PA 19122 (United States)

    2010-03-15

    The U.S. Department of Energy's Energy Information Administration (EIA), and its predecessor organizations, has published projections of U.S. energy production, consumption, distribution and prices annually for over 30 years. A natural issue to raise in evaluating the projections is an assessment of their accuracy compared to eventual outcomes. A related issue is the determination of the sources of 'error' in the projections that are due to differences between the actual versus realized values of the associated assumptions. One way to do this would be to run the computer-based model from which the projections are derived at the time the projected values are realized, using actual rather than assumed values for model assumptions; and, compare these results to the original projections. For long term forecasts, this approach would require that the model's software and hardware configuration be archived and available for many years, possibly decades, into the future. Such archival creates many practical problems; and, in general, it is not being done. This paper reports on an alternative approach for evaluating the projections. In the alternative approach, the model is run many times for cases in which important assumptions are changed individually and in combinations. A database is assembled from the solutions and a regression analysis is conducted for each important projected variable with the associated assumptions chosen as exogenous variables. When actual data are eventually available, the regression results are then used to estimate the sources of the differences in the projections of the endogenous variables compared to their eventual outcomes. The results presented here are for residential and commercial sector natural gas and electricity consumption. (author)

  20. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond

    DEFF Research Database (Denmark)

    Hong, Tao; Pinson, Pierre; Fan, Shu

    2016-01-01

    The energy industry has been going through a significant modernization process over the last decade. Its infrastructure is being upgraded rapidly. The supply, demand and prices are becoming more volatile and less predictable than ever before. Even its business model is being challenged fundamenta......The energy industry has been going through a significant modernization process over the last decade. Its infrastructure is being upgraded rapidly. The supply, demand and prices are becoming more volatile and less predictable than ever before. Even its business model is being challenged...... fundamentally. In this competitive and dynamic environment, many decision-making processes rely on probabilistic forecasts to quantify the uncertain future. Although most of the papers in the energy forecasting literature focus on point or singlevalued forecasts, the research interest in probabilistic energy...

  1. Bayesian flood forecasting methods: A review

    Science.gov (United States)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  2. Dynamic SEP event probability forecasts

    Science.gov (United States)

    Kahler, S. W.; Ling, A.

    2015-10-01

    The forecasting of solar energetic particle (SEP) event probabilities at Earth has been based primarily on the estimates of magnetic free energy in active regions and on the observations of peak fluxes and fluences of large (≥ M2) solar X-ray flares. These forecasts are typically issued for the next 24 h or with no definite expiration time, which can be deficient for time-critical operations when no SEP event appears following a large X-ray flare. It is therefore important to decrease the event probability forecast with time as a SEP event fails to appear. We use the NOAA listing of major (≥10 pfu) SEP events from 1976 to 2014 to plot the delay times from X-ray peaks to SEP threshold onsets as a function of solar source longitude. An algorithm is derived to decrease the SEP event probabilities with time when no event is observed to reach the 10 pfu threshold. In addition, we use known SEP event size distributions to modify probability forecasts when SEP intensity increases occur below the 10 pfu event threshold. An algorithm to provide a dynamic SEP event forecast, Pd, for both situations of SEP intensities following a large flare is derived.

  3. Automation of energy demand forecasting

    Science.gov (United States)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  4. Economic impact analysis of load forecasting

    International Nuclear Information System (INIS)

    Ranaweera, D.K.; Karady, G.G.; Farmer, R.G.

    1997-01-01

    Short term load forecasting is an essential function in electric power system operations and planning. Forecasts are needed for a variety of utility activities such as generation scheduling, scheduling of fuel purchases, maintenance scheduling and security analysis. Depending on power system characteristics, significant forecasting errors can lead to either excessively conservative scheduling or very marginal scheduling. Either can induce heavy economic penalties. This paper examines the economic impact of inaccurate load forecasts. Monte Carlo simulations were used to study the effect of different load forecasting accuracy. Investigations into the effect of improving the daily peak load forecasts, effect of different seasons of the year and effect of utilization factors are presented

  5. Urban runoff forecasting with ensemble weather predictions

    DEFF Research Database (Denmark)

    Pedersen, Jonas Wied; Courdent, Vianney Augustin Thomas; Vezzaro, Luca

    This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice.......This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice....

  6. Two approaches to forecast Ebola synthetic epidemics.

    Science.gov (United States)

    Champredon, David; Li, Michael; Bolker, Benjamin M; Dushoff, Jonathan

    2018-03-01

    We use two modelling approaches to forecast synthetic Ebola epidemics in the context of the RAPIDD Ebola Forecasting Challenge. The first approach is a standard stochastic compartmental model that aims to forecast incidence, hospitalization and deaths among both the general population and health care workers. The second is a model based on the renewal equation with latent variables that forecasts incidence in the whole population only. We describe fitting and forecasting procedures for each model and discuss their advantages and drawbacks. We did not find that one model was consistently better in forecasting than the other. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Medium Range Forecasts Representation (and Long Range Forecasts?)

    Science.gov (United States)

    Vincendon, J.-C.

    2009-09-01

    The progress of the numerical forecasts urges us to interest us in more and more distant ranges. We thus supply more and more forecasts with term of some days. Nevertheless, precautions of use are necessary to give the most reliable and the most relevant possible information. Available in a TV bulletin or on quite other support (Internet, mobile phone), the interpretation and the representation of a medium range forecast (5 - 15 days) must be different from those of a short range forecast. Indeed, the "foresee-ability” of a meteorological phenomenon decreases gradually in the course of the ranges, it decreases all the more quickly that the phenomenon is of small scale. So, at the end of some days, the probability character of a forecast becomes very widely dominating. That is why in Meteo-France the forecasts of D+4 to D+7 are accompanied with a confidence index since around ten years. It is a figure between 1 and 5: the more we approach 5, the more the confidence in the supplied forecast is good. In the practice, an indication is supplied for period D+4 / D+5, the other one for period D+6 / D+7, every day being able to benefit from a different forecast, that is be represented in a independent way. We thus supply a global tendency over 24 hours with less and less precise symbols as the range goes away. Concrete examples will be presented. From now on two years, we also publish forecasts to D+8 / J+9, accompanied with a sign of confidence (" good reliability " or " to confirm "). These two days are grouped together on a single map because for us, the described tendency to this term is relevant on a duration about 48 hours with a spatial scale slightly superior to the synoptic scale. So, we avoid producing more than two zones of types of weather over France and we content with giving an evolution for the temperatures (still, in increase or in decline). Newspapers began to publish this information, it should soon be the case of televisions. It is particularly

  8. Uncertainties in Forecasting Streamflow using Entropy Theory

    Science.gov (United States)

    Cui, H.; Singh, V. P.

    2017-12-01

    Streamflow forecasting is essential in river restoration, reservoir operation, power generation, irrigation, navigation, and water management. However, there is always uncertainties accompanied in forecast, which may affect the forecasting results and lead to large variations. Therefore, uncertainties must be considered and be assessed properly when forecasting streamflow for water management. The aim of our work is to quantify the uncertainties involved in forecasting streamflow and provide reliable streamflow forecast. Despite that streamflow time series are stochastic, they exhibit seasonal and periodic patterns. Therefore, streamflow forecasting entails modeling seasonality, periodicity, and its correlation structure, and assessing uncertainties. This study applies entropy theory to forecast streamflow and measure uncertainties during the forecasting process. To apply entropy theory for streamflow forecasting, spectral analysis is combined to time series analysis, as spectral analysis can be employed to characterize patterns of streamflow variation and identify the periodicity of streamflow. That is, it permits to extract significant information for understanding the streamflow process and prediction thereof. Application of entropy theory for streamflow forecasting involves determination of spectral density, determination of parameters, and extension of autocorrelation function. The uncertainties brought by precipitation input, forecasting model and forecasted results are measured separately using entropy. With information theory, how these uncertainties transported and aggregated during these processes will be described.

  9. Forecast Combination under Heavy-Tailed Errors

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    2015-11-01

    Full Text Available Forecast combination has been proven to be a very important technique to obtain accurate predictions for various applications in economics, finance, marketing and many other areas. In many applications, forecast errors exhibit heavy-tailed behaviors for various reasons. Unfortunately, to our knowledge, little has been done to obtain reliable forecast combinations for such situations. The familiar forecast combination methods, such as simple average, least squares regression or those based on the variance-covariance of the forecasts, may perform very poorly due to the fact that outliers tend to occur, and they make these methods have unstable weights, leading to un-robust forecasts. To address this problem, in this paper, we propose two nonparametric forecast combination methods. One is specially proposed for the situations in which the forecast errors are strongly believed to have heavy tails that can be modeled by a scaled Student’s t-distribution; the other is designed for relatively more general situations when there is a lack of strong or consistent evidence on the tail behaviors of the forecast errors due to a shortage of data and/or an evolving data-generating process. Adaptive risk bounds of both methods are developed. They show that the resulting combined forecasts yield near optimal mean forecast errors relative to the candidate forecasts. Simulations and a real example demonstrate their superior performance in that they indeed tend to have significantly smaller prediction errors than the previous combination methods in the presence of forecast outliers.

  10. Forecasting Macroeconomic Labour Market Flows

    DEFF Research Database (Denmark)

    Wilke, Ralf

    2017-01-01

    Forecasting labour market flows is important for budgeting and decision-making in government departments and public administration. Macroeconomic forecasts are normally obtained from time series data. In this article, we follow another approach that uses individual-level statistical analysis...... to predict the number of exits out of unemployment insurance claims. We present a comparative study of econometric, actuarial and statistical methodologies that base on different data structures. The results with records of the German unemployment insurance suggest that prediction based on individual-level...

  11. Forecast communication through the newspaper Part 1: Framing the forecaster

    Science.gov (United States)

    Harris, Andrew J. L.

    2015-04-01

    This review is split into two parts both of which address issues of forecast communication of an environmental disaster through the newspaper during a period of crisis. The first part explores the process by which information passes from the scientist or forecaster, through the media filter, to the public. As part of this filter preference, omission, selection of data, source, quote and story, as well as placement of the same information within an individual piece or within the newspaper itself, can serve to distort the message. The result is the introduction of bias and slant—that is, the message becomes distorted so as to favor one side of the argument against another as it passes through the filter. Bias can be used to support spin or agenda setting, so that a particular emphasis becomes placed on the story which exerts an influence on the reader's judgment. The net result of the filter components is either a negative (contrary) or positive (supportive) frame. Tabloidization of the news has also resulted in the use of strong, evocative, exaggerated words, headlines and images to support a frame. I illustrate these various elements of the media filter using coverage of the air space closure due to the April 2010 eruption of Eyjafjallajökull (Iceland). Using the British press coverage of this event it is not difficult to find examples of all media filter elements, application of which resulted in bias against the forecast and forecaster. These actors then became named and blamed. Within this logic, it becomes only too easy for forecasters and scientists to be framed in a negative way through blame culture. The result is that forecast is framed in such a way so as to cause the forecaster to be blamed for all losses associated with the loss-causing event. Within the social amplification of risk framework (SARF), this can amplify a negative impression of the risk, the event and the response. However, actions can be taken to avoid such an outcome. These actions

  12. Meteorologically Driven Dengue and Chikungunya Forecasts

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to incorporate weather forecasts and reported DF and ChikV case data into a disease transmission model to forecast disease case numbers...

  13. Global Forecast System (GFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and...

  14. EMC: Air Quality Forecast Home page

    Science.gov (United States)

    Modeling with NCEP NMMB ( Z. Janjic) ECMWF GEMS Project WMO Sand and Dust Storm Warning and Advisory System Air Quality Forecast Links U.S. AQ Forecast Products Canadian AQ Forecastsp Navy Aerosol Prediction

  15. Modelling and Forecasting Multivariate Realized Volatility

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    2011-01-01

    This paper proposes a methodology for dynamic modelling and forecasting of realized covariance matrices based on fractionally integrated processes. The approach allows for flexible dependence patterns and automatically guarantees positive definiteness of the forecast. We provide an empirical appl...

  16. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to

  17. On Long Memory Origins and Forecast Horizons

    DEFF Research Database (Denmark)

    Vera-Valdés, J. Eduardo

    Most long memory forecasting studies assume that the memory is generated by the fractional difference operator. We argue that the most cited theoretical arguments for the presence of long memory do not imply the fractional difference operator, and assess the performance of the autoregressive...... fractionally integrated moving average (ARFIMA) model when forecasting series with long memory generated by nonfractional processes. We find that high-order autoregressive (AR) models produce similar or superior forecast performance than ARFIMA models at short horizons. Nonetheless, as the forecast horizon...... increases, the ARFIMA models tend to dominate in forecast performance. Hence, ARFIMA models are well suited for forecasts of long memory processes regardless of the long memory generating mechanism, particularly for medium and long forecast horizons. Additionally, we analyse the forecasting performance...

  18. The role of forecasts in monetary policy

    OpenAIRE

    Jeffery D. Amato; Thomas Laubach

    2000-01-01

    Forecasts of future economic developments play an important role for the monetary policy decisions of central banks. For example, forecasts of goal variables can help central banks achieve their goals and make them more accountable to the public. There are two primary explanations for the benefits of forecasts. The first is that monetary policy affects goal variables such as inflation and output only with substantial lags. Policy actions should, therefore, be based on forecasts of goal variab...

  19. A Delphi forecast of technology in education

    Science.gov (United States)

    Robinson, B. E.

    1973-01-01

    The results are reported of a Delphi forecast of the utilization and social impacts of large-scale educational telecommunications technology. The focus is on both forecasting methodology and educational technology. The various methods of forecasting used by futurists are analyzed from the perspective of the most appropriate method for a prognosticator of educational technology, and review and critical analysis are presented of previous forecasts and studies. Graphic responses, summarized comments, and a scenario of education in 1990 are presented.

  20. Neural Network Models for Time Series Forecasts

    OpenAIRE

    Tim Hill; Marcus O'Connor; William Remus

    1996-01-01

    Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...

  1. A nonparametric approach to forecasting realized volatility

    OpenAIRE

    Adam Clements; Ralf Becker

    2009-01-01

    A well developed literature exists in relation to modeling and forecasting asset return volatility. Much of this relate to the development of time series models of volatility. This paper proposes an alternative method for forecasting volatility that does not involve such a model. Under this approach a forecast is a weighted average of historical volatility. The greatest weight is given to periods that exhibit the most similar market conditions to the time at which the forecast is being formed...

  2. Worldwide satellite market demand forecast

    Science.gov (United States)

    Bowyer, J. M.; Frankfort, M.; Steinnagel, K. M.

    1981-01-01

    The forecast is for the years 1981 - 2000 with benchmark years at 1985, 1990 and 2000. Two typs of markets are considered for this study: Hardware (worldwide total) - satellites, earth stations and control facilities (includes replacements and spares); and non-hardware (addressable by U.S. industry) - planning, launch, turnkey systems and operations. These markets were examined for the INTELSAT System (international systems and domestic and regional systems using leased transponders) and domestic and regional systems. Forecasts were determined for six worldwide regions encompassing 185 countries using actual costs for existing equipment and engineering estimates of costs for advanced systems. Most likely (conservative growth rate estimates) and optimistic (mid range growth rate estimates) scenarios were employed for arriving at the forecasts which are presented in constant 1980 U.S. dollars. The worldwide satellite market demand forecast predicts that the market between 181 and 2000 will range from $35 to $50 billion. Approximately one-half of the world market, $16 to $20 billion, will be generated in the United States.

  3. In Brief: Forecasting meningitis threats

    Science.gov (United States)

    Showstack, Randy

    2008-12-01

    The University Corporation for Atmospheric Research (UCAR), in conjunction with a team of health and weather organizations, has launched a project to provide weather forecasts to medical officials in Africa to help reduce outbreaks of meningitis. The forecasts will enable local health care providers to target vaccination programs more effectively. In 2009, meteorologists with the National Center for Atmospheric Research, which is managed by UCAR, will begin issuing 14-day forecasts of atmospheric conditions in Ghana. Later, UCAR plans to work closely with health experts from several African countries to design and test a decision support system to provide health officials with useful meteorological information. ``By targeting forecasts in regions where meningitis is a threat, we may be able to help vulnerable populations. Ultimately, we hope to build on this project and provide information to public health programs battling weather-related diseases in other parts of the world,'' said Rajul Pandya, director of UCAR's Community Building Program. Funding for the project comes from a $900,000 grant from Google.org, the philanthropic arm of the Internet search company.

  4. Forecasting reliability of transformer populations

    NARCIS (Netherlands)

    Schijndel, van A.; Wetzer, J.; Wouters, P.A.A.F.

    2007-01-01

    The expected replacement wave in the current power grid faces asset managers with challenging questions. Setting up a replacement strategy and planning calls for a forecast of the long term component reliability. For transformers the future failure probability can be predicted based on the ongoing

  5. Forecasting Interest Rates and Inflation

    DEFF Research Database (Denmark)

    Chun, Albert Lee

    the best overall for short horizon forecasts of short to medium term yields and inflation. Econometric models with shrinkage perform the best over longer horizons and maturities. Aggregating over a larger set of analysts improves inflation surveys while generally degrading interest rates surveys. We...

  6. Dust forecasting system in JMA

    International Nuclear Information System (INIS)

    Mikami, M; Tanaka, T Y; Maki, T

    2009-01-01

    JMAs dust forecasting information, which is based on a GCM dust model, is presented through the JMA website coupled with nowcast information. The website was updated recently and JMA and MOE joint 'KOSA' website was open from April 2008. Data assimilation technique will be introduced for improvement of the 'KOSA' information.

  7. Can energy forecasts be improved?

    International Nuclear Information System (INIS)

    Rech, O.; Alban, P.

    2000-01-01

    Within the present day context of energy, characterized by the gap between short term trends and long term risks, forecasting takes on particular interest. We based our study on the evaluation of the results of some of these long term (2020) and very long term (2050) forecasts. This article looks at the overall demand for energy, whereas the evolution of each primary energy will be handled in a future article. We are restricting our analysis to a global level despite the inherent limitations of such a choice. Our approach mainly concentrates on the dynamics of the phenomena. Thus, we have noticed a simultaneous slowing down since the 1960's of the demography, economy and energy. The revenue and energy consumption per capita do not elude this tendency. At the same time, energy production leads a steep downward tendency. All in all, the forecasts have a tendency to conflict more or less with these changes. In the majority of the scenarios the anticipated rhythms of economic change and energy consumption would indicate a sudden and abrupt inverse of current dynamics. We have noticed that the single use of the average annual rate of change is insufficient to clearly present the long term tendencies that follow curved and not linear paths. Diagnostic errors made in past analyses are likely to affect the models for forecasting, for which the inferred dynamics have not been fully apprehended

  8. Global-warming forecasting models

    International Nuclear Information System (INIS)

    Moeller, K.P.

    1992-01-01

    In spite of an annual man-made quantity of about 20 billion tons, carbon dioxide has remained a trace gas in the atmosphere (350 ppm at present). The reliability of model calculations which forecast temperatures is dicussed in view of the world-wide increase in carbon dioxides. Computer simulations reveal a general, serious threat to the future of mankind. (DG) [de

  9. Forecasting Cryptocurrencies Financial Time Series

    DEFF Research Database (Denmark)

    Catania, Leopoldo; Grassi, Stefano; Ravazzolo, Francesco

    2018-01-01

    This paper studies the predictability of cryptocurrencies time series. We compare several alternative univariate and multivariate models in point and density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto–predictors and rely...

  10. Forecasting the space weather impact

    DEFF Research Database (Denmark)

    Crosby, N. B.; Veronig, A.; Robbrecht, E.

    2012-01-01

    The FP7 COronal Mass Ejections and Solar Energetic Particles (COMESEP) project is developing tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms. By analysis of historical data, complemented by the extensive data coverage of solar cycle 23, the key ingredi...

  11. Intermittent demand : Linking forecasting to inventory obsolescence

    NARCIS (Netherlands)

    Teunter, Ruud H.; Syntetos, Aris A.; Babai, M. Zied

    2011-01-01

    The standard method to forecast intermittent demand is that by Croston. This method is available in ERP-type solutions such as SAP and specialised forecasting software packages (e.g. Forecast Pro), and often applied in practice. It uses exponential smoothing to separately update the estimated demand

  12. Application of probabilistic precipitation forecasts from a ...

    African Journals Online (AJOL)

    Application of probabilistic precipitation forecasts from a deterministic model towards increasing the lead-time of flash flood forecasts in South Africa. ... The procedure is applied to a real flash flood event and the ensemble-based rainfall forecasts are verified against rainfall estimated by the SAFFG system. The approach ...

  13. The value of feedback in forecasting competitions

    OpenAIRE

    George Athanasopoulos; Rob J Hyndman

    2011-01-01

    In this paper we challenge the traditional design used for forecasting competitions. We implement an online competition with a public leaderboard that provides instant feedback to competitors who are allowed to revise and resubmit forecasts. The results show that feedback significantly improves forecasting accuracy.

  14. Interval Forecast for Smooth Transition Autoregressive Model ...

    African Journals Online (AJOL)

    In this paper, we propose a simple method for constructing interval forecast for smooth transition autoregressive (STAR) model. This interval forecast is based on bootstrapping the residual error of the estimated STAR model for each forecast horizon and computing various Akaike information criterion (AIC) function. This new ...

  15. New interval forecast for stationary autoregressive models ...

    African Journals Online (AJOL)

    In this paper, we proposed a new forecasting interval for stationary Autoregressive, AR(p) models using the Akaike information criterion (AIC) function. Ordinarily, the AIC function is used to determine the order of an AR(p) process. In this study however, AIC forecast interval compared favorably with the theoretical forecast ...

  16. Online load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2013-01-01

    This paper presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...

  17. Forecasting nuclear power supply with Bayesian autoregression

    International Nuclear Information System (INIS)

    Beck, R.; Solow, J.L.

    1994-01-01

    We explore the possibility of forecasting the quarterly US generation of electricity from nuclear power using a Bayesian autoregression model. In terms of forecasting accuracy, this approach compares favorably with both the Department of Energy's current forecasting methodology and their more recent efforts using ARIMA models, and it is extremely easy and inexpensive to implement. (author)

  18. Beat the Instructor: An Introductory Forecasting Game

    Science.gov (United States)

    Snider, Brent R.; Eliasson, Janice B.

    2013-01-01

    This teaching brief describes a 30-minute game where student groups compete in-class in an introductory time-series forecasting exercise. The students are challenged to "beat the instructor" who competes using forecasting techniques that will be subsequently taught. All forecasts are graphed prior to revealing the randomly generated…

  19. Long-term forecast 2010; Laangsiktsprognos 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This report presents the energy forecast to the year 2030, and two different sensitivity scenarios. The forecast is based on existing instruments, which means that the report's findings should not be considered a proper forecast of the future energy use, but as an impact assessment of existing policy instruments, given different circumstances such as economic growth and fuel prices

  20. A Wind Forecasting System for Energy Application

    Science.gov (United States)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated

  1. Exploring the interactions between forecast accuracy, risk perception and perceived forecast reliability in reservoir operator's decision to use forecast

    Science.gov (United States)

    Shafiee-Jood, M.; Cai, X.

    2017-12-01

    Advances in streamflow forecasts at different time scales offer a promise for proactive flood management and improved risk management. Despite the huge potential, previous studies have found that water resources managers are often not willing to incorporate streamflow forecasts information in decisions making, particularly in risky situations. While low accuracy of forecasts information is often cited as the main reason, some studies have found that implementation of streamflow forecasts sometimes is impeded by institutional obstacles and behavioral factors (e.g., risk perception). In fact, a seminal study by O'Connor et al. (2005) found that risk perception is the strongest determinant of forecast use while managers' perception about forecast reliability is not significant. In this study, we aim to address this issue again. However, instead of using survey data and regression analysis, we develop a theoretical framework to assess the user-perceived value of streamflow forecasts. The framework includes a novel behavioral component which incorporates both risk perception and perceived forecast reliability. The framework is then used in a hypothetical problem where reservoir operator should react to probabilistic flood forecasts with different reliabilities. The framework will allow us to explore the interactions among risk perception and perceived forecast reliability, and among the behavioral components and information accuracy. The findings will provide insights to improve the usability of flood forecasts information through better communication and education.

  2. Forecasting Interest Rates Using Geostatistical Techniques

    Directory of Open Access Journals (Sweden)

    Giuseppe Arbia

    2015-11-01

    Full Text Available Geostatistical spatial models are widely used in many applied fields to forecast data observed on continuous three-dimensional surfaces. We propose to extend their use to finance and, in particular, to forecasting yield curves. We present the results of an empirical application where we apply the proposed method to forecast Euro Zero Rates (2003–2014 using the Ordinary Kriging method based on the anisotropic variogram. Furthermore, a comparison with other recent methods for forecasting yield curves is proposed. The results show that the model is characterized by good levels of predictions’ accuracy and it is competitive with the other forecasting models considered.

  3. Bayesian analyses of seasonal runoff forecasts

    Science.gov (United States)

    Krzysztofowicz, R.; Reese, S.

    1991-12-01

    Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.

  4. Short-term natural gas consumption forecasting

    International Nuclear Information System (INIS)

    Potocnik, P.; Govekar, E.; Grabec, I.

    2007-01-01

    Energy forecasting requirements for Slovenia's natural gas market were investigated along with the cycles of natural gas consumption. This paper presented a short-term natural gas forecasting approach where the daily, weekly and yearly gas consumption were analyzed and the information obtained was incorporated into the forecasting model for hourly forecasting for the next day. The natural gas market depends on forecasting in order to optimize the leasing of storage capacities. As such, natural gas distribution companies have an economic incentive to accurately forecast their future gas consumption. The authors proposed a forecasting model with the following properties: two submodels for the winter and summer seasons; input variables including past consumption data, weather data, weather forecasts and basic cycle indexes; and, a hierarchical forecasting structure in which a daily model was used as the basis, with the hourly forecast obtained by modeling the relative daily profile. This proposed method was illustrated by a forecasting example for Slovenia's natural gas market. 11 refs., 11 figs

  5. On the reliability of seasonal climate forecasts

    Science.gov (United States)

    Weisheimer, A.; Palmer, T. N.

    2014-01-01

    Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1–5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that ‘goodness’ should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a ‘5’ should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of ‘goodness’ rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching ‘5’ across all regions and variables in 30 years time. PMID:24789559

  6. Forecasting Covariance Matrices: A Mixed Frequency Approach

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows for flexi......This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows...... for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance...

  7. Forecasting winds over nuclear power plants statistics

    International Nuclear Information System (INIS)

    Marais, Ch.

    1997-01-01

    In the event of an accident at nuclear power plant, it is essential to forecast the wind velocity at the level where the efflux occurs (about 100 m). At present meteorologists refine the wind forecast from the coarse grid of numerical weather prediction (NWP) models. The purpose of this study is to improve the forecasts by developing a statistical adaptation method which corrects the NWP forecasts by using statistical comparisons between wind forecasts and observations. The Multiple Linear Regression method is used here to forecast the 100 m wind at 12 and 24 hours range for three Electricite de France (EDF) sites. It turns out that this approach gives better forecasts than the NWP model alone and is worthy of operational use. (author)

  8. Short-term wind power combined forecasting based on error forecast correction

    International Nuclear Information System (INIS)

    Liang, Zhengtang; Liang, Jun; Wang, Chengfu; Dong, Xiaoming; Miao, Xiaofeng

    2016-01-01

    Highlights: • The correlation relationships of short-term wind power forecast errors are studied. • The correlation analysis method of the multi-step forecast errors is proposed. • A strategy selecting the input variables for the error forecast models is proposed. • Several novel combined models based on error forecast correction are proposed. • The combined models have improved the short-term wind power forecasting accuracy. - Abstract: With the increasing contribution of wind power to electric power grids, accurate forecasting of short-term wind power has become particularly valuable for wind farm operators, utility operators and customers. The aim of this study is to investigate the interdependence structure of errors in short-term wind power forecasting that is crucial for building error forecast models with regression learning algorithms to correct predictions and improve final forecasting accuracy. In this paper, several novel short-term wind power combined forecasting models based on error forecast correction are proposed in the one-step ahead, continuous and discontinuous multi-step ahead forecasting modes. First, the correlation relationships of forecast errors of the autoregressive model, the persistence method and the support vector machine model in various forecasting modes have been investigated to determine whether the error forecast models can be established by regression learning algorithms. Second, according to the results of the correlation analysis, the range of input variables is defined and an efficient strategy for selecting the input variables for the error forecast models is proposed. Finally, several combined forecasting models are proposed, in which the error forecast models are based on support vector machine/extreme learning machine, and correct the short-term wind power forecast values. The data collected from a wind farm in Hebei Province, China, are selected as a case study to demonstrate the effectiveness of the proposed

  9. Evaluating information in multiple horizon forecasts. The DOE's energy price forecasts

    International Nuclear Information System (INIS)

    Sanders, Dwight R.; Manfredo, Mark R.; Boris, Keith

    2009-01-01

    The United States Department of Energy's (DOE) quarterly price forecasts for energy commodities are examined to determine the incremental information provided at the one-through four-quarter forecast horizons. A direct test for determining information content at alternative forecast horizons, developed by Vuchelen and Gutierrez [Vuchelen, J. and Gutierrez, M.-I. 'A Direct Test of the Information Content of the OECD Growth Forecasts.' International Journal of Forecasting. 21(2005):103-117.], is used. The results suggest that the DOE's price forecasts for crude oil, gasoline, and diesel fuel do indeed provide incremental information out to three-quarters ahead, while natural gas and electricity forecasts are informative out to the four-quarter horizon. In contrast, the DOE's coal price forecasts at two-, three-, and four-quarters ahead provide no incremental information beyond that provided for the one-quarter horizon. Recommendations of how to use these results for making forecast adjustments is also provided. (author)

  10. Load forecasting of supermarket refrigeration

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Buth; Bacher, Peder; Madsen, Henrik

    2016-01-01

    methods for predicting the regimes are tested. The dynamic relation between the weather and the load is modeled by simple transfer functions and the non-linearities are described using spline functions. The results are thoroughly evaluated and it is shown that the spline functions are suitable...... for handling the non-linear relations and that after applying an auto-regressive noise model the one-step ahead residuals do not contain further significant information....... in Denmark. Every hour the hourly electrical load for refrigeration is forecasted for the following 42 h. The forecast models are adaptive linear time series models. The model has two regimes; one for opening hours and one for closing hours, this is modeled by a regime switching model and two different...

  11. Review and forecast: Making hay

    International Nuclear Information System (INIS)

    Curran, R.

    1997-01-01

    Oil and natural gas industry prospects for 1997 were reviewed. By way of providing the foundation for a very favorable forecast, a wide range of indicators of a banner year in 1996 were assembled and provided in tabular form. Some 28 tables of statistical data provide insight into the reasons for an optimistic forecast for 1997. Statistics on oil and gas production, industry expenditures, exploratory well completions, costs per barrel of oil, estimates of supply and demand for petroleum products, gas liquid production, petrochemical and fertilizer production, sulfur production, drilling statistics, natural gas sales, gross production revenues and land sales, all attest to a record year in 1996, and provide reasons for a rosy outlook for 1997. 28 tabs

  12. Tsunami Forecast for Galapagos Islands

    Science.gov (United States)

    Renteria, W.

    2012-04-01

    The objective of this study is to present a model for the short-term and long-term tsunami forecast for Galapagos Islands. For both cases the ComMIT/MOST(Titov,et al 2011) numerical model and methodology have been used. The results for the short-term model has been compared with the data from Lynett et al, 2011 surveyed from the impacts of the March/11 in the Galapagos Islands. For the case of long-term forecast, several scenarios have run along the Pacific, an extreme flooding map is obtained, the method is considered suitable for places with poor or without tsunami impact information, but under tsunami risk geographic location.

  13. Essays on financial analysts' forecasts

    OpenAIRE

    Rodriguez, Marius del Giudice

    2006-01-01

    This dissertation contains three self-contained chapters dealing with specific aspects of financial analysts' earnings forecasts. After recent accounting scandals, much attention has turned to the incentives present in the career of professional financial analysts. The literature points to several reasons why financial analysts behave overoptimistically when providing their predictions. In particular, analysts may wish to maintain good relations with firm management, to please the underwriter...

  14. Forecasting Cryptocurrencies Financial Time Series

    OpenAIRE

    Catania, Leopoldo; Grassi, Stefano; Ravazzolo, Francesco

    2018-01-01

    This paper studies the predictability of cryptocurrencies time series. We compare several alternative univariate and multivariate models in point and density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto–predictors and rely on Dynamic Model Averaging to combine a large set of univariate Dynamic Linear Models and several multivariate Vector Autoregressive models with different forms of time variation. We find statistical si...

  15. Communicating uncertainty in hydrological forecasts: mission impossible?

    Science.gov (United States)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted

  16. Airborne electromagnetic data levelling using principal component analysis based on flight line difference

    Science.gov (United States)

    Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang

    2018-04-01

    A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.

  17. The relationship of certified flight instructors' emotional intelligence levels on flight student advancement

    Science.gov (United States)

    Hokeness, Mark Merrill

    Aviation researchers estimate airline companies will require nearly 500,000 pilots in the next 20 years. The role of a Certified Flight Instructor (CFI) is to move student pilots to professional pilots with training typically conducted in one-on-one student and instructor sessions. The knowledge of aviation, professionalism as a teacher, and the CFI’s interpersonal skills can directly affect the successes and advancement of a student pilot. A new and emerging assessment of people skills is known as emotional intelligence (EI). The EI of the CFI can and will affect a flight students’ learning experiences. With knowledge of emotional intelligence and its effect on flight training, student pilot dropouts from aviation may be reduced, thus helping to ensure an adequate supply of pilots. Without pilots, the growth of the commercial aviation industry will be restricted. This mixed method research study established the correlation between a CFI’s measured EI levels and the advancement of flight students. The elements contributing to a CFI’s EI level were not found to be teaching or flight-related experiences, suggesting other life factors are drawn upon by the CFI and are reflected in their emotional intelligence levels presented to flight students. Students respond positively to CFIs with higher levels of emotional intelligence. Awareness of EI skills by both the CFI and flight student contribute to flight student successes and advancement.

  18. Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera.

    Science.gov (United States)

    Harrison, Jon F; Fewell, Jennifer H

    2002-10-01

    Flying honey bees demonstrate highly variable metabolic rates. The lowest reported values (approximately 0.3 Wg(-1)) occur in tethered bees generating the minimum lift to support their body weight, free-flying 2-day old bees, winter bees, or bees flying at high air temperatures (45 degrees C). The highest values (approximately 0.8 Wg(-1)) occur in foragers that are heavily loaded or flying in low-density air. In different studies, flight metabolic rate has increased, decreased, or remained constant with air temperature. Current research collectively suggests that this variation occurs because flight metabolic rates decrease at thorax temperatures above or below 38 degrees C. At 30 degrees C, approximately 30% of colonial energy is spent during typical foraging, so variation in flight metabolic rate can strongly affect colony-level energy balance. Higher air temperatures tend to increase colonial net gain rates, efficiencies and honey storage rates due to lower metabolic rates during flight and in the hive. Variation in flight metabolism has a clear genetic basis. Different genetic strains of honey bees often differ in flight metabolic rate, and these differences in flight physiology can be correlated with foraging effort, suggesting a possible pathway for selection effects on flight metabolism.

  19. A methodology for Electric Power Load Forecasting

    Directory of Open Access Journals (Sweden)

    Eisa Almeshaiei

    2011-06-01

    Full Text Available Electricity demand forecasting is a central and integral process for planning periodical operations and facility expansion in the electricity sector. Demand pattern is almost very complex due to the deregulation of energy markets. Therefore, finding an appropriate forecasting model for a specific electricity network is not an easy task. Although many forecasting methods were developed, none can be generalized for all demand patterns. Therefore, this paper presents a pragmatic methodology that can be used as a guide to construct Electric Power Load Forecasting models. This methodology is mainly based on decomposition and segmentation of the load time series. Several statistical analyses are involved to study the load features and forecasting precision such as moving average and probability plots of load noise. Real daily load data from Kuwaiti electric network are used as a case study. Some results are reported to guide forecasting future needs of this network.

  20. Introduction to time series analysis and forecasting

    CERN Document Server

    Montgomery, Douglas C; Kulahci, Murat

    2008-01-01

    An accessible introduction to the most current thinking in and practicality of forecasting techniques in the context of time-oriented data. Analyzing time-oriented data and forecasting are among the most important problems that analysts face across many fields, ranging from finance and economics to production operations and the natural sciences. As a result, there is a widespread need for large groups of people in a variety of fields to understand the basic concepts of time series analysis and forecasting. Introduction to Time Series Analysis and Forecasting presents the time series analysis branch of applied statistics as the underlying methodology for developing practical forecasts, and it also bridges the gap between theory and practice by equipping readers with the tools needed to analyze time-oriented data and construct useful, short- to medium-term, statistically based forecasts.

  1. A heuristic forecasting model for stock decision

    OpenAIRE

    Zhang, D.; Jiang, Q.; Li, X.

    2005-01-01

    This paper describes a heuristic forecasting model based on neural networks for stock decision-making. Some heuristic strategies are presented for enhancing the learning capability of neural networks and obtaining better trading performance. The China Shanghai Composite Index is used as case study. The forecasting model can forecast the buying and selling signs according to the result of neural network prediction. Results are compared with a benchmark buy-and-hold strategy. ...

  2. Novel methodology for pharmaceutical expenditure forecast

    OpenAIRE

    Vataire, Anne-Lise; Cetinsoy, Laurent; Aball?a, Samuel; R?muzat, C?cile; Urbinati, Duccio; Kornfeld, ?sa; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and objective: The value appreciation of new drugs across countries today features a disruption that is making the historical data that are used for forecasting pharmaceutical expenditure poorly reliable. Forecasting methods rarely addressed uncertainty. The objective of this project was to propose a methodology to perform pharmaceutical expenditure forecasting that integrates expected policy changes and uncertainty (developed for the European Commission as the ‘EU Pharmaceutical e...

  3. SHORT-TERM FORECASTING OF MORTGAGE LENDING

    Directory of Open Access Journals (Sweden)

    Irina V. Orlova

    2013-01-01

    Full Text Available The article considers the methodological and algorithmic problems arising in modeling and forecasting of time series of mortgage loans. Focuses on the processes of formation of the levels of time series of mortgage loans and the problem of choice and identification of models in the conditions of small samples. For forecasting options are selected and implemented a model of autoregressive and moving average, which allowed to obtain reliable forecasts.

  4. A New Approach to Forecasting Exchange Rates

    OpenAIRE

    Kenneth W Clements; Yihui Lan

    2006-01-01

    Building on purchasing power parity theory, this paper proposes a new approach to forecasting exchange rates using the Big Mac data from The Economist magazine. Our approach is attractive in three aspects. Firstly, it uses easily-available Big Mac prices as input. These prices avoid several serious problems associated with broad price indexes, such as the CPI, that are used in conventional PPP studies. Secondly, this approach provides real-time exchange-rate forecasts at any forecast horizon....

  5. Value of Forecaster in the Loop

    Science.gov (United States)

    2014-09-01

    forecast system IFR instrument flight rules IMC instrument meteorological conditions LAMP Localized Aviation Model Output Statistics Program METOC...obtaining valuable experience. Additional factors have impacted the Navy weather forecast process. There has been a the realignment of the meteorology...forecasts that are assessed, it may be a relatively small number that have direct impact on the decision-making process. Whether the value is minimal or

  6. 24-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  7. Climate Prediction Center (CPC) NCEP-Global Forecast System (GFS) Precipitation Forecast Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) forecast precipitation data at 37.5km resolution is created at the NOAA Climate Prediction Center for the purpose of near real-time...

  8. 72-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  9. 48-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  10. Empirical seasonal forecasts of the NAO

    Science.gov (United States)

    Sanchezgomez, E.; Ortizbevia, M.

    2003-04-01

    We present here seasonal forecasts of the North Atlantic Oscillation (NAO) issued from ocean predictors with an empirical procedure. The Singular Values Decomposition (SVD) of the cross-correlation matrix between predictor and predictand fields at the lag used for the forecast lead is at the core of the empirical model. The main predictor field are sea surface temperature anomalies, although sea ice cover anomalies are also used. Forecasts are issued in probabilistic form. The model is an improvement over a previous version (1), where Sea Level Pressure Anomalies were first forecast, and the NAO Index built from this forecast field. Both correlation skill between forecast and observed field, and number of forecasts that hit the correct NAO sign, are used to assess the forecast performance , usually above those values found in the case of forecasts issued assuming persistence. For certain seasons and/or leads, values of the skill are above the .7 usefulness treshold. References (1) SanchezGomez, E. and Ortiz Bevia M., 2002, Estimacion de la evolucion pluviometrica de la Espana Seca atendiendo a diversos pronosticos empiricos de la NAO, in 'El Agua y el Clima', Publicaciones de la AEC, Serie A, N 3, pp 63-73, Palma de Mallorca, Spain

  11. Concerning the justiciability of demand forecasts

    International Nuclear Information System (INIS)

    Nierhaus, M.

    1977-01-01

    This subject plays at present in particular a role in the course of judicial examinations of immediately enforceable orders for the partial construction licences of nuclear power plants. The author distinguishes beween three kinds of forecast decisions: 1. Appraising forecast decisions with standards of judgment taken mainly from the fields of the art, culture, morality, religion are, according to the author, only legally verifyable to a limited extent. 2. With regard to forecast decisions not arguable, e.g. where the future behaviour of persons is concerned, the same should be applied basically. 3. In contrast to this, the following is applicable for programmatic, proceedingslike, or creative forecast decisions, in particular in economics: 'An administrative estimation privilege in a prognostic sense with the consequence that the court has to accept the forecast decision which lies within the forecast margins and which cannot be disproved, and that the court may not replace this forecast decision by its own probability judgment. In these cases, administration has the right to create its own forecast standards.' Judicial control in these cases was limited to certain substantive and procedural mistakes made by the administration in the course of forecast decision finding. (orig./HP) [de

  12. Concerning the justiciability of demand forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Nierhaus, M [Koeln Univ. (Germany, F.R.)

    1977-01-01

    This subject plays at present in particular a role in the course of judicial examinations of immediately enforceable orders for the partial construction licences of nuclear power plants. The author distinguishes beween three kinds of forecast decisions: 1. Appraising forecast decisions with standards of judgment taken mainly from the fields of the art, culture, morality, religion are, according to the author, only legally verifyable to a limited extent. 2. With regard to forecast decisions not arguable, e.g. where the future behaviour of persons is concerned, the same should be applied basically. 3. In contrast to this, the following is applicable for programmatic, proceedingslike, or creative forecast decisions, in particular in economics: 'An administrative estimation privilege in a prognostic sense with the consequence that the court has to accept the forecast decision which lies within the forecast margins and which cannot be disproved, and that the court may not replace this forecast decision by its own probability judgment. In these cases, administration has the right to create its own forecast standards.' Judicial control in these cases was limited to certain substantive and procedural mistakes made by the administration in the course of forecast decision finding.

  13. Geothermal wells: a forecast of drilling activity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  14. On the Economic Evaluation of Volatility Forecasts

    DEFF Research Database (Denmark)

    Voev, Valeri

    We analyze the applicability of economic criteria for volatility forecast evaluation based on unconditional measures of portfolio performance. The main theoretical finding is that such unconditional measures generally fail to rank conditional forecasts correctly due to the presence of a bias term...... driven by the variability of the conditional mean and portfolio weights. Simulations and a small empirical study suggest that the bias can be empirically substantial and lead to distortions in forecast evaluation. An important implication is that forecasting superiority of models using high frequency...

  15. Forecasting effects of global warming on biodiversity

    DEFF Research Database (Denmark)

    Botkin, D.B.; Saxe, H.; Araújo, M.B.

    2007-01-01

    The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. In this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche...... and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions...

  16. Forecasting interest rates with shifting endpoints

    DEFF Research Database (Denmark)

    Van Dijk, Dick; Koopman, Siem Jan; Wel, Michel van der

    2014-01-01

    We consider forecasting the term structure of interest rates with the assumption that factors driving the yield curve are stationary around a slowly time-varying mean or ‘shifting endpoint’. The shifting endpoints are captured using either (i) time series methods (exponential smoothing) or (ii......) long-range survey forecasts of either interest rates or inflation and output growth, or (iii) exponentially smoothed realizations of these macro variables. Allowing for shifting endpoints in yield curve factors provides substantial and significant gains in out-of-sample predictive accuracy, relative...... to stationary and random walk benchmarks. Forecast improvements are largest for long-maturity interest rates and for long-horizon forecasts....

  17. Online Short-term Solar Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2011-01-01

    This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours.......This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours....

  18. Combining forecast weights: Why and how?

    Science.gov (United States)

    Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim

    2012-09-01

    This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.

  19. Four methodologies to improve healthcare demand forecasting.

    Science.gov (United States)

    Côté, M J; Tucker, S L

    2001-05-01

    Forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. This task, which often is assumed by financial managers, first requires the compilation and examination of historical information. Although many quantitative forecasting methods exist, four common methods of forecasting are percent adjustment, 12-month moving average, trendline, and seasonalized forecast. These four methods are all based upon the organization's recent historical demand. Healthcare financial managers who want to project demand for healthcare services in their facility should understand the advantages and disadvantages of each method and then select the method that will best meet the organization's needs.

  20. Visualization of ocean forecast in BYTHOS

    Science.gov (United States)

    Zhuk, E.; Zodiatis, G.; Nikolaidis, A.; Stylianou, S.; Karaolia, A.

    2016-08-01

    The Cyprus Oceanography Center has been constantly searching for new ideas for developing and implementing innovative methods and new developments concerning the use of Information Systems in Oceanography, to suit both the Center's monitoring and forecasting products. Within the frame of this scope two major online managing and visualizing data systems have been developed and utilized, those of CYCOFOS and BYTHOS. The Cyprus Coastal Ocean Forecasting and Observing System - CYCOFOS provides a variety of operational predictions such as ultra high, high and medium resolution ocean forecasts in the Levantine Basin, offshore and coastal sea state forecasts in the Mediterranean and Black Sea, tide forecasting in the Mediterranean, ocean remote sensing in the Eastern Mediterranean and coastal and offshore monitoring. As a rich internet application, BYTHOS enables scientists to search, visualize and download oceanographic data online and in real time. The recent improving of BYTHOS system is the extension with access and visualization of CYCOFOS data and overlay forecast fields and observing data. The CYCOFOS data are stored at OPENDAP Server in netCDF format. To search, process and visualize it the php and python scripts were developed. Data visualization is achieved through Mapserver. The BYTHOS forecast access interface allows to search necessary forecasting field by recognizing type, parameter, region, level and time. Also it provides opportunity to overlay different forecast and observing data that can be used for complex analyze of sea basin aspects.

  1. Solid low-level waste forecasting guide

    International Nuclear Information System (INIS)

    Templeton, K.J.; Dirks, L.L.

    1995-03-01

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford's experience within the last six years. Hanford's forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford's annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford's forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data

  2. Combining SKU-level sales forecasts from models and experts

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Legerstee (Rianne)

    2009-01-01

    textabstractWe study the performance of SKU-level sales forecasts which linearly combine statistical model forecasts and expert forecasts. Using a large and unique database containing model forecasts for monthly sales of various pharmaceutical products and forecasts given by about fifty experts, we

  3. LINKS to NATIONAL WEATHER SERVICE MARINE FORECAST OFFICES

    Science.gov (United States)

    ; Organization Search Search Landlubber's forecast: "City, St" or zip code (Pan/Zoom for Marine) Search SERVICE MARINE FORECAST OFFICES (Click on the NWS Forecast Center/Office of interest to link to that Marine Forecasts in text form ) Coastal NWS Forecast Offices have regionally focused marine webpages

  4. Relating Tropical Cyclone Track Forecast Error Distributions with Measurements of Forecast Uncertainty

    Science.gov (United States)

    2016-03-01

    CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS WITH MEASUREMENTS OF FORECAST UNCERTAINTY by Nicholas M. Chisler March 2016 Thesis Advisor...March 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE RELATING TROPICAL CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS...WITH MEASUREMENTS OF FORECAST UNCERTAINTY 5. FUNDING NUMBERS 6. AUTHOR(S) Nicholas M. Chisler 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  5. Energy reference forecast for 2014

    International Nuclear Information System (INIS)

    Schlesinger, Michael; Lutz, Christian

    2014-01-01

    The German Federal Ministry for Economic Affairs and Energy has commissioned three reputed institutions to prepare an energy reference forecast as well as a target scenario up to the year 2050. The results of this survey evidence a substantial need for political action if the goals of the Federal Government's energy concept are to be achieved as planned. In view of the wide range of interests among the players involved as well as the complexity of the demands facing the political leadership from diverse areas of life it appears unlikely that the targets laid down in the energy concept can be realised.

  6. Judgmental Forecasting of Operational Capabilities

    DEFF Research Database (Denmark)

    Hallin, Carina Antonia; Tveterås, Sigbjørn; Andersen, Torben Juul

    This paper explores a new judgmental forecasting indicator, the Employee Sensed Operational Capabilities (ESOC). The purpose of the ESOC is to establish a practical prediction tool that can provide early signals about changes in financial performance by gauging frontline employees’ sensing...... of changes in the firm’s operational capabilities. We present the first stage of the development of ESOC by applying a formative measurement approach to test the index in relation to financial performance and against an organizational commitment scale. We use distributed lag models to test whether the ESOC...

  7. The AviaDem forecasting model: illustration of a forecasting case at Amsterdam Schiphol Airport

    NARCIS (Netherlands)

    Veldhuis, J.; Lieshout, R.

    2010-01-01

    The paper describes an aviation market forecasting model which focuses on market forecasts for airports. Most forecasting models in use today assess aviation trends resulting from macroeconomic trends. The model described in this paper has this feature built in, but the added value of this model is

  8. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments

    Directory of Open Access Journals (Sweden)

    Li Li Zhang

    2016-11-01

    Full Text Available The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km2 and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2 surface based on flight test data which measured the near- and short-wave infrared (NIR reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight’s observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2’s XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  9. Using inferred probabilities to measure the accuracy of imprecise forecasts

    Directory of Open Access Journals (Sweden)

    Paul Lehner

    2012-11-01

    Full Text Available Research on forecasting is effectively limited to forecasts that are expressed with clarity; which is to say that the forecasted event must be sufficiently well-defined so that it can be clearly resolved whether or not the event occurred and forecasts certainties are expressed as quantitative probabilities. When forecasts are expressed with clarity, then quantitative measures (scoring rules, calibration, discrimination, etc. can be used to measure forecast accuracy, which in turn can be used to measure the comparative accuracy of different forecasting methods. Unfortunately most real world forecasts are not expressed clearly. This lack of clarity extends to both the description of the forecast event and to the use of vague language to express forecast certainty. It is thus difficult to assess the accuracy of most real world forecasts, and consequently the accuracy the methods used to generate real world forecasts. This paper addresses this deficiency by presenting an approach to measuring the accuracy of imprecise real world forecasts using the same quantitative metrics routinely used to measure the accuracy of well-defined forecasts. To demonstrate applicability, the Inferred Probability Method is applied to measure the accuracy of forecasts in fourteen documents examining complex political domains. Key words: inferred probability, imputed probability, judgment-based forecasting, forecast accuracy, imprecise forecasts, political forecasting, verbal probability, probability calibration.

  10. Forecasting world natural gas supply

    International Nuclear Information System (INIS)

    Al-Fattah, S. M.; Startzman, R. A.

    2000-01-01

    Using the multi-cyclic Hubert approach, a 53 country-specific gas supply model was developed which enables production forecasts for virtually all of the world's gas. Supply models for some organizations such as OPEC, non-OPEC and OECD were also developed and analyzed. Results of the modeling study indicate that the world's supply of natural gas will peak in 2014, followed by an annual decline at the rate of one per cent per year. North American gas production is reported to be currently at its peak with 29 Tcf/yr; Western Europe will reach its peak supply in 2002 with 12 Tcf. According to this forecast the main sources of natural gas supply in the future will be the countries of the former Soviet Union and the Middle East. Between them, they possess about 62 per cent of the world's ultimate recoverable natural gas (4,880 Tcf). It should be noted that these estimates do not include unconventional gas resulting from tight gas reservoirs, coalbed methane, gas shales and gas hydrates. These unconventional sources will undoubtedly play an important role in the gas supply in countries such as the United States and Canada. 18 refs., 2 tabs., 18 figs

  11. MSSM Forecast for the LHC

    CERN Document Server

    Cabrera, Maria Eugenia; de Austri, Roberto Ruiz

    2009-01-01

    We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of $M_Z$ is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental i...

  12. SKU demand forecasting in the presence of promotions

    NARCIS (Netherlands)

    Gür Ali, Ö.; Sayin, S.; Woensel, van T.; Fransoo, J.C.

    2009-01-01

    Promotions and shorter life cycles make grocery sales forecasting more difficult, requiring more complicated models. We identify methods of increasing complexity and data preparation cost yielding increasing improvements in forecasting accuracy, by varying the forecasting technique, the input

  13. Forecasting Hurricane Tracks Using a Complex Adaptive System

    National Research Council Canada - National Science Library

    Lear, Matthew R

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that consists of linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual...

  14. A Complex Adaptive System Approach to Forecasting Hurricane Tracks

    National Research Council Canada - National Science Library

    Lear, Matthew R

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that consists of linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual...

  15. Crop Insurance Inaccurate FCIC Price Forecasts Increase Program Costs

    National Research Council Canada - National Science Library

    1991-01-01

    ...) how FCIC can improve its forecast accuracy. We found that FCIC's corn, wheat, and soybeans price forecasts exhibit large bias errors that exceed those of other available alternative forecasts and that FCIC would have spent...

  16. On robust forecasting of autoregressive time series under censoring

    OpenAIRE

    Kharin, Y.; Badziahin, I.

    2009-01-01

    Problems of robust statistical forecasting are considered for autoregressive time series observed under distortions generated by interval censoring. Three types of robust forecasting statistics are developed; meansquare risk is evaluated for the developed forecasting statistics. Numerical results are given.

  17. Global Ensemble Forecast System (GEFS) [2.5 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  18. A Forecast Model for Unemployment by Education

    DEFF Research Database (Denmark)

    Tranæs, Torben; Larsen, Anders Holm; Groes, Niels

    1994-01-01

    We present a dynamic forecast model for the labour market: demand for labour by education and the distribution of labour by education among industries are determined endogenously with overall demand by industry given exogenously. The model is derived from a simple behavioural equation based on a ...... for educational groups, where the initial forecast year is a change point for unemployment....

  19. Toward a Marine Ecological Forecasting System

    Science.gov (United States)

    2010-06-01

    coral bleaching , living resource distribution, and pathogen progression). An operational ecological forecasting system depends upon the assimilation of...space scales (e.g., harmful algal blooms, dissolved oxygen concentration (hypoxia), water quality/beach closures, coral bleaching , living resource...advance. Two beaches in Lake Michigan have been selected for initial implementation. Forecasting Coral Bleaching in relation to Ocean Temperatures

  20. Gambling scores for earthquake predictions and forecasts

    Science.gov (United States)

    Zhuang, Jiancang

    2010-04-01

    This paper presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points betted by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.

  1. Resources and Long-Range Forecasts

    Science.gov (United States)

    Smith, Waldo E.

    1973-01-01

    The author argues that forecasts of quick depletion of resources in the environment as a result of overpopulation and increased usage may not be free from error. Ignorance still exists in understanding the recovery mechanisms of nature. Long-range forecasts are likely to be wrong in such situations. (PS)

  2. Forecasting Enrollments with Fuzzy Time Series.

    Science.gov (United States)

    Song, Qiang; Chissom, Brad S.

    The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…

  3. Econometric Models for Forecasting of Macroeconomic Indices

    Science.gov (United States)

    Sukhanova, Elena I.; Shirnaeva, Svetlana Y.; Mokronosov, Aleksandr G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices…

  4. Analog forecasting with dynamics-adapted kernels

    Science.gov (United States)

    Zhao, Zhizhen; Giannakis, Dimitrios

    2016-09-01

    Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.

  5. Forecasting the demand for new telecommunication services

    DEFF Research Database (Denmark)

    Skouby, Knud Erik; Veiro, Bjørn

    1991-01-01

    A forecasting method that is applicable for new services, where little historical data have been recorded, is proposed. The method uses estimators based on economical, demographic and traffic data. Compared to traditional forecasting procedures that are built upon a solid historical record of dat...

  6. Analysts' earnings forecasts and international asset allocation

    NARCIS (Netherlands)

    Huijgen, Carel; Plantinga, Auke

    1999-01-01

    The aim of this paper is to investigate whether financial analysts’ earnings forecasts are informative from the viewpoint of allocating investments across different stock markets. Therefore we develop a country forecast indicator reflecting the analysts’ prospects for specific stock markets. The

  7. Quantifying forecast quality of IT business value

    NARCIS (Netherlands)

    Eveleens, J.L.; van der Pas, M.; Verhoef, C.

    2012-01-01

    This article discusses how to quantify the forecasting quality of IT business value. We address a common economic indicator often used to determine the business value of project proposals, the Net Present Value (NPV). To quantify the forecasting quality of IT business value, we develop a generalized

  8. Forecasting differences in life expectancy by education

    NARCIS (Netherlands)

    P.H.M. Van Baal (Pieter); F. Peters (Frederik); J.P. Mackenbach (Johan); W.J. Nusselder (Wilma)

    2016-01-01

    textabstractForecasts of life expectancy (LE) have fuelled debates about the sustainability and dependability of pension and healthcare systems. Of relevance to these debates are inequalities in LE by education. In this paper, we present a method of forecasting LE for different educational groups

  9. Climate forecasts for corn producer decision making

    Science.gov (United States)

    Corn is the most widely grown crop in the Americas, with annual production in the United States of approximately 332 million metric tons. Improved climate forecasts, together with climate-related decision tools for corn producers based on these improved forecasts, could substantially reduce uncertai...

  10. Application of probabilistic precipitation forecasts from a ...

    African Journals Online (AJOL)

    2014-02-14

    Feb 14, 2014 ... Application of probabilistic precipitation forecasts from a deterministic model ... aim of this paper is to investigate the increase in the lead-time of flash flood warnings of the SAFFG using probabilistic precipitation forecasts ... The procedure is applied to a real flash flood event and the ensemble-based.

  11. Methods and Techniques of Enrollment Forecasting.

    Science.gov (United States)

    Brinkman, Paul T.; McIntyre, Chuck

    1997-01-01

    There is no right way to forecast college enrollments; in many instances, it will be prudent to use both qualitative and quantitative methods. Methods chosen must be relevant to questions addressed, policies and decisions at stake, and time and talent required. While it is tempting to start quickly, enrollment forecasting is an area in which…

  12. Adjusting Futures Forecasts of Federal Reserve Policy

    DEFF Research Database (Denmark)

    Chun, Albert Lee; Chun, Olfa Maalaoui

    Our results challenge the traditional way we interpret empirical measures of risk premia, as a signicant part of the predictable component of excess returns is strongly correlated with predictability in survey forecast errors. Using survey forecasts of the federal funds rate to proxy for market e...

  13. The Delft-FEWS flow forecasting system

    NARCIS (Netherlands)

    Werner, M.; Schellekens, J.; Gijsbers, P.; van Dijk, M.; van den Akker, O.; Heynert, K.

    2013-01-01

    Since its introduction in 2002/2003, the current generation of the Delft-FEWS operational forecasting platform has found application in over forty operational centres. In these it is used to link data and models in real time, producing forecasts on a daily basis. In some cases it forms a building

  14. Data Assimilation and Air Quality Forecasting

    NARCIS (Netherlands)

    Eskes, H.; Timmermans, R.; Curier, L.; Ruyter de Wildt, M. de; Segers, A.; Sauter, F.; Schaap, M.

    2014-01-01

    Lotos-Euros is a chemistry transportmodel developed in the Netherlands, and is used for air quality assessments and forecasts. Operational air quality forecasts for the Netherlands concerning ozone and PM10 are made available on the RIVM webpage (http://www.lml.rivm.nl/verw.html) and are used to

  15. Forecasting with periodic autoregressive time series models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)

    1999-01-01

    textabstractThis paper is concerned with forecasting univariate seasonal time series data using periodic autoregressive models. We show how one should account for unit roots and deterministic terms when generating out-of-sample forecasts. We illustrate the models for various quarterly UK consumption

  16. Neutron flux distribution forecasting device of reactor

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi

    1991-01-01

    A neutron flux distribution is forecast by using current data obtained from a reactor. That is, the device of the present invention comprises (1) a neutron flux monitor disposed in various positions in the reactor, (2) a forecasting means for calculating and forecasting a one-dimensional neutron flux distribution relative to imaginable events by using data obtained from the neutron flux monitor and physical models, and (3) a display means for displaying the results forecast in the forecasting means to a reactor operation console. Since the forecast values for the one-dimensional neutron flux distribution relative to the imaginable events are calculated in the device of the present invention by using data obtained from the neutron flux monitor and the physical models, the data as a base of the calculation are new and the period for calculating the forecast values can be shortened. Accordingly, although there is a worry of providing some errors in the forecast values, they can be utilized sufficiently as reference data. As a result, the reactor can be operated more appropriately. (I.N.)

  17. Forecasting Hong Kong economy using factor augmented vector autoregression

    OpenAIRE

    Pang, Iris Ai Jao

    2010-01-01

    This work applies the FAVAR model to forecast GDP growth rate, unemployment rate and inflation rate of the Hong Kong economy. There is no factor model forecasting literature on the Hong Kong economy. The objective is to find out whether factor forecasting of using a large dataset can improve forecast performance of the Hong Kong economy. To avoid misspecification of the number of factors in the FAVAR, combination forecasts are constructed. It is found that forecasts from FAVAR model overall o...

  18. Credibility of management earnings forecasts and future returns

    OpenAIRE

    Norio Kitagawa; Akinobu Shuto

    2015-01-01

    This study investigates the effect of managerial discretion over their initial earnings forecasts on future performance. First, by estimating the discretionary portion of initial management earnings forecasts (defined as discretionary forecasts) based on the findings of fundamental analysis research, we find that firms with higher discretionary forecasts are more likely to miss their earnings forecast at the end of the fiscal year and revise their forecasts downward to meet their earnings for...

  19. Monthly forecasting of agricultural pests in Switzerland

    Science.gov (United States)

    Hirschi, M.; Dubrovsky, M.; Spirig, C.; Samietz, J.; Calanca, P.; Weigel, A. P.; Fischer, A. M.; Rotach, M. W.

    2012-04-01

    Given the repercussions of pests and diseases on agricultural production, detailed forecasting tools have been developed to simulate the degree of infestation depending on actual weather conditions. The life cycle of pests is most successfully predicted if the micro-climate of the immediate environment (habitat) of the causative organisms can be simulated. Sub-seasonal pest forecasts therefore require weather information for the relevant habitats and the appropriate time scale. The pest forecasting system SOPRA (www.sopra.info) currently in operation in Switzerland relies on such detailed weather information, using hourly weather observations up to the day the forecast is issued, but only a climatology for the forecasting period. Here, we aim at improving the skill of SOPRA forecasts by transforming the weekly information provided by ECMWF monthly forecasts (MOFCs) into hourly weather series as required for the prediction of upcoming life phases of the codling moth, the major insect pest in apple orchards worldwide. Due to the probabilistic nature of operational monthly forecasts and the limited spatial and temporal resolution, their information needs to be post-processed for use in a pest model. In this study, we developed a statistical downscaling approach for MOFCs that includes the following steps: (i) application of a stochastic weather generator to generate a large pool of daily weather series consistent with the climate at a specific location, (ii) a subsequent re-sampling of weather series from this pool to optimally represent the evolution of the weekly MOFC anomalies, and (iii) a final extension to hourly weather series suitable for the pest forecasting model. Results show a clear improvement in the forecast skill of occurrences of upcoming codling moth life phases when incorporating MOFCs as compared to the operational pest forecasting system. This is true both in terms of root mean squared errors and of the continuous rank probability scores of the

  20. The development rainfall forecasting using kalman filter

    Science.gov (United States)

    Zulfi, Mohammad; Hasan, Moh.; Dwidja Purnomo, Kosala

    2018-04-01

    Rainfall forecasting is very interesting for agricultural planing. Rainfall information is useful to make decisions about the plan planting certain commodities. In this studies, the rainfall forecasting by ARIMA and Kalman Filter method. Kalman Filter method is used to declare a time series model of which is shown in the form of linear state space to determine the future forecast. This method used a recursive solution to minimize error. The rainfall data in this research clustered by K-means clustering. Implementation of Kalman Filter method is for modelling and forecasting rainfall in each cluster. We used ARIMA (p,d,q) to construct a state space for KalmanFilter model. So, we have four group of the data and one model in each group. In conclusions, Kalman Filter method is better than ARIMA model for rainfall forecasting in each group. It can be showed from error of Kalman Filter method that smaller than error of ARIMA model.

  1. International Workshop on Industry Practices for Forecasting

    CERN Document Server

    Poggi, Jean-Michel; Brossat, Xavier

    2015-01-01

    The chapters in this volume stress the need for advances in theoretical understanding to go hand-in-hand with the widespread practical application of forecasting in industry. Forecasting and time series prediction have enjoyed considerable attention over the last few decades, fostered by impressive advances in observational capabilities and measurement procedures. On June 5-7, 2013, an international Workshop on Industry Practices for FORecasting was held in Paris, France, organized and supported by the OSIRIS Department of Electricité de France Research and Development Division. In keeping with tradition, both theoretical statistical results and practical contributions on this active field of statistical research and on forecasting issues in a rapidly evolving industrial environment are presented. The volume reflects the broad spectrum of the conference, including 16 articles contributed by specialists in various areas. The material compiled is broad in scope and ranges from new findings on forecasting in in...

  2. Forecasting with Option-Implied Information

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Chang, Bo Young

    2013-01-01

    This chapter surveys the methods available for extracting information from option prices that can be used in forecasting. We consider option-implied volatilities, skewness, kurtosis, and densities. More generally, we discuss how any forecasting object that is a twice differentiable function...... of the future realization of the underlying risky asset price can utilize option-implied information in a well-defined manner. Going beyond the univariate option-implied density, we also consider results on option-implied covariance, correlation and beta forecasting, as well as the use of option......-implied information in cross-sectional forecasting of equity returns. We discuss how option-implied information can be adjusted for risk premia to remove biases in forecasting regressions....

  3. Demand forecast model based on CRM

    Science.gov (United States)

    Cai, Yuancui; Chen, Lichao

    2006-11-01

    With interiorizing day by day management thought that regarding customer as the centre, forecasting customer demand becomes more and more important. In the demand forecast of customer relationship management, the traditional forecast methods have very great limitation because much uncertainty of the demand, these all require new modeling to meet the demands of development. In this paper, the notion is that forecasting the demand according to characteristics of the potential customer, then modeling by it. The model first depicts customer adopting uniform multiple indexes. Secondly, the model acquires characteristic customers on the basis of data warehouse and the technology of data mining. The last, there get the most similar characteristic customer by their comparing and forecast the demands of new customer by the most similar characteristic customer.

  4. Uncertainty in dispersion forecasts using meteorological ensembles

    International Nuclear Information System (INIS)

    Chin, H N; Leach, M J

    1999-01-01

    The usefulness of dispersion forecasts depends on proper interpretation of results. Understanding the uncertainty in model predictions and the range of possible outcomes is critical for determining the optimal course of action in response to terrorist attacks. One of the objectives for the Modeling and Prediction initiative is creating tools for emergency planning for special events such as the upcoming the Olympics. Meteorological forecasts hours to days in advance are used to estimate the dispersion at the time of the event. However, there is uncertainty in any meteorological forecast, arising from both errors in the data (both initial conditions and boundary conditions) and from errors in the model. We use ensemble forecasts to estimate the uncertainty in the forecasts and the range of possible outcomes

  5. Do probabilistic forecasts lead to better decisions?

    Directory of Open Access Journals (Sweden)

    M. H. Ramos

    2013-06-01

    Full Text Available The last decade has seen growing research in producing probabilistic hydro-meteorological forecasts and increasing their reliability. This followed the promise that, supplied with information about uncertainty, people would take better risk-based decisions. In recent years, therefore, research and operational developments have also started focusing attention on ways of communicating the probabilistic forecasts to decision-makers. Communicating probabilistic forecasts includes preparing tools and products for visualisation, but also requires understanding how decision-makers perceive and use uncertainty information in real time. At the EGU General Assembly 2012, we conducted a laboratory-style experiment in which several cases of flood forecasts and a choice of actions to take were presented as part of a game to participants, who acted as decision-makers. Answers were collected and analysed. In this paper, we present the results of this exercise and discuss if we indeed make better decisions on the basis of probabilistic forecasts.

  6. Skilful seasonal forecasts of streamflow over Europe?

    Science.gov (United States)

    Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian

    2018-04-01

    This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate

  7. Forecasting characteristics of flood effects

    Science.gov (United States)

    Khamutova, M. V.; Rezchikov, A. F.; Kushnikov, V. A.; Ivaschenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikova, E. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S.

    2018-05-01

    The article presents the development of a mathematical model of the system dynamics. Mathematical model allows forecasting the characteristics of flood effects. Model is based on a causal diagram and is presented by a system of nonlinear differential equations. Simulated characteristics are the nodes of the diagram, and edges define the functional relationships between them. The numerical solution of the system of equations using the Runge-Kutta method was obtained. Computer experiments to determine the characteristics on different time interval have been made and results of experiments have been compared with real data of real flood. The obtained results make it possible to assert that the developed model is valid. The results of study are useful in development of an information system for the operating and dispatching staff of the Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters (EMERCOM).

  8. Forecasting Spanish natural life expectancy.

    Science.gov (United States)

    Guillen, Montserrat; Vidiella-i-Anguera, Antoni

    2005-10-01

    Knowledge of trends in life expectancy is of major importance for policy planning. It is also a key indicator for assessing future development of life insurance products, substantiality of existing retirement schemes, and long-term care for the elderly. This article examines the feasibility of decomposing age-gender-specific accidental and natural mortality rates. We study this decomposition by using the Lee and Carter model. In particular, we fit the Poisson log-bilinear version of this model proposed by Wilmoth and Brouhns et al. to historical (1975-1998) Spanish mortality rates. In addition, by using the model introduced by Wilmoth and Valkonen we analyze mortality-gender differentials for accidental and natural rates. We present aggregated life expectancy forecasts compared with those constructed using nondecomposed mortality rates.

  9. Construction Safety Forecast for ITER

    Energy Technology Data Exchange (ETDEWEB)

    cadwallader, lee charles

    2006-11-01

    The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.

  10. Gas deliverability forecasting - why bother?

    International Nuclear Information System (INIS)

    Trick, M.

    1996-01-01

    According to the author the answer to the question is an unequivocal 'yes' because gas production forecasting is extremely useful for the management and development of a gas field. To model a gas field, one must take into account reservoir performance, sandface inflow performance, wellbore pressure losses, gathering system pressure losses, and field facility performance. The integration of all these factors in a single computer-based model that incorporates proven technology will facilitate the evaluation of various development strategies. A good computer model can help to predict the most cost effective improvement methods, determine economic viability, estimate how much gas is available, evaluate whether drilling wells or adding compression will produce the most reserves, determine optimum placement of compression, evaluate changes to the gathering system, and determine if production from existing wells can be increased by wellbore modifications

  11. Load forecasting method considering temperature effect for distribution network

    Directory of Open Access Journals (Sweden)

    Meng Xiao Fang

    2016-01-01

    Full Text Available To improve the accuracy of load forecasting, the temperature factor was introduced into the load forecasting in this paper. This paper analyzed the characteristics of power load variation, and researched the rule of the load with the temperature change. Based on the linear regression analysis, the mathematical model of load forecasting was presented with considering the temperature effect, and the steps of load forecasting were given. Used MATLAB, the temperature regression coefficient was calculated. Using the load forecasting model, the full-day load forecasting and time-sharing load forecasting were carried out. By comparing and analyzing the forecast error, the results showed that the error of time-sharing load forecasting method was small in this paper. The forecasting method is an effective method to improve the accuracy of load forecasting.

  12. Forecasting Canadian nuclear power station construction costs

    International Nuclear Information System (INIS)

    Keng, C.W.K.

    1985-01-01

    Because of the huge volume of capital required to construct a modern electric power generating station, investment decisions have to be made with as complete an understanding of the consequences of the decision as possible. This understanding must be provided by the evaluation of future situations. A key consideration in an evaluation is the financial component. This paper attempts to use an econometric method to forecast the construction costs escalation of a standard Canadian nuclear generating station (NGS). A brief review of the history of Canadian nuclear electric power is provided. The major components of the construction costs of a Canadian NGS are studied and summarized. A database is built and indexes are prepared. Based on these indexes, an econometric forecasting model is constructed using an apparently new econometric methodology of forecasting modelling. Forecasts for a period of 40 years are generated and applications (such as alternative scenario forecasts and range forecasts) to uncertainty assessment and/or decision-making are demonstrated. The indexes, the model, and the forecasts and their applications, to the best of the author's knowledge, are the first for Canadian NGS constructions. (author)

  13. Use and Communication of Probabilistic Forecasts.

    Science.gov (United States)

    Raftery, Adrian E

    2016-12-01

    Probabilistic forecasts are becoming more and more available. How should they be used and communicated? What are the obstacles to their use in practice? I review experience with five problems where probabilistic forecasting played an important role. This leads me to identify five types of potential users: Low Stakes Users, who don't need probabilistic forecasts; General Assessors, who need an overall idea of the uncertainty in the forecast; Change Assessors, who need to know if a change is out of line with expectatations; Risk Avoiders, who wish to limit the risk of an adverse outcome; and Decision Theorists, who quantify their loss function and perform the decision-theoretic calculations. This suggests that it is important to interact with users and to consider their goals. The cognitive research tells us that calibration is important for trust in probability forecasts, and that it is important to match the verbal expression with the task. The cognitive load should be minimized, reducing the probabilistic forecast to a single percentile if appropriate. Probabilities of adverse events and percentiles of the predictive distribution of quantities of interest seem often to be the best way to summarize probabilistic forecasts. Formal decision theory has an important role, but in a limited range of applications.

  14. Use and Communication of Probabilistic Forecasts

    Science.gov (United States)

    Raftery, Adrian E.

    2015-01-01

    Probabilistic forecasts are becoming more and more available. How should they be used and communicated? What are the obstacles to their use in practice? I review experience with five problems where probabilistic forecasting played an important role. This leads me to identify five types of potential users: Low Stakes Users, who don’t need probabilistic forecasts; General Assessors, who need an overall idea of the uncertainty in the forecast; Change Assessors, who need to know if a change is out of line with expectatations; Risk Avoiders, who wish to limit the risk of an adverse outcome; and Decision Theorists, who quantify their loss function and perform the decision-theoretic calculations. This suggests that it is important to interact with users and to consider their goals. The cognitive research tells us that calibration is important for trust in probability forecasts, and that it is important to match the verbal expression with the task. The cognitive load should be minimized, reducing the probabilistic forecast to a single percentile if appropriate. Probabilities of adverse events and percentiles of the predictive distribution of quantities of interest seem often to be the best way to summarize probabilistic forecasts. Formal decision theory has an important role, but in a limited range of applications. PMID:28446941

  15. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  16. Six rules for accurate effective forecasting.

    Science.gov (United States)

    Saffo, Paul

    2007-01-01

    The primary goal of forecasting is to identify the full range of possibilities facing a company, society, or the world at large. In this article, Saffo demythologizes the forecasting process to help executives become sophisticated and participative consumers of forecasts, rather than passive absorbers. He illustrates how to use forecasts to at once broaden understanding of possibilities and narrow the decision space within which one must exercise intuition. The events of 9/11, for example, were a much bigger surprise than they should have been. After all, airliners flown into monuments were the stuff of Tom Clancy novels in the 1990s, and everyone knew that terrorists had a very personal antipathy toward the World Trade Center. So why was 9/11 such a surprise? What can executives do to avoid being blind-sided by other such wild cards, be they radical shifts in markets or the seemingly sudden emergence of disruptive technologies? In describing what forecasters are trying to achieve, Saffo outlines six simple, commonsense rules that smart managers should observe as they embark on a voyage of discovery with professional forecasters. Map a cone of uncertainty, he advises, look for the S curve, embrace the things that don't fit, hold strong opinions weakly, look back twice as far as you look forward, and know when not to make a forecast.

  17. Evaluating Extensions to Coherent Mortality Forecasting Models

    Directory of Open Access Journals (Sweden)

    Syazreen Shair

    2017-03-01

    Full Text Available Coherent models were developed recently to forecast the mortality of two or more sub-populations simultaneously and to ensure long-term non-divergent mortality forecasts of sub-populations. This paper evaluates the forecast accuracy of two recently-published coherent mortality models, the Poisson common factor and the product-ratio functional models. These models are compared to each other and the corresponding independent models, as well as the original Lee–Carter model. All models are applied to age-gender-specific mortality data for Australia and Malaysia and age-gender-ethnicity-specific data for Malaysia. The out-of-sample forecast error of log death rates, male-to-female death rate ratios and life expectancy at birth from each model are compared and examined across groups. The results show that, in terms of overall accuracy, the forecasts of both coherent models are consistently more accurate than those of the independent models for Australia and for Malaysia, but the relative performance differs by forecast horizon. Although the product-ratio functional model outperforms the Poisson common factor model for Australia, the Poisson common factor is more accurate for Malaysia. For the ethnic groups application, ethnic-coherence gives better results than gender-coherence. The results provide evidence that coherent models are preferable to independent models for forecasting sub-populations’ mortality.

  18. Forecasting of Currency Crises in East Asia

    Directory of Open Access Journals (Sweden)

    Chi-Young Song

    2005-06-01

    Full Text Available In this paper, we have developed a forecasting system for currency crisis in East Asia based on a signaling approach. Our system uses 15 monthly indicators of five East Asian countries including Indonesia, Korea, Malaysia, the Philippines and Thailand that were severely hit by the currency crisis in 1997. We investigate the performance of the system through deploying out-of-sample forecasting for the periods both before and after the 1997 East Asian currency crisis. Unlike the existing research based on the signaling approach, our out-of-sample forecasting does not fix the in-sample period. The out-of-sample forecasting between July 1995 and June 1997 shows that prior to breakout of the crisis, several indicators including real exchange rates and exports sent frequent warnings to all crisis-hit East Asian countries except the Philippines. This may indicate that a signaling-based early warning system for currency crisis could have been an useful method of forecasting the East Asian crisis. On the other hand, we also find that our forecasting system often generates warning signals during the out-of-sample period between July 1999 and June 2001. Since we have not observed any currency crisis in this region after 1998, these are all false alarms, indicating that our system may be seriously exposed to the type II error. We can, however, mitigate this problem if we adjust the optimal critical values of indicators depending on the preferences of forecasting system manager.

  19. Improving weather forecasts for wind energy applications

    Science.gov (United States)

    Kay, Merlinde; MacGill, Iain

    2010-08-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms-1 and around 25 ms-1. A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  20. Improving weather forecasts for wind energy applications

    International Nuclear Information System (INIS)

    Kay, Merlinde; MacGill, Iain

    2010-01-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms -1 and around 25 ms -1 . A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  1. Sub-Seasonal Climate Forecast Rodeo

    Science.gov (United States)

    Webb, R. S.; Nowak, K.; Cifelli, R.; Brekke, L. D.

    2017-12-01

    The Bureau of Reclamation, as the largest water wholesaler and the second largest producer of hydropower in the United States, benefits from skillful forecasts of future water availability. Researchers, water managers from local, regional, and federal agencies, and groups such as the Western States Water Council agree that improved precipitation and temperature forecast information at the sub-seasonal to seasonal (S2S) timescale is an area with significant potential benefit to water management. In response, and recognizing NOAA's leadership in forecasting, Reclamation has partnered with NOAA to develop and implement a real-time S2S forecasting competition. For a year, solvers are submitting forecasts of temperature and precipitation for weeks 3&4 and 5&6 every two weeks on a 1x1 degree grid for the 17 western state domain where Reclamation operates. The competition began on April 18, 2017 and the final real-time forecast is due April 3, 2018. Forecasts are evaluated once observational data become available using spatial anomaly correlation. Scores are posted on a competition leaderboard hosted by the National Integrated Drought Information System (NIDIS). The leaderboard can be accessed at: https://www.drought.gov/drought/sub-seasonal-climate-forecast-rodeo. To be eligible for cash prizes - which total $800,000 - solvers must outperform two benchmark forecasts during the real-time competition as well as in a required 11-year hind-cast. To receive a prize, competitors must grant a non-exclusive license to practice their forecast technique and make it available as open source software. At approximately one quarter complete, there are teams outperforming the benchmarks in three of the four competition categories. With prestige and monetary incentives on the line, it is hoped that the competition will spur innovation of improved S2S forecasts through novel approaches, enhancements to established models, or otherwise. Additionally, the competition aims to raise

  2. Call Forecasting for Inbound Call Center

    Directory of Open Access Journals (Sweden)

    Peter Vinje

    2009-01-01

    Full Text Available In a scenario of inbound call center customer service, the ability to forecast calls is a key element and advantage. By forecasting the correct number of calls a company can predict staffing needs, meet service level requirements, improve customer satisfaction, and benefit from many other optimizations. This project will show how elementary statistics can be used to predict calls for a specific company, forecast the rate at which calls are increasing/decreasing, and determine if the calls may stop at some point.

  3. Forecasting Ebola with a regression transmission model

    Directory of Open Access Journals (Sweden)

    Jason Asher

    2018-03-01

    Full Text Available We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes traditional Susceptible-Infected-Recovered (SIR disease modeling approaches and allows for the flexible consideration of outbreaks with complex trajectories of disease dynamics. Keywords: Ebola, Forecasting, Mathematical modeling, Bayesian inference

  4. An impact analysis of forecasting methods and forecasting parameters on bullwhip effect

    Science.gov (United States)

    Silitonga, R. Y. H.; Jelly, N.

    2018-04-01

    Bullwhip effect is an increase of variance of demand fluctuation from downstream to upstream of supply chain. Forecasting methods and forecasting parameters were recognized as some factors that affect bullwhip phenomena. To study these factors, we can develop simulations. There are several ways to simulate bullwhip effect in previous studies, such as mathematical equation modelling, information control modelling, computer program, and many more. In this study a spreadsheet program named Bullwhip Explorer was used to simulate bullwhip effect. Several scenarios were developed to show the change in bullwhip effect ratio because of the difference in forecasting methods and forecasting parameters. Forecasting methods used were mean demand, moving average, exponential smoothing, demand signalling, and minimum expected mean squared error. Forecasting parameters were moving average period, smoothing parameter, signalling factor, and safety stock factor. It showed that decreasing moving average period, increasing smoothing parameter, increasing signalling factor can create bigger bullwhip effect ratio. Meanwhile, safety stock factor had no impact to bullwhip effect.

  5. Short-term residential load forecasting: Impact of calendar effects and forecast granularity

    DEFF Research Database (Denmark)

    Lusis, Peter; Khalilpour, Kaveh Rajab; Andrew, Lachlan

    2017-01-01

    forecasting for a single-customer or even down at an appliance level. Access to high resolution data from smart meters has enabled the research community to assess conventional load forecasting techniques and develop new forecasting strategies suitable for demand-side disaggregated loads. This paper studies...... how calendar effects, forecasting granularity and the length of the training set affect the accuracy of a day-ahead load forecast for residential customers. Root mean square error (RMSE) and normalized RMSE were used as forecast error metrics. Regression trees, neural networks, and support vector...... regression yielded similar average RMSE results, but statistical analysis showed that regression trees technique is significantly better. The use of historical load profiles with daily and weekly seasonality, combined with weather data, leaves the explicit calendar effects a very low predictive power...

  6. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  7. 7 CFR 612.7 - Forecast user responsibility.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Forecast user responsibility. 612.7 Section 612.7 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SNOW SURVEYS AND WATER SUPPLY FORECASTS § 612.7 Forecast user responsibility. The forecast use...

  8. Moisture Forecast Bias Correction in GEOS DAS

    Science.gov (United States)

    Dee, D.

    1999-01-01

    Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.

  9. Forecasting in the presence of expectations

    Science.gov (United States)

    Allen, R.; Zivin, J. G.; Shrader, J.

    2016-05-01

    Physical processes routinely influence economic outcomes, and actions by economic agents can, in turn, influence physical processes. This feedback creates challenges for forecasting and inference, creating the potential for complementarity between models from different academic disciplines. Using the example of prediction of water availability during a drought, we illustrate the potential biases in forecasts that only take part of a coupled system into account. In particular, we show that forecasts can alter the feedbacks between supply and demand, leading to inaccurate prediction about future states of the system. Although the example is specific to drought, the problem of feedback between expectations and forecast quality is not isolated to the particular model-it is relevant to areas as diverse as population assessments for conservation, balancing the electrical grid, and setting macroeconomic policy.

  10. A Hybrid Approach on Tourism Demand Forecasting

    Science.gov (United States)

    Nor, M. E.; Nurul, A. I. M.; Rusiman, M. S.

    2018-04-01

    Tourism has become one of the important industries that contributes to the country’s economy. Tourism demand forecasting gives valuable information to policy makers, decision makers and organizations related to tourism industry in order to make crucial decision and planning. However, it is challenging to produce an accurate forecast since economic data such as the tourism data is affected by social, economic and environmental factors. In this study, an equally-weighted hybrid method, which is a combination of Box-Jenkins and Artificial Neural Networks, was applied to forecast Malaysia’s tourism demand. The forecasting performance was assessed by taking the each individual method as a benchmark. The results showed that this hybrid approach outperformed the other two models

  11. The New Barbary Wars: Forecasting Maritime Piracy

    NARCIS (Netherlands)

    Daxecker, U.E.; Prins, B.C.

    2015-01-01

    This paper extends systematic analyses of maritime piracy by verifying the robustness of empirical results and examining the forecasting ability of empirical models. Recent research by Ward, Greenhill and Bakke (2010) finds that statistically significant relationships frequently offer poor guidance

  12. Status of mineral resources evaluation and forecast

    International Nuclear Information System (INIS)

    Ma Hanfeng; Li Ziying; Luo Yi; Li Shengxiang; Sun Wenpeng

    2007-01-01

    The work of resources evaluation and forecast is a focus to the governments of every country in the world, it is related to the establishment of strategic policy on the national mineral resources. In order to quantitatively evaluate the general potential of uranium resources in China and better forecast uranium deposits, this paper briefly introduces the method of evaluating total amount of mineral resources, especially 6 usual prospective methods which are recommended in international geology comparison programs, as well as principle of usual mineral resources quantitative prediction and its steps. The work history of mineral resources evaluation and forecast is reviewed concisely. Advantages and disadvantages of each method, their application field and condition are also explained briefly. At last, the history of uranium resources evaluation and forecast in China and its status are concisely outlined. (authors)

  13. Midway Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midway Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  14. Operational forecasting of human-biometeorological conditions

    Science.gov (United States)

    Giannaros, T. M.; Lagouvardos, K.; Kotroni, V.; Matzarakis, A.

    2018-03-01

    This paper presents the development of an operational forecasting service focusing on human-biometeorological conditions. The service is based on the coupling of numerical weather prediction models with an advanced human-biometeorological model. Human thermal perception and stress forecasts are issued on a daily basis for Greece, in both point and gridded format. A user-friendly presentation approach is adopted for communicating the forecasts to the public via the worldwide web. The development of the presented service highlights the feasibility of replacing standard meteorological parameters and/or indices used in operational weather forecasting activities for assessing the thermal environment. This is of particular significance for providing effective, human-biometeorology-oriented, warnings for both heat waves and cold outbreaks.

  15. Ocean wave forecasting using recurrent neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...

  16. Modelling and forecasting WIG20 daily returns

    DEFF Research Database (Denmark)

    Amado, Cristina; Silvennoinen, Annestiina; Terasvirta, Timo

    of the model is that the deterministic component is specified before estimating the multiplicative conditional variance component. The resulting model is subjected to misspecification tests and its forecasting performance is compared with that of commonly applied models of conditional heteroskedasticity....

  17. Forecasting with nonlinear time series models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econo- metrics are presented and some of their properties discussed. This in- cludes two models based on universal approximators: the Kolmogorov- Gabor polynomial model...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...... and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...

  18. Yakutat Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Yakutat, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Forecasting residential electricity demand in provincial China.

    Science.gov (United States)

    Liao, Hua; Liu, Yanan; Gao, Yixuan; Hao, Yu; Ma, Xiao-Wei; Wang, Kan

    2017-03-01

    In China, more than 80% electricity comes from coal which dominates the CO2 emissions. Residential electricity demand forecasting plays a significant role in electricity infrastructure planning and energy policy designing, but it is challenging to make an accurate forecast for developing countries. This paper forecasts the provincial residential electricity consumption of China in the 13th Five-Year-Plan (2016-2020) period using panel data. To overcome the limitations of widely used predication models with unreliably prior knowledge on function forms, a robust piecewise linear model in reduced form is utilized to capture the non-deterministic relationship between income and residential electricity consumption. The forecast results suggest that the growth rates of developed provinces will slow down, while the less developed will be still in fast growing. The national residential electricity demand will increase at 6.6% annually during 2016-2020, and populous provinces such as Guangdong will be the main contributors to the increments.

  20. Online short-term solar power forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2009-01-01

    This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 hours. The data used is fifteen......-minute observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques....... Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to two hours...

  1. The intersections between TRIZ and forecasting methodology

    Directory of Open Access Journals (Sweden)

    Georgeta BARBULESCU

    2010-12-01

    Full Text Available The authors’ intention is to correlate the basic knowledge in using the TRIZ methodology (Theory of Inventive Problem Solving or in Russian: Teoriya Resheniya Izobretatelskikh Zadatch as a problem solving tools meant to help the decision makers to perform more significant forecasting exercises. The idea is to identify the TRIZ features and instruments (40 inventive principles, i.e. for putting in evidence the noise and signal problem, for trend identification (qualitative and quantitative tendencies and support tools in technological forecasting, to make the decision-makers able to refine and to increase the level of confidence in the forecasting results. The interest in connecting TRIZ to forecasting methodology, nowadays, relates to the massive application of TRIZ methods and techniques for engineering system development world-wide and in growing application of TRIZ’s concepts and paradigms for improvements of non-engineering systems (including the business and economic applications.

  2. Measuring inaccuracy in travel demand forecasting

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    2005-01-01

    as the basis for measurement. This paper presents the case against both objections. First, if one is interested in learning whether decisions about building transport infrastructure are based on reliable information, then it is exactly the traffic forecasted at the time of making the decision to build......Project promoters, forecasters, and managers sometimes object to two things in measuring inaccuracy in travel demand forecasting: (1)using the forecast made at the time of making the decision to build as the basis for measuring inaccuracy and (2)using traffic during the first year of operations...... that is of interest. Second, although ideally studies should take into account so-called demand ??ramp up?? over a period of years, the empirical evidence and practical considerations do not support this ideal requirement, at least not for large- N studies. Finally, the paper argues that large samples of inaccuracy...

  3. Freeway travel-time estimation and forecasting.

    Science.gov (United States)

    2012-09-01

    This project presents a microsimulation-based framework for generating short-term forecasts of travel time on freeway corridors. The microsimulation model that is developed (GTsim), replicates freeway capacity drop and relaxation phenomena critical f...

  4. Flood Forecasting in River System Using ANFIS

    International Nuclear Information System (INIS)

    Ullah, Nazrin; Choudhury, P.

    2010-01-01

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  5. Bermuda Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bermuda Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  6. Empirical testing of forecast update procedure forseasonal products

    DEFF Research Database (Denmark)

    Wong, Chee Yew; Johansen, John

    2008-01-01

    Updating of forecasts is essential for successful collaborative forecasting, especially for seasonal products. This paper discusses the results of a theoretical simulation and an empirical test of a proposed time-series forecast updating procedure. It involves a two-stage longitudinal case study...... of a toy supply chain. The theoretical simulation involves historical weekly consumer demand data for 122 toy products. The empirical test is then carried out in real-time with 291 toy products. The results show that the proposed forecast updating procedure: 1) reduced forecast errors of the annual...... provided less forecast accuracy improvement and it needed a longer time to achieve relatively acceptable forecast uncertainty....

  7. Forecasting telecommunication new service demand by analogy method and combined forecast

    Directory of Open Access Journals (Sweden)

    Lin Feng-Jenq

    2005-01-01

    Full Text Available In the modeling forecast field, we are usually faced with the more difficult problems of forecasting market demand for a new service or product. A new service or product is defined as that there is absence of historical data in this new market. We hardly use models to execute the forecasting work directly. In the Taiwan telecommunication industry, after liberalization in 1996, there are many new services opened continually. For optimal investment, it is necessary that the operators, who have been granted the concessions and licenses, forecast this new service within their planning process. Though there are some methods to solve or avoid this predicament, in this paper, we will propose one forecasting procedure that integrates the concept of analogy method and the idea of combined forecast to generate new service forecast. In view of the above, the first half of this paper describes the procedure of analogy method and the approach of combined forecast, and the second half provides the case of forecasting low-tier phone demand in Taiwan to illustrate this procedure's feasibility.

  8. Ensemble Forecasts with Useful Skill-Spread Relationships for African meningitis and Asia Streamflow Forecasting

    Science.gov (United States)

    Hopson, T. M.

    2014-12-01

    One potential benefit of an ensemble prediction system (EPS) is its capacity to forecast its own forecast error through the ensemble spread-error relationship. In practice, an EPS is often quite limited in its ability to represent the variable expectation of forecast error through the variable dispersion of the ensemble, and perhaps more fundamentally, in its ability to provide enough variability in the ensembles dispersion to make the skill-spread relationship even potentially useful (irrespective of whether the EPS is well-calibrated or not). In this paper we examine the ensemble skill-spread relationship of an ensemble constructed from the TIGGE (THORPEX Interactive Grand Global Ensemble) dataset of global forecasts and a combination of multi-model and post-processing approaches. Both of the multi-model and post-processing techniques are based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. The methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. A context for these concepts is provided by assessing the constructed ensemble in forecasting district-level humidity impacting the incidence of meningitis in the meningitis belt of Africa, and in forecasting flooding events in the Brahmaputra and Ganges basins of South Asia.

  9. Using Temperature Forecasts to Improve Seasonal Streamflow Forecasts in the Colorado and Rio Grande Basins

    Science.gov (United States)

    Lehner, F.; Wood, A.; Llewellyn, D.; Blatchford, D. B.; Goodbody, A. G.; Pappenberger, F.

    2017-12-01

    Recent studies have documented the influence of increasing temperature on streamflow across the American West, including snow-melt driven rivers such as the Colorado or Rio Grande. At the same time, some basins are reporting decreasing skill in seasonal streamflow forecasts, termed water supply forecasts (WSFs), over the recent decade. While the skill in seasonal precipitation forecasts from dynamical models remains low, their skill in predicting seasonal temperature variations could potentially be harvested for WSFs to account for non-stationarity in regional temperatures. Here, we investigate whether WSF skill can be improved by incorporating seasonal temperature forecasts from dynamical forecasting models (from the North American Multi Model Ensemble and the European Centre for Medium-Range Weather Forecast System 4) into traditional statistical forecast models. We find improved streamflow forecast skill relative to traditional WSF approaches in a majority of headwater locations in the Colorado and Rio Grande basins. Incorporation of temperature into WSFs thus provides a promising avenue to increase the robustness of current forecasting techniques in the face of continued regional warming.

  10. A global flash flood forecasting system

    Science.gov (United States)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  11. Operational foreshock forecasting: Fifteen years after

    Science.gov (United States)

    Ogata, Y.

    2010-12-01

    We are concerned with operational forecasting of the probability that events are foreshocks of a forthcoming earthquake that is significantly larger (mainshock). Specifically, we define foreshocks as the preshocks substantially smaller than the mainshock by a magnitude gap of 0.5 or larger. The probability gain of foreshock forecast is extremely high compare to long-term forecast by renewal processes or various alarm-based intermediate-term forecasts because of a large event’s low occurrence rate in a short period and a narrow target region. Thus, it is desired to establish operational foreshock probability forecasting as seismologists have done for aftershocks. When a series of earthquakes occurs in a region, we attempt to discriminate foreshocks from a swarm or mainshock-aftershock sequence. Namely, after real time identification of an earthquake cluster using methods such as the single-link algorithm, the probability is calculated by applying statistical features that discriminate foreshocks from other types of clusters, by considering the events' stronger proximity in time and space and tendency towards chronologically increasing magnitudes. These features were modeled for probability forecasting and the coefficients of the model were estimated in Ogata et al. (1996) for the JMA hypocenter data (M≧4, 1926-1993). Currently, fifteen years has passed since the publication of the above-stated work so that we are able to present the performance and validation of the forecasts (1994-2009) by using the same model. Taking isolated events into consideration, the probability of the first events in a potential cluster being a foreshock vary in a range between 0+% and 10+% depending on their locations. This conditional forecasting performs significantly better than the unconditional (average) foreshock probability of 3.7% throughout Japan region. Furthermore, when we have the additional events in a cluster, the forecast probabilities range more widely from nearly 0% to

  12. Assessing flood forecast uncertainty with fuzzy arithmetic

    Directory of Open Access Journals (Sweden)

    de Bruyn Bertrand

    2016-01-01

    Full Text Available Providing forecasts for flow rates and water levels during floods have to be associated with uncertainty estimates. The forecast sources of uncertainty are plural. For hydrological forecasts (rainfall-runoff performed using a deterministic hydrological model with basic physics, two main sources can be identified. The first obvious source is the forcing data: rainfall forecast data are supplied in real time by meteorological forecasting services to the Flood Forecasting Service within a range between a lowest and a highest predicted discharge. These two values define an uncertainty interval for the rainfall variable provided on a given watershed. The second source of uncertainty is related to the complexity of the modeled system (the catchment impacted by the hydro-meteorological phenomenon, the number of variables that may describe the problem and their spatial and time variability. The model simplifies the system by reducing the number of variables to a few parameters. Thus it contains an intrinsic uncertainty. This model uncertainty is assessed by comparing simulated and observed rates for a large number of hydro-meteorological events. We propose a method based on fuzzy arithmetic to estimate the possible range of flow rates (and levels of water making a forecast based on possible rainfalls provided by forcing and uncertainty model. The model uncertainty is here expressed as a range of possible values. Both rainfall and model uncertainties are combined with fuzzy arithmetic. This method allows to evaluate the prediction uncertainty range. The Flood Forecasting Service of Oise and Aisne rivers, in particular, monitors the upstream watershed of the Oise at Hirson. This watershed’s area is 310 km2. Its response time is about 10 hours. Several hydrological models are calibrated for flood forecasting in this watershed and use the rainfall forecast. This method presents the advantage to be easily implemented. Moreover, it permits to be carried out

  13. Influenza forecasting with Google Flu Trends.

    Science.gov (United States)

    Dugas, Andrea Freyer; Jalalpour, Mehdi; Gel, Yulia; Levin, Scott; Torcaso, Fred; Igusa, Takeru; Rothman, Richard E

    2013-01-01

    We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and flexible forecast model can be used by

  14. Uncertainty analysis of hydro-meteorological forecasts

    OpenAIRE

    Grythe, Karl Kristian; Gao, Yukun

    2010-01-01

    Masteroppgave i informasjons- og kommunikasjonsteknologi 2010 – Universitetet i Agder, Grimstad Meteorological and hydrological forecasts are very important to human’s life which concerns agriculture, industry, transport, etc. The Nordic hydropower industry use and develop hydrological forecasting models to make predictions of rivers steam flow. The quantity of incoming stream flow is important to the electricity production because excessive water in reservoir will cause flood ...

  15. Forecasting Tools Point to Fishing Hotspots

    Science.gov (United States)

    2009-01-01

    Private weather forecaster WorldWinds Inc. of Slidell, Louisiana has employed satellite-gathered oceanic data from Marshall Space Flight Center to create a service that is every fishing enthusiast s dream. The company's FishBytes system uses information about sea surface temperature and chlorophyll levels to forecast favorable conditions for certain fish populations. Transmitting the data to satellite radio subscribers, FishBytes provides maps that guide anglers to the areas they are most likely to make their favorite catch.

  16. Fashion Forward: Forecasting Visual Style in Fashion

    OpenAIRE

    Al-Halah, Ziad; Stiefelhagen, Rainer; Grauman, Kristen

    2017-01-01

    What is the future of fashion? Tackling this question from a data-driven vision perspective, we propose to forecast visual style trends before they occur. We introduce the first approach to predict the future popularity of styles discovered from fashion images in an unsupervised manner. Using these styles as a basis, we train a forecasting model to represent their trends over time. The resulting model can hypothesize new mixtures of styles that will become popular in the future, discover styl...

  17. Integration of wind generation forecasts. Volume 2

    International Nuclear Information System (INIS)

    Ahlstrom, M.; Zavadil, B.; Jones, L.

    2005-01-01

    WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

  18. Forecasting exchange rates: a robust regression approach

    OpenAIRE

    Preminger, Arie; Franck, Raphael

    2005-01-01

    The least squares estimation method as well as other ordinary estimation method for regression models can be severely affected by a small number of outliers, thus providing poor out-of-sample forecasts. This paper suggests a robust regression approach, based on the S-estimation method, to construct forecasting models that are less sensitive to data contamination by outliers. A robust linear autoregressive (RAR) and a robust neural network (RNN) models are estimated to study the predictabil...

  19. Forecasting Ebola with a regression transmission model

    OpenAIRE

    Asher, Jason

    2017-01-01

    We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes ...

  20. Long-range forecasting of intermittent streamflow

    OpenAIRE

    F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine th...

  1. Long-range forecasting of intermittent streamflow

    OpenAIRE

    F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a probabilistic statistical model to forecast streamflow 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probabil...

  2. Spatiotemporal drought forecasting using nonlinear models

    Science.gov (United States)

    Vasiliades, Lampros; Loukas, Athanasios

    2010-05-01

    Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with

  3. Forecasting volatility for options valuation

    International Nuclear Information System (INIS)

    Belaifa, M.; Morimune, K.

    2006-01-01

    The petroleum sector plays a neuralgic role in the basement of world economies, and market actors (producers, intermediates, as well as consumers) are continuously subjected to the dynamics of unstable oil market. Huge amounts are being invested along the production chain to make one barrel of crude oil available to the end user. Adding to that are the effect of geopolitical dynamics as well as geological risks as expressed in terms of low chances of successful discoveries. In addition, fiscal regimes and regulations, technology and environmental concerns are also among some of the major factors that contribute to the substantial risk in the oil industry and render the market structure vulnerable to crises. The management of these vulnerabilities require modern tools to reduce risk to a certain level, which unfortunately is a non-zero value. The aim of this paper is, therefore, to provide a modern technique to capture the oil price stochastic volatility that can be implemented to value the exposure of an investor, a company, a corporate or a Government. The paper first analyses the regional dependence on oil prices, through a historical perspective and then looks at the evolution of pricing environment since the large price jumps of the 1970s. The main causes of oil prices volatility are treated in the third part of the paper. The rest of the article deals with volatility models and forecasts used in risk management, with an implication for pricing derivatives. (author)

  4. Canadian natural gas price forecast

    International Nuclear Information System (INIS)

    Jones, D.

    1998-01-01

    The basic factors that influenced NYMEX gas prices during the winter of 1997/1998 - warm temperatures, low fuel prices, new production in the Gulf of Mexico, and the fact that forecasters had predicted a mild spring due to El Nino - were reviewed. However, it was noted that for the last 18 months the basic factors had less of an impact on market direction because of an increase in Fund and technical trader participation. Overall, gas prices were strong through most of the year. For the winter of 1998-1999 the prediction was that NYMEX gas prices will remain below $2.00 through to the end of October 1998 because of high U.S. storage levels and moderate temperatures. NYMEX gas prices are expected to peak in January 1999 at $3.25. AECO natural gas prices were predicted to decrease in the short term because of increasing levels of Canadian storage, and because of delays in Northern Border pipeline expansions. It was also predicted that AECO prices will peak in January 1999 and will remain relatively strong through the summer of 1999. tabs., figs

  5. A Time Series Forecasting Method

    Directory of Open Access Journals (Sweden)

    Wang Zhao-Yu

    2017-01-01

    Full Text Available This paper proposes a novel time series forecasting method based on a weighted self-constructing clustering technique. The weighted self-constructing clustering processes all the data patterns incrementally. If a data pattern is not similar enough to an existing cluster, it forms a new cluster of its own. However, if a data pattern is similar enough to an existing cluster, it is removed from the cluster it currently belongs to and added to the most similar cluster. During the clustering process, weights are learned for each cluster. Given a series of time-stamped data up to time t, we divide it into a set of training patterns. By using the weighted self-constructing clustering, the training patterns are grouped into a set of clusters. To estimate the value at time t + 1, we find the k nearest neighbors of the input pattern and use these k neighbors to decide the estimation. Experimental results are shown to demonstrate the effectiveness of the proposed approach.

  6. Why Don't We Learn to Accurately Forecast Feelings? How Misremembering Our Predictions Blinds Us to Past Forecasting Errors

    Science.gov (United States)

    Meyvis, Tom; Ratner, Rebecca K.; Levav, Jonathan

    2010-01-01

    Why do affective forecasting errors persist in the face of repeated disconfirming evidence? Five studies demonstrate that people misremember their forecasts as consistent with their experience and thus fail to perceive the extent of their forecasting error. As a result, people do not learn from past forecasting errors and fail to adjust subsequent…

  7. Nambe Pueblo Water Budget and Forecasting model.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  8. Satellite based Ocean Forecasting, the SOFT project

    Science.gov (United States)

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  9. Fuzzy approach for short term load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Chenthur Pandian, S.; Duraiswamy, K.; Kanagaraj, N. [Electrical and Electronics Engg., K.S. Rangasamy College of Technology, Tiruchengode 637209, Tamil Nadu (India); Christober Asir Rajan, C. [Department of Electrical and Electronics Engineering, Pondicherry Engineering College, Pondicherry (India)

    2006-04-15

    The main objective of short term load forecasting (STLF) is to provide load predictions for generation scheduling, economic load dispatch and security assessment at any time. The STLF is needed to supply necessary information for the system management of day-to-day operations and unit commitment. In this paper, the 'time' and 'temperature' of the day are taken as inputs for the fuzzy logic controller and the 'forecasted load' is the output. The input variable 'time' has been divided into eight triangular membership functions. The membership functions are Mid Night, Dawn, Morning, Fore Noon, After Noon, Evening, Dusk and Night. Another input variable 'temperature' has been divided into four triangular membership functions. They are Below Normal, Normal, Above Normal and High. The 'forecasted load' as output has been divided into eight triangular membership functions. They are Very Low, Low, Sub Normal, Moderate Normal, Normal, Above Normal, High and Very High. Case studies have been carried out for the Neyveli Thermal Power Station Unit-II (NTPS-II) in India. The fuzzy forecasted load values are compared with the conventional forecasted values. The forecasted load closely matches the actual one within +/-3%. (author)

  10. Combination of biased forecasts: Bias correction or bias based weights?

    OpenAIRE

    Wenzel, Thomas

    1999-01-01

    Most of the literature on combination of forecasts deals with the assumption of unbiased individual forecasts. Here, we consider the case of biased forecasts and discuss two different combination techniques resulting in an unbiased forecast. On the one hand we correct the individual forecasts, and on the other we calculate bias based weights. A simulation study gives some insight in the situations where we should use the different methods.

  11. A Hybrid Model for Forecasting Sales in Turkish Paint Industry

    OpenAIRE

    Alp Ustundag

    2009-01-01

    Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI) w...

  12. Practical Results of Forecasting for the Natural Gas Market

    OpenAIRE

    Potocnik, Primoz; Govekar, Edvard

    2010-01-01

    Natural gas consumption forecasting is required to balance the supply and consumption of natural gas. Companies and natural gas distributors are motivated to forecast their consumption by the economic incentive model that dictates the cash flow rules corresponding to the forecasting accuracy. The rules are quite challenging but enable the company to gain positive cash flow by forecasting accurately their short-term natural gas consumption. In this chapter, some practical forecasting results f...

  13. Ensemble forecasting using sequential aggregation for photovoltaic power applications

    International Nuclear Information System (INIS)

    Thorey, Jean

    2017-01-01

    Our main objective is to improve the quality of photovoltaic power forecasts deriving from weather forecasts. Such forecasts are imperfect due to meteorological uncertainties and statistical modeling inaccuracies in the conversion of weather forecasts to power forecasts. First we gather several weather forecasts, secondly we generate multiple photovoltaic power forecasts, and finally we build linear combinations of the power forecasts. The minimization of the Continuous Ranked Probability Score (CRPS) allows to statistically calibrate the combination of these forecasts, and provides probabilistic forecasts under the form of a weighted empirical distribution function. We investigate the CRPS bias in this context and several properties of scoring rules which can be seen as a sum of quantile-weighted losses or a sum of threshold-weighted losses. The minimization procedure is achieved with online learning techniques. Such techniques come with theoretical guarantees of robustness on the predictive power of the combination of the forecasts. Essentially no assumptions are needed for the theoretical guarantees to hold. The proposed methods are applied to the forecast of solar radiation using satellite data, and the forecast of photovoltaic power based on high-resolution weather forecasts and standard ensembles of forecasts. (author) [fr

  14. Pollen Forecast and Dispersion Modelling

    Science.gov (United States)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  15. The Invasive Species Forecasting System

    Science.gov (United States)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  16. Grey Forecast Rainfall with Flow Updating Algorithm for Real-Time Flood Forecasting

    Directory of Open Access Journals (Sweden)

    Jui-Yi Ho

    2015-04-01

    Full Text Available The dynamic relationship between watershed characteristics and rainfall-runoff has been widely studied in recent decades. Since watershed rainfall-runoff is a non-stationary process, most deterministic flood forecasting approaches are ineffective without the assistance of adaptive algorithms. The purpose of this paper is to propose an effective flow forecasting system that integrates a rainfall forecasting model, watershed runoff model, and real-time updating algorithm. This study adopted a grey rainfall forecasting technique, based on existing hourly rainfall data. A geomorphology-based runoff model can be used for simulating impacts of the changing geo-climatic conditions on the hydrologic response of unsteady and non-linear watershed system, and flow updating algorithm were combined to estimate watershed runoff according to measured flow data. The proposed flood forecasting system was applied to three watersheds; one in the United States and two in Northern Taiwan. Four sets of rainfall-runoff simulations were performed to test the accuracy of the proposed flow forecasting technique. The results indicated that the forecast and observed hydrographs are in good agreement for all three watersheds. The proposed flow forecasting system could assist authorities in minimizing loss of life and property during flood events.

  17. More intense experiences, less intense forecasts: why people overweight probability specifications in affective forecasts.

    Science.gov (United States)

    Buechel, Eva C; Zhang, Jiao; Morewedge, Carey K; Vosgerau, Joachim

    2014-01-01

    We propose that affective forecasters overestimate the extent to which experienced hedonic responses to an outcome are influenced by the probability of its occurrence. The experience of an outcome (e.g., winning a gamble) is typically more affectively intense than the simulation of that outcome (e.g., imagining winning a gamble) upon which the affective forecast for it is based. We suggest that, as a result, experiencers allocate a larger share of their attention toward the outcome (e.g., winning the gamble) and less to its probability specifications than do affective forecasters. Consequently, hedonic responses to an outcome are less sensitive to its probability specifications than are affective forecasts for that outcome. The results of 6 experiments provide support for our theory. Affective forecasters overestimated how sensitive experiencers would be to the probability of positive and negative outcomes (Experiments 1 and 2). Consistent with our attentional account, differences in sensitivity to probability specifications disappeared when the attention of forecasters was diverted from probability specifications (Experiment 3) or when the attention of experiencers was drawn toward probability specifications (Experiment 4). Finally, differences in sensitivity to probability specifications between forecasters and experiencers were diminished when the forecasted outcome was more affectively intense (Experiments 5 and 6).

  18. Uncertainty Forecasts Improve Weather-Related Decisions and Attenuate the Effects of Forecast Error

    Science.gov (United States)

    Joslyn, Susan L.; LeClerc, Jared E.

    2012-01-01

    Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather…

  19. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  20. FORECASTING OF PERFORMANCE EVALUATION OF NEW VEHICLES

    Directory of Open Access Journals (Sweden)

    O. S. Krasheninin

    2016-12-01

    Full Text Available Purpose. The research work focuses on forecasting of performance evaluation of the tractive and non-tractive vehicles that will satisfy and meet the needs and requirements of the railway industry, which is constantly evolving. Methodology. Analysis of the technical condition of the existing fleet of rolling stock (tractive and non-tractive of Ukrainian Railways shows a substantial reduction that occurs in connection with its moral and physical wear and tear, as well as insufficient and limited purchase of new units of the tractive and non-tractive rolling stock in the desired quantity. In this situation there is a necessity of search of the methods for determination of rolling stock technical characteristics. One of such urgent and effective measures is to conduct forecasting of the defining characteristics of the vehicles based on the processes of their reproduction in conditions of limited resources using a continuous exponential function. The function of the growth rate of the projected figure degree for the vehicle determines the logistic characteristic that with unlimited resources has the form of an exponent, and with low ones – that of a line. Findings. The data obtained according to the proposed method allowed determining the expected (future value, that is the ratio of load to volume of the body for non-tractive rolling stock (gondola cars and weight-to-power for tractive rolling stock, the degree of forecast reliability and the standard forecast error, which show high prediction accuracy for the completed procedure. As a result, this will allow estimating the required characteristics of vehicles in the forecast year with high accuracy. Originality. The concept of forecasting the characteristics of the vehicles for decision-making on the evaluation of their prospects was proposed. Practical value. The forecasting methodology will reliably determine the technical parameters of tractive and non-tractive rolling stock, which will meet