WorldWideScience

Sample records for on-chip sers based

  1. An FPGA bridge preserving traffing quality of service for on-chip network-based systems

    Nejad, A.B.; Escudero Martinez, M.; Goossens, K.G.W.

    2011-01-01

    FPGA prototyping of recent large Systems on Chip (SoCs) is very challenging due to the resource limitation of a single FPGA. Moreover, having external access to SoCs for verification and debug purposes is essential. In this paper, we suggest to partition a network-on-chip (NoC) based system into

  2. MEMS-based wavelength and orbital angular momentum demultiplexer for on-chip applications

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    Summary form only given. We demonstrate a new tunable MEMS-based WDM&OAM Fabry-Pérot filter for simultaneous wavelength (WDM) and Orbital Angular Momentum (OAM) (de)multiplexing. The WDM&OAM filter is suitable for dense on-chip integration and dedicated for the next generation of optical...

  3. Micromotor-based lab-on-chip immunoassays

    García, Miguel; Orozco, Jahir; Guix, Maria; Gao, Wei; Sattayasamitsathit, Sirilak; Escarpa, Alberto; Merkoçi, Arben; Wang, Joseph

    2013-01-01

    Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic polymer/Ni/Pt microtube engine, containing carboxy moieties on its mixed poly(3,4-ethylenedioxythiophene) (PEDOT)/COOH-PEDOT polymeric outermost layer, is further functionalized with the antibody receptor to selectively recognize and capture the target protein. The new motor-based microchip immunoassay operations are carried out without any bulk fluid flow, replacing the common washing steps in antibody-based protein bioassays with the active transport of the captured protein throughout the different reservoirs, where each step of the immunoassay takes place. A first microchip format involving an `on-the-fly' double-antibody sandwich assay (DASA) is used for demonstrating the selective capture of the target protein, in the presence of excess of non-target proteins. A secondary antibody tagged with a polymeric-sphere tracer allows the direct visualization of the binding events. In a second approach the immuno-nanomotor captures and transports the microsphere-tagged antigen through a microchannel network. An anti-protein-A modified microengine is finally used to demonstrate the selective capture, transport and convenient label-free optical detection of a Staphylococcus aureus target bacteria (containing proteinA in its cell wall) in the presence of a large excess of non-target (Saccharomyces cerevisiae) cells. The resulting nanomotor-based microchip immunoassay offers considerable potential for diverse applications in clinical diagnostics, environmental and security monitoring fields.Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic

  4. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage

    Zhong-Shuai Wu; Xinliang Feng; Hui-Ming Cheng

    2014-01-01

    The current development trend towards miniaturized portable electronic devices has signiicantly increased the demand for ultrathin, lexible and sustainable on-chip micro-supercapacitors that have enormous potential to complement, or even to replace, micro-bateries and electrolytic capacitors. In this regard,graphene-based micro-supercapacitors with a planar geometry are promising micro-electrochemical energy-storage devices that can take full advantage of planar coniguration and unique features of graphene.his review summarizes the latest advances in on-chip graphene-based planar interdigital micro-supercapacitors, from the history of their development, representative graphene-based materials(graphene sheets, graphene quantum dots and graphene hybrids) for their manufacture, typical microfabrication strategies(photolithography techniques, electrochemical methods, laser writing, etc.),electrolyte(aqueous, organic, ionic and gel), to device coniguration(symmetric and asymmetric). Finally,the perspectives and possible development directions of future graphene-based micro-supercapacitors are briely discussed.

  5. Debugging systems-on-chip communication-centric and abstraction-based techniques

    Vermeulen, Bart

    2014-01-01

    This book describes an approach and supporting infrastructure to facilitate debugging the silicon implementation of a System-on-Chip (SOC), allowing its associated product to be introduced into the market more quickly.  Readers learn step-by-step the key requirements for debugging a modern, silicon SOC implementation, nine factors that complicate this debugging task, and a new debug approach that addresses these requirements and complicating factors.  The authors’ novel communication-centric, scan-based, abstraction-based, run/stop-based (CSAR) debug approach is discussed in detail, showing how it helps to meet debug requirements and address the nine, previously identified factors that complicate debugging silicon implementations of SOCs. The authors also derive the debug infrastructure requirements to support debugging of a silicon implementation of an SOC with their CSAR debug approach. This debug infrastructure consists of a generic on-chip debug architecture, a configurable automated design-for-debug ...

  6. VLSI Design of SVM-Based Seizure Detection System With On-Chip Learning Capability.

    Feng, Lichen; Li, Zunchao; Wang, Yuanfa

    2018-02-01

    Portable automatic seizure detection system is very convenient for epilepsy patients to carry. In order to make the system on-chip trainable with high efficiency and attain high detection accuracy, this paper presents a very large scale integration (VLSI) design based on the nonlinear support vector machine (SVM). The proposed design mainly consists of a feature extraction (FE) module and an SVM module. The FE module performs the three-level Daubechies discrete wavelet transform to fit the physiological bands of the electroencephalogram (EEG) signal and extracts the time-frequency domain features reflecting the nonstationary signal properties. The SVM module integrates the modified sequential minimal optimization algorithm with the table-driven-based Gaussian kernel to enable efficient on-chip learning. The presented design is verified on an Altera Cyclone II field-programmable gate array and tested using the two publicly available EEG datasets. Experiment results show that the designed VLSI system improves the detection accuracy and training efficiency.

  7. On-chip signal amplification of magnetic bead-based immunoassay by aviating magnetic bead chains.

    Jalal, Uddin M; Jin, Gyeong Jun; Eom, Kyu Shik; Kim, Min Ho; Shim, Joon S

    2017-11-06

    In this work, a Lab-on-a-Chip (LOC) platform is used to electromagnetically actuate magnetic bead chains for an enhanced immunoassay. Custom-made electromagnets generate a magnetic field to form, rotate, lift and lower the magnetic bead chains (MBCs). The cost-effective, disposable LOC platform was made with a polymer substrate and an on-chip electrochemical sensor patterned via the screen-printing process. The movement of the MBCs is controlled to improve the electrochemical signal up to 230% when detecting beta-type human chorionic gonadotropin (β-hCG). Thus, the proposed on-chip MBC-based immunoassay is applicable for rapid, qualitative electrochemical point-of-care (POC) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. On-chip photonic microsystem for optical signal processing based on silicon and silicon nitride platforms

    Li, Yu; Li, Jiachen; Yu, Hongchen; Yu, Hai; Chen, Hongwei; Yang, Sigang; Chen, Minghua

    2018-04-01

    The explosive growth of data centers, cloud computing and various smart devices is limited by the current state of microelectronics, both in terms of speed and heat generation. Benefiting from the large bandwidth, promising low power consumption and passive calculation capability, experts believe that the integrated photonics-based signal processing and transmission technologies can break the bottleneck of microelectronics technology. In recent years, integrated photonics has become increasingly reliable and access to the advanced fabrication process has been offered by various foundries. In this paper, we review our recent works on the integrated optical signal processing system. We study three different kinds of on-chip signal processors and use these devices to build microsystems for the fields of microwave photonics, optical communications and spectrum sensing. The microwave photonics front receiver was demonstrated with a signal processing range of a full-band (L-band to W-band). A fully integrated microwave photonics transceiver without the on-chip laser was realized on silicon photonics covering the signal frequency of up 10 GHz. An all-optical orthogonal frequency division multiplexing (OFDM) de-multiplier was also demonstrated and used for an OFDM communication system with the rate of 64 Gbps. Finally, we show our work on the monolithic integrated spectrometer with a high resolution of about 20 pm at the central wavelength of 1550 nm. These proposed on-chip signal processing systems potential applications in the fields of radar, 5G wireless communication, wearable devices and optical access networks.

  9. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities.

    Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-17

    On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics.

  10. An FPGA design flow for reconfigurable network-based multi-processor systems on chip

    Kumar, A.; Hansson, M.A; Huisken, J.; Corporaal, H.

    2007-01-01

    Multi-processor systems on chip (MPSoC) platforms are becoming increasingly more heterogeneous and are shifting towards a more communication-centric methodology. Networks on chip (NoC) have emerged as the design paradigm for scalable on-chip communication architectures. As the system complexity

  11. Support for Programming Models in Network-on-Chip-based Many-core Systems

    Rasmussen, Morten Sleth

    This thesis addresses aspects of support for programming models in Network-on- Chip-based many-core architectures. The main focus is to consider architectural support for a plethora of programming models in a single system. The thesis has three main parts. The first part considers parallelization...... models to be supported by a single architecture. The architecture features a specialized network interface processor which allows extensive configurability of the memory system. Based on this architecture, a detailed implementation of the cache coherent shared memory programming model is presented...

  12. Embedded 3D Graphics Core for FPGA-based System-on-Chip Applications

    Holten-Lund, Hans Erik

    2005-01-01

    This paper presents a 3D graphics accelerator core for an FPGA based system, and illustrates how to build a System-on-Chip containing a Xilinx MicroBlaze soft-core CPU and our 3D graphics accelerator core. The system is capable of running uClinux and hardware accelerated 3D graphics applications......, and the video display which periodically reads from memory to display the final rendered graphics. The graphics core uses internal scratch-pad memory to reduce its external bandwidth requirement, this is achieved by implementing a tile-based rendering algorithm. Reduced external bandwidth means that the power...

  13. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Henriksen, Anders Dahl

    2014-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches....... The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover...

  14. HARDWARE IMPLEMENTATION OF PIPELINE BASED ROUTER DESIGN FOR ON-CHIP NETWORK

    U. Saravanakumar

    2012-12-01

    Full Text Available As the feature size is continuously decreasing and integration density is increasing, interconnections have become a dominating factor in determining the overall quality of a chip. Due to the limited scalability of system bus, it cannot meet the requirement of current System-on-Chip (SoC implementations where only a limited number of functional units can be supported. Long global wires also cause many design problems, such as routing congestion, noise coupling, and difficult timing closure. Network-on-Chip (NoC architectures have been proposed to be an alternative to solve the above problems by using a packet-based communication network. In this paper, the Circuit-Switched (CS Router was designed and analysed the various parameters such as power, timing and area. The CS router has taken more number of cycles to transfer the data from source to destination. So the pipelining concept was implemented by adding registers in the CS router architecture. The proposed architecture increases the speed of operation and reduces the critical path of the circuit. The router has been implemented using Verilog HDL. The parameters area, power and timing were calculated in 130 nm CMOS technology using Synopsys tool with nominal operating voltage of 1V and packet size is 39 bits. Finally power, area and time of these two routers have been analysed and compared.

  15. A multi-chip data acquisition system based on a heterogeneous system-on-chip platform

    Fiergolski, Adrian

    2017-01-01

    The Control and Readout Inner tracking BOard (CaRIBOu) is a versatile readout system targeting a multitude of detector prototypes. It profits from the heterogeneous platform of the Zynq System-on-Chip (SoC) and integrates in a monolithic device front-end FPGA resources with a back-end software running on a hard-core ARM-based processor. The user-friendly Linux terminal with the pre-installed DAQ software is combined with the efficiency and throughput of a system fully implemented in the FPGA fabric. The paper presents the design of the SoC-based DAQ system and its building blocks. It also shows examples of the achieved functionality for the CLICpix2 readout ASIC.

  16. Avoiding Message-Dependent Deadlock in Network-Based Systems on Chip

    Hansson, A.; Goossens, K.; Rãdulescu, A.

    2007-01-01

    Networks on chip (NoCs) are an essential component of systems on chip (SoCs) and much research is devoted to deadlock avoidance in NoCs. Prior work focuses on the router network while protocol interactions between NoC and intellectual property (IP) modules are not considered. These interactions

  17. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    Rizzi, Giovanni; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F.

    2015-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP. - Highlights: • We apply magnetoresistive sensors to study solid-surface hybridization kinetics of DNA. • We measure DNA melting profiles for perfectly matching DNA duplexes and for a single base mismatch. • We present a procedure to correct for temperature dependencies of the sensor output. • We reliably extract melting temperatures for the DNA hybrids. • We demonstrate direct measurement of differential binding signal for two probes on a single sensor

  18. Optical biosensor based on a silicon nanowire ridge waveguide for lab on chip applications

    Gamal, Rania; Ismail, Yehea; Swillam, Mohamed A

    2015-01-01

    We propose a novel sensor using a silicon nanowire ridge waveguide (SNRW). This waveguide is comprised of an array of silicon nanowires on an insulator substrate that has the envelope of a ridge waveguide. The SNRW inherently maximizes the overlap between the material-under-test and the incident light wave by introducing voids to the otherwise bulk structure. When a sensing sample is injected, the voids within the SNRW adopt the refractive index of the material-under-test. Hence, the strong contribution of the material-under-test to the overall modal effective index will greatly augment the sensitivity. Additionally, the ridge structure provides a fabrication convenience as it covers the entire substrate, ensuring that the etching process would not damage the substrate. Finite-difference time-domain simulations are conducted and showed that the percentage change in the effective index due to a 1% change in the surrounding environment is more than 170 times the change perceived in an evanescent-detection based bulk silicon ridge waveguide. Moreover, the SNRW proves to be more sensitive than recent other, non-evanescent sensors. In addition, the detection limit for this structure was revealed to be as small as 10 −8 . A compact bimodal waveguide based on SNRW is designed and tested. It delivers high sensitivity values that offer comparable performance to similar low-index light-guiding sensing configurations; however, our proposed structure has much smaller footprints and allows high dense integration for lab-on-chip applications. (paper)

  19. Magnetic actuator for the control and mixing of magnetic bead-based reactions on-chip.

    Berenguel-Alonso, Miguel; Granados, Xavier; Faraudo, Jordi; Alonso-Chamarro, Julián; Puyol, Mar

    2014-10-01

    While magnetic bead (MB)-based bioassays have been implemented in integrated devices, their handling on-chip is normally either not optimal--i.e. only trapping is achieved, with aggregation of the beads--or requires complex actuator systems. Herein, we describe a simple and low-cost magnetic actuator to trap and move MBs within a microfluidic chamber in order to enhance the mixing of a MB-based reaction. The magnetic actuator consists of a CD-shaped plastic unit with an arrangement of embedded magnets which, when rotating, generate the mixing. The magnetic actuator has been used to enhance the amplification reaction of an enzyme-linked fluorescence immunoassay to detect Escherichia coli O157:H7 whole cells, an enterohemorrhagic strain, which have caused several outbreaks in food and water samples. A 2.7-fold sensitivity enhancement was attained with a detection limit of 603 colony-forming units (CFU) /mL, when employing the magnetic actuator.

  20. System on chip thermal vacuum sensor based on standard CMOS process

    Li Jinfeng; Tang Zhenan; Wang Jiaqi

    2009-01-01

    An on-chip microelectromechanical system was fabricated in a 0.5 μm standard CMOS process for gas pressure detection. The sensor was based on a micro-hotplate (MHP) and had been integrated with a rail to rail operational amplifier and an 8-bit successive approximation register (SAR) A/D converter. A tungsten resistor was manufactured on the MHP as the sensing element, and the sacrificial layer of the sensor was made from polysilicon and etched by surface-micromachining technology. The operational amplifier was configured to make the sensor operate in constant current mode. A digital bit stream was provided as the system output. The measurement results demonstrate that the gas pressure sensitive range of the vacuum sensor extends from 1 to 10 5 Pa. In the gas pressure range from 1 to 100 Pa, the sensitivity of the sensor is 0.23 mV/ Pa, the linearity is 4.95%, and the hysteresis is 8.69%. The operational amplifier can drive 200 ω resistors distortionlessly, and the SAR A/D converter achieves a resolution of 7.4 bit with 100 kHz sample rate. The performance of the operational amplifier and the SAR A/D converter meets the requirements of the sensor system.

  1. On-Chip Neural Data Compression Based On Compressed Sensing With Sparse Sensing Matrices.

    Zhao, Wenfeng; Sun, Biao; Wu, Tong; Yang, Zhi

    2018-02-01

    On-chip neural data compression is an enabling technique for wireless neural interfaces that suffer from insufficient bandwidth and power budgets to transmit the raw data. The data compression algorithm and its implementation should be power and area efficient and functionally reliable over different datasets. Compressed sensing is an emerging technique that has been applied to compress various neurophysiological data. However, the state-of-the-art compressed sensing (CS) encoders leverage random but dense binary measurement matrices, which incur substantial implementation costs on both power and area that could offset the benefits from the reduced wireless data rate. In this paper, we propose two CS encoder designs based on sparse measurement matrices that could lead to efficient hardware implementation. Specifically, two different approaches for the construction of sparse measurement matrices, i.e., the deterministic quasi-cyclic array code (QCAC) matrix and -sparse random binary matrix [-SRBM] are exploited. We demonstrate that the proposed CS encoders lead to comparable recovery performance. And efficient VLSI architecture designs are proposed for QCAC-CS and -SRBM encoders with reduced area and total power consumption.

  2. Ultracompact on-chip photothermal power monitor based on silicon hybrid plasmonic waveguides

    Wu Hao

    2017-01-01

    Full Text Available We propose and demonstrate an ultracompact on-chip photothermal power monitor based on a silicon hybrid plasmonic waveguide (HPWG, which consists of a metal strip, a silicon core, and a silicon oxide (SiO2 insulator layer between them. When light injected to an HPWG is absorbed by the metal strip, the temperature increases and the resistance of the metal strip changes accordingly due to the photothermal and thermal resistance effects of the metal. Therefore, the optical power variation can be monitored by measuring the resistance of the metal strip on the HPWG. To obtain the electrical signal for the resistance measurement conveniently, a Wheatstone bridge circuit is monolithically integrated with the HPWG on the same chip. As the HPWG has nanoscale light confinement, the present power monitor is as short as ~3 μm, which is the smallest photothermal power monitor reported until now. The compactness helps to improve the thermal efficiency and the response speed. For the present power monitor fabricated with simple fabrication processes, the measured responsivity is as high as about 17.7 mV/mW at a bias voltage of 2 V and the power dynamic range is as large as 35 dB.

  3. On-Chip Scan-Based Test Strategy for a Dependable Many-Core Processor Using a NoC as a Test Access Mechanism

    Zhang, X.; Kerkhoff, Hans G.; Vermeulen, Bart

    2010-01-01

    Periodic on-chip scan-based tests have to be applied to a many-core processor SoC to improve its dependability. An infrastructural IP module has been designed and incorporated into the SoC to function as an ATE. This paper introduces the reuse of a Network-on-Chip as a test access mechanism. Since

  4. Integrated lab-on-chip biosensing systems based on magnetic particle actuation : a comprehensive review

    Reenen, van A.; Jong, de A.M.; Toonder, den J.M.J.; Prins, M.W.J.

    2014-01-01

    The demand for easy to use and cost effective medical technologies inspires scientists to develop inno-vative lab-on-chip technologies for in-vitro diagnostic testing. To fulfill the medical needs, the tests should be rapid, sensitive, quantitative, miniaturizable, and need to integrate all steps

  5. Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid

    Zhi-Guo, Xie; Yong-Hua, Lu; Pei, Wang; Kai-Qun, Lin; Jie, Yan; Hai, Ming

    2008-01-01

    A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid. Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome mass-transport constraints, allowing more silver nanoparticles involved in SERS activity. This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture. We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA) molecules with the injecting way and the common dipping measurement. The injecting way shows obviously better results than the dipping one. Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area

  6. Integration of microcoils for on-chip immunosensors based on magnetic nanoparticles capture

    Olivier Lefebvre

    2017-04-01

    Full Text Available Immunoassays using magnetic nanoparticles (MNP are generally performed under the control of permanent magnet close to the micro-tube of reaction. Using a magnet gives a powerful method for driving MNP but remains unreliable or insufficient for a fully integrated immunoassay on lab-on-chip. The aim of this study is to develop a novel lab-on-chip concept for high efficient immunoassays to detect ovalbumin (Biodefense model molecule with microcoils employed for trapping MNP during the biofunctionalization steps. The objectives are essentially to optimize their efficiency for biological recognition by assuring a better bioactivity (antibodies-ovalbumin, and detect small concentrations of the targeted protein (~10 pg/mL. In this work, we studied the response of immunoassays complex function of ovalbumin concentration. The impact of MNP diameter in the biografting protocol was studied and permitted to choose a convenient MNP size for efficient biorecognition. We realized different immunoassays by controlling MNP in test tube and in microfluidic device using a permanent magnet. The comparison between these two experiments allows us to highlight an improvement of the limit of detection in microfluidic conditions by controlling MNP trapping with a magnet. Keywords: Bacteria, Lab-on-chip, ELISA, Magnetic nanoparticles, Ovalbumin, Microcoils, Fluorescent microscopy

  7. SERS-based pesticide detection by using nanofinger sensors

    Kim, Ansoon; Barcelo, Steven J.; Li, Zhiyong

    2015-01-01

    Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.

  8. SERS-based application in food analytics (Conference Presentation)

    Cialla-May, Dana; Radu, Andreea; Jahn, Martin; Weber, Karina; Popp, Jürgen

    2017-02-01

    To establish detection schemes in life science applications, specific and sensitive methods allowing for fast detection times are required. Due to the interaction of molecules with strong electromagnetic fields excited at metallic nanostructures, the molecular fingerprint specific Raman spectrum is increased by several orders of magnitude. This effect is described as surface-enhanced Raman spectroscopy (SERS) and became a very powerful analytical tool in many fields of application. Within this presentation, we will introduce innovative bottom-up strategies to prepare SERS-active nanostructures coated with a lipophilic sensor layer. To do so, the food colorant Sudan III, an indirect carcinogen substance found in chili powder, palm oil or spice mixtures, is detected quantitatively in the background of the competitor riboflavin as well as paprika powder extracts. The SERS-based detection of azorubine (E122) in commercial available beverages with different complexity (e.g. sugar content, alcohol concentration) illustrates the strong potential of SERS as a qualitative as well as semiquantitative prescan method in food analytics. Here, a good agreement between the estimated concentration employing SERS as well as the gold standard technique HPLC, a highly laborious method, is found. Finally, SERS is applied to detect vitamin B2 and B12 in cereals as well as the estimate the ratio of lycopene and β-carotene in tomatoes. Acknowledgement: Funding the projects "QuantiSERS" and "Jenaer Biochip Initiative 2.0" within the framework "InnoProfile Transfer - Unternehmen Region" the Federal Ministry of Education and Research, Germany (BMBF) is gratefully acknowledged.

  9. Plasmonic crystal based solid substrate for biomedical application of SERS

    Morasso, Carlo F.; Mehn, Dora; Picciolini, Silvia; Vanna, Renzo; Bedoni, Marzia; Gramatica, Furio; Pellacani, Paola; Frangolho, Ana; Marchesini, Gerardo; Valsesia, Andrea

    2014-02-01

    Surface Enhanced Raman Spectroscopy is a powerful analytical technique that combines the excellent chemical specificity of Raman spectroscopy with the good sensitivity provided by the enhancement of the signal observed when a molecule is located on (or very close to) the surface of suitable nanostructured metallic materials. The availability of cheap, reliable and easy to use SERS substrates would pave the road to the development of bioanalytical tests that can be used in clinical practice. SERS, in fact, is expected to provide not only higher sensitivity and specificity, but also the simultaneous and markedly improved detection of several targets at the same time with higher speed compared to the conventional analytical methods. Here, we present the SERS activity of 2-D plasmonic crystals made by polymeric pillars embedded in a gold matrix obtained through the combination of soft-lithography and plasma deposition techniques on a transparent substrates. The use of a transparent support material allowed us to perform SERS detection from support side opening the possibility to use these substrates in combination with microfluidic devices. In order to demonstrate the potentialities for bioanalytical applications, we used our SERS active gold surface to detect the oxidation product of apomorphine, a well-known drug molecule used in Parkinson's disease which has been demonstrated being difficult to study by traditional HPLC based approaches.

  10. SERS-Based Prognosis of Kidney Transplant Outcome

    Chi, Jingmao

    Kidney transplant is the predominant procedure of all organ transplants around the world. The number of patients on the waiting list for a kidney is growing rapidly, yet the number of donations does not keep up with the fast-growing need. This thesis focuses on the surface-enhanced Raman scattering (SERS) analysis of urine samples for prognosis of kidney transplant outcome, which can potentially let patients have a more timely treatment as well as expand the organ pool for transplant. We have observed unique SERS spectral features from urine samples of kidney transplant recipients that have strong associations with the kidney acute rejection (AR) based on the analysis of urine one day after the transplant. Our ability to provide an early prognosis of transplant outcome is a significant advance over the current gold standard of clinical diagnosis, which occurs weeks or months after the surgical procedure. The SERS analysis has also been applied to urine samples from deceased kidney donors. Excellent classification ability was achieved when the enhanced PCA-LDA analysis was used to classify and identify urine samples from different cases. The sensitivity of the acute tubular necrosis (ATN) class is more than 90%, which can indicate the usable kidneys in the high failure risk category. This analysis can help clinicians identify usable kidneys which would be discarded using conventional clinic methods as high failure risk. To investigate the biomarkers that cause the unique SERS features, an HPLC-SERS-MS approach was established. The high-performance liquid chromatography (HPLC) was used to separate the urinary components to reduce the sample complexity. The mass spectrometry (MS) was used to determine the formulas and the structures of the biomarkers. The presence of 1-methyl-2-pyrrolidone (NMP) and adenine in urine samples were confirmed by both MS and SERS analysis. Succinylmonocholine, a metabolite of suxamethonium, has a potential to be the biomarker that causes

  11. On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays

    Qian, Tao; Zhou, Jinqiu; Xu, Na; Yang, Tingzhou; Shen, Xiaowei; Liu, Xuejun; Wu, Shishan; Yan, Chenglin

    2015-10-01

    We introduce a new method for fabricating unique on-chip supercapacitors based on CuO/polypyrrole core/shell nanosheet arrays by means of direct electrochemical co-deposition on interdigital-like electrodes. The prepared all-solid-state device demonstrates exceptionally high specific capacitance of 1275.5 F cm-3 (˜40 times larger than that of CuO-only supercapacitors) and high-energy-density of 28.35 mWh cm-3, which are both significantly greater than other solid-state supercapacitors. More importantly, the device maintains approximately 100% capacity retention at 2.5 A cm-3 after 3000 cycles. The in situ co-deposition of CuO/polypyrrole nanosheets on interdigital substrate enables effective charge transport, electrode fabrication integrity, and device integration. Because of their high energy, power density, and stable cycling stability, these newly developed on-chip supercapacitors permit fast, reliable applications in portable and miniaturized electronic devices.

  12. On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays.

    Qian, Tao; Zhou, Jinqiu; Xu, Na; Yang, Tingzhou; Shen, Xiaowei; Liu, Xuejun; Wu, Shishan; Yan, Chenglin

    2015-10-23

    We introduce a new method for fabricating unique on-chip supercapacitors based on CuO/polypyrrole core/shell nanosheet arrays by means of direct electrochemical co-deposition on interdigital-like electrodes. The prepared all-solid-state device demonstrates exceptionally high specific capacitance of 1275.5 F cm(-3) (∼40 times larger than that of CuO-only supercapacitors) and high-energy-density of 28.35 mWh cm(-3), which are both significantly greater than other solid-state supercapacitors. More importantly, the device maintains approximately 100% capacity retention at 2.5 A cm(-3) after 3000 cycles. The in situ co-deposition of CuO/polypyrrole nanosheets on interdigital substrate enables effective charge transport, electrode fabrication integrity, and device integration. Because of their high energy, power density, and stable cycling stability, these newly developed on-chip supercapacitors permit fast, reliable applications in portable and miniaturized electronic devices.

  13. On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays

    Qian, Tao; Zhou, Jinqiu; Xu, Na; Yang, Tingzhou; Shen, Xiaowei; Liu, Xuejun; Yan, Chenglin; Wu, Shishan

    2015-01-01

    We introduce a new method for fabricating unique on-chip supercapacitors based on CuO/polypyrrole core/shell nanosheet arrays by means of direct electrochemical co-deposition on interdigital-like electrodes. The prepared all-solid-state device demonstrates exceptionally high specific capacitance of 1275.5 F cm"−"3 (∼40 times larger than that of CuO-only supercapacitors) and high-energy-density of 28.35 mWh cm"−"3, which are both significantly greater than other solid-state supercapacitors. More importantly, the device maintains approximately 100% capacity retention at 2.5 A cm"−"3 after 3000 cycles. The in situ co-deposition of CuO/polypyrrole nanosheets on interdigital substrate enables effective charge transport, electrode fabrication integrity, and device integration. Because of their high energy, power density, and stable cycling stability, these newly developed on-chip supercapacitors permit fast, reliable applications in portable and miniaturized electronic devices. (paper)

  14. Combining SDM-Based Circuit Switching with Packet Switching in a Router for On-Chip Networks

    Angelo Kuti Lusala

    2012-01-01

    Full Text Available A Hybrid router architecture for Networks-on-Chip “NoC” is presented, it combines Spatial Division Multiplexing “SDM” based circuit switching and packet switching in order to efficiently and separately handle both streaming and best-effort traffic generated in real-time applications. Furthermore the SDM technique is combined with Time Division Multiplexing “TDM” technique in the circuit switching part in order to increase path diversity, thus improving throughput while sharing communication resources among multiple connections. Combining these two techniques allows mitigating the poor resource usage inherent to circuit switching. In this way Quality of Service “QoS” is easily provided for the streaming traffic through the circuit-switched sub-router while the packet-switched sub-router handles best-effort traffic. The proposed hybrid router architectures were synthesized, placed and routed on an FPGA. Results show that a practicable Network-on-Chip “NoC” can be built using the proposed router architectures. 7 × 7 mesh NoCs were simulated in SystemC. Simulation results show that the probability of establishing paths through the NoC increases with the number of sub-channels and has its highest value when combining SDM with TDM, thereby significantly reducing contention in the NoC.

  15. An Impedance-Based Mold Sensor with on-Chip Optical Reference

    Poornachandra Papireddy Vinayaka

    2016-09-01

    Full Text Available A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8 as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip.

  16. The system power control unit based on the on-chip wireless communication system.

    Li, Tiefeng; Ma, Caiwen; Li, WenHua

    2013-01-01

    Currently, the on-chip wireless communication system (OWCS) includes 2nd-generation (2G), 3rd-generation (3G), and long-term evolution (LTE) communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU) is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM) communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS) for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware.

  17. The System Power Control Unit Based on the On-Chip Wireless Communication System

    Tiefeng Li

    2013-01-01

    Full Text Available Currently, the on-chip wireless communication system (OWCS includes 2nd-generation (2G, 3rd-generation (3G, and long-term evolution (LTE communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware.

  18. A Novel Mu Rhythm-based Brain Computer Interface Design that uses a Programmable System on Chip.

    Joshi, Rohan; Saraswat, Prateek; Gajendran, Rudhram

    2012-01-01

    This paper describes the system design of a portable and economical mu rhythm based Brain Computer Interface which employs Cypress Semiconductors Programmable System on Chip (PSoC). By carrying out essential processing on the PSoC, the use of an extra computer is eliminated, resulting in considerable cost savings. Microsoft Visual Studio 2005 and PSoC Designer 5.01 are employed in developing the software for the system, the hardware being custom designed. In order to test the usability of the BCI, preliminary testing is carried out by training three subjects who were able to demonstrate control over their electroencephalogram by moving a cursor present at the center of the screen towards the indicated direction with an average accuracy greater than 70% and a bit communication rate of up to 7 bits/min.

  19. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links.

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-11-04

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.

  20. System-on-Chip Environment: A SpecC-Based Framework for Heterogeneous MPSoC Design

    Daniel D. Gajski

    2008-07-01

    Full Text Available The constantly growing complexity of embedded systems is a challenge that drives the development of novel design automation techniques. C-based system-level design addresses the complexity challenge by raising the level of abstraction and integrating the design processes for the heterogeneous system components. In this article, we present a comprehensive design framework, the system-on-chip environment (SCE which is based on the influential SpecC language and methodology. SCE implements a top-down system design flow based on a specify-explore-refine paradigm with support for heterogeneous target platforms consisting of custom hardware components, embedded software processors, dedicated IP blocks, and complex communication bus architectures. Starting from an abstract specification of the desired system, models at various levels of abstraction are automatically generated through successive step-wise refinement, resulting in a pin-and cycle-accurate system implementation. The seamless integration of automatic model generation, estimation, and verification tools enables rapid design space exploration and efficient MPSoC implementation. Using a large set of industrial-strength examples with a wide range of target architectures, our experimental results demonstrate the effectiveness of our framework and show significant productivity gains in design time.

  1. Improved Laser Manipulation for On-chip Fabricated Microstructures Based on Solution Replacement and Its Application in Single Cell Analysis

    Tao Yue

    2014-02-01

    Full Text Available In this paper, we present the fabrication and assembly of microstructures inside a microfluidic device based on a photocrosslinkable resin and optical tweezers. We also report a method of solution replacement inside the microfluidic channel in order to improve the manipulation performance and apply the assembled microstructures for single cell cultivation. By the illumination of patterned ultraviolet (UV through a microscope, microstructures of arbitrary shape were fabricated by the photocrosslinkable resin inside a microfluidic channel. Based on the microfluidic channel with both glass and polydimethylsiloxane (PDMS surfaces, immovable and movable microstructures were fabricated and manipulated. The microstructures were fabricated at the desired places and manipulated by the optical tweezers. A rotational microstructure including a microgear and a rotation axis was assembled and rotated in demonstrating this technique. The improved laser manipulation of microstructures was achieved based on the on-chip solution replacement method. The manipulation speed of the microstructures increased when the viscosity of the solvent decreased. The movement efficiency of the fabricated microstructures inside the lower viscosity solvent was evaluated and compared with those microstructures inside the former high viscosity solvent. A novel cell cage was fabricated and the cultivation of a single yeast cell (w303 was demonstrated in the cell cage, inside the microfluidic device.

  2. Drag &Drop, Multiphysics & Neural Net-based Lab-on-Chip Optimization Software, Phase I

    National Aeronautics and Space Administration — The overall objective of this project is to develop a drag and drop, component library (fluidic lego) based, system simulation and optimization software for entire...

  3. Drag &Drop, Mixed-Methodology-based Lab-on-Chip Design Optimization Software, Phase II

    National Aeronautics and Space Administration — The overall objective is to develop a ?mixed-methodology?, drag and drop, component library (fluidic-lego)-based, system design and optimization tool for complex...

  4. A Smart Mobile Lab-on-Chip-Based Medical Diagnostics System Architecture Designed For Evolvability

    Patou, François; Dimaki, Maria; Svendsen, Winnie Edith

    2015-01-01

    for this work. We introduce a smart-mobile and LoC-based system architecture designed for evolvability. By propagating LoC programmability, instrumentation, and control tools to the highlevel abstraction smart-mobile software layer, our architecture facilitates the realisation of new use...

  5. An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure

    Sun, Chengwei; Rong, Kexiu; Gan, Fengyuan; Chu, Saisai; Gong, Qihuang; Chen, Jianjun

    2017-09-01

    Polarization beam splitters (PBSs) are one of the key components in the integrated photonic circuits. To increase the integration density, various complex hybrid plasmonic structures have been numerically designed to shrink the footprints of the PBSs. Here, to decrease the complexity of the small hybrid structures and the difficulty of the hybrid micro-nano fabrications, the radiation losses are utilized to experimentally demonstrate an ultra-small, broadband, and efficient PBS in a simple bending hybrid plasmonic waveguide structure. The hybrid plasmonic waveguide comprising a dielectric strip on the metal surface supports both the transverse-magnetic (TM) and transverse-electric (TE) waveguide modes. Because of the different field confinements, the TE waveguide mode has larger radiation loss than the TM waveguide mode in the bending hybrid strip waveguide. Based on the different radiation losses, the two incident waveguide modes of orthogonal polarization states are efficiently split in the proposed structure with a footprint of only about 2.2 × 2.2 μm2 on chips. Since there is no resonance or interference in the splitting process, the operation bandwidth is as broad as Δλ = 70 nm. Moreover, the utilization of the strongly confined waveguide modes instead of the bulk free-space light (with the spot size of at least a few wavelengths) as the incident source considerably increases the coupling efficiency, resulting in a low insertion loss of <3 dB.

  6. Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System

    Fernando Castaño

    2017-09-01

    Full Text Available Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.. The obstacle recognition library is designed and implemented to address the design and evaluation of obstacle detection in a transportation cyber-physical system. The library is integrated into a co-simulation framework that is supported on the interaction between SCANeR software and Matlab/Simulink. From the best of the authors’ knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip light detection and ranging sensors in a cyber-physical system, for traffic scenarios, is presented. The cyber-physical system is designed and implemented in SCANeR. Secondly, three specific artificial intelligence-based methods for obstacle recognition libraries are also designed and applied using a sensory information database provided by SCANeR. The computational library has three methods for obstacle detection: a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods under different weather conditions is presented, with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and foggy conditions, the support vector machine in rainy conditions and the self-organized map in snowy conditions.

  7. Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System.

    Castaño, Fernando; Beruvides, Gerardo; Haber, Rodolfo E; Artuñedo, Antonio

    2017-09-14

    Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.). The obstacle recognition library is designed and implemented to address the design and evaluation of obstacle detection in a transportation cyber-physical system. The library is integrated into a co-simulation framework that is supported on the interaction between SCANeR software and Matlab/Simulink. From the best of the authors' knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip light detection and ranging sensors in a cyber-physical system, for traffic scenarios, is presented. The cyber-physical system is designed and implemented in SCANeR. Secondly, three specific artificial intelligence-based methods for obstacle recognition libraries are also designed and applied using a sensory information database provided by SCANeR. The computational library has three methods for obstacle detection: a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods under different weather conditions is presented, with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and foggy conditions, the support vector machine in rainy conditions and the self-organized map in snowy conditions.

  8. Integrated on-chip solid state capacitor based on vertically aligned carbon nanofibers, grown using a CMOS temperature compatible process

    Saleem, Amin M.; Andersson, Rickard; Desmaris, Vincent; Enoksson, Peter

    2018-01-01

    Complete miniaturized on-chip integrated solid-state capacitors have been fabricated based on conformal coating of vertically aligned carbon nanofibers (VACNFs), using a CMOS temperature compatible microfabrication processes. The 5 μm long VACNFs, operating as electrode, are grown on a silicon substrate and conformally coated by aluminum oxide dielectric using atomic layer deposition (ALD) technique. The areal (footprint) capacitance density value of 11-15 nF/mm2 is realized with high reproducibility. The CMOS temperature compatible microfabrication, ultra-low profile (less than 7 μm thickness) and high capacitance density would enables direct integration of micro energy storage devices on the active CMOS chip, multi-chip package and passives on silicon or glass interposer. A model is developed to calculate the surface area of VACNFs and the effective capacitance from the devices. It is thereby shown that 71% of surface area of the VACNFs has contributed to the measured capacitance, and by using the entire area the capacitance can potentially be increased.

  9. An area-efficient network interface for a TDM-based Network-on-Chip

    Sparsø, Jens; Kasapaki, Evangelia; Schoeberl, Martin

    2013-01-01

    used by the routers and links in the NOC. The paper addresses the design of a NI for a NOC that uses time division multiplexing (TDM). By keeping the essence of TDM in mind, we have developed a new area-efficient NI micro-architecture. The new design completely eliminates the need for FIFO buffers...... and credit based flow control - resources which are reported to account for 50–85% of the area in existing NI designs. The paper discusses the design considerations, presents the new NI micro-architecture, and reports area figures for a range of implementations....

  10. An FPGA based Node-on-Chip Architecture, for Rapid Robotics Research

    Falsig, Simon; Sørensen, Anders Stengaard

    2010-01-01

    One of the major costs and inhibitors to practical robotics research is the time invested in design, implementation, integration, adjusting and debugging of the embedded control systems, that implement the discrete event control in experimental robots and robot systems. Usually researchers can...... with the compactness and integration associated with customized hardware. In this paper we present an FPGA based architecture and a framework of template modules for modular embedded control that has: • Dramatically reduced the time we spend on instrumentation of experimental robots. • Increased the quality...

  11. Channel-Selectable Optical Link Based on a Silicon Microring for on-Chip Interconnection

    Qiu Chen; Hu Ting; Wang Wan-Jun; Yu Ping; Jiang Xiao-Qing; Yang Jian-Yi

    2012-01-01

    A channel-selectable optical link based on a silicon microring resonator is proposed and demonstrated. This optical link consists of the wavelength-tunable microring modulators and the filters, defined on a silicon-on-insulator (SOI) platform. With a p—i—n junction embedded in the microring modulator, light at the resonant wavelength of the ring resonator is modulated. The 2 nd -order microring add-drop filter routes the modulated light. The channel selectivity is demonstrated by heating the microrings. With a thermal tuning efficiency of 5.9 mW/nm, the filter drop port response was successfully tuned with 0.8 nm channel spacing. We also show that modulation can be achieved in these channels. This device aims to offer flexibility and increase the bandwidth usage efficiency in optical interconnection

  12. On-chip non-reciprocal optical devices based on quantum inspired photonic lattices

    El-Ganainy, R.; Eisfeld, A.; Levy, Miguel; Christodoulides, D. N.

    2013-10-01

    We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8 mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.

  13. AC electric field induced dipole-based on-chip 3D cell rotation.

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-07

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  14. Invited Article: Electrically tunable silicon-based on-chip microdisk resonator for integrated microwave photonic applications

    Weifeng Zhang

    2016-11-01

    Full Text Available Silicon photonics with advantages of small footprint, compatibility with the mature CMOS fabrication technology, and its potential for seamless integration with electronics is making a significant difference in realizing on-chip integration of photonic systems. A microdisk resonator (MDR with a strong capacity in trapping and storing photons is a versatile element in photonic integrated circuits. Thanks to the large index contrast, a silicon-based MDR with an ultra-compact footprint has a great potential for large-scale and high-density integrations. However, the existence of multiple whispering gallery modes (WGMs and resonance splitting in an MDR imposes inherent limitations on its widespread applications. In addition, the waveguide structure of an MDR is incompatible with that of a lateral PN junction, which leads to the deprivation of its electrical tunability. To circumvent these limitations, in this paper we propose a novel design of a silicon-based MDR by introducing a specifically designed slab waveguide to surround the disk and the lateral sides of the bus waveguide to suppress higher-order WGMs and to support the incorporation of a lateral PN junction for electrical tunability. An MDR based on the proposed design is fabricated and its optical performance is evaluated. The fabricated MDR exhibits single-mode operation with a free spectral range of 28.85 nm. Its electrical tunability is also demonstrated and an electro-optic frequency response with a 3-dB modulation bandwidth of ∼30.5 GHz is measured. The use of the fabricated MDR for the implementation of an electrically tunable optical delay-line and a tunable fractional-order temporal photonic differentiator is demonstrated.

  15. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer

    Ding, Yunhong; Xu, Jing; Da Ros, Francesco

    2013-01-01

    ), and large fabrication tolerance (20 nm) are measured. An on-chip mode multiplexing experiment is carried out on the fabricated circuit with non return-to-zero (NRZ) on-off keying (OOK) signals at 40 Gbit/s. The experimental results show clear eye diagrams and moderate power penalty for both TE0 and TE1...

  16. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in

  17. SERS Raman Sensor Based on Diameter-Modulated Sapphire Fiber

    Shimoji, Yutaka

    2010-08-09

    Surface enhanced Raman scattering (SERS) has been observed using a sapphire fiber coated with gold nano-islands for the first time. The effect was found to be much weaker than what was observed with a similar fiber coated with silver nanoparticles. Diameter-modulated sapphire fibers have been successfully fabricated on a laser heated pedestal growth system. Such fibers have been found to give a modest increase in the collection efficiency of induced emission. However, the slow response of the SERS effect makes it unsuitable for process control applications.

  18. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun

    2010-01-01

    We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.

  19. Design of the ANTARES LCM-DAQ board test bench using a FPGA-based system-on-chip approach

    Anvar, S. [CEA Saclay, DAPNIA/SEDI, 91191 Gif-sur-Yvette Cedex (France); Kestener, P. [CEA Saclay, DAPNIA/SEDI, 91191 Gif-sur-Yvette Cedex (France)]. E-mail: pierre.kestener@cea.fr; Le Provost, H. [CEA Saclay, DAPNIA/SEDI, 91191 Gif-sur-Yvette Cedex (France)

    2006-11-15

    The System-on-Chip (SoC) approach consists in using state-of-the-art FPGA devices with embedded RISC processor cores, high-speed differential LVDS links and ready-to-use multi-gigabit transceivers allowing development of compact systems with substantial number of IO channels. Required performances are obtained through a subtle separation of tasks between closely cooperating programmable hardware logic and user-friendly software environment. We report about our experience in using the SoC approach for designing the production test bench of the off-shore readout system for the ANTARES neutrino experiment.

  20. Development of a lab-on-chip electrochemical biosensor for water quality analysis based on microalgal photosynthesis.

    Tsopela, A; Laborde, A; Salvagnac, L; Ventalon, V; Bedel-Pereira, E; Séguy, I; Temple-Boyer, P; Juneau, P; Izquierdo, R; Launay, J

    2016-05-15

    The present work was dedicated to the development of a lab-on-chip device for water toxicity analysis and more particularly herbicide detection in water. It consists in a portable system for on-site detection composed of three-electrode electrochemical microcells, integrated on a fluidic platform constructed on a glass substrate. The final goal is to yield a system that gives the possibility of conducting double, complementary detection: electrochemical and optical and therefore all materials used for the fabrication of the lab-on-chip platform were selected in order to obtain a device compatible with optical technology. The basic detection principle consisted in electrochemically monitoring disturbances in metabolic photosynthetic activities of algae induced by the presence of Diuron herbicide. Algal response, evaluated through oxygen (O2) monitoring through photosynthesis was different for each herbicide concentration in the examined sample. A concentration-dependent inhibition effect of the herbicide on photosynthesis was demonstrated. Herbicide detection was achieved through a range (blank - 1 µM Diuron herbicide solution) covering the limit of maximum acceptable concentration imposed by Canadian government (0.64 µM), using a halogen white light source for the stimulation of algal photosynthetic apparatus. Superior sensitivity results (limit of detection of around 0.1 µM) were obtained with an organic light emitting diode (OLED), having an emission spectrum adapted to algal absorption spectrum and assembled on the final system. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Test scheduling optimization for 3D network-on-chip based on cloud evolutionary algorithm of Pareto multi-objective

    Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan

    2018-03-01

    In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.

  2. On-chip broadband ultra-compact optical couplers and polarization splitters based on off-centered and non-symmetric slotted Si-wire waveguides

    Haldar, Raktim; Mishra, V.; Dutt, Avik; Varshney, Shailendra K.

    2016-10-01

    In this work, we propose novel schemes to design on-chip ultra-compact optical directional couplers (DC) and broadband polarization beam splitters (PBS) based on off-centered and asymmetric dielectric slot waveguides, respectively. Slot dimensions and positions are optimized to achieve maximum coupling coefficients between two symmetric and non-symmetric slotted Si wire waveguides through overlap integral method. We observe >88% of enhancement in the coupling coefficients when the size-optimized slots are placed in optimal positions, with respect to the same waveguides with no slot. When the waveguides are parallel, in that case, a coupling length as short as 1.73 μm is accomplished for TM mode with the off-centered and optimized slots. This scheme enables us to design optical DC with very small footprint, L c ∼ 0.9 μm in the presence of S-bends. We also report a compact (L c ∼ 1.1 μm) on-chip broadband PBS with hybrid slots. Extinction ratios of 13 dB and 22.3 dB are realized with very low insertion loss (0.055 dB and 0.008 dB) for TM and TE modes at 1.55 μm, respectively. The designed PBS exhibits a bandwidth of 78 nm for the TM mode (C-and partial L-bands) and >100 nm for the TE mode (S + C + L wavelength bands). Such on-chip devices can be used to design compact photonic interconnects and quantum information processing units efficiently. We have also investigated the fabrication tolerances of the proposed devices and described the fabrication steps to realize such hybrid devices. Our results are in good agreement with 3D FDTD simulations.

  3. Construction of a liver sinusoid based on the laminar flow on chip and self-assembly of endothelial cells.

    Mi, Shengli; Yi, Xiaoman; Du, Zhichang; Xu, Yuanyuan; Sun, Wei

    2018-02-20

    The liver is one of the main metabolic organs, and nearly all ingested drugs will be metabolized by the liver. Only a small fraction of drugs are able to come onto the market during drug development, and hepatic toxicity is a major cause for drug failure. Since drug development is costly in both time and materials, an in vitro liver model that can accelerate bioreactions in the liver and reduce drug consumption is imperative in the pharmaceutical industry. The liver on a chip is an ideal alternative for its controllable environment and tiny size, which means constructing a more biomimetic model, reducing material consumption as well as promoting drug diffusion and reaction. In this study, taking advantage of the laminar flow on chips and using natural degradable gel rat tail Collagen-I, we constructed a liver sinusoid on a chip. By synchronously injecting two kinds of cell-laden collagen, HepG2-laden collagen and HUVEC-laden collagen, we formed two collagen layers with a clear borderline. By controlling the HUVEC density and injection of growth factors, HUVECs in collagen formed a monolayer through self-assembly. Thus, a liver sinusoid on a chip was achieved in a more biomimetic environment with a more controllable and uniform distribution of discrete HUVECs. Viability, album secretion and urea synthesis of the live sinusoid on a chip were analysed on days 3, 5 and 7 after collagen injection with acetaminophen treatment at 0 (control), 10 and 20 mM. The results indicated that our liver sinusoid on a chip was able to maintain bioactivity and function for at least 7 d and was beneficial for hepatotoxic drug screening.

  4. Bio-patch design and implementation based on a low-power system-on-chip and paper-based inkjet printing technology.

    Yang, Geng; Xie, Li; Mantysalo, Matti; Chen, Jian; Tenhunen, Hannu; Zheng, L R

    2012-11-01

    This paper presents the prototype implementation of a Bio-Patch using fully integrated low-power System-on-Chip (SoC) sensor and paper-based inkjet printing technology. The SoC sensor is featured with programmable gain and bandwidth to accommodate a variety of bio-signals. It is fabricated in a 0.18-ìm standard CMOS technology, with a total power consumption of 20 ìW from a 1.2 V supply. Both the electrodes and interconnections are implemented by printing conductive nano-particle inks on a flexible photo paper substrate using inkjet printing technology. A Bio-Patch prototype is developed by integrating the SoC sensor, a soft battery, printed electrodes and interconnections on a photo paper substrate. The Bio-Patch can work alone or operate along with other patches to establish a wired network for synchronous multiple-channel bio-signals recording. The measurement results show that electrocardiogram and electromyogram are successfully measured in in-vivo tests using the implemented Bio-Patch prototype.

  5. Energy Model of Networks-on-Chip and a Bus

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Kavaldjiev, N.K.; Becker, Jens E.; Becker, Jürgen; Nurmi, J.; Takala, J.; Hamalainen, T.D.

    2005-01-01

    A Network-on-Chip (NoC) is an energy-efficient onchip communication architecture for Multi-Processor Systemon-Chip (MPSoC) architectures. In earlier papers we proposed two Network-on-Chip architectures based on packet-switching and circuit-switching. In this paper we derive an energy model for both

  6. Addressing On-Chip Power Converstion and Dissipation Issues in Many-Core System-on-a-Chip Based on Conventional Silicon and Emerging Nanotechnologies

    Ashenafi, Emeshaw

    Integrated circuits (ICs) are moving towards system-on-a-chip (SOC) designs. SOC allows various small and large electronic systems to be implemented in a single chip. This approach enables the miniaturization of design blocks that leads to high density transistor integration, faster response time, and lower fabrication costs. To reap the benefits of SOC and uphold the miniaturization of transistors, innovative power delivery and power dissipation management schemes are paramount. This dissertation focuses on on-chip integration of power delivery systems and managing power dissipation to increase the lifetime of energy storage elements. We explore this problem from two different angels: On-chip voltage regulators and power gating techniques. On-chip voltage regulators reduce parasitic effects, and allow faster and efficient power delivery for microprocessors. Power gating techniques, on the other hand, reduce the power loss incurred by circuit blocks during standby mode. Power dissipation (Ptotal = Pstatic and Pdynamic) in a complementary metal-oxide semiconductor (CMOS) circuit comes from two sources: static and dynamic. A quadratic dependency on the dynamic switching power and a more than linear dependency on static power as a form of gate leakage (subthreshold current) exist. To reduce dynamic power loss, the supply power should be reduced. A significant reduction in power dissipation occurs when portions of a microprocessor operate at a lower voltage level. This reduction in supply voltage is achieved via voltage regulators or converters. Voltage regulators are used to provide a stable power supply to the microprocessor. The conventional off-chip switching voltage regulator contains a passive floating inductor, which is difficult to be implemented inside the chip due to excessive power dissipation and parasitic effects. Additionally, the inductor takes a very large chip area while hampering the scaling process. These limitations make passive inductor based on-chip

  7. Tunable on chip optofluidic laser

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  8. Paper based Flexible and Conformal SERS Substrate for Rapid Trace Detection on Real-world Surfaces

    Singamaneni, Srikanth; Lee, Chang; Tian, Limei

    2011-03-01

    One of the important but often overlooked considerations in the design of surface enhanced Raman scattering (SERS) substrates for trace detection is the efficiency of sample collection. Conventional designs based on rigid substrates such as silicon, alumina, and glass resist conformal contact with the surface under investigation, making the sample collection inefficient. We demonstrate a novel SERS substrate based on common filter paper adsorbed with gold nanorods, which allows conformal contact with real-world surfaces, thus dramatically enhancing the sample collection efficiency compared to conventional rigid substrates. We demonstrate the detection of trace amounts of analyte (140 pg spread over 4 cm2) by simply swabbing the surface under investigation with the novel SERS substrate. The hierarchical fibrous structure of paper serves as a 3D vasculature for easy uptake and transport of the analytes to the electromagnetic hot spots in the paper. Simple yet highly efficient and cost effective SERS substrate demonstrated here brings SERS based trace detection closer to real-world applications. We acknowledge the financial support from Center for Materials Innovation at Washington University.

  9. Paper membrane-based SERS platform for the determination of glucose in blood samples.

    Torul, Hilal; Çiftçi, Hakan; Çetin, Demet; Suludere, Zekiye; Boyacı, Ismail Hakkı; Tamer, Uğur

    2015-11-01

    In this report, we present a paper membrane-based surface-enhanced Raman scattering (SERS) platform for the determination of blood glucose level using a nitrocellulose membrane as substrate paper, and the microfluidic channel was simply constructed by wax-printing method. The rod-shaped gold nanorod particles were modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT) molecules and used as embedded SERS probe for paper-based microfluidics. The SERS measurement area was simply constructed by dropping gold nanoparticles on nitrocellulose membrane, and the blood sample was dropped on the membrane hydrophilic channel. While the blood cells and proteins were held on nitrocellulose membrane, glucose molecules were moved through the channel toward the SERS measurement area. Scanning electron microscopy (SEM) was used to confirm the effective separation of blood matrix, and total analysis is completed in 5 min. In SERS measurements, the intensity of the band at 1070 cm(-1) which is attributed to B-OH vibration decreased depending on the rise in glucose concentration in the blood sample. The glucose concentration was found to be 5.43 ± 0.51 mM in the reference blood sample by using a calibration equation, and the certified value for glucose was 6.17 ± 0.11 mM. The recovery of the glucose in the reference blood sample was about 88 %. According to these results, the developed paper-based microfluidic SERS platform has been found to be suitable for use for the detection of glucose in blood samples without any pretreatment procedure. We believe that paper-based microfluidic systems may provide a wide field of usage for paper-based applications.

  10. Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment.

    Zhao, De; He, Zhongyuan; Wang, Gang; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-09-15

    Microfluidic technology plays a significant role in separating biomolecules, because of its miniaturization, integration, and automation. Introducing micro/nanostructured functional materials can improve the properties of microfluidic devices, and extend their application. Inverse opal has a three-dimensional ordered net-like structure. It possesses a large surface area and exhibits good mass transport, making it a good candidate for bio-separation. This study exploits inverse opal titanium dioxide-zirconium dioxide films for on-chip phosphopeptide enrichment. Titanium dioxide-zirconium dioxide inverse opal film-based microfluidic devices were constructed from templates of 270-, 340-, and 370-nm-diameter poly(methylmethacrylate) spheres. The phosphopeptide enrichments of these devices were determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The device constructed from the 270-nm-diameter sphere template exhibited good comprehensive phosphopeptide enrichment, and was the best among these three devices. Because the size of opal template used in construction was the smallest, the inverse opal film therefore had the smallest pore sizes and the largest surface area. Enrichment by this device was also better than those of similar devices based on nanoparticle films and single component films. The titanium dioxide-zirconium dioxide inverse opal film-based device provides a promising approach for the efficient separation of various biomolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ultra-thin layer chromatography with integrated silver colloid-based SERS detection.

    Wallace, Ryan A; Lavrik, Nickolay V; Sepaniak, Michael J

    2017-01-01

    Simplified lab-on-a-chip techniques are desirable for quick and efficient detection of analytes of interest in the field. The following work involves the use of deterministic pillar arrays on the micro-scale as a platform to separate compounds, and the use of Ag colloid within the arrays as a source of increased signal via surface enhanced Raman spectroscopy (SERS). One problem traditionally seen with SERS surfaces containing Ag colloid is oxidation; however, our platforms are superhydrophobic, reducing the amount of oxidation taking place on the surface of the Ag colloid. This work includes the successful separation and SERS detection of a fluorescent dye compounds (resorufin and sulforhodamine 640), fluorescent anti-tumor drugs (Adriamycin and Daunomycin), and purine and pyrimidine bases (adenine, cytosine, guanine, hypoxanthine, and thymine). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nanostructured surfaces for analysis of anticancer drug and cell diagnosis based on electrochemical and SERS tools

    El-Said, Waleed A.; Yoon, Jinho; Choi, Jeong-Woo

    2018-04-01

    Discovering new anticancer drugs and screening their efficacy requires a huge amount of resources and time-consuming processes. The development of fast, sensitive, and nondestructive methods for the in vitro and in vivo detection of anticancer drugs' effects and action mechanisms have been done to reduce the time and resources required to discover new anticancer drugs. For the in vitro and in vivo detection of the efficiency, distribution, and action mechanism of anticancer drugs, the applications of electrochemical techniques such as electrochemical cell chips and optical techniques such as surface-enhanced Raman spectroscopy (SERS) have been developed based on the nanostructured surface. Research focused on electrochemical cell chips and the SERS technique have been reviewed here; electrochemical cell chips based on nanostructured surfaces have been developed for the in vitro detection of cell viability and the evaluation of the effects of anticancer drugs, which showed the high capability to evaluate the cytotoxic effects of several chemicals at low concentrations. SERS technique based on the nanostructured surface have been used as label-free, simple, and nondestructive techniques for the in vitro and in vivo monitoring of the distribution, mechanism, and metabolism of different anticancer drugs at the cellular level. The use of electrochemical cell chips and the SERS technique based on the nanostructured surface should be good tools to detect the effects and action mechanisms of anticancer drugs.

  13. Crosstalk in modern on-chip interconnects a FDTD approach

    Kaushik, B K; Patnaik, Amalendu

    2016-01-01

    The book provides accurate FDTD models for on-chip interconnects, covering most recent advancements in materials and design. Furthermore, depending on the geometry and physical configurations, different electrical equivalent models for CNT and GNR based interconnects are presented. Based on the electrical equivalent models the performance comparison among the Cu, CNT and GNR-based interconnects are also discussed in the book. The proposed models are validated with the HSPICE simulations. The book introduces the current research scenario in the modeling of on-chip interconnects. It presents the structure, properties, and characteristics of graphene based on-chip interconnects and the FDTD modeling of Cu based on-chip interconnects. The model considers the non-linear effects of CMOS driver as well as the transmission line effects of interconnect line that includes coupling capacitance and mutual inductance effects. In a more realistic manner, the proposed model includes the effect of width-dependent MFP of the ...

  14. An OCP Compliant Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip

    Bjerregaard, Tobias; Mahadevan, Shankar; Olsen, Rasmus Grøndahl

    2005-01-01

    decouples communication and computation, providing memory-mapped OCP transactions based on primitive message-passing services of the network. Also, it facilitates GALS-type systems, by adapting to the clockless network. This helps leverage a modular SoC design flow. We evaluate performance and cost of 0...

  15. Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel

    Susmitha, M.; Sharan, P.; Jyothi, P. N.

    2016-09-01

    Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.

  16. On-chip microfluidic systems for determination of L-glutamate based on enzymatic recycling of substrate

    Laiwattanapaisal, W.; Yakovleva, J.; Bengtsson, Martin

    2009-01-01

    Two microfluidic systems have been developed for specific analysis of L-glutamate in food based on substrate recycling fluorescence detection. L-glutamate dehydrogenase and a novel enzyme, D-phenylglycine aminotransferase, were covalently immobilized on (i) the surface of silicon microchips....... The reaction was accompanied by reduction of nicotinamide adenine dinucleotide (NAD(+)) to NADH, which was monitored by fluorescence detection (epsilon(ex)=340 nm, epsilon(em)=460 nm). First, the microchip-based system, L-glutamate was detected within a range of 3.1-50.0 mM. Second, to be automatically......). In the case of SIA, the beads were introduced and removed from the microchip automatically. The immobilized beads could be stored in a 20% glycerol and 0.5 mM ethylenediaminetetraacetic acid solution maintained at a pH of 7.0 using a phosphate buffer for at least 15 days with 72% of the activity remaining...

  17. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon.

    Bandarenka, Hanna V; Girel, Kseniya V; Zavatski, Sergey A; Panarin, Andrei; Terekhov, Sergei N

    2018-05-21

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  18. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon

    Hanna V. Bandarenka

    2018-05-01

    Full Text Available The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs, and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  19. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology.

    Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2013-05-06

    In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

  20. Routing algorithms in networks-on-chip

    Daneshtalab, Masoud

    2014-01-01

    This book provides a single-source reference to routing algorithms for Networks-on-Chip (NoCs), as well as in-depth discussions of advanced solutions applied to current and next generation, many core NoC-based Systems-on-Chip (SoCs). After a basic introduction to the NoC design paradigm and architectures, routing algorithms for NoC architectures are presented and discussed at all abstraction levels, from the algorithmic level to actual implementation.  Coverage emphasizes the role played by the routing algorithm and is organized around key problems affecting current and next generation, many-core SoCs. A selection of routing algorithms is included, specifically designed to address key issues faced by designers in the ultra-deep sub-micron (UDSM) era, including performance improvement, power, energy, and thermal issues, fault tolerance and reliability.   ·         Provides a comprehensive overview of routing algorithms for Networks-on-Chip and NoC-based, manycore systems; ·         Describe...

  1. Reliability, Availability and Serviceability of Networks-on-Chip

    Cota, Érika; Soares Lubaszewski, Marcelo

    2012-01-01

    This book presents an overview of the issues related to the test, diagnosis and fault-tolerance of Network on Chip-based systems. It is the first book dedicated to the quality aspects of NoC-based systems and will serve as an invaluable reference to the problems, challenges, solutions, and trade-offs related to designing and implementing state-of-the-art, on-chip communication architectures.

  2. Optical Characterization of SERS Substrates Based on Porous Au Films Prepared by Pulsed Laser Deposition

    V. V. Strelchuk

    2015-01-01

    Full Text Available The SERS (surface enhanced Raman spectroscopy substrates based on nanocomposite porous films with gold nanoparticles (Au NPs arrays were formed using the method of the pulsed laser deposition from the back low-energy flux of erosion torch particles on the glass substrate fixed at the target plain. The dependencies of porosity, and morphology of the surface of the film regions located near and far from the torch axis on the laser ablation regime, laser pulses energy density, their number, and argon pressure in the vacuum chamber, were ascertained. The Au NPs arrays with the controllable extinction spectra caused by the local surface plasmon resonance were prepared. The possibility of the formation of SERS substrates for the detection of the Rhodamine 6G molecules with the concentration 10−10 Mol/L with the enhancement factor 4·107 was shown.

  3. SERS and fluorescence-based ultrasensitive detection of mercury in water.

    Makam, Pandeeswar; Shilpa, Rohilla; Kandjani, Ahmad Esmaielzadeh; Periasamy, Selvakannan R; Sabri, Ylias Mohammad; Madhu, Chilakapati; Bhargava, Suresh Kumar; Govindaraju, Thimmaiah

    2018-02-15

    The development of reliable and ultrasensitive detection marker for mercury ions (Hg 2+ ) in drinking water is of great interest for toxicology assessment, environmental protection and human health. Although many Hg 2+ detection methods have been developed, only few offer sensitivities below 1pM. Herein, we describe a simple histidine (H) conjugated perylene diimide (PDI) bolaamphiphile (HPH) as a dual-responsive optical marker to develop highly selective and sensitive probe as visible (sol-to-gel transformation), fluorescence and SERS-based Hg 2+ sensor platform in the water. Remarkably, HPH as a SERS marker supported on Au deposited monodispersed nanospheres monolayers (Au-MNM) of polystyrene offers an unprecedented selectivity and the best ever reported detection limit (LOD) of 60 attomolar (aM, 0.01 parts-per-quadrillion (ppq)) for Hg 2+ in water. This is ten orders of magnitude lower than the United States Environmental Protection Agency (USEPA) tolerance limit of Hg 2+ in drinking water (10nM, 2 ppb). This simple and effective design principle of host-guest interactions driven fluorescence and SERS-based detection may inspire the future molecular engineering strategies for the development of ultrasensitive toxic analyte sensor platforms. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.

    Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua

    2017-11-15

    A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.

  5. Toward practical SERS sensing

    Zhao, Yiping

    2012-06-01

    Since its discovery more than 30 years ago, surface-enhanced Raman scattering (SERS) has been recognized as a highly sensitive detection technique for chemical and biological sensing and medical diagnostics. However, the practical application of this remarkably sensitive technique has not been widely accepted as a viable diagnostic method due to the difficulty in preparing robust and reproducible substrates that provide maximum SERS enhancement. Here, we demonstrate that the aligned silver nanorod (AgNR) array substrates engineered by the oblique angle deposition method are capable of providing extremely high SERS enhancement factors (>108). The substrates are large area, uniform, reproducible, and compatible with general microfabrication process. The enhancement factor depends strongly on the length and shape of the Ag nanorods and the underlying substrate coating. By optimizing AgNR SERS substrates, we show that SERS is able to detect trace amount of toxins, virus, bacteria, or other chemical and biological molecules, and distinguish different viruses/bacteria and virus/bacteria strains. The substrate can be tailored into a multi-well chip for high throughput screening, integrated into fiber tip for portable sensing, incorporated into fluid/microfluidic devices for in situ real-time monitoring, fabricated onto a flexible substrate for tracking and identification, or used as on-chip separation device for ultra-thin layer chromatography and diagnostics. By combining the unique SERS substrates with a handheld Raman system, it can become a practical and portable sensor system for field applications. All these developments have demonstrated that AgNR SERS substrates could play an important role in the future for practical clinical, industrial, defense, and security sensing applications.

  6. Method for assessing the reliability of molecular diagnostics based on multiplexed SERS-coded nanoparticles.

    Steven Y Leigh

    Full Text Available Surface-enhanced Raman scattering (SERS nanoparticles have been engineered to generate unique fingerprint spectra and are potentially useful as bright contrast agents for molecular diagnostics. One promising strategy for biomedical diagnostics and imaging is to functionalize various particle types ("flavors", each emitting a unique spectral signature, to target a large multiplexed panel of molecular biomarkers. While SERS particles emit narrow spectral features that allow them to be easily separable under ideal conditions, the presence of competing noise sources and background signals such as detector noise, laser background, and autofluorescence confounds the reliability of demultiplexing algorithms. Results obtained during time-constrained in vivo imaging experiments may not be reproducible or accurate. Therefore, our goal is to provide experimentalists with a metric that may be monitored to enforce a desired bound on accuracy within a user-defined confidence level. We have defined a spectral reliability index (SRI, based on the output of a direct classical least-squares (DCLS demultiplexing routine, which provides a measure of the reliability of the computed nanoparticle concentrations and ratios. We present simulations and experiments to demonstrate the feasibility of this strategy, which can potentially be utilized for a range of instruments and biomedical applications involving multiplexed SERS nanoparticles.

  7. The application of Silver nanoparticle based SERS in diagnosing thyroid tissue

    Huang Zufang; Chen Rong; Chen Guannan; Lin Duo; Xi Gangqin; Chen Yongjian; Lin Hongxin; Lei Jinping [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007 (China); Li Zuanfang, E-mail: chenr@fjnu.edu.cn [Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350108 (China)

    2011-01-01

    Surface-enhanced Raman scattering (SERS) is proved to be a powerful analytical tool for investigation of biological tissue. In this study, SERS based on Ag nanoparticles was used to investigate the normal and cancerous thyroid tissue. Preliminary results indicated that Raman peaks and the spectra profile from both normal and cancerous tissues showed a basic similarity, obvious differences are that, first, Raman peaks 563cm{sup -1}, 1449cm{sup -1} and 1587cm{sup -1} in cancerous tissue decreased obviously compared with the normal thyroid tissue. Besides, Raman peaks 1004cm{sup -1} and 1128cm{sup -1} might be specific peaks for normal thyroid tissue, whereas 1294cm{sup -1} might attribute to specific peak for cancerous thyroid tissue. In addition, some peaks in normal thyroid tissue appeared to have shifted in cancerous tissue. Intensity ratio of 656cm{sup -1} vs. 725cm{sup -1} in normal tissue are significantly different from cancerous tissue (P<0.005), and it can be a reference for spectroscopic diagnostics of thyroid tissue. This study demonstrates that SERS can be used to monitor the changes at molecular level as well as a complementary tool in thyroid histopathology.

  8. The effect of silver thickness on the enhancement of polymer based SERS substrates

    Schneidewind, H; Weber, K; Zeisberger, M; Hübner, U; Dellith, A; Cialla-May, D; Mattheis, R; Popp, J

    2014-01-01

    We investigated silver-covered polymer based nanogratings as substrates for surface-enhanced Raman spectroscopy (SERS), in particular with respect to the thickness of the plasmonically active silver film. In order to obtain accurate geometrical input data for the simulation process, we inspected cross sections of the gratings prepared by breaking at cryogenic temperature. We noticed a strong dependence of the simulation results on geometrical variations of the structures. Measurements revealed that an increasing silver film thickness on top of the nanogratings leads to a blue shift of the plasmonic resonance, as predicted by numerical simulations, as well as to an increased field enhancement for an excitation at 488 nm. We found a clear deviation of the experimental data compared to the simulated results for very thin silver films due to an island-like growth at a silver thickness below 20 nm. In order to investigate the SERS activity. we carried out measurements with crystal violet as a model analyte at an excitation wavelength of 488 nm. The SERS enhancement increases up to a silver thickness of about 30 nm, whereas it remains nearly constant for thicker silver films. (paper)

  9. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing.

    Zheng, Xiao-Shan; Hu, Pei; Cui, Yan; Zong, Cheng; Feng, Jia-Min; Wang, Xin; Ren, Bin

    2014-12-16

    Local microenvironment pH sensing is one of the key parameters for the understanding of many biological processes. As a noninvasive and high sensitive technique, surface-enhanced Raman spectroscopy (SERS) has attracted considerable interest in the detection of the local pH of live cells. We herein develop a facile way to prepare Au-(4-MPy)-BSA (AMB) pH nanosensor. The 4-MPy (4-mercaptopyridine) was used as the pH sensing molecule. The modification of the nanoparticles with BSA not only provides a high sensitive response to pH changes ranging from pH 4.0 to 9.0 but also exhibits a high sensitivity and good biocompatibility, stability, and reliability in various solutions (including the solutions of high ionic strength or with complex composition such as the cell culture medium), both in the aggregation state or after long-term storage. The AMB pH nanosensor shows great advantages for reliable intracellular pH analysis and has been successfully used to monitor the pH distribution of live cells and can address the grand challenges in SERS-based pH sensing for practical biological applications.

  10. On-Chip All-Optical Passive 3.55 Gbit/s NRZ-to-PRZ Format Conversion Using a High-Q Silicon-Based Microring Resonator

    Yao, Zhai; Shao-Wu, Chen; Guang-Hui, Ren

    2010-01-01

    We report the experimental result of all-optical passive 3.55 Gbit/s non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) format conversion using a high-quality-factor (Q-factor) silicon-based microring resonator notch filter on chip. The silicon-based microring resonator has 23800 Q-factor and 22 dB extinction ratio (ER), and the PRZ signals has about 108ps width and 4.98 dB ER

  11. Effect of on-chip filter on Coulomb blockade thermometer

    Roschier, L; Penttilä, J S; Gunnarsson, D; Prunnila, M; Meschke, M; Savin, A

    2012-01-01

    Coulomb Blockade Thermometer (CBT) is a primary thermometer based on electric conductance of normal tunnel junction arrays. One limitation for CBT use at the lowest temperatures has been due to environmental noise heating. To improve on this limitation, we have done measurements on CBT sensors fabricated with different on-chip filtering structures in a dilution refrigerator with a base temperature of 10 mK. The CBT sensors were produced with a wafer scale tunnel junction process. We present how the different on-chip filtering schemes affect the limiting saturation temperatures and show that CBT sensors with proper on-chip filtering work at temperatures below 20 mK and are tolerant to noisy environment.

  12. Ultrasensitive SERS detection of mercury based on the assembled gold nanochains.

    Xu, Liguang; Yin, Honghong; Ma, Wei; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2015-05-15

    Mercuric ions (Hg(2+)) mediate the transformation of single-stranded DNA to form double helical DNA by T-Hg(2+)-T interaction between base pairs. With this strategy, DNA modified gold nanoparticles (Au NPs) were assembled into chains which were displayed remarkable surface-enhanced Raman scattering (SERS) signal. Under optimized conditions, the length of gold nanochains was directly proportional to the mercuric ions concentrations over 0.001-0.5 ng mL(-1) and the limit of detection (LOD) in drinking water was as low as 0.45 pg mL(-1). With ultrasensitivity and excellent selectivity, this feasible and simple method is potentially as a promising tool for monitoring of mercury ions in food safety and environmental applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A New Cross-By-Pass-Torus Architecture Based on CBP-Mesh and Torus Interconnection for On-Chip Communication.

    Usman Ali Gulzari

    Full Text Available A Mesh topology is one of the most promising architecture due to its regular and simple structure for on-chip communication. Performance of mesh topology degraded greatly by increasing the network size due to small bisection width and large network diameter. In order to overcome this limitation, many researchers presented modified Mesh design by adding some extra links to improve its performance in terms of network latency and power consumption. The Cross-By-Pass-Mesh was presented by us as an improved version of Mesh topology by intelligent addition of extra links. This paper presents an efficient topology named Cross-By-Pass-Torus for further increase in the performance of the Cross-By-Pass-Mesh topology. The proposed design merges the best features of the Cross-By-Pass-Mesh and Torus, to reduce the network diameter, minimize the average number of hops between nodes, increase the bisection width and to enhance the overall performance of the network. In this paper, the architectural design of the topology is presented and analyzed against similar kind of 2D topologies in terms of average latency, throughput and power consumption. In order to certify the actual behavior of proposed topology, the synthetic traffic trace and five different real embedded application workloads are applied to the proposed as well as other competitor network topologies. The simulation results indicate that Cross-By-Pass-Torus is an efficient candidate among its predecessor's and competitor topologies due to its less average latency and increased throughput at a slight cost in network power and energy for on-chip communication.

  14. Subnanomolar Sensitivity of Filter Paper-Based SERS Sensor for Pesticide Detection by Hydrophobicity Change of Paper Surface.

    Lee, Minwoo; Oh, Kyudeok; Choi, Han-Kyu; Lee, Sung Gun; Youn, Hye Jung; Lee, Hak Lae; Jeong, Dae Hong

    2018-01-26

    As a cost-effective approach for detecting trace amounts of pesticides, filter paper-based SERS sensors have been the subject of intensive research. One of the hurdles to overcome is the difficulty of retaining nanoparticles on the surface of the paper because of the hydrophilic nature of the cellulose fibers in paper. This reduces the sensitivity and reproducibility of paper-based SERS sensors due to the low density of nanoparticles and short retention time of analytes on the paper surface. In this study, filter paper was treated with alkyl ketene dimer (AKD) to modify its property from hydrophilic to hydrophobic. AKD treatment increased the contact angle of the aqueous silver nanoparticle (AgNP) dispersion, which consequently increased the density of AgNPs. The retention time of the analyte was also increased by preventing its rapid absorption into the filter paper. The SERS signal was strongly enhanced by the increased number of SERS hot spots owing to the increased density of AgNPs on a small contact area of the filter surface. The reproducibility and sensitivity of the SERS signal were optimized by controlling the distribution of AgNPs on the surface of the filter paper by adjusting the concentration of the AgNP solution. Using this SERS sensor with a hydrophobicity-modified filter paper, the spot-to-spot variation of the SERS intensity of 25 spots of 4-aminothiophenol was 6.19%, and the limits of detection of thiram and ferbam as test pesticides were measured to be 0.46 nM and 0.49 nM, respectively. These proof-of-concept results indicate that this paper-based SERS sensor can serve for highly sensitive pesticide detection with low cost and easy fabrication.

  15. On-chip photonic particle sensor

    Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian

    2018-02-01

    We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.

  16. Power and Thermal Management of System-on-Chip

    Liu, Wei

    , are necessary at the chip design level. In this work, we investigate the power and thermal management of System-on- Chips (SoCs). Thermal analysis is performed in a SPICE simulation approach based on the electrical-thermal analogy. We investigate the impact of inter- connects on heat distribution...

  17. On-chip integrated lasers for biophotonic applications

    Mappes, Timo; Wienhold, Tobias; Bog, Uwe

    Meeting the need of biomedical users, we develop disposable Lab-on-a-Chip systems based on commercially available polymers. We are combining passive microfluidics with active optical elements on-chip by integrating multiple solid-state and liquid-core lasers. While covering a wide range of laser ...

  18. Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms

    Uluok, Saadet; Guven, Burcu; Eksi, Haslet; Ustundag, Zafer; Tamer, Ugur; Boyaci, Ismail Hakki

    2015-01-01

    In this study, the multilayered surface-enhanced Raman spectroscopy (SERS) platforms were developed for the analysis of genetically modified organisms (GMOs). For this purpose, two molecules [11-mercaptoundecanoic acid (11-MUA) and 2-mercaptoethylamine (2-MEA)] were attached with Aurod and Auspherical nanoparticles to form multilayered constructions on the gold (Au)slide surface. The best multilayered platform structure was chosen depending on SERS enhancement, and this surface was characterised with atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy. After the optimum multilayered SERS platform and nanoparticle interaction was identified, the oligonucleotides on the Aurod nanoparticles and Auslide were combined to determine target concentrations from the 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) signals using SERS. The correlation between the SERS intensities for DTNB and target concentrations was found to be linear within a range of 10 pM to 1 µM, and with a detection limit of 34 fM. The selectivity and specificity of the developed sandwich assay were tested using negative and positive controls, and nonsense and real sample studies. The obtained results showed that the multilayered SERS sandwich method allows for sensitive, selective, and specific detection of oligonucleotide sequences.

  19. Highly Sensitive and Reproducible SERS Sensor for Biological pH Detection Based on a Uniform Gold Nanorod Array Platform.

    Bi, Liyan; Wang, Yunqing; Yang, Ying; Li, Yuling; Mo, Shanshan; Zheng, Qingyin; Chen, Lingxin

    2018-05-09

    Conventional research on surface-enhanced Raman scattering (SERS)-based pH sensors often depends on nanoparticle aggregation, whereas the variability in nanoparticle aggregation gives rise to poor repeatability in the SERS signal. Herein, we fabricated a gold nanorod array platform via an efficient evaporative self-assembly method. The platform exhibits great SERS sensitivity with an enhancement factor of 5.6 × 10 7 and maintains excellent recyclability and reproducibility with relative standard deviation (RSD) values of less than 8%. On the basis of the platform, we developed a highly sensitive bovine serum albumin (BSA)-coated 4-mercaptopyridine (4-MPy)-linked (BMP) SERS-based pH sensor to report pH ranging from pH 3.0 to pH 8.0. The intensity ratio variation of 1004 and 1096 cm -1 in 4-MPy showed excellent pH sensitivity, which decreased as the surrounding pH increased. Furthermore, this BMP SERS-based pH sensor was employed to measure the pH value in C57BL/6 mouse blood. We have demonstrated that the pH sensor has great advantages such as good stability, reliability, and accuracy, which could be extended for the design of point-of-care devices.

  20. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel.

    Granger, Jennifer H; Granger, Michael C; Firpo, Matthew A; Mulvihill, Sean J; Porter, Marc D

    2013-01-21

    Proteomic analyses of readily obtained human fluids (e.g., serum, urine, and saliva) indicate that the diagnosis of complex diseases will be enhanced by the simultaneous measurement of multiple biomarkers from such samples. This paper describes the development of a nanoparticle-based multiplexed platform that has the potential for simultaneous read-out of large numbers of biomolecules. For this purpose, we have chosen pancreatic adenocarcinoma (PA) as a test bed for diagnosis and prognosis. PA is a devastating form of cancer in which an estimated 86% of diagnoses resulted in death in the United States in 2010. The high mortality rate is due, in part, to the asymptomatic development of the disease and the dearth of sensitive diagnostics available for early detection. One promising route lies in the development of a serum biomarker panel that can generate a signature unique to early stage PA. We describe the design and development of a proof-of-concept PA biomarker immunoassay array coupled with surface-enhanced Raman scattering (SERS) as a sensitive readout method.

  1. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    Gooneratne, Chinthaka Pasan; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G.; Kosel, Jü rgen

    2016-01-01

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  2. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    Gooneratne, Chinthaka Pasan

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  3. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    Chinthaka P. Gooneratne

    2016-08-01

    Full Text Available The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA for the manipulation of superparamagnetic beads (SPBs, and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.

  4. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent cir......-based VOCs detection platform for point-of-care breath analysis, homeland security, chemical sensing and environmental monitoring....

  5. Photonic network-on-chip design

    Bergman, Keren; Biberman, Aleksandr; Chan, Johnnie; Hendry, Gilbert

    2013-01-01

    This book provides a comprehensive synthesis of the theory and practice of photonic devices for networks-on-chip. It outlines the issues in designing photonic network-on-chip architectures for future many-core high performance chip multiprocessors. The discussion is built from the bottom up: starting with the design and implementation of key photonic devices and building blocks, reviewing networking and network-on-chip theory and existing research, and finishing with describing various architectures, their characteristics, and the impact they will have on a computing system. After acquainting

  6. Functional paper-based SERS substrate for rapid and sensitive detection of Sudan dyes in herbal medicine

    Wu, Mianmian; Li, Pan; Zhu, Qingxia; Wu, Meiran; Li, Hao; Lu, Feng

    2018-05-01

    There has been an increasing demand for rapid and sensitive techniques for the identification of Sudan compounds that emerged as the most often illegally added fat-soluble dyes in herbal medicine. In this report, we have designed and fabricated a functionalized filter paper consisting of gold nanorods (GNRs) and mono-6-thio-cyclodextrin (HS-β-CD) as a surface-enhanced Raman spectroscopy (SERS) substrate, in which the GNR provides sufficient SERS enhancement, and the HS-β-CD with strong chemical affinity toward GNR provides the inclusion compound to capture hydrophobic molecules. Moreover, the CD-GNR were uniformly assembled on filter paper cellulose through the electrostatic adsorption and hydrogen bond, so that the CD-GNR paper-based SERS substrate (CD-GNR-paper) demonstrated higher sensitivity for the determination of Sudan III (0.1 μM) and Sudan IV (0.5 μM) than GNRs paper-based SERS substrate (GNR-paper), with high stability after the storage in the open air for 90 days. Importantly, CD-GNR-paper can effectively collect the Sudan dyes from illegally adulterated onto samples of Resina Draconis with a simple operation, further open up new exciting opportunity for SERS detection of more compounds illegally added with high sensitivity and fast signal responses.

  7. On-chip power delivery and management

    Vaisband, Inna P; Popovich, Mikhail; Mezhiba, Andrey V; Köse, Selçuk; Friedman, Eby G

    2016-01-01

    This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power delivery and management systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this fourth edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.

  8. Towards SERS based applications in food analytics: Lipophilic sensor layers for the detection of Sudan III in food matrices

    Jahn, Martin; Patze, Sophie [Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena (Germany); Leibniz Institute of Photonic Technology (IPHT) Jena, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Bocklitz, Thomas [Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena (Germany); Weber, Karina [Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena (Germany); Leibniz Institute of Photonic Technology (IPHT) Jena, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Cialla-May, Dana, E-mail: dana.cialla-may@uni-jena.de [Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena (Germany); Leibniz Institute of Photonic Technology (IPHT) Jena, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Popp, Jürgen [Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena (Germany); Leibniz Institute of Photonic Technology (IPHT) Jena, Albert-Einstein-Strasse 9, 07745 Jena (Germany)

    2015-02-20

    Highlights: • A lipophilic sensor layer was applied to enzymatically grown SERS substrates. • Sudan III molecules could be detected in presence of water-insoluble competitors. • The carcinogenic food dye Sudan III was detected in a relevant concentration range. • Multivariate statistics allows quantitative measurements of Sudan III. • Sudan III contaminations were successfully detected out of spiked paprika powder. - Abstract: Food safety is a topic of great importance for our society which places high demands on analytical methods. Surface enhanced Raman spectroscopy (SERS) meets the requirements for a rapid, sensitive and specific detection technique. The fact that metallic colloids, one of the most often used SERS substrates, are usually prepared in aqueous solution makes the detection of water-insoluble substances challenging. In this paper we present a SERS based approach for the detection of water-insoluble molecules by applying a hydrophobic surface modification onto the surface of enzymatic generated silver nanoparticles. By this approach the detection of the illegal water-insoluble food dyes, such as Sudan III in presence of riboflavin, as water-soluble competitor, is possible. Moreover, we demonstrate the usability of this kind of SERS substrates for determination of Sudan III out of spiked paprika extracts.

  9. Towards SERS based applications in food analytics: Lipophilic sensor layers for the detection of Sudan III in food matrices

    Jahn, Martin; Patze, Sophie; Bocklitz, Thomas; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2015-01-01

    Highlights: • A lipophilic sensor layer was applied to enzymatically grown SERS substrates. • Sudan III molecules could be detected in presence of water-insoluble competitors. • The carcinogenic food dye Sudan III was detected in a relevant concentration range. • Multivariate statistics allows quantitative measurements of Sudan III. • Sudan III contaminations were successfully detected out of spiked paprika powder. - Abstract: Food safety is a topic of great importance for our society which places high demands on analytical methods. Surface enhanced Raman spectroscopy (SERS) meets the requirements for a rapid, sensitive and specific detection technique. The fact that metallic colloids, one of the most often used SERS substrates, are usually prepared in aqueous solution makes the detection of water-insoluble substances challenging. In this paper we present a SERS based approach for the detection of water-insoluble molecules by applying a hydrophobic surface modification onto the surface of enzymatic generated silver nanoparticles. By this approach the detection of the illegal water-insoluble food dyes, such as Sudan III in presence of riboflavin, as water-soluble competitor, is possible. Moreover, we demonstrate the usability of this kind of SERS substrates for determination of Sudan III out of spiked paprika extracts

  10. Comparison of time-gated surface-enhanced Raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples.

    Kögler, Martin; Paul, Andrea; Anane, Emmanuel; Birkholz, Mario; Bunker, Alex; Viitala, Tapani; Maiwald, Michael; Junne, Stefan; Neubauer, Peter

    2018-06-08

    The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here we compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman) and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  11. SERS and in situ SERS spectroscopy of riboflavin adsorbed on silver, gold and copper substrates. Elucidation of variability of surface orientation based on both experimental and theoretical approach

    Dendisová-Vyškovská, Marcela; Kokaislová, Alžběta; Ončák, Milan; Matějka, Pavel

    2013-04-01

    Surface-enhanced Raman scattering and in situ surface-enhanced Raman scattering spectra have been collected to study influences of (i) used metal and (ii) applied electrode potential on orientation of adsorbed riboflavin molecules. Special in situ SERS spectroelectrochemical cell was used to obtain in situ SERS spectra of riboflavin adsorbed on silver, gold and copper nanostructured surfaces. Varying electrode potential was applied in discrete steps forming a cycle from positive values to negative and backward. Observed spectral features in in situ SERS spectra, measured at alternate potentials, have been changing very significantly and the spectra have been compared with SERS spectra of riboflavin measured ex situ. Raman spectra of single riboflavin molecule in the vicinity to metal (Ag, Au and Cu) clusters have been calculated for different mutual positions. The results demonstrate significant changes of bands intensities which can be correlated with experimental spectra measured at different potentials. Thus, the orientation of riboflavin molecules adsorbed on metal surfaces can be elucidated. It is influenced definitely by the value of applied potential. Furthermore, the riboflavin adsorption orientation on the surface depends on the used metal. Adsorption geometries on the copper substrates are more diverse in comparison with the orientations on silver and gold substrates.

  12. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comparison of a Ring On-Chip Network and a Code-Division Multiple-Access On-Chip Network

    Xin Wang

    2007-01-01

    Full Text Available Two network-on-chip (NoC designs are examined and compared in this paper. One design applies a bidirectional ring connection scheme, while the other design applies a code-division multiple-access (CDMA connection scheme. Both of the designs apply globally asynchronous locally synchronous (GALS scheme in order to deal with the issue of transferring data in a multiple-clock-domain environment of an on-chip system. The two NoC designs are compared with each other by their network structures, data transfer principles, network node structures, and their asynchronous designs. Both the synchronous and the asynchronous designs of the two on-chip networks are realized using a hardware-description language (HDL in order to make the entire designs suit the commonly used synchronous design tools and flow. The performance estimation and comparison of the two NoC designs which are based on the HDL realizations are addressed. By comparing the two NoC designs, the advantages and disadvantages of applying direct connection and CDMA connection schemes in an on-chip communication network are discussed.

  14. Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper

    Xiao, Guina, E-mail: xiaoguina@shnu.edu.cn; Li, Yunxiang; Shi, Wangzhou; Shen, Leo; Chen, Qi; Huang, Lei, E-mail: leihuang@shnu.edu.cn

    2017-05-15

    Highlights: • We developed a paper-based SERS substrate by gravure and inkjet printing methods. • The S-RGO/AgNPs comoposite structure had higher SERS activity than the pure AgNPs. • The Raman enhancement factor of S-RGO/AgNPs substrate was calculated to be 10{sup 9}. • The paper-based substrate exhibited good reproducibility and long-term stability. - Abstract: Paper-based surface-enhanced Raman scattering (SERS) substrates receive a great deal of attention due to low cost and high flexibility. Herein, we developed an efficient SERS substrate by gravure printing of sulfonated reduced graphene-oxide (S-RGO) thin film and inkjet printing of silver nanoparticles (AgNPs) on weighing paper successively. Malachite green (MG) and rhodamine 6G (R6G) were chosen as probe molecules to evaluate the enhanced performance of the fabricated SERS-active substrates. It was found that the S-RGO/AgNPs composite structure possessed higher enhancement ability than the pure AgNPs. The Raman enhancement factor of S-RGO/AgNPs was calculated to be as large as 10{sup 9}. The minimum detection limit for MG and R6G was down to 10{sup −7} M with good linear responses (R{sup 2} = 0.9996, 0.9983) range from 10{sup −4} M to 10{sup −7} M. In addition, the S-RGO/AgNPs exhibited good uniformity with a relative standard deviation (RSD) of 7.90% measured by 572 points, excellent reproducibility with RSD smaller than 3.36%, and long-term stability with RSD less than 7.19%.

  15. Surface modified gold nanoparticles for SERS based detection of vulnerable plaque formations (Conference Presentation)

    Matthäus, Christian; Dugandžić, Vera; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2017-02-01

    Cardiovascular diseases are the leading cause of death worldwide. Atherosclerosis is closely related to the majority of these diseases, as a process of thickening and stiffening of the arterial walls through accumulation of lipids, which is a consequence of aging and life style. Atherosclerosis affects all people in some extent, but not all arterial plaques will necessarily lead to the complications, such as thrombosis, stroke and heart attack. One of the greatest challenges in the risk assessment of atherosclerotic depositions is the detection and recognition of plaques which are unstable and prone to rupture. These vulnerable plaques usually consist of a lipid core that attracts macrophages, a type of white blood cells that are responsible for the degradation of lipids. It has been hypothesized that the amount of macrophages relates to the overall plaque stability. As phagocytes, macrophages also act as recipients for nanoscale particles or structures. Administered gold nanoparticles are usually rabidly taken up by macrophages residing within arterial walls and can therefore be indirectly detected. A very sensitive strategy for probing gold nanoparticles is by utilizing surface enhanced Raman scattering (SERS). By modifying the surface of these particles with SERS active labels it is possible to generate highly specific signals that exhibit sensitivity comparable to fluorescence. SERS labeled gold nanoparticles have been synthesized and the uptake dynamics and efficiency on macrophages in cell cultures was investigated using Raman microscopic imaging. The results clearly show that nanoparticles are taken up by macrophages and support the potential of SERS spectroscopy for the detection of vulnerable plaques. Acknowledgements: Financial support from the Carl Zeiss Foundation is highly acknowledged. The project "Jenaer Biochip Initiative 2.0" (03IPT513Y) within the framework "InnoProfile Transfer - Unternehmen Region" is supported by the Federal Ministry of

  16. Disulphide linkage: To get cleaved or not? Bulk and nano copper based SERS of cystine

    P. J., Arathi; Seemesh, Bhaskar; Rajendra Kumar Reddy, G.; Suresh Kumar, P.; Ramanathan, V.

    2018-05-01

    Different nano-structures of noble metals have been the conventional substrates for carrying out Surface Enhanced Raman Spectroscopy (SERS). In this paper we examine electrodeposited copper (Cu) nano-structures on pencil graphite as novel substrate to carry out SERS measurements by considering L-cystine (Cys-Cys) (dimer of the amino acid cysteine) as the probe. The formation of monolayer of the probe molecule on the substrates was confirmed using cyclic voltammetric measurements. Mode of adsorption of Cys-Cys was observed to be different on bulk Cu (taken in the wire form) and nano-structured Cu on pencil graphite. Whereas in the former the disulphide bond of Cys-Cys remained intact, it got cleaved when Cys-Cys was adsorbed on electrodeposited copper indicating the activated nature of the nano-structure compared to bulk copper. Csbnd S stretching mode of vibration underwent blue shift in Cys-Cys adsorbed on Cu on pencil graphite vis-à-vis Cys-Cys adsorbed on Cu wire. Further evidence on the cleavage of the Csbnd S bond on an activated substrate was obtained by considering a bimetallic substrate comprising of silver on copper which was electrodeposited on pencil graphite. Our studies have demonstrated that nano-copper surface is an excellent substrate for SERS giving 200 μM as lower detection limit for Cys-Cys.

  17. SERS-Based Flavonoid Detection Using Ethylenediamine-β-Cyclodextrin as a Capturing Ligand

    Jae Min Choi

    2017-01-01

    Full Text Available Ethylenediamine-modified β-cyclodextrin (Et-β-CD was immobilized on aggregated silver nanoparticle (NP-embedded silica NPs (SiO2@Ag@Et-β-CD NPs for the effective detection of flavonoids. Silica NPs were used as the template for embedding silver NPs to create hot spots and enhance surface-enhanced Raman scattering (SERS signals. Et-β-CD was immobilized on Ag NPs to capture flavonoids via host-guest inclusion complex formation, as indicated by enhanced ultraviolet absorption spectra. The resulting SiO2@Ag@Et-β-CD NPs were used as the SERS substrate for detecting flavonoids, such as hesperetin, naringenin, quercetin, and luteolin. In particular, luteolin was detected more strongly in the linear range 10−7 to 10−3 M than various organic molecules, namely ethylene glycol, β-estradiol, isopropyl alcohol, naphthalene, and toluene. In addition, the SERS signal for luteolin captured by the SiO2@Ag@Et-β-CD NPs remained even after repeated washing. These results indicated that the SiO2@Ag@Et-β-CD NPs can be used as a rapid, sensitive, and selective sensor for flavonoids.

  18. Surface enhanced raman spectroscopy on chip

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  19. Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples

    Song, Dan; Yang, Rong; Wang, Chongwen; Xiao, Rui; Long, Feng

    2016-01-01

    A novel nanosilver-deposited silica-coated Fe3O4 magnetic particle (Fe3O4@SiO2@Ag) with uniform size, good SERS activity and magnetic responsiveness was synthesized using amination polymer. The Fe3O4@SiO2@Ag magnetic particles have been successfully applied for ultrasensitive SERS detection of malachite green (MG) in water samples. The mechanism is that MG can be adsorbed on the silver surface of nanosilver-coated magnetic particles via one nitrogen atom, and the Raman signal intensity of MG is significantly enhanced by the nanosilver layer formed on the magnetic particles. The developed sensing system exhibited a sensitive response to MG in the range of 10 fM to 100 μM with a low limit of detection (LOD) 2 fM under optimal conditions. The LOD was several orders of magnitude lower than those of other methods. This SERS-based sensor showed good reproducibility and stability for MG detection. The silver-coated magnetic particles could easily be regenerated as SERS substrates only using low pH solution for multiple sensing events. The recovery of MG added to several water samples at different concentrations ranged from 90% to 110%. The proposed method facilitates the ultrasensitive analysis of dyes to satisfy the high demand for ensuring the safety of water sources. PMID:26964502

  20. Evaluation and Optimization of Paper-Based SERS Substrate for Potential Label-Free Raman Analysis of Seminal Plasma

    Zufang Huang

    2017-01-01

    Full Text Available Characterization and optimization of paper SERS substrate were performed in detail, in which morphologies and distribution of silver nanoparticles (AgNPs on the paper substrate pretreated with different concentrations of NaCl and the subsequent soaking with colloidal AgNPs for different period of time were evaluated. Our results show that both NaCl concentration and soaking time with AgNPs have a significant influence on SERS enhancement, showing that an optimal EF of 2.27 × 107 was achieved when the paper substrate was treated with 20 mM NaCl and one-hour soak with AgNPs. Moreover, seminal plasma (SP was specifically selected to evaluate the performance of paper-based SERS substrate for potential clinical detection and diagnosis. The optimization of the paper SERS substrate demonstrates potential applications in reliable on-site detection of SP and clinical diagnosis of fertility-related diseases as well.

  1. SVM classifier on chip for melanoma detection.

    Afifi, Shereen; GholamHosseini, Hamid; Sinha, Roopak

    2017-07-01

    Support Vector Machine (SVM) is a common classifier used for efficient classification with high accuracy. SVM shows high accuracy for classifying melanoma (skin cancer) clinical images within computer-aided diagnosis systems used by skin cancer specialists to detect melanoma early and save lives. We aim to develop a medical low-cost handheld device that runs a real-time embedded SVM-based diagnosis system for use in primary care for early detection of melanoma. In this paper, an optimized SVM classifier is implemented onto a recent FPGA platform using the latest design methodology to be embedded into the proposed device for realizing online efficient melanoma detection on a single system on chip/device. The hardware implementation results demonstrate a high classification accuracy of 97.9% and a significant acceleration factor of 26 from equivalent software implementation on an embedded processor, with 34% of resources utilization and 2 watts for power consumption. Consequently, the implemented system meets crucial embedded systems constraints of high performance and low cost, resources utilization and power consumption, while achieving high classification accuracy.

  2. Variation Tolerant On-Chip Interconnects

    Nigussie, Ethiopia Enideg

    2012-01-01

    This book presents design techniques, analysis and implementation of high performance and power efficient, variation tolerant on-chip interconnects.  Given the design paradigm shift to multi-core, interconnect-centric designs and the increase in sources of variability and their impact in sub-100nm technologies, this book will be an invaluable reference for anyone concerned with the design of next generation, high-performance electronics systems. Provides comprehensive, circuit-level explanation of high-performance, energy-efficient, variation-tolerant on-chip interconnect; Describes design techniques to mitigate problems caused by variation; Includes techniques for design and implementation of self-timed on-chip interconnect, delay variation insensitive communication protocols, high speed signaling techniques and circuits, bit-width independent completion detection and process, voltage and temperature variation tolerance.                          

  3. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    Baia, M; Melinte, G; Iancu, V; Baia, L; Barbu-Tudoran, L; Diamandescu, L; Cosoveanu, V; Danciu, V

    2011-01-01

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10 -1 -10 -4 M for acrylamide and around 10 -5 M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  4. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    Baia, M; Melinte, G; Iancu, V; Baia, L [Faculty of Physics, Babes-Bolyai University, 400084, Cluj-Napoca (Romania); Barbu-Tudoran, L [Faculty of Biology and Geology, Babes-Bolyai University, 400015, Cluj-Napoca (Romania); Diamandescu, L [National Institute of Materials Physics, PO Box MG-7, 77125, Bucharest-Magurele (Romania); Cosoveanu, V; Danciu, V, E-mail: lucian.baia@phys.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028, Cluj-Napoca (Romania)

    2011-07-06

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10{sup -1}-10{sup -4} M for acrylamide and around 10{sup -5} M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  5. On-chip dual comb source for spectroscopy

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L.; Lipson, Michal

    2016-01-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high-quality-factor microcavities has hindered the development of an on-chip dual comb source. Here, we report the first simultaneous generation of two microresonator comb...

  6. Various on-chip sensors with microfluidics for biological applications.

    Lee, Hun; Xu, Linfeng; Koh, Domin; Nyayapathi, Nikhila; Oh, Kwang W

    2014-09-12

    In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  7. Various On-Chip Sensors with Microfluidics for Biological Applications

    Hun Lee

    2014-09-01

    Full Text Available In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR and surface-enhanced Raman scattering (SERS to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV and greater depth of field (DOF. As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  8. Cytostretch, an Organ-on-Chip Platform

    Gaio, N.; van Meer, B.; Quiros Solano, W.F.; Bergers, L.; van de Stolpe, A; Mummery, CL; Sarro, P.M.; Dekker, R.

    2016-01-01

    Organ-on-Chips (OOCs) are micro-fabricated devices which are used to culture cells in order to mimic functional units of human organs. The devices are designed to simulate the physiological environment of tissues in vivo. Cells in some types of OOCs can be stimulated in situ by electrical and/or

  9. On-chip mode division multiplexing technologies

    Ding, Yunhong; Frellsen, Louise Floor; Guan, Xiaowei

    2016-01-01

    Space division multiplexing (SDM) is currently widely investigated in order to provide enhanced capacity thanks to the utilization of space as a new degree of multiplexing freedom in both optical fiber communication and on-chip interconnects. Basic components allowing the processing of spatial...... photonic integrated circuit mode (de) multiplexer for few-mode fibers (FMFs)....

  10. Ser reina

    José Manuel NIETO SORIA

    2006-07-01

    Full Text Available L’historiographie du règne des Rois Catholiques, héritière directe de celle des autres Trastamare, se caractérise par son étroite relation avec des enjeux politiques concrets. L’activité historiographie s’est ainsi inscrite elle-même dans le cadre des conflits politiques en cours. C’est pourquoi la royauté d’Isabelle Ire de Castille impliqua une bonne part de la production historiographique de cettte époque : soit qu’on dénonçât un déficit de légitimité dû à sa condition féminine, soit qu’on démentît, au contraire, ce déficit en attribuant à la reine des qualités « masculines ». Bien entendu, ces débats furent fonction de l’engagement politique de chacun des historiens.La cronística y la historiografía del reinado de los Reyes Católicos, como directas herederas de la labor historiográfica de la época de los monarcas Trastámara, se caracterizó por su estrecha vinculación con intereses políticos concretos, inscribiéndose la propia actividad historiográfica en el marco de los conflictos políticos en curso. Por ello, la dimensión regia de Isabel I de Castilla supuso una dimensión significativa del quehacer historiográfico de la época, bien para plantear un déficit de legitimidad por razón de su propia condición femenina, bien para negar tal déficit con la atribución de “cualidades masculinas” en su persona. De este modo, la toma en consideración del hecho de “ser reina” representó una dimensión significativa del quehacer historiográfico, de acuerdo siempre con los compromisos políticos de los distintos historiadores de la época.

  11. Co-design of on-chip antennas and circuits for a UNII band monolithic transceiver

    Shamim, Atif

    2012-07-28

    The surge of highly integrated and multifunction wireless devices has necessitated the designers to think outside the box for solutions that are unconventional. The new trends have provided the impetus for low cost and compact RF System-on-Chip (SoC) approaches [1]. The major advantages of SoC are miniaturization and cost reduction. A major bottleneck to the true realization of monolithic RF SoC transceivers is the implementation of on-chip antennas with circuitry. Though complete integrated transceivers with on-chip antennas have been demonstrated, these designs are generally for high frequencies. Moreover, they either use non-standard CMOS processes or additional fabrication steps to enhance the antenna efficiency, which in turn adds to the cost of the system [2-3]. Another challenge related to the on-chip antennas is the characterization of their radiation properties. Most of the recently reported work (summarized in Table I) shows that very few on-chip antennas are characterized. Our previous work [4], demonstrated a Phase Lock Loop (PLL) based transmitter (TX) with an on-chip antenna. However, the radiation from the on-chip antenna experienced strong interference due to 1) some active circuitry on one side of the chip and 2) the PCB used to mount the chip in the anechoic chamber. This paper presents, for the first time, a complete 5.2 GHz (UNII band) transceiver with separate TX and receiver (RX) antennas. To the author\\'s best knowledge, its size of 3 mm2 is the smallest reported for a UNII band transceiver with two on-chip antennas. Both antennas are characterized for their radiation properties through an on-wafer custom measurement setup. The strategy to co-design on-chip antennas with circuits, resultant trade-offs and measurement challenges have also been discussed. © 2010 IEEE.

  12. Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique

    Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

    2011-03-01

    Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

  13. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10-15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  14. DNA-based Nanoconstructs for the Detection of Ions and Biomolecules with Related Raman/SERS Signature Studies

    Brenneman, Kimber L.

    The utilization of DNA aptamers and semiconductor quantum dots (QDs) for the detection of ions and biomolecules was investigated. In recent years, there have been many studies based on the use of DNA and RNA aptamers, which are single stranded oligonucleotides capable of binding to biomolecules, other molecules, and ions. In many of these cases, the conformational changes of these DNA and RNA aptamers are suitable to use fluorescence resonant energy transfer (FRET) or nanometal surface energy transfer (NSET) techniques to detect such analytes. Coupled with this growth in such uses of aptamers, there has been an expanded use of semiconductor quantum dots as brighter, longer-lasting alternatives to fluorescent dyes in labeling and detection techniques of interest in biomedicine and environmental monitoring. Thrombin binding aptamer (TBA) and a zinc aptamer were used to detect mercury, lead, zinc, and cadmium. These probes were tested in a liquid assay as well as on a filter paper coupon. Biomolecules were also studied and detected using surface-enhanced Raman spectroscopy (SERS), including DNA aptamers and C-reactive protein (CRP). Raman spectroscopy is a useful tool for sensor development, label-free detection, and has the potential for remote sensing. Raman spectra provide information on the vibrational modes or phonons, between and within molecules. Therefore, unique spectral fingerprints for single molecules can be obtained. SERS is accomplished through the use of substrates with nanometer scale geometries made of metals with many free electrons, such as silver, gold, or copper. In this research silver SERS substrates were used to study the SERS signature of biomolecules that typically produce very weak Raman signals.

  15. Cytostretch, an Organ-on-Chip Platform

    Nikolas Gaio

    2016-07-01

    Full Text Available Organ-on-Chips (OOCs are micro-fabricated devices which are used to culture cells in order to mimic functional units of human organs. The devices are designed to simulate the physiological environment of tissues in vivo. Cells in some types of OOCs can be stimulated in situ by electrical and/or mechanical actuators. These actuations can mimic physiological conditions in real tissue and may include fluid or air flow, or cyclic stretch and strain as they occur in the lung and heart. These conditions similarly affect cultured cells and may influence their ability to respond appropriately to physiological or pathological stimuli. To date, most focus has been on devices specifically designed to culture just one functional unit of a specific organ: lung alveoli, kidney nephrons or blood vessels, for example. In contrast, the modular Cytostretch membrane platform described here allows OOCs to be customized to different OOC applications. The platform utilizes silicon-based micro-fabrication techniques that allow low-cost, high-volume manufacturing. We describe the platform concept and its modules developed to date. Membrane variants include membranes with (i through-membrane pores that allow biological signaling molecules to pass between two different tissue compartments; (ii a stretchable micro-electrode array for electrical monitoring and stimulation; (iii micro-patterning to promote cell alignment; and (iv strain gauges to measure changes in substrate stress. This paper presents the fabrication and the proof of functionality for each module of the Cytostretch membrane. The assessment of each additional module demonstrate that a wide range of OOCs can be achieved.

  16. High-performance, scalable optical network-on-chip architectures

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of

  17. Pressure-driven one-step solid phase-based on-chip sample preparation on a microfabricated plastic device and integration with flow-through polymerase chain reaction (PCR).

    Tran, Hong Hanh; Trinh, Kieu The Loan; Lee, Nae Yoon

    2013-10-01

    In this study, we fabricate a monolithic poly(methylmethacrylate) (PMMA) microdevice on which solid phase-based DNA preparation and flow-through polymerase chain reaction (PCR) units were functionally integrated for one-step sample preparation and amplification operated by pressure. Chelex resin, which is used as a solid support for DNA preparation, can capture denatured proteins but releases DNA, and the purified DNA can then be used as a template in a subsequent amplification process. Using the PMMA microdevices, DNA was successfully purified from both Escherichia coli and human hair sample, and the plasmid vector inserted in E. coli and the D1S80 locus in human genomic DNA were successfully amplified from on-chip purified E. coli and human hair samples. Furthermore, the integration potential of the proposed sample preparation and flow-through PCR units was successfully demonstrate on a monolithic PMMA microdevice with a seamless flow, which could pave the way for a pressure-driven, simple one-step sample preparation and amplification with greatly decreased manufacture cost and enhanced device disposability. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    Chang-Soo Kim

    2012-06-01

    Full Text Available Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide. Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc. to implement a viable component for in-line fluidic sensor systems.

  19. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection.

    Garrett, Natalie L; Sekine, Ryo; Dixon, Matthew W A; Tilley, Leann; Bambery, Keith R; Wood, Bayden R

    2015-09-07

    Surface enhanced Raman scattering (SERS) is a powerful tool with great potential to provide improved bio-sensing capabilities. The current 'gold-standard' method for diagnosis of malaria involves visual inspection of blood smears using light microscopy, which is time consuming and can prevent early diagnosis of the disease. We present a novel surface-enhanced Raman spectroscopy substrate based on gold-coated butterfly wings, which enabled detection of malarial hemozoin pigment within lysed blood samples containing 0.005% and 0.0005% infected red blood cells.

  20. Microengineered physiological biomimicry: organs-on-chips.

    Huh, Dongeun; Torisawa, Yu-suke; Hamilton, Geraldine A; Kim, Hyun Jung; Ingber, Donald E

    2012-06-21

    Microscale engineering technologies provide unprecedented opportunities to create cell culture microenvironments that go beyond current three-dimensional in vitro models by recapitulating the critical tissue-tissue interfaces, spatiotemporal chemical gradients, and dynamic mechanical microenvironments of living organs. Here we review recent advances in this field made over the past two years that are focused on the development of 'Organs-on-Chips' in which living cells are cultured within microfluidic devices that have been microengineered to reconstitute tissue arrangements observed in living organs in order to study physiology in an organ-specific context and to develop specialized in vitro disease models. We discuss the potential of organs-on-chips as alternatives to conventional cell culture models and animal testing for pharmaceutical and toxicology applications. We also explore challenges that lie ahead if this field is to fulfil its promise to transform the future of drug development and chemical safety testing.

  1. On-Chip Microwave Quantum Hall Circulator

    A. C. Mahoney

    2017-01-01

    Full Text Available Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, “slow-light” response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330  μm diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  2. Variable self-powered light detection CMOS chip with real-time adaptive tracking digital output based on a novel on-chip sensor.

    Wang, HongYi; Fan, Youyou; Lu, Zhijian; Luo, Tao; Fu, Houqiang; Song, Hongjiang; Zhao, Yuji; Christen, Jennifer Blain

    2017-10-02

    This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.

  3. Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept

    Adnane Kara

    2016-05-01

    Full Text Available In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an “intelligent” drug delivery system based on a feedback loop to monitor drug delivery.

  4. Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept.

    Kara, Adnane; Rouillard, Camille; Mathault, Jessy; Boisvert, Martin; Tessier, Frédéric; Landari, Hamza; Melki, Imene; Laprise-Pelletier, Myriam; Boisselier, Elodie; Fortin, Marc-André; Boilard, Eric; Greener, Jesse; Miled, Amine

    2016-05-28

    In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an "intelligent" drug delivery system based on a feedback loop to monitor drug delivery.

  5. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-07-01

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.

  6. Development of a paper-based vertical flow SERS assay for citrulline detection using aptamer-conjugated gold nanoparticles

    Locke, Andrea; Deutz, Nicolaas; Coté, Gerard

    2018-02-01

    Research toward development of point-of-care (POC) technologies is emerging as a means for diagnosis and monitoring of patients outside the hospital. These POC devices typically utilize assays capable of detecting low level biomarkers indicative of specific diseases. L-citrulline, an α-amino acid produced in the intestinal mucosa cells, is one such biomarker typically found circulating within the plasma at physiological concentrations of 40 μM. Researchers have found that intestinal enterocyte malfunction causes its level to be significantly lowered, establishing it as a potential diagnostic biomarker for gut function. Our research group has proposed the development of a surface enhanced Raman spectroscopy (SERS) based assay, using vertical flow paper fluidics, for citrulline detection. The assay consists of a fluorescently active, Raman reporter labeled aptamer conjugated on gold nanoparticles. The aptamer changes its confirmation on binding to its target, which in turn changes the distance between the Raman active molecule and the nanoparticle surface. These particles were embedded within a portable chip consisting of cellulose-based paper. After the chips were loaded with different concentrations of free L-citrulline in phosphate buffer, time was given for the assay to interact with the sample. A handheld Raman spectrometer (638 nm; Ocean Optics) was used to measure the SERS intensity. Results showed decrease in intensity with increasing concentration of L-citrulline (0-50μM).

  7. On-chip antenna: Practical design and characterization considerations

    Shamim, Atif; Salama, Khaled N.; Sedky, S.; Soliman, E. A.

    2012-01-01

    This paper highlights the challenges of an emergent field, namely, on-chip antenna design. Consistent with the RF System-on-Chip (SoC) concept, co-design strategy for circuits and on-chip antennas is described. A number of design and layout issues, arising from the highly integrated nature of this kind of systems, are discussed. The characterization difficulties related to on-chip antennas radiation properties are also highlighted. Finally, a novel on-wafer test fixture is proposed to measure the gain and radiation pattern of the on-chip antennas in the anechoic chamber.

  8. On-chip antenna: Practical design and characterization considerations

    Shamim, Atif

    2012-07-28

    This paper highlights the challenges of an emergent field, namely, on-chip antenna design. Consistent with the RF System-on-Chip (SoC) concept, co-design strategy for circuits and on-chip antennas is described. A number of design and layout issues, arising from the highly integrated nature of this kind of systems, are discussed. The characterization difficulties related to on-chip antennas radiation properties are also highlighted. Finally, a novel on-wafer test fixture is proposed to measure the gain and radiation pattern of the on-chip antennas in the anechoic chamber.

  9. A Time-predictable Memory Network-on-Chip

    Schoeberl, Martin; Chong, David VH; Puffitsch, Wolfgang

    2014-01-01

    To derive safe bounds on worst-case execution times (WCETs), all components of a computer system need to be time-predictable: the processor pipeline, the caches, the memory controller, and memory arbitration on a multicore processor. This paper presents a solution for time-predictable memory...... arbitration and access for chip-multiprocessors. The memory network-on-chip is organized as a tree with time-division multiplexing (TDM) of accesses to the shared memory. The TDM based arbitration completely decouples processor cores and allows WCET analysis of the memory accesses on individual cores without...

  10. Multicore systems on-chip practical software/hardware design

    Abdallah, Abderazek Ben

    2013-01-01

    System on chips designs have evolved from fairly simple unicore, single memory designs to complex heterogeneous multicore SoC architectures consisting of a large number of IP blocks on the same silicon. To meet high computational demands posed by latest consumer electronic devices, most current systems are based on such paradigm, which represents a real revolution in many aspects in computing.The attraction of multicore processing for power reduction is compelling. By splitting a set of tasks among multiple processor cores, the operating frequency necessary for each core can be reduced, allowi

  11. Computer System Design System-on-Chip

    Flynn, Michael J

    2011-01-01

    The next generation of computer system designers will be less concerned about details of processors and memories, and more concerned about the elements of a system tailored to particular applications. These designers will have a fundamental knowledge of processors and other elements in the system, but the success of their design will depend on the skills in making system-level tradeoffs that optimize the cost, performance and other attributes to meet application requirements. This book provides a new treatment of computer system design, particularly for System-on-Chip (SOC), which addresses th

  12. On-chip digital power supply control for system-on-chip applications

    Meijer, M.; Pineda de Gyvez, J.; Otten, R.H.J.M.

    2005-01-01

    The authors presented an on-chip, fully-digital, power-supply control system. The scheme consists of two independent control loops that regulate power supply variations due to semiconductor process spread, temperature, and chip's workload. Smart power-switches working as linear voltage regulators

  13. On-Chip Correlator for Passive Wireless SAW Multisensor Systems

    Liqiang Xie

    2016-01-01

    Full Text Available For decoding the asynchronous superposition of response signals from different sensors, it is a challenge to achieve correlation in a code division multiplexing (CDM based passive wireless surface acoustic wave (SAW multisensor system. Therefore, an on-chip correlator scheme is developed in this paper. In contrast to conventional CDM-based systems, this novel scheme enables the correlations to be operated at the SAW sensors, instead of the reader. Thus, the response signals arriving at the reader are the result of cross-correlation on the chips. It is then easy for the reader to distinguish the sensor that is matched with the interrogating signal. The operation principle, signal analysis, and simulation of the novel scheme are described in the paper. The simulation results show the response signals from the correlations of the sensors. A clear spike pulse is presented in the response signals, when a sensor code is matched with the interrogating code. Simulations verify the feasibility of the on-chip correlator concept.

  14. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.

    Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping

    2014-10-01

    p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.

  15. A Miniaturized On-Chip Colorimeter for Detecting NPK Elements.

    Liu, Rui-Tao; Tao, Lu-Qi; Liu, Bo; Tian, Xiang-Guang; Mohammad, Mohammad Ali; Yang, Yi; Ren, Tian-Ling

    2016-08-04

    Recently, precision agriculture has become a globally attractive topic. As one of the most important factors, the soil nutrients play an important role in estimating the development of precision agriculture. Detecting the content of nitrogen, phosphorus and potassium (NPK) elements more efficiently is one of the key issues. In this paper, a novel chip-level colorimeter was fabricated to detect the NPK elements for the first time. A light source-microchannel photodetector in a sandwich structure was designed to realize on-chip detection. Compared with a commercial colorimeter, all key parts are based on MEMS (Micro-Electro-Mechanical System) technology so that the volume of this on-chip colorimeter can be minimized. Besides, less error and high precision are achieved. The cost of this colorimeter is two orders of magnitude less than that of a commercial one. All these advantages enable a low-cost and high-precision sensing operation in a monitoring network. The colorimeter developed herein has bright prospects for environmental and biological applications.

  16. SERS activity with tenfold detection limit optimization on a type of nanoporous AAO-based complex multilayer substrate

    Sui, Chaofan; Wang, Kaige; Wang, Shuang; Ren, Junying; Bai, Xiaohong; Bai, Jintao

    2016-03-01

    Most of SERS applications are constricted by heterogeneous hotspots and aggregates of nanostructure, which result in low sensitivity and poor reproducibility of characteristic signals. This work intends to introduce SERS properties of a type of SERS-active substrate, Au-CuCl2-AAO, which is innovatively developed on a porous anodic alumina oxide (AAO) template. Spectral measuring results of Rhodamine 6G (R6G) on this substrate optimized by controlling morphology and gold thickness showed that enhancement factor (2.30 × 107) and detection limit (10-10 M) were both improved and represented better performance than its template AAO. Homogenous hot spots across the region of interest were achieved by scanning SERS intensity distribution for the band at 1505 cm-1 in 5 × 5 μm2 area. Furthermore, the promising SERS activity of the flower-patterned substrate was theoretically explained through simulation of the electromagnetic field distribution. In addition, this SERS substrate is proposed for applications within the field of chemical and biochemical analyses.Most of SERS applications are constricted by heterogeneous hotspots and aggregates of nanostructure, which result in low sensitivity and poor reproducibility of characteristic signals. This work intends to introduce SERS properties of a type of SERS-active substrate, Au-CuCl2-AAO, which is innovatively developed on a porous anodic alumina oxide (AAO) template. Spectral measuring results of Rhodamine 6G (R6G) on this substrate optimized by controlling morphology and gold thickness showed that enhancement factor (2.30 × 107) and detection limit (10-10 M) were both improved and represented better performance than its template AAO. Homogenous hot spots across the region of interest were achieved by scanning SERS intensity distribution for the band at 1505 cm-1 in 5 × 5 μm2 area. Furthermore, the promising SERS activity of the flower-patterned substrate was theoretically explained through simulation of the

  17. A GA-BASED SYSTEM-ON-CHIP IP CORE MAPPING METHOD%基于遗传算法的片上系统IP核映射方法

    赖国明

    2011-01-01

    片上系统SoC是指在单个芯片上集成了专用处理器、通用处理器、DSP、共享内存块、专用内存块、I/O部件等多个IP核的复杂的系统.规则拓扑的Mesh网格具有布线工整等优点,利用Mesh网格可以很方便地实现复杂的片上系统SoC.知识产权核(Intellectual Property Cores,IP核)到Mesh格件的映射问题是SOC设计的关键问题之一,其本质上是一种二次分配问题的NP难问题,目前没有多项式时间的求优方法.而遗传算法能够有效地求解问题的近似最优解.提出一种基于遗传的映射算法能够在几分钟内求得最小通信能耗的映射.%System-on-Chip (SoC) is a complex system that integrates functional processors, general processors, DSPs, shared memory, private memory, I/O components as well as other IP cores. Regular topological mesh grid has such merits as neat wiring. It is convenient to fulfill complicated SoCs by utilizing mesh. The problem of mapping intellectual property cores (IP cores) to mesh tiles is one of the key issues of SoC design. Mapping problem, naturally a quadratic assignment problem, is known as NP hard problem, which, currently, cannot be solved within polynomial time to achieve an optimal solution. However genetic algorithm (GA) is suitable for solving an approximate solution for such kind of problem. This article proposes a GA-based mapping method that can minimize communication energy consumption within a few minutes for achieving mapping.

  18. Diatomite Photonic Crystals for Facile On-Chip Chromatography and Sensing of Harmful Ingredients from Food.

    Kong, Xianming; Yu, Qian; Li, Erwen; Wang, Rui; Liu, Qing; Wang, Alan X

    2018-03-31

    Diatomaceous earth-otherwise called diatomite-is essentially composed of hydrated biosilica with periodic nanopores. Diatomite is derived from fossilized remains of diatom frustules and possesses photonic-crystal features. In this paper, diatomite simultaneously functions as the matrix of the chromatography plate and the substrate for surface-enhanced Raman scattering (SERS), by which the photonic crystal-features could enhance the optical field intensity. The on-chip separation performance of the device was confirmed by separating and detecting industrial dye (Sudan I) in an artificial aqueous mixture containing 4-mercaptobenzoic acid (MBA), where concentrated plasmonic Au colloid was casted onto the analyte spot for SERS measurement. The plasmonic-photonic hybrid mode between the Au nanoparticles (NP) and the diatomite layer could supply nearly 10 times the increment of SERS signal (MBA) intensity compared to the common silica gel chromatography plate. Furthermore, this lab-on-a-chip photonic crystal device was employed for food safety sensing in real samples and successfully monitored histamine in salmon and tuna. This on-chip food sensor can be used as a cheap, robust, and portable sensing platform for monitoring for histamine or other harmful ingredients at trace levels in food products.

  19. Diatomite Photonic Crystals for Facile On-Chip Chromatography and Sensing of Harmful Ingredients from Food

    Xianming Kong

    2018-03-01

    Full Text Available Diatomaceous earth—otherwise called diatomite—is essentially composed of hydrated biosilica with periodic nanopores. Diatomite is derived from fossilized remains of diatom frustules and possesses photonic-crystal features. In this paper, diatomite simultaneously functions as the matrix of the chromatography plate and the substrate for surface-enhanced Raman scattering (SERS, by which the photonic crystal-features could enhance the optical field intensity. The on-chip separation performance of the device was confirmed by separating and detecting industrial dye (Sudan I in an artificial aqueous mixture containing 4-mercaptobenzoic acid (MBA, where concentrated plasmonic Au colloid was casted onto the analyte spot for SERS measurement. The plasmonic-photonic hybrid mode between the Au nanoparticles (NP and the diatomite layer could supply nearly 10 times the increment of SERS signal (MBA intensity compared to the common silica gel chromatography plate. Furthermore, this lab-on-a-chip photonic crystal device was employed for food safety sensing in real samples and successfully monitored histamine in salmon and tuna. This on-chip food sensor can be used as a cheap, robust, and portable sensing platform for monitoring for histamine or other harmful ingredients at trace levels in food products.

  20. Aleación superficial de superaleaciones base níquel mediante láser

    Rodríguez, G. P.

    1998-04-01

    Full Text Available Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new tecnhology developments forcé to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600 were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance.

    Las superaleaciones base níquel presentan una elevada resistencia a la oxidación a alta temperatura, así como excelentes propiedades mecánicas. Los nuevos desarrollos tecnológicos (condiciones cada vez más agresivas obligan a una casi continua modificación de dichas aleaciones. En el presente trabajo, dos superaleaciones base níquel (Nimonic 80A e Inconel 600 se alean superficialmente con aluminio utilizando un láser de alta potencia. Se estudia la microestructura de la capas obtenidas mediante SEM y EDX. Se realizan ensayos de oxidación a 1.273 K sobre las probetas aleadas y sobre el material base durante tiempos variables entre 24 y 250 h. Los resultados indican la formación de una capa protectora de alúmina sobre las probetas aleadas que puede incrementar la resistencia a la oxidación.

  1. On-Chip Bondwire Magnetics with Ferrite-Epoxy Glob Coating for Power Systems on Chip

    Jian Lu

    2008-01-01

    Full Text Available A novel concept of on-chip bondwire inductors and transformers with ferrite epoxy glob coating is proposed to offer a cost effective approach realizing power systems on chip (SOC. We have investigated the concept both experimentally and with finite element modeling. A Q factor of 30–40 is experimentally demonstrated for the bondwire inductors which represents an improvement by a factor of 3–30 over the state-of-the-art MEMS micromachined inductors. Transformer parameters including self- and mutual inductance and coupling factors are extracted from both modeled and measured S-parameters. More importantly, the bondwire magnetic components can be easily integrated into SOC manufacturing processes with minimal changes and open enormous possibilities for realizing cost-effective, high-current, high-efficiency power SOCs.

  2. A Router Architecture for Connection-Oriented Service Guarantees in the MANGO Clockless Network-on-Chip

    Bjerregaard, Tobias; Sparsø, Jens

    2005-01-01

    On-chip networks for future system-on-chip designs need simple, high performance implementations. In order to promote system-level integrity, guaranteed services (GS) need to be provided. We propose a network-on-chip (NoC) router architecture to support this, and demonstrate with a CMOS standard...... cell design. Our implementation is based on clockless circuit techniques, and thus inherently supports a modular, GALS-oriented design flow. Our router exploits virtual channels to provide connection-oriented GS, as well as connection-less best-effort (BE) routing. The architecture is highly flexible...

  3. On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-09-07

    We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.

  4. Near-Field, On-Chip Optical Brownian Ratchets.

    Wu, Shao-Hua; Huang, Ningfeng; Jaquay, Eric; Povinelli, Michelle L

    2016-08-10

    Nanoparticles in aqueous solution are subject to collisions with solvent molecules, resulting in random, Brownian motion. By breaking the spatiotemporal symmetry of the system, the motion can be rectified. In nature, Brownian ratchets leverage thermal fluctuations to provide directional motion of proteins and enzymes. In man-made systems, Brownian ratchets have been used for nanoparticle sorting and manipulation. Implementations based on optical traps provide a high degree of tunability along with precise spatiotemporal control. Here, we demonstrate an optical Brownian ratchet based on the near-field traps of an asymmetrically patterned photonic crystal. The system yields over 25 times greater trap stiffness than conventional optical tweezers. Our technique opens up new possibilities for particle manipulation in a microfluidic, lab-on-chip environment.

  5. A Hardware Framework for on-Chip FPGA Acceleration

    Lomuscio, Andrea; Cardarilli, Gian Carlo; Nannarelli, Alberto

    2016-01-01

    In this work, we present a new framework to dynamically load hardware accelerators on reconfigurable platforms (FPGAs). Provided a library of application-specific processors, we load on-the-fly the specific processor in the FPGA, and we transfer the execution from the CPU to the FPGA-based accele......In this work, we present a new framework to dynamically load hardware accelerators on reconfigurable platforms (FPGAs). Provided a library of application-specific processors, we load on-the-fly the specific processor in the FPGA, and we transfer the execution from the CPU to the FPGA......-based accelerator. Results show that significant speed-up can be obtained by the proposed acceleration framework on system-on-chips where reconfigurable fabric is placed next to the CPUs. The speed-up is due to both the intrinsic acceleration in the application-specific processors, and to the increased parallelism....

  6. On-chip spin-controlled orbital angular momentum directional coupling

    Xie, Zhenwei; Lei, Ting; Si, Guangyuan; Du, Luping; Lin, Jiao; Min, Changjun; Yuan, Xiaocong

    2018-01-01

    Optical vortex beams have many potential applications in the particle trapping, quantum encoding, optical orbital angular momentum (OAM) communications and interconnects. However, the on-chip compact OAM detection is still a big challenge. Based on a holographic configuration and a spin-dependent structure design, we propose and demonstrate an on-chip spin-controlled OAM-mode directional coupler, which can couple the OAM signal to different directions due to its topological charge. While the directional coupling function can be switched on/off by altering the spin of incident beam. Both simulation and experimental measurements verify the validity of the proposed approach. This work would benefit the on-chip OAM devices for optical communications and high dimensional quantum coding/decoding in the future.

  7. Low-cost low-power UHF RFID tag with on-chip antenna

    Xi Jingtian; Yan Na; Che Wenyi; Xu Conghui; Wang Xiao; Yang Yuqing; Jian Hongyan; Min Hao, E-mail: jtxi@fudan.edu.c [State Key Laboratory of ASIC and System, Auto-ID Laboratory, Fudan University, Shanghai 201203 (China)

    2009-07-15

    This paper presents an EPC Class 1 Generation 2 compatible tag with on-chip antenna implemented in the SMIC 0.18 {mu}m standard CMOS process. The UHF tag chip includes an RF/analog front-end, a digital baseband, and a 640-bit EEPROM memory. The on-chip antenna is optimized based on a novel parasitic-aware model. The rectifier is optimized to achieve a power conversion efficiency up to 40% by applying a self-bias feedback and threshold compensation techniques. A good match between the tag circuits and the on-chip antenna is realized by adjusting the rectifier input impedance. Measurements show that the presented tag can achieve a communication range of 1 cm with 1 W reader output power using a 1 x 1 cm{sup 2} single-turn loop reader antenna.

  8. A Performance Analytical Strategy for Network-on-Chip Router with Input Buffer Architecture

    WANG, J.

    2012-11-01

    Full Text Available In this paper, a performance analytical strategy is proposed for Network-on-Chip router with input buffer architecture. First, an analytical model is developed based on semi-Markov process. For the non-work-conserving router with small buffer size, the model can be used to analyze the schedule delay and the average service time for each buffer when given the related parameters. Then, the packet average delay in router is calculated by using the model. Finally, we validate the effectiveness of our strategy by simulation. By comparing our analytical results to simulation results, we show that our strategy successfully captures the Network-on-Chip router performance and it performs better than the state-of-art technology. Therefore, our strategy can be used as an efficiency performance analytical tool for Network-on-Chip design.

  9. CMOS capacitive sensors for lab-on-chip applications a multidisciplinary approach

    Ghafar-Zadeh, Ebrahim

    2010-01-01

    The main components of CMOS capacitive biosensors including sensing electrodes, bio-functionalized sensing layer, interface circuitries and microfluidic packaging are verbosely explained in chapters 2-6 after a brief introduction on CMOS based LoCs in Chapter 1. CMOS Capacitive Sensors for Lab-on-Chip Applications is written in a simple pedagogical way. It emphasises practical aspects of fully integrated CMOS biosensors rather than mathematical calculations and theoretical details. By using CMOS Capacitive Sensors for Lab-on-Chip Applications, the reader will have circuit design methodologies,

  10. Modelling, Synthesis, and Configuration of Networks-on-Chips

    Stuart, Matthias Bo

    This thesis presents three contributions in two different areas of network-on-chip and system-on-chip research: Application modelling and identifying and solving different optimization problems related to two specific network-on-chip architectures. The contribution related to application modelling...... is an analytical method for deriving the worst-case traffic pattern caused by an application and the cache-coherence protocol in a cache-coherent shared-memory system. The contributions related to network-on-chip optimization problems consist of two parts: The development and evaluation of six heuristics...... for solving the network synthesis problem in the MANGO network-on-chip, and the identification and formalization of the ReNoC configuration problem together with three heuristics for solving it....

  11. On-chip particle trapping and manipulation

    Leake, Kaelyn Danielle

    The ability to control and manipulate the world around us is human nature. Humans and our ancestors have used tools for millions of years. Only in recent years have we been able to control objects at such small levels. In order to understand the world around us it is frequently necessary to interact with the biological world. Optical trapping and manipulation offer a non-invasive way to move, sort and interact with particles and cells to see how they react to the world around them. Optical tweezers are ideal in their abilities but they require large, non-portable, and expensive setups limiting how and where we can use them. A cheap portable platform is required in order to have optical manipulation reach its full potential. On-chip technology offers a great solution to this challenge. We focused on the Liquid-Core Anti-Resonant Reflecting Optical Waveguide (liquid-core ARROW) for our work. The ARROW is an ideal platform, which has anti-resonant layers which allow light to be guided in liquids, allowing for particles to easily be manipulated. It is manufactured using standard silicon manufacturing techniques making it easy to produce. The planner design makes it easy to integrate with other technologies. Initially I worked to improve the ARROW chip by reducing the intersection losses and by reducing the fluorescence and background on the ARROW chip. The ARROW chip has already been used to trap and push particles along its channel but here I introduce several new methods of particle trapping and manipulation on the ARROW chip. Traditional two beam traps use two counter propagating beams. A trapping scheme that uses two orthogonal beams which counter to first instinct allow for trapping at their intersection is introduced. This scheme is thoroughly predicted and analyzed using realistic conditions. Simulations of this method were done using a program which looks at both the fluidics and optical sources to model complex situations. These simulations were also used to

  12. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  13. Network on chip master control board for neutron acquisition

    Ruiz-Martinez, E.; Mary, T.; Mutti, P.; Ratel, J.; Rey, F.

    2012-01-01

    The acquisition master control board is designed to assemble the various acquisition modes in use at the Institut Laue-Langevin (ILL). The main goal is to make the card common for all the ILL's instruments in a simple, modular and open way, giving the possibility to add new functionalities in order to follow the evolving demand. It has been necessary to define a central element to provide synchronization to the rest of the units. The backbone of the proposed acquisition control system is the denominated master acquisition board. The master board consists on a VME64X configurable high density I/O connection carrier board based on the latest Xilinx Virtex-6T FPGA. The internal architecture of the FPGA is designed as a Network on Chip (NoC) approach. The complete system also includes a display board and n histogram modules for live display of the data from the detectors. (authors)

  14. On-chip generation of heralded photon-number states

    Vergyris, Panagiotis; Meany, Thomas; Lunghi, Tommaso; Sauder, Gregory; Downes, James; Steel, M. J.; Withford, Michael J.; Alibart, Olivier; Tanzilli, Sébastien

    2016-10-01

    Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, i.e., non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.

  15. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1.

    Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai

    2016-01-28

    A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL(-1) with the limit of detection (LOD) of 0.48 pg mL(-1). The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.

  16. Biosensors-on-chip: a topical review

    Chen, Sensen; Shamsi, Mohtashim H

    2017-01-01

    This review will examine the integration of two fields that are currently at the forefront of science, i.e. biosensors and microfluidics. As a lab-on-a-chip (LOC) technology, microfluidics has been enriched by the integration of various detection tools for analyte detection and quantitation. The application of such microfluidic platforms is greatly increased in the area of biosensors geared towards point-of-care diagnostics. Together, the merger of microfluidics and biosensors has generated miniaturized devices for sample processing and sensitive detection with quantitation. We believe that microfluidic biosensors (biosensors-on-chip) are essential for developing robust and cost effective point-of-care diagnostics. This review is relevant to a variety of disciplines, such as medical science, clinical diagnostics, LOC technologies including MEMs/NEMs, and analytical science. Specifically, this review will appeal to scientists working in the two overlapping fields of biosensors and microfluidics, and will also help new scientists to find their directions in developing point-of-care devices. (topical review)

  17. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate

    Dandan Men

    2018-02-01

    Full Text Available Two-dimensional (2D periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO2 nanopillar arrays decorated with Ag nanoparticles (NPs with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE, depositing Ag layer and annealing. For the prepared SiO2 nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO2 nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP and rhodamine 6G (R6G due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO2 nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density “hotspots” derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  18. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate.

    Men, Dandan; Wu, Yingyi; Wang, Chu; Xiang, Junhuai; Yang, Ganlan; Wan, Changjun; Zhang, Honghua

    2018-02-04

    Two-dimensional (2D) periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO₂ nanopillar arrays decorated with Ag nanoparticles (NPs) with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE), depositing Ag layer and annealing. For the prepared SiO₂ nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO₂ nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO₂ nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density "hotspots" derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  19. Giant Gold Nanowire Vesicle-Based Colorimetric and SERS Dual-Mode Immunosensor for Ultrasensitive Detection of Vibrio parahemolyticus.

    Guo, Zhiyong; Jia, Yaru; Song, Xinxin; Lu, Jing; Lu, Xuefei; Liu, Baoqing; Han, Jiaojiao; Huang, Youju; Zhang, Jiawei; Chen, Tao

    2018-05-15

    Conventional methods for the detection of Vibrio parahemolyticus (VP) usually need tedious, labor-intensive processes, and have low sensitivity, which further limits their practical applications. Herein, we developed a simple and efficient colorimetry and surface-enhanced Raman scattering (SERS) dual-mode immunosensor for sensitive detection of VP, by employing giant Au vesicles with anchored tiny gold nanowires (AuNW) as a smart probe. Due to the larger specific surface and special hollow structure of giant Au vesicles, silver staining would easily lead to vivid color change for colorimetric analysis and further amplify SERS signals. The t-test was further used to determine if two sets of data from colorimetry and SERS were significantly different from each other. The result shows that there was no significant difference between data from the two methods. Two sets of data can mutually validate each other and avoid false positive and negative detection. The designed colorimetry-SERS dual-mode sensor would be very promising in various applications such as food safety inspection, personal healthcare, and on-site environmental monitoring.

  20. Advanced Nanofabrication Process Development for Self-Powered System-on-Chip

    Rojas, Jhonathan Prieto

    2010-01-01

    In summary, by using a novel sustainable energy component and scalable nano-patterning for logic and computing module, this work has successfully collected the essential base knowledge and joined two different elements that synergistically will contribute for the future implementation of a Self-Powered System-on-Chip.

  1. DAEDALUS: System-Level Design Methodology for Streaming Multiprocessor Embedded Systems on Chips

    Stefanov, T.; Pimentel, A.; Nikolov, H.; Ha, S.; Teich, J.

    2017-01-01

    The complexity of modern embedded systems, which are increasingly based on heterogeneous multiprocessor system-on-chip (MPSoC) architectures, has led to the emergence of system-level design. To cope with this design complexity, system-level design aims at raising the abstraction level of the design

  2. A Statically Scheduled Time-Division-Multiplexed Network-on-Chip for Real-Time Systems

    Schoeberl, Martin; Brandner, Florian; Sparsø, Jens

    2012-01-01

    This paper explores the design of a circuit-switched network-on-chip (NoC) based on time-division-multiplexing (TDM) for use in hard real-time systems. Previous work has primarily considered application-specific systems. The work presented here targets general-purpose hardware platforms. We...

  3. On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions

    Donolato, M.; Sogne, E.; Dalslet, Bjarke Thomas

    2011-01-01

    We demonstrate the detection of the Brownian relaxation frequency of 250 nm diameter magnetic beads using a lab-on-chip platform based on current lines for exciting the beads with alternating magnetic fields and highly sensitive magnetic tunnel junction (MTJ) sensors with a superparamagnetic free...

  4. Nanotechnology and the Developing World: Lab-on-Chip Technology for Health and Environmental Applications

    Mehta, Michael D.

    2008-01-01

    This article argues that advances in nanotechnology in general, and lab-on-chip technology in particular, have the potential to benefit the developing world in its quest to control risks to human health and the environment. Based on the "risk society" thesis of Ulrich Beck, it is argued that the developed world must realign its science and…

  5. A gold nanostar-based SERS platform for point-of-care diagnostics of carbapenemase-producing enterobacteriacae

    Kang, Wei Cherng Malvin; Wong, Yen Lynn; Piotrowski, Marek; Teo, Woon Pei J.; He, Shuai; Kah, James C.

    2017-04-01

    The ever-increasing spread and emergence of antibiotic resistance poses a serious threat to global public health. With the existence of Carbapenem-resistant Enterobacteriaceae (CRE) produced by the Klebsiella Pneumoniae bacteria, it renders the use of carbapenems, the last-resort class of β-lactam antibiotics, useless against combating against bacterial infections. Such infections reduce the ability to treat complex infections due to the lack of antibiotic options for treatment, leading to CRE-associated mortalities. Current methods of detection, like CarbaNP test and Modified Hodge's Test, have significant limitations in that the time taken for detection of carbapenemase activity ranges between hours to days, and are non-specific in detecting the specific phenotype, making it challenging to isolate patients rapidly and to devise appropriate treatment for infected patients. We propose a methodology by utilising Surface Enhanced Raman Spectroscopy (SERS) to study bacterial β-lactamase activity. This is done via the use of gold nanostars (AuNS), which have reported excellent SERS properties, conjugated with a β-lactam antibiotic ceftriaxole, as a proof-of-concept study to analyse the changes in the SERS spectra associated with cleavage of the β-lactam ring upon interaction with the New Delhi Metalloproteinase (NDM)- producing Escherichia coli (Class B β-lactamase). We are able to obtain detection of carbapenemase activity within 25 minutes, with the associated changes in SERS spectra being diminishing of SERS peaks at 1358cm-1 and 1495cm-1. This project can be further extended to study the activity of other classes of β-lactamases and other β-lactam antibiotics to improve this state of technology for potential adoption by healthcare institutions.

  6. Silicon Nanophotonics for Many-Core On-Chip Networks

    Mohamed, Moustafa

    Number of cores in many-core architectures are scaling to unprecedented levels requiring ever increasing communication capacity. Traditionally, architects follow the path of higher throughput at the expense of latency. This trend has evolved into being problematic for performance in many-core architectures. Moreover, the trends of power consumption is increasing with system scaling mandating nontraditional solutions. Nanophotonics can address these problems, offering benefits in the three frontiers of many-core processor design: Latency, bandwidth, and power. Nanophotonics leverage circuit-switching flow control allowing low latency; in addition, the power consumption of optical links is significantly lower compared to their electrical counterparts at intermediate and long links. Finally, through wave division multiplexing, we can keep the high bandwidth trends without sacrificing the throughput. This thesis focuses on realizing nanophotonics for communication in many-core architectures at different design levels considering reliability challenges that our fabrication and measurements reveal. First, we study how to design on-chip networks for low latency, low power, and high bandwidth by exploiting the full potential of nanophotonics. The design process considers device level limitations and capabilities on one hand, and system level demands in terms of power and performance on the other hand. The design involves the choice of devices, designing the optical link, the topology, the arbitration technique, and the routing mechanism. Next, we address the problem of reliability in on-chip networks. Reliability not only degrades performance but can block communication. Hence, we propose a reliability-aware design flow and present a reliability management technique based on this flow to address reliability in the system. In the proposed flow reliability is modeled and analyzed for at the device, architecture, and system level. Our reliability management technique is

  7. A SERS-based pH sensor utilizing 3-amino-5-mercapto-1,2,4-triazole functionalized Ag nanoparticles.

    Piotrowski, Piotr; Wrzosek, Beata; Królikowska, Agata; Bukowska, Jolanta

    2014-03-07

    We report the first use of 3-amino-5-mercapto-1,2,4-triazole (AMT) to construct a surface-enhanced Raman scattering (SERS) based pH nano- and microsensor, utilizing silver nanoparticles. We optimize the procedure of homogenous attachment of colloidal silver to micrometer-sized silica beads via an aminosilane linker. Such micro-carriers are potential optically trappable SERS microprobes. It is demonstrated that the SERS spectrum of AMT is strongly dependent on the pH of the surroundings, as the transformation between two different adsorption modes, upright (A form) and lying flat (B form) orientation, is provoked by pH variation. The possibility of tuning the nanosensor working range by changing the concentration of AMT in the surrounding solution is demonstrated. A strong correlation between the pH response of the nanosensor and the AMT concentration in solution is found to be controlled by the interactions between the surface and solution molecules. In the absence of the AMT monomer, the performance of both the nano- and microsensor is shifted substantially to the strongly acidic pH range, from 1.5 to 2.5 and from 1.0 to 2.0, respectively, which is quite unique even for SERS-based sensors.

  8. Error Control for Network-on-Chip Links

    Fu, Bo

    2012-01-01

    As technology scales into nanoscale regime, it is impossible to guarantee the perfect hardware design. Moreover, if the requirement of 100% correctness in hardware can be relaxed, the cost of manufacturing, verification, and testing will be significantly reduced. Many approaches have been proposed to address the reliability problem of on-chip communications. This book focuses on the use of error control codes (ECCs) to improve on-chip interconnect reliability. Coverage includes detailed description of key issues in NOC error control faced by circuit and system designers, as well as practical error control techniques to minimize the impact of these errors on system performance. Provides a detailed background on the state of error control methods for on-chip interconnects; Describes the use of more complex concatenated codes such as Hamming Product Codes with Type-II HARQ, while emphasizing integration techniques for on-chip interconnect links; Examines energy-efficient techniques for integrating multiple error...

  9. SERS Assay for Copper(II) Ions Based on Dual Hot-Spot Model Coupling with MarR Protein: New Cu2+-Specific Biorecognition Element.

    Wang, Yulong; Su, Zhenhe; Wang, Limin; Dong, Jinbo; Xue, Juanjuan; Yu, Jiao; Wang, Yuan; Hua, Xiude; Wang, Minghua; Zhang, Cunzheng; Liu, Fengquan

    2017-06-20

    We have developed a rapid and ultrasensitive surface-enhanced Raman scattering (SERS) assay for Cu 2+ detection using the multiple antibiotic resistance regulator (MarR) as specific bridging molecules in a SERS hot-spot model. In the assay, Cu 2+ induces formation of MarR tetramers, which provide Au nanoparticle (NP)-AuNP bridges, resulting in the formation of SERS hot spots. 4-Mercaptobenzoic acid (4-MBA) was used as a Raman reporter. The addition of Cu 2+ increased the Raman intensity of 4-MBA. Use of a dual hot-spot signal-amplification strategy based on AuNP-AgNP heterodimers combined through antigen-antibody reactions increased the sensitivity of the sensing platform by 50-fold. The proposed method gave a linear response for Cu 2+ detection in the range of 0.5-1000 nM, with a detection limit of 0.18 nM, which is 5 orders of magnitude lower than the U.S. Environmental Protection Agency limit for Cu 2+ in drinking water (20 μM). In addition, all analyses can be completed in less than 15 min. The high sensitivity, high specificity, and rapid detection capacity of the SERS assay therefore provide a combined advantage over current assays.

  10. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.

    Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D

    2017-08-30

    Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.

  11. Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

    Highstrete, Clark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Quantum Information Sciences Dept.; Scott, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). RF/Optoelectronics Dept.; Nordquist, Christopher D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). RF/Optoelectronics Dept.; Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Tigges, Christopher P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Blain, Matthew Glenn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Heller, Edwin J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Microsystems Integration Dept.; Stevens, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). MESAFab Operations 2 Dept.

    2013-11-01

    Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb+ hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ion traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.

  12. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  13. Stamping SERS for creatinine sensing

    Li, Ming; Du, Yong; Zhao, Fusheng; Zeng, Jianbo; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2015-03-01

    Urine can be obtained easily, readily and non-invasively. The analysis of urine can provide metabolic information of the body and the condition of renal function. Creatinine is one of the major components of human urine associated with muscle metabolism. Since the content of creatinine excreted into urine is relatively constant, it is used as an internal standard to normalize water variations. Moreover, the detection of creatinine concentration in urine is important for the renal clearance test, which can monitor the filtration function of kidney and health status. In more details, kidney failure can be imminent when the creatinine concentration in urine is high. A simple device and protocol for creatinine sensing in urine samples can be valuable for point-of-care applications. We reported quantitative analysis of creatinine in urine samples by using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) based SERS substrate. S-SERS technique enables label-free and multiplexed molecular sensing under dry condition, while NPGD provides a robust, controllable, and high-sensitivity SERS substrate. The performance of S-SERS with NGPDs is evaluated by the detection and quantification of pure creatinine and creatinine in artificial urine within physiologically relevant concentration ranges.

  14. An electrochemical pumping system for on-chip gradient generation.

    Xie, Jun; Miao, Yunan; Shih, Jason; He, Qing; Liu, Jun; Tai, Yu-Chong; Lee, Terry D

    2004-07-01

    Within the context of microfluidic systems, it has been difficult to devise pumping systems that can deliver adequate flow rates at high pressure for applications such as HPLC. An on-chip electrochemical pumping system based on electrolysis that offers certain advantages over designs that utilize electroosmotic driven flow has been fabricated and tested. The pump was fabricated on both silicon and glass substrates using photolithography. The electrolysis electrodes were formed from either platinum or gold, and SU8, an epoxy-based photoresist, was used to form the pump chambers. A glass cover plate and a poly(dimethylsiloxane) (PDMS) gasket were used to seal the chambers. Filling of the chambers was accomplished by using a syringe to inject liquid via filling ports, which were later sealed using a glass cover plate. The current supplied to the electrodes controlled the rate of gas formation and, thus, the resulting fluid flow rate. At low backpressures, flow rates >1 microL/min have been demonstrated using polymer electrospray nozzle, we have confirmed the successful generation of a solvent gradient via a mass spectrometer.

  15. A passive on-chip, superconducting circulator using rings of tunnel junctions

    Müller, Clemens; Guan, Shengwei; Vogt, Nicolas; Cole, Jared H.; Stace, Thomas M.

    2017-01-01

    We present the design of a passive, on-chip microwave circulator based on a ring of superconducting tunnel junctions. We investigate two distinct physical realisations, based on either Josephson junctions (JJ) or quantum phase slip elements (QPS), with microwave ports coupled either capacitively (JJ) or inductively (QPS) to the ring structure. A constant bias applied to the center of the ring provides the symmetry breaking (effective) magnetic field, and no microwave or rf bias is required. W...

  16. On-chip dual-comb source for spectroscopy.

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L; Lipson, Michal

    2018-03-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-μs acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz).

  17. Multimedia Terminal System-on-Chip Design and Simulation

    Barbieri Ivano

    2005-01-01

    Full Text Available This paper proposes a design approach based on integrated architectural and system-on-chip (SoC simulations. The main idea is to have an efficient framework for the design and the evaluation of multimedia terminals, allowing a fast system simulation with a definable degree of accuracy. The design approach includes the simulation of very long instruction word (VLIW digital signal processors (DSPs, the utilization of a device multiplexing the media streams, and the emulation of the real-time media acquisition. This methodology allows the evaluation of both the multimedia algorithm implementations and the hardware platform, giving feedback on the complete SoC including the interaction between modules and conflicts in accessing either the bus or shared resources. An instruction set architecture (ISA simulator and an SoC simulation environment compose the integrated framework. In order to validate this approach, the evaluation of an audio-video multiprocessor terminal is presented, and the complete simulation test results are reported.

  18. Hardware implementation of on -chip learning using re configurable FPGAS

    Kelash, H.M.; Sorour, H.S; Mahmoud, I.I.; Zaki, M; Haggag, S.S.

    2009-01-01

    The multilayer perceptron (MLP) is a neural network model that is being widely applied in the solving of diverse problems. A supervised training is necessary before the use of the neural network.A highly popular learning algorithm called back-propagation is used to train this neural network model. Once trained, the MLP can be used to solve classification problems. An interesting method to increase the performance of the model is by using hardware implementations. The hardware can do the arithmetical operations much faster than software. In this paper, a design and implementation of the sequential mode (stochastic mode) of backpropagation algorithm with on-chip learning using field programmable gate arrays (FPGA) is presented, a pipelined adaptation of the on-line back propagation algorithm (BP) is shown.The hardware implementation of forward stage, backward stage and update weight of backpropagation algorithm is also presented. This implementation is based on a SIMD parallel architecture of the forward propagation the diagnosis of the multi-purpose research reactor of Egypt accidents is used to test the proposed system

  19. A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides

    Pan, Yingcheng; Zhu, Jinglu; Wang, Xuan; Zhang, Han; Kang, Yan; Wu, Ting; Du, Yiping; Guo, Xiaoyu

    2015-01-01

    We have developed a simple, sensitive and practical substrate for surface enhanced Raman scattering (SERS). It consists of a column material that is obtained by modifying the surface of (glycidyl methacrylate)-co-(ethylene dimethacrylate) capillary monoliths with silver nanoparticles. This new SERS column substrate was applied to the determination of 4-mercaptopyridine (4-Mpy) and Rhodamine 6G (R6G) to give detection limits as low as 100 and 10 pM, respectively. The calculated enhancement factor is approximately 1.2 × 10 8 . This represents a substantial improvement over conventional colloidal substrates. The new substrate was applied to the determination of residues of the pesticide phosmet and gave a detection limit of 3 μg∙L −1 , with a linear response in the 3 to 1000 μg∙L −1 concentration range (R 2  = 0.995). Additionally, 0.2 mg∙kg −1 of phosmet on apples and oranges, and of 0.5 mg∙kg −1 on tea leaves were detectable via SERS using this column along with a simple extraction process. The above LODs are well below the tolerance level prescribed by National Standard of China. Thus, this simple method is highly efficient, sensitive, and affordable and introduces a SERS–based trace detection suitable for real-world applications, especially for the determination of pesticides. (author)

  20. Achieving optimal SERS through enhanced experimental design.

    Fisk, Heidi; Westley, Chloe; Turner, Nicholas J; Goodacre, Royston

    2016-01-01

    One of the current limitations surrounding surface-enhanced Raman scattering (SERS) is the perceived lack of reproducibility. SERS is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is analyte dependent, there is not a single set of SERS conditions that are universal. This means that experimental optimisation for optimum SERS response is vital. Most researchers optimise one factor at a time, where a single parameter is altered first before going onto optimise the next. This is a very inefficient way of searching the experimental landscape. In this review, we explore the use of more powerful multivariate approaches to SERS experimental optimisation based on design of experiments and evolutionary computational methods. We particularly focus on colloidal-based SERS rather than thin film preparations as a result of their popularity. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd.

  1. Core-shell magnetic nanoparticles for on-chip RF inductors

    Koh, Kisik

    2013-01-01

    FeNi3 based core-shell magnetic nanoparticles are demonstrated as the magnetic core material for on-chip, radio frequency (RF) inductors. FeNi3 nanoparticles with 50-150 nm in diameter with 15-20 nm-thick SiO2 coating are chemically synthesized and deposited on a planar inductor as the magnetic core to enhance both inductance (L) and quality factor (Q) of the inductor. Experimentally, the ferromagnetic resonant frequency of the on-chip inductors based on FeNi3 core-shell nanoparticles has been shown to be over several GHz. A post-CMOS process has been developed to integrate the magnetic nanoparticles to a planar inductor and inductance enhancements up to 50% of the original magnitude with slightly enhanced Q-factor up to 1 GHz have been achieved. © 2013 IEEE.

  2. Modeling, analysis and optimization of network-on-chip communication architectures

    Ogras, Umit Y

    2013-01-01

    Traditionally, design space exploration for Systems-on-Chip (SoCs) has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip and their performance continue to increase, the communication architecture plays a major role in the area, performance and energy consumption of the overall system. As a result, a shift from computation-based to communication-based design becomes mandatory. Towards this end, network-on-chip (NoC) communication architectures have emerged recently as a promising alternative to classical bus and point-to-point communication architectures. This book explores outstanding research problems related to modeling, analysis and optimization of NoC communication architectures. More precisely, we present novel design methodologies, software tools and FPGA prototypes to aid the design of application-specific NoCs.

  3. Designing network on-chip architectures in the nanoscale era

    Flich, Jose

    2010-01-01

    Going beyond isolated research ideas and design experiences, Designing Network On-Chip Architectures in the Nanoscale Era covers the foundations and design methods of network on-chip (NoC) technology. The contributors draw on their own lessons learned to provide strong practical guidance on various design issues.Exploring the design process of the network, the first part of the book focuses on basic aspects of switch architecture and design, topology selection, and routing implementation. In the second part, contributors discuss their experiences in the industry, offering a roadmap to recent p

  4. Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz

    Nafe, Mahmoud

    2015-01-01

    In this work, the use of specially patterned reflecting surfaces for improving on- chip antenna performance is investigated. By using a periodic metallic surface on top of a grounded substrate, the structure can mimic the behavior of a perfect mag- netic conductor, hence called Artificial Magnetic Conductor (AMC) surface. Unlike conventional ground plane reflecting surfaces, AMC surfaces generally enhance the radiation and impedance characteristics of close-by antennas. Based on this property, a ring-based AMC reflecting surface has been designed in the oxide layer for on-chip antennas operating at 94 GHz. Furthermore, a folded dipole antenna with its associ- ated planar feeding structures has been optimized and integrated with the developed ring-based AMC surface. The proposed design is then fabricated at KAUST clean- room facilities. Prototype characterization showed very promising results with good correlation to simulations, with the antenna exhibiting an impedance bandwidth of 10% (90-100 GHz) and peak gain of -1.4 dBi, which is the highest gain reported for on-chip antennas at this frequency band without the use of any external o↵-chip components or post-fabrication steps.

  5. 3D on-chip microscopy of optically cleared tissue

    Zhang, Yibo; Shin, Yoonjung; Sung, Kevin; Yang, Sam; Chen, Harrison; Wang, Hongda; Teng, Da; Rivenson, Yair; Kulkarni, Rajan P.; Ozcan, Aydogan

    2018-02-01

    Traditional pathology relies on tissue biopsy, micro-sectioning, immunohistochemistry and microscopic imaging, which are relatively expensive and labor-intensive, and therefore are less accessible in resource-limited areas. Low-cost tissue clearing techniques, such as the simplified CLARITY method (SCM), are promising to potentially reduce the cost of disease diagnosis by providing 3D imaging and phenotyping of thicker tissue samples with simpler preparation steps. However, the mainstream imaging approach for cleared tissue, fluorescence microscopy, suffers from high-cost, photobleaching and signal fading. As an alternative approach to fluorescence, here we demonstrate 3D imaging of SCMcleared tissue using on-chip holography, which is based on pixel-super-resolution and multi-height phase recovery algorithms to digitally compute the sample's amplitude and phase images at various z-slices/depths through the sample. The tissue clearing procedures and the lens-free imaging system were jointly optimized to find the best illumination wavelength, tissue thickness, staining solution pH, and the number of hologram heights to maximize the imaged tissue volume, minimize the amount of acquired data, while maintaining a high contrast-to-noise ratio for the imaged cells. After this optimization, we achieved 3D imaging of a 200-μm thick cleared mouse brain tissue over a field-of-view of based microscope (20× 0.75NA). Moreover, the lens-free microscope achieves an order-of-magnitude better data efficiency compared to its lens-based counterparts for volumetric imaging of samples. The presented low-cost and high-throughput lens-free tissue imaging technique enabled by CLARITY can be used in various biomedical applications in low-resource-settings.

  6. On-chip integration of a superconducting microwave circulator and a Josephson parametric amplifier

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Bradley A.; Kerckhoff, Joseph; Malnou, Maxime; Palken, D. A.; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; Lehnert, K. W.

    Recent progress in microwave amplification based on parametric processes in superconducting circuits has revolutionized the measurement of feeble microwave signals. These devices, which operate near the quantum limit, are routinely used in ultralow temperature cryostats to: readout superconducting qubits, search for axionic dark matter, and characterize astrophysical sensors. However, these amplifiers often require ferrite circulators to separate incoming and outgoing traveling waves. For this reason, measurement efficiency and scalability are limited. In order to facilitate the routing of quantum signals we have created a superconducting, on-chip microwave circulator without permanent magnets. We integrate our circulator on-chip with a Josephson parametric amplifier for the purpose of near quantum-limited directional amplification. In this talk I will present a design overview and preliminary measurements.

  7. Soft error evaluation and vulnerability analysis in Xilinx Zynq-7010 system-on chip

    Du, Xuecheng; He, Chaohui; Liu, Shuhuan, E-mail: liushuhuan@mail.xjtu.edu.cn; Zhang, Yao; Li, Yonghong; Xiong, Ceng; Tan, Pengkang

    2016-09-21

    Radiation-induced soft errors are an increasingly important threat to the reliability of modern electronic systems. In order to evaluate system-on chip's reliability and soft error, the fault tree analysis method was used in this work. The system fault tree was constructed based on Xilinx Zynq-7010 All Programmable SoC. Moreover, the soft error rates of different components in Zynq-7010 SoC were tested by americium-241 alpha radiation source. Furthermore, some parameters that used to evaluate the system's reliability and safety were calculated using Isograph Reliability Workbench 11.0, such as failure rate, unavailability and mean time to failure (MTTF). According to fault tree analysis for system-on chip, the critical blocks and system reliability were evaluated through the qualitative and quantitative analysis.

  8. Design of Networks-on-Chip for Real-Time Multi-Processor Systems-on-Chip

    Sparsø, Jens

    2012-01-01

    This paper addresses the design of networks-on-chips for use in multi-processor systems-on-chips - the hardware platforms used in embedded systems. These platforms typically have to guarantee real-time properties, and as the network is a shared resource, it has to provide service guarantees...... (bandwidth and/or latency) to different communication flows. The paper reviews some past work in this field and the lessons learned, and the paper discusses ongoing research conducted as part of the project "Time-predictable Multi-Core Architecture for Embedded Systems" (T-CREST), supported by the European...

  9. On-chip growth of semiconductor metal oxide nanowires for gas sensors: A review

    Chu Manh Hung

    2017-09-01

    Full Text Available Semiconductor metal oxide nanowires (SMO-NWs show great potential for novel gas sensor applications because of their distinct properties, such as a high surface area to volume aspect ratio, high crystallinity and perfect pathway for electron transfer (length of NW. SMO-NW sensors can be configured as resistors or field-effect transistors for gas detection and different configurations, such as a single NW, multiple NWs, and networked NW films, have been established. Surface-functionalizing NWs with catalyst elements and self-heating NWs provide additional advantages for highly selective and low-power consumption gas sensors. However, an appropriate design of SMO-NWs is of practical importance in enhancing the gas-sensing performance of SMO-NW sensors. The on-chip growth of SMO-NWs possesses many advantages which can thus be effectively used for the large-scale fabrication of SMO-NW sensors with improved gas response and stability. This review aims to provide up-to-date information on the on-chip fabrication of SnO2, ZnO, WO3, CuO, and other SMO-NW sensors. It also discusses a variety of promising approaches that help advance the on-chip fabrication of SMO-NW-based gas sensors and other NW-based devices.

  10. Development of a free-solution SERS-based assay for point-of-care oral cancer biomarker detection using DNA-conjugated gold nanoparticles

    Han, Sungyub; Locke, Andrea K.; Oaks, Luke A.; Cheng, Yi-Shing Lisa; Coté, Gerard L.

    2018-02-01

    It is estimated that the number of new cases of oral cancers worldwide is 529,000 and more than 300,000 deaths each year. The five-year survival rate remains about 50%, and the low survival rate is believed to be due to delayed detection. The primary detection method is through a comprehensive clinical examination by a dentist followed by a biopsy of suspicious lesions. Systematic review and meta-analysis have revealed that clinical examination alone may not be sufficient to cause the clinician to perform a biopsy or refer for biopsy for early detection of OSCC. Therefore, a non-invasive, point-of-Care (POC) detection with high sensitivity and specificity for early detection would be urgently needed, and using salivary biomarkers would be an ideal technology for it. S100 calcium binding protein P (S100P) mRNA presenting in saliva is a potential biomarker for detection of oral cancer. Further, surface enhanced Raman spectroscopy (SERS) has been shown to be a promising POC diagnostic technique. In this research, a SERS-based assay using oligonucleotide strains was developed for the sensitive and rapid detection of S100P. Gold nanoparticles (AuNPs) as a SERS substrate were used for the conjugation with one of two unique 24 base pair oligonucleotides, referred to as left and right DNA probes. A Raman reporter molecule, malachite green isothiocyanate (MGITC), was bound to left-probe-conjugated AuNPs. UV-vis spectroscopy was employed to monitor the conjugation of DNA probes to AuNPs. The hybridization of S100P target to DNA-conjugated AuNPs in sandwich-assay format was confirmed by Raman spectroscopy and shown to yield and R2 of 0.917 across the range of 0-200 nM and a limit of detection of 3 nM.

  11. Exploration within the Network-on-Chip Paradigm

    Wolkotte, P.T.

    2009-01-01

    A general purpose processor used to consist of a single processing core, which performed and controlled all tasks on the chip. Its functionality and maximum clock frequency grew steadily over the years. Due to the continuous increase of the number of transistors available on-chip and the operational

  12. Design of an on-chip reflectance map

    Terwisscha van Scheltinga, Jeroen; Smit, Jaap; Bosma, Marco

    1995-01-01

    A reflectance map design is described which uses a minimal amount of memory for the table, in order to be applicable as an on-chip shader. The shader is designed for use with the volumetric super resolution hardware, which performs shading at supersampled locations. However, the design may be used

  13. Nano lab-on-chip systems for biomedical and environmental ...

    In recent years, nano lab-on-chip (NLOC) has emerged as a powerful tool for biosensing and an active area of research particularly in DNA genetic and genetic related investigations. Compared with conventional sensing techniques, distinctive advantages of using NLOC for biomedicine and other related area include ...

  14. An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens.

    Jeslin J L Tan

    Full Text Available Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens.

  15. Octanol-assisted liposome assembly on chip

    Deshpande, S.R.; Caspi, Y.; Meijering, A.E.C.; Dekker, C.

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5–20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin

  16. On-chip steering of entangled photons in nonlinear photonic crystals.

    Leng, H Y; Yu, X Q; Gong, Y X; Xu, P; Xie, Z D; Jin, H; Zhang, C; Zhu, S N

    2011-08-16

    One promising technique for working toward practical photonic quantum technologies is to implement multiple operations on a monolithic chip, thereby improving stability, scalability and miniaturization. The on-chip spatial control of entangled photons will certainly benefit numerous applications, including quantum imaging, quantum lithography, quantum metrology and quantum computation. However, external optical elements are usually required to spatially control the entangled photons. Here we present the first experimental demonstration of on-chip spatial control of entangled photons, based on a domain-engineered nonlinear photonic crystal. We manipulate the entangled photons using the inherent properties of the crystal during the parametric downconversion, demonstrating two-photon focusing and beam-splitting from a periodically poled lithium tantalate crystal with a parabolic phase profile. These experimental results indicate that versatile and precise spatial control of entangled photons is achievable. Because they may be operated independent of any bulk optical elements, domain-engineered nonlinear photonic crystals may prove to be a valuable ingredient in on-chip integrated quantum optics.

  17. Towards a Generic and Adaptive System-On-Chip Controller for Space Exploration Instrumentation

    Iturbe, Xabier; Keymeulen, Didier; Yiu, Patrick; Berisford, Dan; Hand, Kevin; Carlson, Robert; Ozer, Emre

    2015-01-01

    This paper introduces one of the first efforts conducted at NASA’s Jet Propulsion Laboratory (JPL) to develop a generic System-on-Chip (SoC) platform to control science instruments that are proposed for future NASA missions. The SoC platform is named APEX-SoC, where APEX stands for Advanced Processor for space Exploration, and is based on a hybrid Xilinx Zynq that combines an FPGA and an ARM Cortex-A9 dual-core processor on a single chip. The Zynq implements a generic and customizable on-chip infrastructure that can be reused with a variety of instruments, and it has been coupled with a set of off-chip components that are necessary to deal with the different instruments. We have taken JPL’s Compositional InfraRed Imaging Spectrometer (CIRIS), which is proposed for NASA icy moons missions, as a use-case scenario to demonstrate that the entire data processing, control and interface of an instrument can be implemented on a single device using the on-chip infrastructure described in this paper. We show that the performance results achieved in this preliminary version of the instrumentation controller are sufficient to fulfill the science requirements demanded to the CIRIS instrument in future NASA missions, such as Europa.

  18. Design of a CMOS integrated on-chip oscilloscope for spin wave characterization

    Eugen Egel

    2017-05-01

    Full Text Available Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA. Then, it is down-converted by a mixer to Intermediate Frequency (IF. Finally, an Operational Amplifier (OpAmp brings the IF signal to higher voltages (50-300 mV. The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.

  19. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol

  20. SERS sensors for DVD platform

    Brøgger, Anna Line

    This Ph.D. thesis explores the engineering of a portable sensor system for detection of rare and small molecules. The Ph.D. project is part of the research project 'Multi-Sensor DVD platform' (MUSE), aiming to integrate different sensors on a rotating disc. The sensors are chosen to complement each...... other, creating more reliable and stable results for the end user. The rotating disc comprises microfluidic channels, which can be utilized for handling and manipulating liquid samples such as blood or water. The focus of this Ph.D. thesis, is on the integration of one specific sensor on a rotating disc....... The sensor is based upon surface enhanced Raman spectroscopy (SERS), which detects molecular vibrations. The aim of this thesis is to cover the different aspects of the sensor system. SERS substrates, consisting of nanopillars with gold or silver caps on top, have been fabricated by standard micro and nano...

  1. Security effectiveness review (SER)

    Kouprianova, I.; Ek, D.; Showalter, R.; Bergman, M.

    1998-01-01

    As part of the on-going DOE/Russian MPC and A activities at the Institute of Physics and Power Engineering (IPPE) and in order to provide a basis for planning MPC and A enhancements, an expedient method to review the effectiveness of the MPC and A system has been adopted. These reviews involve the identification of appropriate and cost-effective enhancements of facilities at IPPE. This effort requires a process that is thorough but far less intensive than a traditional vulnerability assessment. The SER results in a quick assessment of current and needed enhancements. The process requires preparation and coordination between US and Russian analysts before, during, and after information gathering at the facilities in order that the analysis is accurate, effective, and mutually agreeable. The goal of this paper is to discuss the SER process, including the objectives, time scale, and lessons learned at IPPE

  2. SERS Engineering Collaboration

    2012-06-01

    laser beam. In the second approach, a pulsed laser was used to texture a silicon wafer to form sharp features. Silver was evaporated onto the wafer...orders of magnitude larger than that measured on a gold nanoparticle array on a glass substrate. The largest SERS enhancement for a silver device was...surface plasmons," Yizhuo Chu and Kenneth B. Crozier, Optics Letters vol. 34, 244 (2009) K3. "Gold nanorings as substrates for surface-enhanced Raman

  3. Trace detection of tetrahydrocannabinol (THC) with a SERS-based capillary platform prepared by the in situ microwave synthesis of AgNPs.

    Yüksel, Sezin; Schwenke, Almut M; Soliveri, Guido; Ardizzone, Silvia; Weber, Karina; Cialla-May, Dana; Hoeppener, Stephanie; Schubert, Ulrich S; Popp, Jürgen

    2016-10-05

    In the present study, an ultra-sensitive and highly reproducible novel SERS-based capillary platform was developed and utilized for the trace detection of tetrahydrocannabinol (THC). The approach combines the advantages of microwave-assisted nanoparticle synthesis, plasmonics and capillary forces. By employing a microwave-assisted preparation method, glass capillaries were reproducibly coated with silver nanoparticles in a batch fabrication process that required a processing time of 3 min without needing to use any pre-surface modifications or add surfactants. The coated capillaries exhibited an excellent SERS activity with a high reproducibility and enabled the detection of low concentrations of target molecules. At the same time, only a small amount of analyte and a short and simple incubation process was required. The developed platform was applied to the spectroscopic characterization of tetrahydrocannabinol (THC) and its identification at concentration levels down to 1 nM. Thus, a highly efficient detection system for practical applications, e.g., in drug monitoring/detection, is introduced, which can be fabricated at low cost by using microwave-assisted batch synthesis techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Photochemical Decoration of Silver Nanocrystals on Magnetic MnFe2O4 Nanoparticles and Their Applications in Antibacterial Agents and SERS-Based Detection

    Huy, Le Thanh; Tam, Le Thi; Van Son, Tran; Cuong, Nguyen Duy; Nam, Man Hoai; Vinh, Le Khanh; Huy, Tran Quang; Ngo, Duc-The; Phan, Vu Ngoc; Le, Anh-Tuan

    2017-06-01

    In this study, multifunctional nanocomposites consisting of silver nanoparticles and manganese ferrite nanoparticles (Ag-MnFe2O4) were successfully synthesized using a two-step chemical process. The formation of Ag-MnFe2O4 nanocomposites were analyzed by transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy measurements. Noticeable antibacterial activity of the Ag-MnFe2O4 nanocomposites was demonstrated against two Gram-negative bacteria, Salmonella enteritidis and Klebsiella pneumoniae. A direct-drop diffusion method can be an effective way to investigate the antibacterial effects of nanocomposite samples. Interestingly, we also demonstrated the use of Ag-MnFe2O4 nanocomposites as a surface-enhanced Raman scattering (SERS) platform to detect and quantify trace amounts of organic dye in water solutions. The combination of Ag and MnFe2O4 nanoparticles opens opportunities for creating advantages such as targeted bactericidal delivery, recyclable capability, and sensitive SERS-based detection for advanced biomedicine and environmental monitoring applications.

  5. Scalable on-chip quantum state tomography

    Titchener, James G.; Gräfe, Markus; Heilmann, René; Solntsev, Alexander S.; Szameit, Alexander; Sukhorukov, Andrey A.

    2018-03-01

    Quantum information systems are on a path to vastly exceed the complexity of any classical device. The number of entangled qubits in quantum devices is rapidly increasing, and the information required to fully describe these systems scales exponentially with qubit number. This scaling is the key benefit of quantum systems, however it also presents a severe challenge. To characterize such systems typically requires an exponentially long sequence of different measurements, becoming highly resource demanding for large numbers of qubits. Here we propose and demonstrate a novel and scalable method for characterizing quantum systems based on expanding a multi-photon state to larger dimensionality. We establish that the complexity of this new measurement technique only scales linearly with the number of qubits, while providing a tomographically complete set of data without a need for reconfigurability. We experimentally demonstrate an integrated photonic chip capable of measuring two- and three-photon quantum states with statistical reconstruction fidelity of 99.71%.

  6. Octanol-assisted liposome assembly on chip

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.

  7. Aleación superficial de superaleaciones base níquel mediante láser

    Rodríguez, G. P.; García, I.; Damborenea, J. J.

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new tecnhology developments forcé to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 2...

  8. Fiber free plug and play on-chip scattering cytometer module – for implementation in microfluidic point of care devices

    Jensen, Thomas Glasdam; Kutter, Jörg Peter

    2010-01-01

    In this paper, we report on recent progress toward the development of a plug and play on-chip cytometer based on light scattering. By developing a device that does not depend on the critical alignment and cumbersome handling of fragile optical fibers, we approach a device that is suitable for non...

  9. On-chip Mach-Zehnder interferometer for OCT systems

    van Leeuwen, Ton G.; Akca, Imran B.; Angelou, Nikolaos; Weiss, Nicolas; Hoekman, Marcel; Leinse, Arne; Heideman, Rene G.

    2018-04-01

    By using integrated optics, it is possible to reduce the size and cost of a bulky optical coherence tomography (OCT) system. One of the OCT components that can be implemented on-chip is the interferometer. In this work, we present the design and characterization of a Mach-Zehnder interferometer consisting of the wavelength-independent splitters and an on-chip reference arm. The Si3N4 was chosen as the material platform as it can provide low losses while keeping the device size small. The device was characterized by using a home-built swept source OCT system. A sensitivity value of 83 dB, an axial resolution of 15.2 μm (in air) and a depth range of 2.5 mm (in air) were all obtained.

  10. Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing.

    Kong, Xianming; Li, Erwen; Squire, Kenny; Liu, Ye; Wu, Bo; Cheng, Li-Jing; Wang, Alan X

    2017-11-01

    Diatomite consists of fossilized remains of ancient diatoms and is a type of naturally abundant photonic crystal biosilica with multiple unique physical and chemical functionalities. In this paper, we explored the fluidic properties of diatomite as the matrix for on-chip chromatography and, simultaneously, the photonic crystal effects to enhance the plasmonic resonances of metallic nanoparticles for surface-enhanced Raman scattering (SERS) biosensing. The plasmonic nanoparticle-decorated diatomite biosilica provides a lab-on-a-chip capability to separate and detect small molecules from mixture samples with ultra-high detection sensitivity down to 1 ppm. We demonstrate the significant potential for biomedical applications by screening toxins in real biofluid, achieving simultaneous label-free biosensing of phenethylamine and miR21cDNA in human plasma with unprecedented sensitivity and specificity. To the best of our knowledge, this is the first time demonstration to detect target molecules from real biofluids by on-chip chromatography-SERS techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Community-based InterVentions to prevent serIous Complications (CIVIC) following spinal cord injury in Bangladesh

    Hossain, Mohammad S; Harvey, Lisa A; Rahman, Md Akhlasur

    2016-01-01

    model of community-based care designed to prevent and manage complications in people with SCI in Bangladesh. METHODS AND ANALYSIS: A pragmatic randomised controlled trial will be undertaken. 410 wheelchair-dependent people with recent SCI will be randomised to Intervention and Control groups shortly...... the University of Sydney, Australia. The study will be conducted in compliance with all stipulations of its protocol, the conditions of ethics committee approval, the NHMRC National Statement on Ethical Conduct in Human Research (2007), the Note for Guidance on Good Clinical Practice (CPMP/ICH-135....../95) and the Bangladesh Guidance on Clinical Trial Inspection (2011). The results of the trial will be disseminated through publications in peer-reviewed scientific journals and presentations at scientific conferences. TRIAL REGISTRATION NUMBERS: ACTRN12615000630516, U1111-1171-1876....

  12. On-chip Magnetic Separation and Cell Encapsulation in Droplets

    Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.

    2012-02-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.

  13. On-chip microsystems in silicon: opportunities and limitations

    Wolffenbuttel, R. F.

    1996-03-01

    Integrated on-chip micro-instrumentation systems in silicon are complete data acquisition systems on a single chip. This concept has appeared to be the ultimate solution in many applications, as it enables in principle the metamorphosis of a basic sensing element, affected with many shortcomings, into an on-chip data acquisition unit that provides an output digital data stream in a standard format not corrupted by sensor non-idealities. Market acceptance would be maximum, as no special knowledge about the internal operation is required, self-test and self-calibration can be included and the dimensions are not different from those of the integrated circuit. The various aspects that are relevant in estimating the constraints for successful implementation of the integrated silicon smart sensor will be outlined in comparison with the properties of more conventional sensor fabrication technologies. It will be shown that the acceptance of on-chip functional integration in an application depends primarily on the added value in terms of improved specification or functionality that the resulting device provides in that application. The economic viability is therefore decisive rather than the technological constraints. This is in contrast to the traditional technology push prevailing in sensor research over market pull mechanisms.

  14. An Energy-Efficient Reconfigurable Circuit Switched Network-on-Chip

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Rauwerda, G.K.; Smit, L.T.

    Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture for multi-tile System-on-Chip (SoC) architectures. The SoC architecture, including its run-time software, can replace inflexible ASICs for future ambient systems. These ambient systems have to be flexible as well as

  15. Microfluidic organ-on-chip technology for blood-brain barrier research

    van der Helm, Marieke Willemijn; van der Meer, Andries Dirk; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene

    2016-01-01

    Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and

  16. Review on SERS of Bacteria

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  17. High-Throughput Fabrication of Nanocone Substrates through Polymer Injection Moulding For SERS Analysis in Microfluidic Systems

    Viehrig, Marlitt; Matteucci, Marco; Thilsted, Anil H.

    analysis. Metal-capped silicon nanopillars, fabricated through a maskless ion etch, are state-of-the-art for on-chip SERS substrates. A dense cluster of high aspect ratio polymer nanocones was achieved by using high-throughput polymer injection moulding over a large area replicating a silicon nanopillar...... structure. Gold-capped polymer nanocones display similar SERS sensitivity as silicon nanopillars, while being easily integrable into a microfluidic chips....

  18. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G

    A surface enhanced Raman scattering (SERS) immunoassay for antibody detection in serum is described in the present work. The developed assay is conducted in solution and utilizes Au nanoparticles coated with the envelope (E) protein of West Nile Virus (WNV) as the SERS-active substrate and malachite...

  19. On-chip RF-to-optical transducer (Conference Presentation)

    Simonsen, Anders; Tsaturyan, Yeghishe; Seis, Yannick; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S.

    2016-04-01

    Recent advances in the fabrication of nano- and micromechanical elements enable the realization of high-quality mechanical resonators with masses so small that the forces from optical photons can have a significant impact on their motion. This facilitates a strong interaction between mechanical motion and light, or phonons and photons. This interaction is the corner stone of the field of optomechanics and allows, for example, for ultrasensitive detection and manipulation of mechanical motion using laser light. Remarkably, today these techniques can be extended into the quantum regime, in which fundamental fluctuations of light and mechanics govern the system's behavior. Micromechanical elements can also interact strongly with other physical systems, which is the central aspect of many micro-electro-mechanical based sensors. Micromechanical elements can therefore act as a bridge between these diverse systems, plus technologies that utilize them, and the mature toolbox of optical techniques that routinely operates at the quantum limit. In a previous work [1], we demonstrated such a bridge by realizing simultaneous coupling between an electronic LC circuit and a quantum-noise limited optical interferometer. The coupling was mediated by a mechanical oscillator forming a mechanically compliant capacitor biased with a DC voltage. The latter enhances the electromechanical interaction all the way to the strong coupling regime. That scheme allowed optical detection of electronic signals with effective noise temperatures far below the actual temperature of the mechanical element. On-chip integration of the electrical, mechanical and optical elements is necessary for an implementation of the transduction scheme that is viable for commercial applications. Reliable assembly of a strongly coupled electromechanical device, and inclusion of an optical cavity for enhanced optical readout, are key features of the new platform. Both can be achieved with standard cleanroom fabrication

  20. 60 GHz system-on-chip (SoC) with built-in memory and an on-chip antenna

    Ghaffar, Farhan A.; Arsalan, Muhammad; Cheema, Hammad; Salama, Khaled N.; Shamim, Atif

    2014-01-01

    A novel 60 GHz transmitter SoC with an on-chip antenna and integrated memory in CMOS 65 nm technology is presented in this paper. This highly integrated transmitter design can support a data rate of 2 GBPS with a transmission range of 1 m. The transmitter consists of a fundamental frequency 60 GHz PLL which covers the complete ISM band. The modulator following the PLL can support both BPSK and OOK modulation schemes. Both stored data on the integrated memory or directly from an external source can be transmitted. A tapered slot on chip antenna is integrated with the power amplifier to complete the front end of the transmitter design. Size of the complete transmitter with on-chip antenna is only 1.96 mm × 1.96 mm. The core circuits consume less than 100 mW of power. The high data rate capability of the design makes it extremely suitable for bandwidth hungry applications such as unencrypted HD video streaming and transmission.

  1. 60 GHz system-on-chip (SoC) with built-in memory and an on-chip antenna

    Ghaffar, Farhan A.

    2014-04-01

    A novel 60 GHz transmitter SoC with an on-chip antenna and integrated memory in CMOS 65 nm technology is presented in this paper. This highly integrated transmitter design can support a data rate of 2 GBPS with a transmission range of 1 m. The transmitter consists of a fundamental frequency 60 GHz PLL which covers the complete ISM band. The modulator following the PLL can support both BPSK and OOK modulation schemes. Both stored data on the integrated memory or directly from an external source can be transmitted. A tapered slot on chip antenna is integrated with the power amplifier to complete the front end of the transmitter design. Size of the complete transmitter with on-chip antenna is only 1.96 mm × 1.96 mm. The core circuits consume less than 100 mW of power. The high data rate capability of the design makes it extremely suitable for bandwidth hungry applications such as unencrypted HD video streaming and transmission.

  2. An Efficient Radio Access Control Mechanism for Wireless Network-On-Chip Architectures

    Maurizio Palesi

    2015-03-01

    Full Text Available Modern systems-on-chip (SoCs today contain hundreds of cores, and this number is predicted to reach the thousands by the year 2020. As the number of communicating elements increases, there is a need for an efficient, scalable and reliable communication infrastructure. As technology geometries shrink to the deep submicron regime, however, the communication delay and power consumption of global interconnections become the major bottleneck. The network-on-chip (NoC design paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues, such as the performance limitations of long interconnects and integration of large number of cores on a chip. Recently, new communication technologies based on the NoC concept have emerged with the aim of improving the scalability limitations of conventional NoC-based architectures. Among them, wireless NoCs (WiNoCs use the radio medium for reducing the performance and energy penalties of long-range and multi-hop communications. As the radio medium can be accessed by a single transmitter at a time, a radio access control mechanism (RACM is needed. In this paper, we present a novel RACM, which allows one to improve both the performance and energy figures of the WiNoC. Experiments, carried out on both synthetic and real traffic scenarios, have shown the effectiveness of the proposed RACM. On average, a 30% reduction in communication delay and a 25% energy savings have been observed when the proposed RACM is applied to a known WiNoC architecture.

  3. Quiero ser citado

    Leonardo Romero

    2011-05-01

    Full Text Available Después de varios años de ser editor, muchos de mis jefes confunden la revista con el editor, y es común oír cosas como “conferencia a cargo de la revista” o en conversaciones se dirijan a mí para decir “y porque no te citan”, refiriéndose al motivo porqué la Rev peru biol. no es citada por otros trabajos. Aprovechando ese desquicio, en los siguientes párrafos encarnare a la revista y al editor, en la fusión mágica en la que algunos de mis jefes me imaginan.

  4. A simple clockless Network-on-Chip for a commercial audio DSP chip

    Stensgaard, Mikkel Bystrup; Bjerregaard, Tobias; Sparsø, Jens

    2006-01-01

    We design a very small, packet-switched, clockless Network-on-Chip (NoC) as a replacement for the existing crossbar-based communication infrastructure in a commercial audio DSP chip. Both solutions are laid out in a 0.18 um process, and compared in terms of area, power consumption and routing...... to the existing crossbar, it allows all blocks to communicate. The total wire length is decreased by 22% which eases the layout process and makes the design less prone to routing congestion. Not least, the communicating blocks are decoupled by means of the NoC, providing a Globally-Asynchronous, Locally...

  5. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  6. Interfacing Hardware Accelerators to a Time-Division Multiplexing Network-on-Chip

    Pezzarossa, Luca; Sørensen, Rasmus Bo; Schoeberl, Martin

    2015-01-01

    This paper addresses the integration of stateless hardware accelerators into time-predictable multi-core platforms based on time-division multiplexing networks-on-chip. Stateless hardware accelerators, like floating-point units, are typically attached as co-processors to individual processors in ...... implementation. The design evaluation is carried out using the open source T-CREST multi-core platform implemented on an Altera Cyclone IV FPGA. The size of the proposed design, including a floating-point accelerator, is about two-thirds of a processor....

  7. A Lab-on-Chip Design for Miniature Autonomous Bio-Chemoprospecting Planetary Rovers

    Santoli, S.

    The performance of the so-called ` Lab-on-Chip ' devices, featuring micrometre size components and employed at present for carrying out in a very fast and economic way the extremely high number of sequence determinations required in genomic analyses, can be largely improved as to further size reduction, decrease of power consumption and reaction efficiency through development of nanofluidics and of nano-to-micro inte- grated systems. As is shown, such new technologies would lead to robotic, fully autonomous, microwatt consumption and complete ` laboratory on a chip ' units for accurate, fast and cost-effective astrobiological and planetary exploration missions. The theory and the manufacturing technologies for the ` active chip ' of a miniature bio/chemoprospecting planetary rover working on micro- and nanofluidics are investigated. The chip would include micro- and nanoreactors, integrated MEMS (MicroElectroMechanical System) components, nanoelectronics and an intracavity nanolaser for highly accurate and fast chemical analysis as an application of such recently introduced solid state devices. Nano-reactors would be able to strongly speed up reaction kinetics as a result of increased frequency of reactive collisions. The reaction dynamics may also be altered with respect to standard macroscopic reactors. A built-in miniature telemetering unit would connect a network of other similar rovers and a central, ground-based or orbiting control unit for data collection and transmission to an Earth-based unit through a powerful antenna. The development of the ` Lab-on-Chip ' concept for space applications would affect the economy of space exploration missions, as the rover's ` Lab-on-Chip ' development would link space missions with the ever growing terrestrial market and business concerning such devices, largely employed in modern genomics and bioinformatics, so that it would allow the recoupment of space mission costs.

  8. A VLSI System-on-Chip for Particle Detectors

    AUTHOR|(CDS)2078019

    In this thesis I present a System-on-Chip (SoC) I designed to oer a self- contained, compact data acquisition platform for micromegas detector mon- itoring. I carried on my work within the RD-51 collab oration of CERN. With a companion ADC, my architecture is capable to acquire the signal from a detector electro de, pro cess the data and p erform monitoring tests. The SoC is built around on a custom 8-bit micropro cessor with internal mem- ory resources and emb eds the p eripherals to b e interf...

  9. Custom Topology Generation for Network-on-Chip

    Stuart, Matthias Bo; Sparsø, Jens

    2007-01-01

    This paper compares simulated annealing and tabu search for generating custom topologies for applications with periodic behaviour executing on a network-on-chip. The approach differs from previous work by starting from a fixed mapping of IP-cores to routers and performing design space exploration...... around an initial topology. The tabu search has been modified from its normally encountered form to allow easier escaping from local minima. A number of synthetic benchmarks are used for tuning the parameters of both heuristics and for testing the quality of the solutions each heuristic produces...

  10. On-chip photonic interconnects a computer architect's perspective

    Nitta, Christopher J; Akella, Venkatesh

    2013-01-01

    As the number of cores on a chip continues to climb, architects will need to address both bandwidth and power consumption issues related to the interconnection network. Electrical interconnects are not likely to scale well to a large number of processors for energy efficiency reasons, and the problem is compounded by the fact that there is a fixed total power budget for a die, dictated by the amount of heat that can be dissipated without special (and expensive) cooling and packaging techniques. Thus, there is a need to seek alternatives to electrical signaling for on-chip interconnection appli

  11. System on chip module configured for event-driven architecture

    Robbins, Kevin; Brady, Charles E.; Ashlock, Tad A.

    2017-10-17

    A system on chip (SoC) module is described herein, wherein the SoC modules comprise a processor subsystem and a hardware logic subsystem. The processor subsystem and hardware logic subsystem are in communication with one another, and transmit event messages between one another. The processor subsystem executes software actors, while the hardware logic subsystem includes hardware actors, the software actors and hardware actors conform to an event-driven architecture, such that the software actors receive and generate event messages and the hardware actors receive and generate event messages.

  12. Advancing Software Development for a Multiprocessor System-on-Chip

    Stephen Bique

    2007-06-01

    Full Text Available A low-level language is the right tool to develop applications for some embedded systems. Notwithstanding, a high-level language provides a proper environment to develop the programming tools. The target device is a system-on-chip consisting of an array of processors with only local communication. Applications include typical streaming applications for digital signal processing. We describe the hardware model and stress the advantages of a flexible device. We introduce IDEA, a graphical integrated development environment for an array. A proper foundation for software development is a UML and standard programming abstractions in object-oriented languages.

  13. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-30

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.

  14. Aprendendo a ser psicoterapeuta

    Elizabeth Amelio Faleiros

    Full Text Available Este estudo investiga, na perspectiva de Jacob Levy Moreno, a concepção que alunos de Psicologia têm sobre o que é ser psicoterapeuta, quais elementos são necessários para o desenvolvimento dessa tarefa e os fatores impeditivos para realizá-la. Propõe formas de soluções para o desempenho daquela função, favorecendo a reflexão sobre a importância dessa tarefa e a responsabilidade do profissional junto ao paciente. A metodologia utilizada é a qualitativa, pois esta permite abordar dimensões da subjetividade dos sujeitos. Os resultados revelam que os alunos possuem em sua concepção os alicerces básicos, cujos indicadores são apontados por Moreno e por outros autores, percebem os requisitos básicos que constituem a essência do papel de terapeuta, evidenciam críticas realistas sobre os fatores limitadores e sugerem ações pedagógicas para minimizá-los.

  15. A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array

    Shi, Guochao; Wang, Mingli; Zhu, Yanying; Shen, Lin; Wang, Yuhong; Ma, Wanli; Chen, Yuee; Li, Ruifeng

    2018-04-01

    In this work, we presented an eco-friendly and low-cost method to fabricate a kind of flexible and stable Au nanoparticles/graphene oxide/cicada wing (AuNPs/GO/CW) substrate. By controlling the ratio of reactants, the optimum SERS substrate with average AuNPs size of 65 nm was obtained. The Raman enhancement factor for rhodamine 6G (R6G) was 1.08 ×106 and the limit of detection (LOD) was as low as 10-8 M. After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. In order to better understand the experimental results, the 3D finite-different time-domain simulation was used to simulate the AuNPs/GO/CW-1 (the diameter of the AuNPs was 65 nm) to further investigate the SERS enhancement effect. More importantly, the AuNPs/GO/CW-1 substrates not only can provide strong enhancement factors but also can be stable and reproducible. This SERS substrates owned a good stability for the SERS intensity which was reduced only by 25% after the aging time of 60 days and the relative standard deviation was lower than 20%, revealing excellent uniformity and reproducibility. Our positive findings can pave a new way to optimize the application of SERS substrate as well as provide more SERS platforms for quantitative detection of organic contaminants vestige, which makes it very promising in the trace detection of biological molecules.

  16. Network Partitioning Domain Knowledge Multiobjective Application Mapping for Large-Scale Network-on-Chip

    Yin Zhen Tei

    2014-01-01

    Full Text Available This paper proposes a multiobjective application mapping technique targeted for large-scale network-on-chip (NoC. As the number of intellectual property (IP cores in multiprocessor system-on-chip (MPSoC increases, NoC application mapping to find optimum core-to-topology mapping becomes more challenging. Besides, the conflicting cost and performance trade-off makes multiobjective application mapping techniques even more complex. This paper proposes an application mapping technique that incorporates domain knowledge into genetic algorithm (GA. The initial population of GA is initialized with network partitioning (NP while the crossover operator is guided with knowledge on communication demands. NP reduces the large-scale application mapping complexity and provides GA with a potential mapping search space. The proposed genetic operator is compared with state-of-the-art genetic operators in terms of solution quality. In this work, multiobjective optimization of energy and thermal-balance is considered. Through simulation, knowledge-based initial mapping shows significant improvement in Pareto front compared to random initial mapping that is widely used. The proposed knowledge-based crossover also shows better Pareto front compared to state-of-the-art knowledge-based crossover.

  17. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  18. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  19. SERS-based inverse molecular sentinel (iMS) nanoprobes for multiplexed detection of microRNA cancer biomarkers in biological samples

    Crawford, Bridget M.; Wang, Hsin-Neng; Fales, Andrew M.; Bowie, Michelle L.; Seewaldt, Victoria L.; Vo-Dinh, Tuan

    2017-02-01

    The development of sensitive and selective biosensing techniques is of great interest for clinical diagnostics. Here, we describe the development and application of a surface enhanced Raman scattering (SERS) sensing technology, referred to as "inverse Molecular Sentinel (iMS)" nanoprobes, for the detection of nucleic acid biomarkers in biological samples. This iMS nanoprobe involves the use of plasmonic-active nanostars as the sensing platform for a homogenous assay for multiplexed detection of nucleic acid biomarkers, including DNA, RNA and microRNA (miRNA). The "OFF-to-ON" signal switch is based on a non-enzymatic strand-displacement process and the conformational change of stem-loop (hairpin) oligonucleotide probes upon target binding. Here, we demonstrate the development of iMS nanoprobes for the detection of DNA sequences as well as a modified design of the nanoprobe for the detection of short (22-nt) microRNA sequences. The application of iMS nanoprobes to detect miRNAs in real biological samples was performed with total small RNA extracted from breast cancer cell lines. The multiplex capability of the iMS technique was demonstrated using a mixture of the two differently labeled nanoprobes to detect miR-21 and miR-34a miRNA biomarkers for breast cancer. The results of this study demonstrate the feasibility of applying the iMS technique for multiplexed detection of nucleic acid biomarkers, including short miRNAs molecules.

  20. Self-powered integrated systems-on-chip (energy chip)

    Hussain, Muhammad Mustafa

    2010-04-23

    In today\\'s world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  1. 3D Printing of Organs-On-Chips

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-01

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms. PMID:28952489

  2. 3D Printing of Organs-On-Chips.

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-25

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  3. 3D Printing of Organs-On-Chips

    Hee-Gyeong Yi

    2017-01-01

    Full Text Available Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  4. Self-powered integrated systems-on-chip (energy chip)

    Hussain, M. M.; Fahad, H.; Rojas, J.; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.

    2010-04-01

    In today's world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  5. On-chip enucleation of an oocyte by untethered microrobots

    Ichikawa, Akihiko; Sakuma, Shinya; Sugita, Masakuni; Shoda, Tatsuro; Tamakoshi, Takahiro; Arai, Fumihito; Akagi, Satoshi

    2014-01-01

    We propose a novel on-chip enucleation of an oocyte with zona pellucida by using a combination of untethered microrobots. To achieve enucleation within the closed space of a microfluidic chip, two microrobots, a microknife and a microgripper were integrated into the microfluidic chip. These microrobots were actuated by an external magnetic force produced by permanent magnets placed on the robotic stage. The tip of the microknife was designed by considering the biological geometric feature of an oocyte, i.e. the oocyte has a polar body in maturation stage II. Moreover, the microknife was fabricated by using grayscale lithography, which allows fabrication of three-dimensional microstructures. The microgripper has a gripping function that is independent of the driving mechanism. On-chip enucleation was demonstrated, and the enucleated oocytes are spherical, indicating that the cell membrane of the oocytes remained intact. To confirm successful enucleation using this method, we investigated the viability of oocytes after enucleation. The results show that the production rate, i.e. the ratio between the number of oocytes that reach the blastocyst stage and the number of bovine oocytes after nucleus transfer, is 100%. The technique will contribute to complex cell manipulation such as cell surgery in lab-on-a-chip devices. (paper)

  6. SERS-Active Nanoinjector for Intracellular Spectroscopy

    Vitol, Elina; Orynbayeva, Zulfiya; Bouchard, Michael; Azizkhan-Clifford, Jane; Friedman, Gary; Gogotsi, Yury

    2009-03-01

    We developed a multifunctional nanopipette which allows simultaneous cell injection and intacellular surface-enhanced Raman spectroscopy (SERS) analysis. SERS spectra contain the characteristic frequencies of molecular bond vibrations. This is a unique method for studying cell biochemistry and physiology on a single organelle level. Unlike the fluorescence spectroscopy, it does not require any specific staining. The principle of SERS is based on very large electromagnetic field enhancement localized around a nano-rough metallic surface. Gold colloids are widely used SERS substrates. Previously, the colloidal nanoparticles were introduced into a cell by the mechanism of endocytosis. The disadvantage of this method is the uncontrollable aggregation and distribution of gold nanoparticles inside a cell which causes a significant uncertainty in the origin of the acquired data. At the same time, the nanoparticle uptake is irreversible. We present a SERS-active nanoinjector, coated with gold nanoparticles, which enables selective signal acquisition from any point-of-interest inside a cell. The nanoinjector provides a highly localized SERS signal with sub-nanometer resolution in real time.

  7. Fully On-chip High Q Inductors Based on Microtechnologies

    Kriyang SHAH

    2010-04-01

    Full Text Available Wireless biosensor networks (WBSNs collect information about biological responses and process it using scattered battery-power sensor nodes. Such nodes demand ultra low-power consumption for longer operating time. Ultra Wide Band (UWB is a potential solution for WBSNs due to its advantage in low power consumption at reasonable data rate. However, such UBW technology requires high quality (Q factor passive components. This paper presents detailed analysis, design and optimization of physical parameters of silicon-on-sapphire (SOS and micro-electro-mechanical-systems (MEMS inductors for application in UWB transceivers. Results showed that the 1.5 nH SOS inductor achieved Q factor of 111 and MEMS inductor achieved Q factor of 45 at 4 GHz frequency. The voltage controlled oscillator (VCO designed with SOS inductor achieved more than 10 dBc/Hz reduction in phase noise and consumed half the power compared to VCO with MEMS inductor. Such low power VCO will improve battery life of a UWB wireless sensor node.

  8. Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz

    Nafe, Mahmoud

    2015-08-04

    Nowadays, there is a growing demand for high frequency-bandwidth mm-wave (30-300 GHz) electronic wireless transceiver systems to support applications such as high data-rate wireless communication and high resolution imaging. Such mm-wave systems are becoming more feasible due to the extreme transistor downscaling in silicon-based integrated circuits, which enabled densely-integrated high-speed elec- tronics operating up to more than 100 GHz with low fabrication cost. To further enhance system integrability, it is required to implement all wireless system compo- nents on the chip. Presently, the last major barrier to true System-on-Chip (SoC) realization is the antenna implementation on the silicon chip. Although at mm-wave frequencies the antenna size becomes small enough to fit on chip, the antenna performance is greatly deteriorated due the high conductivity and high relative permittivity of the silicon substrate. The negative e↵ects of the silicon substrate could be avoided by using a metallic reflecting surface on top of silicon, which e↵ectively isolates the antenna from the silicon. However, this approach has the shortcoming of having to implement the antenna on the usually very thin silicon oxide layer of a typical CMOS fabrication process (10’s of μm). This forces the antenna to be in a very close proximity (less than one hundredth of a wavelength) to the reflecting surface. In this regime, the use of conventional metallic reflecting surface for silicon shielding has severe e↵ects on the antenna performance as it tends to reduce the antenna radiation resistance resulting in most of the energy being absorbed rather than radiated. In this work, the use of specially patterned reflecting surfaces for improving on- chip antenna performance is investigated. By using a periodic metallic surface on top of a grounded substrate, the structure can mimic the behavior of a perfect mag- netic conductor, hence called Artificial Magnetic Conductor (AMC) surface

  9. Marker Pen Lithography for Flexible and Curvilinear On-Chip Energy Storage

    Jiang, Qiu

    2015-07-14

    On-chip energy storage using microsupercapacitors can serve the dual role of supplementing batteries for pulse power delivery, and replacement of bulky electrolytic capacitors in ac-line filtering applications. Despite complexity and processing costs, microfabrication techniques are being employed in fabricating a great variety of microsupercapacitor devices. Here, a simple, cost-effective, and versatile strategy is proposed to fabricate flexible and curvilinear microsupercapacitors (MSCs). The protocol involves writing sacrificial ink patterns using commercial marker pens on rigid, flexible, and curvilinear substrates. It is shown that this process can be used in both lift-off and etching modes, and the possibility of multistack design of active materials using simple pen lithography is demonstrated. As a prototype, this method is used to produce conducting polymer MSCs involving both poly(3,4-ethylenedioxythiophene), polyaniline, and metal oxide (MnO2) electrode materials. Typical values of energy density in the range of 5-11 mWh cm-3 at power densities of 1-6 W cm-3 are achieved, which is comparable to thin film batteries and superior to the carbon and metal oxide based microsupercapacitors reported in the literature. The simplicity and broad scope of this innovative strategy can open up new avenues for easy and scalable fabrication of a wide variety of on-chip energy storage devices. © 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.

  10. Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light

    Daloglu, Mustafa Ugur

    2017-03-09

    Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.

  11. DANoC: An Efficient Algorithm and Hardware Codesign of Deep Neural Networks on Chip.

    Zhou, Xichuan; Li, Shengli; Tang, Fang; Hu, Shengdong; Lin, Zhi; Zhang, Lei

    2017-07-18

    Deep neural networks (NNs) are the state-of-the-art models for understanding the content of images and videos. However, implementing deep NNs in embedded systems is a challenging task, e.g., a typical deep belief network could exhaust gigabytes of memory and result in bandwidth and computational bottlenecks. To address this challenge, this paper presents an algorithm and hardware codesign for efficient deep neural computation. A hardware-oriented deep learning algorithm, named the deep adaptive network, is proposed to explore the sparsity of neural connections. By adaptively removing the majority of neural connections and robustly representing the reserved connections using binary integers, the proposed algorithm could save up to 99.9% memory utility and computational resources without undermining classification accuracy. An efficient sparse-mapping-memory-based hardware architecture is proposed to fully take advantage of the algorithmic optimization. Different from traditional Von Neumann architecture, the deep-adaptive network on chip (DANoC) brings communication and computation in close proximity to avoid power-hungry parameter transfers between on-board memory and on-chip computational units. Experiments over different image classification benchmarks show that the DANoC system achieves competitively high accuracy and efficiency comparing with the state-of-the-art approaches.

  12. Marker Pen Lithography for Flexible and Curvilinear On-Chip Energy Storage

    Jiang, Qiu; Kurra, Narendra; Alshareef, Husam N.

    2015-01-01

    On-chip energy storage using microsupercapacitors can serve the dual role of supplementing batteries for pulse power delivery, and replacement of bulky electrolytic capacitors in ac-line filtering applications. Despite complexity and processing costs, microfabrication techniques are being employed in fabricating a great variety of microsupercapacitor devices. Here, a simple, cost-effective, and versatile strategy is proposed to fabricate flexible and curvilinear microsupercapacitors (MSCs). The protocol involves writing sacrificial ink patterns using commercial marker pens on rigid, flexible, and curvilinear substrates. It is shown that this process can be used in both lift-off and etching modes, and the possibility of multistack design of active materials using simple pen lithography is demonstrated. As a prototype, this method is used to produce conducting polymer MSCs involving both poly(3,4-ethylenedioxythiophene), polyaniline, and metal oxide (MnO2) electrode materials. Typical values of energy density in the range of 5-11 mWh cm-3 at power densities of 1-6 W cm-3 are achieved, which is comparable to thin film batteries and superior to the carbon and metal oxide based microsupercapacitors reported in the literature. The simplicity and broad scope of this innovative strategy can open up new avenues for easy and scalable fabrication of a wide variety of on-chip energy storage devices. © 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.

  13. Improved color metrics in solid-state lighting via utilization of on-chip quantum dots

    Mangum, Benjamin D.; Landes, Tiemo S.; Theobald, Brian R.; Kurtin, Juanita N.

    2017-02-01

    While Quantum Dots (QDs) have found commercial success in display applications, there are currently no widely available solid state lighting products making use of QD nanotechnology. In order to have real-world success in today's lighting market, QDs must be capable of being placed in on-chip configurations, as remote phosphor configurations are typically much more expensive. Here we demonstrate solid-state lighting devices made with on-chip QDs. These devices show robust reliability under both dry and wet high stress conditions. High color quality lighting metrics can easily be achieved using these narrow, tunable QD downconverters: CRI values of Ra > 90 as well as R9 values > 80 are readily available when combining QDs with green phosphors. Furthermore, we show that QDs afford a 15% increase in overall efficiency compared to traditional phosphor downconverted SSL devices. The fundamental limit of QD linewidth is examined through single particle QD emission studies. Using standard Cd-based QD synthesis, it is found that single particle linewidths of 20 nm FWHM represent a lower limit to the narrowness of QD emission in the near term.

  14. Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light.

    Daloglu, Mustafa Ugur; Ray, Aniruddha; Gorocs, Zoltan; Xiong, Matthew; Malik, Ravinder; Bitan, Gal; McLeod, Euan; Ozcan, Aydogan

    2017-03-09

    Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm 2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.

  15. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system

    Choi, Jin-Ha; Lee, Jaewon; Shin, Woojung; Choi, Jeong-Woo; Kim, Hyun Jung

    2016-10-01

    Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D organoid models. However, a lack of experimental models that have strong human physiological relevance has hampered accurate validation of the safety and functionality of NPs. Alternatively, biomimetic human "Organs-on-Chips" microphysiological systems have recapitulated the mechanically dynamic 3D tissue interface of human organ microenvironment, in which the transport, cytotoxicity, biocompatibility, and therapeutic efficacy of NPs and their conjugates may be more accurately validated. Finally, integration of NP-guided diagnostic detection and targeted nanotherapeutics in conjunction with human organs-on-chips can provide a novel avenue to accelerate the NP-based drug development process as well as the rapid detection of cellular secretomes associated with pathophysiological processes.

  16. Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO{sub 2} inverse opals

    Ankudze, Bright; Philip, Anish [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Pakkanen, Tuula T., E-mail: Tuula.Pakkanen@uef.fi [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Matikainen, Antti; Vahimaa, Pasi [Institute of Photonics, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland)

    2016-11-30

    Highlights: • SERS substrates prepared by infiltration of nanoparticles into SiO{sub 2} inverse opal. • The SERS substrate gives an enhancement factor of 10{sup 7} for 4-aminothiophenol. • The sensitivity of the substrate is mainly attributed to gold nanoparticle clusters. - Abstract: SiO{sub 2} inverse opal (IO) films with embedded gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) application are reported. SiO{sub 2} IO films were loaded with AuNPs by a simple infiltration in a single cycle to form Au-SiO{sub 2} IOs. The optical property and the morphology of the Au-SiO{sub 2} IO substrates were characterized; it was observed that they retained the Bragg diffraction of SiO{sub 2} IO and the localized surface plasmon resonance (LSPR) of AuNPs. The SERS property of the Au-SiO{sub 2} IO substrates were studied with methylene blue (MB) and 4-aminothiophenol (4-ATP). The SERS enhancement factors were 10{sup 7} and 10{sup 6} for 4-ATP and MB, respectively. A low detection limit of 10{sup −10} M for 4-ATP was also obtained with the Au-SiO{sub 2} IO substrate. A relative standard deviation of 18.5% for the Raman signals intensity at 1077 cm{sup −1} for 4-ATP shows that the Au-SiO{sub 2} IO substrates have good signal reproducibility. The results of this study indicate that the Au-SiO{sub 2} IO substrates can be used in sensing and SERS applications.

  17. Synthesis of on-chip control circuits for mVLSI biochips

    Potluri, Seetal; Schneider, Alexander Rüdiger; Hørslev-Petersen, Martin

    2017-01-01

    them to laboratory environments. To address this issue, researchers have proposed methods to reduce the number of offchip pressure sources, through integration of on-chip pneumatic control logic circuits fabricated using three-layer monolithic membrane valve technology. Traditionally, mVLSI biochip......-chip control circuit design and (iii) the integration of on-chip control in the placement and routing design tasks. In this paper we present a design methodology for logic synthesis and physical synthesis of mVLSI biochips that use on-chip control. We show how the proposed methodology can be successfully...... applied to generate biochip layouts with integrated on-chip pneumatic control....

  18. Lab-on-chip components for molecular detection

    Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    We successfully fabricated Lab on chip components and integrated for possible use in biomedical application. The sensor was fabricated by using conventional photolithography method integrated with PDMS micro channels for smooth delivery of sample to the sensing domain. The sensor was silanized and aminated with 3-Aminopropyl triethoxysilane (APTES) to functionalize the surface with biomolecules and create molecular binding chemistry. The resulting Si-O-Si- components were functionalized with oligonucleotides probe of HPV, which interacted with the single stranded HPV DNA target to create a field across on the device. The fabrication, immobilization and hybridization processes were characterized with current voltage (I-V) characterization (KEITHLEY, 6487). The sensor show selectivity for the HPV DNA target in a linear range from concentration 0.1 nM to 1 µM. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screening in clinical diagnosis.

  19. On-chip RF-to-optical transducer

    Simonsen, Anders; Tsaturyan, Yeghishe; Seis, Yannick

    2016-01-01

    these diverse systems, plus technologies that utilize them, and the mature toolbox of optical techniques that routinely operates at the quantum limit. In a previous work [1], we demonstrated such a bridge by realizing simultaneous coupling between an electronic LC circuit and a quantum-noise limited optical...... noise temperatures far below the actual temperature of the mechanical element. On-chip integration of the electrical, mechanical and optical elements is necessary for an implementation of the transduction scheme that is viable for commercial applications. Reliable assembly of a strongly coupled...... electromechanical device, and inclusion of an optical cavity for enhanced optical readout, are key features of the new platform. Both can be achieved with standard cleanroom fabrication techniques. We will furthermore present ongoing work to couple our transducer to an RF or microwave antenna, for low...

  20. Cache-aware network-on-chip for chip multiprocessors

    Tatas, Konstantinos; Kyriacou, Costas; Dekoulis, George; Demetriou, Demetris; Avraam, Costas; Christou, Anastasia

    2009-05-01

    This paper presents the hardware prototype of a Network-on-Chip (NoC) for a chip multiprocessor that provides support for cache coherence, cache prefetching and cache-aware thread scheduling. A NoC with support to these cache related mechanisms can assist in improving systems performance by reducing the cache miss ratio. The presented multi-core system employs the Data-Driven Multithreading (DDM) model of execution. In DDM thread scheduling is done according to data availability, thus the system is aware of the threads to be executed in the near future. This characteristic of the DDM model allows for cache aware thread scheduling and cache prefetching. The NoC prototype is a crossbar switch with output buffering that can support a cache-aware 4-node chip multiprocessor. The prototype is built on the Xilinx ML506 board equipped with a Xilinx Virtex-5 FPGA.

  1. On-Chip generation of polymer microcapsules through droplet coalescence

    Eqbal, Md Danish; Gundabala, Venkat; Gundabala lab Team

    Alginate microbeads and microcapsules have numerous applications in drug delivery, tissue engineering and other biomedical areas due to their unique properties. Microcapsules with liquid core are of particular interest in the area of cell encapsulation. Various methods such as coacervation, emulsification, micro-nozzle, etc. exist for the generation of microbeads and microcapsules. However, these methods have several drawbacks like coagulation, non-uniformity, and polydispersity. In this work we present a method for complete on chip generation of alginate microcapsules (single core as well as double core) through the use of droplet merging technique. For this purpose, a combined Coflow and T-junction configuration is implemented in a hybrid glass-PDMS (Polydimethylsiloxane) microfluidic device. Efficient generation is achieved through precise matching of the generation rates of the coalescing drops. Through this approach, microcapsules with intact single and double (liquid) cores surrounded by alginate shell have been successfully generated and characterized.

  2. Endocrine system on chip for a diabetes treatment model.

    Nguyen, Dao Thi Thuy; van Noort, Danny; Jeong, In-Kyung; Park, Sungsu

    2017-02-21

    The endocrine system is a collection of glands producing hormones which, among others, regulates metabolism, growth and development. One important group of endocrine diseases is diabetes, which is caused by a deficiency or diminished effectiveness of endogenous insulin. By using a microfluidic perfused 3D cell-culture chip, we developed an 'endocrine system on chip' to potentially be able to screen drugs for the treatment of diabetes by measuring insulin release over time. Insulin-secreting β-cells are located in the pancreas, while L-cells, located in the small intestines, stimulate insulin secretion. Thus, we constructed a co-culture of intestinal-pancreatic cells to measure the effect of glucose on the production of glucagon-like peptide-1 (GLP-1) from the L-cell line (GLUTag) and insulin from the pancreatic β-cell line (INS-1). After three days of culture, both cell lines formed aggregates, exhibited 3D cell morphology, and showed good viability (>95%). We separately measured the dynamic profile of GLP-1 and insulin release at glucose concentrations of 0.5 and 20 mM, as well as the combined effect of GLP-1 on insulin production at these glucose concentrations. In response to glucose stimuli, GLUTag and INS-1 cells produced higher amounts of GLP-1 and insulin, respectively, compared to a static 2D cell culture. INS-1 combined with GLUTag cells exhibited an even higher insulin production in response to glucose stimulation. At higher glucose concentrations, the diabetes model on chip showed faster saturation of the insulin level. Our results suggest that the endocrine system developed in this study is a useful tool for observing dynamical changes in endocrine hormones (GLP-1 and insulin) in a glucose-dependent environment. Moreover, it can potentially be used to screen GLP-1 analogues and natural insulin and GLP-1 stimulants for diabetes treatment.

  3. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information

    Mohammad H. Bitarafan

    2017-07-01

    Full Text Available For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  4. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.

    Bitarafan, Mohammad H; DeCorby, Ray G

    2017-07-31

    For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities-with an air or vacuum gap between a pair of high reflectance mirrors-offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  5. A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.

  6. Conocer y ser en el paradigma constructivista

    Jose Antonio Camargo Rodriguez

    2014-03-01

    Full Text Available Toda teoría acerca del aprendizaje se fundamenta en una interpretación del conocimiento, la cual se encuentra, a su vez, ligada a una cierta concepción de «ser». No será posible asimilar verdaderamente cualquiera de tales teorías si se ignoran, o no se consideran con el debido detenimiento, las ideas de conocer y «ser» que le sirven de base. Sc pone de presente que el constructivismo, en contraste con la teoría transmisionista de la enseñanza y el aprendizaje, predominante en la pedagogía tradicional, tiene su fundamento en la interpretación según la cual el conocer es una actividad humana en la que, a medida quo conoce, el hombre construye el «ser». Antes de todo conocimiento, las cosas no tienen un «ser»; están ahí, pero no se sabe lo que son. El «ser», quo constituye el objeto de todo conocer, aquello que el sujeto persigue a través de su conocimiento, no toes dada de antemano, ni le viene de fuera, sino quo es una elaboración quo el mismo realiza a través de su actividad cognoscitiva, un contenido de su propia conciencia. Hay, pues, una cierta paradoja entre las ideas de conocer y «ser» que sirven de fundamento al constructivismo, cuya reflexión se propone en aras de ganar una mejor comprensión, de encontrarle a este paradigma un sentido más allá de la pedagogía y la didáctica.

  7. Preparation and SERS performance of Au NP/paper strips based on inkjet printing and seed mediated growth: The effect of silver ions

    Weng, Guojun; Yang, Yue; Zhao, Jing; Zhu, Jian; Li, Jianjun; Zhao, Junwu

    2018-04-01

    Surface-enhanced Raman scattering (SERS) has been widely used in biomedical sensing with the advantages of high sensitivity and label-free. However, the fabrication of SERS substrates with good Raman activity, reproducibility, and low cost is still under development in practical applications. This paper presents a practicable method for fabricating Au NP/paper strips by using inkjet printing and seed mediated growth. Small gold seed synthesized by borohydride reduction was used as ink and printed on the filter paper. The printed gold seed grew in situ in the growth solution and formed the gold nanoparticle (Au NP)/paper strips. The fabricated paper strip was characterized by diffuse reflectance spectroscopy and scanning electron microscopy (SEM). The diffuse reflectance spectra indicated that the Au NP/paper strips had two local surface plasmon resonance (LSPR) peaks: the short one at around 540 nm and the long one located in the range of 640-840 nm. And the long LSPR peak firstly shifted to red then to blue with the increased concentrations of silver ions in growth solution. From the SEM images, the shape of grown Au NPs was diverse, including sphere, rod, ellipsoid, dimer, trimer, and big aggregates. We thought the short peak came from the LSPR of nanospheres and the transvers LSPR of rod and ellipsoid like particles, while the long peak mainly came from the plasmonic coupling of dimer along the inter-particle axis. The obtained Au NP/paper strip with the long peak located around 650 nm had the highest SERS activity, which could be attributed to the plasmon resonance induced local field enhancement and nanogap effect. Also, the SERS performance results indicated the printed SERS strips exhibited satisfied uniformity and stability, demonstrating the potential of Au NP/paper strip in real-world applications.

  8. Optimizing the on-chip communication architecture of low power Systems-on-Chip in Deep Sub-Micron technology

    Leroy, Anthony

    2006-01-01

    Ce mémoire traite des systèmes intégrés sur puce (System-on-Chip) à faible consommation d'énergie tels que ceux qui seront utilisés dans les équipements portables de future génération (ordinateurs de poche (PDA), téléphones mobiles). S'agissant d'équipements alimentés par des batteries, la consommation énergétique est un problème critique. Ces plateformes contiendront probablement une douzaine de coeurs de processeur et une quantité importante de mémoire embarquée. Une architecture de communi...

  9. Structural characteristics of carbon nanofibers for on-chip interconnect applications

    Ominami, Yusuke; Ngo, Quoc; Austin, Alexander J.; Yoong, Hans; Yang, Cary Y.; Cassell, Alan M.; Cruden, Brett A.; Li Jun; Meyyappan, M.

    2005-01-01

    In this letter, we compare the structures of plasma-enhanced chemical vapor deposition of Ni-catalyzed and Pd-catalyzed carbon nanofibers (CNFs) synthesized for on-chip interconnect applications with scanning transmission electron microscopy (STEM). The Ni-catalyzed CNF has a conventional fiberlike structure and many graphitic layers that are almost parallel to the substrate at the CNF base. In contrast, the Pd-catalyzed CNF has a multiwall nanotubelike structure on the sidewall spanning the entire CNF. The microstructure observed in the Pd-catalyzed fibers at the CNF-metal interface has the potential to lower contact resistance significantly, as our electrical measurements using current-sensing atomic force microscopy indicate. A structural model is presented based on STEM image analysis

  10. A viable on-chip FPGA configuration memory scrubbing approach for CBM-ToF

    Oancea, Andrei-Dumitru; Stuellein, Christian; Manz, Sebastian; Gebelein, Jano; Kebschull, Udo [Infrastruktur und Rechnersysteme in der Informationsverarbeitung (IRI), Goethe-Universitaet, Senckenberganlage 31, 60325 Frankfurt am Main (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The ToF Detector of the CBM Experiment will be equipped with FPGA-based read-out boards (ROBs). These ROBs will be operated in a radiation environment, and therefore need a mitigation mechanism against soft errors in the SRAM-based configuration memories of the FPGAs. The proposed approach combines intrinsic on-chip single upset correction with extrinsic selective frame scrubbing for multiple-bit upsets. The slow control is realized using the GBT-SCA, which is capable of handling interrupts. This enables the new approach of event-driven configuration frame correction. While conventional blind scrubbing leads to a continuous load on the control path, the selective frame scrubbing reduces this load to a minimum. For verification purposes, radiation tests with a proton beam were performed at COSY, Juelich. The occurred soft errors were classified into single and multiple- bit upsets, enabling an estimation of the rate at which extrinsic intervention is necessary.

  11. Design, fabrication, and evaluation of on-chip micro-supercapacitors

    Beidaghi, Majid; Chen, Wei; Wang, Chunlei

    2011-06-01

    Development of miniaturized electronic systems has stimulated the demand for miniaturized power sources that can be integrated into such systems. Among the different micro power sources micro electrochemical energy storage and conversion devices are particularly attractive because of their high efficiency and relatively high energy density. Electrochemical micro-capacitors or micro-supercapacitors offer higher power density compared to micro-batteries and micro-fuel cells. In this paper, development of on-chip micro-supercapacitors based on interdigitated C-MEMS electrode microarrays is introduced. C-MEMS electrodes are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of EDLC or pseudo-capacitive materials. Recent advancements in fabrication methods of C-MEMS based micro-supercapacitors are discussed and electrochemical properties of C-MEMS electrodes and it composites are reviewed.

  12. A System on Chip approach to enhanced learning in interdisciplinary robotics

    Sørensen, Anders Stengaard; Falsig, Simon

    2011-01-01

    the framework in an embedded systems course and various student projects, and have found that it greatly enhance the students abilities to control hardware from software, and dramatically reduce the time spent on software $\\leftrightarrow$ hardware interfacing. As the framework is also scalable, it can support......p, li { white-space: pre-wrap; } To sustain interdisciplinary teaching and learning in the rapidly growing and diversifying field of robotics, we have successfully employed FPGA based System on Chip (SoC) technology to provide abstraction between high level software and low level IO/ and control...... hardware. Our approach is to provides students with a simple FPGA based framework for hardware access, and hardware I/O development, which is independent of computer platform and programming language, and enable the students to add to, or change I/O hardware in accordance with their skills. We have tested...

  13. Advances in Sensors-Centric Microprocessors and System-on-Chip

    Juan A. Gómez-Pulido

    2012-04-01

    Full Text Available Sensors-based systems are nowadays an extended technology for many markets due to their great potential in the collection of data from the environment and the processing of such data for different purposes. A typical example is the wireless sensor devices, where the outer temperature, humidity, luminosity and many other parameters can be acquired, measured and processed in order to build useful and fascinating applications that contribute to human welfare. In this scenario, the processing architectures of the sensors-based systems play a very important role. The requirements that are necessary for many such applications (real-time processing, low-power consumption, reduced size, reliability, security and many others means that research on advanced architectures of Microprocessors and System-on-Chips (SoC is needed to design and implement a successful product. In this sense, there are many challenges and open questions in this area that need to be addressed. [...

  14. Hybrid FDTD Analysis for Periodic On-Chip Terahertz (THZ) Structures

    Hussein, Yasser A.; Spencer, James E.; /SLAC

    2005-06-07

    We present electromagnetic analysis and radiation efficiency calculations for on-chip terahertz (THz) structures based on a hybrid, finite-difference, time-domain (HFDTD) technique. The method employs the FDTD technique to calculate S-parameters for one cell of a periodic structure. The transmission ABCD matrix is then estimated and multiplied by itself n times to obtain the n-cell periodic structure ABCD parameters that are then converted back to S-parameters. Validation of the method is carried out by comparing the results of the hybrid technique with FDTD calculations of the entire periodic structure as well as with HFSS which all agree quite well. This procedure reduces the CPU-time and allows efficient design and optimization of periodic THz radiation sources. Future research will involve coupling of Maxwell's equations with a more detailed, physics-based transport model for higher-order effects.

  15. Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions.

    Qu, Xiangmeng; Wang, Shaopeng; Ge, Zhilei; Wang, Jianbang; Yao, Guangbao; Li, Jiang; Zuo, Xiaolei; Shi, Jiye; Song, Shiping; Wang, Lihua; Li, Li; Pei, Hao; Fan, Chunhai

    2017-08-02

    Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion. We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND-OR). This study provides a highly generic tool for self-organization of biological systems.

  16. Advanced Nanofabrication Process Development for Self-Powered System-on-Chip

    Rojas, Jhonathan Prieto

    2010-11-01

    In this work the development of a Self-Powered System-On-Chip is explored by examining two components of process development in different perspectives. On one side, an energy component is approached from a biochemical standpoint where a Microbial Fuel Cell (MFC) is built with standard microfabrication techniques, displaying a novel electrode based on Carbon Nanotubes (CNTs). The fabrication process involves the formation of a micrometric chamber that hosts an enhanced CNT-based anode. Preliminary results are promising, showing a high current density (113.6mA/m2) compared with other similar cells. Nevertheless many improvements can be done to the main design and further characterization of the anode will give a more complete understanding and bring the device closer to a practical implementation. On a second point of view, nano-patterning through silicon nitride spacer width control is developed, aimed at producing alternative sub-100nm device fabrication with the potential of further scaling thanks to nanowire based structures. These nanostructures are formed from a nano-pattern template, by using a bottom-up fabrication scheme. Uniformity and scalability of the process are demonstrated and its potential described. An estimated area of 0.120μm2 for a 6T-SRAM (Static Random Access Memory) bitcell (6 devices) can be achieved. In summary, by using a novel sustainable energy component and scalable nano-patterning for logic and computing module, this work has successfully collected the essential base knowledge and joined two different elements that synergistically will contribute for the future implementation of a Self-Powered System-on-Chip.

  17. A scalable single-chip multi-processor architecture with on-chip RTOS kernel

    Theelen, B.D.; Verschueren, A.C.; Reyes Suarez, V.V.; Stevens, M.P.J.; Nunez, A.

    2003-01-01

    Now that system-on-chip technology is emerging, single-chip multi-processors are becoming feasible. A key problem of designing such systems is the complexity of their on-chip interconnects and memory architecture. It is furthermore unclear at what level software should be integrated. An example of a

  18. On-chip network interfaces supporting automatic burst write creation, posted writes and read prefetch

    Stefan, R.; Windt, de J.; Goossens, K.G.W.

    2010-01-01

    Networks-on-Chip are seen as a scalable solution for facilitating the development of Systems-on-Chip with an increasing number of IP cores. Many studies already address the implementation details of such networks and a large effort has been invested in optimizing the routing strategy and the

  19. Co-design of on-chip antennas and circuits for a UNII band monolithic transceiver

    Shamim, Atif; Arsalan, Muhammad; Roy, L; Salama, Khaled N.

    2012-01-01

    with two on-chip antennas. Both antennas are characterized for their radiation properties through an on-wafer custom measurement setup. The strategy to co-design on-chip antennas with circuits, resultant trade-offs and measurement challenges have also been

  20. A survey of research and practices of network-on-chip

    Bjerregaard, Tobias; Mahadevan, Shankar

    2006-01-01

    The scaling of microchip technologies has enabled large scale systems-on-chip (SoC). Network-on-chip (NoC) research addresses global communication in SoC, involving (i) a move from computation-centric to communication-centric design and (ii) the implementation of scalable communication structures...

  1. On-chip photonic integrated circuit structures for millimeter and terahertz wave signal generation

    Gordón, C.; Guzmán, R. C.; Corral, V.; Carpintero, G.; Leijtens, X.

    2015-01-01

    We present two different on-chip photonic integrated circuit (PIC) structures for continuous-wave generation of millimeter and terahertz waves, each one using a different approach. One approach is the optical heterodyne method, using an on-chip arrayed waveguide grating laser (OC-AWGL) which is

  2. On-chip graphene electrode, methods of making, and methods of use

    Nayak, Pranati

    2018-01-25

    Embodiments of the present disclosure provide a device including an on-chip electrode platform including one or more three dimensional laser scribed graphene electrodes, methods of making the on-chip electrode platform, methods of analyzing (e.g., detecting, quantifying, and the like) chemicals and biochemicals, and the like.

  3. Microfluidic organ-on-chip technology for blood-brain barrier research.

    van der Helm, Marinke W; van der Meer, Andries D; Eijkel, Jan C T; van den Berg, Albert; Segerink, Loes I

    2016-01-01

    Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and the challenges that are still ahead. The BBB is formed by specialized endothelial cells and separates blood from brain tissue. It protects the brain from harmful compounds from the blood and provides homeostasis for optimal neuronal function [corrected]. Studying BBB function and dysfunction is important for drug development and biomedical research. Microfluidic BBBs-on-chips enable real-time study of (human) cells in an engineered physiological microenvironment, for example incorporating small geometries and fluid flow as well as sensors. Examples of BBBs-on-chips in literature already show the potential of more realistic microenvironments and the study of organ-level functions. A key challenge in the field of BBB-on-chip development is the current lack of standardized quantification of parameters such as barrier permeability and shear stress. This limits the potential for direct comparison of the performance of different BBB-on-chip models to each other and existing models. We give recommendations for further standardization in model characterization and conclude that the rapidly emerging field of BBB-on-chip models holds great promise for further studies in BBB biology and drug development.

  4. Tailored coating of gold nanostars: rational approach to prototype of theranostic device based on SERS and photothermal effects at ultralow irradiance

    Bassi, B.; Dacarro, G.; Galinetto, P.; Giulotto, E.; Marchesi, N.; Pallavicini, P.; Pascale, A.; Perversi, S.; Taglietti, A.

    2018-06-01

    The last decade has come across an increasing demand for theranostic biocompatible nanodevices possessing the double ability of diagnosis and therapy. In this work, we report the design, synthesis and step-by-step characterization of rationally coated gold nanostars (GNSs) for the SERS imaging and photothermal therapy of HeLa cancer cells. The nanodevices were realized by synthesizing GNSs with a seed growth approach, coating them with a controlled mixture of thiols composed of a Raman reporter and a polyethylene glycol with a terminal amino group, and then reacting these amino groups with folic acid (FA), in order to impart selectivity towards cancer cells which overexpress folate receptors on their membranes. After a complete characterization, we demonstrate that these FA-functionalized GNSs (FA-GNSs) are able to bind selectively to the membranes of HeLa cells, acting as SERS tags and allowing SERS imaging. Moreover, we demonstrate that once bound to HeLa cell membranes, FA-GNSs exhibit photothermal effect which can be exploited to kill the same cells in vitro using laser irradiation in the NIR at a very low and safe irradiance. We thus demonstrate that the FA-GNSs designed following the described approach are an efficient prototype of theranostic nanodevices.

  5. On-chip plasmonic cavity-enhanced spontaneous emission rate at the zero-phonon line

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    Highly confined surface plasmon polariton (SPP) modes can be utilized to enhance light-matter interaction at the single emitter level of quantum optical systems [1-4]. Dielectric-loaded SPP waveguides (DLSPPWs) confine SPPs laterally with relatively low propagation loss, enabling to benefit both ...... and an up to 42-fold spontaneous emission rate enhancement at the zero-phonon line (a ∼7-fold resonance enhancement in addition to a ∼6-fold broadband enhancement) is achieved, revealing the potential of our approach for on-chip realization of quantum-optical networks....... from a large Purcell factor and from a large radiative efficiency (low quenching rates) [1, 2]. In this work, we present a DLSPPW-based Bragg cavity resonator to direct emission from a single diamond nitrogen vacancy (NV) center into the zero-phonon line (Fig. 1). A quality factor of ∼70 for the cavity...

  6. Recent advances in design and fabrication of on-chip micro-supercapacitors

    Beidaghi, Majid; Wang, Chunlei

    2012-06-01

    Recent development in miniaturized electronic devices has increased the demand for power sources that are sufficiently compact and can potentially be integrated on a chip with other electronic components. Miniaturized electrochemical capacitors (EC) or micro-supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. Recently, we have developed several types of micro-supercapacitors with different structural designs and active materials. Carbon-Microelectromechanical Systems (C-MEMS) with three dimensional (3D) interdigital structures are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of pseudo-capacitive materials. More recently, we have also developed microsupercapacitor based on hybrid graphene and carbon nanotube interdigital structures. In this paper, the recent advances in design and fabrication of on-chip micro-supercapacitors are reviewed.

  7. A Scalable, Timing-Safe, Network-on-Chip Architecture with an Integrated Clock Distribution Method

    Bjerregaard, Tobias; Stensgaard, Mikkel Bystrup; Sparsø, Jens

    2007-01-01

    Growing system sizes together with increasing performance variability are making globally synchronous operation hard to realize. Mesochronous clocking constitutes a possible solution to the problems faced. The most fundamental of problems faced when communicating between mesochronously clocked re...... is based purely on local observations. It is demonstrated with a 90 nm CMOS standard cell network-on-chip design which implements completely timing-safe, global communication in a modular system......Growing system sizes together with increasing performance variability are making globally synchronous operation hard to realize. Mesochronous clocking constitutes a possible solution to the problems faced. The most fundamental of problems faced when communicating between mesochronously clocked...... regions concerns the possibility of data corruption caused by metastability. This paper presents an integrated communication and mesochronous clocking strategy, which avoids timing related errors while maintaining a globally synchronous system perspective. The architecture is scalable as timing integrity...

  8. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    2013-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  9. A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.

    Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S

    2010-04-01

    Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.

  10. Router Designs for an Asynchronous Time-Division-Multiplexed Network-on-Chip

    Kasapaki, Evangelia; Sparsø, Jens; Sørensen, Rasmus Bo

    2013-01-01

    In this paper we explore the design of an asynchronous router for a time-division-multiplexed (TDM) network-on-chip (NOC) that is being developed for a multi-processor platform for hard real-time systems. TDM inherently requires a common time reference, and existing TDM-based NOC designs are either....... This adds hardware complexity and increases area and power consumption. We propose to use asynchronous routers in order to achieve a simpler, more robust and globally-asynchronous NOC, and this represents an unexplored point in the design space. The paper presents a range of alternative router designs. All...... routers have been synthesized for a 65nm CMOS technology, and the paper reports post-layout figures for area, speed and energy and compares the asynchronous designs with an existing mesochronous clocked router. The results show that an asynchronous router is 2 times smaller, marginally slower...

  11. A multilevel Lab on chip platform for DNA analysis.

    Marasso, Simone Luigi; Giuri, Eros; Canavese, Giancarlo; Castagna, Riccardo; Quaglio, Marzia; Ferrante, Ivan; Perrone, Denis; Cocuzza, Matteo

    2011-02-01

    Lab-on-chips (LOCs) are critical systems that have been introduced to speed up and reduce the cost of traditional, laborious and extensive analyses in biological and biomedical fields. These ambitious and challenging issues ask for multi-disciplinary competences that range from engineering to biology. Starting from the aim to integrate microarray technology and microfluidic devices, a complex multilevel analysis platform has been designed, fabricated and tested (All rights reserved-IT Patent number TO2009A000915). This LOC successfully manages to interface microfluidic channels with standard DNA microarray glass slides, in order to implement a complete biological protocol. Typical Micro Electro Mechanical Systems (MEMS) materials and process technologies were employed. A silicon/glass microfluidic chip and a Polydimethylsiloxane (PDMS) reaction chamber were fabricated and interfaced with a standard microarray glass slide. In order to have a high disposable system all micro-elements were passive and an external apparatus provided fluidic driving and thermal control. The major microfluidic and handling problems were investigated and innovative solutions were found. Finally, an entirely automated DNA hybridization protocol was successfully tested with a significant reduction in analysis time and reagent consumption with respect to a conventional protocol.

  12. On-chip microwave circulators using quantum Hall plasmonics

    Mahoney, Alice; Colless, James; Pauka, Sebastian; Hornibrook, John; Doherty, Andrew; Reilly, David; Peeters, Lucas; Fox, Eli; Goldhaber-Gordon, David; Kou, Xuefeng; Pan, Lei; Wang, Kang; Watson, John; Gardner, Geoffrey; Manfra, Michael

    Circulators are directional circuit elements integral to technologies including radar systems, microwave communication transceivers and the readout of quantum information devices. Their non-reciprocity commonly arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that breaks time-reversal symmetry. We present a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, `slow-light' response of a GaAs/AlGaAs 2-dimensional electron gas in the quantum Hall regime. Further, by implementing this circulator design on a thin film of a magnetic topological insulator (Cr0.12(Bi0.26Sb0.62)2Te3), we show that similar non-reciprocity can be achieved at zero magnetic field. This additional mode of operation serves as a non-invasive probe of edge states in the quantum anomalous Hall effect, while also extending the possibility for integration with superconducting devices.

  13. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.

    Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W

    2017-12-04

    Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting

  14. A unified approach to mapping and routing on a network-on-chip for both best-effort and guaranteed service traffic

    Hansson, M.A.; Goossens, K.G.W.; Radulescu, A.

    2007-01-01

    One of the key steps in Network-on-Chip-based design is spatial mapping of cores and routing of the communication between those cores. Known solutions to the mapping and routing problems first map cores onto a topology and then route communication, using separate and possibly conflicting objective

  15. A Unified Approach to Mapping and Routing on a Network-on-Chip for Both Best-Effort and Guaranteed Service Traffic

    Hansson, A.; Goossens, K.; R?dulescu, A.

    2007-01-01

    One of the key steps in Network-on-Chip-based design is spatial mapping of cores and routing of the communication between those cores. Known solutions to the mapping and routing problems first map cores onto a topology and then route communication, using separate and possibly conflicting objective

  16. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2016-01-01

    and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm2. This lens

  17. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  18. ser en ortodoncia

    Ruíz-Esculpi, María; Ricse-Chaupis, Estela; Villanueva-Vega, Judith; Torres-Maita, Liz

    2014-01-01

    La primera aplicación del láser en un diente fue realizada en 1965. Desde entonces ha presentado una constante evolución y desarrollo. La tecnología láser permite realizar procedimientos en tejidos duros y blandos, pudiendo ser utilizado con las siguientes finalidades: como prevención de la desmineralización, en la adhesión y remoción de brackets, en la reducción del dolor producto del movimiento dental, en la reparación ósea después de la expansión, en diversas cirugías y otras aplicaciones ...

  19. Applications of holographic on-chip microscopy (Conference Presentation)

    Ozcan, Aydogan

    2017-02-01

    My research focuses on the use of computation/algorithms to create new optical microscopy, sensing, and diagnostic techniques, significantly improving existing tools for probing micro- and nano-objects while also simplifying the designs of these analysis tools. In this presentation, I will introduce a set of computational microscopes which use lens-free on-chip imaging to replace traditional lenses with holographic reconstruction algorithms. Basically, 3D images of specimens are reconstructed from their "shadows" providing considerably improved field-of-view (FOV) and depth-of-field, thus enabling large sample volumes to be rapidly imaged, even at nanoscale. These new computational microscopes routinely generate benefit of this technology is that it lends itself to field-portable and cost-effective designs which easily integrate with smartphones to conduct giga-pixel tele-pathology and microscopy even in resource-poor and remote settings where traditional techniques are difficult to implement and sustain, thus opening the door to various telemedicine applications in global health. Through the development of similar computational imagers, I will also report the discovery of new 3D swimming patterns observed in human and animal sperm. One of this newly discovered and extremely rare motion is in the form of "chiral ribbons" where the planar swings of the sperm head occur on an osculating plane creating in some cases a helical ribbon and in some others a twisted ribbon. Shedding light onto the statistics and biophysics of various micro-swimmers' 3D motion, these results provide an important example of how biomedical imaging significantly benefits from emerging computational algorithms/theories, revolutionizing existing tools for observing various micro- and nano-scale phenomena in innovative, high-throughput, and yet cost-effective ways.

  20. SERS microscopy: plasmonic nanoparticle probes and biomedical applications

    Gellner, M.; Schütz, M.; Salehi, M.; Packeisen, J.; Ströbel, P.; Marx, A.; Schmuck, C.; Schlücker, S.

    2010-08-01

    Nanoparticle probes for use in targeted detection schemes and readout by surface-enhanced Raman scattering (SERS) comprise a metal core, Raman reporter molecules and a protective shell. One design of SERS labels specifically optimized for biomedical applications in conjunction with red laser excitation is based on tunable gold/silver nanoshells, which are completely covered by a self-assembled monolayer (SAM) of Raman reporters. A shell around the SAM-coated metal core stabilizes the colloid and prevents particle aggregation. The optical properties and SERS efficiencies of these plasmonic nanostructures are characterized both experimentally and theoretically. Subsequent bioconjugation of SERS probes to ligands such as antibodies is a prerequisite for the selective detection of the corresponding target molecule via the characteristic Raman signature of the label. Biomedical imaging applications of SERS-labeled antibodies for tumor diagnostics by SERS microscopy are presented, using the localization of the tumor suppressor p63 in prostate tissue sections as an example.

  1. Bases éticas para desarrollar el deber ser en el proceso formativo de los profesionales Ethical bases to develop the ‘ought to be’ within the formative process of professionals

    Yusimí García Chediak

    2012-04-01

    Full Text Available Desde la perspectiva teórica y la empírico-crítica, el trabajo aborda una temática actual y novedosa: la sustentación ética del deber ser. Se parte del diagnóstico correspondiente desarrollado en el proceso investigativo, para determinar los elementos teórico-metodológicos esenciales y su contenido, los que conforman las bases del deber ser y que aseguran el modelo ético para el desarrollo del proceso formativo de los futuros profesionales. Con el auxilio de diversos métodos, tanto del nivel teórico como del empírico, se exponen los elementos esenciales que aportan a la ética, particularmente a la ética normativa; así como al devenir histórico del pensamiento de los deberes éticos y las actitudes que han de caracterizar a los agentes y las agencias sociales involucrados en la formación profesional.From both the theoretical and empirical-critical perspectives, this paper deals with an up-to-date topic: the ethical sustentation of the ought to be. It starts from the corresponding diagnosis developed during the research process to determine the theoretical-methodological elements and their content, the latter conforms the bases of the ought to be and guarantees the ethical model within the educational process of future professionals. Basing on both theoretical and empiric methods, it also presents the essential elements that contribute to ethics, particularly normative ethics, as well as to the historical development of ethical duties and attitudes that must characterize the social agents and agencies involved in professional education.

  2. Improved On-Chip Measurement of Delay in an FPGA or ASIC

    Chen, Yuan; Burke, Gary; Sheldon, Douglas

    2007-01-01

    An improved design has been devised for on-chip-circuitry for measuring the delay through a chain of combinational logic elements in a field-programmable gate array (FPGA) or application-specific integrated circuit (ASIC). In the improved design, the delay chain does not include input and output buffers and is not configured as an oscillator. Instead, the delay chain is made part of the signal chain of an on-chip pulse generator. The duration of the pulse is measured on-chip and taken to equal the delay.

  3. A system-level multiprocessor system-on-chip modeling framework

    Virk, Kashif Munir; Madsen, Jan

    2004-01-01

    We present a system-level modeling framework to model system-on-chips (SoC) consisting of heterogeneous multiprocessors and network-on-chip communication structures in order to enable the developers of today's SoC designs to take advantage of the flexibility and scalability of network-on-chip and...... SoC design. We show how a hand-held multimedia terminal, consisting of JPEG, MP3 and GSM applications, can be modeled as a multiprocessor SoC in our framework....

  4. Potential use of SERS-assisted theranostic strategy based on Fe{sub 3}O{sub 4}/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia

    Han, Yu; Lei, Sheng-lan [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); Lu, Jian-hua [Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen 361005 (China); He, Yuan [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Zhi-wei, E-mail: chenzhiwei@xmu.edu.cn [Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen 361005 (China); Ren, Lei, E-mail: renlei@xmu.edu.cn [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005 (China); Zhou, Xi [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China); Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005 (China)

    2016-07-01

    A surface-enhanced Raman scattering (SERS)-assisted theranostic strategy was designed based on a synthesized multifunctional Fe{sub 3}O{sub 4}/Au cluster/shell nanocomposite. This theranostic strategy was used for free prostate specific antigen (free-PSA) detection, magnetic resonance imaging (MRI), and magnetic hyperthermia. The lowest protein concentration detected was 1 ng mL{sup −1}, and the limit of detection (LOD) of the calculated PSA was 0.75 ng mL{sup −1}. Then, MRI was carried out to visualize the tumor cell. Lastly, magnetic hyperthermia was employed and revealed a favorable killing effect for the tumor cells. Thus, this SERS-assisted strategy based on a Fe{sub 3}O{sub 4}/Au cluster/shell nanocomposite showed great advantages in theranostic treatment. - Graphical abstract: Fe{sub 3}O{sub 4}/Au cluster/shell composite can be used for specific protein detection, magnetic resonance imaging and magnetic hyperthermia therapy. - Highlights: • We designed a SERS-assisted theranostic strategy based on the mutifunctional nanocomposites using gold shelled Fe{sub 3}O{sub 4} clusters. • Fe{sub 3}O{sub 4}/Au nanoparticles with theranostics and SERS for early diagnosis of PSA were reported for the first time. • The LOD of detection for PSA was lowed as 0.75 ng mL{sup −1}, and the total detection time was shorten to less than 1 h. • Fe{sub 3}O{sub 4} clusters had spin-spin (T{sub 2}) contrast enhancement and increased magnetic response. • Gold nanoshells supplied excellent chemical stability, biocompatibility, better heating property for magnetic hyperthermia.

  5. The magic of nanoplasmonics: from superhydrophobic and 3D suspended devices for SERS/TERS-like applications to hot-electrons based nanoscopy

    Alabastri, A.

    2014-05-02

    The ability to confine light in small volumes, associated to low background signals, is an important technological achievement for a number of disciplines such as biology or electronics. In fact, decoupling the source position from the sample area allows an unprecedented sensitivity which can be exploited in different systems. The most direct implications are however related to either Surface Enhanced Raman Scattering (SERS) or Tip Enhanced Raman Scattering (TERS). Furthermore, while the combination with super-hydrophobic patterns can overcome the typical diffusion limit of sensors, focused surface plasmons decaying into hot electrons can be exploited to study the electronic properties of the sample by means of a Schottky junction. Within this paper these techniques will be briefly described and the key role played by both surface and localized plasmons will be highlighted. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  6. The magic of nanoplasmonics: from superhydrophobic and 3D suspended devices for SERS/TERS-like applications to hot-electrons based nanoscopy

    Alabastri, A.; Toma, A.; Giugni, A.; Torre, B.; Malerba, M.; Miele, E.; De Angelis, F.; Liberale, Carlo; Das, Gobind; Di Fabrizio, Enzo M.; Proietti Zaccaria, R.

    2014-01-01

    The ability to confine light in small volumes, associated to low background signals, is an important technological achievement for a number of disciplines such as biology or electronics. In fact, decoupling the source position from the sample area allows an unprecedented sensitivity which can be exploited in different systems. The most direct implications are however related to either Surface Enhanced Raman Scattering (SERS) or Tip Enhanced Raman Scattering (TERS). Furthermore, while the combination with super-hydrophobic patterns can overcome the typical diffusion limit of sensors, focused surface plasmons decaying into hot electrons can be exploited to study the electronic properties of the sample by means of a Schottky junction. Within this paper these techniques will be briefly described and the key role played by both surface and localized plasmons will be highlighted. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  7. La importancia de ser grande

    Baisre, J. A.

    2007-01-01

    Se responde a las preguntas ¿por qué los mamíferos marinos son los animales más grandes del planeta?, ¿Por qué los peces no pueden ser más grandes?. Éstas y otras interrogantes son respondidas de forma sencilla y clara.

  8. Flexible SERS Substrates: Challenges and Opportunities

    2016-01-28

    are still widely used due to the ease with which silver and gold nanoparticles can be produced. Nanoparticle inks are colloidal suspensions of...interactions between the analyte, silver nanoparticles, and a salt. This system has also been applied to detection of trace antibiotics for food safety...Cleanable SERS Substrates Based on Silver Nanoparticle Decorated Electrospun Nano-fibrous Membranes Chaoyang Jiang Porous electrospun nanofibrous

  9. Essential issues in SOC design designing complex systems-on-chip

    Lin, Youn-long Steve

    2007-01-01

    Covers issues related to system-on-chip (SoC) design. This book covers IP development, verification, integration, chip implementation, testing and software. It contains valuable academic and industrial examples for those involved with the design of complex SOCs.

  10. Implementation of Guaranteed Services in the MANGO Clockless Network-on-Chip

    Bjerregaard, Tobias; Sparsø, Jens

    2006-01-01

    (clockless implementation, standard socket access points, and guaranteed communication services) make MANGO suitable for a modular SoC design flow is explained. Among the advantages of using clockless circuit techniques are inherent global timing closure, low forward latency in pipelines, and zero dynamic......Shared, segmented, on-chip interconnection networks, known as networks-on-chip (NoC), may become the preferred way of interconnecting intellectual property (IP) cores in future giga-scale system-on-chip (SoC) designs. A NoC can provide the required communication bandwidth while accommodating...... the effects of scaling microchip technologies. Equally important, a NoC facilitates a truly modular and scalable design flow. The MANGO (message-passing asynchronous network-on-chip providing guaranteed services over open core protocol (OCP) interfaces) NoC is presented, and how its key characteristics...

  11. Direct quantification of transendothelial electrical resistance in organs-on-chips

    van der Helm, Marieke Willemijn; Odijk, Mathieu; Frimat, Jean-Philippe; van der Meer, Andries Dirk; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene

    2016-01-01

    Measuring transendothelial or transepithelial electrical resistance (TEER) is a widely used method to monitor cellular barrier tightness in organs-on-chips. Unfortunately, integrated electrodes close to the cellular barrier hamper visual inspection of the cells or require specialized cleanroom

  12. Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation

    Ashok, AC

    2010-03-01

    Full Text Available The authors describe the realization of integrated optical chromatography, in conjunction with on-chip fluorescence excitation, in a monolithically fabricated poly-dimethylsiloxane (PDMS) microfluidic chip. The unique endlessly-single-mode guiding...

  13. Runtime adaptive multi-processor system-on-chip: RAMPSoC

    Göhringer, D.; Hübner, M.; Schatz, V.; Becker, J.

    2008-01-01

    Current trends in high performance computing show, that the usage of multiprocessor systems on chip are one approach for the requirements of computing intensive applications. The multiprocessor system on chip (MPSoC) approaches often provide a static and homogeneous infrastructure of networked microprocessor on the chip die. A novel idea in this research area is to introduce the dynamic adaptivity of reconfigurable hardware in order to provide a flexible heterogeneous set of processing elemen...

  14. QUE É O "SER DA FAMÍLIA"?

    Josefa Aida Delgado

    2005-01-01

    Full Text Available Es un estudio basado en la filosofía fenomenológica heideggeriana, su propósito es desvelar los elementos estructurales de la existencia del "ser de la familia". El camino metodológico fue construido con base en el pensamiento de Heidegger. Los datos de la familia fueron recolectados por medio de las entrevistas y las observaciones. Cada uno de nosotros contribuye para su existencia, y ella posibilita el desarrollo de nuestro "ser-en el-mundo" al vivenciar y compartir experiencias cotidianas de la familia. Allí surge la posibilidad de compartir un modo de ser en el mundo, un modo de cuidado para "ser familia en el mundo". Un mundo que genera esa unidad de relacionamiento que emerge de sentimientos interligados entre los integrantes, respondiendo a las exigencias de cada miembro, por el sentimiento de pertenencia primaria generado en ellos. Esa unidad da la posibilidad de nacer a cada uno de nosotros, asi también, nos da la posibilidad de poder ser ser humano, llegando a ser un referencial de sí misma en cada ser humano.

  15. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    Claus, R.; ATLAS Collaboration

    2016-07-01

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  16. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    Claus, R.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013–2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  17. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Yildiz, S. C.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.

  18. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R.T.; Huffer, M.; Kocian, M.; Ruckman, L.; Russell, J.; Su, D.; Wittgen, M.; Iakovidis, G.; Iordanidou, K.; Moschovakos, P.; Ntekas, K.; Kwan, K.; Lankford, A.J.; Nelson, A.; Schernau, M.; Schlenker, S.; Valderanis, C.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2

  19. On-Chip Fluorescence Switching System for Constructing a Rewritable Random Access Data Storage Device.

    Nguyen, Hoang Hiep; Park, Jeho; Hwang, Seungwoo; Kwon, Oh Seok; Lee, Chang-Soo; Shin, Yong-Beom; Ha, Tai Hwan; Kim, Moonil

    2018-01-10

    We report the development of on-chip fluorescence switching system based on DNA strand displacement and DNA hybridization for the construction of a rewritable and randomly accessible data storage device. In this study, the feasibility and potential effectiveness of our proposed system was evaluated with a series of wet experiments involving 40 bits (5 bytes) of data encoding a 5-charactered text (KRIBB). Also, a flexible data rewriting function was achieved by converting fluorescence signals between "ON" and "OFF" through DNA strand displacement and hybridization events. In addition, the proposed system was successfully validated on a microfluidic chip which could further facilitate the encoding and decoding process of data. To the best of our knowledge, this is the first report on the use of DNA hybridization and DNA strand displacement in the field of data storage devices. Taken together, our results demonstrated that DNA-based fluorescence switching could be applicable to construct a rewritable and randomly accessible data storage device through controllable DNA manipulations.

  20. A High-Throughput, High-Accuracy System-Level Simulation Framework for System on Chips

    Guanyi Sun

    2011-01-01

    Full Text Available Today's System-on-Chips (SoCs design is extremely challenging because it involves complicated design tradeoffs and heterogeneous design expertise. To explore the large solution space, system architects have to rely on system-level simulators to identify an optimized SoC architecture. In this paper, we propose a system-level simulation framework, System Performance Simulation Implementation Mechanism, or SPSIM. Based on SystemC TLM2.0, the framework consists of an executable SoC model, a simulation tool chain, and a modeling methodology. Compared with the large body of existing research in this area, this work is aimed at delivering a high simulation throughput and, at the same time, guaranteeing a high accuracy on real industrial applications. Integrating the leading TLM techniques, our simulator can attain a simulation speed that is not slower than that of the hardware execution by a factor of 35 on a set of real-world applications. SPSIM incorporates effective timing models, which can achieve a high accuracy after hardware-based calibration. Experimental results on a set of mobile applications proved that the difference between the simulated and measured results of timing performance is within 10%, which in the past can only be attained by cycle-accurate models.

  1. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    AUTHOR|(SzGeCERN)696050; Garelli, N.; Herbst, R.T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A.J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Bartoldus, R.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambe...

  2. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    Claus, R., E-mail: claus@slac.stanford.edu

    2016-07-11

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013–2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  3. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    ATLAS CSC Collaboration; The ATLAS collaboration

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgrade during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chamber...

  4. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    AUTHOR|(SzGeCERN)664042

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf thr...

  5. A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform

    Claus, Richard; The ATLAS collaboration

    2015-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf thro...

  6. Fishing on chips: up-and-coming technological advances in analysis of zebrafish and Xenopus embryos.

    Zhu, Feng; Skommer, Joanna; Huang, Yushi; Akagi, Jin; Adams, Dany; Levin, Michael; Hall, Chris J; Crosier, Philip S; Wlodkowic, Donald

    2014-11-01

    Biotests performed on small vertebrate model organisms provide significant investigative advantages as compared with bioassays that employ cell lines, isolated primary cells, or tissue samples. The main advantage offered by whole-organism approaches is that the effects under study occur in the context of intact physiological milieu, with all its intercellular and multisystem interactions. The gap between the high-throughput cell-based in vitro assays and low-throughput, disproportionally expensive and ethically controversial mammal in vivo tests can be closed by small model organisms such as zebrafish or Xenopus. The optical transparency of their tissues, the ease of genetic manipulation and straightforward husbandry, explain the growing popularity of these model organisms. Nevertheless, despite the potential for miniaturization, automation and subsequent increase in throughput of experimental setups, the manipulation, dispensing and analysis of living fish and frog embryos remain labor-intensive. Recently, a new generation of miniaturized chip-based devices have been developed for zebrafish and Xenopus embryo on-chip culture and experimentation. In this work, we review the critical developments in the field of Lab-on-a-Chip devices designed to alleviate the limits of traditional platforms for studies on zebrafish and clawed frog embryo and larvae. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  7. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Ismail Cevik

    2015-01-01

    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  8. Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes

    Brousse, K.; Huang, P.; Pinaud, S.; Respaud, M.; Daffos, B.; Chaudret, B.; Lethien, C.; Taberna, P. L.; Simon, P.

    2016-10-01

    Carbide derived carbons (CDCs) are promising materials for preparing integrated micro-supercapacitors, as on-chip CDC films are prepared via a process fully compatible with current silicon-based device technology. These films show good adherence on the substrate and high capacitance thanks to their unique nanoporous structure which can be fine-tuned by adjusting the synthesis parameters during chlorination of the metallic carbide precursor. The carbon porosity is mostly related to the synthesis temperature whereas the thickness of the films depends on the chlorination duration. Increasing the pore size allows the adsorption of large solvated ions from organic electrolytes and leads to higher energy densities. Here, we investigated the electrochemical behavior and performance of on-chip TiC-CDC in ionic liquid solvent mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) diluted in either acetonitrile or propylene carbonate via cyclic voltammetry and electrochemical impedance spectroscopy. Thin CDC films exhibited typical capacitive signature and achieved 169 F cm-3 in both electrolytes; 65% of the capacitance was still delivered at 1 V s-1. While increasing the thickness of the films, EMI+ transport limitation was observed in more viscous PC-based electrolyte. Nevertheless, the energy density reached 90 μW h cm-2 in 2M EMIBF4/ACN, confirming the interest of these CDC films for micro-supercapacitors applications.

  9. A Low-Power Integrated Humidity CMOS Sensor by Printing-on-Chip Technology

    Chang-Hung Lee

    2014-05-01

    Full Text Available A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems.

  10. A low-power integrated humidity CMOS sensor by printing-on-chip technology.

    Lee, Chang-Hung; Chuang, Wen-Yu; Cowan, Melissa A; Wu, Wen-Jung; Lin, Chih-Ting

    2014-05-23

    A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene)/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems.

  11. Tuning SERS for living erythrocytes

    Brazhe, Nadezda; Parshina, E.Y.; Khabanova, V.V.

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a unique technique to study submembrane hemoglobin (Hbsm) in erythrocytes. We report the detailed design of SERS experiments on living erythrocytes to estimate dependence of the enhancemen t factor for main Raman bands of Hbsm on silver nanoparticle (Ag......NP) properties. We demonstrate that the enhancement factor for 4/A1g, 10/B1g and A2g Raman bands of Hbsm varies from 105 to 107 under proposed experimental conditions with 473 nm laser excitation. For the first time we show that the enhancement of Raman scattering increases with the increase in the relative...... between small AgNPs and Hbsm and, consequently, leads to the higher enhancement of Raman scattering of Hbsm. The enhancement of higher wavenumber bands 10/B1g and A2g is more sensitive to AgNPs' size and the relative amount of small AgNPs than the enhancement of the lower wavenumber band 4/A1g. This can...

  12. por láser

    Mayra Garcimuño

    2013-01-01

    Full Text Available En el presente trabajo, la técnica Espectroscopia de plasmas producidos por láser (Laser-induced breakdown spectroscopy –LIBS– se aplicó a la determinación cuan- titativa de Na en agua natural dulce, de interés en agricultura para el estudio de la alcalinidad de aguas de regadío. Para efectuar el análisis, se prepararon soluciones con concentraciones conocidas del analito, se mezclaron con óxido de calcio y se compactaron en pastillas sólidas. Los plasmas se produjeron en aire a presión atmos- férica utilizando un láser pulsado Nd:YAG. Se construyó una curva de calibración y se calculó el límite de detección. Se analizaron muestras de agua natural y los resultados se compararon con los obtenidos mediante espectroscopia de absorción atómica. Se demostró la factibilidad del método para la determinación de Na en agua natural dulce.

  13. Development of SERS active fibre sensors

    Polwart, Ewan

    2002-01-01

    Surface-enhanced Raman scattering (SERS) is sensitive and selective and when coupled with fibre-optics could potentially produce an effective chemical sensing system. This thesis concerns the development of a single-fibre-based sensor, with an integral SERS-active substrate. A number of different methods for the manufacture of SERS-active surfaces on glass substrates were investigated and compared. The immobilisation of metal nanoparticles on glass functionalised with (3-aminopropyl)trimethoxysilane emerged as a suitable approach for the production of sensors. Substrates prepared by this approach were characterised using UV-visible spectroscopy, electron microscopy and Raman mapping. It was found that exposure of substrates to laser radiation led to a decrease in the signal recorded from adsorbed analytes. This speed of the decrease was shown to depend on the analyte, and the exciting wavelength and power. SERS-active fibre sensors were produced by immobilisation of silver nanoparticles at the distal end of a (3-aminopropyl)trimethoxysilane-derivatised optical fibre. These sensors were used to obtain spectra with good signal to noise ratios from 4-(benzotriazol-5-ylazo)-3,5-dimethoxyphenylamine and crystal violet. Sensing of dyes in effluent was also investigated. The development of sensors for the measurement of pH, by treating the SERS-active fibre tip with pH sensitive dyes is also described. Spectral changes were observed with these sensors as a response to the pH. Partial least squares regression was used to produce linear calibration models for the pH range 5-11 from which it was possible to predict the pH with an accuracy of ∼0.2 pH units. Some of the limitations of these sensors were explored. The feasibility of using these sensors for measurement of oxygen and thiols, was investigated. The measurement of oxygen using methylene blue as a transducer was demonstrated. Two transduction methodologies--reactions with iron porphyrins and pyrrole-2,5-diones

  14. Systems-on-chip approach for real-time simulation of wheel-rail contact laws

    Mei, T. X.; Zhou, Y. J.

    2013-04-01

    This paper presents the development of a systems-on-chip approach to speed up the simulation of wheel-rail contact laws, which can be used to reduce the requirement for high-performance computers and enable simulation in real time for the use of hardware-in-loop for experimental studies of the latest vehicle dynamic and control technologies. The wheel-rail contact laws are implemented using a field programmable gate array (FPGA) device with a design that substantially outperforms modern general-purpose PC platforms or fixed architecture digital signal processor devices in terms of processing time, configuration flexibility and cost. In order to utilise the FPGA's parallel-processing capability, the operations in the contact laws algorithms are arranged in a parallel manner and multi-contact patches are tackled simultaneously in the design. The interface between the FPGA device and the host PC is achieved by using a high-throughput and low-latency Ethernet link. The development is based on FASTSIM algorithms, although the design can be adapted and expanded for even more computationally demanding tasks.

  15. Integration of systems biology with organs-on-chips to humanize therapeutic development

    Edington, Collin D.; Cirit, Murat; Chen, Wen Li Kelly; Clark, Amanda M.; Wells, Alan; Trumper, David L.; Griffith, Linda G.

    2017-02-01

    "Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance.

  16. Determination of aminoglycoside antibiotics using an on-chip microfluidic device with chemiluminescence detection

    Sierra-Rodero, M.; Fernandez-Romero, J.M.; Gomez-Hens, A.

    2012-01-01

    We describe an on-chip microflow injection (μFI) approach for the determination of aminoglycoside antibiotics using chemiluminescence (CL) detection. The method is based on the inhibition of the Cu(II)-catalyzed CL reaction of luminol and hydrogen peroxide by the aminoglycosides due to the formation of a complex between the antibiotic and Cu(II). The main features of the method include small sample volumes and a fast response. Syringe pumps were used to insert the sample and the reagents into the microfluidic device. CL was collected using a fiber optic bundle connected to a luminescence detector. All instrumental, hydrodynamic and chemical variables involved in the system were optimized using neomycin as the aminoglycoside model. Inhibition is proportional to the concentration of the antibiotics. The dynamic ranges of the calibration graphs obtained for neomycin, streptomycin and amikacin are 0.3-3.3, 0.9-13.7, and 0.8-8.5 μmol L -1 , and the detection limits are 0.09, 0.28 and 0.24 μmol L -1 , respectively. The precision of the methods, expressed as relative standard deviation, is in the range from 0.8 to 5.0 %. The method was successfully applied to the determination of neomycin in water samples, with recoveries ranging from 80 to 120 %. (author)

  17. New movable plate for efficient millimeter wave vertical on-chip antenna

    Marnat, Loic; Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Galicia Martinez, Miguel Angel; Foulds, Ian G.; Shamim, Atif

    2013-01-01

    A new movable plate concept is presented in this paper to realize mm-wave vertical on-chip antennas through MEMS based post-processing steps in a CMOS compatible process. By virtue of its vertical position, the antenna is isolated from the lossy Si substrate and hence performs with a better efficiency as compared to the horizontal position. In addition, the movable plate concept enables polarization diversity by providing both horizontal and vertical polarizations on the same chip. Through a first iteration fractal bowtie antenna design, dual band (60 and 77 GHz) operation is demonstrated in both horizontal and vertical positions without any change in dimensions or use of switches for two different mediums (Si and air). To support the movable plate concept, the transmission line and antenna are designed on a flexible polyamide, where the former has been optimized to operate in the bent position. The design is highly suitable for compact, low cost and efficient SoC solutions. © 1963-2012 IEEE.

  18. A new equivalent circuit model for on-chip spiral transformers in CMOS RFICs

    Wei Jiaju; Wang Zhigong; Li Zhiqun; Tang Lu

    2012-01-01

    A new compact model has been introduced to model on-chip spiral transformers. Unlike conventional models, which are often a compound of two spiral inductor models (i.e., the combination of two coupled Π or 2-Π sub-circuits), our new model only uses 12 elements to model the whole structure in the form of T topology. The new model is based on the physical meaning, and the process of model derivation is also presented. In addition, a simple parameter extraction procedure is proposed to get the elements' values without any fitting and optimization. In this procedure, a new method has been developed for the parameter extraction of the ladder circuit, which is commonly used to represent the skin effect. In order to verify the model's validity and accuracy, we have compared the simulated and measured self-inductance, quality factor, coupling coefficient and insertion loss, and an excellent agreement has been found over a broad frequency range up to the resonant frequency. (semiconductor integrated circuits)

  19. Programmable System-on-Chip (PSoC) Embedded Readout Designs for Liquid Helium Level Sensors.

    Parasakthi, C; Gireesan, K; Usha Rani, R; Sheela, O K; Janawadkar, M P

    2014-08-01

    This article reports the development of programmable system-on-chip (PSoC)-based embedded readout designs for liquid helium level sensors using resistive liquid vapor discriminators. The system has been built for the measurement of liquid helium level in a concave-bottomed, helmet-shaped, fiber-reinforced plastic cryostat for magnetoencephalography. This design incorporates three carbon resistors as cost-effective sensors, which are mounted at desired heights inside the cryostat and were used to infer the liquid helium level by measuring their temperature-dependent resistance. Localized electrical heating of the carbon resistors was used to discriminate whether the resistor is immersed in liquid helium or its vapor by exploiting the difference in the heat transfer rates in the two environments. This report describes a single PSoC chip for the design and development of a constant current source to drive the three carbon resistors, a multiplexer to route the sensor outputs to the analog-to-digital converter (ADC), a buffer to avoid loading of the sensors, an ADC for digitizing the data, and a display using liquid crystal display cum light-emitting diode modules. The level sensor readout designed with a single PSoC chip enables cost-effective and reliable measurement system design. © 2014 Society for Laboratory Automation and Screening.

  20. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Towards on-chip integration of brain imaging photodetectors using standard CMOS process.

    Kamrani, Ehsan; Lesage, Frederic; Sawan, Mohamad

    2013-01-01

    The main effects of on-chip integration on the performance and efficiency of silicon avalanche photodiode (SiAPD) and photodetector front-end is addressed in this paper based on the simulation and fabrication experiments. Two different silicon APDs are fabricated separately and also integrated with a transimpedance amplifier (TIA) front-end using standard CMOS technology. SiAPDs are designed in p+/n-well structure with guard rings realized in different shapes. The TIA front-end has been designed using distributed-gain concept combined with resistive-feedback and common-gate topology to reach low-noise and high gain-bandwidth product (GBW) characteristics. The integrated SiAPDs show higher signal-to-noise ratio (SNR), sensitivity and detection efficiency comparing to the separate SiAPDs. The integration does not show a significant effect on the gain and preserves the low power consumption. Using APDs with p-well guard-ring is preferred due to the higher observed efficiency after integration.

  2. A UHF RFID system with on-chip-antenna tag for short range communication

    Peng Qi; Zhang Chun; Zhao Xijin; Wang Zhihua

    2015-01-01

    A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm 2 , which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna. (paper)

  3. Computational sensing of herpes simplex virus using a cost-effective on-chip microscope

    Ray, Aniruddha

    2017-07-03

    Caused by the herpes simplex virus (HSV), herpes is a viral infection that is one of the most widespread diseases worldwide. Here we present a computational sensing technique for specific detection of HSV using both viral immuno-specificity and the physical size range of the viruses. This label-free approach involves a compact and cost-effective holographic on-chip microscope and a surface-functionalized glass substrate prepared to specifically capture the target viruses. To enhance the optical signatures of individual viruses and increase their signal-to-noise ratio, self-assembled polyethylene glycol based nanolenses are rapidly formed around each virus particle captured on the substrate using a portable interface. Holographic shadows of specifically captured viruses that are surrounded by these self-assembled nanolenses are then reconstructed, and the phase image is used for automated quantification of the size of each particle within our large field-of-view, ~30 mm2. The combination of viral immuno-specificity due to surface functionalization and the physical size measurements enabled by holographic imaging is used to sensitively detect and enumerate HSV particles using our compact and cost-effective platform. This computational sensing technique can find numerous uses in global health related applications in resource-limited environments.

  4. New movable plate for efficient millimeter wave vertical on-chip antenna

    Marnat, Loic

    2013-04-01

    A new movable plate concept is presented in this paper to realize mm-wave vertical on-chip antennas through MEMS based post-processing steps in a CMOS compatible process. By virtue of its vertical position, the antenna is isolated from the lossy Si substrate and hence performs with a better efficiency as compared to the horizontal position. In addition, the movable plate concept enables polarization diversity by providing both horizontal and vertical polarizations on the same chip. Through a first iteration fractal bowtie antenna design, dual band (60 and 77 GHz) operation is demonstrated in both horizontal and vertical positions without any change in dimensions or use of switches for two different mediums (Si and air). To support the movable plate concept, the transmission line and antenna are designed on a flexible polyamide, where the former has been optimized to operate in the bent position. The design is highly suitable for compact, low cost and efficient SoC solutions. © 1963-2012 IEEE.

  5. Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields

    Pechal, M.; Besse, J.-C.; Mondal, M.; Oppliger, M.; Gasparinetti, S.; Wallraff, A.

    2016-08-01

    A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not limited to quantum-information processing, communication, and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100 MHz, is capable of handling photon fluxes on the order of 1 05 μ s-1 , equivalent to powers exceeding -90 dBm , and can be switched within approximately 6-8 ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route nonclassical itinerant microwave fields at the single-photon level.

  6. On-Chip Sorting of Long Semiconducting Carbon Nanotubes for Multiple Transistors along an Identical Array.

    Otsuka, Keigo; Inoue, Taiki; Maeda, Etsuo; Kometani, Reo; Chiashi, Shohei; Maruyama, Shigeo

    2017-11-28

    Ballistic transport and sub-10 nm channel lengths have been achieved in transistors containing one single-walled carbon nanotube (SWNT). To fill the gap between single-tube transistors and high-performance logic circuits for the replacement of silicon, large-area, high-density, and purely semiconducting (s-) SWNT arrays are highly desired. Here we demonstrate the fabrication of multiple transistors along a purely semiconducting SWNT array via an on-chip purification method. Water- and polymer-assisted burning from site-controlled nanogaps is developed for the reliable full-length removal of metallic SWNTs with the damage to s-SWNTs minimized even in high-density arrays. All the transistors with various channel lengths show large on-state current and excellent switching behavior in the off-state. Since our method potentially provides pure s-SWNT arrays over a large area with negligible damage, numerous transistors with arbitrary dimensions could be fabricated using a conventional semiconductor process, leading to SWNT-based logic, high-speed communication, and other next-generation electronic devices.

  7. On-chip bio-analyte detection utilizing the velocity of magnetic microparticles in a fluid

    Giouroudi, Ioanna

    2011-03-22

    A biosensing principle utilizing the motion of suspended magnetic microparticles in a microfluidic system is presented. The system utilizes the innovative concept of the velocity dependence of magnetic microparticles (MPs) due to their volumetric change when analyte is attached to their surface via antibody–antigen binding. When the magnetic microparticles are attracted by a magnetic field within a microfluidic channel their velocity depends on the presence of analyte. Specifically, their velocity decreases drastically when the magnetic microparticles are covered by (nonmagnetic) analyte (LMPs) due to the increased drag force in the opposite direction to that of the magnetic force. Experiments were carried out as a proof of concept. A promising 52% decrease in the velocity of the LMPs in comparison to that of the MPs was measured when both of them were accelerated inside a microfluidic channel using an external permanent magnet. The presented biosensing methodology offers a compact and integrated solution for a new kind of on-chip analysis with potentially high sensitivity and shorter acquisition time than conventional laboratory based systems.

  8. An On-Chip RBC Deformability Checker Significantly Improves Velocity-Deformation Correlation

    Chia-Hung Dylan Tsai

    2016-10-01

    Full Text Available An on-chip deformability checker is proposed to improve the velocity–deformation correlation for red blood cell (RBC evaluation. RBC deformability has been found related to human diseases, and can be evaluated based on RBC velocity through a microfluidic constriction as in conventional approaches. The correlation between transit velocity and amount of deformation provides statistical information of RBC deformability. However, such correlations are usually only moderate, or even weak, in practical evaluations due to limited range of RBC deformation. To solve this issue, we implemented three constrictions of different width in the proposed checker, so that three different deformation regions can be applied to RBCs. By considering cell responses from the three regions as a whole, we practically extend the range of cell deformation in the evaluation, and could resolve the issue about the limited range of RBC deformation. RBCs from five volunteer subjects were tested using the proposed checker. The results show that the correlation between cell deformation and transit velocity is significantly improved by the proposed deformability checker. The absolute values of the correlation coefficients are increased from an average of 0.54 to 0.92. The effects of cell size, shape and orientation to the evaluation are discussed according to the experimental results. The proposed checker is expected to be useful for RBC evaluation in medical practices.

  9. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor

    David, Catalina; Guillot, Nicolas; Chapelle, Marc Lamy de la [Laboratoire CSPBAT (FRE 3043), UFR SMBH, Universite Paris XIII, 74 rue Marcel Cachin, F-93017 Bobigny (France); Shen, Hong; Toury, Timothee, E-mail: marc.lamydelachapelle@univ-paris13.fr [ICD-LNIO-UMR, CNRS 6279, Universite de technologie de Troyes, 12 rue Marie Curie, F-10010 Troyes (France)

    2010-11-26

    In this paper we highlight the accurate spectral detection of bovine serum albumin and ribonuclease-A using a surface-enhanced Raman scattering (SERS) substrate based on gold nanocylinders obtained by electron-beam lithography (EBL). The nanocylinders have diameters from 100 to 180 nm with a gap of 200 nm. We demonstrate that optimizing the size and the shape of the lithographed gold nanocylinders, we can obtain SERS spectra of proteins at low concentration. This SERS study enabled us to estimate high enhancement factors (10{sup 5} for BSA and 10{sup 7} for RNase-A) of important bands in the protein Raman spectrum measured for 1 mM concentration. We demonstrate that, to reach the highest enhancement, it is necessary to optimize the SERS signal and that the main parameter of optimization is the LSPR position. The LSPR have to be suitably located between the laser excitation wavelength, which is 632.8 nm, and the position of the considered Raman band. Our study underlines the efficiency of gold nanocylinder arrays in the spectral detection of proteins.

  10. Development of optimized nanogap plasmonic substrate for improved SERS enhancement

    Jayakumar Perumal

    2017-05-01

    Full Text Available SERS enhancement factor (EF of planar substrates depends on the size and shape of the fine nanostructure forming a defect free, well-arranged matrix. Nano-lithographic process is considered to be the most advanced methods employed for the fabrication SERS substrates. Nanostructured plasmonic substrates with nanogap (NG pattern often results in stable, efficient and reproducible SERS enhancement. For such substrates, NG and their diagonal length (DL need to be optimized. Theoretically smaller NGs (∼30-40 nm or smaller results in higher SERS enhancement. However, fabrication of NG substrates below such limit is a challenge even for the most advanced lithography process. In this context, herein, we report the optimization of fabrication process, where higher SERS enhancement can be realized from larger NGs substrates by optimizing their DL of nanostructures between the NGs. Based on simulation we could demonstrate that, by optimizing the DL, SERS enhancement from larger NG substrate such as 60 and 80 nm could be comparable to that of smaller (40nm NG substrates. We envision that this concept will open up new regime in the nanofabrication of practically feasible NG based plasmonic substrates with higher SERS enhancement. Initial results of our experiments are in close agreement with our simulated study.

  11. El Segundo Cerebro del ser humano.

    Rocío Ponce

    2015-01-01

    Existen dos tipos de cerebros, el conocido por todos formado por el sistema nervioso central, que sería el cerebro donde las emociones se forman en base a las experiencias anteriores. El segundo cerebro, el otro, ignorado por la mayoría de seres humanos es el cerebro que está en los intestinos, Sistema Nervioso Enteral o mesentérico, que se caracteriza por la relación del cerebro y aparato digestivo, este cerebro posee más neuronas que su par, guarda emociones, determina la respuesta de acuer...

  12. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

    Ismail Cevik

    2015-03-01

    Full Text Available An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT-based power management system (PMS is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  13. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U

    2015-03-06

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  14. CMOS On-Chip Optoelectronic Neural Interface Device with Integrated Light Source for Optogenetics

    Sawadsaringkarn, Y; Kimura, H; Maezawa, Y; Nakajima, A; Kobayashi, T; Sasagawa, K; Noda, T; Tokuda, T; Ohta, J

    2012-01-01

    A novel optoelectronic neural interface device is proposed for target applications in optogenetics for neural science. The device consists of a light emitting diode (LED) array implemented on a CMOS image sensor for on-chip local light stimulation. In this study, we designed a suitable CMOS image sensor equipped with on-chip electrodes to drive the LEDs, and developed a device structure and packaging process for LED integration. The prototype device produced an illumination intensity of approximately 1 mW with a driving current of 2.0 mA, which is expected to be sufficient to activate channelrhodopsin (ChR2). We also demonstrated the functions of light stimulation and on-chip imaging using a brain slice from a mouse as a target sample.

  15. Scalable Motion Estimation Processor Core for Multimedia System-on-Chip Applications

    Lai, Yeong-Kang; Hsieh, Tian-En; Chen, Lien-Fei

    2007-04-01

    In this paper, we describe a high-throughput and scalable motion estimation processor architecture for multimedia system-on-chip applications. The number of processing elements (PEs) is scalable according to the variable algorithm parameters and the performance required for different applications. Using the PE rings efficiently and an intelligent memory-interleaving organization, the efficiency of the architecture can be increased. Moreover, using efficient on-chip memories and a data management technique can effectively decrease the power consumption and memory bandwidth. Techniques for reducing the number of interconnections and external memory accesses are also presented. Our results demonstrate that the proposed scalable PE-ringed architecture is a flexible and high-performance processor core in multimedia system-on-chip applications.

  16. Ser do tempo em Bergson

    Coelho,Jonas Gonçalves

    2004-01-01

    O artigo apresenta a concepção bergsoniana de duração. Pretende-se mostrar que, segundo Bergson, o tempo dos filósofos e cientistas é um tempo fictício, um esquema espacial que oculta a natureza do tempo real, o qual não pode ser separado dos acontecimentos físicos e psicológicos. Para Bergson, o tempo real é sucessão, continuidade, mudança, memória e criação. El presente artículo trata de la concepción bergsoniana de duración. Pretendemos mostrar que, según Bergson, el tiempo de los filós...

  17. Ser do tempo em Bergson

    Coelho, Jonas Gonçalves

    2004-01-01

    O artigo apresenta a concepção bergsoniana de duração. Pretende-se mostrar que, segundo Bergson, o tempo dos filósofos e cientistas é um tempo fictício, um esquema espacial que oculta a natureza do tempo real, o qual não pode ser separado dos acontecimentos físicos e psicológicos. Para Bergson, o tempo real é sucessão, continuidade, mudança, memória e criação. We considered Bergson's duration concept. We intended to show that, according to Bergson, the time of philosophers and scientists i...

  18. for SERS and Photocatalytic Applications

    Xue Chen

    2011-01-01

    Full Text Available ZnS/Si nanocables were synthesized via a simple two-step thermal evaporation method. The shape and diameter of the ZnS/Si nanocables can be controlled by adjusting the morphologies of the ZnS nanostructures (nanowire or nanoribbon obtained in the first step and the deposition time of the Si shell in the second step, respectively. Furthermore, we obtained polycrystalline Si nanotubes with different shapes and diameters by etching away the inner ZnS core. The as-prepared Si nanotubes were employed as SERS-active substrates, which exhibited a high sensitivity for the detection of R6G. The Si nanotubes also showed effective photocatalytic activity on the decomposition of R6G under the irradiation of visible light.

  19. Stiffness-Independent Highly Efficient On-Chip Extraction of Cell-Laden Hydrogel Microcapsules from Oil Emulsion into Aqueous Solution by Dielectrophoresis.

    Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory; He, Xiaoming

    2015-10-28

    A dielectrophoresis (DEP)-based method achieves highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension forces with no trapped oil, while the encapsulated cells are free from electrical damage due to the Faraday cage effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Advanced Technology for Ultra-Low Power System-on-Chip (SoC)

    2017-06-01

    was proposed for lower power applications with Ioff=10pA/μm and VDD=0.5V. In this project, the optimized structure shows great potential in both Lg...AFRL-RY-WP-TR-2017-0115 ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON-CHIP (SoC) Jason Woo, Weicong Li, and Peng Lu University of California...September 2015 – 31 March 2017 4. TITLE AND SUBTITLE ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON- CHIP (SoC) 5a. CONTRACT NUMBER FA8650-15-1-7574 5b

  1. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications

    Kiyotaka Sasagawa

    2010-12-01

    Full Text Available In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors’ architecture on the basis of the type of electric measurement or imaging functionalities.

  2. Autonomic networking-on-chip bio-inspired specification, development, and verification

    Cong-Vinh, Phan

    2011-01-01

    Despite the growing mainstream importance and unique advantages of autonomic networking-on-chip (ANoC) technology, Autonomic Networking-On-Chip: Bio-Inspired Specification, Development, and Verification is among the first books to evaluate research results on formalizing this emerging NoC paradigm, which was inspired by the human nervous system. The FIRST Book to Assess Research Results, Opportunities, & Trends in ""BioChipNets"" The third book in the Embedded Multi-Core Systems series from CRC Press, this is an advanced technical guide and reference composed of contributions from prominent re

  3. Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices.

    Zhang, Qiming; Li, Ming; Hao, Qiang; Deng, Dinghuan; Zhou, Hui; Zeng, Heping; Zhan, Li; Wu, Xiang; Liu, Liying; Xu, Lei

    2010-11-15

    Chalcogenide (As(2)S(3)) nanofibers as narrow as 200 nm in diameter are drawn by the fiber pulling method, are successfully embedded in SU8 polymer, and form on-chip waveguides and high-Q microknot resonators (Q = 3.9 × 10(4)) with smooth cleaved end faces. Resonance tuning of resonators is realized by localized laser irradiation. Strong supercontinuum generation with a bandwidth of 500 nm is achieved in a 7-cm-long on-chip chalcogenide waveguide. Our result provides a method for the development of compact, high-optical-quality, and robust photonic devices.

  4. On-Chip Microfluidic Components for In Situ Analysis, Separation, and Detection of Amino Acids

    Zheng, Yun; Getty, Stephanie; Dworkin, Jason; Balvin, Manuel; Kotecki, Carl

    2013-01-01

    The Astrobiology Analytical Laboratory at GSFC has identified amino acids in meteorites and returned cometary samples by using liquid chromatography-electrospray ionization time-of-flight mass spectrometry (LCMS). These organic species are key markers for life, having the property of chirality that can be used to distinguish biological from non-biological amino acids. One of the critical components in the benchtop instrument is liquid chromatography (LC) analytical column. The commercial LC analytical column is an over- 250-mm-long and 4.6-mm-diameter stainless steel tube filled with functionized microbeads as stationary phase to separate the molecular species based on their chemistry. Miniaturization of this technique for spaceflight is compelling for future payloads for landed missions targeting astrobiology objectives. A commercial liquid chromatography analytical column consists of an inert cylindrical tube filled with a stationary phase, i.e., microbeads, that has been functionalized with a targeted chemistry. When analyte is sent through the column by a pressurized carrier fluid (typically a methanol/ water mixture), compounds are separated in time due to differences in chemical interactions with the stationary phase. Different species of analyte molecules will interact more strongly with the column chemistry, and will therefore take longer to traverse the column. In this way, the column will separate molecular species based on their chemistry. A lab-on-chip liquid analysis tool was developed. The microfluidic analytical column is capable of chromatographically separating biologically relevant classes of molecules based on their chemistry. For this analytical column, fabrication, low leak rate, and stationary phase incorporation of a serpentine microchannel were demonstrated that mimic the dimensions of a commercial LC column within a 5 10 1 mm chip. The microchannel in the chip has a 75- micrometer-diameter oval-shaped cross section. The serpentine

  5. Excimer laser micropatterning of freestanding thermo-responsive hydrogel layers for cells-on-chip applications

    Santaniello, Tommaso; Milani, Paolo; Lenardi, Cristina; Martello, Federico; Tocchio, Alessandro; Gassa, Federico; Webb, Patrick

    2012-01-01

    We report a novel reliable and repeatable technologic manufacturing protocol for the realization of micro-patterned freestanding hydrogel layers based on thermo-responsive poly-(N-isopropyl)acrylamide (PNIPAAm), which have potential to be employed as temperature-triggered smart surfaces for cells-on-chip applications. PNIPAAm-based films with controlled mechanical properties and different thicknesses (100–300 µm thickness) were prepared by injection compression moulding at room temperature. A 9 × 9 array of 20 µm diameter through-holes is machined by means of the KrF excimer laser on dry PNIPAAm films which are physically attached to flat polyvinyl chloride (PVC) substrates. Machining parameters, such as fluence and number of shots, are optimized in order to achieve highly resolved features. Micro-structured freestanding films are then easily obtained after hydrogels are detached from PVC by gradually promoting the film swelling in ethanol. In the PNIPAAm water-swollen state, the machined holes’ diameter approaches a slight larger value (30 µm) according to the measured hydrogel swelling ratio. Thermo-responsive behaviour and through-hole tapering characterization are carried out by metrology measurements using an optical inverted and confocal microscope setup, respectively. After the temperature of freestanding films is raised above 32 °C, we observe that the shrinkage of the whole through-hole array occurs, thus reducing the holes’ diameter to less than a half its original size (about 15 µm) as a consequence of the film dehydration. Different holes’ diameters (10 and 30 µm) are also obtained on dry hydrogel employing suitable projection masks, showing similar shrinking behaviour when hydrated and undergone thermo-response tests. Thermo-responsive PNIPAAm-based freestanding layers could then be integrated with other suitable micro-fabricated thermoplastic components in order to preliminary test their feasibility in operating as temperature

  6. Reducing weight precision of convolutional neural networks towards large-scale on-chip image recognition

    Ji, Zhengping; Ovsiannikov, Ilia; Wang, Yibing; Shi, Lilong; Zhang, Qiang

    2015-05-01

    In this paper, we develop a server-client quantization scheme to reduce bit resolution of deep learning architecture, i.e., Convolutional Neural Networks, for image recognition tasks. Low bit resolution is an important factor in bringing the deep learning neural network into hardware implementation, which directly determines the cost and power consumption. We aim to reduce the bit resolution of the network without sacrificing its performance. To this end, we design a new quantization algorithm called supervised iterative quantization to reduce the bit resolution of learned network weights. In the training stage, the supervised iterative quantization is conducted via two steps on server - apply k-means based adaptive quantization on learned network weights and retrain the network based on quantized weights. These two steps are alternated until the convergence criterion is met. In this testing stage, the network configuration and low-bit weights are loaded to the client hardware device to recognize coming input in real time, where optimized but expensive quantization becomes infeasible. Considering this, we adopt a uniform quantization for the inputs and internal network responses (called feature maps) to maintain low on-chip expenses. The Convolutional Neural Network with reduced weight and input/response precision is demonstrated in recognizing two types of images: one is hand-written digit images and the other is real-life images in office scenarios. Both results show that the new network is able to achieve the performance of the neural network with full bit resolution, even though in the new network the bit resolution of both weight and input are significantly reduced, e.g., from 64 bits to 4-5 bits.

  7. Self-Powered Functional Device Using On-Chip Power Generation

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  8. A Network Traffic Generator Model for Fast Network-on-Chip Simulation

    Mahadevan, Shankar; Angiolini, Frederico; Storgaard, Michael

    2005-01-01

    For Systems-on-Chip (SoCs) development, a predominant part of the design time is the simulation time. Performance evaluation and design space exploration of such systems in bit- and cycle-true fashion is becoming prohibitive. We propose a traffic generation (TG) model that provides a fast...

  9. Standardized and modular microfluidic platform for fast lab on chip system development

    Dekker, Stefan; van den Berg, Albert; Odijk, Mathieu; Lee, Abraham; DeVoe, Don

    2017-01-01

    This paper reports a modular microfluidic system with standardized parts, enabling rapid prototyping of lab on chip systems. Herewith contributing to the technology transfer from academy to industry. The use of standardized parts also makes it possible to design a microfluidic systems in a top down

  10. Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light

    Daloglu, Mustafa Ugur; Ray, Aniruddha; Gorocs, Zoltan; Xiong, Matthew; Malik, Ravinder; Bitan, Gal; McLeod, Euan; Ozcan, Aydogan

    2017-01-01

    wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm2 using an on-chip imaging platform, where the sample

  11. Two-Dimensional Programmable Manipulation of Magnetic Nanoparticles on-Chip

    Sarella, Anandakumar; Torti, Andrea; Donolato, Marco

    2014-01-01

    A novel device is designed for on-chip selective trap and two-dimensional remote manipulation of single and multiple fluid-borne magnetic particles using field controlled magnetic domain walls in circular nanostructures. The combination of different ring-shaped nanostructures and field sequences ...

  12. A low-cost 2D fluorescence detection system for mm sized beads on-chip

    Segerink, Loes Irene; Koster, Maarten J.; Sprenkels, A.J.; van den Berg, Albert

    2012-01-01

    In this paper we describe a compact fluorescence detection system for on-chip analysis of beads, comprising a low-cost optical HD-DVD pickup. The complete system consists of a fluorescence detection unit, a control unit and a microfluidic chip containing microchannels and optical markers. With these

  13. On-chip COMA cache-coherence protocol for microgrids of microthreaded cores

    Zhang, L.; Jesshope, C.

    2008-01-01

    This paper describes an on-chip COMA cache coherency protocol to support the microthread model of concurrent program composition. The model gives a sound basis for building multi-core computers as it captures concurrency, abstracts communication and identifies resources, such as processor groups

  14. Global On-Chip Differential Interconnects with Optimally-Placed Twists

    Mensink, E.; Schinkel, Daniel; Klumperink, Eric A.M.; van Tuijl, Adrianus Johannes Maria; Nauta, Bram

    2005-01-01

    Global on-chip communication is receiving quite some attention as global interconnects are rapidly becoming a speed, power and reliability bottleneck for digital CMOS systems. Recently, we proposed a bus-transceiver test chip in 0.13 μm CMOS using 10 mm long uninterrupted differential interconnects

  15. Self-Powered Functional Device Using On-Chip Power Generation

    Hussain, Muhammad Mustafa

    2012-01-01

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  16. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits

    Donolato, Marco; Vavassori, Paolo; Gobbi, Marco

    2010-01-01

    Geometrically constrained magnetic domain walls (DWs) in magnetic nanowires can be manipulated at the nanometer scale. The inhomogeneous magnetic stray field generated by a DW can capture a magnetic nanoparticle in solution. On-chip nanomanipulation of individual magnetic beads coated with proteins...

  17. Power Efficient Gigabit Communication Over Capacitively Driven RC-Limited On-Chip Interconnects

    Mensink, E.; Schinkel, Daniel; Klumperink, Eric A.M.; van Tuijl, Adrianus Johannes Maria; Nauta, Bram

    2010-01-01

    Abstract—This paper presents a set of circuit techniques to achieve high data rate point-to-point communication over long on-chip RC-limited wire-pairs. The ideal line termination impedances for a flat transfer function with linear phase (pure delay) are derived, using an s-parameter wire-pair

  18. Synthesis and Layout of an Asynchronous Network-on-Chip using Standard EDA Tools

    Müller, Christoph; Kasapaki, Evangelia; Sørensen, Rasmus Bo

    2014-01-01

    is the key role that clock signals play in specifying time-constraints for the synthesis. In this paper explain how we handled the synthesis and layout of an asynchronous network-on-chip for a multi-core platform. Focus is on the design process while the actual NOC-design and its performance are presented...

  19. Heat management in integrated circuits on-chip and system-level monitoring and cooling

    Ogrenci-Memik, Seda

    2016-01-01

    This essential overview covers the subject of thermal monitoring and management in integrated circuits. Specifically, it focuses on devices and materials that are intimately integrated on-chip (as opposed to in-package or on-board) for the purposes of thermal monitoring and thermal management.

  20. An On-Chip interconnect and protocol stack for multiple communication paradigms and programming models

    Hansson, A.; Goossens, Kees

    2009-01-01

    A growing number of applications, with diverse requirements, are integrated on the same System on Chip (SoC) in the form of hardware and software Intellectual Property (IP). The diverse requirements, coupled with the IPs being developed by unrelated design teams, lead to multiple communication

  1. An on-chip interconnect and protocol stack for multiple communication paradigms and programming models

    Hansson, M.A.; Goossens, K.G.W.

    2009-01-01

    A growing number of applications, with diverse requirements, are integrated on the same System on Chip (SoC) in the form of hardware and software Intellectual Property (IP). The diverse requirements, coupled with the IPs being developed by unrelated design teams, lead to multiple communication

  2. Dynamic magnetic particle actuation for integrated lab-on-chip biosensing

    Jong, de A.M.; Reenen, van A.; Prins, M.W.J.

    2014-01-01

    The demand for easy to use and cost effective medical technologies inspires scientists to develop innovative lab-on-chip technologies for in-vitro diagnostic testing. We study the use of magnetic particles actuated by magnetic fields to perform different microfluidic handling steps of an integrated

  3. Vertical Integration of System-on-Chip Concepts in the Digital Design Curriculum

    Tang, Ying; Head, L. M.; Ramachandran, R. P.; Chatman, L. M.

    2011-01-01

    The rapid evolution of System-on-Chip (SoC) challenges academic curricula to keep pace with multidisciplinary/interdisciplinary system thinking. This paper presents a curricular prototype that cuts across artificial course boundaries and provides a meaningful exploration of diverse facets of SoC design. Specifically, experimental contents of a…

  4. Cache aware mapping of streaming apllications on a multiprocessor system-on-chip

    Moonen, A.J.M.; Bekooij, M.J.G.; Berg, van den R.M.J.; Meerbergen, van J.; Sciuto, D.; Peng, Z.

    2008-01-01

    Efficient use of the memory hierarchy is critical for achieving high performance in a multiprocessor system- on-chip. An external memory that is shared between processors is a bottleneck in current and future systems. Cache misses and a large cache miss penalty contribute to a low processor

  5. On-chip measurements of Brownian relaxation of magnetic beads with diameters from 10 nm to 250 nm

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    We demonstrate the use of planar Hall effect magnetoresistive sensors for AC susceptibility measurements of magnetic beads with frequencies ranging from DC to 1 MHz. This wide frequency range allows for measuring Brownian relaxation of magnetic beads with diameters ranging from 10 nm to 250 nm....... Brownian relaxation is measured for six different magnetic bead types and their hydrodynamic diameters are determined. The hydrodynamic diameters are found to be within 40% of the nominal bead diameters. We discuss the applicability of the different bead types for volume-based biosensing with respect...... to sedimentation, magnetic trapping, and signal per bead. Among the investigated beads, we conclude that the beads with a nominal diameter of 80 nm are best suited for future on-chip volume-based biosensing experiments using planar Hall effect sensors....

  6. Organs-on-Chips in Drug Development: The Importance of Involving Stakeholders in Early Health Technology Assessment

    Middelkamp, Heleen H.T.; van der Meer, Andries Dirk; Hummel, J. Marjan; Stamatialis, Dimitrios; Mummery, Christine Lindsay; Passier, Petrus Christianus Johannes Josephus; IJzerman, Maarten Joost

    2016-01-01

    Organs-on-chips are three-dimensional, microfluidic cell culture systems that simulate the function of tissues and organ subunits. Organ-on-chip systems are expected to contribute to drug candidate screening and the reduction of animal tests in preclinical drug development and may increase

  7. Shuffle-Exchange Mesh Topology for Networks-on-Chip

    Sabbaghi-Nadooshan, Reza; Modarressi, Mehdi; Sarbazi-Azad, Hamid

    2010-01-01

    The mesh topology has been used in a variety of interconnection network applications especially for NoC designs due to its desirable properties in VLSI implementation. In this chapter, we proposed a new topology based on the shuffle-exchange topology, the 2D

  8. Homogeneous and Heterogeneous MPSoC Architectures with Network-On-Chip Connectivity for Low-Power and Real-Time Multimedia Signal Processing

    Sergio Saponara

    2012-01-01

    Full Text Available Two multiprocessor system-on-chip (MPSoC architectures are proposed and compared in the paper with reference to audio and video processing applications. One architecture exploits a homogeneous topology; it consists of 8 identical tiles, each made of a 32-bit RISC core enhanced by a 64-bit DSP coprocessor with local memory. The other MPSoC architecture exploits a heterogeneous-tile topology with on-chip distributed memory resources; the tiles act as application specific processors supporting a different class of algorithms. In both architectures, the multiple tiles are interconnected by a network-on-chip (NoC infrastructure, through network interfaces and routers, which allows parallel operations of the multiple tiles. The functional performances and the implementation complexity of the NoC-based MPSoC architectures are assessed by synthesis results in submicron CMOS technology. Among the large set of supported algorithms, two case studies are considered: the real-time implementation of an H.264/MPEG AVC video codec and of a low-distortion digital audio amplifier. The heterogeneous architecture ensures a higher power efficiency and a smaller area occupation and is more suited for low-power multimedia processing, such as in mobile devices. The homogeneous scheme allows for a higher flexibility and easier system scalability and is more suited for general-purpose DSP tasks in power-supplied devices.

  9. Invited Article: Acousto-optic finite-difference frequency-domain algorithm for first-principles simulations of on-chip acousto-optic devices

    Yu Shi

    2017-02-01

    Full Text Available We introduce a finite-difference frequency-domain algorithm for coupled acousto-optic simulations. First-principles acousto-optic simulation in time domain has been challenging due to the fact that the acoustic and optical frequencies differ by many orders of magnitude. We bypass this difficulty by formulating the interactions between the optical and acoustic waves rigorously as a system of coupled nonlinear equations in frequency domain. This approach is particularly suited for on-chip devices that are based on a variety of acousto-optic interactions such as the stimulated Brillouin scattering. We validate our algorithm by simulating a stimulated Brillouin scattering process in a suspended waveguide structure and find excellent agreement with coupled-mode theory. We further provide an example of a simulation for a compact on-chip resonator device that greatly enhances the effect of stimulated Brillouin scattering. Our algorithm should facilitate the design of nanophotonic on-chip devices for the harnessing of photon-phonon interactions.

  10. Entre contener y ser contenido

    Jorge Morales Meneses

    2016-08-01

    Full Text Available El presente artículo propone una nueva manera de entender los elementos comunes en la formación y el hacer del diseño y de la arquitectura, posibilitando un pensar común y un coactuar en diversas escalas de intervención, necesarias para el manejo de la complejidad del paisaje contemporáneo. La convicción de un pensar común entre ambas disciplinas permite explorar un marco filosófico que incluye a pensadores tan trascendentales como Aristóteles, Kant y Heidegger, estableciendo un orden de pensamiento que los relaciona y sitúa. En momentos en que el territorio está siendo visible y negativamente afectado por elementos no pensados o que fueron imaginados separadamente, este artículo propone una mirada que le dé sentido de totalidad a las acciones del diseño y de la arquitectura, como elementos que permanentemente se contienen en otros de diferente escala, pero que siempre están vinculados. Reconocer el paisaje físico y mental, tangible e intangible que contiene al diseño y a la arquitectura contribuirá a establecer un marco de acción donde todos los elementos construidos por el ser humano puedan tener un rol específico y una escala asumida, e intercomprenderse para mejor utilización de los recursos, disminuir el impacto ambiental y contribuir a un orden social mejor interpretado por los objetos, espacios y sus representaciones.

  11. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  12. Object Recognition System-on-Chip Using the Support Vector Machines

    Houzet Dominique

    2005-01-01

    Full Text Available The first aim of this work is to propose the design of a system-on-chip (SoC platform dedicated to digital image and signal processing, which is tuned to implement efficiently multiply-and-accumulate (MAC vector/matrix operations. The second aim of this work is to implement a recent promising neural network method, namely, the support vector machine (SVM used for real-time object recognition, in order to build a vision machine. With such a reconfigurable and programmable SoC platform, it is possible to implement any SVM function dedicated to any object recognition problem. The final aim is to obtain an automatic reconfiguration of the SoC platform, based on the results of the learning phase on an objects' database, which makes it possible to recognize practically any object without manual programming. Recognition can be of any kind that is from image to signal data. Such a system is a general-purpose automatic classifier. Many applications can be considered as a classification problem, but are usually treated specifically in order to optimize the cost of the implemented solution. The cost of our approach is more important than a dedicated one, but in a near future, hundreds of millions of gates will be common and affordable compared to the design cost. What we are proposing here is a general-purpose classification neural network implemented on a reconfigurable SoC platform. The first version presented here is limited in size and thus in object recognition performances, but can be easily upgraded according to technology improvements.

  13. On-chip quantum interference of a superconducting microsphere

    Pino, H.; Prat-Camps, J.; Sinha, K.; Prasanna Venkatesh, B.; Romero-Isart, O.

    2018-04-01

    We propose and analyze an all-magnetic scheme to perform a Young’s double slit experiment with a micron-sized superconducting sphere of mass ≳ {10}13 amu. We show that its center of mass could be prepared in a spatial quantum superposition state with an extent of the order of half a micrometer. The scheme is based on magnetically levitating the sphere above a superconducting chip and letting it skate through a static magnetic potential landscape where it interacts for short intervals with quantum circuits. In this way, a protocol for fast quantum interferometry using quantum magnetomechanics is passively implemented. Such a table-top earth-based quantum experiment would operate in a parameter regime where gravitational energy scales become relevant. In particular, we show that the faint parameter-free gravitationally-induced decoherence collapse model, proposed by Diósi and Penrose, could be unambiguously falsified.

  14. Fiber Bragg grating sensor interrogators on chip: challenges and opportunities

    Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio

    2017-04-01

    In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.

  15. Dynamic SERS nanosensor for neurotransmitter sensing near neurons.

    Lussier, Félix; Brulé, Thibault; Bourque, Marie-Josée; Ducrot, Charles; Trudeau, Louis-Éric; Masson, Jean-François

    2017-12-04

    Current electrophysiology and electrochemistry techniques have provided unprecedented understanding of neuronal activity. However, these techniques are suited to a small, albeit important, panel of neurotransmitters such as glutamate, GABA and dopamine, and these constitute only a subset of the broader range of neurotransmitters involved in brain chemistry. Surface-enhanced Raman scattering (SERS) provides a unique opportunity to detect a broader range of neurotransmitters in close proximity to neurons. Dynamic SERS (D-SERS) nanosensors based on patch-clamp-like nanopipettes decorated with gold nanoraspberries can be located accurately under a microscope using techniques analogous to those used in current electrophysiology or electrochemistry experiments. In this manuscript, we demonstrate that D-SERS can measure in a single experiment ATP, glutamate (glu), acetylcholine (ACh), GABA and dopamine (DA), among other neurotransmitters, with the potential for detecting a greater number of neurotransmitters. The SERS spectra of these neurotransmitters were identified with a barcoding data processing method and time series of the neurotransmitter levels were constructed. The D-SERS nanosensor was then located near cultured mouse dopaminergic neurons. The detection of neurotransmitters was performed in response to a series of K + depolarisations, and allowed the detection of elevated levels of both ATP and dopamine. Control experiments were also performed near glial cells, showing only very low basal detection neurotransmitter events. This paper demonstrates the potential of D-SERS to detect neurotransmitter secretion events near living neurons, but also constitutes a strong proof-of-concept for the broad application of SERS to the detection of secretion events by neurons or other cell types in order to study normal or pathological cell functions.

  16. Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement.

    Liu, Weiyu; Miao, Peng; Xiong, Lu; Du, Yunchen; Han, Xijiang; Xu, Ping

    2014-11-07

    We demonstrate here a facile fabrication of n-dodecyl mercaptan-modified superhydrophobic Ag nanostructures on polyaniline membranes for molecular detection based on SERS technique, which combines the superhydrophobic condensation effect and the high enhancement factor. It is calculated that the as-fabricated superhydrophobic substrate can exhibit a 21-fold stronger molecular condensation, and thus further amplifies the SERS signal to achieve more sensitive detection. The detection limit of the target molecule, methylene blue (MB), on this superhydrophobic substrate can be 1 order of magnitude higher than that on the hydrophilic substrate. With high reproducibility, the feasibility of using this SERS-active superhydrophobic substrate for quantitative molecular detection is explored. A partial least squares (PLS) model was established for the quantification of MB by SERS, with correlation coefficient R(2) = 95.1% and root-mean-squared error of prediction (RMSEP) = 0.226. We believe this superhydrophobic SERS substrate can be widely used in trace analysis due to its facile fabrication, high signal reproducibility and promising SERS performance.

  17. Note: A silicon-on-insulator microelectromechanical systems probe scanner for on-chip atomic force microscopy

    Fowler, Anthony G.; Maroufi, Mohammad; Moheimani, S. O. Reza, E-mail: Reza.Moheimani@newcastle.edu.au [School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2015-04-15

    A new microelectromechanical systems-based 2-degree-of-freedom (DoF) scanner with an integrated cantilever for on-chip atomic force microscopy (AFM) is presented. The silicon cantilever features a layer of piezoelectric material to facilitate its use for tapping mode AFM and enable simultaneous deflection sensing. Electrostatic actuators and electrothermal sensors are used to accurately position the cantilever within the x-y plane. Experimental testing shows that the cantilever is able to be scanned over a 10 μm × 10 μm window and that the cantilever achieves a peak-to-peak deflection greater than 400 nm when excited at its resonance frequency of approximately 62 kHz.

  18. Coated Porous Si for High Performance On-Chip Supercapacitors

    Grigoras, K.; Keskinen, J.; Grönberg, L.; Ahopelto, J.; Prunnila, M.

    2014-11-01

    High performance porous Si based supercapacitor electrodes are demonstrated. High power density and stability is provided by ultra-thin TiN coating of the porous Si matrix. The TiN layer is deposited by atomic layer deposition (ALD), which provides sufficient conformality to reach the bottom of the high aspect ratio pores. Our porous Si supercapacitor devices exhibit almost ideal double layer capacitor characteristic with electrode volumetric capacitance of 7.3 F/cm3. Several orders of magnitude increase in power and energy density is obtained comparing to uncoated porous silicon electrodes. Good stability of devices is confirmed performing several thousands of charge/discharge cycles.

  19. Review - On-chip diamagnetic repulsion in continuous flow

    Mark D Tarn, Noriyuki Hirota, Alexander Iles and Nicole Pamme

    2009-01-01

    Full Text Available We explore the potential of a microfluidic continuous flow particle separation system based on the repulsion of diamagnetic materials from a high magnetic field. Diamagnetic polystyrene particles in paramagnetic manganese (II chloride solution were pumped into a microfluidic chamber and their deflection behaviour in a high magnetic field applied by a superconducting magnet was investigated. Two particle sizes (5 and 10 μm were examined in two concentrations of MnCl2 (6 and 10%. The larger particles were repelled to a greater extent than the smaller ones, and the effect was greatly enhanced when the particles were suspended in a higher concentration of MnCl2. These findings indicate that the system could be viable for the separation of materials of differing size and/or diamagnetic susceptibility, and as such could be suitable for the separation and sorting of small biological species for subsequent studies.

  20. Electron Spin Resonance Measurement with Microinductor on Chip

    Akio Kitagawa

    2011-01-01

    Full Text Available The detection of radicals on a chip is demonstrated. The proposed method is based on electron spin resonance (ESR spectroscopy and the measurement of high-frequency impedance of the microinductor fabricated on the chip. The measurement was by using a frequency sweep of approximately 100 MHz. The ESR spectra of di(phenyl-(2,4,6-trinitrophenyliminoazanium (DPPH dropped on the microinductor which is fabricated with CMOS 350-nm technology were observed at room temperature. The volume of the DPPH ethanol solution was 2 μL, and the number of spins on the micro-inductor was estimated at about 1014. The sensitivity is not higher than that of the standard ESR spectrometers. However, the result indicates the feasibility of a near field radical sensor in which the microinductor as a probe head and ESR signal processing circuit are integrated.

  1. Enhancing SERS by Means of Supramolecular Charge Transfer

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  2. SERS substrates for in-situ biosensing (Conference Presentation)

    Venugopalan, Priyamvada; Quilis, Nestor; Jakub, Dostalek; Wolfgang, Knoll

    2017-06-01

    Abstract: Recent years have seen a rapid progress in the field of surface-enhanced Raman spectroscopy (SERS) which is attributed to the thriving field of plasmonics [1]. SERS is a susceptible technique that can address basic scientific questions and technological problems. In both cases, it is highly dependent upon the plasmonic substrate, where excitation of the localized surface plasmon resonance enhances the vibrational scattering signal of the analyte molecules adsorbed on to the surface [2]. In this work, using finite difference time domain (FDTD) method we investigate the optical properties of plasmonic nanostructures with tuned plasmonic resonances as a function of dielectric environment and geometric parameters. An optimized geometry will be discussed based on the plasmonic resonant position and the SERS intensity. These SERS substrates will be employed for the detection of changes in conformation caused by interactions between an aptamer and analyte molecules. This will be done by using a microfluidic channel designed within the configuration of the lab-on-a-chip concept based on the intensity changes of the SERS signal. More efficient and reproducible results are obtained for such a quantitative measurement of analytes at low concentration levels. We will also demonstrate that the plasmonic substrates fabricated by top down approach such as e-beam lithography (EBL) and laser interference lithography (LIL) are highly reproducible, robust and can result in high electric field enhancement. Our results demonstrate the potential to use SERS substrates for highly sensitive detection schemes opening up the window for a wide range of applications including biomedical diagnostics, forensic investigation etc. Acknowledgement: This work was supported by the Austrian Science Fund (FWF), project NANOBIOSENSOR (I 2647). References: [1] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. V. Duyne., " Biosensing with plasmonic nanosensors," Nature

  3. SERS Technique for Rapid Bacterial Screening

    This study reports the feasibility of citrate-reduced colloidal silver SERS for differentiating E. coli, Listeria, and Salmonella. FT-Raman and SERS spectra of both silver colloids and colloid-K3PO4 mixtures were collected and analyzed to evaluate the reproducibility and stability of silver colloids...

  4. ASIC design of a digital fuzzy system on chip for medical diagnostic applications.

    Roy Chowdhury, Shubhajit; Roy, Aniruddha; Saha, Hiranmay

    2011-04-01

    The paper presents the ASIC design of a digital fuzzy logic circuit for medical diagnostic applications. The system on chip under consideration uses fuzzifier, memory and defuzzifier for fuzzifying the patient data, storing the membership function values and defuzzifying the membership function values to get the output decision. The proposed circuit uses triangular trapezoidal membership functions for fuzzification patients' data. For minimizing the transistor count, the proposed circuit uses 3T XOR gates and 8T adders for its design. The entire work has been carried out using TSMC 0.35 µm CMOS process. Post layout TSPICE simulation of the whole circuit indicates a delay of 31.27 ns and the average power dissipation of the system on chip is 123.49 mW which indicates a less delay and less power dissipation than the comparable embedded systems reported earlier.

  5. On-Chip SDM Switching for Unicast, Multicast and Traffic Grooming in Data Center Networks

    Kamchevska, Valerija; Ding, Yunhong; Dalgaard, Kjeld

    2017-01-01

    This paper reports on the use of a novel photonic integrated circuit that facilitates multicast and grooming in an optical data center architecture. The circuit allows for on-chip spatial multiplexing and demultiplexing as well as fiber core switching. Using this device, we experimentally verify...... that multicast and/or grooming can be successfully performed along the full range of output ports, for different group size and different power ratio. Moreover, we experimentally demonstrate SDM transmission and 5 Tbit/s switching using the on-chip fiber switch with integrated fan-in/fan-out devices and achieve...... errorfree performance (BER≤10-9) for a network scenario including simultaneous unicast/multicast switching and traffic grooming....

  6. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams

    Li, Huanlu; Strain, Michael J.; Meriggi, Laura; Sorel, Marc; Chen, Lifeng; Zhu, Jiangbo; Cicek, Kenan; Wang, Jianwei; Thompson, Mark G.; Cai, Xinlun; Yu, Siyuan

    2015-01-01

    An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications. It can be intentionally implemented with other modulation elements to achieve more complicated applications

  7. System-Level Design Methodologies for Networked Multiprocessor Systems-on-Chip

    Virk, Kashif Munir

    2008-01-01

    is the first such attempt in the published literature. The second part of the thesis deals with the issues related to the development of system-level design methodologies for networked multiprocessor systems-on-chip at various levels of design abstraction with special focus on the modeling and design...... at the system-level. The multiprocessor modeling framework is then extended to include models of networked multiprocessor systems-on-chip which is then employed to model wireless sensor networks both at the sensor node level as well as the wireless network level. In the third and the final part, the thesis...... to the transaction-level model. The thesis, as a whole makes contributions by describing a design methodology for networked multiprocessor embedded systems at three layers of abstraction from system-level through transaction-level to the cycle accurate level as well as demonstrating it practically by implementing...

  8. Bioprinting and Organ-on-Chip Applications Towards Personalized Medicine for Bone Diseases.

    Arrigoni, Chiara; Gilardi, Mara; Bersini, Simone; Candrian, Christian; Moretti, Matteo

    2017-06-01

    The skeleton supports and confers structure to the whole body but several pathological and traumatic conditions affect the bone tissue. Most of those pathological conditions are specific and different among different patients, such as bone defects due to traumatic injuries or bone remodeling alterations due to congenital diseases. In this context, the development of personalized therapies would be highly desirable. In recent years the advent of innovative techniques like bioprinting and microfluidic organ-on-chip raised hopes of achieving key tools helping the application of personalized therapies for bone diseases. In this review we will illustrate the latest progresses in the bioprinting of personalized bone grafts and generation of patient-specific bone-on-chip devices, describing current approaches and limitations and possible future improvements for more effective personalized bone grafts and disease models.

  9. On-chip high-voltage generator design design methodology for charge pumps

    Tanzawa, Toru

    2016-01-01

    This book provides various design techniques for switched-capacitor on-chip high-voltage generators, including charge pump circuits, regulators, level shifters, references, and oscillators.  Readers will see these techniques applied to system design in order to address the challenge of how the on-chip high-voltage generator is designed for Flash memories, LCD drivers, and other semiconductor devices to optimize the entire circuit area and power efficiency with a low voltage supply, while minimizing the cost.  This new edition includes a variety of useful updates, including coverage of power efficiency and comprehensive optimization methodologies for DC-DC voltage multipliers, modeling of extremely low voltage Dickson charge pumps, and modeling and optimum design of AC-DC switched-capacitor multipliers for energy harvesting and power transfer for RFID.

  10. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Huang, Che-Wei; Huang, Yu-Jie; Lu, Shey-Shi; Lin, Chih-Ting

    2012-01-01

    A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC) architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm) integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK) wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH) range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  11. Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits

    Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Moores, Bradley A.; Vale, Leila R.; Mates, J. A. B.; Hilton, Gene C.; Lalumière, Kevin; Blais, Alexandre; Lehnert, K. W.

    2017-10-01

    We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Nonreciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.

  12. On-chip nanofluidic integration of acoustic sensors towards high Q in liquid

    Liang, Ji; Liu, Zifeng; Zhang, Hongxiang; Liu, Bohua; Zhang, Menglun; Zhang, Hao; Pang, Wei

    2017-11-01

    This paper reports an on-chip acoustic sensor comprising a piston-mode film bulk acoustic resonator and a monolithically integrated nanochannel. The resonator with the channel exhibits a resonance frequency (f) of 2.5 GHz and a quality (Q) factor of 436 in deionized water. The f × Q product is as high as 1.1 × 1012, which is the highest among all the acoustic wave sensors in the liquid phase. The sensor consumes 2 pl liquid volume and thus greatly saves the precious assays in biomedical testing. The Q factor is investigated, and real-time viscosity tests of glucose solution are demonstrated. The highly miniaturized and integrated sensor is capable to be arrayed with readout-circuitry, which opens an avenue for portable applications and lab-on-chip systems.

  13. Sequential and selective localized optical heating in water via on-chip dielectric nanopatterning.

    Morsy, Ahmed M; Biswas, Roshni; Povinelli, Michelle L

    2017-07-24

    We study the use of nanopatterned silicon membranes to obtain optically-induced heating in water. We show that by varying the detuning between an absorptive optical resonance of the patterned membrane and an illumination laser, both the magnitude and response time of the temperature rise can be controlled. This allows for either sequential or selective heating of different patterned areas on chip. We obtain a steady-state temperature of approximately 100 °C for a 805.5nm CW laser power density of 66 µW/μm 2 and observe microbubble formation. The ability to spatially and temporally control temperature on the microscale should enable the study of heat-induced effects in a variety of chemical and biological lab-on-chip applications.

  14. On-chip electrochromic micro display for a disposable bio-sensor chip

    Zhu, Yanjun; Tsukamoto, Takashiro; Tanaka, Shuji

    2017-12-01

    This paper reports an on-chip electrochromic micro display made of polyaniline (PANi) which can be easily made on a CMOS chip. Micro-patterned PANi thin films were selectively deposited on pre-patterned microelectrodes by using electrodeposition. The optimum conditions for deposition and electrochromism were investigated. An 8-pixel on-chip micro display was made on a Si chip. The color of each PANi film could be independently but simultaneously controlled, which means any 1-byte digital data could be displayed on the display. The PANi display had a response time as fast as about 100 ms, which means the transfer data rate was as fast as 80 bits per second.

  15. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams

    Li, Huanlu [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Strain, Michael J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Wolfson Centre, Institute of Photonics, University of Strathclyde, 106 Rottenrow East, Glasgow G4 0NW (United Kingdom); Meriggi, Laura; Sorel, Marc [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Chen, Lifeng; Zhu, Jiangbo; Cicek, Kenan [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); Wang, Jianwei; Thompson, Mark G. [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB (United Kingdom); Cai, Xinlun, E-mail: caixlun5@mail.sysu.edu.cn [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB (United Kingdom); State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yu, Siyuan, E-mail: s.yu@bristol.ac.uk [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2015-08-03

    An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications. It can be intentionally implemented with other modulation elements to achieve more complicated applications.

  16. Laser subtractive-additive-welding microfabrication for Lab-On-Chip (LOC) applications

    Jonušauskas, Linas; RekštytÄ--, Sima; Buivydas, Ričardas; Butkus, Simas; Paipulas, Domas; Gadonas, Roaldas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2017-02-01

    An approach employing ultrafast laser hybrid microfabrication combining ablation, 3D nanolithography and welding is proposed for the realization of Lab-On-Chip (LOC) device. The same laser setup is shown to be suitable for fabricating microgrooves in glass slabs, polymerization of fine meshes inside them, and, lastly, sealing the whole chip with cover glass into one monolithic piece. The created micro fluidic device proved its particle sorting function by separating 1 μm and 10 μm polystyrene spheres from a mixture. Next, a lens adapter for a cell phone's camera was manufactured via thermal extrusion 3D printing technique which allowed to achieve sufficient magnification to clearly resolve <10 μm features. All together shows fs-laser microfabrication technology as a flexible and versatile tool for study and manufacturing of Lab-On-Chip devices.

  17. Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection

    Pedro M. Fierro-Mercado

    2012-01-01

    Full Text Available We report on a novel and extremely low-cost surface-enhanced Raman spectroscopy (SERS substrate fabricated depositing gold nanoparticles on common lab filter paper using thermal inkjet technology. The paper-based substrate combines all advantages of other plasmonic structures fabricated by more elaborate techniques with the dynamic flexibility given by the inherent nature of the paper for an efficient sample collection, robustness, and stability. We describe the fabrication, characterization, and SERS activity of our substrate using 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 1,3,5-trinitrobenzene as analytes. The paper-based SERS substrates presented a high sensitivity and excellent reproducibility for analytes employed, demonstrating a direct application in forensic science and homeland security.

  18. Non-Magnetic On-Chip Resonant Acousto-Optic Isolator at 780 nm

    2017-08-04

    actuator on a piezoelectric substrate. We fabricated the device using only CMOS-compatible dielectric materials with the assistance of e- beam...on-chip, without the use of magnetic fields or magneto-optical materials. Our technical approach was to employ momentum-conservation in photon-phonon...interactions to break the propagation symmetry of light using a unidirectional acoustic pump. This acoustic wave was transduced using an RF-driven SAW

  19. On-chip photonic memory elements employing phase-change materials.

    Rios, Carlos; Hosseini, Peiman; Wright, C David; Bhaskaran, Harish; Pernice, Wolfram H P

    2014-03-05

    Phase-change materials integrated into nanophotonic circuits provide a flexible way to realize tunable optical components. Relying on the enormous refractive-index contrast between the amorphous and crystalline states, such materials are promising candidates for on-chip photonic memories. Nonvolatile memory operation employing arrays of microring resonators is demonstrated as a route toward all-photonic chipscale information processing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency.

    Xu, Qianfan; Sandhu, Sunil; Povinelli, Michelle L; Shakya, Jagat; Fan, Shanhui; Lipson, Michal

    2006-03-31

    We provide the first experimental observation of structure tuning of the electromagnetically induced transparency-like spectrum in integrated on-chip optical resonator systems. The system consists of coupled silicon ring resonators with 10 microm diameter on silicon, where the coherent interference between the two coupled resonators is tuned. We measured a transparency-resonance mode with a quality factor of 11,800.

  1. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications

    Fu, Yong Qing; Luo, Jack; Nguyen, Nam-Trung; Walton, Anthony; Flewitt, Andrew; Zu, Xiao-Tao; Li, Yifan; McHale, Glen; Matthews, Allan; Iborra, Enrique; Du, Hejun; Milne, William

    2017-01-01

    Recently, piezoelectric thin films including zinc oxide (ZnO) and aluminium nitride (AlN) have found a broad range of lab-on-chip applications such as biosensing, particle/cell concentrating, sorting/patterning, pumping, mixing, nebulisation and jetting. Integrated acoustic wave sensing/microfluidic devices have been fabricated by depositing these piezoelectric films onto a number of substrates such as silicon, ceramics, diamond, quartz, glass, and more recently also polymer, metallic foils a...

  2. Legal Protection on IP Cores for System-on-Chip Designs

    Kinoshita, Takahiko

    The current semiconductor industry has shifted from vertical integrated model to horizontal specialization model in term of integrated circuit manufacturing. In this circumstance, IP cores as solutions for System-on-Chip (SoC) have become increasingly important for semiconductor business. This paper examines to what extent IP cores of SoC effectively can be protected by current intellectual property system including integrated circuit layout design law, patent law, design law, copyright law and unfair competition prevention act.

  3. Evaluation of on-chip micro antennas for in vivo dosimetry application

    Villani, Giulio; Bose, Rajiv; Gabrielli, Alessandro

    2011-01-01

    The design, fabrication and evaluation of a set of micro antennas (ANTs) on chip is described. The size of the ANTs is 2 and has been chosen with a view to the development of a monolithic implantable sensor for in vivo dosimetry which is the ultimate focus of this project. Three different designs are currently being investigated, with a view to evaluate their RF performances in the communication-standard Medical Implant Communication Service (MICS) frequency band.

  4. Active 2D materials for on-chip nanophotonics and quantum optics

    Shiue Ren-Jye

    2017-03-01

    Full Text Available Two-dimensional materials have emerged as promising candidates to augment existing optical networks for metrology, sensing, and telecommunication, both in the classical and quantum mechanical regimes. Here, we review the development of several on-chip photonic components ranging from electro-optic modulators, photodetectors, bolometers, and light sources that are essential building blocks for a fully integrated nanophotonic and quantum photonic circuit.

  5. The SIP express router: An open source SIP platform: Presentation held at EVOLUTE - seamlEss multimedia serVices Over alL IP-based infrastrUcTurEs Workshop, 10. November 2003, Guildford, UK

    Rebahi, Y.; Sisalem, D.; Kuthan, J.; Pelinescu-Oncicul, A.; Iancu, B.; Janak, J.; Mierla, D.C.

    2003-01-01

    The session initiation protocol (SIP) is constantly gaining in popularity and acceptance as the signaling protocol for next generation multimedia communication. This paper describes a scalable and reliable open source SIP platform called the SIP Express Router (SER). SER does not only support basic SIP features but also advanced features such as messaging and presence, translation between SIP and SMS or Jabber as well as full featured application programming interfaces. In this paper we will ...

  6. On-chip sample preparation for complete blood count from raw blood.

    Nguyen, John; Wei, Yuan; Zheng, Yi; Wang, Chen; Sun, Yu

    2015-03-21

    This paper describes a monolithic microfluidic device capable of on-chip sample preparation for both RBC and WBC measurements from whole blood. For the first time, on-chip sample processing (e.g. dilution, lysis, and filtration) and downstream single cell measurement were fully integrated to enable sample preparation and single cell analysis from whole blood on a single device. The device consists of two parallel sub-systems that perform sample processing and electrical measurements for measuring RBC and WBC parameters. The system provides a modular environment capable of handling solutions of various viscosities by adjusting the length of channels and precisely controlling mixing ratios, and features a new 'offset' filter configuration for increased duration of device operation. RBC concentration, mean corpuscular volume (MCV), cell distribution width, WBC concentration and differential are determined by electrical impedance measurement. Experimental characterization of over 100,000 cells from 10 patient blood samples validated the system's capability for performing on-chip raw blood processing and measurement.

  7. Blood cleaner on-chip design for artificial human kidney manipulation

    Suwanpayak N

    2011-05-01

    Full Text Available N Suwanpayak1, MA Jalil2, MS Aziz3, FD Ismail3, J Ali3, PP Yupapin11Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Bangkok, Thailand; 2Ibnu Sina Institute of Fundamental Science Studies (IIS, 3Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, MalaysiaAbstract: A novel design of a blood cleaner on-chip using an optical waveguide known as a PANDA ring resonator is proposed. By controlling some suitable parameters, the optical vortices (gradient optical fields/wells can be generated and used to form the trapping tools in the same way as optical tweezers. In operation, the trapping force is formed by the combination between the gradient field and scattering photons by using the intense optical vortices generated within the PANDA ring resonator. This can be used for blood waste trapping and moves dynamically within the blood cleaner on-chip system (artificial kidney, and is performed within the wavelength routers. Finally, the blood quality test is exploited by the external probe before sending to the destination. The advantage of the proposed kidney on-chip system is that the unwanted substances can be trapped and filtered from the artificial kidney, which can be available for blood cleaning applications.Keywords: optical trapping, blood dialysis, blood cleaner, human kidney manipulation

  8. Electromagnetic design methods in systems-on-chip: integrated filters for wireless CMOS RFICs

    Contopanagos, Harry

    2005-01-01

    We present general methods for designing on-chip CMOS passives and utilizing these integrated elements to design on-chip CMOS filters for wireless communications. These methods rely on full-wave electromagnetic numerical calculations that capture all the physics of the underlying foundry technologies. This is especially crucial for deep sub-micron CMOS technologies as it is important to capture the physical effects of finite (and mediocre) Q-factors limited by material losses and constraints on expensive die area, low self-resonance frequencies and dual parasitics that are particularly prevalent in deep sub-micron CMOS processes (65 nm-0.18 μm. We use these integrated elements in an ideal synthesis of a Bluetooth/WLAN pass-band filter in single-ended or differential architectures, and show the significant deviations of the on-chip filter response from the ideal one. We identify which elements in the filter circuit need to maximize their Q-factors and which Q-factors do not affect the filter performance. This saves die area, and predicts the FET parameters (especially transconductances) and negative-resistance FET topologies that have to be integrated in the filter to restore its performance. (invited paper)

  9. Electromagnetic design methods in systems-on-chip: integrated filters for wireless CMOS RFICs

    Contopanagos, Harry [Institute for Microelectronics, NCSR ' Demokritos' , PO Box 60228, GR-153 10 Aghia Paraskevi, Athens (Greece)

    2005-01-01

    We present general methods for designing on-chip CMOS passives and utilizing these integrated elements to design on-chip CMOS filters for wireless communications. These methods rely on full-wave electromagnetic numerical calculations that capture all the physics of the underlying foundry technologies. This is especially crucial for deep sub-micron CMOS technologies as it is important to capture the physical effects of finite (and mediocre) Q-factors limited by material losses and constraints on expensive die area, low self-resonance frequencies and dual parasitics that are particularly prevalent in deep sub-micron CMOS processes (65 nm-0.18 {mu}m. We use these integrated elements in an ideal synthesis of a Bluetooth/WLAN pass-band filter in single-ended or differential architectures, and show the significant deviations of the on-chip filter response from the ideal one. We identify which elements in the filter circuit need to maximize their Q-factors and which Q-factors do not affect the filter performance. This saves die area, and predicts the FET parameters (especially transconductances) and negative-resistance FET topologies that have to be integrated in the filter to restore its performance. (invited paper)

  10. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.

    Chen, Arnold; Pan, Tingrui

    2014-09-07

    Bistable microvalves are of particular interest because of their distinct nature of requiring energy consumption only during the transition between the open and closed states. This characteristic can be highly advantageous in reducing the number of external inputs and the complexity of control circuitries since microfluidic devices as contemporary lab-on-a-chip platforms are transferring from research settings to low-resource environments with high integrability and a small form factor. In this paper, we first present manually operatable, on-chip bistable pneumatic microstructures (BPMs) for microfluidic manipulation. The structural design and operation of the BPM devices can be readily integrated into any pneumatically powered microfluidic network consisting of pneumatic and fluidic channels. It is mainly composed of a vacuum activation chamber (VAC) and a pressure release chamber (PRC), of which users have direct control through finger pressing to switch either to the bistable vacuum state (VS) or the atmospheric state (AS). We have integrated multiple BPM devices into a 4-to-1 microfluidic multiplexor to demonstrate on-chip digital flow switching from different sources. Furthermore, we have shown its clinical relevance in a point-of-care diagnostic chip that processes blood samples to identify the distinct blood types (A/B/O) on-chip.

  11. Potential application of SERS for arsenic speciation in biological matrices.

    Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong

    2017-08-01

    Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.

  12. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  13. Dynamic On-Chip micro Temperature and Flow Sensor for miniaturized lab-on-a-chip instruments

    National Aeronautics and Space Administration — The purpose of this project is to design, fabricate, and characterize a Dynamic On-Chip Flow and Temperature Sensor (DOCFlaTS) to mature and enable miniaturized...

  14. Engineering Metal Nanostructure for SERS Application

    Yanqin Cao

    2013-01-01

    Full Text Available Surface-enhanced Raman scattering (SERS has attracted great attention due to its remarkable enhancement and excellent selectivity in the detection of various molecules. Noble metal nanomaterials have usually been employed for producing substrates that can be used in SERS because of their unique local plasma resonance. As the SERS enhancement of signals depends on parameters such as size, shape, morphology, arrangement, and dielectric environment of the nanostructure, there have been a number of studies on tunable nanofabrication and synthesis of noble metals. In this work, we will illustrate progress in engineering metallic nanostructures with various morphologies using versatile methods. We also discuss their SERS applications in different fields and the challenges.

  15. Single molecule SERS: Perspectives of analytical applications

    Vlčková, B.; Pavel, I.; Sládková, M.; Šišková, K.; Šlouf, Miroslav

    834-836, - (2007), s. 42-47 ISSN 0022-2860. [European Congress on Molecular Spectroscopy /28./. Istanbul, 03.09.2006-08.09.2006] R&D Projects: GA ČR GA203/04/0688 Institutional research plan: CEZ:AV0Z40500505 Keywords : surface-enhanced Raman scattering (SERS) * surface-enhanced resonance Raman (SERRS) * single molecule SERS Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.486, year: 2007

  16. AN ACCURATE MODELING OF DELAY AND SLEW METRICS FOR ON-CHIP VLSI RC INTERCONNECTS FOR RAMP INPUTS USING BURR’S DISTRIBUTION FUNCTION

    Rajib Kar

    2010-09-01

    Full Text Available This work presents an accurate and efficient model to compute the delay and slew metric of on-chip interconnect of high speed CMOS circuits foe ramp input. Our metric assumption is based on the Burr’s Distribution function. The Burr’s distribution is used to characterize the normalized homogeneous portion of the step response. We used the PERI (Probability distribution function Extension for Ramp Inputs technique that extends delay metrics and slew metric for step inputs to the more general and realistic non-step inputs. The accuracy of our models is justified with the results compared with that of SPICE simulations.

  17. SER Y ESTAR CON ADJETIVOS – SIGNIFICACION DE LAS PROPOSICIONES SER Y ESTAR CON ADJETIVOS – SIGNIFICACION DE LAS PROPOSICIONES

    Javier García de María

    2008-07-01

    Full Text Available Ser y estar: uno de los temas difíciles de la enseñanza/aprendizaje del español. Este trabajo expone un enfoque que recurre a la significación como hilo conductor. Por una parte, a la significación de ser y de estar como verbos, en sí mismos. Por otra, a la significación de los adjetivos. El planteamiento no es ya qué significa un determinado adjetivo con ser o con estar, sino cuál de estos verbos puede expresar su significado único o cada uno de sus significados. Sobre esta base el análisis considera, primero, los significados de ser/estar y los significados de un adjetivo dado y, segundo, los resultados significativos que arroja la relación entre verbos y adjetivo. Cuando el significado de un adjetivo se pueda expresar con los dos verbos, la elección vendrá determinada por la intencionalidad del hablante en el contexto comunicativo en que se encuentre. A partir de aquí las construcciones en las que aparecen ser y estar son tratadas como proposiciones retórico-argumentativas.Ser and estar: a difficult aspect of Spanish as a foreign language. This essay presents an approach that takes signification as guide line. On the one hand, the signification of ser and estar for their own cause; on the other hand the signification of the adjectives. The question is no longer what the meaning of a given adjective is with ser or with estar, but with which of the two verbs is it possible to express the unique meaning or each of the meanings of that adjective. Starting from this basis the approach considers first, the isolated meanings of the verbs and of the adjectives and, second, the resultant signification out of the relation between the two sides. If the meaning of a given adjective can be expressed by both verbs, the selection of the verb is determined by the intentionality of the speaker in the communicative context in which he negotiates. From this background on the syntactical constructions in which ser and estar appear are treated as

  18. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    Takanori Akagi

    Full Text Available Extracellular vesicles (EVs including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.

  19. Wake on LAN over Internet as web service system on chip

    Maciá Pérez, Francisco; Gil Martínez-Abarca, Juan Antonio; Ramos Morillo, Héctor; Mora Gimeno, Francisco José; Marcos Jorquera, Diego; Gilart Iglesias, Virgilio

    2009-01-01

    In this paper we introduce a System on Chip (SoC) designed to run a particular Web Service (WS) in an Application-Specific Integrated Circuit (ASIC). The system has been designed devoid of processor and software and conceived as a hardware pattern for a trouble-free design of network services offered as WS in Service-Oriented Architecture (SOA). Therefore, the chip is not only able to act as SOAP Service Provider but, it is also capable of registering the service on its own in an external Bro...

  20. An acoustic on-chip goniometer for room temperature macromolecular crystallography.

    Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T

    2017-12-05

    This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

  1. Amplification of biological targets via on-chip culture for biosensing

    Harper, Jason C.; Edwards, Thayne L.; Carson, Bryan; Finley, Melissa; Arndt, William

    2018-01-02

    The present invention, in part, relates to methods and apparatuses for on-chip amplification and/or detection of various targets, including biological targets and any amplifiable targets. In some examples, the microculture apparatus includes a single-use, normally-closed fluidic valve that is initially maintained in the closed position by a valve element bonded to an adhesive coating. The valve is opened using a magnetic force. The valve element includes a magnetic material or metal. Such apparatuses and methods are useful for in-field or real-time detection of targets, especially in limited resource settings.

  2. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.

    Yang, Zhaochu; Dong, Tao; Halvorsen, Einar

    2014-01-01

    This work describes a capacitive sensor for identification of microfluidic two-phase flow in lab-on-chip devices. With interdigital electrodes and thin insulation layer utilized, this sensor is capable of being integrated with the microsystems easily. Transducing principle and design considerations are presented with respect to the microfluidic gas/liquid flow patterns. Numerical simulation results verify the operational principle. And the factors affecting the performance of the sensor are discussed. Besides, a feasible process flow for the fabrication is also proposed.

  3. On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities

    Liapis, Andreas C., E-mail: andreas.liapis@gmail.com; Gao, Boshen; Siddiqui, Mahmudur R. [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Shi, Zhimin [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Boyd, Robert W. [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-11

    Spectroscopic methods are a sensitive way to determine the chemical composition of potentially hazardous materials. Here, we demonstrate that thermally tuned high-Q photonic crystal cavities can be used as a compact high-resolution on-chip spectrometer. We have used such a chip-scale spectrometer to measure the absorption spectra of both acetylene and hydrogen cyanide in the 1550 nm spectral band and show that we can discriminate between the two chemical species even though the two materials have spectral features in the same spectral region. Our results pave the way for the development of chip-size chemical sensors that can detect toxic substances.

  4. On-chip optical filter comprising Fabri-Perot resonator structure and spectrometer

    Han, Seunghoon; Horie, Yu; Faraon, Andrei; Arbabi, Amir

    2018-04-10

    An on-chip optical filter having Fabri-Perot resonators and a spectrometer may include a first sub-wavelength grating (SWG) reflecting layer and a second SWG reflecting layer facing each other. A plurality of Fabri-Perot resonators are formed by the first SWG reflecting layer and the second SWG reflecting layer facing each other. Each of the Fabri-Perot resonators may transmit light corresponding to a resonance wavelength of the Fabri-Perot resonator. The resonance wavelengths of the Fabri-Perot resonators may be determined according to duty cycles of grating patterns.

  5. A novel compact model for on-chip stacked transformers in RF-CMOS technology

    Jun, Liu; Jincai, Wen; Qian, Zhao; Lingling, Sun

    2013-08-01

    A novel compact model for on-chip stacked transformers is presented. The proposed model topology gives a clear distinction to the eddy current, resistive and capacitive losses of the primary and secondary coils in the substrate. A method to analytically determine the non-ideal parasitics between the primary coil and substrate is provided. The model is further verified by the excellent match between the measured and simulated S -parameters on the extracted parameters for a 1 : 1 stacked transformer manufactured in a commercial RF-CMOS technology.

  6. Rearrangeable and exchangeable optical module with system-on-chip for wearable functional near-infrared spectroscopy system.

    Funane, Tsukasa; Numata, Takashi; Sato, Hiroki; Hiraizumi, Shinsuke; Hasegawa, Yuichi; Kuwabara, Hidenobu; Hasegawa, Kiyoshi; Kiguchi, Masashi

    2018-01-01

    We developed a system-on-chip (SoC)-incorporated light-emitting diode (LED) and avalanche photodiode (APD) modules to improve the usability and flexibility of a fiberless wearable functional near-infrared spectroscopy (fNIRS) system. The SoC has a microprocessing unit and programmable circuits. The time division method and the lock-in method were used for separately detecting signals from different positions and signals of different wavelengths, respectively. Each module autonomously works for this time-divided-lock-in measurement with a high sensitivity for haired regions. By supplying [Formula: see text] of power and base and data clocks, the LED module emits both 730- and 855-nm wavelengths of light, amplitudes of which are modulated in each lock-in frequency generated from the base clock, and the APD module provides the lock-in detected signals synchronizing with the data clock. The SoC provided many functions, including automatic-power-control of the LED, automatic judgment of detected power level, and automatic-gain-control of the programmable gain amplifier. The number and the arrangement of modules can be adaptively changed by connecting this exchangeable modules in a daisy chain and setting the parameters dependent on the probing position. Therefore, users can configure a variety of arrangements (single- or multidistance combinations) of them with this module-based system.

  7. DNA origami based Au–Ag-core–shell nanoparticle dimers with single-molecule SERS sensitivity† †Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA bands, SEM images, additional AFM images, FDTD simulations, additional reference spectra for Cy3 and detailed description of EF estimation, simulated absorption and scattering spectra. See DOI: 10.1039/c5nr08674d Click here for additional data file.

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.

    2016-01-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. PMID:26892770

  8. A System-on-Chip Solution for Point-of-Care Ultrasound Imaging Systems: Architecture and ASIC Implementation.

    Kang, Jeeun; Yoon, Changhan; Lee, Jaejin; Kye, Sang-Bum; Lee, Yongbae; Chang, Jin Ho; Kim, Gi-Duck; Yoo, Yangmo; Song, Tai-kyong

    2016-04-01

    In this paper, we present a novel system-on-chip (SOC) solution for a portable ultrasound imaging system (PUS) for point-of-care applications. The PUS-SOC includes all of the signal processing modules (i.e., the transmit and dynamic receive beamformer modules, mid- and back-end processors, and color Doppler processors) as well as an efficient architecture for hardware-based imaging methods (e.g., dynamic delay calculation, multi-beamforming, and coded excitation and compression). The PUS-SOC was fabricated using a UMC 130-nm NAND process and has 16.8 GFLOPS of computing power with a total equivalent gate count of 12.1 million, which is comparable to a Pentium-4 CPU. The size and power consumption of the PUS-SOC are 27×27 mm(2) and 1.2 W, respectively. Based on the PUS-SOC, a prototype hand-held US imaging system was implemented. Phantom experiments demonstrated that the PUS-SOC can provide appropriate image quality for point-of-care applications with a compact PDA size ( 200×120×45 mm(3)) and 3 hours of battery life.

  9. GPGPU accelerated Krylov methods for compact modeling of on-chip passive integrated structures within the Chameleon-RF workflow

    Sebastian Gim

    2012-11-01

    Full Text Available Continued device scaling into the nanometer region and high frequencies of operation well into the multi-GHz region has given rise to new effects that previously had negligible impact but now present greater challenges and unprecedented complexity to designing successful mixed-signal silicon. The Chameleon-RF project was conceived to address these challenges. Creative use of domain decomposition, multi grid techniques or reduced order modeling techniques (ROM can be selectively applied at all levels of the process to efficiently prune down degrees of freedom (DoFs. However, the simulation of complex systems within a reasonable amount of time remains a computational challenge. This paper presents work done in the incorporation of GPGPU technology to accelerate Krylov based algorithms used for compact modeling of on-chip passive integrated structures within the workflow of the Chameleon-RF project. Based upon insight gained from work done above, a novel GPGPU accelerated algorithm was developed for the Krylov ROM (kROM methods and is described here for the benefit of the wider community.

  10. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  11. An On-Chip Learning Neuromorphic Autoencoder With Current-Mode Transposable Memory Read and Virtual Lookup Table.

    Cho, Hwasuk; Son, Hyunwoo; Seong, Kihwan; Kim, Byungsub; Park, Hong-June; Sim, Jae-Yoon

    2018-02-01

    This paper presents an IC implementation of on-chip learning neuromorphic autoencoder unit in a form of rate-based spiking neural network. With a current-mode signaling scheme embedded in a 500 × 500 6b SRAM-based memory, the proposed architecture achieves simultaneous processing of multiplications and accumulations. In addition, a transposable memory read for both forward and backward propagations and a virtual lookup table are also proposed to perform an unsupervised learning of restricted Boltzmann machine. The IC is fabricated using 28-nm CMOS process and is verified in a three-layer network of encoder-decoder pair for training and recovery of images with two-dimensional pixels. With a dataset of 50 digits, the IC shows a normalized root mean square error of 0.078. Measured energy efficiencies are 4.46 pJ per synaptic operation for inference and 19.26 pJ per synaptic weight update for learning, respectively. The learning performance is also estimated by simulations if the proposed hardware architecture is extended to apply to a batch training of 60 000 MNIST datasets.

  12. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range.

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-04-13

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.

  13. System on chip (SoC) microcontrollers (μC) as digitisers for ion beam analysis (IBA) instruments

    Whitlow, Harry J., E-mail: harry.j@whitlow.se

    2016-09-15

    Data digitisation of the analogue signals from detectors to digital data is an essential process in ion beam analysis (IBA). The low-cost, easy availability and development environments that have a low learning threshold makes system-on-chip (SoC) microcontrollers (μC) attractive for this task. These μC combine, on one die, analogue and digital inputs and outputs with serial USB interfaces, which opens up simple implementation of tailor-made interfaces for specific IBA measurement systems. We have investigated the design and performance limitations based on development of three different digitisation interfaces for IBA. These were a two-channel nuclear instrumentation module (NIM) ADC event mode interface (EMI) for a high-resolution magnetic RBS spectrometer, a simple headless-multi-channel analyser (MCA) and a combined dual channel headless MCA and EMI. It is shown that SoC μC based interfaces for digitisation of analogue spectroscopy pulses in IBA systems can be implemented for material costs less than 100 €. The performance of the SoC devices for many IBA applications is close to what can be achieved with state-of-the-art instruments. The simple pulse spectroscopy interface circuit and software are included in the auxiliary archive.

  14. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    Daniel Medale

    2012-10-01

    Full Text Available The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.

  15. System-on-chip integration of a new electromechanical impedance calculation method for aircraft structure health monitoring.

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-10-11

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.

  16. and Au nanoparticles for SERS applications

    Fazio Enza

    2018-01-01

    Full Text Available The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  17. Looking to the future of organs-on-chips: interview with Professor John Wikswo.

    Wikswo, John P

    2017-06-01

    John Wikswo talks to Francesca Lake, Managing Editor: John is the founding Director of the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE). He is also the Gordon A Cain University Professor; a B learned Professor of Living State Physics; and a Professor of Biomedical Engineering, Molecular Physiology and Biophysics, and Physics. John earned his PhD in physics at Stanford University (CA, USA). After serving as a Research Fellow in Cardiology at Stanford, he joined the Department of Physics and Astronomy at Vanderbilt University (TN, USA), where he went on to make the first measurement of the magnetic field of an isolated nerve. He founded VIIBRE at Vanderbilt in 2001 in order to foster and enhance interdisciplinary research in the biophysical sciences, bioengineering and medicine. VIIBRE efforts have led to the development of devices integral to organ-on-chip research. He is focusing on the neurovascular unit-on-a-chip, heart-on-a-chip, a missing organ microformulator, and microfluidic pumps and valves to control and analyze organs-on-chips.

  18. Implantable Biomedical Signal Monitoring Using RF Energy Harvestingand On-Chip Antenna

    Jiann-Shiun Yuan

    2015-08-01

    Full Text Available This paper presents the design of an energy harvesting wireless and battery-less silicon-on-chip (SoC device that can be implanted in the human body to monitor certain health conditions. The proposed architecture has been designed on TSMC 0.18μm CMOS ICs and is an integrated system with a rectenna (antenna and rectifier and transmitting circuit, all on a single chip powered by an external transmitter and that is small enough to be inserted in the human eye, heart or brain. The transmitting and receiving antennas operate in the 5.8- GHz ISM band and have a -10dB gain. The distinguishing feature of this design is the rectenna that comprises of a singlestage diode connected NMOS rectifier and a 3-D on-chip antenna that occupies only 2.5 × 1 × 2.8 mm3 of chip area and has the ability to communicate within proximity of 5 cm while giving 10% efficiency. The external source is a reader that powers up the RF rectifier in the implantable chip triggering it to start sending data back to the reader enabling an efficient method of health evaluation for the patient.

  19. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Chih-Ting Lin

    2012-08-01

    Full Text Available A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  20. An Implantable Cardiovascular Pressure Monitoring System with On-Chip Antenna and RF Energy Harvesting

    Yu-Chun Liu

    2015-08-01

    Full Text Available An implantable wireless system with on-chip antenna for cardiovascular pressure monitor is studied. The implantable device is operated in a batteryless manner, powered by an external radio frequency (RF power source. The received RF power level can be sensed and wirelessly transmitted along with blood pressure signal for feedback control of the external RF power. The integrated electronic system, consisting of a capacitance-to-voltage converter, an adaptive RF powering system, an RF transmitter and digital control circuitry, is simulated using a TSMC 0.18 μm CMOS technology. The implanted RF transmitter circuit is combined with a low power voltage-controlled oscillator resonating at 5.8 GHz and a power amplifier. For the design, the simulation model is setup using ADS and HFSS software. The dimension of the antenna is 1 × 0.6 × 4.8 mm3 with a 1 × 0.6 mm2 on-chip circuit which is small enough to place in human carotid artery.

  1. Six-port optical switch for cluster-mesh photonic network-on-chip

    Jia, Hao; Zhou, Ting; Zhao, Yunchou; Xia, Yuhao; Dai, Jincheng; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin

    2018-05-01

    Photonic network-on-chip for high-performance multi-core processors has attracted substantial interest in recent years as it offers a systematic method to meet the demand of large bandwidth, low latency and low power dissipation. In this paper we demonstrate a non-blocking six-port optical switch for cluster-mesh photonic network-on-chip. The architecture is constructed by substituting three optical switching units of typical Spanke-Benes network to optical waveguide crossings. Compared with Spanke-Benes network, the number of optical switching units is reduced by 20%, while the connectivity of routing path is maintained. By this way the footprint and power consumption can be reduced at the expense of sacrificing the network latency performance in some cases. The device is realized by 12 thermally tuned silicon Mach-Zehnder optical switching units. Its theoretical spectral responses are evaluated by establishing a numerical model. The experimental spectral responses are also characterized, which indicates that the optical signal-to-noise ratios of the optical switch are larger than 13.5 dB in the wavelength range from 1525 nm to 1565 nm. Data transmission experiment with the data rate of 32 Gbps is implemented for each optical link.

  2. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Cally Gill

    2013-09-01

    Full Text Available The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  3. Embedded memory design for multi-core and systems on chip

    Mohammad, Baker

    2014-01-01

    This book describes the various tradeoffs systems designers face when designing embedded memory.  Readers designing multi-core systems and systems on chip will benefit from the discussion of different topics from memory architecture, array organization, circuit design techniques and design for test.  The presentation enables a multi-disciplinary approach to chip design, which bridges the gap between the architecture level and circuit level, in order to address yield, reliability and power-related issues for embedded memory.  ·         Provides a comprehensive overview of embedded memory design and associated challenges and choices; ·         Explains tradeoffs and dependencies across different disciplines involved with multi-core and system on chip memory design; ·         Includes detailed discussion of memory hierarchy and its impact on energy and performance; ·         Uses real product examples to demonstrate embedded memory design flow from architecture, to circuit ...

  4. Source-synchronous networks-on-chip circuit and architectural interconnect modeling

    Mandal, Ayan; Mahapatra, Rabi

    2014-01-01

    This book describes novel methods for network-on-chip (NoC) design, using source-synchronous high-speed resonant clocks.  The authors discuss NoCs from the bottom up, providing circuit level details, before providing architectural simulations. As a result, readers will get a complete picture of how a NoC can be designed and optimized.  Using the methods described in this book, readers are enabled to design NoCs that are 5X better than existing approaches in terms of latency and throughput and can also sustain a significantly greater amount of traffic.   • Describes novel methods for high-speed network-on-chip (NoC) design; • Enables readers to understand NoC design from both circuit and architectural levels; • Provides circuit-level details of the NoC (including clocking, router design), along with a high-speed, resonant clocking style which is used in the NoC; • Includes architectural simulations of the NoC, demonstrating significantly superior performance over the state-of-the-art.

  5. A full on-chip CMOS low-dropout voltage regulator with VCCS compensation

    Gao Leisheng; Zhou Yumei; Wu Bin; Jiang Jianhua, E-mail: gaoleisheng@ime.ac.c [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2010-08-15

    A full on-chip CMOS low-dropout (LDO) voltage regulator with high PSR is presented. Instead of relying on the zero generated by the load capacitor and its equivalent series resistance, the proposed LDO generates a zero by voltage-controlled current sources for stability. The compensating capacitor for the proposed scheme is only 0.18 pF, which is much smaller than the capacitor of the conventional compensation scheme. The full on-chip LDO was fabricated in commercial 0.35 {mu}m CMOS technology. The active chip area of the LDO (including the bandgap voltage reference) is 400 x 270 {mu}m{sup 2}. Experimental results show that the PSR of the LDO is -58.7 dB at a frequency of 10 Hz and -20 dB at a frequency of 1 MHz. The proposed LDO is capable of sourcing an output current up to 50 mA. (semiconductor integrated circuits)

  6. A full on-chip CMOS low-dropout voltage regulator with VCCS compensation

    Gao Leisheng; Zhou Yumei; Wu Bin; Jiang Jianhua

    2010-01-01

    A full on-chip CMOS low-dropout (LDO) voltage regulator with high PSR is presented. Instead of relying on the zero generated by the load capacitor and its equivalent series resistance, the proposed LDO generates a zero by voltage-controlled current sources for stability. The compensating capacitor for the proposed scheme is only 0.18 pF, which is much smaller than the capacitor of the conventional compensation scheme. The full on-chip LDO was fabricated in commercial 0.35 μm CMOS technology. The active chip area of the LDO (including the bandgap voltage reference) is 400 x 270 μm 2 . Experimental results show that the PSR of the LDO is -58.7 dB at a frequency of 10 Hz and -20 dB at a frequency of 1 MHz. The proposed LDO is capable of sourcing an output current up to 50 mA. (semiconductor integrated circuits)

  7. On-chip real-time single-copy polymerase chain reaction in picoliter droplets

    Beer, N R; Hindson, B; Wheeler, E; Hall, S B; Rose, K A; Kennedy, I; Colston, B

    2007-04-20

    The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.

  8. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  9. Small-scale, self-propagating combustion realized with on-chip porous silicon.

    Piekiel, Nicholas W; Morris, Christopher J

    2015-05-13

    For small-scale energy applications, energetic materials represent a high energy density source that, in certain cases, can be accessed with a very small amount of energy input. Recent advances in microprocessing techniques allow for the implementation of a porous silicon energetic material onto a crystalline silicon wafer at the microscale; however, combustion at a small length scale remains to be fully investigated, particularly with regards to the limitations of increased relative heat loss during combustion. The present study explores the critical dimensions of an on-chip porous silicon energetic material (porous silicon + sodium perchlorate (NaClO4)) required to propagate combustion. We etched ∼97 μm wide and ∼45 μm deep porous silicon channels that burned at a steady rate of 4.6 m/s, remaining steady across 90° changes in direction. In an effort to minimize the potential on-chip footprint for energetic porous silicon, we also explored the minimum spacing between porous silicon channels. We demonstrated independent burning of porous silicon channels at a spacing of 0.5 m on a chip surface area of 1.65 cm(2). Smaller porous silicon channels of ∼28 μm wide and ∼14 μm deep were also utilized. These samples propagated combustion, but at times, did so unsteadily. This result may suggest that we are approaching a critical length scale for self-propagating combustion in a porous silicon energetic material.

  10. Fiscal 2000 research achievement report on the research and development of advanced design technologies for system-on-chip; 2000 nendo system on chip sentan sekkei gijutsu no kenkyu kaihatsu seika hokokusho

    NONE

    2001-05-01

    Efforts were made to develop technologies for rapid improvement in SoC (system on chip) design productivity. In concrete terms, the concept of V-core (virtual core) was introduced into SoC design for the establishment of reusing technology and design automation in the uppermost stream region of designing. Activities were conducted in the two fields of (1) research and development of V-core based design technology and (2) research and development of a V-core database. Efforts exerted in field (1) aimed at the research and development of system specifications description technology, architecture generation technology, soft V-core internal structure optimization technology, optimized RTL (register transfer level) description generation technology, and system performance verification technology. In field (2), efforts were made to develop core database technology, core development support tools, core verification technology, and design assets verification technology. The system specifications description technology is a technique to define SoC system level specifications (degree of model abstraction). (NEDO)

  11. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    Trichopoulos, Georgios C.

    . Additionally, a butterfly-shaped antenna layout is introduced that enables broadband imaging. The alternative design presented here, allows for video-rate imaging in the 0.6--1.2 THz band and maintains a small antenna footprint, resulting in densely packed FPAs. In both antenna designs, we optimize the impedance matching between the antennas and the integrated electronic devices, thus achieving optimum responsivity levels for high sensitivity and low noise performance. Subsequently, we present the design details of the first THz camera and the first THz camera images captured. With the realized THz camera, imaging of concealed objects is achieved with space. Thus, the hybrid electromagnetic model allows fast and accurate design of THz antennas and modeling of the complete THz imaging system. Finally, motivated by the novel THz antenna layouts and the quasioptical techniques, we developed a novel non-contact probe measurement method for on-chip device characterization. In the THz regime, traditional contact probes are too small and fragile, thus inhibiting accurate and reliable circuit measurements. By integrating the device under test (DUT) with THz antennas that act as the measurement probes, we may couple the incident and reflected signal from and to the network analyzer without residing to any physical connection.

  12. Ser lugar e ser território como experiências do ser-no-mundo: um exercício de existencialismo geográfico

    Angelo Serpa

    2017-10-01

    Full Text Available Este ensaio busca aprofundar uma abordagem existencialista dos conceitos de lugar e território assumindo o pressuposto de que eles remetem, antes de tudo, a experiências geográficas que ora se distinguem, ora se aproximam e carregam em si a marca do espaço vivido. Para esta análise, parte-se do conceito de geograficidade – a base pré-consciente e pré-conceitual da geografia – assumindo também que, antes de qualquer conceituação ou estratégia de representação conceitual, as pessoas são seres essencialmente espaciais e que viver é produzir/experienciar espaço. O ensaio está dividido em seis seções: a introdução, uma problematização da dialética entre interior e exterior e seu desdobramento numa abordagem de como lugar e território se exprimem como modos geográficos de existência no espaço público; nas duas últimas seções, reflete-se sobre o papel do corpo nos processos de apropriação do espaço e sobre como ser lugar e ser território se exprimem como facetas do ser-no-mundo em seu sentido mais político.

  13. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle

    Soloviev Mikhail

    2010-09-01

    Full Text Available Abstract Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation system that allows for the strict control of the extracellular environment. We divided the Chlamydomonas cell cycle into interdivision and division phases on the basis of changes in cell size and found that, regardless of the amount of photosynthetically active radiation (PAR and the extent of illumination, the length of the interdivision phase was inversely proportional to the rate of increase of cell volume. Their product remains constant indicating the existence of an 'interdivision timer'. The length of the division phase, in contrast, remained nearly constant. Cells cultivated under light-dark-light conditions did not divide unless they had grown to twice their initial volume during the first light period. This indicates the existence of a 'commitment sizer'. The ratio of the cell volume at the beginning of the division phase to the initial cell volume determined the number of daughter cells, indicating the existence of a 'mitotic sizer'.

  14. Knudsen pump produced via silicon deep RIE, thermal oxidation, and anodic bonding processes for on-chip vacuum pumping

    Van Toan, Nguyen; Inomata, Naoki; Trung, Nguyen Huu; Ono, Takahito

    2018-05-01

    This work describes the fabrication and evaluation of the Knudsen pump for on-chip vacuum pumping that works based on the principle of a thermal transpiration. Three AFM (atomic force microscope) cantilevers are integrated into small chambers with a size of 5 mm  ×  3 mm  ×  0.4 mm for the pump’s evaluation. Knudsen pump is fabricated using deep RIE (reactive ion etching), wet thermal oxidation and anodic bonding processes. The fabricated device is evaluated by monitoring the quality (Q) factor of the integrated cantilevers. The Q factor of the cantilever is increased from 300 -1150 in cases without and with a temperature difference approximately 25 °C between the top (the hot side at 40 °C) and bottom (the cold side at 15 °C) sides of the fabricated device, respectively. The evacuated chamber pressure of around 10 kPa is estimated from the Q factor of the integrated cantilevers.

  15. System-on-chip architecture and validation for real-time transceiver optimization: APC implementation on FPGA

    Suarez, Hernan; Zhang, Yan R.

    2015-05-01

    New radar applications need to perform complex algorithms and process large quantity of data to generate useful information for the users. This situation has motivated the search for better processing solutions that include low power high-performance processors, efficient algorithms, and high-speed interfaces. In this work, hardware implementation of adaptive pulse compression for real-time transceiver optimization are presented, they are based on a System-on-Chip architecture for Xilinx devices. This study also evaluates the performance of dedicated coprocessor as hardware accelerator units to speed up and improve the computation of computing-intensive tasks such matrix multiplication and matrix inversion which are essential units to solve the covariance matrix. The tradeoffs between latency and hardware utilization are also presented. Moreover, the system architecture takes advantage of the embedded processor, which is interconnected with the logic resources through the high performance AXI buses, to perform floating-point operations, control the processing blocks, and communicate with external PC through a customized software interface. The overall system functionality is demonstrated and tested for real-time operations using a Ku-band tested together with a low-cost channel emulator for different types of waveforms.

  16. Design and simulation of a fast Josephson junction on-chip gated clock for frequency and time analysis

    Ruby, R.C.

    1991-01-01

    This paper reports that as the sophistication and speed of digital communication systems increase, there is a corresponding demand for more sophisticated and faster measurement instruments. One such instrument new on the market is the HP 5371A Frequency and Time Interval Analyzer (FTIA). Such an instrument is analogous to a conventional oscilloscope. Whereas the oscilloscope measures waveform amplitudes as a function of time, the FTIA measures phase, frequency, or timing events as functions of time. These applications are useful in such diverse areas as spread-spectrum radar, chirp filter designs, disk-head evaluation, and timing jitter analysis. The on-chip clock designed for this application uses a single Josephson Junction as the clock and a resonator circuit to fix the frequency. A zero-crossing detector is used to start and stop the clock. A SFQ counter is used to count the pulses generated by the clock and a reset circuit is used to reset the clock. Extensive simulations and modeling have been done based on measured values obtained from our Nb/Al 2 O 3 /Al/Nb process

  17. Acerca de tres dimensiones del ser humano

    Fúnez, Rubén

    2007-01-01

    El autor resume las ideas importantes del libro "Tres dimensiones del ser humano", se pregunta por la importancia del planteamiento zubiriano, tanto para la historia de la filosofía, como para la situación que actualmente nos ha tocado vivir.

  18. Neighboring phosphoSer-Pro motifs in the undefined domain of IRAK1 impart bivalent advantage for Pin1 binding.

    Rogals, Monique J; Greenwood, Alexander I; Kwon, Jeahoo; Lu, Kun Ping; Nicholson, Linda K

    2016-12-01

    The peptidyl prolyl isomerase Pin1 has two domains that are considered to be its binding (WW) and catalytic (PPIase) domains, both of which interact with phosphorylated Ser/Thr-Pro motifs. This shared specificity might influence substrate selection, as many known Pin1 substrates have multiple sequentially close phosphoSer/Thr-Pro motifs, including the protein interleukin-1 receptor-associated kinase-1 (IRAK1). The IRAK1 undefined domain (UD) contains two sets of such neighboring motifs (Ser131/Ser144 and Ser163/Ser173), suggesting possible bivalent interactions with Pin1. Using a series of NMR titrations with 15N-labeled full-length Pin1 (Pin1-FL), PPIase, or WW domain and phosphopeptides representing the Ser131/Ser144 and Ser163/Ser173 regions of IRAK1-UD, bivalent interactions were investigated. Binding studies using singly phosphorylated peptides showed that individual motifs displayed weak affinities (> 100 μm) for Pin1-FL and each isolated domain. Analysis of dually phosphorylated peptides binding to Pin1-FL showed that inclusion of bivalent states was necessary to fit the data. The resulting complex model and fitted parameters were applied to predict the impact of bivalent states at low micromolar concentrations, demonstrating significant affinity enhancement for both dually phosphorylated peptides (3.5 and 24 μm for peptides based on the Ser131/Ser144 and Ser163/Ser173 regions, respectively). The complementary technique biolayer interferometry confirmed the predicted affinity enhancement for a representative set of singly and dually phosphorylated Ser131/Ser144 peptides at low micromolar concentrations, validating model predictions. These studies provide novel insights regarding the complexity of interactions between Pin1 and activated IRAK1, and more broadly suggest that phosphorylation of neighboring Ser/Thr-Pro motifs in proteins might provide competitive advantage at cellular concentrations for engaging with Pin1. © 2016 Federation of European

  19. A CMOS Gm-C complex filter with on-chip automatic tuning for wireless sensor network application

    Wan Chuanchuan; Li Zhiqun; Hou Ningbing

    2011-01-01

    A G m -C complex filter with on-chip automatic tuning for wireless sensor networks is designed and implemented using 0.18 μm CMOS process. This filter is synthesized from a low-pass 5th-order Chebyshev RLC ladder filter prototype by means of capacitors and fully balanced transconductors. A conventional phase-locked loop is used to realize the on-chip automatic tuning for both center frequency and bandwidth control. The filter is centered at 2 MHz with a bandwidth of 2.4 MHz. The measured results show that the filter provides more than 45 dB image rejection while the ripple in the pass-band is less than 1.2 dB. The complete filter including on-chip tuning circuit consumes 4.9 mA with 1.8 V single supply voltage. (semiconductor integrated circuits)

  20. Improving SERS uniformity by isolating hot spots in gold rod-in-shell nanoparticles

    Wang, Shanshan; Liu, Zhonghui [Shanghai Jiao Tong University, School of Biomedical Engineering & Med-X Research Institute (China); Bartic, Carmen [KU Leuven, Department of Physics (Belgium); Xu, Hong, E-mail: xuhong@sjtu.edu.cn; Ye, Jian, E-mail: yejian78@sjtu.edu.cn [Shanghai Jiao Tong University, School of Biomedical Engineering & Med-X Research Institute (China)

    2016-08-15

    Surface-enhanced Raman scattering (SERS) tags show ultrasensitivity and multiplexing abilities due to strong and characteristic Raman signals and therefore can be utilized as optical labeling agents similar to fluorescent dyes and quantum dots for biosensing and bioimaging. However, SERS tags have the difficulty to realize quantitative analysis due to the uniformity and reproducibility issue. In this work, we have reported on a new type of SERS tag called Au rod-in-shell (RIS) gap-enhanced Raman tag (GERT). With the high-resolution transmission electron microscopy (TEM) and optical absorbance measurements, we have demonstrated the subnanometer sized gap junctions inside the RIS GERTs. SERS measurements and FDTD calculations show that the core–shell subnanometer gap geometry in the RIS GERTs not only generates strong SERS hot spots but also isolates SERS hot spots by Au shells to avoid the influence when the particle aggregates form, therefore showing better SERS uniformity and stronger SERS intensity than normal Au nanorods. Those RIS NPs exhibit great potential as the labeling agents for SERS-based bioimaging and biosensing applications.