WorldWideScience

Sample records for on-chip differential interference

  1. Light interference detection on-chip by integrated SNSPD counters

    Directory of Open Access Journals (Sweden)

    Paul Cavalier

    2011-12-01

    Full Text Available A SWIFTS device (Stationary Wave Integrated Fourier Transform Spectrometer has been realized with an array of 24 Superconducting Nanowire Single Photon Detectors (SNSPD, on-chip integrated under a Si3N4 monomode rib-waveguide interferometer. Colored light around 1.55μm wavelength is introduced through end-fire coupling, producing a counter-propagative stationary interferogram over the 40nm wide, 120nm spaced, 4nm thick epi-NbN nanowire array. Modulations in the source bandwidth have been detected using individual waveguide coupled SNSPDs operating in single photon counting mode, which is a step towards light spectrum reconstruction by inverse Fourier transform of the stationary wave intensity. We report the design, fabrication process and in-situ measurement at 4.2K of light power modulation in the interferometer, obtained with variable laser wavelength. Such micro-SWIFTS configuration with 160nm sampling period over 3.84μm distance allows a spectral bandwidth of 2μm and a wavelength resolution of 170nm. The light interferences direct sampling ability is unique and raises wide interest with several potential applications like fringe-tracking, metrology, cryptography or optical tomography.

  2. On-chip interference of single photons from an embedded quantum dot and an external laser

    Energy Technology Data Exchange (ETDEWEB)

    Prtljaga, N., E-mail: n.prtljaga@sheffield.ac.uk; Bentham, C.; O' Hara, J.; Royall, B.; Wilson, L. R.; Skolnick, M. S.; Fox, A. M. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Clarke, E. [Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2016-06-20

    In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler. This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.

  3. An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens

    National Research Council Canada - National Science Library

    Tan, Jeslin J L; Capozzoli, Monica; Sato, Mitsuharu; Watthanaworawit, Wanitda; Ling, Clare L; Mauduit, Marjorie; Malleret, Benoît; Grüner, Anne-Charlotte; Tan, Rosemary; Nosten, François H; Snounou, Georges; Rénia, Laurent; Ng, Lisa F P

    2014-01-01

    .... In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26...

  4. Waveguide filter-based on-chip differentiator for microwave photonic signal processing

    NARCIS (Netherlands)

    Taddei, Caterina; Nguyen, T.H.Yen; Zhuang, L.; Hoekman, M.; Leinse, Arne; Heideman, Rene; van Dijk, Paul; Roeloffzen, C.G.H.

    2013-01-01

    We propose and demonstrate a waveguide filterbased on-chip differentiator for microwave photonic signal processing. The system principle allows the operation of arbitrary-order differentiation. The realized device is constructed using the basic building blocks of photonic integrated circuits, and

  5. An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens.

    Science.gov (United States)

    Tan, Jeslin J L; Capozzoli, Monica; Sato, Mitsuharu; Watthanaworawit, Wanitda; Ling, Clare L; Mauduit, Marjorie; Malleret, Benoît; Grüner, Anne-Charlotte; Tan, Rosemary; Nosten, François H; Snounou, Georges; Rénia, Laurent; Ng, Lisa F P

    2014-01-01

    Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens.

  6. 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body.

    Science.gov (United States)

    Kim, Choong; Lee, Kang Sun; Bang, Jae Hoon; Kim, Young Eyn; Kim, Min-Cheol; Oh, Kwang Wook; Lee, Soo Hyun; Kang, Ji Yoon

    2011-03-07

    This paper proposes a microfluidic device for the on-chip differentiation of an embryoid body (EB) formed in a microwell via 3-dimensional cultures of mouse embryonic carcinoma (EC) cells. The device adjusted the size of the EB by fluid volume, differentiated the EB by chemical treatment, and evaluated its effects in EC cells by on-chip immunostaining. A microfluidic resistance network was designed to control the size of the embryoid body. The duration time and flow rate into each microwell regulated the initial number of trapped cells in order to adjust the size of the EB. The docked cells were aggregated and formed a spherical EB on the non-adherent surface of the culture chip for 3 days. The EC cells in the EB were then differentiated into diverse cell lineages without attachment for an additional 4 days; meanwhile, retinoic acid (RA) was applied without serum to direct the cells into early neuronal lineage. On-chip immunostaining of the EB in the microwell with a neuronal marker was conducted to assess the differentiation-inducing ability of RA. The effect of RA on neuronal differentiation was analyzed with confocal microscopic images of the TuJ1 marker. The RA-treated cells expressed more neuronal markers and appeared as mature neuronal cells with long neurites. The fluorescence intensity of the TuJ1 in the RA-treated EB was twice that observed in the non-treated EB on day 5. It was demonstrated that the pre-screening of inducing chemicals on the early neuronal differentiation of EC cells in a single microfluidic chip was indeed feasible. This chip is expected to constitute a useful tool for assessing the early differentiation of ES cells without attachment, and is also expected to prove useful as an anti-cancer drug test platform for the cytotoxicity assay with cellular spheroids.

  7. An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens.

    Directory of Open Access Journals (Sweden)

    Jeslin J L Tan

    Full Text Available Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens.

  8. An Integrated Lab-on-Chip for Rapid Identification and Simultaneous Differentiation of Tropical Pathogens

    Science.gov (United States)

    Sato, Mitsuharu; Watthanaworawit, Wanitda; Ling, Clare L.; Mauduit, Marjorie; Malleret, Benoît; Grüner, Anne-Charlotte; Tan, Rosemary; Nosten, François H.; Snounou, Georges; Rénia, Laurent; Ng, Lisa F. P.

    2014-01-01

    Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens. PMID:25078474

  9. Grassmannian Differential Limited Feedback for Interference Alignment

    CERN Document Server

    Ayach, Omar El

    2011-01-01

    Channel state information (CSI) in the interference channel can be used to precode, align, and reduce the dimension of interference at the receivers, to achieve the channel's maximum multiplexing gain, through what is known as interference alignment. Most interference alignment algorithms require knowledge of all the interfering channels to compute the alignment precoders. CSI, considered available at the receivers, can be shared with the transmitters via limited feedback. When alignment is done by coding over frequency extensions in a single antenna system, the required CSI lies on the Grassmannian manifold and its structure can be exploited in feedback. Unfortunately, the number of channels to be shared grows with the square of the number of users creating too much overhead with conventional feedback methods. This paper proposes Grassmannian differential feedback to reduce feedback overhead by exploiting both the channel's temporal correlation and Grassmannian structure. The performance of the proposed algo...

  10. Controlling Differentiation of Stem Cells for Developing Personalized Organ-on-Chip Platforms.

    Science.gov (United States)

    Geraili, Armin; Jafari, Parya; Hassani, Mohsen Sheikh; Araghi, Behnaz Heidary; Mohammadi, Mohammad Hossein; Ghafari, Amir Mohammad; Tamrin, Sara Hasanpour; Modarres, Hassan Pezeshgi; Kolahchi, Ahmad Rezaei; Ahadian, Samad; Sanati-Nezhad, Amir

    2017-09-14

    Organ-on-chip (OOC) platforms have attracted attentions of pharmaceutical companies as powerful tools for screening of existing drugs and development of new drug candidates. OOCs have primarily used human cell lines or primary cells to develop biomimetic tissue models. However, the ability of human stem cells in unlimited self-renewal and differentiation into multiple lineages has made them attractive for OOCs. The microfluidic technology has enabled precise control of stem cell differentiation using soluble factors, biophysical cues, and electromagnetic signals. This study discusses different tissue- and organ-on-chip platforms (i.e., skin, brain, blood-brain barrier, bone marrow, heart, liver, lung, tumor, and vascular), with an emphasis on the critical role of stem cells in the synthesis of complex tissues. This study further recaps the design, fabrication, high-throughput performance, and improved functionality of stem-cell-based OOCs, technical challenges, obstacles against implementing their potential applications, and future perspectives related to different experimental platforms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thin Film Differential Photosensor for Reduction of Temperature Effects in Lab-on-Chip Applications.

    Science.gov (United States)

    de Cesare, Giampiero; Carpentiero, Matteo; Nascetti, Augusto; Caputo, Domenico

    2016-02-20

    This paper presents a thin film structure suitable for low-level radiation measurements in lab-on-chip systems that are subject to thermal treatments of the analyte and/or to large temperature variations. The device is the series connection of two amorphous silicon/amorphous silicon carbide heterojunctions designed to perform differential current measurements. The two diodes experience the same temperature, while only one is exposed to the incident radiation. Under these conditions, temperature and light are the common and differential mode signals, respectively. A proper electrical connection reads the differential current of the two diodes (ideally the photocurrent) as the output signal. The experimental characterization shows the benefits of the differential structure in minimizing the temperature effects with respect to a single diode operation. In particular, when the temperature varies from 23 to 50 °C, the proposed device shows a common mode rejection ratio up to 24 dB and reduces of a factor of three the error in detecting very low-intensity light signals.

  12. Thin Film Differential Photosensor for Reduction of Temperature Effects in Lab-on-Chip Applications

    Science.gov (United States)

    de Cesare, Giampiero; Carpentiero, Matteo; Nascetti, Augusto; Caputo, Domenico

    2016-01-01

    This paper presents a thin film structure suitable for low-level radiation measurements in lab-on-chip systems that are subject to thermal treatments of the analyte and/or to large temperature variations. The device is the series connection of two amorphous silicon/amorphous silicon carbide heterojunctions designed to perform differential current measurements. The two diodes experience the same temperature, while only one is exposed to the incident radiation. Under these conditions, temperature and light are the common and differential mode signals, respectively. A proper electrical connection reads the differential current of the two diodes (ideally the photocurrent) as the output signal. The experimental characterization shows the benefits of the differential structure in minimizing the temperature effects with respect to a single diode operation. In particular, when the temperature varies from 23 to 50 °C, the proposed device shows a common mode rejection ratio up to 24 dB and reduces of a factor of three the error in detecting very low-intensity light signals. PMID:26907292

  13. Spatial differentiation of Bloch surface wave beams using an on-chip phase-shifted Bragg grating

    Science.gov (United States)

    Doskolovich, L. L.; Bezus, E. A.; Bykov, D. A.; Soifer, V. A.

    2016-11-01

    Bloch surface waves (BSWs) supported by the interfaces between a photonic crystal and a homogeneous medium are considered as a prospective information carrier in integrated photonic circuits. In the present work, we study the application of on-chip phase-shifted Bragg gratings for spatial differentiation of BSW beams. The presented simulation results demonstrate a high accuracy of the performed differentiation. It is shown that upon differentiation of a Gaussian BSW beam, a two-dimensional analogue of the Hermite-Gaussian mode is generated in reflection. The obtained results may find application in the design of new planar devices for analog optical information processing.

  14. Differential interference contrast microscopy using Savart plates

    Science.gov (United States)

    Trịnh, Hưng-Xuân; Lin, Shyh-Tsong; Chen, Liang-Chia; Yeh, Sheng-Lih; Chen, Chin-Sheng

    2017-04-01

    A new differential interference contrast microscopy (DICM), which uses Savart prisms as a shearing plate and a phase-shifting device, is proposed. The system consists of a phase-shifting module (PSM) and a DICM module (DICMM). The PSM has two Savart prisms: the first prism separates the incident beam into two parallel beams, and the second prism recombines these two beams. The optical path difference (OPD) of the two beams, which is represented by a biased OPD, can be adjusted by rotating the angle of the normal surface of the second prism. In the DICMM, the other Savart prism is used to replace the Nomarski prism (NP) in conventional DICM. It combines with an afocal microscopic system (AMS) to produce a Savart-DICM system, which is able to perform a phase-shifting technique by changing the biased OPD to produce a phase shift of π/2 for each step. This paper describes the configuration and measurement theory of the microscope. The experimental results confirm the validity and capability of the proposed microscope.

  15. Implementation of low-swing differential interface circuits for high-speed on-chip synchronous interconnection

    Institute of Scientific and Technical Information of China (English)

    QIAO Fei; YANG HuaZhong; HUANG Gang; WANG Hui

    2008-01-01

    A novel low-swing interface circuit for high-speed on-chip asynchronous inter-connection is proposed in this paper.It takes a differential level-triggered latch to recover digital signal with ultra low-swing voltage less than 50 mV,and the driver part of the interface circuit is optimized for low power using the driver-array method.With a capacity to work up to 500 MHz,the proposed circuit,which is simulated and fabricated using SMIC 0.18-um 1.8-V digital CMOS technology,consumes less power than previously reported designs.

  16. Collisional quantum interference on rotational energy transfer: physical interpretation of the differential interference angle

    Institute of Scientific and Technical Information of China (English)

    Li Yong-Qing; Li Jian; Ma Feng-Cai

    2006-01-01

    Collisional quantum interference (CQI) on the intramolecular rotational energy transfer is observed in an experiment with a static cell, and the integral interference angles are measured. To obtain more accurate information, an experiment with a molecular beam is carried out, and thereby the relationship between the differential interference angle and the scattering angle is obtained. Based on the first-Born approximation of time-dependent perturbation theory,the theoretical model of CQI is developed in an atom-diatom system in the condition of the molecular beam, with the long-range interaction potential taken into account. The method of measuring correctly the differential interference angle is presented. The tendencies of the differential interference angle changing with the impact parameter and relative velocity are discussed. The theoretical model presented here is important for understanding or performing the experiment in the molecular beam.

  17. High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference.

    Science.gov (United States)

    Choudhary, Amol; Liu, Yang; Morrison, Blair; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen; Marpaung, David; Eggleton, Benjamin J

    2017-07-19

    Integrated microwave photonics has strongly emerged as a next-generation technology to address limitations of conventional RF electronics for wireless communications. High-resolution RF signal processing still remains a challenge due to limitations in technology that offer sub-GHz spectral resolution, in particular at high carrier frequencies. In this paper, we present an on-chip high-resolution RF signal processor, capable of providing high-suppression spectral filtering, large phase shifts and ns-scale time delays. This was achieved through tailoring of the Brillouin gain profiles using Stokes and anti-Stokes resonances combined with RF interferometry on a low-loss photonic chip with strong opto-acoustic interactions. Using an optical power of RF signals we demonstrate, almost an order of magnitude amplification in the phase and delay compared to devices purely based upon the slow-light effect of Brillouin scattering. This concept allows for versatile and power-efficient manipulation of the amplitude and phase of RF signals on a photonic chip for applications in wireless communications including software defined radios and beam forming.

  18. The differential interference angle in collisional quantum interference on rotational energy transfer

    Institute of Scientific and Technical Information of China (English)

    Wang Wei-Li; Miao Gang; Chen Yue-Hui; Tang Dan; Ma Feng-Cai

    2008-01-01

    Collisional quantum interference (CQI) in the intramolecular rotational energy transfer was observed in experiment by Sha and co-workers.[1] The interference angle, which measuring the degree of the coherence, were measured in the experiment of the static cell. Based on the first Born approximation of time dependent perturbation theory, taking into accounts the anisotropic Lennard-Jones interaction potentials, this paper describes the theoretical model of CQI in intramolecular rotational energy transfer in an atom-diatom collision system. In the model, the differential interference angle for the experiment of the molecular beam is calculated, the changing tendencies of the differential interference angle with the impact parameter and collision partners are obtained. This theoretical model is important for understanding or performing this kind of experiments.

  19. Passive millimeter wave differential interference contrast polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E; Kelly, James F; Sheen, David M; Tedeschi, Jonathan R; Hall, Thomas E; Hatchell, Brian K; Valdez, Patrick; McMakin, Douglas L

    2014-04-29

    Differential polarization imaging systems include an axicon configured to provide a displacement of ray bundles associated with different image patches. The displaced ray bundles are directed to antenna horns and orthomode transducers so as to provide outputs correspond to orthogonal linear states of polarization (SOPs). The outputs are directed to a differential radiometer so that Stokes parameter differences between image patches can be obtained. The ray bundle displacements can be selected to correspond to a mechanical spacing of antenna horns. In some examples, ray bundle displacement corresponds to a displacement less than the diffraction limit.

  20. Passive millimeter wave differential interference contrast polarimetry

    Science.gov (United States)

    Bernacki, Bruce E; Kelly, James F; Sheen, David M; Tedeschi, Jonathan R; Hall, Thomas E; Hatchell, Brian K; Valdez, Patrick; McMakin, Douglas L

    2014-04-29

    Differential polarization imaging systems include an axicon configured to provide a displacement of ray bundles associated with different image patches. The displaced ray bundles are directed to antenna horns and orthomode transducers so as to provide outputs correspond to orthogonal linear states of polarization (SOPs). The outputs are directed to a differential radiometer so that Stokes parameter differences between image patches can be obtained. The ray bundle displacements can be selected to correspond to a mechanical spacing of antenna horns. In some examples, ray bundle displacement corresponds to a displacement less than the diffraction limit.

  1. Capillary flow of blood in a microchannel with differential wetting for blood plasma separation and on-chip glucose detection.

    Science.gov (United States)

    Maria, M Sneha; Rakesh, P E; Chandra, T S; Sen, A K

    2016-09-01

    We report capillary flow of blood in a microchannel with differential wetting for the separation of a plasma from sample blood and subsequent on-chip detection of glucose present in a plasma. A rectangular polydimethylsiloxane microchannel with hydrophilic walls (on three sides) achieved by using oxygen plasma exposure enables capillary flow of blood introduced at the device inlet through the microchannel. A hydrophobic region (on all four sides) in the microchannel impedes the flow of sample blood, and the accumulated blood cells at the region form a filter to facilitate the separation of a plasma. The modified wetting property of the walls and hence the device performance could be retained for a few weeks by covering the channels with deionised water. The effects of the channel cross-section, exposure time, waiting time, and location and length of the hydrophobic region on the volume of the collected plasma are studied. Using a channel cross-section of 1000 × 400 μm, an exposure time of 2 min, a waiting time of 10 min, and a hydrophobic region of width 1.0 cm located at 10 mm from the device inlet, 450 nl of plasma was obtained within 15 min. The performance of the device was found to be unaffected (provides 450 nl of plasma in 15 min) even after 15 days. The purification efficiency and plasma recovery of the device were measured and found to be comparable with that obtained using the conventional centrifugation process. Detection of glucose at different concentrations in whole blood of normal and diabetic patients was performed (using 5 μl of sample blood within 15 min) to demonstrate the compatibility of the device with integrated detection modules.

  2. Detecting Plasmon Resonance Energy Transfer with Differential Interference Contrast Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Augspurger, Ashley E. [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Stender, Anthony S. [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Han, Rui [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Fang, Ning [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2013-12-30

    Gold nanoparticles are ideal probes for studying intracellular environments and energy transfer mechanisms due to their plasmonic properties. Plasmon resonance energy transfer (PRET) relies on a plasmonic nanoparticle to donate energy to a nearby resonant acceptor molecule, a process which can be observed due to the plasmonic quenching of the donor nanoparticle. In this study, a gold nanosphere was used as the plasmonic donor, while the metalloprotein cytochrome c was used as the acceptor molecule. Differential interference contrast (DIC) microscopy allows for simultaneous monitoring of complex environments and noble metal nanoparticles in real time. Using DIC and specially designed microfluidic channels, we were able to monitor PRET at the single gold particle level and observe the reversibility of PRET upon the introduction of phosphate-buffered saline to the channel. In an additional experiment, single gold particles were internalized by HeLa cells and were subsequently observed undergoing PRET as the cell hosts underwent morphological changes brought about by ethanol-induced apoptosis.

  3. Lab-on-chip microfluidic impedance measurement for laminar flow ratio sensing and differential conductivity difference detection

    Science.gov (United States)

    Kong, Tian Fook; Shen, Xinhui; Marcos, Yang, Chun

    2017-06-01

    We present a microfluidic impedance device for achieving both the flow ratio sensing and the conductivity difference detection between sample stream and reference buffer. By using a flow focusing configuration, with the core flow having a higher conductivity sample than the sheath flow streams, the conductance of the device varies linearly with the flow ratio, with R2 > 0.999. On the other hand, by using deionized (DI)-water sheath flow as a reference, we can detect the difference in conductivity between the buffer of core flow and sheath DI-water with a high detection sensitivity of up to 1 nM of sodium chloride solution. Our study provides a promising approach for on-chip flow mixing characterization and bacteria detection.

  4. Control of the differential interference contrast in reinjected bimode laser

    CERN Document Server

    Lacot, Eric; Hugon, Olivier; de Chatellus, Hugues Guillet

    2016-01-01

    We have demonstrated, both theoretically and experimentally, that it is possible to control (i.e., to enhance or cancel) the contrast of the interference pattern appearing in the intensity images obtained with a laser optical feedback imaging (LOFI) setup using a bimode laser. The laser is composed of two coupled orthogonally polarized states that interact (i.e., interfere) through the cross saturation laser dynamics. We created the contrast control by choosing the frequency shift (i.e., the beating frequency) between the feedback electric fields and the intracavity electric fields. We have shown that the interference contrast of the output power modulation of the laser total intensity is independent from the frequency shift and is always maximal. On the other hand, the interference contrast of each polarization state is frequency dependent. We obtained the maximal contrast when the frequency shift was equal to one of the resonance frequencies of the bimode dynamics, and was very low (and almost cancels) for ...

  5. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    Directory of Open Access Journals (Sweden)

    Chang-Soo Kim

    2012-06-01

    Full Text Available Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide. Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc. to implement a viable component for in-line fluidic sensor systems.

  6. Relationship Between Differential Interference Angle and Parameter of Experiment in Molecular Beam

    Institute of Scientific and Technical Information of China (English)

    LI Yong-Qing; LI Jian; MA Feng-Cai

    2006-01-01

    Collisional quantum interference (CQI) was observed in the intramolecular rotational energy transfer in the experiment of the static cell, and the integral interference angles were measured. To observe more precise information, the experiment in the molecular beam should be taken, from which the relationship between the differential interference angle and the scattering angle can be obtained. In this paper, the theoretical model of CQI is described in an atom-diatom system in the condition of the molecular beam, based on the first-Born approximation of time-dependent perturbation theory, taking into accounts the long-range interaction potential. The method of observing and measuring correctly the differential interference angle is presented. The changing tendency of the differential interference angle with the impact parameter and relative velocity is discussed. The changing tendencies of the differential interference angle with the parameter of experiment in the molecular beam, including the impact parameter and the velocity are discussed. This theoretical model is important to understand or perform the experiment in the molecular beam.

  7. Paraoxon and Pyridostigmine Interfere with Neural Stem Cell Differentiation

    Science.gov (United States)

    Berríos, Verónica O.; Boukli, Nawal M.; Rodriguez, Jose W.; Negraes, Priscilla D.; Schwindt, Telma T.; Trujillo, Cleber A.; Oliveira, Sophia L. B.; Cubano, Luis A.; Ferchmin, P. A.; Eterovic, Vesna A.; Ulrich, Henning; Martins, Antonio H.

    2015-01-01

    Acetylcholinesterase (AChE) inhibition has been described as the main mechanism of organophosphate (OP)-evoked toxicity. OPs represent a human health threat, because chronic exposure to low doses can damage the developing brain, and acute exposure can produce long-lasting damage to adult brains, despite post-exposure medical countermeasures. Although the main mechanism of OP toxicity is AChE inhibition, several lines of evidence suggest that OPs also act by other mechanisms. We hypothesized that rat neural progenitor cells extracted on embryonic day 14.5 would be affected by constant inhibition of AChE from chronic exposure to OP or pyri-dostigmine (a reversible AChE blocker) during differentiation. In this work, the OP paraoxon decreased cell viability in concentrations >50 μM, as measured with the MTT assay; however, this effect was not dose-dependent. Reduced viability could not be attributed to blockade of AChE activity, since treatment with 200 μM pyri-dostigmine did not affect cell viability, even after 6 days. Although changes in protein expression patterns were noted in both treatments, the distribution of differentiated phenotypes, such as the percentages of neurons and glial cells, was not altered, as determined by flow cytometry. Since paraoxon and pyridostigmine each decreased neurite outgrowth (but did not prevent differentiation), we infer that developmental patterns may have been affected. PMID:25758980

  8. Broadening of the Measured Frequency Spectrum in a Differential Laser Anemometer due to Interference Plane Gradients

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner

    1973-01-01

    It is shown how an inaccurate alignment of a differential laser anemometer may cause a significant broadening of the Doppler spectrum. The reason is the appearance of gradients in the interference pattern in the measuring volume. The phenomenon was investigated theoretically, and a method...

  9. On-chip spiral spectrometer

    CERN Document Server

    Redding, Brandon; Bromberg, Yaron; Sarma, Raktim; Cao, Hui

    2016-01-01

    We designed an on-chip spectrometer based on an evanescently-coupled multimode spiral waveguide. Interference between the modes in the waveguide forms a wavelength-dependent speckle pattern which can be used as a fingerprint to identify the input wavelength after calibration. Evanescent coupling between neighboring arms of the spiral enhances the temporal spread of light propagating through the spiral, leading to a dramatic increase in the spectral resolution. Experimentally, we demonstrated that a 250 {\\mu}m radius spiral spectrometer provides a resolution of 0.01 nm at a wavelength of 1520 nm. Spectra containing 40 independent spectral channels can be recovered simultaneously and the operation bandwidth can be increased further when measuring sparse spectra.

  10. Doubling the resolution of spatial-light-modulator-based differential interference contrast microscopy by structured illumination.

    Science.gov (United States)

    Chen, Jianling; Lv, Xiaohua; Zeng, Shaoqun

    2013-09-01

    Recently developed spatial light modulator (SLM)-based differential interference contrast (DIC) microscopy [Opt. Lett. 34, 2988 (2009)] reveals flexibility on the implementation of DIC imaging. However, its numerical aperture (spatial resolution) is limited to maintain sufficient interference contrast, because it requires two beams to interfere. We present a structured illumination (SI) SLM-based DIC microscopy to effectively improve the lateral resolution of the SLM-based DIC microscopy. The SI field is generated and controlled by an adjustable grating displayed on an SLM. The SI SLM-based DIC expands the bandwidth of the coherent transfer function of the SLM-based DIC imaging system, thus improving the spatial resolution. The reconstructed SI SLM-based DIC image exhibits lateral resolution of approximately 208 nm, doubling that of the common SLM-based DIC image (approximately 415 nm). SI SLM-based DIC microscopy has the potential for achieving high-resolution quantitative phase images.

  11. TV-regularized phase reconstruction in differential-interference-contrast (DIC) microscopy

    Science.gov (United States)

    Rebegoldi, Simone; Bautista, Lola; Blanc-Féraud, Laure; Prato, Marco; Zanni, Luca; Plata, Arturo

    2016-10-01

    In this paper we address the problem of reconstructing the phase from color images acquired with differential-interference-contrast (DIC) microscopy. In particular, we reformulate the problem as the minimization of a least-squares fidelity function regularized with a total variation term, and we address the solution by exploiting a recently proposed inexact forward-backward approach. The effectiveness of this method is assessed on a realistic synthetic test.

  12. Development of a differential interference contrast thermal lens microscope for sensitive individual nanoparticle detection in liquid.

    Science.gov (United States)

    Shimizu, Hisashi; Mawatari, Kazuma; Kitamori, Takehiko

    2009-12-01

    A thermal lens microscope (TLM) with a new principle was developed to improve the detection limit of conventional TLM. The detection limit was decreased by introducing a differential interference contrast (DIC) method which realizes background-free photodetection. The new differential interference contrast thermal lens microscope (DIC-TLM) exploits phase contrast resulting from a photothermal effect instead of refraction used in conventional TLM. In order to produce high phase contrast, we fabricated a pair of DIC prisms with a large shear value of 5 microm which is in accordance with the thermal diffusion length. First, we verified the principle of DIC-TLM. The background of TLM measurement was reduced to 1/100 by differential interference, and the signal-to-background (S/B) ratio was improved by 1 order of magnitude. The signal was confirmed to originate from phase contrast, and the expansion of the shear value was effective. Furthermore, we demonstrated counting of individual gold nanoparticles (5 nm) using DIC-TLM. The particles were counted with high signal-to-noise (S/N) ratio, and the S/N ratio was improved by 1 order of magnitude. Finally, we discuss the possibility of single molecule counting in a liquid.

  13. Microfluidic on chip viscometers.

    Science.gov (United States)

    Chevalier, J; Ayela, F

    2008-07-01

    We present the design and the process of fabrication of micromachined capillary on chip rheometers which have performed wall shear stress and shear rate measurements on silicon oil and ethanol-based nanofluids. The originality of these devices comes from the fact that local pressure drop measurements are performed inside the microchannels. Thus, the advantage over existing microviscometers is that they can be used with the fluid under test alone; no reference fluid nor posttreatment of the data are needed. Each on chip viscometer consists of anodically bonded silicon-Pyrex derivative microchannels equipped with local probes. The anodic bonding allows to reach relatively high pressure levels (up to approximately 10 bars) in the channels, and a broad range of shear stress and shear rate values is attainable. Dielectrophoretic and electrorheological effects can be highlighted by employing alternate microstripe electrodes patterned onto the inner side of the Pyrex wall.

  14. A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift

    Directory of Open Access Journals (Sweden)

    Bo Li

    2017-01-01

    Full Text Available Presented in this paper is a high-performance resonant accelerometer with low cross-interference, low temperature drift and digital output. The sensor consists of two quartz double-ended tuning forks (DETFs and a silicon substrate. A new differential silicon substrate is proposed to reduce the temperature drift and cross-interference from the undesirable direction significantly. The natural frequency of the quartz DETF is theoretically calculated, and then the axial stress on the vibration beams is verified through finite element method (FEM under a 100 g acceleration which is loaded on x-axis, y-axis and z-axis, respectively. Moreover, sensor chip is wire-bonded to a printed circuit board (PCB which contains two identical oscillating circuits. In addition, a steel shell is selected to package the sensor for experiments. Benefiting from the distinctive configuration of the differential structure, the accelerometer characteristics such as temperature drift and cross-interface are improved. The experimental results demonstrate that the cross-interference is lower than 0.03% and the temperature drift is about 18.16 ppm/°C.

  15. A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift

    Science.gov (United States)

    Li, Bo; Zhao, Yulong; Li, Cun; Cheng, Rongjun; Sun, Dengqiang; Wang, Songli

    2017-01-01

    Presented in this paper is a high-performance resonant accelerometer with low cross-interference, low temperature drift and digital output. The sensor consists of two quartz double-ended tuning forks (DETFs) and a silicon substrate. A new differential silicon substrate is proposed to reduce the temperature drift and cross-interference from the undesirable direction significantly. The natural frequency of the quartz DETF is theoretically calculated, and then the axial stress on the vibration beams is verified through finite element method (FEM) under a 100 g acceleration which is loaded on x-axis, y-axis and z-axis, respectively. Moreover, sensor chip is wire-bonded to a printed circuit board (PCB) which contains two identical oscillating circuits. In addition, a steel shell is selected to package the sensor for experiments. Benefiting from the distinctive configuration of the differential structure, the accelerometer characteristics such as temperature drift and cross-interface are improved. The experimental results demonstrate that the cross-interference is lower than 0.03% and the temperature drift is about 18.16 ppm/°C. PMID:28106798

  16. On-Chip Microwave Quantum Hall Circulator

    Science.gov (United States)

    Mahoney, A. C.; Colless, J. I.; Pauka, S. J.; Hornibrook, J. M.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Doherty, A. C.; Reilly, D. J.

    2017-01-01

    Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1 /1000 th the wavelength by exploiting the chiral, "slow-light" response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330 μ m diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  17. FPGA implementation of principal component regression (PCR) for real-time differentiation of dopamine from interferents.

    Science.gov (United States)

    Bozorgzadeh, Bardia; Covey, Daniel P; Garris, Paul A; Mohseni, Pedram

    2015-01-01

    This paper reports on field-programmable gate array (FPGA) implementation of a digital signal processing (DSP) unit for real-time processing of neurochemical data obtained by fast-scan cyclic voltammetry (FSCV) at a carbonfiber microelectrode (CFM). The DSP unit comprises a decimation filter and two embedded processors to process the FSCV data obtained by an oversampling recording front-end and differentiate the target analyte from interferents in real time with a chemometrics algorithm using principal component regression (PCR). Interfaced with an integrated, FSCV-sensing front-end, the DSP unit successfully resolves the dopamine response from that of pH change and background-current drift, two common dopamine interferents, in flow injection analysis involving bolus injection of mixed solutions, as well as in biological tests involving electrically evoked, transient dopamine release in the forebrain of an anesthetized rat.

  18. Infrared differential interference contrast microscopy for 3D interconnect overlay metrology.

    Science.gov (United States)

    Ku, Yi-sha; Shyu, Deh-Ming; Lin, Yeou-Sung; Cho, Chia-Hung

    2013-08-12

    One of the main challenges for 3D interconnect metrology of bonded wafers is measuring through opaque silicon wafers using conventional optical microscopy. We demonstrate here the use infrared microscopy, enhanced by implementing the differential interference contrast (DIC) technique, to measure the wafer bonding overlay. A pair of two dimensional symmetric overlay marks were processed at both the front and back sides of thinned wafers to evaluate the bonding overlay. A self-developed analysis algorithm and theoretical fitting model was used to map the overlay error between the bonded wafers and the interconnect structures. The measurement accuracy was found to be better than 1.0 micron.

  19. Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans.

    Science.gov (United States)

    Reagh, Zachariah M; Yassa, Michael A

    2014-10-07

    Recent models of episodic memory propose a division of labor among medial temporal lobe cortices comprising the parahippocampal gyrus. Specifically, perirhinal and lateral entorhinal cortices are thought to comprise an object/item information pathway, whereas parahippocampal and medial entorhinal cortices are thought to comprise a spatial/contextual information pathway. Although several studies in human subjects have demonstrated a perirhinal/parahippocampal division, such a division among subregions of the human entorhinal cortex has been elusive. Other recent work has implicated pattern separation computations in the dentate gyrus and CA3 subregions of the hippocampus as a mechanism supporting the resolution of mnemonic interference. However, the nature of contributions of medial temporal lobe cortices to downstream hippocampal computations is largely unknown. We used high-resolution fMRI during a task selectively taxing mnemonic discrimination of object identity or spatial location, designed to differentially engage the two information pathways in the medial temporal lobes. Consistent with animal models, we demonstrate novel evidence for a domain-selective dissociation between lateral and medial entorhinal cortex in humans, and between perirhinal and parahippocampal cortex as a function of information content. Conversely, hippocampal dentate gyrus/CA3 demonstrated signals consistent with resolution of mnemonic interference across domains. These results provide insight into the information processing capacities and hierarchical interference resolution throughout the human medial temporal lobe.

  20. Interference pattern signatures in fully differential cross sections for single ionization of H{sub 2} molecules by fast protons

    Energy Technology Data Exchange (ETDEWEB)

    Ciappina, M F [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str 38, D-01187 Dresden (Germany); Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR), Av. Pellegrini 250, 2000 Rosario (Argentina)

    2008-01-14

    Electron interference signatures present in fully differential cross sections for single ionization by 6 MeV protons in H{sub 2} molecules are investigated. We employ a molecular version of the continuum-distorted wave-eikonal initial state model, where all the interactions present in the exit channel are considered on an equal footing. Calculations of fully differential cross sections are performed for different electron and projectile kinematical conditions and the range of validity of the theoretical approach is discussed. Furthermore, we explore the presence of interference patterns in differential cross sections for both aligned and randomly oriented targets in asymmetric coplanar geometries.

  1. Metal interference analysis and design rules of on-chip antennas for wireless interconnection%用于无线互连的片上天线金属干扰分析与设计规则

    Institute of Scientific and Technical Information of China (English)

    何小威; 张民选; 李晋文

    2011-01-01

    The impacts of on-chip metal connective lines, power grids, heat sink along with packaging, and dummy fills on a 2 mm-long, 30 μm-wide on-chip dipole antenna pair characteristics were investigated with qualitative analysis. On-chip antenna pair transmission gain has been improved by 9 dB at 20 GHz by employing a 0.35 mm thick diamond layer between silicon substrate and heat sink. Extensive simulations were performed by three-dimensional software HFSS to explore the interfering effects of these metal structures and placements on the transmission gain, phase, impedance and radiation pattern for integrated dipole antenna pair. According to the results of experiment and simulations, several empirical linear formulas for antenna pair gain and phase in interfering circumstances were obtained using numerical fit. A set of design rules for on-chip antenna was summarized for wireless interconnection.%定性分析了金属互连线、电源网格、散热与封装以及金属Dummy Fills对2 mm长、30 μm宽的片上偶极天线对工作特性的影响.通过在硅衬底和散热金属之间引入0.35 mm厚的金刚石介质材料使天线的传输增益在20 GHz时提高了9 dB.为研究这些金属结构和布局对集成偶极天线对的传输增益、相位、阻抗及辐射特性带来的干扰,使用三维电磁场软件HFSS进行了全面模拟,根据实验结果与分析借助数值拟合的方法得出了天线对增益大小及相位在金属干扰环境下的若干线性经验公式,总结了一套面向无线互连的片上天线设计规则.

  2. Implementation of differentiated services in indoor visible-light communication using interchannel interference

    Science.gov (United States)

    Yang, Se-Hoon; Kwon, Do-Hoon; Han, Sang-Kook

    2017-02-01

    To facilitate differentiated services in visible-light communication systems, we propose an authorization method in the physical layer using interchannel interference based on polarization division multiplexing and a newly proposed signal-mapping process. The proposed system experimentally demonstrated that a 100-Mbit/s broadcasting signal transmission for a lower class user and two types of 100-MBd signal transmission for different higher class groups could be simultaneously enabled using pulse-amplitude modulation. Analysis of the performance of the lower and higher class signals' according to the polarization state of the receiver and the transmitted signal power imbalance is discussed. The proposed authorization method in the physical layer can be applied to many areas because classes can be subdivided when the number of channels increases by using wavelength division multiplexing. Furthermore, the ratio between the lower and higher class signals can be controlled in accordance with the environment.

  3. Entangled photons from on-chip slow light

    CERN Document Server

    Takesue, Hiroki; Kuramochi, Eiichi; Notomi, Masaya

    2014-01-01

    We report the first entanglement generation experiment using an on-chip slow light device. With highly efficient spontaneous four-wave mixing enhanced by the slow light effect in a coupled resonator optical waveguide based on a silicon photonic crystal, we generated 1.5-$\\mu$m-band high-dimensional time-bin entangled photon pairs. We undertook two-photon interference experiments and observed the coincidence fringes with visibilities $>74\\%$. The present result enables us to realize an on-chip entanglement source with a very small footprint, which is an essential function for quantum information processing based on integrated quantum photonics.

  4. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  5. Quantification of volume, mass, and density of thrombus formation using brightfield and differential interference contrast microscopy

    Science.gov (United States)

    Baker-Groberg, Sandra M.; Phillips, Kevin G.; McCarty, Owen J. T.

    2013-01-01

    Flow chamber assays, in which blood is perfused over surfaces of immobilized extracellular matrix proteins, are used to investigate the formation of platelet thrombi and aggregates under shear flow conditions. Elucidating the dynamic response of thrombi/aggregate formation to different coagulation pathway perturbations in vitro has been used to develop an understanding of normal and pathological cardiovascular states. Current microscopy techniques, such as differential interference contrast (DIC) or fluorescent confocal imaging, respectively, do not provide a simple, quantitative understanding of the basic physical features (volume, mass, and density) of platelet thrombi/aggregate structures. The use of two label-free imaging techniques applied, for the first time, to platelet aggregate and thrombus formation are introduced: noninterferometric quantitative phase microscopy, to determine mass, and Hilbert transform DIC microscopy, to perform volume measurements. Together these techniques enable a quantitative biophysical characterization of platelet aggregates and thrombi formed on three surfaces: fibrillar collagen, fibrillar collagen +0.1 nM tissue factor (TF), and fibrillar collagen +1 nM TF. It is demonstrated that label-free imaging techniques provide quantitative insight into the mechanisms by which thrombi and aggregates are formed in response to exposure to different combinations of procoagulant agonists under shear flow.

  6. All-optical differential detection for suppressing multiple-access interference in coherent time-addressed optical CDMA systems.

    Science.gov (United States)

    Kim, Sun-Jong; Kim, Tae-Young; Park, Chul; Park, Chang-Soo; Chun, Young

    2004-05-03

    A novel scheme for suppressing the multiple-access interference (MAI) in coherent time-addressed optical CDMA systems is proposed. This is based on a differential detection using the dual-control NOLM. The basic principle for MAI suppression is described. For experimental demonstration, two encoded channels are constructed and decoded. These decoded signals are sent to the dual-control NOLM and a high autocorrelation peak with suppressed MAI at the output of NOLM is observed. Signal-to-interference ratio is improved by 7 dB.

  7. Digital differential interference contrast autofocus for high-resolution oil-immersion microscopy.

    Science.gov (United States)

    Shen, Feimo; Hodgson, Louis; Price, Jeffrey H; Hahn, Klaus M

    2008-07-01

    Continued advances in cellular fluorescent biosensors enable studying intracellular protein dynamics in individual, living cells. Autofocus is valuable in such studies to compensate for temperature drift, uneven substrate over multiple fields of view, and cell growth during long-term high-resolution time-lapse studies of hours to days. Observing cellular dynamics with the highest possible resolution and sensitivity motivates the use of high numerical aperture (NA) oil-immersion objectives, and control of fluorescence exposure to minimize phototoxicity. To limit phototoxicity, to maximize light throughput of the objective for biosensor studies, and because phase contrast is distorted by the meniscus in microtiter plates, we studied autofocus in differential interference contrast (DIC) microscopy with a 60x 1.45 NA oil objective after removing the analyzer from the fluorescent light path. Based on a study of the experimental DIC modulation transfer function, we designed a new bandpass digital filter for measuring image sharpness. Repeated tests of DIC autofocus with this digital filter on 225 fields-of-view resulted in a precision of 8.6 nm (standard deviation). Autofocus trials on specimens with thicknesses from 9.47 to 33.20 mum, controlled by cell plating density, showed that autofocus precision was independent of specimen thickness. The results demonstrated that the selected spatial frequencies enabled very high-precision autofocus for high NA DIC automated microscopy, thereby potentially removing the problems of meniscus distortion in phase contrast imaging of microtiter plates and rendering the toxicity of additional fluorescence exposure unnecessary. (c) 2008 International Society for Advancement of Cytometry

  8. Reconfigurable Networks-on-Chip

    CERN Document Server

    Chen, Sao-Jie; Tsai, Wen-Chung; Hu, Yu-Hen

    2012-01-01

    This book provides a comprehensive survey of recent progress in the design and implementation of Networks-on-Chip. It addresses a wide spectrum of on-chip communication problems, ranging from physical, network, to application layers. Specific topics that are explored in detail include packet routing, resource arbitration, error control/correction, application mapping, and communication scheduling. Additionally, a novel bi-directional communication channel NoC (BiNoC) architecture is described, with detailed explanation.   Written for practicing engineers in need of practical knowledge about the design and implementation of networks-on-chip; Includes tutorial-like details to introduce readers to a diverse range of NoC designs, as well as in-depth analysis for designers with NoC experience to explore advanced issues; Describes a variety of on-chip communication architectures, including a novel bi-directional communication channel NoC.     From the Foreword: Overall this book shows important advances over the...

  9. On-chip data communication

    NARCIS (Netherlands)

    Schinkel, Daniel

    2011-01-01

    On-chip data communication is an active research area, as interconnects are rapidly becoming a speed, power and reliability bottleneck for digital CMOS systems. Especially for global interconnects that have to span large parts of a chip, there is an increasing gap between transistor speed and interc

  10. On-chip data communication

    NARCIS (Netherlands)

    Schinkel, Daniel

    2011-01-01

    On-chip data communication is an active research area, as interconnects are rapidly becoming a speed, power and reliability bottleneck for digital CMOS systems. Especially for global interconnects that have to span large parts of a chip, there is an increasing gap between transistor speed and

  11. On-chip plasmonic spectrometer.

    Science.gov (United States)

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings.

  12. Ion chromatography on-chip.

    Science.gov (United States)

    Murrihy, J P; Breadmore, M C; Tan, A; McEnery, M; Alderman, J; O'Mathuna, C; O'Neill, A P; O'Brien, P; Avdalovic, N; Haddad, P R; Glennon, J D; Advoldvic, N

    2001-07-27

    On-chip separation of inorganic anions by ion-exchange chromatography was realized. Micro separation channels were fabricated on a silicon wafer and sealed with a Pyrex cover plate using standard photolithography, wet and dry chemical etching, and anodic bonding techniques. Quaternary ammonium latex particles were employed for the first time to coat the separation channels on-chip. Owing to the narrow depths of the channels on the chip, 0.5-10 microm, there were more interactions of the analytes with the stationary phase on the chip than in a 50-microm I.D. capillary. With off-chip injection (20 nl) and UV detection, NO2-, NO3-, I-, and thiourea were separated using 1 mM KCl as the eluent. The linear ranges for NO2- and NO3- are from 5 to 1000 microM with the detection limits of 0.5 microM.

  13. On-chip noninterference angular momentum multiplexing of broadband light.

    Science.gov (United States)

    Ren, Haoran; Li, Xiangping; Zhang, Qiming; Gu, Min

    2016-05-13

    Angular momentum division has emerged as a physically orthogonal multiplexing method in high-capacity optical information technologies. However, the typical bulky elements used for information retrieval from the overall diffracted field, based on the interference method, impose a fundamental limit toward realizing on-chip multiplexing. We demonstrate noninterference angular momentum multiplexing by using a mode-sorting nanoring aperture with a chip-scale footprint as small as 4.2 micrometers by 4.2 micrometers, where nanoring slits exhibit a distinctive outcoupling efficiency on tightly confined plasmonic modes. The nonresonant mode-sorting sensitivity and scalability of our approach enable on-chip parallel multiplexing over a bandwidth of 150 nanometers in the visible wavelength range. The results offer the possibility of ultrahigh-capacity and miniaturized nanophotonic devices harnessing angular momentum division.

  14. Explanation of observed interference patterns in the differential cross section for double photoionization of H2

    Energy Technology Data Exchange (ETDEWEB)

    Horner, Daniel A [Los Alamos National Laboratory; Miyabe, Shungo [UC-DAVIS; Morales, Felipe [UNIV AUTONOMA DE MADRID; Martin, Fernando [UNIV AUTONOMA DE MADRID; Rescigno, Thomas N [LBNL; Mccurdy, C William [LBNL

    2009-01-01

    We present the results of numerical calculations on the single photon double photoionization of H{sub 2} for energies between 130 eV and 240 eV. We find that our results are in excellent agreement with experimental observations. However, our interpretation of the observed interference pattern at these energies is that it is due to mixing of parallel and perpendicular components through circularly polarized light rather than due to classical double slit diffraction.

  15. Differential effects of single-dose escitalopram on cognitive and affective interference during Stroop task

    Directory of Open Access Journals (Sweden)

    Christoffer Gustaf Rahm

    2014-02-01

    Full Text Available Background and objective: Our aim was to study the regulatory role of serotonin (5-HT on two key nodes in the cognitive control networks - the anterior cingulate cortex (ACC and the dorsolateral prefrontal cortex (DLPFC. We hypothesized that increasing the levels of 5-HT would preferentially modulate the activity in ACC during cognitive control during interference by negative affects compared to cognitive control during interference by a superimposed cognitive task. Methods: We performed a functional magnetic resonance imaging investigation on 11 healthy individuals, comparing the effects of the selective 5-HT reuptake inhibitor escitalopram on brain oxygenation level dependent signals in the ACC and the DLPFC using affective and cognitive counting Stroop paradigms (aStroop and cStroop. Results: Escitalopram significantly decreased the activity in rostral ACC during aStroop compared to cStroop (p< 0.05. In the absence of escitalopram, both aStroop and cStroop significantly activated ACC and DLPFC (Z≥2.3, p< 0.05. Conclusion: We conclude that escitalopram in a region and task specific manner modified the cognitive control networks and preferentially decreased activity induced by affective interference in the ACC.

  16. CRISPR/Cas9-Mediated Immunity to Geminiviruses: Differential Interference and Evasion

    KAUST Repository

    Ali, Zahir

    2016-05-26

    The CRISPR/Cas9 system has recently been used to confer molecular immunity against several eukaryotic viruses, including plant DNA geminiviruses. Here, we provide a detailed analysis of the efficiencies of targeting different coding and non-coding sequences in the genomes of multiple geminiviruses. Moreover, we analyze the ability of geminiviruses to evade the CRISPR/Cas9 machinery. Our results demonstrate that the CRISPR/Cas9 machinery can efficiently target coding and non-coding sequences and interfere with various geminiviruses. Furthermore, targeting the coding sequences of different geminiviruses resulted in the generation of viral variants capable of replication and systemic movement. By contrast, targeting the noncoding intergenic region sequences of geminiviruses resulted in interference, but with inefficient recovery of mutated viral variants, which thus limited the generation of variants capable of replication and movement. Taken together, our results indicate that targeting noncoding, intergenic sequences provides viral interference activity and significantly limits the generation of viral variants capable of replication and systemic infection, which is essential for developing durable resistance strategies for long-term virus control.

  17. Co-design of on-chip antennas and circuits for a UNII band monolithic transceiver

    KAUST Repository

    Shamim, Atif

    2012-07-28

    The surge of highly integrated and multifunction wireless devices has necessitated the designers to think outside the box for solutions that are unconventional. The new trends have provided the impetus for low cost and compact RF System-on-Chip (SoC) approaches [1]. The major advantages of SoC are miniaturization and cost reduction. A major bottleneck to the true realization of monolithic RF SoC transceivers is the implementation of on-chip antennas with circuitry. Though complete integrated transceivers with on-chip antennas have been demonstrated, these designs are generally for high frequencies. Moreover, they either use non-standard CMOS processes or additional fabrication steps to enhance the antenna efficiency, which in turn adds to the cost of the system [2-3]. Another challenge related to the on-chip antennas is the characterization of their radiation properties. Most of the recently reported work (summarized in Table I) shows that very few on-chip antennas are characterized. Our previous work [4], demonstrated a Phase Lock Loop (PLL) based transmitter (TX) with an on-chip antenna. However, the radiation from the on-chip antenna experienced strong interference due to 1) some active circuitry on one side of the chip and 2) the PCB used to mount the chip in the anechoic chamber. This paper presents, for the first time, a complete 5.2 GHz (UNII band) transceiver with separate TX and receiver (RX) antennas. To the author\\'s best knowledge, its size of 3 mm2 is the smallest reported for a UNII band transceiver with two on-chip antennas. Both antennas are characterized for their radiation properties through an on-wafer custom measurement setup. The strategy to co-design on-chip antennas with circuits, resultant trade-offs and measurement challenges have also been discussed. © 2010 IEEE.

  18. On-Chip Detection of Cellular Activity

    Science.gov (United States)

    Almog, R.; Daniel, R.; Vernick, S.; Ron, A.; Ben-Yoav, H.; Shacham-Diamand, Y.

    The use of on-chip cellular activity monitoring for biological/chemical sensing is promising for environmental, medical and pharmaceutical applications. The miniaturization revolution in microelectronics is harnessed to provide on-chip detection of cellular activity, opening new horizons for miniature, fast, low cost and portable screening and monitoring devices. In this chapter we survey different on-chip cellular activity detection technologies based on electrochemical, bio-impedance and optical detection. Both prokaryotic and eukaryotic cell-on-chip technologies are mentioned and reviewed.

  19. Physiologically relevant organs on chips.

    Science.gov (United States)

    Yum, Kyungsuk; Hong, Soon Gweon; Healy, Kevin E; Lee, Luke P

    2014-01-01

    Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology.

  20. Asynchronous design of Networks-on-Chip

    DEFF Research Database (Denmark)

    Sparsø, Jens

    2007-01-01

    The Network-on-chip concept has evolved as a solution to a broad range of problems related to the design of complex systems-on-chip (SoC) with tenths or hundreds of (heterogeneous) IP-cores. The paper introduces the NoC concept, identifies a range of possible timing organizations (globally...

  1. Towards Dependable Network-on-Chip Architectures

    NARCIS (Netherlands)

    Chen, C.

    2015-01-01

    The aggressive semiconductor technology scaling provides the means for doubling the amount of transistors on a single chip each and every 18 months. To efficiently utilize these vast chip resources, Multi-Processor Systems on Chip (MPSoCs) integrated with a Network-on-Chip (NoC) communication infras

  2. On-Chip Random Spectrometer

    CERN Document Server

    Redding, Brandon; Sarma, Raktim

    2013-01-01

    Light scattering in disordered media has been studied extensively due to its prevalence in natural and artificial systems [1]. In the field of photonics most of the research has focused on understanding and mitigating the effects of scattering, which are often detrimental. For certain applications, however, intentionally introducing disorder can actually improve the device performance, e.g., in photovoltaics optical scattering improves the efficiency of light harvesting [2-5]. Here, we utilize multiple scattering in a random photonic structure to build a compact on-chip spectrometer. The probe signal diffuses through a scattering medium generating wavelength-dependent speckle patterns which can be used to recover the input spectrum after calibration. Multiple scattering increases the optical pathlength by folding the paths in a confined geometry, enhancing the spectral decorrelation of speckle patterns and thus increasing the spectral resolution. By designing and fabricating the spectrometer on a silicon wafe...

  3. Toward two-dimensional nanometer resolution hard X-ray differential-interference-contrast imaging using modified photon sieves.

    Science.gov (United States)

    Xie, Changqing; Zhu, Xiaoli; Li, Hailiang; Shi, Lina; Hua, Yilei; Liu, Ming

    2012-02-15

    In this Letter, we report a significant step forward in the design of single-optical-element optics for two-dimensional (2D) hard X-ray differential-interference-contrast (DIC) imaging based on modified photon sieves (MPSs). MPSs were obtained by a modified optic, i.e., combining two overlaid binary gratings and a photon sieve through two logical XOR operations. The superior performance of MPSs was demonstrated. Compared to Fresnel zone plates-based DIC diffractive optical elements (DOEs), which help to improve contrast only in one direction, MPSs can provide better resolution and 2D DIC imaging. Compared to normal photon sieves, MPSs are capable of imaging at a significantly higher image contrast. We anticipate that MPSs can provide a complementary and versatile high-resolution nondestructive imaging tool for ultra-large-scale integrated circuits at 45 nm node and below.

  4. Differential Effects of Emotional Information on Interference Task Performance across the Life Span

    Directory of Open Access Journals (Sweden)

    Haley M LaMonica

    2010-09-01

    Full Text Available While functioning in multiple domains declines with age, emotional regulation appears to remain preserved in older adults. The Emotion Inhibition (Emotional Stroop Test requires participants to name the ink color in which neutrally- and emotionally-valenced words are printed. It was employed in the current investigation as a measure of affective regulation in the context of an interference task in relation to age. Results demonstrated that while participants ranging from 20 to 50 years of age performed significantly worse on the emotion Stroop Inhibition relative to the neutral Stroop Inhibition condition, subjects over 60 years of age displayed the converse of this pattern, performing better on the emotion than the neutral condition, suggesting that they are less affected by the emotional impact of the positive and negative words used in the former condition. This pattern of age-related change in the ability to manage emotion may be related to blunting of affective signaling in limbic structures or, at the psychological level, focusing on emotional regulation.

  5. Removal of Differential Capacitive Interferences in Fast-Scan Cyclic Voltammetry.

    Science.gov (United States)

    Johnson, Justin A; Hobbs, Caddy N; Wightman, R Mark

    2017-06-06

    Due to its high spatiotemporal resolution, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes enables the localized in vivo monitoring of subsecond fluctuations in electroactive neurotransmitter concentrations. In practice, resolution of the analytical signal relies on digital background subtraction for removal of the large current due to charging of the electrical double layer as well as surface faradaic reactions. However, fluctuations in this background current often occur with changes in the electrode state or ionic environment, leading to nonspecific contributions to the FSCV data that confound data analysis. Here, we both explore the origin of such shifts seen with local changes in cations and develop a model to account for their shape. Further, we describe a convolution-based method for removal of the differential capacitive contributions to the FSCV current. The method relies on the use of a small-amplitude pulse made prior to the FSCV sweep that probes the impedance of the system. To predict the nonfaradaic current response to the voltammetric sweep, the step current response is differentiated to provide an estimate of the system's impulse response function and is used to convolute the applied waveform. The generated prediction is then subtracted from the observed current to the voltammetric sweep, removing artifacts associated with electrode impedance changes. The technique is demonstrated to remove select contributions from capacitive characteristics changes of the electrode both in vitro (i.e., in flow-injection analysis) and in vivo (i.e., during a spreading depression event in an anesthetized rat).

  6. CXCL9-Derived Peptides Differentially Inhibit Neutrophil Migration In Vivo through Interference with Glycosaminoglycan Interactions

    Directory of Open Access Journals (Sweden)

    Vincent Vanheule

    2017-05-01

    (74-103 inhibits CXCL8-induced adhesion of neutrophils to the vessel wall in the murine cremaster muscle model. Thus, both affinity and specificity of chemokines and the peptides for different GAGs and the presence of specific GAGs in different tissues will determine whether competition can occur. In summary, both CXCL9 peptides inhibited neutrophil migration in vivo through interference with GAG interactions in several animal models. Shortening CXCL9(74-103 from the COOH-terminus limited its GAG-binding spectrum.

  7. Photonic network-on-chip design

    CERN Document Server

    Bergman, Keren; Biberman, Aleksandr; Chan, Johnnie; Hendry, Gilbert

    2013-01-01

    This book provides a comprehensive synthesis of the theory and practice of photonic devices for networks-on-chip. It outlines the issues in designing photonic network-on-chip architectures for future many-core high performance chip multiprocessors. The discussion is built from the bottom up: starting with the design and implementation of key photonic devices and building blocks, reviewing networking and network-on-chip theory and existing research, and finishing with describing various architectures, their characteristics, and the impact they will have on a computing system. After acquainting

  8. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.

    Science.gov (United States)

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-12-01

    It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM.

  9. Using Postmortem hippocampi tissue can interfere with differential gene expression analysis of the epileptogenic process.

    Science.gov (United States)

    Born, João Paulo Lopes; Matos, Heloisa de Carvalho; de Araujo, Mykaella Andrade; Castro, Olagide Wagner; Duzzioni, Marcelo; Peixoto-Santos, José Eduardo; Leite, João Pereira; Garcia-Cairasco, Norberto; Paçó-Larson, Maria Luisa; Gitaí, Daniel Leite Góes

    2017-01-01

    Neuropathological studies often use autopsy brain tissue as controls to evaluate changes in protein or RNA levels in several diseases. In mesial temporal lobe epilepsy (MTLE), several genes are up or down regulated throughout the epileptogenic and chronic stages of the disease. Given that postmortem changes in several gene transcripts could impact the detection of changes in case-control studies, we evaluated the effect of using autopsy specimens with different postmortem intervals (PMI) on differential gene expression of the Pilocarpine (PILO)induced Status Epilepticus (SE) of MTLE. For this, we selected six genes (Gfap, Ppia, Gad65, Gad67, Npy, and Tnf-α) whose expression patterns in the hippocampus of PILO-injected rats are well known. Initially, we compared hippocampal expression of naïve rats whose hippocampi were harvested immediately after death (0h-PMI) with those harvested at 6h postmortem interval (6h-PMI): Npy and Ppia transcripts increased and Tnf-α transcripts decreased in the 6h-PMI group (pPMI-related changes in gene expression have the potential to adulterate or mask RT-qPCR results obtained with PILO-injected rats euthanized at acute or chronic phases. In the acute group, Npy transcript was significantly higher when compared with 0h-PMI rats, whereas Ppia transcript was lower than 6h-PMI group. When we used epileptic rats (chronic group), the RT-qPCR results showed higher Tnf-α only when compared to 6h-PMI group. In conclusion, our study demonstrates that PMI influences gene transcription and can mask changes in gene transcription seen during epileptogenesis in the PILO-SE model. Thus, to avoid erroneous conclusions, we strongly recommend that researchers account for changes in postmortem gene expression in their experimental design.

  10. On-chip power delivery and management

    CERN Document Server

    Vaisband, Inna P; Popovich, Mikhail; Mezhiba, Andrey V; Köse, Selçuk; Friedman, Eby G

    2016-01-01

    This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power delivery and management systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this fourth edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.

  11. Open Tiled Manycore System-on-Chip

    OpenAIRE

    Wallentowitz, Stefan; Wagner, Philipp; Tempelmeier, Michael; Wild, Thomas; Herkersdorf, Andreas

    2013-01-01

    Manycore System-on-Chip include an increasing amount of processing elements and have become an important research topic for improvements of both hardware and software. While research can be conducted using system simulators, prototyping requires a variety of components and is very time consuming. With the Open Tiled Manycore System-on-Chip (OpTiMSoC) we aim at building such an environment for use in our and other research projects as prototyping platform. This paper describes the project goal...

  12. Kinetics of germination of individual spores of Geobacillus stearothermophilus as measured by raman spectroscopy and differential interference contrast microscopy.

    Directory of Open Access Journals (Sweden)

    Tingting Zhou

    Full Text Available Geobacillus stearothermophilus is a gram-positive, thermophilic bacterium, spores of which are very heat resistant. Raman spectroscopy and differential interference contrast microscopy were used to monitor the kinetics of germination of individual spores of G. stearothermophilus at different temperatures, and major conclusions from this work were as follows. 1 The CaDPA level of individual G. stearothermophilus spores was similar to that of Bacillus spores. However, the Raman spectra of protein amide bands suggested there are differences in protein structure in spores of G. stearothermophilus and Bacillus species. 2 During nutrient germination of G. stearothermophilus spores, CaDPA was released beginning after a lag time (T(lag between addition of nutrient germinants and initiation of CaDPA release. CaDPA release was complete at T(release, and DT(release (T(release - T(lag was 1-2 min. 3 Activation by heat or sodium nitrite was essential for efficient nutrient germination of G. stearothermophilus spores, primarily by decreasing T(lag values. 4 Values of T(lag and T(release were heterogeneous among individual spores, but DT(release values were relatively constant. 5 Temperature had major effects on nutrient germination of G. stearothermophilus spores, as at temperatures below 65°C, average T(lag values increased significantly. 6 G. stearothermophilus spore germination with exogenous CaDPA or dodecylamine was fastest at 65°C, with longer T(lag values at lower temperatures. 7 Decoating of G. stearothermophilus spores slowed nutrient germination slightly and CaDPA germination significantly, but increased dodecylamine germination markedly. These results indicate that the dynamics and heterogeneity of the germination of individual G. stearothermophilus spores are generally similar to that of Bacillus species.

  13. Fast-electron impact ionization of molecular hydrogen: energy and angular distribution of double and single differential cross sections and Young-type interference

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S; Kasthurirangan, S; Kelkar, A H; Tribedi, L C [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Stia, C R; Fojon, O A; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Av Pellegrini 250, 2000 Rosario (Argentina)], E-mail: lokesh@tifr.res.in

    2009-03-28

    We report the energy and angular distribution of absolute double differential cross sections (DDCSs) of ejected electrons in collisions of 8 keV projectile electrons with molecular hydrogen. The ejected electrons with energy between 1 eV and 400 eV and ejection angles between 30 deg. and 150 deg. are detected. The measured data are compared with the theoretical calculations based on two-effective centre (TEC) model. The first-order interference is derived from the energy distribution of DDCS and the resulting ratio spectra (H{sub 2} to 2H) exhibit oscillating behaviour. The signature of first-order interference is also demonstrated in the DDCS spectra as a function of the ejection angle. We have shown that the constructive interference prevails in soft- and binary-collision regions. The single differential cross sections (SDCS) are deduced by integrating the DDCS over the solid angle as well as ejection energy. We demonstrate that the SDCS and corresponding ratio spectra also preserve the signature of interference.

  14. Variation Tolerant On-Chip Interconnects

    CERN Document Server

    Nigussie, Ethiopia Enideg

    2012-01-01

    This book presents design techniques, analysis and implementation of high performance and power efficient, variation tolerant on-chip interconnects.  Given the design paradigm shift to multi-core, interconnect-centric designs and the increase in sources of variability and their impact in sub-100nm technologies, this book will be an invaluable reference for anyone concerned with the design of next generation, high-performance electronics systems. Provides comprehensive, circuit-level explanation of high-performance, energy-efficient, variation-tolerant on-chip interconnect; Describes design techniques to mitigate problems caused by variation; Includes techniques for design and implementation of self-timed on-chip interconnect, delay variation insensitive communication protocols, high speed signaling techniques and circuits, bit-width independent completion detection and process, voltage and temperature variation tolerance.                          

  15. Communication architectures for systems-on-chip

    CERN Document Server

    Ayala, Jose L

    2011-01-01

    A presentation of state-of-the-art approaches from an industrial applications perspective, Communication Architectures for Systems-on-Chip shows professionals, researchers, and students how to attack the problem of data communication in the manufacture of SoC architectures. With its lucid illustration of current trends and research improving the performance, quality, and reliability of transactions, this is an essential reference for anyone dealing with communication mechanisms for embedded systems, systems-on-chip, and multiprocessor architectures--or trying to overcome existing limitations.

  16. On-chip mode division multiplexing technologies

    DEFF Research Database (Denmark)

    Ding, Yunhong; Frellsen, Louise Floor; Guan, Xiaowei

    2016-01-01

    using one-dimensional (1D) photonic crystal silicon waveguides. We furthermore use the fabricated devices to demonstrate on-chip point-to-point mode division multiplexing transmission, and all-optical signal processing by mode-selective wavelength conversion. Finally, we report an efficient silicon...

  17. On-chip entangled photon source

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Daniel B. S.; Bisson, Scott E.

    2016-11-22

    Various technologies pertaining to an on-chip entangled photon source are described herein. A light source is used to pump two resonator cavities that are resonant at two different respective wavelengths and two different respective polarizations. The resonator cavities are coupled to a four-wave mixing cavity that receives the light at the two wavelengths and outputs polarization-entangled photons.

  18. Modelling, Synthesis, and Configuration of Networks-on-Chips

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo

    This thesis presents three contributions in two different areas of network-on-chip and system-on-chip research: Application modelling and identifying and solving different optimization problems related to two specific network-on-chip architectures. The contribution related to application modellin...... for solving the network synthesis problem in the MANGO network-on-chip, and the identification and formalization of the ReNoC configuration problem together with three heuristics for solving it....

  19. Packetizing OCP Transactions in the MANGO Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Sparsø, Jens

    2006-01-01

    The scaling of CMOS technology causes a widening gap between the performance of on-chip communication and computation. This calls for a communication-centric design flow. The MANGO network-on-chip architecture enables globally asynchronous locally synchronous (GALS) system-on-chip design, while...

  20. On-chip interaction-free measurements via the quantum Zeno effect

    CERN Document Server

    Ma, Xiao-song; Schuck, Carsten; Fong, King Y; Jiang, Liang; Tang, Hong X

    2014-01-01

    Although interference is a classical-wave phenomenon, the superposition principle, which underlies interference of individual particles, is at the heart of quantum physics. An interaction-free measurements (IFM) harnesses the wave-particle duality of single photons to sense the presence of an object via the modification of the interference pattern, which can be accomplished even if the photon and the object haven't interacted with each other. By using the quantum Zeno effect, the efficiency of an IFM can be made arbitrarily close to unity. Here we report an on-chip realization of the IFM based on silicon photonics. We exploit the inherent advantages of the lithographically written waveguides: excellent interferometric phase stability and mode matching, and obtain multipath interference with visibility above 98%. We achieved a normalized IFM efficiency up to 68.2%, which exceeds the 50% limit of the original IFM proposal.

  1. 3D Printing of Organs-On-Chips.

    Science.gov (United States)

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-25

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  2. 3D Printing of Organs-On-Chips

    Science.gov (United States)

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-01

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms. PMID:28952489

  3. 3D Printing of Organs-On-Chips

    Directory of Open Access Journals (Sweden)

    Hee-Gyeong Yi

    2017-01-01

    Full Text Available Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  4. Ultrasensitive interferometric on-chip microscopy of transparent objects

    Science.gov (United States)

    Terborg, Roland A.; Pello, Josselin; Mannelli, Ilaria; Torres, Juan P.; Pruneri, Valerio

    2016-01-01

    Light microscopes can detect objects through several physical processes, such as scattering, absorption, and reflection. In transparent objects, these mechanisms are often too weak, and interference effects are more suitable to observe the tiny refractive index variations that produce phase shifts. We propose an on-chip microscope design that exploits birefringence in an unconventional geometry. It makes use of two sheared and quasi-overlapped illuminating beams experiencing relative phase shifts when going through the object, and a complementary metal-oxide-semiconductor image sensor array to record the resulting interference pattern. Unlike conventional microscopes, the beams are unfocused, leading to a very large field of view (20 mm2) and detection volume (more than 0.5 cm3), at the expense of lateral resolution. The high axial sensitivity (<1 nm) achieved using a novel phase-shifting interferometric operation makes the proposed device ideal for examining transparent substrates and reading microarrays of biomarkers. This is demonstrated by detecting nanometer-thick surface modulations on glass and single and double protein layers. PMID:27386571

  5. The use of differential measurements with a glucose biosensor for interference compensation during glucose determinations by flow injection analysis.

    Science.gov (United States)

    McGrath, M J; Iwuoha, E I; Diamond, D; Smyth, M R

    1995-01-01

    A novel detection system for the determination of glucose in the presence of clinically important interferents, based on the use of dual sensors and flow-injection analysis (FIA), is described. The normalisation methodology involves measurement of the interference signal at a reference sensor; this signal can then be subtracted from the glucose sensor signal (post-run) to give a corrected measurement of the glucose concentration. The detection system consists of a thin layer with dual glassy carbon working electrodes. One electrode was surface modified to act as a glucose biosensor by immobilisation of glucose oxidase (GOx) (from Aspergillus niger) with 1% glutaraldehyde and bovine serum albumin. The second electrode (glucose oxidase omitted) was utilised to measure the interference signal responding only to electroactive species present in the injected sample. A computer controlled multichannel potentiostat was used for potential application and current monitoring duties. The sensor responses were saved in ASCII format to facilitate post-run analysis in Microsoft Excel. Cyclic voltammetry (CV) was utilised to investigate the manner in which the interference signal contributed to the total signal obtained at the biosensor in the presence of glucose. The kinetics parameters Imax and the apparent Michaelis-Menten constant, K'm, were calculated for the sensor operating under flow-injection conditions.

  6. On-chip antenna: Practical design and characterization considerations

    KAUST Repository

    Shamim, Atif

    2012-07-28

    This paper highlights the challenges of an emergent field, namely, on-chip antenna design. Consistent with the RF System-on-Chip (SoC) concept, co-design strategy for circuits and on-chip antennas is described. A number of design and layout issues, arising from the highly integrated nature of this kind of systems, are discussed. The characterization difficulties related to on-chip antennas radiation properties are also highlighted. Finally, a novel on-wafer test fixture is proposed to measure the gain and radiation pattern of the on-chip antennas in the anechoic chamber.

  7. On-Chip Single-Photon Sifter

    CERN Document Server

    Elshaari, Ali W; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D

    2016-01-01

    Quantum states of light play a pivotal role in modern science[1] and future photonic applications[2]. While impressive progress has been made in their generation and manipulation with high fidelities, the common table-top approach is reaching its limits for practical quantum applications. Since the advent of integrated quantum nanophotonics[3] different material platforms based on III-V nanostructures-, color centers-, and nonlinear waveguides[4-8] as on-chip light sources have been investigated. Each platform has unique advantages and limitations in terms of source properties, optical circuit complexity, and scaling potentials. However, all implementations face major challenges with efficient and tunable filtering of individual quantum states[4], scalable integration and deterministic multiplexing of on-demand selected quantum emitters[9], and on-chip excitation-suppression[10]. Here we overcome all of these challenges with a novel hybrid and scalable nanofabrication approach to generate quantum light on-chi...

  8. On-chip plasmonic waveguide optical waveplate

    Science.gov (United States)

    Gao, Linfei; Huo, Yijie; Zang, Kai; Paik, Seonghyun; Chen, Yusi; Harris, James S.; Zhou, Zhiping

    2015-10-01

    Polarization manipulation is essential in almost every photonic system ranging from telecommunications to bio-sensing to quantum information. This is traditionally achieved using bulk waveplates. With the developing trend of photonic systems towards integration and miniaturization, the need for an on-chip waveguide type waveplate becomes extremely urgent. However, this is very challenging using conventional dielectric waveguides, which usually require complex 3D geometries to alter the waveguide symmetry and are also difficult to create an arbitrary optical axis. Recently, a waveguide waveplate was realized using femtosecond laser writing, but the device length is in millimeter range. Here, for the first time we propose and experimentally demonstrate an ultracompact, on-chip waveplate using an asymmetric hybrid plasmonic waveguide to create an arbitrary optical axis. The device is only in several microns length and produced in a flexible integratable IC compatible format, thus opening up the potential for integration into a broad range of systems.

  9. Microengineered physiological biomimicry: organs-on-chips.

    Science.gov (United States)

    Huh, Dongeun; Torisawa, Yu-suke; Hamilton, Geraldine A; Kim, Hyun Jung; Ingber, Donald E

    2012-06-21

    Microscale engineering technologies provide unprecedented opportunities to create cell culture microenvironments that go beyond current three-dimensional in vitro models by recapitulating the critical tissue-tissue interfaces, spatiotemporal chemical gradients, and dynamic mechanical microenvironments of living organs. Here we review recent advances in this field made over the past two years that are focused on the development of 'Organs-on-Chips' in which living cells are cultured within microfluidic devices that have been microengineered to reconstitute tissue arrangements observed in living organs in order to study physiology in an organ-specific context and to develop specialized in vitro disease models. We discuss the potential of organs-on-chips as alternatives to conventional cell culture models and animal testing for pharmaceutical and toxicology applications. We also explore challenges that lie ahead if this field is to fulfil its promise to transform the future of drug development and chemical safety testing.

  10. Microfabrication of human organs-on-chips.

    Science.gov (United States)

    Huh, Dongeun; Kim, Hyun Jung; Fraser, Jacob P; Shea, Daniel E; Khan, Mohammed; Bahinski, Anthony; Hamilton, Geraldine A; Ingber, Donald E

    2013-11-01

    'Organs-on-chips' are microengineered biomimetic systems containing microfluidic channels lined by living human cells, which replicate key functional units of living organs to reconstitute integrated human organ-level pathophysiology in vitro. These microdevices can be used to test efficacy and toxicity of drugs and chemicals, and to create in vitro models of human disease. Thus, they potentially represent low-cost alternatives to conventional animal models for pharmaceutical, chemical and environmental applications. Here we describe a protocol for the fabrication, microengineering and operation of these microfluidic organ-on-chip systems. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin porous flexible membrane, along with two full-height, hollow vacuum chambers on either side; this requires ∼3.5 d to complete. To create a 'breathing' lung-on-a-chip that mimics the mechanically active alveolar-capillary interface of the living human lung, human alveolar epithelial cells and microvascular endothelial cells are cultured in the microdevice with physiological flow and cyclic suction applied to the side chambers to reproduce rhythmic breathing movements. We describe how this protocol can be easily adapted to develop other human organ chips, such as a gut-on-a-chip lined by human intestinal epithelial cells that experiences peristalsis-like motions and trickling fluid flow. Also, we discuss experimental techniques that can be used to analyze the cells in these organ-on-chip devices.

  11. Routing algorithms in networks-on-chip

    CERN Document Server

    Daneshtalab, Masoud

    2014-01-01

    This book provides a single-source reference to routing algorithms for Networks-on-Chip (NoCs), as well as in-depth discussions of advanced solutions applied to current and next generation, many core NoC-based Systems-on-Chip (SoCs). After a basic introduction to the NoC design paradigm and architectures, routing algorithms for NoC architectures are presented and discussed at all abstraction levels, from the algorithmic level to actual implementation.  Coverage emphasizes the role played by the routing algorithm and is organized around key problems affecting current and next generation, many-core SoCs. A selection of routing algorithms is included, specifically designed to address key issues faced by designers in the ultra-deep sub-micron (UDSM) era, including performance improvement, power, energy, and thermal issues, fault tolerance and reliability.   ·         Provides a comprehensive overview of routing algorithms for Networks-on-Chip and NoC-based, manycore systems; ·         Describe...

  12. Semiconductor plasmonic gas sensor using on-chip infrared spectroscopy

    Science.gov (United States)

    Elsayed, Mohamed Y.; Ismail, Yehea; Swillam, Mohamed A.

    2017-01-01

    In this paper, we take a novel approach in on-chip optical sensing of gases. Gases have conventionally been optically sensed using refractive index, which is a non-ideal method because of the difficulty in differentiating gases with very similar refractive indices. Infrared (IR) absorption spectra on the other hand have characteristic peaks in the fingerprint region that allow identifying the analyte. Highly doped n-type Indium Arsenide was used to design a plasmonic slot waveguide, and a dispersion analysis was carried out using the finite element method to study the effect of dopant concentration and waveguide geometry on the guided modes. Finite-difference time domain was used to simulate the transmission spectrum of the waveguide with air, methane and octane and the characteristic peaks in the IR spectra showed up strongly. This is a promising versatile method that can sense any IR-active gas.

  13. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanlu [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Strain, Michael J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Wolfson Centre, Institute of Photonics, University of Strathclyde, 106 Rottenrow East, Glasgow G4 0NW (United Kingdom); Meriggi, Laura; Sorel, Marc [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Chen, Lifeng; Zhu, Jiangbo; Cicek, Kenan [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); Wang, Jianwei; Thompson, Mark G. [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB (United Kingdom); Cai, Xinlun, E-mail: caixlun5@mail.sysu.edu.cn [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB (United Kingdom); State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yu, Siyuan, E-mail: s.yu@bristol.ac.uk [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2015-08-03

    An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications. It can be intentionally implemented with other modulation elements to achieve more complicated applications.

  14. On-chip phase-shifted Bragg gratings and their application for spatiotemporal transformation of Bloch surface waves

    Science.gov (United States)

    Doskolovich, Leonid L.; Bezus, Evgeni A.; Bykov, Dmitry A.; Golovastikov, Nikita V.

    2017-05-01

    In this work, we study numerically and theoretically phase-shifted Bragg gratings (PSBG) for Bloch surface waves (BSW) propagating along the interfaces between a 1D photonic crystal and a homogeneous medium. The studied on-chip structure consists of a set of dielectric ridges located on the photonic crystal surface constituting two symmetrical onchip Bragg gratings separated by a defect layer. Rigorous simulation results demonstrate that the surface wave diffraction on the proposed on-chip PSBG is close to the diffraction of plane electromagnetic waves on conventional PSBG. For the considered examples, the correlation coefficient between the spectra of conventional PSBG and on-chip PSBG exceeds 0.99 near the resonance corresponding to the excitation of the eigenmodes localized in the defect layer. Conventional PSBG are widely used for spectral filtering as well as for temporal and spatial transformations of optical pulses and beams including differentiation and integration of pulse envelope or beam profile. In the present work, we discuss the capability of on-chip PSBG to implement the operations of temporal and spatial differentiation of BSW pulses and beams. The presented examples demonstrate the possibility of using the proposed structure for high-quality differentiation. The obtained results can be applied for the design of the prospective integrated systems for on-chip alloptical analog computing.

  15. Application of Ferrite Nanomaterial in RF On-Chip Inductors

    Directory of Open Access Journals (Sweden)

    Hua-Lin Cai

    2013-01-01

    Full Text Available Several kinds of ferrite-integrated on-chip inductors are presented. Ferrite nanomaterial applied in RF on-chip inductors is prepared and analyzed to show the properties of high permeability, high ferromagnetic resonance frequency, high resistivity, and low loss, which has the potential that will improve the performance of RF on-chip inductors. Simulations of different coil and ferrite nanomaterial parameters, inductor structures, and surrounding structures are also conducted to achieve the trend of gains of inductance and quality factor of on-chip inductors. By integrating the prepared ferrite magnetic nanomaterial to the on-chip inductors with different structures, the measurement performances show an obvious improvement even in GHz frequency range. In addition, the studies of CMOS compatible process to integrate the nanomaterial promote the widespread application of magnetic nanomaterial in RF on-chip inductors.

  16. Computer System Design System-on-Chip

    CERN Document Server

    Flynn, Michael J

    2011-01-01

    The next generation of computer system designers will be less concerned about details of processors and memories, and more concerned about the elements of a system tailored to particular applications. These designers will have a fundamental knowledge of processors and other elements in the system, but the success of their design will depend on the skills in making system-level tradeoffs that optimize the cost, performance and other attributes to meet application requirements. This book provides a new treatment of computer system design, particularly for System-on-Chip (SOC), which addresses th

  17. Design and simulation of on-chip lossy transmission line pairs

    OpenAIRE

    Demeester, Thomas; De Zutter, Daniël

    2008-01-01

    A quasi-TM reciprocity based multi-conductor transmission line model is used to investigate the influence of the geometry on the performance of on-chip transmission line pairs for high-frequency differential signal transmission. It is shown that both the knowledge of the fundamental transmission line modes and of the internal impedance of both connected circuits, are essential for a good design.

  18. The design, modeling and optimization of on-chip inductor and transformer circuits

    Science.gov (United States)

    Mohan, Sunderarajan Sunderesan

    2000-08-01

    On-chip inductors and transformers play a crucial role in radio frequency integrated circuits (RFICs). For gigahertz circuitry, these components are usually realized using bond-wires or planar on-chip spirals. Although bond wires exhibit higher quality factors (Q) than on-chip spirals, their use is constrained by the limited range of realizable inductances, large production fluctuations and large parasitic (bondpad) capacitances. On the other hand, spiral inductors exhibit good matching and are therefore attractive for commonly used differential architectures. Furthermore, they permit a large range of inductances to be realized. However, they possess smaller Q values and are more difficult to model. In this dissertation, we develop a current sheet theory based on fundamental electromagnetic principles that yields simple, accurate inductance expressions for a variety of geometries, including planar spirals that are square, hexagonal, octagonal or circular. When compared to field solver simulations and measurements over a wide design space, these expressions exhibit typical errors of 2-3%, making them ideal for use in circuit synthesis and optimization. When combined with a commonly used lumped π model, these expressions allow the engineer to explore trade-offs quickly and easily. These current sheet based expressions eliminate the need for using segmented summation methods (such as the Greenhouse approach) to evaluate the inductance of spirals. Thus, the design and optimization of on-chip spiral inductors and transformers can now be performed in a standard circuit design environment (such as SPICE). Field solvers (which are difficult to integrate into a circuit design environment) are now only needed to verify the final design. Using these newly developed inductance expressions, this thesis explores how on-chip inductors should be optimized for various circuit applications. In particular, a new design methodology is presented for enhancing the bandwidth of

  19. Characterization of Bragg gratings in Al2O3 waveguides fabricated by focused ion beam milling and laser interference lithography

    NARCIS (Netherlands)

    Ay, F.; Bernhardi, Edward; Agazzi, L.; Bradley, J.; Worhoff, Kerstin; Pollnau, Markus; de Ridder, R.M.

    Optical grating cavities in Al2O3 channel waveguides were successfully defined by focused ion beam milling and laser interference lithography. Both methods are shown to be suitable for realizing resonant structures for on-chip waveguide lasers.

  20. High Speed Global On-Chip Interconnects and Transceivers

    NARCIS (Netherlands)

    Mensink, E.

    2007-01-01

    The data rate of global on-chip interconnects (up to 10 mm) is limited by a large distributed resistance and capacitance. This thesis describes methods to increase the achievable data rate of global on-chip interconnects with minimal chip area and power consumption, while maintaining data integrity.

  1. Interconnects and On-Chip Data Communication Techniques

    NARCIS (Netherlands)

    Mensink, E.; Schinkel, Daniel; Klumperink, Eric A.M.; van Tuijl, Adrianus Johannes Maria

    Global on-chip communication is rapidly becoming a speed and power bottleneck in CMOS circuits. In this paper, a ‘mixed-signal’ approach is taken to analyze on-chip interconnects and it is investigated how data-rates can be improved. It is shown that complex signaling schemes such as OFDM and CDMA

  2. Thermal Management for Dependable On-Chip Systems

    OpenAIRE

    Ebi, Thomas

    2014-01-01

    This thesis addresses the dependability issues in on-chip systems from a thermal perspective. This includes an explanation and analysis of models to show the relationship between dependability and tempature. Additionally, multiple novel methods for on-chip thermal management are introduced aiming to optimize thermal properties. Analysis of the methods is done through simulation and through infrared thermal camera measurements.

  3. The ReNoC Reconfigurable Network-on-Chip

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Stensgaard, Mikkel Bystrup; Sparsø, Jens

    2011-01-01

    This article presents a reconfigurable network-on-chip architecture called ReNoC, which is intended for use in general-purpose multiprocessor system-on-chip platforms, and which enables application-specific logical NoC topologies to be configured, thus providing both efficiency and flexibility...

  4. Energy Model of Networks-on-Chip and a Bus

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Kavaldjiev, N.K.; Becker, Jens E.; Becker, Jürgen; Nurmi, J.; Takala, J.; Hamalainen, T.D.

    2005-01-01

    A Network-on-Chip (NoC) is an energy-efficient onchip communication architecture for Multi-Processor Systemon-Chip (MPSoC) architectures. In earlier papers we proposed two Network-on-Chip architectures based on packet-switching and circuit-switching. In this paper we derive an energy model for both

  5. IFIT1 Differentially Interferes with Translation and Replication of Alphavirus Genomes and Promotes Induction of Type I Interferon.

    Directory of Open Access Journals (Sweden)

    Josephine M Reynaud

    2015-04-01

    Full Text Available Alphaviruses are a group of widely distributed human and animal pathogens. It is well established that their replication is sensitive to type I IFN treatment, but the mechanism of IFN inhibitory function remains poorly understood. Using a new experimental system, we demonstrate that in the presence of IFN-β, activation of interferon-stimulated genes (ISGs does not interfere with either attachment of alphavirus virions to the cells, or their entry and nucleocapsid disassembly. However, it strongly affects translation of the virion-delivered virus-specific RNAs. One of the ISG products, IFIT1 protein, plays a major role in this translation block, although an IFIT1-independent mechanism is also involved. The 5'UTRs of the alphavirus genomes were found to differ significantly in their ability to drive translation in the presence of increased concentration of IFIT1. Prior studies have shown that adaptation of naturally circulating alphaviruses to replication in tissue culture results in accumulation of mutations in the 5'UTR, which increase the efficiency of the promoter located in the 5'end of the genome. Here, we show that these mutations also decrease resistance of viral RNA to IFIT1-induced translation inhibition. In the presence of higher levels of IFIT1, alphaviruses with wt 5'UTRs became potent inducers of type I IFN, suggesting a new mechanism of type I IFN induction. We applied this knowledge of IFIT1 interaction with alphaviruses to develop new attenuated variants of Venezuelan equine encephalitis and chikungunya viruses that are more sensitive to the antiviral effects of IFIT1, and thus could serve as novel vaccine candidates.

  6. IFIT1 Differentially Interferes with Translation and Replication of Alphavirus Genomes and Promotes Induction of Type I Interferon.

    Science.gov (United States)

    Reynaud, Josephine M; Kim, Dal Young; Atasheva, Svetlana; Rasalouskaya, Aliaksandra; White, James P; Diamond, Michael S; Weaver, Scott C; Frolova, Elena I; Frolov, Ilya

    2015-04-01

    Alphaviruses are a group of widely distributed human and animal pathogens. It is well established that their replication is sensitive to type I IFN treatment, but the mechanism of IFN inhibitory function remains poorly understood. Using a new experimental system, we demonstrate that in the presence of IFN-β, activation of interferon-stimulated genes (ISGs) does not interfere with either attachment of alphavirus virions to the cells, or their entry and nucleocapsid disassembly. However, it strongly affects translation of the virion-delivered virus-specific RNAs. One of the ISG products, IFIT1 protein, plays a major role in this translation block, although an IFIT1-independent mechanism is also involved. The 5'UTRs of the alphavirus genomes were found to differ significantly in their ability to drive translation in the presence of increased concentration of IFIT1. Prior studies have shown that adaptation of naturally circulating alphaviruses to replication in tissue culture results in accumulation of mutations in the 5'UTR, which increase the efficiency of the promoter located in the 5'end of the genome. Here, we show that these mutations also decrease resistance of viral RNA to IFIT1-induced translation inhibition. In the presence of higher levels of IFIT1, alphaviruses with wt 5'UTRs became potent inducers of type I IFN, suggesting a new mechanism of type I IFN induction. We applied this knowledge of IFIT1 interaction with alphaviruses to develop new attenuated variants of Venezuelan equine encephalitis and chikungunya viruses that are more sensitive to the antiviral effects of IFIT1, and thus could serve as novel vaccine candidates.

  7. Multifunctional System-on-Glass for Lab-on-Chip applications.

    Science.gov (United States)

    Petrucci, G; Caputo, D; Lovecchio, N; Costantini, F; Legnini, I; Bozzoni, I; Nascetti, A; de Cesare, G

    2017-07-15

    Lab-on-Chip are miniaturized systems able to perform biomolecular analysis in shorter time and with lower reagent consumption than a standard laboratory. Their miniaturization interferes with the multiple functions that the biochemical procedures require. In order to address this issue, our paper presents, for the first time, the integration on a single glass substrate of different thin film technologies in order to develop a multifunctional platform suitable for on-chip thermal treatments and on-chip detection of biomolecules. The proposed System on-Glass hosts thin metal films acting as heating sources; hydrogenated amorphous silicon diodes acting both as temperature sensors to monitor the temperature distribution and photosensors for the on-chip detection and a ground plane ensuring that the heater operation does not affect the photodiode currents. The sequence of the technological steps, the deposition temperatures of the thin films and the parameters of the photolithographic processes have been optimized in order to overcome all the issues of the technological integration. The device has been designed, fabricated and tested for the implementation of DNA amplification through the Polymerase Chain Reaction (PCR) with thermal cycling among three different temperatures on a single site. The glass has been connected to an electronic system that drives the heaters and controls the temperature and light sensors. It has been optically and thermally coupled with another glass hosting a microfluidic network made in polydimethylsiloxane that includes thermally actuated microvalves and a PCR process chamber. The successful DNA amplification has been verified off-chip by using a standard fluorometer.

  8. Transient and permanent error control for networks-on-chip

    CERN Document Server

    Yu, Qiaoyan

    2012-01-01

    This book addresses reliability and energy efficiency of on-chip networks using a configurable error control coding (ECC) scheme for datalink-layer transient error management. The method can adjust both error detection and correction strengths at runtime by varying the number of redundant wires for parity-check bits. Methods are also presented to tackle joint transient and permanent error correction, exploiting the redundant resources already available on-chip. A parallel and flexible network simulator is also introduced, which facilitates examining the impact of various error control methods on network-on-chip performance. Includes a complete survey of error control methods for reliable networks-on-chip, evaluated for reliability, energy and performance metrics; Provides analysis of error control in various network-on-chip layers, as well as presentation of an innovative multi-layer error control coding technique; Presents state-of-the-art solutions to address simultaneously reliability, energy and performan...

  9. On-Chip Bondwire Magnetics with Ferrite-Epoxy Glob Coating for Power Systems on Chip

    Directory of Open Access Journals (Sweden)

    Jian Lu

    2008-01-01

    Full Text Available A novel concept of on-chip bondwire inductors and transformers with ferrite epoxy glob coating is proposed to offer a cost effective approach realizing power systems on chip (SOC. We have investigated the concept both experimentally and with finite element modeling. A Q factor of 30–40 is experimentally demonstrated for the bondwire inductors which represents an improvement by a factor of 3–30 over the state-of-the-art MEMS micromachined inductors. Transformer parameters including self- and mutual inductance and coupling factors are extracted from both modeled and measured S-parameters. More importantly, the bondwire magnetic components can be easily integrated into SOC manufacturing processes with minimal changes and open enormous possibilities for realizing cost-effective, high-current, high-efficiency power SOCs.

  10. An energy-efficient Network-on-Chip for a heterogeneous tiled reconfigurable System-on-Chip

    NARCIS (Netherlands)

    Kavaldjiev, N.K.; Smit, Gerardus Johannes Maria

    This paper proposes a Network-on-Chip architecture that offers high flexibility and performance. It is used in a System-on-Chip platform for future multimedia mobile devices. The network is packet switching wormhole network with virtual-channel flow control and source routing. The initial

  11. An energy-efficient Network-on-Chip for a heterogeneous tiled reconfigurable Systems-on-Chip

    NARCIS (Netherlands)

    Kavaldjiev, N.K.; Smit, Gerardus Johannes Maria

    This paper proposes a Network-on-Chip architecture that offers high flexibility and performance. It is used in a System-on-Chip platform for future multimedia mobile devices. The network is packet switching wormhole network with virtual-channel flow control and source routing. The initial

  12. Design of Networks-on-Chip for Real-Time Multi-Processor Systems-on-Chip

    DEFF Research Database (Denmark)

    Sparsø, Jens

    2012-01-01

    This paper addresses the design of networks-on-chips for use in multi-processor systems-on-chips - the hardware platforms used in embedded systems. These platforms typically have to guarantee real-time properties, and as the network is a shared resource, it has to provide service guarantees...

  13. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death.

    Science.gov (United States)

    Yan, Bing Chun; Park, Joon Ha; Chen, Bai Hui; Cho, Jeong-Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae-Chul; Hwang, In Koo; Cho, Jun Hwi; Lee, Yun Lyul; Kang, Il-Jun; Won, Moo-Ho

    2014-10-01

    Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperitoneal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN; a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reached the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-immunoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2'-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death.

  14. Visualization of living terminal hypertrophic chondrocytes of growth plate cartilage in situ by differential interference contrast microscopy and time-lapse cinematography.

    Science.gov (United States)

    Farnum, C E; Turgai, J; Wilsman, N J

    1990-09-01

    The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.

  15. Automotive radar – investigation of mutual interference mechanisms

    OpenAIRE

    2010-01-01

    In the past mutual interference between automotive radar sensors has not been regarded as a major problem. With an increasing number of such systems, however, this topic is receiving more and more attention. The investigation of mutual interference and countermeasures is therefore one topic of the joint project "Radar on Chip for Cars" (RoCC) funded by the German Federal Ministry of Education and Research (BMBF). RoCC's goal is to pave the way for the development of high-per...

  16. Automotive radar - investigation of mutual interference mechanisms

    Science.gov (United States)

    Goppelt, M.; Blöcher, H.-L.; Menzel, W.

    2010-09-01

    In the past mutual interference between automotive radar sensors has not been regarded as a major problem. With an increasing number of such systems, however, this topic is receiving more and more attention. The investigation of mutual interference and countermeasures is therefore one topic of the joint project "Radar on Chip for Cars" (RoCC) funded by the German Federal Ministry of Education and Research (BMBF). RoCC's goal is to pave the way for the development of high-performance, low-cost 79 GHz radar sensors based on Silicon-Germanium (SiGe) Monolithic Microwave Integrated Circuits (MMICs). This paper will present some generic interference scenarios and report on the current status of the analysis of interference mechanisms.

  17. A lab-on-chip for malaria diagnosis and surveillance.

    Science.gov (United States)

    Taylor, Brian J; Howell, Anita; Martin, Kimberly A; Manage, Dammika P; Gordy, Walter; Campbell, Stephanie D; Lam, Samantha; Jin, Albert; Polley, Spencer D; Samuel, Roshini A; Atrazhev, Alexey; Stickel, Alex J; Birungi, Josephine; Mbonye, Anthony K; Pilarski, Linda M; Acker, Jason P; Yanow, Stephanie K

    2014-05-09

    Access to timely and accurate diagnostic tests has a significant impact in the management of diseases of global concern such as malaria. While molecular diagnostics satisfy this need effectively in developed countries, barriers in technology, reagent storage, cost and expertise have hampered the introduction of these methods in developing countries. In this study a simple, lab-on-chip PCR diagnostic was created for malaria that overcomes these challenges. The platform consists of a disposable plastic chip and a low-cost, portable, real-time PCR machine. The chip contains a desiccated hydrogel with reagents needed for Plasmodium specific PCR. Chips can be stored at room temperature and used on demand by rehydrating the gel with unprocessed blood, avoiding the need for sample preparation. These chips were run on a custom-built instrument containing a Peltier element for thermal cycling and a laser/camera setup for amplicon detection. This diagnostic was capable of detecting all Plasmodium species with a limit of detection for Plasmodium falciparum of 2 parasites/μL of blood. This exceeds the sensitivity of microscopy, the current standard for diagnosis in the field, by ten to fifty-fold. In a blind panel of 188 patient samples from a hyper-endemic region of malaria transmission in Uganda, the diagnostic had high sensitivity (97.4%) and specificity (93.8%) versus conventional real-time PCR. The test also distinguished the two most prevalent malaria species in mixed infections, P. falciparum and Plasmodium vivax. A second blind panel of 38 patient samples was tested on a streamlined instrument with LED-based excitation, achieving a sensitivity of 96.7% and a specificity of 100%. These results describe the development of a lab-on-chip PCR diagnostic from initial concept to ready-for-manufacture design. This platform will be useful in front-line malaria diagnosis, elimination programmes, and clinical trials. Furthermore, test chips can be adapted to detect other

  18. Biosensors-on-chip: a topical review

    Science.gov (United States)

    Chen, Sensen; Shamsi, Mohtashim H.

    2017-08-01

    This review will examine the integration of two fields that are currently at the forefront of science, i.e. biosensors and microfluidics. As a lab-on-a-chip (LOC) technology, microfluidics has been enriched by the integration of various detection tools for analyte detection and quantitation. The application of such microfluidic platforms is greatly increased in the area of biosensors geared towards point-of-care diagnostics. Together, the merger of microfluidics and biosensors has generated miniaturized devices for sample processing and sensitive detection with quantitation. We believe that microfluidic biosensors (biosensors-on-chip) are essential for developing robust and cost effective point-of-care diagnostics. This review is relevant to a variety of disciplines, such as medical science, clinical diagnostics, LOC technologies including MEMs/NEMs, and analytical science. Specifically, this review will appeal to scientists working in the two overlapping fields of biosensors and microfluidics, and will also help new scientists to find their directions in developing point-of-care devices.

  19. On-Chip Diamond Raman Laser

    CERN Document Server

    Latawiec, Pawel; Burek, Michael J; Hausmann, Birgit J M; Bulu, Irfan; Loncar, Marko

    2015-01-01

    Synthetic single-crystal diamond has recently emerged as a promising platform for Raman lasers at exotic wavelengths due to its giant Raman shift, large transparency window and excellent thermal properties yielding a greatly enhanced figure-of-merit compared to conventional materials. To date, diamond Raman lasers have been realized using bulk plates placed inside macroscopic cavities, requiring careful alignment and resulting in high threshold powers (~W-kW). Here we demonstrate an on-chip Raman laser based on fully-integrated, high quality-factor, diamond racetrack micro-resonators embedded in silica. Pumping at telecom wavelengths, we show Stokes output discretely tunable over a ~100nm bandwidth around 2-{\\mu}m with output powers >250 {\\mu}W, extending the functionality of diamond Raman lasers to an interesting wavelength range at the edge of the mid-infrared spectrum. Continuous-wave operation with only ~85 mW pump threshold power in the feeding waveguide is demonstrated along with continuous, mode-hop-fr...

  20. Congestion Prediction Algorithm for Network on Chip

    Directory of Open Access Journals (Sweden)

    Hua Cai

    2013-07-01

    Full Text Available Network on chip (NoC traffic congestion was one of the important reasons for the data transmission performance degradation. In this paper, we presented a congestion judgment algorithm, which was based on neural network. The congestion control algorithm firstly used the hamming network to compute the NoC’s link buffer congestion state, secondly used the competitive network to find the worst congestion node, and then adopted avoiding congested node  routing policy to improve the NoC’s transmission performance. In this paper, the congestion control algorithm can make the data stream as far as possible evenly distributed in the NoC’s nodes and links and reduce the transmission resource competition. The simulation results showed that the congestion control algorithm could achieve better network throughput and average transmission delay.

  1. Network-on-chip the next generation of system-on-chip integration

    CERN Document Server

    Kundu, Santanu

    2014-01-01

    ""What makes this book special as compared to the current literature in the field is that it provides a complete picture of NoC architectures. In fact, current books in the context of NoCs are usually specific and presuppose a basic knowledge of NoC architectures. Conversely, this book provides a complete guide for both unskilled readers and researchers working in the area, to acquire not only the basic concepts but also the advanced techniques for improving power, cost and performance metrics of the on-chip communication system.""-Maurizio Palesi, Kore University, Italy.

  2. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death

    Institute of Scientific and Technical Information of China (English)

    Bing Chun Yan; Yun Lyul Lee; Il-Jun Kang; Moo-Ho Won; Joon Ha Park; Bai Hui Chen; Jeong-Hwi Cho; In Hye Kim; Ji Hyeon Ahn; Jae-Chul Lee; In Koo Hwang; Jun Hwi Cho

    2014-01-01

    Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperito-neal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN;a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reac hed the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-im-munoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2′-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These ifndings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death.

  3. A Differential Interference Contrast-Based Light Microscopic System for Laser Microsurgery and Optical Trapping of Selected Chromosomes during Mitosis In Vivo

    Science.gov (United States)

    Cole, Richard W.; Khodjakov, Alexey; Wright, William H.; Rieder, Conly L.

    1995-10-01

    Laser microsurgery and laser-generated optical force traps (optical tweezers) are both valuable light microscopic-based approaches for studying intra- and extracellular motility processes, including chromosome segregation during mitosis. Here we describe a system in use in our laboratory that allows living cells to be followed by high-resolution differential interference contrast (DIC) video-enhanced time-lapse light microscopy while selected mitotic organelles and spindle components are subjected to laser microsurgery and/or manipulation with an optical force trap. This system couples the output from two different Neodymium-YAG lasers to the same inverted light microscope equipped with both phase-contrast and de Senarmont compensation DIC optics, a motorized stage, and a high-resolution low-light-level CCD camera. Unlike similar systems using phase-contrast optics, our DIC-based system can image living cells in thin optical sections without contamination due to phase halos or out-of-focus object information. These advantages greatly facilitate laser-based light microscopic studies on mitotic organelles and components, including spindle poles (centrosomes) and kinetochores, which are at or below the resolution limit of the light microscope and buried within a large complex structure. When used in conjunction with image processing and high-resolution object-tracking techniques, our system provides new information on the roles that kinetochores and spindle microtubules play during chromosome segregation in plant and animal cells.

  4. On-Chip Network Design Automation with Source Routing Switches

    Institute of Scientific and Technical Information of China (English)

    MA Liwei; SUN Yihe

    2007-01-01

    Network-on-chip (NoC) is a new design paradigm for system-on-chip intraconnections in the billion-transistor era. Application specific on-chip network design is essential for NoC success in this new era.This paper presents a class of source routing switch that can be used to efficiently form arbitrary network topologies and that can be optimized for various applications. Hardware description language versions of the networks can be generated automatically for simulations and for syntheses. A series of switches and networks has been configured with their performances including latency, delay, area, and power, and analyzed theoretically and experimentally. The results show that this NoC architecture provides a large design space for application specific on-chip network designs.

  5. Error Control for Network-on-Chip Links

    CERN Document Server

    Fu, Bo

    2012-01-01

    As technology scales into nanoscale regime, it is impossible to guarantee the perfect hardware design. Moreover, if the requirement of 100% correctness in hardware can be relaxed, the cost of manufacturing, verification, and testing will be significantly reduced. Many approaches have been proposed to address the reliability problem of on-chip communications. This book focuses on the use of error control codes (ECCs) to improve on-chip interconnect reliability. Coverage includes detailed description of key issues in NOC error control faced by circuit and system designers, as well as practical error control techniques to minimize the impact of these errors on system performance. Provides a detailed background on the state of error control methods for on-chip interconnects; Describes the use of more complex concatenated codes such as Hamming Product Codes with Type-II HARQ, while emphasizing integration techniques for on-chip interconnect links; Examines energy-efficient techniques for integrating multiple error...

  6. Crosstalk in modern on-chip interconnects a FDTD approach

    CERN Document Server

    Kaushik, B K; Patnaik, Amalendu

    2016-01-01

    The book provides accurate FDTD models for on-chip interconnects, covering most recent advancements in materials and design. Furthermore, depending on the geometry and physical configurations, different electrical equivalent models for CNT and GNR based interconnects are presented. Based on the electrical equivalent models the performance comparison among the Cu, CNT and GNR-based interconnects are also discussed in the book. The proposed models are validated with the HSPICE simulations. The book introduces the current research scenario in the modeling of on-chip interconnects. It presents the structure, properties, and characteristics of graphene based on-chip interconnects and the FDTD modeling of Cu based on-chip interconnects. The model considers the non-linear effects of CMOS driver as well as the transmission line effects of interconnect line that includes coupling capacitance and mutual inductance effects. In a more realistic manner, the proposed model includes the effect of width-dependent MFP of the ...

  7. On-chip sample preparation for complete blood count from raw blood.

    Science.gov (United States)

    Nguyen, John; Wei, Yuan; Zheng, Yi; Wang, Chen; Sun, Yu

    2015-03-21

    This paper describes a monolithic microfluidic device capable of on-chip sample preparation for both RBC and WBC measurements from whole blood. For the first time, on-chip sample processing (e.g. dilution, lysis, and filtration) and downstream single cell measurement were fully integrated to enable sample preparation and single cell analysis from whole blood on a single device. The device consists of two parallel sub-systems that perform sample processing and electrical measurements for measuring RBC and WBC parameters. The system provides a modular environment capable of handling solutions of various viscosities by adjusting the length of channels and precisely controlling mixing ratios, and features a new 'offset' filter configuration for increased duration of device operation. RBC concentration, mean corpuscular volume (MCV), cell distribution width, WBC concentration and differential are determined by electrical impedance measurement. Experimental characterization of over 100,000 cells from 10 patient blood samples validated the system's capability for performing on-chip raw blood processing and measurement.

  8. Reliability, Availability and Serviceability of Networks-on-Chip

    CERN Document Server

    Cota, Érika; Soares Lubaszewski, Marcelo

    2012-01-01

    This book presents an overview of the issues related to the test, diagnosis and fault-tolerance of Network on Chip-based systems. It is the first book dedicated to the quality aspects of NoC-based systems and will serve as an invaluable reference to the problems, challenges, solutions, and trade-offs related to designing and implementing state-of-the-art, on-chip communication architectures.

  9. Nanofluidic Lab-On-Chip Technology for DNA Identification

    Science.gov (United States)

    2013-09-30

    technical 3. DATES COVERED (From - To) May 2012 - Jun 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanofluidic LaB-ON-Chip Technology for DNA...AVAILABILITY STATEMENT Publicly available. 3-0/ 3/Oo3o%J - 14. ABSTRACT In this project we have investigated the potential of nanofluidic lab-on...chip nanofluidic platforms may enable rapid and inexpensive, characterization and analysis of DNA biomarkers. Advantages include overall ease of

  10. Signal processing for on-chip space division multiplexing

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Ding, Yunhong; Xu, Jing;

    2015-01-01

    Our recent results on the demonstration of on-chip mode-division multiplexing are reviewed, with special emphasis on nonlinear all-optical signal processing. Mode-selective parametric processes are demonstrated in a silicon-on-insulator waveguide.......Our recent results on the demonstration of on-chip mode-division multiplexing are reviewed, with special emphasis on nonlinear all-optical signal processing. Mode-selective parametric processes are demonstrated in a silicon-on-insulator waveguide....

  11. Integrated Millimeter-Wave Antennas for On-Chip Communication

    Directory of Open Access Journals (Sweden)

    S. Zainud-Deen

    2016-03-01

    Full Text Available This paper introduces the design and analysis of circularly polarized (CP and dual-polarized on-chip microstrip antennas for wireless communication at 60 GHz. The CP on-chip antenna consists of a circular aluminum patch with two overlapped circular slots fed by the transmission line. The radiation characteristics of the CP have been analyzed using the finite integration technique and finite element method based electromagnetic solvers. The CP antenna introduces left-hand circular polarization and employs as on-chip transmitter. A design of dual-polarized on-chip microstrip antenna at 60 GHz is investigated and is employed as on-chip receiver. The dual ports of the dual polarized antenna are designed with high isolation between them in order to be used as a two on-chip receivers. The radiation characteristics of the dual-port antenna have been calculated. The effect of the separation distance between the CP-antenna and the dual-polarized antenna on the same chip has been investigated. The performance parameters like the reflection coefficient, transmission coefficient, and the transmission gain of the two antennas at different separation distances have been introduced.

  12. Cytostretch, an Organ-on-Chip Platform

    Directory of Open Access Journals (Sweden)

    Nikolas Gaio

    2016-07-01

    Full Text Available Organ-on-Chips (OOCs are micro-fabricated devices which are used to culture cells in order to mimic functional units of human organs. The devices are designed to simulate the physiological environment of tissues in vivo. Cells in some types of OOCs can be stimulated in situ by electrical and/or mechanical actuators. These actuations can mimic physiological conditions in real tissue and may include fluid or air flow, or cyclic stretch and strain as they occur in the lung and heart. These conditions similarly affect cultured cells and may influence their ability to respond appropriately to physiological or pathological stimuli. To date, most focus has been on devices specifically designed to culture just one functional unit of a specific organ: lung alveoli, kidney nephrons or blood vessels, for example. In contrast, the modular Cytostretch membrane platform described here allows OOCs to be customized to different OOC applications. The platform utilizes silicon-based micro-fabrication techniques that allow low-cost, high-volume manufacturing. We describe the platform concept and its modules developed to date. Membrane variants include membranes with (i through-membrane pores that allow biological signaling molecules to pass between two different tissue compartments; (ii a stretchable micro-electrode array for electrical monitoring and stimulation; (iii micro-patterning to promote cell alignment; and (iv strain gauges to measure changes in substrate stress. This paper presents the fabrication and the proof of functionality for each module of the Cytostretch membrane. The assessment of each additional module demonstrate that a wide range of OOCs can be achieved.

  13. PERFORMANCE ENHANCED ROUTER DESIGN FOR NETWORK ON CHIP

    Directory of Open Access Journals (Sweden)

    Anbu chozhan.P

    2013-04-01

    Full Text Available Network on chip is a new paradigm for on chip design that is able to sustain the communication provisions for the SoC with the desired performance. NOC applies networking methodology concepts to system on chip data transfer and it gives noticeable elevation over conventionalbus based communication. NOC router is the backbone of on chip communication which directs the flow of data. In NOC router the arbiter is used during number of inputs request for the similar out port. Arbiter generates the grant based on the priority and previous granted input. For NOC router we have design the efficient round robin arbiter and analyse the power and area. In this paper on chip router is designed with a buffering technique of FWFT based asynchronous FIFO which improves timing and reduce power consumption. The proposed design of router is simulated and synthesized in Xilinx ISE 13.2 and the source code is written in Verilog. Cadence soc encounter of technology ami035 is used to generate layout of router and RTL compiler is used to compute area, power and timing.

  14. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    Science.gov (United States)

    Akagi, Takanori; Kato, Kei; Kobayashi, Masashi; Kosaka, Nobuyoshi; Ochiya, Takahiro; Ichiki, Takanori

    2015-01-01

    Extracellular vesicles (EVs) including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker) antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG) isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker) antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.

  15. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Takanori Akagi

    Full Text Available Extracellular vesicles (EVs including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.

  16. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.

    Science.gov (United States)

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-06-20

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.

  17. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom

    Science.gov (United States)

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-01-01

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821

  18. Waveguide coupled resonance fluorescence from on-chip quantum emitter.

    Science.gov (United States)

    Makhonin, Maxim N; Dixon, James E; Coles, Rikki J; Royall, Ben; Luxmoore, Isaac J; Clarke, Edmund; Hugues, Maxime; Skolnick, Maurice S; Fox, A Mark

    2014-12-10

    Resonantly driven quantum emitters offer a very promising route to obtain highly coherent sources of single photons required for applications in quantum information processing (QIP). Realizing this for on-chip scalable devices would be important for scientific advances and practical applications in the field of integrated quantum optics. Here we report on-chip quantum dot (QD) resonance fluorescence (RF) efficiently coupled into a single-mode waveguide, a key component of a photonic integrated circuit, with a negligible resonant laser background and show that the QD coherence is enhanced by more than a factor of 4 compared to off-resonant excitation. Single-photon behavior is confirmed under resonant excitation, and fast fluctuating charge dynamics are revealed in autocorrelation g((2)) measurements. The potential for triggered operation is verified in pulsed RF. These results pave the way to a novel class of integrated quantum-optical devices for on-chip quantum information processing with embedded resonantly driven quantum emitters.

  19. Exploring Alternative Topologies for Network-on-Chip Architectures

    Directory of Open Access Journals (Sweden)

    Shafi Patel

    2011-01-01

    Full Text Available With increase in integration density and complexity of the system-on-Chip (SOC, the conventional interconnects are not suitable to fulfill the demands. The application of traditional network technologies in the form of Network-on-Chip is a potential solution. NoC design space has many variables. Selection of a better topology results in lesser complexities and better power-efficiency. In the proposed work, key research area in Network-on-chip design targeting communication infrastructure specially focusing on optimized topology design is worked upon. The simulation is modeled using a conventional network simulator tool packet tracer 5.3, in which by selecting proposed Topology 35.7 % reduction in traversing the longest path is observed.

  20. On-Chip Integration of Cell-Free Gene Expression

    Science.gov (United States)

    Buxboim, Amnon; Morpurgo, Margherita; Bar-Dagan, Maya; Frydman, Veronica; Zbaida, David; Bar-Ziv, Roy

    2006-03-01

    We present a synthetic approach for the study of gene networks in vitro which is complementary to traditional in vivo methodologies. We have developed a technology for submicron integration of functional genes and on-chip protein synthesis using a cell-free transcription/translation system. The interaction between genes is facilitated by diffusion of on-chip gene expression products from `source' genes towards `acceptor' genes. Our technology is simple and inexpensive and can serve as an improved platform for a wide variety of protein and DNA biochip applications.

  1. Ultrasound assisted particle and cell manipulation on-chip.

    Science.gov (United States)

    Mulvana, Helen; Cochran, Sandy; Hill, Martyn

    2013-11-01

    Ultrasonic fields are able to exert forces on cells and other micron-scale particles, including microbubbles. The technology is compatible with existing lab-on-chip techniques and is complementary to many alternative manipulation approaches due to its ability to handle many cells simultaneously over extended length scales. This paper provides an overview of the physical principles underlying ultrasonic manipulation, discusses the biological effects relevant to its use with cells, and describes emerging applications that are of interest in the field of drug development and delivery on-chip. © 2013.

  2. Designing network on-chip architectures in the nanoscale era

    CERN Document Server

    Flich, Jose

    2010-01-01

    Going beyond isolated research ideas and design experiences, Designing Network On-Chip Architectures in the Nanoscale Era covers the foundations and design methods of network on-chip (NoC) technology. The contributors draw on their own lessons learned to provide strong practical guidance on various design issues.Exploring the design process of the network, the first part of the book focuses on basic aspects of switch architecture and design, topology selection, and routing implementation. In the second part, contributors discuss their experiences in the industry, offering a roadmap to recent p

  3. On-chip photonic tweezers for photonics, microfluidics, and biology

    Science.gov (United States)

    Pin, Christophe; Renaut, Claude; Tardif, Manon; Jager, Jean-Baptiste; Delamadeleine, Eric; Picard, Emmanuel; Peyrade, David; Hadji, Emmanuel; de Fornel, Frédérique; Cluzel, Benoît

    2017-04-01

    Near-field optical forces arise from evanescent electromagnetic fields and can be advantageously used for on-chip optical trapping. In this work, we investigate how evanescent fields at the surface of photonic cavities can efficiently trap micro-objects such as polystyrene particles and bacteria. We study first the influence of trapped particle's size on the trapping potential and introduce an original optofluidic near-field optical microscopy technique. Then we analyze the rotational motion of trapped clusters of microparticles and investigate their possible use as microfluidic micro-tools such as integrated micro-flow vane. Eventually, we demonstrate efficient on-chip optical trapping of various kinds of bacteria.

  4. Advances on Microsized On-Chip Lithium-Ion Batteries.

    Science.gov (United States)

    Liu, Lixiang; Weng, Qunhong; Lu, Xueyi; Sun, Xiaolei; Zhang, Lin; Schmidt, Oliver G

    2017-09-27

    Development of microsized on-chip batteries plays an important role in the design of modern micro-electromechanical systems, miniaturized biomedical sensors, and many other small-scale electronic devices. This emerging field intimately correlates with the topics of rechargeable batteries, nanomaterials, on-chip microfabrication, etc. In recent years, a number of novel designs are proposed to increase the energy and power densities per footprint area, as well as other electrochemical performances of microsized lithium-ion batteries. These advances may guide the pathway for the future development of microbatteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Toponymic interferences

    Directory of Open Access Journals (Sweden)

    Marius Ilie Oros

    1985-12-01

    Full Text Available The study of linguistic interferences has been greatly extended lately. It comprises all language sections. In onomastics great attention was paid to to the study of macrotoponyms of foreign origin. I would like to mention in this respect the research concerning the toponyms of Slavic origin in Romania and Greece, the toponyms of Romance origin in Yugoslavia etc. The studies referring to the interferences in microtoponymy are more rare. These call for the collecting of all microtoponyms through inquiries made in plaees inhabited by mixed populetion from the ethnic point of view. The microtoponymy of these places off ers a very interesting material as far as the interactiong the reciprocal in.fluences of two or more toponymic systems is concerned.

  6. Comb Capacitor Structures for On-Chip Physical Uncloneable Function

    NARCIS (Netherlands)

    Roy, D.; Klootwijk, J.H.; Verhaegh, N.A.M.; Roosen, H.H.A.J.; Wolters, Robertus A.M.

    2009-01-01

    Planar inter-digitated comb capacitor structures are an excellent tool for on-chip capacitance measurement and evaluation of properties of coating layers with varying composition. These comb structures are easily fabricated in a single step in the last metallization layer of a standard IC process.

  7. Custom Topology Generation for Network-on-Chip

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Sparsø, Jens

    2007-01-01

    This paper compares simulated annealing and tabu search for generating custom topologies for applications with periodic behaviour executing on a network-on-chip. The approach differs from previous work by starting from a fixed mapping of IP-cores to routers and performing design space exploration...

  8. Exploration within the Network-on-Chip Paradigm

    NARCIS (Netherlands)

    Wolkotte, Pascal Theodoor

    2009-01-01

    A general purpose processor used to consist of a single processing core, which performed and controlled all tasks on the chip. Its functionality and maximum clock frequency grew steadily over the years. Due to the continuous increase of the number of transistors available on-chip and the operational

  9. A virtual channel router for on-chip networks

    NARCIS (Netherlands)

    Kavaldjiev, Nikolay; Smit, Gerard J.M.; Jansen, Pierre G.

    2004-01-01

    This paper proposes an architecture of a virtual channel router for an on-chip network1. The router has simple dynamic arbitration which is deterministic and fair. We show that the size of the proposed router is reduced by 49% and the speed increases 1.4 times compared to a conventional virtual chan

  10. A virtual channel router for on-chip networks

    OpenAIRE

    Kavaldjiev, Nikolay; Smit, Gerard J.M.; Jansen, Pierre G.

    2004-01-01

    This paper proposes an architecture of a virtual channel router for an on-chip network1. The router has simple dynamic arbitration which is deterministic and fair. We show that the size of the proposed router is reduced by 49% and the speed increases 1.4 times compared to a conventional virtual channel router.

  11. Two Architectures for On-chip Virtual Channel Router

    NARCIS (Netherlands)

    Kavaldjiev, Nikolay; Smit, Gerard J.M.; Jansen, Pierre G.

    2004-01-01

    This paper compares the implementation results of two architectures for virtual channel router. Since the router is used for building an on-chip network, its small size is critical. Together with the total design area we provide information about the distribution of this area between the main router

  12. A Virtual Channel Router for On-chip Networks

    NARCIS (Netherlands)

    Kavaldjiev, Nikolay; Smit, Gerard J.M.; Jansen, Pierre G.

    2004-01-01

    This paper proposes an architecture of a virtual channel router for an on-chip network1. The router has simple dynamic arbitration which is deterministic and fair. We show that the size of the proposed router is reduced by 49% and the speed increases 1.4 times compared to a conventional virtual chan

  13. A Virtual Channel Router for On-chip Networks

    NARCIS (Netherlands)

    Kavaldjiev, N.K.; Smit, Gerardus Johannes Maria; Jansen, P.G.

    This paper proposes an architecture of a virtual channel router for an on-chip network1. The router has simple dynamic arbitration which is deterministic and fair. We show that the size of the proposed router is reduced by 49% and the speed increases 1.4 times compared to a conventional virtual

  14. Two Architectures for On-chip Virtual Channel Router

    NARCIS (Netherlands)

    Kavaldjiev, N.K.; Smit, Gerardus Johannes Maria; Jansen, P.G.

    2004-01-01

    This paper compares the implementation results of two architectures for virtual channel router. Since the router is used for building an on-chip network, its small size is critical. Together with the total design area we provide information about the distribution of this area between the main router

  15. On-chip separation and sensing systems for hydrodynamic chromatography

    NARCIS (Netherlands)

    Blom, M.T.

    2002-01-01

    The feasibility of on-chip analytical separations using planar hydrodynamic chromatography (HDC) in Pyrex-silicon and fused silica chips has been demonstrated. In order to sketch the analytical separations area in which the HDC chip has to operate, an introduction was given of important macro-scale

  16. Customizing and hardwiring on-chip interconnects in FPGAs

    NARCIS (Netherlands)

    Hur, J.Y.

    2011-01-01

    This thesis presents our investigations on how to efficiently utilize on-chip wires to improve network performance in reconfigurable hardware. A fieldprogrammable gate array (FPGA), as a key component in a modern reconfigurable platform, accommodates many-millions of wires and the on-demand

  17. Field Programmable Gate Arrays with Hardwired Networks on Chip

    NARCIS (Netherlands)

    Wahlah, M.A.

    2012-01-01

    Technology down-scaling and platform-based designs have enforced a number of application and architecture trends for system-on-chip (SOC) designs. A modern SOC is now a multi-functional machine that can execute a large number of complex applications by using tens or even hundreds of intellectual

  18. Reverse Engineering Human Pathophysiology with Organs-on-Chips.

    Science.gov (United States)

    Ingber, Donald E

    2016-03-10

    While studies of cultured cells have led to new insights into biological control, greater understanding of human pathophysiology requires the development of experimental systems that permit analysis of intercellular communications and tissue-tissue interactions in a more relevant organ context. Human organs-on-chips offer a potentially powerful new approach to confront this long-standing problem.

  19. Inkjet printed structures for smart lab-on-chip systems

    Science.gov (United States)

    Beckert, E.; Eberhardt, R.; Pabst, Oliver; Kemper, Falk; Shu, Zhe; Tünnermann, Andreas; Perelaer, Jolke; Schubert, Ulrich; Becker, Holger

    2013-03-01

    Inkjet printing is a digital printing technique that is capable of depositing not only inks, but functional materials onto different substrates in an additive way. In this paper, applications of inkjet printed structures for microfluidic lab-on-chip systems are discussed. Such systems are promising for different chemical or biochemical analysis tasks carried out at the Point-of-Care level and therefore due to cost reasons are often fabricated from polymers. The paper discusses inkjetprinted wiring structures and electroactive polymer (EAP) actuators for use in microfluidic lab-on-chip systems. Silver and gold wirings are shown that are fabricated by printing metal nanoparticle inks onto polymer substrates. After printing the structures are sintered using argon plasma sintering, a low-temperature sintering process that is compatible with polymer substrates. The wirings consist of several electrode like structures and contact pads and feature minimum structure sizes of approximately 70 μm. They can be used for electrodes, fluid presence detectors and localized ohmic heaters in lab-on-chip systems. Based on that an all inkjet-printed EAP actuator then is discussed. Membrane-type bending actuators generate deflections of approximately 5 μm when being driven at a resonance frequency of 1.8 kHz with 110 V. Derived from that and assuming passive valves on-chip pumping rates in the range of 0.5 ml/min can be estimated.

  20. Performance Analysis on Router Arbitration for On-chip Networking

    Directory of Open Access Journals (Sweden)

    G. Selvaraj

    2014-08-01

    Full Text Available This study is a comprehensive report on performance analyses of Round Robin and matrix arbitrations to enhance the reliability of on-chip networks. Arbiter is used in Network-on-Chip (NoC router when number of input ports requested is the same as output ports. If many inputs are requested for same output port, the matrix arbiter deals it by forming a 5×5 matrix based on input and output ports. Next, it allots the priority to the requested input ports and simultaneously generates a control signal for selecting the input port to send the packet to output port. The Robin arbiter generates the grant signal on the basis of priority allotted to the input ports. The simulation results of arbitration analysis shows that the router design of front end model consumes less power by 8% and occupies smaller area by 3% on chip. The area on chip is around 64% of available area using Round Robin arbitration compare to that of matrix arbitration. This study also implements hamming distance in order to check the error free data transmission of the NoC router.

  1. Novel on-chip spiral inductors with back hollow structure

    Science.gov (United States)

    Wang, Gang; Liu, Houfang; Li, Xiaoning; Qiu, Haochuan; Yang, Yi; Ren, Tian-Ling

    2017-01-01

    In this work, on-chip spiral inductors with back hollow structure have been prepared on the 500 μm thick silicon substrate with high resistivity (ρ > 5000Ωcm). The silicon underneath the inductor region has been completely etched by deep etching process in order to reduce the substrate eddy current losses. Several types of square spiral on-chip inductors with different metal width (w) and line spacing (s) in the case of w + s = 40μm were fabricated. The experimental results are verified by FEM simulation using HFSS software. The results show that the Q-factor and self-resonance frequency of back hollow structure inductors are both enhanced compared with the conventional inductors. Furthermore, narrower width of coils for the on-chip spiral inductors with back hollow structure can result in higher Q-factor, inductance L and self-resonance frequency, which provide some important design guides for the fabrication of the high performance on-chip inductors.

  2. Comb Capacitor Structures for On-Chip Physical Uncloneable Function

    NARCIS (Netherlands)

    Roy, D.; Klootwijk, J.H.; Verhaegh, N.A.M.; Roosen, H.H.A.J.; Wolters, R.A.M.

    2009-01-01

    Planar inter-digitated comb capacitor structures are an excellent tool for on-chip capacitance measurement and evaluation of properties of coating layers with varying composition. These comb structures are easily fabricated in a single step in the last metallization layer of a standard IC process. C

  3. Exploration within the Network-on-Chip Paradigm

    NARCIS (Netherlands)

    Wolkotte, P.T.

    2009-01-01

    A general purpose processor used to consist of a single processing core, which performed and controlled all tasks on the chip. Its functionality and maximum clock frequency grew steadily over the years. Due to the continuous increase of the number of transistors available on-chip and the operational

  4. A Light-Weight Statically Scheduled Network-on-Chip

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Bo; Schoeberl, Martin; Sparsø, Jens

    2012-01-01

    This paper investigates how a light-weight, statically scheduled network-on-chip (NoC) for real-time systems can be designed and implemented. The NoC provides communication channels between all cores with equal bandwidth and latency. The design is FPGA-friendly and consumes a minimum of resources...

  5. Customizing and hardwiring on-chip interconnects in FPGAs

    NARCIS (Netherlands)

    Hur, J.Y.

    2011-01-01

    This thesis presents our investigations on how to efficiently utilize on-chip wires to improve network performance in reconfigurable hardware. A fieldprogrammable gate array (FPGA), as a key component in a modern reconfigurable platform, accommodates many-millions of wires and the on-demand reconfig

  6. CMOS high linearity PA driver with an on-chip transformer for W-CDMA application

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jian; Mei Niansong; Huang Yumei; Hong Zhiliang, E-mail: yumeihuang@fudan.edu.cn [ASIC and System State Key Laboratory, Fudan University, Shanghai 201203 (China)

    2011-09-15

    A fully integrated high linearity differential power amplifier driver with an on-chip transformer in a standard 0.13-{mu}m CMOS process for W-CDMA application is presented. The transformer not only accomplishes output impedance matching, but also acts as a balun for converting differential signals to single-ended ones. Under a supply voltage of 3.3 V, the measured maximum power is larger than 17 dBm with a peak power efficiency of 21%. The output power at the 1-dB compression point and the power gain are 12.7 dBm and 13.2 dB, respectively. The die size is 0.91 x 1.12 mm{sup 2}. (semiconductor integrated circuits)

  7. CMOS high linearity PA driver with an on-chip transformer for W-CDMA application

    Institute of Scientific and Technical Information of China (English)

    Fu Jian; Mei Niansong; Huang Yumei; Hong Zhiliang

    2011-01-01

    A fully integrated high linearity differential power amplifier driver with an on-chip transformer in a standard 0.13-μm CMOS process for W-CDMA application is presented.The transformer not only accomplishes output impedance matching,but also acts as a balun for converting differential signals to single-ended ones.Under a supply voltage of 3.3 V,the measured maximum power is larger than 17 dBm with a peak power efficiency of 21%.The output power at the 1-dB compression point and the power gain are 12.7 dBm and 13.2 dB,respectively.The die size is 0.91 × 1.12 mm2.

  8. Comparison of a Ring On-Chip Network and a Code-Division Multiple-Access On-Chip Network

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2007-01-01

    Full Text Available Two network-on-chip (NoC designs are examined and compared in this paper. One design applies a bidirectional ring connection scheme, while the other design applies a code-division multiple-access (CDMA connection scheme. Both of the designs apply globally asynchronous locally synchronous (GALS scheme in order to deal with the issue of transferring data in a multiple-clock-domain environment of an on-chip system. The two NoC designs are compared with each other by their network structures, data transfer principles, network node structures, and their asynchronous designs. Both the synchronous and the asynchronous designs of the two on-chip networks are realized using a hardware-description language (HDL in order to make the entire designs suit the commonly used synchronous design tools and flow. The performance estimation and comparison of the two NoC designs which are based on the HDL realizations are addressed. By comparing the two NoC designs, the advantages and disadvantages of applying direct connection and CDMA connection schemes in an on-chip communication network are discussed.

  9. An Energy-Efficient Reconfigurable Circuit Switched Network-on-Chip

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Rauwerda, G.K.; Smit, L.T.

    Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture for multi-tile System-on-Chip (SoC) architectures. The SoC architecture, including its run-time software, can replace inflexible ASICs for future ambient systems. These ambient systems have to be flexible as well as

  10. A system-level multiprocessor system-on-chip modeling framework

    DEFF Research Database (Denmark)

    Virk, Kashif Munir; Madsen, Jan

    2004-01-01

    We present a system-level modeling framework to model system-on-chips (SoC) consisting of heterogeneous multiprocessors and network-on-chip communication structures in order to enable the developers of today's SoC designs to take advantage of the flexibility and scalability of network-on-chip...

  11. Power management design for lab-on-chip biosensors.

    Science.gov (United States)

    Xiaojian Yu; Moez, Kambiz; I-Chyn Wey; Jie Chen

    2016-08-01

    Over the past decades, we have witnessed the growth demands of portable lab-on-chip biosensors. These lab-on-chip devices are mostly powered by battery, and intelligent power management systems are required to provide supply voltage for different functional units on biosensors (e.g. a microfluidic control system might require higher voltage than the rest working units of biosensors). In this paper, a fully integrated multiple-stage voltage multiplier is proposed to provide high-voltage power needs. The proposed design was implemented with the IBM's 0.13um CMOS process with a maximum power efficiency of 81.02% and maximum voltage conversion efficiency of 99.8% under a supply voltage of 1.2 V.

  12. An on-chip diamond optical parametric oscillator

    CERN Document Server

    Hausmann, B J M; Venkataraman, V; Deotare, P; Loncar, M

    2013-01-01

    Efficient, on-chip optical nonlinear processes are of great interest for the development of compact, robust, low-power consuming systems for applications in spectroscopy, metrology, sensing and classical and quantum optical information processing. Diamond holds promise for these applications, owing to its exceptional properties. However, although significant progress has been made in the development of an integrated diamond photonics platform, optical nonlinearities in diamond have not been explored much apart from Raman processes in bulk samples. Here, we demonstrate optical parametric oscillations (OPO) via four wave mixing (FWM) in single crystal diamond (SCD) optical networks on-chip consisting of waveguide-coupled microring resonators. Threshold powers as low as 20mW are enabled by ultra-high quality factor (1*10^6) diamond ring resonators operating at telecom wavelengths, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the inferred nonlinear refractive index...

  13. Phase-modulating lasers toward on-chip integration.

    Science.gov (United States)

    Kurosaka, Yoshitaka; Hirose, Kazuyoshi; Sugiyama, Takahiro; Takiguchi, Yu; Nomoto, Yoshiro

    2016-07-26

    Controlling laser-beam patterns is indispensable in modern technology, where lasers are typically combined with phase-modulating elements such as diffractive optical elements or spatial light modulators. However, the combination of separate elements is not only a challenge for on-chip miniaturisation but also hinders their integration permitting the switchable control of individual modules. Here, we demonstrate the operation of phase-modulating lasers that emit arbitrarily configurable beam patterns without requiring any optical elements or scanning devices. We introduce a phase-modulating resonator in a semiconductor laser, which allows the concurrent realisation of lasing and phase modulation. The fabricated devices are on-chip-sized, making them suitable for integration. We believe this work will provide a breakthrough in various laser applications such as switchable illumination patterns for bio-medical applications, structured illuminations, and even real three-dimensional or highly realistic displays, which cannot be realised with simple combinations of conventional devices or elements.

  14. Energy Consumption Oriented Network-on-Chip Mapping Method

    Directory of Open Access Journals (Sweden)

    Feichao Wang

    2013-12-01

    Full Text Available In this paper, mapping algorithm has been mainly studied. The main work and contribution have been generalized as follows: Through the research of existing on-chip network mapping algorithm and global optimization algorithm, a multi-step mapping algorithm for low-power consumption have been designed, which is combined with the task allocation and the task scheduling. Compared with the traditional mapping algorithm, the algorithm in this paper takes the factors of task scheduling and allocation into account, mapping algorithm has three steps: task scheduling, IP core mapping and data block mapping. The simulation results show that the mapping method in this paper can effectively reduce Network-on-Chip (NoC power consumption. 

  15. Object-Oriented System-on-Network-on-Chip Template and Implementation: H.263 Case Study

    Institute of Scientific and Technical Information of China (English)

    MA Liwei; SUN Yihe

    2008-01-01

    Network-on-chip (NoC) technology enables a new system-on-chip paradigm, the system-on-network-on-chip (SoNoC) paradigm. One of the challenges in designing application-specific networks is modeling the on-chip system behavior and determining on-chip traffic characteristics. A universal object message level model for SoNoC was defined and an object-oriented methodology was developed to imple-ment this model in hardware and software. The model supports "object to core" synthesis and "function in-voking to network" mapping. A case study of an H.263 system verifies the model and methodology. System prototypes are easily built and on-chip traffic can be observed using the SoNoC model to provide real benchmarks for on-chip network design.

  16. Performance Evaluation of CDMA Router for Network-On-Chip

    Directory of Open Access Journals (Sweden)

    Anant W. Hinganikar

    2012-06-01

    Full Text Available This paper presents the performance evaluation of router based on code division multiple access technique (CDMA for Network-on-Chip (NoC. The design is synthesized using Xilinx Virtex4 XC4VLX200 device. The functional behavior is verified using Modelsim XE III 6.2 C. The delay and throughput values are obtained for variable payload sizes. Throughput-Power and Delay-Power characteristics are also verified for NoC.

  17. Analysis and Management of Communication in On-Chip Networks

    OpenAIRE

    Jafari, Fahimeh

    2015-01-01

    Regarding the needs of low-power, high-performance embedded systems and the growing computation-intensive applications, the number of computing resources in a single chip has enormously increased. The current VLSI technology is able to support such an integration of transistors and add many computing resources such as CPU, DSP, specific IPs, etc to build a Systemon- Chip (SoC). However, interconnection between resources becomes another challenging issue which can be raised by using an on-chip...

  18. Low-cost on-chip clock jitter measurement scheme

    OpenAIRE

    Omana, Martin; Rossi, Daniele; Giaffreda, Daniele; Metra, Cecilia; Mak, T.M.; Raman, Asifur; Tam, Simon

    2014-01-01

    In this paper, we present a low-cost, on-chip clock jitter digital measurement scheme for high performance microprocessors. It enables in situ jitter measurement during the test or debug phase. It provides very high measurement resolution and accuracy, despite the possible presence of power supply noise (representing a major source of clock jitter), at low area and power costs. The achieved resolution is scalable with technology node and can in principle be increased as much as desired, at lo...

  19. Energy Consumption Oriented Network-on-Chip Mapping Method

    OpenAIRE

    Feichao Wang

    2013-01-01

    In this paper, mapping algorithm has been mainly studied. The main work and contribution have been generalized as follows: Through the research of existing on-chip network mapping algorithm and global optimization algorithm, a multi-step mapping algorithm for low-power consumption have been designed, which is combined with the task allocation and the task scheduling. Compared with the traditional mapping algorithm, the algorithm in this paper takes the factors of task scheduling and allocatio...

  20. On-chip detection performed by amorphous silicon balanced photosensor for lab-on chip application

    Directory of Open Access Journals (Sweden)

    G. de Cesare

    2015-03-01

    The experiments have been carried out measuring the differential current in several conditions. All the experiments have been executed under a large background light intensity to reproduce realistic operating conditions in biomedical applications. We have found that the proposed device is able to detect the presence or absence of water flow in the channel and the presence of fluorescent marker. In particular, under identical channel conditions the differential current is at least a factor 60 lower that the current flowing in each diode.

  1. On-chip High-Voltage Generator Design

    CERN Document Server

    Tanzawa, Toru

    2013-01-01

    This book describes high-voltage generator design with switched-capacitor multiplier techniques.  The author provides various design techniques for switched-capacitor on-chip high-voltage generators, including charge pump circuits, regulators, level shifters, references, and oscillators.  Readers will see these techniques applied to system design in order to address the challenge of how the on-chip high-voltage generator is designed for Flash memories, LCD drivers, and other semiconductor devices to optimize the entire circuit area and power efficiency with a low voltage supply, while minimizing the cost.   ·         Shows readers how to design charge pump circuits with lower voltage operation, higher power efficiency, and smaller circuit area; ·         Describes comprehensive circuits and systems design of on-chip high-voltage generators; ·         Covers all the component circuit blocks, including charge pumps, pump regulators, level shifters, oscillators, and references.

  2. On-chip Magnetic Separation and Cell Encapsulation in Droplets

    Science.gov (United States)

    Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.

    2012-02-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.

  3. Delay Optimized Architecture for On-Chip Communication

    Institute of Scientific and Technical Information of China (English)

    Sheraz Anjum; Jie Chen; Pei-Pei Yue; Jian Liu

    2009-01-01

    Networks-on-chip (NoC), a new system on chip (SoC) paradigm, has become a great focus of research by many groups during the last few years. Among all the NoC architectures that have been proposed until now, 2D-Mesh has proved to be the best architecture for implementation due to its regular and simple intercon- nection structure. In this paper, we propose a new interconnect architecture called 2D-diagonal mesh (2DDgl-Mesh) for on-chip communication. The 2DDgl- Mesh is almost similar to traditional 2D-Mesh in aspects of cost, area, and implementation, but it can outperform the later in delay. The both architectures are compared by using NS-2 (a network simulator) and CINSIM (a component based interconnection simulator) under the same traffic models and parametric conditions. The results of comparison show that under the proposed architecture, the packets can almost always be routed to their destinations in less time. In addition, our archi- tecture can sometimes perform better than 2D-Mesh in drop ratio for special fixed traffic models.

  4. On-Chip Hotplate for Temperature Control of Cmos Saw Resonators

    CERN Document Server

    Nordin, Anis; Zaghloul, Mona

    2008-01-01

    Due to the sensitivity of the piezoelectric layer in surface acoustic wave (SAW) resonators to temperature, a method of achieving device stability as a function of temperature is required. This work presents the design, modeling and characterization of integrated dual-serpentine polysilicon resistors as a method for temperature control of CMOS SAW resonators. The design employs the oven control temperature stabilization scheme where the device's temperature is elevated to higher than Tmax to maintain constant device temperature. The efficiency of the polysilicon resistor as a heating element was verified through a 1-D partial differential equation model, 3-D CoventorWare finite element simulations and measurements using Compix thermal camera. To verify that the on-chip hotplate is effective as a temperature control method, both DC and RF measurements of the heater together with the resonator were conducted. Experimental results have indicated that the TCF of the CMOS SAW resonator of -97.2 ppm/deg C has been ...

  5. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    Science.gov (United States)

    Rizzi, Giovanni; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F.

    2015-04-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP.

  6. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Henriksen, Anders Dahl

    2014-01-01

    of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface......We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches....... The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover...

  7. 60 GHz system-on-chip (SoC) with built-in memory and an on-chip antenna

    KAUST Repository

    Ghaffar, Farhan A.

    2014-04-01

    A novel 60 GHz transmitter SoC with an on-chip antenna and integrated memory in CMOS 65 nm technology is presented in this paper. This highly integrated transmitter design can support a data rate of 2 GBPS with a transmission range of 1 m. The transmitter consists of a fundamental frequency 60 GHz PLL which covers the complete ISM band. The modulator following the PLL can support both BPSK and OOK modulation schemes. Both stored data on the integrated memory or directly from an external source can be transmitted. A tapered slot on chip antenna is integrated with the power amplifier to complete the front end of the transmitter design. Size of the complete transmitter with on-chip antenna is only 1.96 mm × 1.96 mm. The core circuits consume less than 100 mW of power. The high data rate capability of the design makes it extremely suitable for bandwidth hungry applications such as unencrypted HD video streaming and transmission.

  8. Proactive interference and concurrent inhibitory processes do not differentially affect item and associative recognition: Implication for the age-related associative memory deficit.

    Science.gov (United States)

    Guez, Jonathan; Naveh-Benjamin, Moshe

    2016-09-01

    Previous studies have suggested an associative deficit hypothesis [Naveh-Benjamin, M. ( 2000 ). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1170-1187] to explain age-related episodic memory declines. The hypothesis attributes part of the deficient episodic memory performance in older adults to a difficulty in creating and retrieving cohesive episodes. In this article, we further evaluate this hypothesis by testing two alternative processes that potentially mediate associative memory deficits in older adults. Four experiments are presented that assess whether failure of inhibitory processes (proactive interference in Experiments 1 and 2), and concurrent inhibition (in Experiments 3 and 4) are mediating factors in age-related associative deficits. The results suggest that creating conditions that require the operation of inhibitory processes, or that interfere with such processes, cannot simulate associative memory deficit in older adults. Instead, such results support the idea that associative memory deficits reflect a unique binding failure in older adults. This failure seems to be independent of other cognitive processes, including inhibitory and other resource-demanding processes.

  9. Research on linear tracking-differentiator to track interference signal%线性跟踪微分器跟踪干扰信号的研究

    Institute of Scientific and Technical Information of China (English)

    董存会; 练星; 武晓辉

    2014-01-01

    In this work ,a linear tracking‐differentiator is applied to extract differential signal from the corrupted input under a weaker assumption .Firstly ,the eigenvalue method is used to solve the system . Secondly ,the convergence of the tracking‐differentiator is obtained by Riemann lemma .Finally ,some numerical simulations demonstrate that the proposed tracking‐differentiator can extract differential sig‐nal effectively .%在较弱的条件下,研究了一个线性跟踪微分器跟踪干扰信号并提取其微分的问题。首先,应用特征根法得到跟踪微分器系统的解。其次,利用Riemann引理对跟踪信号的收敛性进行理论证明。最后,通过数值模拟论证了跟踪微分器能够有效地跟踪微分信号。

  10. On-chip integrated lasers for biophotonic applications

    DEFF Research Database (Denmark)

    Mappes, Timo; Wienhold, Tobias; Bog, Uwe

    Meeting the need of biomedical users, we develop disposable Lab-on-a-Chip systems based on commercially available polymers. We are combining passive microfluidics with active optical elements on-chip by integrating multiple solid-state and liquid-core lasers. While covering a wide range of laser...... emission wavelengths, the chips have the size of microscope cover slips and use optical and fluidic interconnects only. Here, we present our latest realizations of integrated optofluidic lasers using whispering gallery mode or distributed feedback laser cavities....

  11. On-chip photonic interconnects a computer architect's perspective

    CERN Document Server

    Nitta, Christopher J; Akella, Venkatesh

    2013-01-01

    As the number of cores on a chip continues to climb, architects will need to address both bandwidth and power consumption issues related to the interconnection network. Electrical interconnects are not likely to scale well to a large number of processors for energy efficiency reasons, and the problem is compounded by the fact that there is a fixed total power budget for a die, dictated by the amount of heat that can be dissipated without special (and expensive) cooling and packaging techniques. Thus, there is a need to seek alternatives to electrical signaling for on-chip interconnection appli

  12. A VLSI System-on-Chip for Particle Detectors

    CERN Document Server

    AUTHOR|(CDS)2078019

    In this thesis I present a System-on-Chip (SoC) I designed to oer a self- contained, compact data acquisition platform for micromegas detector mon- itoring. I carried on my work within the RD-51 collab oration of CERN. With a companion ADC, my architecture is capable to acquire the signal from a detector electro de, pro cess the data and p erform monitoring tests. The SoC is built around on a custom 8-bit micropro cessor with internal mem- ory resources and emb eds the p eripherals to b e interf...

  13. Multicore systems on-chip practical software/hardware design

    CERN Document Server

    Abdallah, Abderazek Ben

    2013-01-01

    System on chips designs have evolved from fairly simple unicore, single memory designs to complex heterogeneous multicore SoC architectures consisting of a large number of IP blocks on the same silicon. To meet high computational demands posed by latest consumer electronic devices, most current systems are based on such paradigm, which represents a real revolution in many aspects in computing.The attraction of multicore processing for power reduction is compelling. By splitting a set of tasks among multiple processor cores, the operating frequency necessary for each core can be reduced, allowi

  14. A Time-predictable Memory Network-on-Chip

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Chong, David VH; Puffitsch, Wolfgang

    2014-01-01

    To derive safe bounds on worst-case execution times (WCETs), all components of a computer system need to be time-predictable: the processor pipeline, the caches, the memory controller, and memory arbitration on a multicore processor. This paper presents a solution for time-predictable memory...... arbitration and access for chip-multiprocessors. The memory network-on-chip is organized as a tree with time-division multiplexing (TDM) of accesses to the shared memory. The TDM based arbitration completely decouples processor cores and allows WCET analysis of the memory accesses on individual cores without...

  15. Advancing Software Development for a Multiprocessor System-on-Chip

    Directory of Open Access Journals (Sweden)

    Stephen Bique

    2007-06-01

    Full Text Available A low-level language is the right tool to develop applications for some embedded systems. Notwithstanding, a high-level language provides a proper environment to develop the programming tools. The target device is a system-on-chip consisting of an array of processors with only local communication. Applications include typical streaming applications for digital signal processing. We describe the hardware model and stress the advantages of a flexible device. We introduce IDEA, a graphical integrated development environment for an array. A proper foundation for software development is a UML and standard programming abstractions in object-oriented languages.

  16. Two-photon tomography using on-chip quantum walks

    CERN Document Server

    Titchener, James; Sukhorukov, Andrey

    2016-01-01

    We present a conceptual approach to quantum tomography based on first expanding a quantum state across extra degrees of freedom and then exploiting the introduced sparsity to perform reconstruction. We formulate its application to photonic circuits, and show that measured spatial photon correlations at the output of a specially tailored discrete-continuous quantum-walk can enable full reconstruction of any two-photon spatially entangled and mixed state at the input. This approach does not require any tunable elements, so is well suited for integration with on-chip superconducting photon detectors.

  17. Microarchitecture of network-on-chip routers a designer's perspective

    CERN Document Server

    Dimitrakopoulos, Giorgos; Seitanidis, Ioannis

    2014-01-01

    This book provides a unified overview of network-on-chip router micro-architecture, the corresponding design opportunities and challenges, and existing solutions to overcome these challenges. The discussion focuses on the heart of a NoC, the NoC router, and how it interacts with the rest of the system. Coverage includes both basic and advanced design techniques that cover the entire router design space including router organization, flow control, pipelined operation, buffering architectures, as well as allocators' structure and algorithms. Router micro-architectural options are presented in a

  18. Compact models for nanophotonic structures and on-chip interconnects

    Science.gov (United States)

    Alam, Mehboob

    Over the last few years, scaling in deep submicron technologies has shifted the paradigm from device-dominated to interconnect-dominated design methodology. Consequently, there is an increasing interest towards the miniaturization of the guiding medium in nanoscale integrated circuits by exploring plasmon-based waveguides to alleviate the scaling issues associated with today's copper interconnect. In this thesis, we seek short and long-term solutions of on-chip interconnect by developing accurate compact models of on-chip interconnects and impedance characterization of nanophotonic structures. The developed system models are compact and accurate over the operating frequency range and the adopted approach have provided many critical insights and produced many important results. This thesis first presents a new modeling strategy that represents the nanostructure by its equivalent impedance. By applying either quasistatic approximation or separately solving for voltage and current for dominant mode, we reduce the field problem to a circuit problem. The impedance expressed in terms of circuit components is dependent on the material constant as well as the operating frequency. The modeling methodology is successfully applied to nanoparticles and oscillating nanosphere. The proposed model characterizes plasmon resonance in these nanostructures, thereby providing basic building block to develop spice models of complex plasmon-based waveguide for sub-wavelength propagation. We also presented several techniques to develop compact models of on-chip interconnects and passive components for accurate estimation of power, noise and delay of high speed integrated circuits. The automated method generates reduced order models that are accurate across either a narrow or a wide-range of frequencies. The proposed methods are based on Krylov subspace method with interpolation points dynamically selected using either spline based algorithm or discrete wavelet transform. Narrow and

  19. A Time-predictable Memory Network-on-Chip

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Chong, David VH; Puffitsch, Wolfgang

    2014-01-01

    To derive safe bounds on worst-case execution times (WCETs), all components of a computer system need to be time-predictable: the processor pipeline, the caches, the memory controller, and memory arbitration on a multicore processor. This paper presents a solution for time-predictable memory...... arbitration and access for chip-multiprocessors. The memory network-on-chip is organized as a tree with time-division multiplexing (TDM) of accesses to the shared memory. The TDM based arbitration completely decouples processor cores and allows WCET analysis of the memory accesses on individual cores without...

  20. Smart Integrated Sensor for Multiple Detections of Glucose and L-Lactate Using On-Chip Electrochemical System

    Directory of Open Access Journals (Sweden)

    Tomoyuki Yamazaki

    2011-01-01

    Full Text Available Multiple sensor electrodes, a supplementary electrode, a reference electrode, and signal-processing circuits were integrated on a single chip to develop a chip-shaped electrochemical sensing system. L-lactate and glucose were measured using on-chip working electrodes modified by polyion complex to immobilize lactate oxidase and glucose oxidase, respectively. Cyclic voltammetry measurements were conducted using an on-chip potentiostat. Selective and quantitative detection of glucose and L-lactate and the interference behavior were studied. Hydrogen peroxide generated by enzymatic reactions was detected by an increase in anodic oxidation current. Reaction currents at +0.7 V versus Ag/AgCl were used to obtain calibration plots. The measured dynamic ranges for L-lactate and glucose were 0.2–1.0 mM and 2.0–8.0 mM, respectively. The sensitivities were 65 nA/mM and 15 nA/mM, respectively, using a working electrode of 0.5 mm2. The 3σ detection limit was 0.19 mM and 1.1 mM, respectively. We have achieved multiple biomaterial detections on a circuit-equipped single chip. This integrated electrochemical sensor chip could be the best candidate for realizing point-of-care testing due to its portability and potential for mass production.

  1. Multiple scattering mechanisms causing interference effects in the differential cross sections of H + D2 → HD(v' = 4, j') + D at 3.26 eV collision energy

    Science.gov (United States)

    Sneha, Mahima; Gao, Hong; Zare, Richard N.; Jambrina, P. G.; Menéndez, M.; Aoiz, F. J.

    2016-07-01

    Differential cross sections (DCSs) for the H + D2 → HD(v' = 4, j') + D reaction at 3.26 eV collision energy have been measured using the photoloc technique, and the results have been compared with those from quantum and quasiclassical scattering calculations. The quantum mechanical DCSs are in good overall agreement with the experimental measurements. In common with previous results at 1.97 eV, clear interference patterns which appear as fingerlike structures have been found at 3.26 eV but in this case for vibrational states as high as v' = 4. The oscillatory structure is prominent for low rotational states and progressively disappears as j' increases. A detailed analysis, similar to that carried out at 1.97 eV, shows that the origin of these structures could be traced to interferences between well defined classical mechanisms. In addition, at this energy, we do not observe the anomalous positive j'-θ trend found for the v' = 4 manifold at lower collision energies, thus reinforcing our explanation that the anomalous distribution for HD(v' = 4, j') at 1.97 eV only takes place for those states associated with low product recoil energies.

  2. Candida albicans Yeast and Germ Tube Forms Interfere Differently with Human Monocyte Differentiation into Dendritic Cells: a Novel Dimorphism-Dependent Mechanism To Escape the Host's Immune Response

    Science.gov (United States)

    Torosantucci, Antonella; Romagnoli, Giulia; Chiani, Paola; Stringaro, Annarita; Crateri, Pasqualina; Mariotti, Sabrina; Teloni, Raffaela; Arancia, Giuseppe; Cassone, Antonio; Nisini, Roberto

    2004-01-01

    The ability of Candida albicans to convert from the yeast (Y) form to mycelial forms through germ tube (GT) formation is considered a key feature of the transition of the organism from commensalism to virulence. We show here that human monocytes cultured with granulocyte-macrophage colony-stimulating factor and interleukin-4 (IL-4) after phagocytosis of Y forms did not differentiate into dendritic cells (DCs); they retained CD14, did not acquire CD1a, and were unable to express the maturation markers CD83 and CCR7. Moreover, they did not produce IL-12p70 but secreted IL-10. In addition, they spontaneously expressed high levels of tumor necrosis factor alpha (TNF-α), IL-6, and IL-8 mRNA transcripts and were able to induce proliferation of alloreactive memory but not naïve T lymphocytes. Conversely, monocytes that had phagocytosed GT forms differentiated into mature CD83+ and CCR7+ DCs; however, there was no up-regulation of CD40, CD80, and major histocompatibility complex class II, irrespective of lipopolysaccharide (LPS) treatment. In addition, these cells were unable to produce IL-12 even after LPS stimulation, but they were not functionally exhausted, as shown by their capacity to express TNF-α and IL-8 mRNA transcripts. These cells were able to prime naïve T cells but not to induce their functional polarization into effector cells. These data indicate that phagocytosis of Y and GT forms has profound and distinct effects on the differentiation pathway of monocytes. Thus, the differentiation of human monocytes into DCs appears to be tunable and exploitable by C. albicans to elude immune surveillance. PMID:14742527

  3. Differential interference of vitamin D analogs PRI-1906, PRI-2191, and PRI-2205 with the renewal of human colon cancer cells refractory to treatment with 5-fluorouracil.

    Science.gov (United States)

    Kotlarz, Agnieszka; Przybyszewska, Małgorzata; Swoboda, Paweł; Miłoszewska, Joanna; Grygorowicz, Monika Anna; Kutner, Andrzej; Markowicz, Sergiusz

    2016-04-01

    This study was aimed to determine whether hypocalcemic analogs of active forms of vitamins D modulate expression of genes related to stem-like phenotype in colon cancer cell lines HT-29 and HCT-116 undergoing renewal after the treatment with 5-fluorouracil (5-FU). Both lines express vitamin D receptor, but differ in differentiation stage and vitamin D sensitivity. Cells that resisted the 5-FU exposure were treated with synthetic analog of 1,25-dihydroxyvitamin D2 (PRI-1906) and analogs of 1,25-dihydroxyvitamin D3 (PRI-2191 and PRI-2205). Proliferative activity was more profoundly affected by vitamin D analogs in HT-29/5-FU than in HCT-116/5-FU cells. In HT-29/5-FU cells, analogs PRI-1906 and PRI-2191 downregulated the expression of genes related to survival, re-growth, and invasiveness during renewal, while PRI-2205 increased expression of genes related to differentiation only. In HCT-116/5-FU cells, PRI-2191 decreased the expression of stemness- and angiogenesis-related genes, whereas PRI-1906 augmented their expression. The effects in HCT-116/5-FU cells were observed at higher concentrations of the analogs than those used for HT-29/5-FU cells. Out of the series of analogs studied, PRI-2191 might be used to counteract the renewal of both moderately and poorly differentiated cancer cells following conventional treatment.

  4. Modulating motility of intracellular vesicles in cortical neurons with nanomagnetic forces on-chip.

    Science.gov (United States)

    Kunze, Anja; Murray, Coleman Tylor; Godzich, Chanya; Lin, Jonathan; Owsley, Keegan; Tay, Andy; Di Carlo, Dino

    2017-02-28

    Vesicle transport is a major underlying mechanism of cell communication. Inhibiting vesicle transport in brain cells results in blockage of neuronal signals, even in intact neuronal networks. Modulating intracellular vesicle transport can have a huge impact on the development of new neurotherapeutic concepts, but only if we can specifically interfere with intracellular transport patterns. Here, we propose to modulate motion of intracellular lipid vesicles in rat cortical neurons based on exogenously bioconjugated and cell internalized superparamagnetic iron oxide nanoparticles (SPIONs) within microengineered magnetic gradients on-chip. Upon application of 6-126 pN on intracellular vesicles in neuronal cells, we explored how the magnetic force stimulus impacts the motion pattern of vesicles at various intracellular locations without modulating the entire cell morphology. Altering vesicle dynamics was quantified using, mean square displacement, a caging diameter and the total traveled distance. We observed a de-acceleration of intercellular vesicle motility, while applying nanomagnetic forces to cultured neurons with SPIONs, which can be explained by a decrease in motility due to opposing magnetic force direction. Ultimately, using nanomagnetic forces inside neurons may permit us to stop the mis-sorting of intracellular organelles, proteins and cell signals, which have been associated with cellular dysfunction. Furthermore, nanomagnetic force applications will allow us to wirelessly guide axons and dendrites by exogenously using permanent magnetic field gradients.

  5. Development of an RNA interference tool, characterization of its target, and an ecological test of caste differentiation in the eusocial wasp polistes.

    Directory of Open Access Journals (Sweden)

    James H Hunt

    Full Text Available Recent advancements in genomics provide new tools for evolutionary ecological research. The paper wasp genus Polistes is a model for social insect evolution and behavioral ecology. We developed RNA interference (RNAi-mediated gene silencing to explore proposed connections between expression of hexameric storage proteins and worker vs. gyne (potential future foundress castes in naturally-founded colonies of P. metricus. We extended four fragments of putative hexamerin-encoding P. metricus transcripts acquired from a previous study and fully sequenced a gene that encodes Hexamerin 2, one of two proposed hexameric storage proteins of P. metricus. MALDI-TOF/TOF, LC-MSMS, deglycosylation, and detection of phosphorylation assays showed that the two putative hexamerins diverge in peptide sequence and biochemistry. We targeted the hexamerin 2 gene in 5(th (last-instar larvae by feeding RNAi-inducing double-stranded hexamerin 2 RNA directly to larvae in naturally-founded colonies in the field. Larval development and adult traits were not significantly altered in hexamerin 2 knockdowns, but there were suggestive trends toward increased developmental time and less developed ovaries, which are gyne characteristics. By demonstrating how data acquisition from 454/Roche pyrosequencing can be combined with biochemical and proteomics assays and how RNAi can be deployed successfully in field experiments on Polistes, our results pave the way for functional genomic research that can contribute significantly to learning the interactions of environment, development, and the roles they play in paper wasp evolution and behavioral ecology.

  6. On-Chip Reconfigurable Hardware Accelerators for Popcount Computations

    Directory of Open Access Journals (Sweden)

    Valery Sklyarov

    2016-01-01

    Full Text Available Popcount computations are widely used in such areas as combinatorial search, data processing, statistical analysis, and bio- and chemical informatics. In many practical problems the size of initial data is very large and increase in throughput is important. The paper suggests two types of hardware accelerators that are (1 designed in FPGAs and (2 implemented in Zynq-7000 all programmable systems-on-chip with partitioning of algorithms that use popcounts between software of ARM Cortex-A9 processing system and advanced programmable logic. A three-level system architecture that includes a general-purpose computer, the problem-specific ARM, and reconfigurable hardware is then proposed. The results of experiments and comparisons with existing benchmarks demonstrate that although throughput of popcount computations is increased in FPGA-based designs interacting with general-purpose computers, communication overheads (in experiments with PCI express are significant and actual advantages can be gained if not only popcount but also other types of relevant computations are implemented in hardware. The comparison of software/hardware designs for Zynq-7000 all programmable systems-on-chip with pure software implementations in the same Zynq-7000 devices demonstrates increase in performance by a factor ranging from 5 to 19 (taking into account all the involved communication overheads between the programmable logic and the processing systems.

  7. On-chip inductor above dummy metal patterns

    Science.gov (United States)

    Hsu, Heng-Ming; Hsieh, Ming-Ming

    2008-07-01

    This work characterizes the on-chip inductor above dummy metals in CMOS technology. Since the dummy pattern influences the sheet resistance in chemical-mechanical planarization (CMP) process strongly [Schindler G, Steinlesberger G, Engelhardt M, Steinhögl W. Electrical characterization of copper interconnects with end-of-roadmap feature sizes. Solid-State Electron 2003;47:1233-36; Smith S, Walton AJ, Ross AWS, Bodammer GKH, Stevenson JTM. Evaluation of sheet resistance and electrical line width measurement techniques for copper damascene interconnect. IEEE Trans Semicond Manuf 2002;15:214-22.], three test structures are fabricated to compare the inductor performances in this paper. The measurements show that the Q value degrades 15.3% and self-resonance frequency decreases 9.5% in device with dummy metal pattern. Accordingly, an equivalent circuit is proposed to analyze this behavior, the results show that the insulator capacitor plays a key role in performance degradation. Result of this study quantifies the effect of on-chip inductor above dummy pattern.

  8. On-Chip Correlator for Passive Wireless SAW Multisensor Systems

    Directory of Open Access Journals (Sweden)

    Liqiang Xie

    2016-01-01

    Full Text Available For decoding the asynchronous superposition of response signals from different sensors, it is a challenge to achieve correlation in a code division multiplexing (CDM based passive wireless surface acoustic wave (SAW multisensor system. Therefore, an on-chip correlator scheme is developed in this paper. In contrast to conventional CDM-based systems, this novel scheme enables the correlations to be operated at the SAW sensors, instead of the reader. Thus, the response signals arriving at the reader are the result of cross-correlation on the chips. It is then easy for the reader to distinguish the sensor that is matched with the interrogating signal. The operation principle, signal analysis, and simulation of the novel scheme are described in the paper. The simulation results show the response signals from the correlations of the sensors. A clear spike pulse is presented in the response signals, when a sensor code is matched with the interrogating code. Simulations verify the feasibility of the on-chip correlator concept.

  9. Lab-on-chip systems for integrated bioanalyses.

    Science.gov (United States)

    Conde, João Pedro; Madaboosi, Narayanan; Soares, Ruben R G; Fernandes, João Tiago S; Novo, Pedro; Moulas, Geraud; Chu, Virginia

    2016-06-30

    Biomolecular detection systems based on microfluidics are often called lab-on-chip systems. To fully benefit from the miniaturization resulting from microfluidics, one aims to develop 'from sample-to-answer' analytical systems, in which the input is a raw or minimally processed biological, food/feed or environmental sample and the output is a quantitative or qualitative assessment of one or more analytes of interest. In general, such systems will require the integration of several steps or operations to perform their function. This review will discuss these stages of operation, including fluidic handling, which assures that the desired fluid arrives at a specific location at the right time and under the appropriate flow conditions; molecular recognition, which allows the capture of specific analytes at precise locations on the chip; transduction of the molecular recognition event into a measurable signal; sample preparation upstream from analyte capture; and signal amplification procedures to increase sensitivity. Seamless integration of the different stages is required to achieve a point-of-care/point-of-use lab-on-chip device that allows analyte detection at the relevant sensitivity ranges, with a competitive analysis time and cost.

  10. A Survey of Network-On-Chip Tools

    Directory of Open Access Journals (Sweden)

    Ahmed Ben Achballah

    2013-10-01

    Full Text Available Nowadays System-On-Chips (SoCs have evolved considerably in term of performances, reliability and integration capacity. The last advantage has induced the growth of the number of cores or Intellectual Properties (IPs in a same chip. Unfortunately, this important number of IPs has caused a new issue which is the intra-communication between the elements of a same chip. To resolve this problem, a new paradigm has been introduced which is the Network-On-Chip (NoC. Since the introduction of the NoC paradigm in the last decade, new methodologies and approaches have been presented by research community and many of them have been adopted by industrials. The literature contains many relevant studies and surveys discussing NoC proposals and contributions. However, few of them have discussed or proposed a comparative study of NoC tools. The objective of this work is to establish a reliable survey about available design, simulation or implementation NoC tools. We collected an important amount of information and characteristics about NoC dedicated tools that we will present throughout this survey. This study is built around a respectable amount of references and we hope it will help scientists.

  11. A Miniaturized On-Chip Colorimeter for Detecting NPK Elements

    Science.gov (United States)

    Liu, Rui-Tao; Tao, Lu-Qi; Liu, Bo; Tian, Xiang-Guang; Mohammad, Mohammad Ali; Yang, Yi; Ren, Tian-Ling

    2016-01-01

    Recently, precision agriculture has become a globally attractive topic. As one of the most important factors, the soil nutrients play an important role in estimating the development of precision agriculture. Detecting the content of nitrogen, phosphorus and potassium (NPK) elements more efficiently is one of the key issues. In this paper, a novel chip-level colorimeter was fabricated to detect the NPK elements for the first time. A light source–microchannel photodetector in a sandwich structure was designed to realize on-chip detection. Compared with a commercial colorimeter, all key parts are based on MEMS (Micro-Electro-Mechanical System) technology so that the volume of this on-chip colorimeter can be minimized. Besides, less error and high precision are achieved. The cost of this colorimeter is two orders of magnitude less than that of a commercial one. All these advantages enable a low-cost and high-precision sensing operation in a monitoring network. The colorimeter developed herein has bright prospects for environmental and biological applications. PMID:27527177

  12. Lab-on-chip systems for integrated bioanalyses

    Science.gov (United States)

    Madaboosi, Narayanan; Soares, Ruben R.G.; Fernandes, João Tiago S.; Novo, Pedro; Moulas, Geraud; Chu, Virginia

    2016-01-01

    Biomolecular detection systems based on microfluidics are often called lab-on-chip systems. To fully benefit from the miniaturization resulting from microfluidics, one aims to develop ‘from sample-to-answer’ analytical systems, in which the input is a raw or minimally processed biological, food/feed or environmental sample and the output is a quantitative or qualitative assessment of one or more analytes of interest. In general, such systems will require the integration of several steps or operations to perform their function. This review will discuss these stages of operation, including fluidic handling, which assures that the desired fluid arrives at a specific location at the right time and under the appropriate flow conditions; molecular recognition, which allows the capture of specific analytes at precise locations on the chip; transduction of the molecular recognition event into a measurable signal; sample preparation upstream from analyte capture; and signal amplification procedures to increase sensitivity. Seamless integration of the different stages is required to achieve a point-of-care/point-of-use lab-on-chip device that allows analyte detection at the relevant sensitivity ranges, with a competitive analysis time and cost. PMID:27365042

  13. Self-powered integrated systems-on-chip (energy chip)

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-04-23

    In today\\'s world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  14. On-chip magnetic cooling of a nanoelectronic device

    Science.gov (United States)

    Bradley, D. I.; Guénault, A. M.; Gunnarsson, D.; Haley, R. P.; Holt, S.; Jones, A. T.; Pashkin, Yu. A.; Penttilä, J.; Prance, J. R.; Prunnila, M.; Roschier, L.

    2017-04-01

    We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.

  15. Graphene quantum interference photodetector.

    Science.gov (United States)

    Alam, Mahbub; Voss, Paul L

    2015-01-01

    In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach-Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.

  16. Graphene quantum interference photodetector

    Directory of Open Access Journals (Sweden)

    Mahbub Alam

    2015-03-01

    Full Text Available In this work, a graphene quantum interference (QI photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI, which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector, low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.

  17. Trans-10,cis-12 conjugated linoleic acid (CLA) interferes with lipid droplet accumulation during 3T3-L1 preadipocyte differentiation.

    Science.gov (United States)

    Yeganeh, Azadeh; Taylor, Carla G; Tworek, Leslee; Poole, Jenna; Zahradka, Peter

    2016-07-01

    In this study, we hypothesize that the biologically active isomers of conjugated linoleic acid (CLA), cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) CLA, have different effects on early and late stages 3T3-L1 preadipocyte differentiation. Both c9-t11 and t10-c12CLA stimulated early stage pre-adipocyte differentiation (day 2), while t10-c12CLA inhibited late differentiation (day 8) as determined by lipid droplet numbers and both perilipin-1 levels and phosphorylation state. At day 8, the adipokines adiponectin, chemerin and adipsin were all reduced in t10-c12CLA treated cells versus control cells. Immunofluorescence microscopy showed perilipin-1 was present solely on lipid droplets on day 8 in t10-c12 treated 3T3-L1 cells, whereas preilipin-1 was also located in the perinuclear region in control and c9-t11 treated cells. The t10-c12CLA isomer also decreased levels of hormone-sensitive lipase and inhibited lipolysis. These findings indicate that the decrease in lipid droplets caused by t10-c12CLA is the result of an inhibition of lipid droplet production during adipogenesis rather than a stimulation of lipolysis. Additionally, treatment with Gö6976 blocked the effect of t10-c12CLA on perilipin-1 phosphorylation, implicating PKCα in perilipin-1 phosphorylation, and thus a regulator of triglyceride catabolism. These data are supported by evidence that t10-c12CLA activated PKCα. These are the first data to show that CLA isomers can affect lipid droplet dynamics in adipocytes through PKCα.

  18. IETS and quantum interference

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro

    2014-01-01

    Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low...... suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference....

  19. The effect of Smad6 RNA interference on BMP-2 induced osteogenic differentiation of mesenchymal stem cells%Smad6信号干扰对MSCs骨向分化的影响

    Institute of Scientific and Technical Information of China (English)

    刘猛; 董伟; 冯晓洁; 邓久鹏; 戚孟春; 李金源

    2011-01-01

    Objective To investigate the effect of Smad6 mRNA interference on bone morphogenetic protein 2 (BMP-2) induced osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs). Methods The bone marrow MSCs of mice were cultured and underwent BMP-2 induced osteogenic differentiation. The cells were divided into 3 groups: the cells in group A were transfected with recombinant Smad6 RNA interference vector,which was labeled with green fluorescent protein (GFP) , and the cells in group B were transfected with control vector,and the cells in group C served as controls. The activity of alkaline phosphonate (ALP) and levels of osteocalcin were detected at five days after transfection by ALP staining and radioimmunoassay, respectively. The formation of mineralization nodus was also examined by alizarin red staining. Results The GFP was obviously expressed in MSCs after viral transfection, and viral transfection efficiency reached 98. 5%. As compared with group B,Smad6 RNA interference increased significantly ALP activity and osteocalcin levels in group A ( P < 0.01) .however,both ALP activity and osteocalcin levels in group C were significantly lower than those in the other two groups( P <0.01). The results of alizarin red staining showed that the counts of mineralization nodus in group A were significantly more than those in group B ( P <0.05) ,but no mineralization nodus was found in group C. Conclusion Smad6 mRNA interference. Can promote effectively BMP-2 induced osteogenic differentiation of MSCs,which may be a valuable method for bone regeneration for bone defect in bone tissue engineering.%目的 研究Smad6信号干扰对骨形态发生蛋白2(BMP-2)诱导的骨髓间充质干细胞(MSCs)骨向分化的促进效应.方法 培养小鼠MSCs,用BMP-2诱导骨向分化.细胞分为3组:A组细胞用携带绿色荧光蛋白(GFP)的Smad6重组RNA干扰载体转染;B组细胞用空白载体转染;C组细胞作为对照.结果 病毒转染后GFP在MSCs中有

  20. Synthesis of on-chip control circuits for mVLSI biochips

    DEFF Research Database (Denmark)

    Potluri, Seetal; Schneider, Alexander Rüdiger; Hørslev-Petersen, Martin

    2017-01-01

    them to laboratory environments. To address this issue, researchers have proposed methods to reduce the number of offchip pressure sources, through integration of on-chip pneumatic control logic circuits fabricated using three-layer monolithic membrane valve technology. Traditionally, mVLSI biochip...... applied to generate biochip layouts with integrated on-chip pneumatic control....

  1. Avoiding Message-Dependent Deadlock in Network-Based Systems on Chip

    NARCIS (Netherlands)

    Hansson, A.; Goossens, K.; Rãdulescu, A.

    2007-01-01

    Networks on chip (NoCs) are an essential component of systems on chip (SoCs) and much research is devoted to deadlock avoidance in NoCs. Prior work focuses on the router network while protocol interactions between NoC and intellectual property (IP) modules are not considered. These interactions intr

  2. A run-time reconfigurable Network-on-Chip for streaming DSP applications

    NARCIS (Netherlands)

    Kavaldjiev, N.K.; Kavaldjiev, Nikolay Krasimirov

    2007-01-01

    With the advance of semiconductor technology, global on-chip wiring is becoming a limiting factor for the overall performance of large System-on-Chip (SoC) designs. In this thesis we propose a global communication architecture that avoids this limitation by structuring and shortening of the global

  3. On-Chip Hydrodynamic Chromatography Separation and Detection of Nanoparticles and Biomolecules

    NARCIS (Netherlands)

    Blom, M.T.; Chmela, Emil; Oosterbroek, R.E.; Tijssen, Robert; van den Berg, Albert

    2003-01-01

    For the first time, on-chip planar hydrodynamic chromatography is combined with UV absorption detection. This technique is suitable for size characterization of synthetic polymers, biopolymers, and particles. Possible advantages of an on-chip hydrodynamic chromatography system over conventional

  4. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rizzi, Giovanni, E-mail: giori@nanotech.dtu.dk; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F., E-mail: mikkel.hansen@nanotech.dtu.dk

    2015-04-15

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP. - Highlights: • We apply magnetoresistive sensors to study solid-surface hybridization kinetics of DNA. • We measure DNA melting profiles for perfectly matching DNA duplexes and for a single base mismatch. • We present a procedure to correct for temperature dependencies of the sensor output. • We reliably extract melting temperatures for the DNA hybrids. • We demonstrate direct measurement of differential binding signal for two probes on a single sensor.

  5. Frequency domain processing of on-chip biphoton frequency comb

    CERN Document Server

    Jaramillo-Villegas, Jose A; Odele, Ogaga D; Leaird, Daniel E; Ou, Zhe-Yu; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Quantum information processing (QIP) promises to improve the security of our communications as well as to solve some algorithms with exponential complexity in polynomial time. Biphotons have been demonstrated as one of the most promising platforms for real implementations of QIP systems. In particular, time-bin entangled photons have been used for implementations of quantum gates which require highly stable interferometers. On the other hand, frequency-bin entanglement has been proposed to avoid the use of interferometers and the complexity of their stabilization, which potentially makes the implementation of quantum gates highly scalable. Through Fourier transform pulse shaping and electro-optic modulation, there has been a wide range of experiments that show control of entangled photons in the frequency domain. In addition, biphoton frequency combs (BFC) have also been generated using bulk optics and frequency filtering of broadband continuous biphoton spectra. However, on-chip entangled photon pair generat...

  6. Various On-Chip Sensors with Microfluidics for Biological Applications

    Directory of Open Access Journals (Sweden)

    Hun Lee

    2014-09-01

    Full Text Available In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR and surface-enhanced Raman scattering (SERS to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV and greater depth of field (DOF. As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  7. On-chip data exchange for mode division multiplexed signals.

    Science.gov (United States)

    Ye, Mengyuan; Yu, Yu; Sun, Chunlei; Zhang, Xinliang

    2016-01-11

    Data exchange is an important function for flexible optical network, and it has been extensively investigated for the time and wavelength domains. The mode division multiplexing (MDM) has been proposed to further increase the transmission capacity by carrying information on different modes with only single wavelength carrier. We propose and experimentally demonstrate a novel on-chip data exchange circuit for the MDM signals by utilizing two micro-ring resonator (MRR) based mode converters. For demonstration, single and four wavelengths non-return-to-zero on-off-keying (NRZ-OOK) signals at 10 Gb/s carried on different modes are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show reasonable power penalties. The proposed circuit can be potentially used in advanced and flexible MDM optical networks.

  8. On-chip generation of heralded photon-number states

    Science.gov (United States)

    Vergyris, Panagiotis; Meany, Thomas; Lunghi, Tommaso; Sauder, Gregory; Downes, James; Steel, M. J.; Withford, Michael J.; Alibart, Olivier; Tanzilli, Sébastien

    2016-01-01

    Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, i.e., non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits. PMID:27775062

  9. On-chip Inter-modal Brillouin Scattering

    CERN Document Server

    Kittlaus, Eric A; Rakich, Peter T

    2016-01-01

    Stimulated Brillouin interactions mediate nonlinear coupling between photons and acoustic phonons through an optomechanical three-wave interaction. Though these nonlinearities were previously very weak in silicon photonic systems, the recent emergence of new optomechanical waveguide structures have transformed Brillouin processes into one of the strongest and most tailorable on-chip nonlinear interactions. New technologies based on Brillouin couplings have formed a basis for amplification, filtering, and nonreciprocal signal processing techniques. In this paper, we demonstrate strong guided-wave Brillouin scattering between light fields guided in distinct spatial modes of a silicon waveguide for the first time. This inter-modal coupling creates dispersive symmetry breaking between Stokes and anti-Stokes processes, permitting single-sideband amplification and wave dynamics that permit near-unity power conversion. Combining these physics with integrated mode-multiplexers enables novel device topologies and elim...

  10. An on-chip colloidal magneto-optical grating

    Science.gov (United States)

    Prikockis, M.; Wijesinghe, H.; Chen, A.; VanCourt, J.; Roderick, D.; Sooryakumar, R.

    2016-04-01

    Interacting nano- and micro-particles provide opportunities to create a wide range of useful colloidal and soft matter constructs. In this letter, we examine interacting superparamagnetic polymeric particles residing on designed permalloy (Ni0.8 Fe0.2) shapes that are subject to weak time-orbiting magnetic fields. The precessing field and magnetic barriers that ensue along the outer perimeter of the shapes allow for containment concurrent with independent field-tunable ordering of the dipole-coupled particles. These remotely activated arrays with inter-particle spacing comparable to the wavelength of light yield microscopic on-chip surface gratings for beam steering and magnetically regulated light diffraction applications.

  11. Photonic crystal biosensors towards on-chip integration.

    Science.gov (United States)

    Threm, Daniela; Nazirizadeh, Yousef; Gerken, Martina

    2012-08-01

    Photonic crystal technology has attracted large interest in the last years. The possibility to generate highly sensitive sensor elements with photonic crystal structures is very promising for medical or environmental applications. The low-cost fabrication on the mass scale is as advantageous as the compactness and reliability of photonic crystal biosensors. The possibility to integrate microfluidic channels together with photonic crystal structures allows for highly compact devices. This article reviews different types of photonic crystal sensors including 1D photonic crystal biosensors, biosensors with photonic crystal slabs, photonic crystal waveguide biosensors and biosensors with photonic crystal microcavities. Their applications in biomolecular and pathogen detection are highlighted. The sensitivities and the detection limits of the different biosensors are compared. The focus is on the possibilities to integrate photonic crystal biosensors on-chip.

  12. Spin Seebeck devices using local on-chip heating

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M., E-mail: swu@anl.gov; Fradin, Frank Y.; Hoffman, Jason; Hoffmann, Axel; Bhattacharya, Anand [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-05-07

    A micro-patterned spin Seebeck device is fabricated using an on-chip heater. Current is driven through a Au heater layer electrically isolated from a bilayer consisting of Fe{sub 3}O{sub 4} (insulating ferrimagnet) and a spin detector layer. It is shown that through this method it is possible to measure the longitudinal spin Seebeck effect (SSE) for small area magnetic devices, equivalent to traditional macroscopic SSE experiments. Using a lock-in detection technique, it is possible to more sensitively characterize both the SSE and the anomalous Nernst effect (ANE), as well as the inverse spin Hall effect in various spin detector materials. By using the spin detector layer as a thermometer, we can obtain a value for the temperature gradient across the device. These results are well matched to values obtained through electromagnetic/thermal modeling of the device structure and with large area spin Seebeck measurements.

  13. On-chip magnetometer for characterization of superparamagnetic nanoparticles.

    Science.gov (United States)

    Kim, Kun Woo; Reddy, Venu; Torati, Sri Ramulu; Hu, Xing Hao; Sandhu, Adarsh; Kim, Cheol Gi

    2015-02-07

    An on-chip magnetometer was fabricated by integrating a planar Hall magnetoresistive (PHR) sensor with microfluidic channels. The measured in-plane field sensitivities of an integrated PHR sensor with NiFe/Cu/IrMn trilayer structure were extremely high at 8.5 μV Oe(-1). The PHR signals were monitored during the oscillation of 35 pL droplets of magnetic nanoparticles, and reversed profiles for the positive and negative z-fields were measured, where magnitudes increased with the applied z-field strength. The measured PHR signals for 35 pL droplets of magnetic nanoparticles versus applied z-fields showed excellent agreement with magnetization curves measured by a vibrating sample magnetometer (VSM) of 3 μL volume, where a PHR voltage of 1 μV change is equivalent to 0.309 emu cc(-1) of the volume magnetization with a magnetic moment resolution of ~10(-10) emu.

  14. On-chip photonic Fourier transform with surface plasmon polaritons

    Institute of Scientific and Technical Information of China (English)

    Shan Shan Kou; Guanghui Yuan; Qian wang; Luping Du; Eugeniu Balaur; Daohua Zhang; Dingyuan Tang

    2016-01-01

    The Fourier transform (FT),a cornerstone of optical processing,enables rapid evaluation of fundamental mathematical operations,such as derivatives and integrals.Conventionally,a converging lens performs an optical FT in free space when light passes through it.The speed of the transformation is limited by the thickness and the focal length of the lens.By usingthe wave nature of surface plasmon polaritons (SPPs),here we demonstrate that the FT can be implemented in a planar configuration with a minimal propagation distance of around 10 μm,resulting in an increase of speed by four to five orders of magnitude.The photonic FT was tested by synthesizing intricate SPP waves with their Fourier components.The reduced dimensionality in the minuscule device allows the future development of an ultrafast on-chip photonic information processing platform for large-scale optical computing.

  15. Magnetic Tunnel Junction as an On-Chip Temperature Sensor.

    Science.gov (United States)

    Sengupta, Abhronil; Liyanagedera, Chamika Mihiranga; Jung, Byunghoo; Roy, Kaushik

    2017-09-18

    Temperature sensors are becoming an increasingly important component in System-on-Chip (SoC) designs with increasing transistor scaling, power density and associated heating effects. This work explores a compact nanoelectronic temperature sensor based on a Magnetic Tunnel Junction (MTJ) structure. The MTJ switches probabilistically depending on the operating temperature in the presence of thermal noise. Performance evaluation of the proposed MTJ temperature sensor, based on experimentally measured device parameters, reveals that the sensor is able to achieve a conversion rate of 2.5K samples/s with energy consumption of 8.8 nJ per conversion (1-2 orders of magnitude lower than state-of-the-art CMOS sensors) for a linear sensing regime of 200-400 K.

  16. Near-Field, On-Chip Optical Brownian Ratchets.

    Science.gov (United States)

    Wu, Shao-Hua; Huang, Ningfeng; Jaquay, Eric; Povinelli, Michelle L

    2016-08-10

    Nanoparticles in aqueous solution are subject to collisions with solvent molecules, resulting in random, Brownian motion. By breaking the spatiotemporal symmetry of the system, the motion can be rectified. In nature, Brownian ratchets leverage thermal fluctuations to provide directional motion of proteins and enzymes. In man-made systems, Brownian ratchets have been used for nanoparticle sorting and manipulation. Implementations based on optical traps provide a high degree of tunability along with precise spatiotemporal control. Here, we demonstrate an optical Brownian ratchet based on the near-field traps of an asymmetrically patterned photonic crystal. The system yields over 25 times greater trap stiffness than conventional optical tweezers. Our technique opens up new possibilities for particle manipulation in a microfluidic, lab-on-chip environment.

  17. Endocrine system on chip for a diabetes treatment model.

    Science.gov (United States)

    Nguyen, Dao Thi Thuy; van Noort, Danny; Jeong, In-Kyung; Park, Sungsu

    2017-02-21

    The endocrine system is a collection of glands producing hormones which, among others, regulates metabolism, growth and development. One important group of endocrine diseases is diabetes, which is caused by a deficiency or diminished effectiveness of endogenous insulin. By using a microfluidic perfused 3D cell-culture chip, we developed an 'endocrine system on chip' to potentially be able to screen drugs for the treatment of diabetes by measuring insulin release over time. Insulin-secreting β-cells are located in the pancreas, while L-cells, located in the small intestines, stimulate insulin secretion. Thus, we constructed a co-culture of intestinal-pancreatic cells to measure the effect of glucose on the production of glucagon-like peptide-1 (GLP-1) from the L-cell line (GLUTag) and insulin from the pancreatic β-cell line (INS-1). After three days of culture, both cell lines formed aggregates, exhibited 3D cell morphology, and showed good viability (>95%). We separately measured the dynamic profile of GLP-1 and insulin release at glucose concentrations of 0.5 and 20 mM, as well as the combined effect of GLP-1 on insulin production at these glucose concentrations. In response to glucose stimuli, GLUTag and INS-1 cells produced higher amounts of GLP-1 and insulin, respectively, compared to a static 2D cell culture. INS-1 combined with GLUTag cells exhibited an even higher insulin production in response to glucose stimulation. At higher glucose concentrations, the diabetes model on chip showed faster saturation of the insulin level. Our results suggest that the endocrine system developed in this study is a useful tool for observing dynamical changes in endocrine hormones (GLP-1 and insulin) in a glucose-dependent environment. Moreover, it can potentially be used to screen GLP-1 analogues and natural insulin and GLP-1 stimulants for diabetes treatment.

  18. Silicon Nanophotonics for Many-Core On-Chip Networks

    Science.gov (United States)

    Mohamed, Moustafa

    Number of cores in many-core architectures are scaling to unprecedented levels requiring ever increasing communication capacity. Traditionally, architects follow the path of higher throughput at the expense of latency. This trend has evolved into being problematic for performance in many-core architectures. Moreover, the trends of power consumption is increasing with system scaling mandating nontraditional solutions. Nanophotonics can address these problems, offering benefits in the three frontiers of many-core processor design: Latency, bandwidth, and power. Nanophotonics leverage circuit-switching flow control allowing low latency; in addition, the power consumption of optical links is significantly lower compared to their electrical counterparts at intermediate and long links. Finally, through wave division multiplexing, we can keep the high bandwidth trends without sacrificing the throughput. This thesis focuses on realizing nanophotonics for communication in many-core architectures at different design levels considering reliability challenges that our fabrication and measurements reveal. First, we study how to design on-chip networks for low latency, low power, and high bandwidth by exploiting the full potential of nanophotonics. The design process considers device level limitations and capabilities on one hand, and system level demands in terms of power and performance on the other hand. The design involves the choice of devices, designing the optical link, the topology, the arbitration technique, and the routing mechanism. Next, we address the problem of reliability in on-chip networks. Reliability not only degrades performance but can block communication. Hence, we propose a reliability-aware design flow and present a reliability management technique based on this flow to address reliability in the system. In the proposed flow reliability is modeled and analyzed for at the device, architecture, and system level. Our reliability management technique is

  19. Opportunistic Interference Alignment in MIMO Interference Channels

    CERN Document Server

    Perlaza, Samir Medina; Lasaulce, Samson; Chaufray, Jean Marie

    2008-01-01

    We present two interference alignment techniques such that an opportunistic point-to-point multiple input multiple output (MIMO) link can reuse, without generating any additional interference, the same frequency band of a similar pre-existing primary link. In this scenario, we exploit the fact that under power constraints, although each radio maximizes independently its rate by water-filling on their channel transfer matrix singular values, frequently, not all of them are used. Therefore, by aligning the interference of the opportunistic radio it is possible to transmit at a significant rate while insuring zero-interference on the pre-existing link. We propose a linear pre-coder for a perfect interference alignment and a power allocation scheme which maximizes the individual data rate of the secondary link. Our numerical results show that significant data rates are achieved even for a reduced number of antennas.

  20. Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev.

    Science.gov (United States)

    Yenjerla, Mythili; Lopus, Manu; Wilson, Leslie

    2010-01-01

    Microtubules are major constituents of the cytoskeleton which display dynamic properties. They exhibit dynamic instability which is defined as the stochastic switching between growing and shortening at microtubule ends. Dynamic instability plays an important role in diverse cellular functions including cell migration and mitosis. Many successful antimitotic drugs and microtubule-associated proteins (MAPs) are known to modulate microtubule dynamics, and it is important to analyze the in vitro dynamic instability of microtubules to study the mechanism of action of microtubule-targeted therapeutics and MAPs. In this chapter, we describe a method to analyze the in vitro dynamic instability of microtubules at steady state using video-enhanced differential contrast (VE-DIC) microscopy in detail. In this method, microtubules are assembled to steady state at 30 degrees C with MAP-free tubulin in a slide chamber in the presence of GTP, using sea urchin axonemes as nucleating seeds. Images of microtubules are enhanced and recorded in real time by a video camera and an image processor connected to a DIC microscope which is maintained at 30 degrees C. We use two software programs to track and analyze the growing and shortening of plus or minus ends of microtubules in the real-time images recorded using VE-DIC. In this chapter, we describe the instructions to use the tracking software Real Time Measurement II (RTM II) program. The instructions to use the analysis software Microtubule Life History Analysis Procedures (MT-LHAP) in Igor Pro software have been described in detail in an appendix (Oroudjev, 2010) following this chapter.

  1. Scattering detection using a photonic-microfluidic integrated device with on-chip collection capabilities.

    Science.gov (United States)

    Watts, Benjamin R; Zhang, Zhiyi; Xu, Chang Qing; Cao, Xudong; Lin, Min

    2014-02-01

    SU-8-based photonic-microfluidic integrated devices with on-chip beam shaping and collection capabilities were demonstrated in a scattering detection and counting application. Through the proper deployment of the tailored beam geometries via the on-chip excitation optics, excellent CV values were measured for 1, 2, and 5 μm blank beads, 16.4, 11.0, and 12.5%, respectively, coupled with a simple free-space optical detection scheme. The performance of these devices was found dependent on the combination of on-chip, lens-shaped beam geometry and bead size. While very low CVs were obtained when the combination was ideal, a nonideal combination could still result in acceptable CVs for flow cytometry; the reliability was confirmed via devices being able to resolve separate populations of 2.0 and 5.0 μm beads from their mixture with low CV values of 15.9 and 18.5%, respectively. On-chip collection using integrated on-chip optical waveguides was shown to be very reliable in comparison with a free-space collection scheme, yielding a coincident rate of 94.2%. A CV as low as 19.2% was obtained from the on-chip excitation and collection of 5 μm beads when the on-chip lens-shaped beam had a 6.0-μm beam waist.

  2. On-Chip Multi-Giga Bit Cycle-to-Cycle Jitter Measurement Circuit

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jingkai; Chung Len Lee; TIAN Chao; YU Fei

    2007-01-01

    This paper presents an on-chip measurement circuit to measure multi-giga bit cycle-to-cycle jitter based on the vernier occillator (VO), which is inherited from the famous vernier delay line. The calibration method is also given. The circuit adopts a differential digital controlled delay element, which makes the circuit flexible in adjusting the measurement resolution, and a highly sensitive phase capturer, which makes the circuit able to measure jitters in pico-second range. The parallel structure makes it possible to measure consecutive cycle-to-cycle jitters. The performance of the circuit was verified via simulation with SMIC 0.18 urn process. During simulation under the clock with the period of 750 ps, the error between the measured RMS jitter and the theoretical RMS jitter was just 2.79 ps. Monte Carlo analysis was also conducted. With more advanced technology, the circuit can work better. This new structure can be implemented in chips as a built-in self-test IP core for testing jitter of PLL or other clocks.

  3. On-chip WDM mode-division multiplexing interconnection with optional demodulation function.

    Science.gov (United States)

    Ye, Mengyuan; Yu, Yu; Chen, Guanyu; Luo, Yuchan; Zhang, Xinliang

    2015-12-14

    We propose and fabricate a wavelength-division-multiplexing (WDM) compatible and multi-functional mode-division-multiplexing (MDM) integrated circuit, which can perform the mode conversion and multiplexing for the incoming multipath WDM signals, avoiding the wavelength conflict. An phase-to-intensity demodulation function can be optionally applied within the circuit while performing the mode multiplexing. For demonstration, 4 × 10 Gb/s non-return-to-zero differential phase shift keying (NRZ-DPSK) signals are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show less than 1 dB receive sensitivity variation for three modes and four wavelengths with demodulation. In the case without demodulation, the average power penalties at 4 wavelengths are -1.5, -3 and -3.5 dB for TE₀-TE₀, TE₀-TE₁ and TE₀-TE₂ mode conversions, respectively. The proposed flexible scheme can be used at the interface of long-haul and on-chip communication systems.

  4. On-chip dual comb source for spectroscopy

    CERN Document Server

    Dutt, Avik; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L; Lipson, Michal

    2016-01-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high-quality-factor microcavities has hindered the development of an on-chip dual comb source. Here, we report the first simultaneous generation of two microresonator combs on the same chip from a single laser. The combs span a broad bandwidth of 51 THz around a wavelength of 1.56 $\\mu$m. We demonstrate low-noise operation of both frequency combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow ($<$ 10 kHz) microwave beatnotes. We further use one mode-locked comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave os...

  5. Multimedia Terminal System-on-Chip Design and Simulation

    Directory of Open Access Journals (Sweden)

    Barbieri Ivano

    2005-01-01

    Full Text Available This paper proposes a design approach based on integrated architectural and system-on-chip (SoC simulations. The main idea is to have an efficient framework for the design and the evaluation of multimedia terminals, allowing a fast system simulation with a definable degree of accuracy. The design approach includes the simulation of very long instruction word (VLIW digital signal processors (DSPs, the utilization of a device multiplexing the media streams, and the emulation of the real-time media acquisition. This methodology allows the evaluation of both the multimedia algorithm implementations and the hardware platform, giving feedback on the complete SoC including the interaction between modules and conflicts in accessing either the bus or shared resources. An instruction set architecture (ISA simulator and an SoC simulation environment compose the integrated framework. In order to validate this approach, the evaluation of an audio-video multiprocessor terminal is presented, and the complete simulation test results are reported.

  6. Micromechanical Characterization of Polysilicon Films through On-Chip Tests

    Directory of Open Access Journals (Sweden)

    Ramin Mirzazadeh

    2016-07-01

    Full Text Available When the dimensions of polycrystalline structures become comparable to the average grain size, some reliability issues can be reported for the moving parts of inertial microelectromechanical systems (MEMS. Not only the overall behavior of the device turns out to be affected by a large scattering, but also the sensitivity to imperfections gets enhanced. In this work, through on-chip tests, we experimentally investigate the behavior of thin polysilicon samples using standard electrostatic actuation/sensing. The discrepancy between the target and actual responses of each sample has then been exploited to identify: (i the overall stiffness of the film and, according to standard continuum elasticity, a morphology-based value of its Young’s modulus; (ii the relevant over-etch induced by the fabrication process. To properly account for the aforementioned stochastic features at the micro-scale, the identification procedure has been based on particle filtering. A simple analytical reduced-order model of the moving structure has been also developed to account for the nonlinearities in the electrical field, up to pull-in. Results are reported for a set of ten film samples of constant slenderness, and the effects of different actuation mechanisms on the identified micromechanical features are thoroughly discussed.

  7. Pipelined multiprocessor system-on-chip for multimedia

    CERN Document Server

    Javaid, Haris

    2014-01-01

    This book describes analytical models and estimation methods to enhance performance estimation of pipelined multiprocessor systems-on-chip (MPSoCs).  A framework is introduced for both design-time and run-time optimizations. For design space exploration, several algorithms are presented to minimize the area footprint of a pipelined MPSoC under a latency or a throughput constraint.  A novel adaptive pipelined MPSoC architecture is described, where idle processors are transitioned into low-power states at run-time to reduce energy consumption. Multi-mode pipelined MPSoCs are introduced, where multiple pipelined MPSoCs optimized separately are merged into a single pipelined MPSoC, enabling further reduction of the area footprint by sharing the processors and communication buffers. Readers will benefit from the authors’ combined use of analytical models, estimation methods and exploration algorithms and will be enabled to explore billions of design points in a few minutes.   ·         Describes the ...

  8. Workshop meeting report Organs-on-Chips: human disease models.

    Science.gov (United States)

    van de Stolpe, Anja; den Toonder, Jaap

    2013-09-21

    The concept of "Organs-on-Chips" has recently evolved and has been described as 3D (mini-) organs or tissues consisting of multiple and different cell types interacting with each other under closely controlled conditions, grown in a microfluidic chip, and mimicking the complex structures and cellular interactions in and between different cell types and organs in vivo, enabling the real time monitoring of cellular processes. In combination with the emerging iPSC (induced pluripotent stem cell) field this development offers unprecedented opportunities to develop human in vitro models for healthy and diseased organ tissues, enabling the investigation of fundamental mechanisms in disease development, drug toxicity screening, drug target discovery and drug development, and the replacement of animal testing. Capturing the genetic background of the iPSC donor in the organ or disease model carries the promise to move towards "in vitro clinical trials", reducing costs for drug development and furthering the concept of personalized medicine and companion diagnostics. During the Lorentz workshop (Leiden, September 2012) an international multidisciplinary group of experts discussed the current state of the art, available and emerging technologies, applications and how to proceed in the field. Organ-on-a-chip platform technologies are expected to revolutionize cell biology in general and drug development in particular.

  9. Micromechanical Characterization of Polysilicon Films through On-Chip Tests.

    Science.gov (United States)

    Mirzazadeh, Ramin; Eftekhar Azam, Saeed; Mariani, Stefano

    2016-07-28

    When the dimensions of polycrystalline structures become comparable to the average grain size, some reliability issues can be reported for the moving parts of inertial microelectromechanical systems (MEMS). Not only the overall behavior of the device turns out to be affected by a large scattering, but also the sensitivity to imperfections gets enhanced. In this work, through on-chip tests, we experimentally investigate the behavior of thin polysilicon samples using standard electrostatic actuation/sensing. The discrepancy between the target and actual responses of each sample has then been exploited to identify: (i) the overall stiffness of the film and, according to standard continuum elasticity, a morphology-based value of its Young's modulus; (ii) the relevant over-etch induced by the fabrication process. To properly account for the aforementioned stochastic features at the micro-scale, the identification procedure has been based on particle filtering. A simple analytical reduced-order model of the moving structure has been also developed to account for the nonlinearities in the electrical field, up to pull-in. Results are reported for a set of ten film samples of constant slenderness, and the effects of different actuation mechanisms on the identified micromechanical features are thoroughly discussed.

  10. A Quality-of-Service Mechanism for Interconnection Networks in System-on-Chips

    CERN Document Server

    Weber, Wolf-Dietrich; Swarbrick, Ian; Wingard, Drew

    2011-01-01

    As Moore's Law continues to fuel the ability to build ever increasingly complex system-on-chips (SoCs), achieving performance goals is rising as a critical challenge to completing designs. In particular, the system interconnect must efficiently service a diverse set of data flows with widely ranging quality-of-service (QoS) requirements. However, the known solutions for off-chip interconnects such as large-scale networks are not necessarily applicable to the on-chip environment. Latency and memory constraints for on-chip interconnects are quite different from larger-scale interconnects. This paper introduces a novel on-chip interconnect arbitration scheme. We show how this scheme can be distributed across a chip for high-speed implementation. We compare the performance of the arbitration scheme with other known interconnect arbitration schemes. Existing schemes typically focus heavily on either low latency of service for some initiators, or alternatively on guaranteed bandwidth delivery for other initiators. ...

  11. Femtosecond laser fabrication for the integration of optical sensors in microfluidic lab-on-chip devices

    NARCIS (Netherlands)

    Osellame, R.; Martinez-Vazquez, R.; Dongre, C.; Dekker, R.; Hoekstra, H.J.W.M.; Ramponi, R.; Pollnau, M.; Cerullo, G.; Corkum, P.; Silvestri, de S.; Nelson, K.A.; Riedle, E.; Schoenlein, R.W.

    2009-01-01

    Femtosecond lasers enable the fabrication of both optical waveguides and buried microfluidic channels on a glass substrate. The waveguides are used to integrate optical detection in a commercial microfluidic lab-on-chip for capillary electrophoresis.

  12. Femtosecond laser fabrication for the integration of optical sensors in microfluidic lab-on-chip devices

    NARCIS (Netherlands)

    Osellame, R.; Martinez Vazquez, R.; Dongre, C.; Dekker, R.; Hoekstra, H.J.W.M.; Pollnau, M.; Ramponi, R.; Cerullo, G.

    2008-01-01

    Femtosecond lasers enable the fabrication of both optical waveguides and buried microfluidic channels on a glass substrate. The waveguides are used to integrate optical detection in a commercial microfluidic lab-on-chip for capillary electrophoresis

  13. Implementation of Guaranteed Services in the MANGO Clockless Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Sparsø, Jens

    2006-01-01

    the effects of scaling microchip technologies. Equally important, a NoC facilitates a truly modular and scalable design flow. The MANGO (message-passing asynchronous network-on-chip providing guaranteed services over open core protocol (OCP) interfaces) NoC is presented, and how its key characteristics......Shared, segmented, on-chip interconnection networks, known as networks-on-chip (NoC), may become the preferred way of interconnecting intellectual property (IP) cores in future giga-scale system-on-chip (SoC) designs. A NoC can provide the required communication bandwidth while accommodating...... (clockless implementation, standard socket access points, and guaranteed communication services) make MANGO suitable for a modular SoC design flow is explained. Among the advantages of using clockless circuit techniques are inherent global timing closure, low forward latency in pipelines, and zero dynamic...

  14. Photonic-Networks-on-Chip for High Performance Radiation Survivable Multi-Core Processor Systems

    Science.gov (United States)

    2013-12-01

    TR-14-7 Photonic-Networks-on-Chip for High Performance Radiation Survivable Multi-Core Processor Systems Approved for public release...Networks-on-Chip for High Performance Radiation Survivable Multi-Core Processor Systems DTRA01-03-D-0026 Prof. Luke Lester and Prof. Ganesh...release; distribution is unlimited. The University of New Mexico has undertaken a study to determine the effects of radiation on Quantum Dot Photonic

  15. A survey of research and practices of network-on-chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Mahadevan, Shankar

    2006-01-01

    The scaling of microchip technologies has enabled large scale systems-on-chip (SoC). Network-on-chip (NoC) research addresses global communication in SoC, involving (i) a move from computation-centric to communication-centric design and (ii) the implementation of scalable communication structures...... are discussed. We also evaluate performance analysis techniques. The research shows that NoC constitutes a unification of current trends of intrachip communication rather than an explicit new alternative....

  16. A system-on-chip and paper-based inkjet printed electrodes for a hybrid wearable bio-sensing system.

    Science.gov (United States)

    Xie, Li; Yang, Geng; Mäntysalo, Matti; Jonsson, Fredrik; Zheng, Li-Rong

    2012-01-01

    This paper presents a hybrid wearable bio-sensing system, which combines traditional small-area low-power and high-performance System-on-Chip (SoC), flexible paper substrate and cost-effective Printed Electronics. Differential bio-signals are measured, digitized, stored and transmitted by the SoC. The total area of the chip is 1.5 × 3.0 mm(2). This enables the miniaturization of the wearable system. The electrodes and interconnects are inkjet printed on paper substrate and the performance is verified in in-vivo tests. The quality of electrocardiogram signal sensed by printed electrodes is comparable with commercial electrodes, with noise level slightly increased. The paper-based inkjet printed system is flexible, light and thin, which makes the final system comfortable for end-users. The hybrid bio-sensing system offers a potential solution to the next generation wearable healthcare technology.

  17. Electrokinetic Evaluation of Individual Exosomes by On-Chip Microcapillary Electrophoresis with Laser Dark-Field Microscopy

    Science.gov (United States)

    Kato, Kei; Kobayashi, Masashi; Hanamura, Nami; Akagi, Takanori; Kosaka, Nobuyoshi; Ochiya, Takahiro; Ichiki, Takanori

    2013-06-01

    Cell-secreted nanovesicles called exosomes are expected as a promising candidate biomarker of various diseases. Toward the future application of exosomes as a disease biomarker for low-invasive diagnostics, challenges remain in the development of sensitive and precise analysis methods for exosomes. In this study, we performed the electrokinetic evaluation of individual exosomes by the combined use of on-chip microcapillary electrophoresis and laser dark-field microscopy. We extracted exosomes from six types of human cell cultured in a serum-free medium by differential ultracentrifugation and their zeta potential (electrophoretic mobility) were evaluated. We demonstrated that the proposed electrophoresis apparatus is particularly suitable for the tracking analysis of the electrophoretic migration of individual exosomes and enables the accurate evaluation of the zeta potential distribution of exosomes, for the first time. From the experimental results, we found that there is a strong correlation between the average zeta potentials of exosomes and their cells of origin.

  18. Thin film magnetostrictive sensor with on-chip readout

    Science.gov (United States)

    Lu, Yong

    We report the first successful integration of magnetostrictive Metglas2605S2 (Fesb{78}Sisb9Bsb{13}) thin film sensor system on silicon with high resolution capacitive readout. A deposition process for Metglas thin film has been developed to allow easy control of thin film composition. An amorphous microstructure has been achieved over a wide temperature range, and in-situ magnetic domain alignment can be accomplished at room temperature as the film is deposited. The thin film has been characterized by Inductively Coupled Plasma (ICP) analysis for composition, X-Ray Diffraction (XRD) spectrum for microstructure, magnetization measurement for domain alignment and capacitive measurement for magnetostriction. The thin film is suitable for any magnetostrictive sensor applications, in particular, for IC compatible microsensors and microactuators. We have demonstrated the subsequent process integration with IC fabrication technology. Here, the Metglas thin film has been successfully incorporated to micromechanical structures using surface micromachining with appropriate choice of sacrificial layer and low stress mechanical layers. In addition, we present the development of a high resolution capacitive readout circuit co-integrated with the sensor. The readout circuit is based on a floating gate MOSFET configuration, requiring just a single transistor and operated at DC or low frequencies. Using the prototype developed in-house, we have successfully demonstrated a resolution capability of 10sp{-17} F, this translates to a few A in terms of cantilever beam deflection of the sensor. The floating gate readout technique is readily applicable to any capacitive sensors with a need for on-chip readout. It is also an ideal in-situ test structure for on IC chip process characterization and parameter extraction.

  19. Applications of holographic on-chip microscopy (Conference Presentation)

    Science.gov (United States)

    Ozcan, Aydogan

    2017-02-01

    My research focuses on the use of computation/algorithms to create new optical microscopy, sensing, and diagnostic techniques, significantly improving existing tools for probing micro- and nano-objects while also simplifying the designs of these analysis tools. In this presentation, I will introduce a set of computational microscopes which use lens-free on-chip imaging to replace traditional lenses with holographic reconstruction algorithms. Basically, 3D images of specimens are reconstructed from their "shadows" providing considerably improved field-of-view (FOV) and depth-of-field, thus enabling large sample volumes to be rapidly imaged, even at nanoscale. These new computational microscopes routinely generate chip. The field-of-view of these computational microscopes is equal to the active-area of the sensor-array, easily reaching, for example, chips, respectively. In addition to this remarkable increase in throughput, another major benefit of this technology is that it lends itself to field-portable and cost-effective designs which easily integrate with smartphones to conduct giga-pixel tele-pathology and microscopy even in resource-poor and remote settings where traditional techniques are difficult to implement and sustain, thus opening the door to various telemedicine applications in global health. Through the development of similar computational imagers, I will also report the discovery of new 3D swimming patterns observed in human and animal sperm. One of this newly discovered and extremely rare motion is in the form of "chiral ribbons" where the planar swings of the sperm head occur on an osculating plane creating in some cases a helical ribbon and in some others a twisted ribbon. Shedding light onto the statistics and biophysics of various micro-swimmers' 3D motion, these results provide an important example of how biomedical imaging significantly benefits from emerging computational algorithms/theories, revolutionizing existing tools for observing

  20. On-chip optical trapping for atomic applications

    Science.gov (United States)

    Perez, Maximillian A.; Salim, Evan; Farkas, Daniel; Duggan, Janet; Ivory, Megan; Anderson, Dana

    2014-09-01

    To simplify applications that rely on optical trapping of cold and ultracold atoms, ColdQuanta is developing techniques to incorporate miniature optical components onto in-vacuum atom chips. The result is a hybrid atom chip that combines an in-vacuum micro-optical bench for optical control with an atom chip for magnetic control. Placing optical components on a chip inside of the vacuum system produces a compact system that can be targeted to specific experiments, in this case the generation of optical lattices. Applications that can benefit from this technology include timekeeping, inertial sensing, gravimetry, quantum information, and emulation of quantum many-body systems. ColdQuanta's GlasSi atom chip technology incorporates glass windows in the plane of a silicon atom chip. In conjunction with the in-vacuum micro-optical bench, optical lattices can be generated within a few hundred microns of an atom chip window through which single atomic lattice sites can be imaged with sub-micron spatial resolution. The result is a quantum gas microscope that allows optical lattices to be studied at the level of single lattice sites. Similar to what ColdQuanta has achieved with magneto-optical traps (MOTs) in its miniMOT system and with Bose- Einstein condensates (BECs) in its RuBECi(R) system, ColdQuanta seeks to apply the on-chip optical bench technology to studies of optical lattices in a commercially available, turnkey system. These techniques are currently being considered for lattice experiments in NASA's Cold Atom Laboratory (CAL) slated for flight on the International Space Station.

  1. Conducted interference, challenges and interference cases

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Conducted interference has become increasingly problematic in the past few years, especially within the 2-150 kHz band. The high penetration of non-linear loads, combined with distributed generation, will influence the voltage profile, i.e. the power quality. New technologies will introduce new type

  2. Conducted interference, challenges and interference cases

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Conducted interference has become increasingly problematic in the past few years, especially within the 2-150 kHz band. The high penetration of non-linear loads, combined with distributed generation, will influence the voltage profile, i.e. the power quality. New technologies will introduce new

  3. Dark Matter Interference

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Kouvaris, Christoforos; Sannino, Francesco

    2012-01-01

    We study different patterns of interference in WIMP-nuclei elastic scattering that can accommodate the DAMA and CoGeNT experiments via an isospin violating ratio $f_n/f_p=-0.71$. We study interference between the following pairs of mediators: Z and Z', Z' and Higgs, and two Higgs fields. We show ...

  4. How does interference fall?

    CERN Document Server

    Orlando, Patrick J; Modi, Kavan

    2016-01-01

    We study how single- and double-slit interference patterns fall in the presence of gravity. First, we demonstrate that universality of free fall still holds in this case, i.e., interference patterns fall just like classical objects. Next, we explore lowest order relativistic effects in the Newtonian regime by employing a recent quantum formalism which treats mass as an operator. This leads to interactions between non-degenerate internal degrees of freedom (like spin in an external magnetic field) and external degrees of freedom (like position). Based on these effects, we present an unusual phenomenon, in which a falling double slit interference pattern periodically decoheres and recoheres. The oscillations in the visibility of this interference occur due to correlations built up between spin and position. Finally, we connect the interference visibility revivals with non-Markovian quantum dynamics.

  5. On-chip RF-to-optical transducer (Conference Presentation)

    Science.gov (United States)

    Simonsen, Anders; Tsaturyan, Yeghishe; Seis, Yannick; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S.

    2016-04-01

    Recent advances in the fabrication of nano- and micromechanical elements enable the realization of high-quality mechanical resonators with masses so small that the forces from optical photons can have a significant impact on their motion. This facilitates a strong interaction between mechanical motion and light, or phonons and photons. This interaction is the corner stone of the field of optomechanics and allows, for example, for ultrasensitive detection and manipulation of mechanical motion using laser light. Remarkably, today these techniques can be extended into the quantum regime, in which fundamental fluctuations of light and mechanics govern the system's behavior. Micromechanical elements can also interact strongly with other physical systems, which is the central aspect of many micro-electro-mechanical based sensors. Micromechanical elements can therefore act as a bridge between these diverse systems, plus technologies that utilize them, and the mature toolbox of optical techniques that routinely operates at the quantum limit. In a previous work [1], we demonstrated such a bridge by realizing simultaneous coupling between an electronic LC circuit and a quantum-noise limited optical interferometer. The coupling was mediated by a mechanical oscillator forming a mechanically compliant capacitor biased with a DC voltage. The latter enhances the electromechanical interaction all the way to the strong coupling regime. That scheme allowed optical detection of electronic signals with effective noise temperatures far below the actual temperature of the mechanical element. On-chip integration of the electrical, mechanical and optical elements is necessary for an implementation of the transduction scheme that is viable for commercial applications. Reliable assembly of a strongly coupled electromechanical device, and inclusion of an optical cavity for enhanced optical readout, are key features of the new platform. Both can be achieved with standard cleanroom fabrication

  6. Energy transfer phenomena and radiative processes in silicon nitride based materials for on-chip photonics applications

    Science.gov (United States)

    Li, Rui

    Rare-earth (RE) doping of silicon-based structures provides a valuable approach for light-emitting devices which could be monolithically integrated atop the widespread silicon electronics platform and enables inexpensive integration of on-chip optical components. However, the small excitable fraction of RE ions and the substantial free carrier losses in Si nanostructures severely limit the possibility to achieve net optical gain using traditional Er doped materials, such as Er doped Si-rich oxides (Er:SRO). On the other hand, a novel material platform based on RE-doped silicon nitride (RE:Six) materials has recently revealed unique advantages for on-chip light source. Based on a variety of light emission spectroscopic techniques and rate equation modeling, light emission and energy transfer phenomena were studied to quantitatively assess the benefits of the novel Er and Nd doped SiNx (Er: SiN x and Nd:SiNx) material platform compared to the standard Er:SRO. Efficient energy transfer and nanosecond-time dynamics from SiN x matrices to RE ions with two orders of magnitude larger coupling coefficient than Er:SRO were demonstrated for the first time. The origin of this energy transfer was shown to consist of non-resonant phonon-mediated coupling by temperature-dependent experiments. In addition, a tradeoff between excitation efficiency by energy transfer and emission efficiency, determined by excess Si concentration, was discovered and studied. Although carrier absorption and non-radiative recombination jeopardize the observation of optical gain, differential loss measurements under femtosecond pulsed excitation resulted in the bleaching of the Er ground state absorption by energy transfer in Er:SiN x materials, which bears great hope for the engineering of Si-based lasers. On the other hand, with a superior 4-level system, Nd:SiNx is promising to lase with a lower threshold. To make use of the better field confinement in SiNx due to its higher refractive index, RE

  7. Recovery of dynamic interference

    CERN Document Server

    Baghery, Mehrdad; Rost, Jan M

    2016-01-01

    We develop general quantitative criteria for dynamic interference, a manifestation of double-slit interference in time which should be realizable with brilliant state-of-the-art high-frequency laser sources. Our analysis reveals that the observation of dynamic interference hinges upon maximizing the difference between the dynamic polarization of the initial bound and the final continuum state of the electron during the light pulse, while keeping depletion of the initial state small. Confirmed by numerical results, we predict that this is impossible for the hydrogen ground-state but feasible with excited states explicitly exemplified with the hydrogen 2p-state.

  8. Group Based Interference Alignment

    CERN Document Server

    Ma, Yanjun; Chen, Rui; Yao, Junliang

    2010-01-01

    in $K$-user single-input single-output (SISO) frequency selective fading interference channels, it is shown that the achievable multiplexing gain is almost surely $K/2$ by using interference alignment (IA). However when the signaling dimensions is limited, allocating all the resource to all the users simultaneously is not optimal. According to this problem, a group based interference alignment (GIA) scheme is proposed and a search algorithm is designed to get the group patterns and the resource allocation among them. Analysis results show that our proposed scheme achieves a higher multiplexing gain when the resource is limited.

  9. A Low-Power Integrated Humidity CMOS Sensor by Printing-on-Chip Technology

    Directory of Open Access Journals (Sweden)

    Chang-Hung Lee

    2014-05-01

    Full Text Available A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems.

  10. A solvent resistant lab-on-chip platform for radiochemistry applications.

    Science.gov (United States)

    Rensch, Christian; Lindner, Simon; Salvamoser, Ruben; Leidner, Stephanie; Böld, Christoph; Samper, Victor; Taylor, David; Baller, Marko; Riese, Stefan; Bartenstein, Peter; Wängler, Carmen; Wängler, Björn

    2014-07-21

    The application of microfluidics to the synthesis of Positron Emission Tomography (PET) tracers has been explored for more than a decade. Microfluidic benefits such as superior temperature control have been successfully applied to PET tracer synthesis. However, the design of a compact microfluidic platform capable of executing a complete PET tracer synthesis workflow while maintaining prospects for commercialization remains a significant challenge. This study uses an integral system design approach to tackle commercialization challenges such as the material to process compatibility with a path towards cost effective lab-on-chip mass manufacturing from the start. It integrates all functional elements required for a simple PET tracer synthesis into one compact radiochemistry platform. For the lab-on-chip this includes the integration of on-chip valves, on-chip solid phase extraction (SPE), on-chip reactors and a reversible fluid interface while maintaining compatibility with all process chemicals, temperatures and chip mass manufacturing techniques. For the radiochemistry device it includes an automated chip-machine interface enabling one-move connection of all valve actuators and fluid connectors. A vial-based reagent supply as well as methods to transfer reagents efficiently from the vials to the chip has been integrated. After validation of all those functional elements, the microfluidic platform was exemplarily employed for the automated synthesis of a Gastrin-releasing peptide receptor (GRP-R) binding the PEGylated Bombesin BN(7-14)-derivative ([(18)F]PESIN) based PET tracer.

  11. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  12. Rapid and selective extraction, isolation, preconcentration, and quantitation of small RNAs from cell lysate using on-chip isotachophoresis.

    Science.gov (United States)

    Schoch, Reto B; Ronaghi, Mostafa; Santiago, Juan G

    2009-08-07

    We present a technique which enables the separation of small RNAs-such as microRNAs (miRNAs), short interfering RNAs (siRNAs), and Piwi-interacting RNAs (piRNAs)-from >or=66 nucleotide RNAs and other biomolecules contained in a cell lysate. In particular, the method achieves separation of small RNAs from precursor miRNAs (pre-miRNAs) in less than 3 min. We use on-chip isotachophoresis (ITP) for the simultaneous extraction, isolation, preconcentration and quantitation of small RNAs (approximately 22 nucleotides) and employ the high-efficiency sieving matrix Pluronic F-127; a thermo-responsive triblock copolymer which allows convenient microchannel loading at low temperature. We present the isolation of small RNAs from the lysate of 293A human kidney cells, and quantitate the number of short RNA molecules per cell to be 2.9x10(7). We estimate this quantity is an aggregate of roughly 500 types of short RNA molecules per 293A cell. Currently, the minimal cell number for small RNA extraction and detection with our method is approximately 900 (from a 5 microL sample volume), and we believe that small RNA analysis from tens of cells is realizable. Techniques for rapid and sensitive extraction and isolation of small RNAs from cell lysate are much-needed to further uncover their full range and functionality, including RNA interference studies.

  13. Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum.

    Science.gov (United States)

    Arya, Sunil K; Kongsuphol, Patthara; Park, Mi Kyoung

    2017-06-15

    The manuscript describes a concept of using off surface matrix modified with capturing biomolecule for on-chip electrochemical biosensing. 3D matrix made by laser engraving of polymethyl methacrylate (PMMA) sheet as off surface matrix was integrated in very close vicinity of the electrode surface. Laser engraving and holes in PMMA along with spacing from surface provide fluidic channel and incubation chamber. Covalent binding of capturing biomolecule (anti-TNF-α antibody) on off-surface matrix was achieved via azide group activity of 4-fluoro-3-nitro-azidobenzene (FNAB), which act as cross-linker and further covalently binds to anti-TNF-α antibody via thermal reaction. Anti-TNF-α/FNAB/PMMA matrix was then integrated over comb structured gold electrode array based sensor chip. Separate surface modification followed by integration of sensor helped to prevent the sensor chip surface from fouling during functionalization. Nonspecific binding was prevented using starting block T20 (PBS). Results for estimating protein biomarker (TNF-α) in undiluted serum using Anti-TNF-α/FNAB/PMMA/Au reveal that system can detect TNF-α in 100pg/ml to 100ng/ml range with high sensitivity of 119nA/(ng/ml), with negligible interference from serum proteins and other cytokines. Thus, use of off surface matrix may provide the opportunity to electrochemically sense biomarkers sensitively to ng/ml range with negligible nonspecific binding and false signal in undiluted serum.

  14. Interference and Polarized Light.

    Science.gov (United States)

    Charas, Seymour

    1988-01-01

    Discusses a demonstration of interference phenomena using three sheets of polaroid material, a light source, and a light meter. Describes instructional procedures with mathematical expressions and a diagram. (YP)

  15. On-chip continuous-variable quantum entanglement

    Science.gov (United States)

    Masada, Genta; Furusawa, Akira

    2016-09-01

    Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.

  16. On-chip optical phase locking of single growth monolithically integrated Slotted Fabry Perot lasers.

    Science.gov (United States)

    Morrissey, P E; Cotter, W; Goulding, D; Kelleher, B; Osborne, S; Yang, H; O'Callaghan, J; Roycroft, B; Corbett, B; Peters, F H

    2013-07-15

    This work investigates the optical phase locking performance of Slotted Fabry Perot (SFP) lasers and develops an integrated variable phase locked system on chip for the first time to our knowledge using these lasers. Stable phase locking is demonstrated between two SFP lasers coupled on chip via a variable gain waveguide section. The two lasers are biased differently, one just above the threshold current of the device with the other at three times this value. The coupling between the lasers can be controlled using the variable gain section which can act as a variable optical attenuator or amplifier depending on bias. Using this, the width of the stable phase locking region on chip is shown to be variable.

  17. On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips

    Science.gov (United States)

    Takehara, Hiroaki; Kazutaka, Osawa; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2017-09-01

    Although fluorescence microscopy is the gold standard tool for biomedical research and clinical applications, their use beyond well-established laboratory infrastructures remains limited. The present study investigated a novel on-chip cell analysis platform based on contact fluorescence microscopy and microfluidics. Combined use of a contact fluorescence imager based on complementary metal-oxide semiconductor technology and an ultra-thin glass bottom microfluidic chip enabled both to observe living cells with minimal image distortion and to ease controlling and handling of biological samples (e.g. cells and biological molecules) in the imaged area. A proof-of-concept experiment of on-chip detection of cellular response to endothelial growth factor demonstrated promising use for the recently developed on-chip cell analysis platform. Contact fluorescence microscopy has numerous desirable features including compatibility with plastic microfluidic chips and compatibility with the electrical control system, and thus will fulfill the requirements of a fully automated cell analysis system.

  18. Blood cleaner on-chip design for artificial human kidney manipulation.

    Science.gov (United States)

    Suwanpayak, N; Jalil, M A; Aziz, M S; Ismail, F D; Ali, J; Yupapin, P P

    2011-01-01

    A novel design of a blood cleaner on-chip using an optical waveguide known as a PANDA ring resonator is proposed. By controlling some suitable parameters, the optical vortices (gradient optical fields/wells) can be generated and used to form the trapping tools in the same way as optical tweezers. In operation, the trapping force is formed by the combination between the gradient field and scattering photons by using the intense optical vortices generated within the PANDA ring resonator. This can be used for blood waste trapping and moves dynamically within the blood cleaner on-chip system (artificial kidney), and is performed within the wavelength routers. Finally, the blood quality test is exploited by the external probe before sending to the destination. The advantage of the proposed kidney on-chip system is that the unwanted substances can be trapped and filtered from the artificial kidney, which can be available for blood cleaning applications.

  19. Area Analysis for On-chip Routers with Different Data-link Widths

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; LUO Feng-guang; FENG Yong-hua; HU Jia

    2006-01-01

    Compared with the traditional and inter-chip networks, on-chip networks (NoCs) have enormous wire resources which can be traded for improving other performance requirements. This means that much wider data links can be used for NoCs. This paper focuses on the area costs for on-chip routers under four different data-link widths: 8 bits, 16 bits, 128 bits, and 256 bits. Firstly, a virtual-channel based on-chip router is introduced. Secondly, the components of the router are implemented by Verilog HDL models and synthesized by Quartus II 4.0 in a FPGA device. Finally, the area costs are analyzed. It can be seen from the results that data-link width has great influence on area costs of buffers and crossbar while has no influence on area costs of arbiter.

  20. Dissecting regulatory networks in host-pathogen interaction using chIP-on-chip technology.

    Science.gov (United States)

    Sala, Claudia; Grainger, David C; Cole, Stewart T

    2009-05-08

    Understanding host-microbe interactions has been greatly enhanced by our broadening knowledge of the regulatory mechanisms at the heart of pathogenesis. The "transcriptomics" approach of measuring global gene expression has identified genes involved in bacterial pathogenesis. More recently, chromatin immunoprecipitation (ChIP) and hybridization to microarrays (chIP-on-chip) has emerged as a complementary tool that permits protein-DNA interactions to be studied in vivo. Thus, chIP-on-chip can be used to map the binding sites of transcription factors, thereby teasing apart gene regulatory networks. In this Review, we discuss the ChIP-on-chip technique and focus on its application to the study of host-pathogen interactions.

  1. AREA-EFFICIENT DESIGN OF SCHEDULER FOR ROUTING NODE OF NETWORK-ON-CHIP

    Directory of Open Access Journals (Sweden)

    Rehan Maroofi

    2011-10-01

    Full Text Available Traditional System-on-Chip (SoC design employed shared buses for data transfer among varioussubsystems. As SoCs become more complex involving a larger number of subsystems, traditional busbasedarchitecture is giving way to a new paradigm for on-chip communication. This paradigm is calledNetwork-on-Chip (NoC. A communication network of point-to-point links and routing switches is used tofacilitate communication between subsystems. The routing switch proposed in this paper consists of fourcomponents, namely the input ports, output ports, switching fabric, and scheduler. The scheduler design isdescribed in this paper. The function of the scheduler is to arbitrate between requests by data packets foruse of the switching fabric. The scheduler uses an improved round robin based arbitration algorithm. Dueto the symmetric structure of the scheduler, an area-efficient design is proposed by folding the scheduleronto itself, thereby reducing its area roughly by 50%.

  2. Simulation-based Modeling Frameworks for Networked Multi-processor System-on-Chip

    DEFF Research Database (Denmark)

    Mahadevan, Shankar

    2006-01-01

    This thesis deals with modeling aspects of multi-processor system-on-chip (MpSoC) design affected by the on-chip interconnect, also called the Network-on-Chip (NoC), at various levels of abstraction. To begin with, we undertook a comprehensive survey of research and design practices of networked Mp......SoC. The survey presents the challenges of modeling and performance analysis of the hardware and the software components used in such devices. These challenges are further exasperated in a mixed abstraction workspace, which is typical of complex MpSoC design environment. We provide two simulation-based frameworks...... and the RIPE frameworks allows easy incorporation of IP cores from either frameworks, into a new instance of the design. This could pave the way for seamless design evaluation from system-level to cycletrue abstraction in future component-based MpSoC design practice....

  3. A Performance Analytical Strategy for Network-on-Chip Router with Input Buffer Architecture

    Directory of Open Access Journals (Sweden)

    WANG, J.

    2012-11-01

    Full Text Available In this paper, a performance analytical strategy is proposed for Network-on-Chip router with input buffer architecture. First, an analytical model is developed based on semi-Markov process. For the non-work-conserving router with small buffer size, the model can be used to analyze the schedule delay and the average service time for each buffer when given the related parameters. Then, the packet average delay in router is calculated by using the model. Finally, we validate the effectiveness of our strategy by simulation. By comparing our analytical results to simulation results, we show that our strategy successfully captures the Network-on-Chip router performance and it performs better than the state-of-art technology. Therefore, our strategy can be used as an efficiency performance analytical tool for Network-on-Chip design.

  4. System-Level Design Methodologies for Networked Multiprocessor Systems-on-Chip

    DEFF Research Database (Denmark)

    Virk, Kashif Munir

    2008-01-01

    of wireless integrated sensor networks which are an emerging class of networked embedded computer systems. The work described here demonstrates how to model multiprocessor systems-on-chip at the system level by abstracting away most of the lower-level details albeit retaining the parameters most relevant......The first part of the thesis presents an overview of the existing theories and practices of modeling and simulation of multiprocessor systems-on-chip. The systematic categorization of the plethora of existing programming models at various levels of abstraction is the main contribution here which...... is the first such attempt in the published literature. The second part of the thesis deals with the issues related to the development of system-level design methodologies for networked multiprocessor systems-on-chip at various levels of design abstraction with special focus on the modeling and design...

  5. CMOS On-Chip Optoelectronic Neural Interface Device with Integrated Light Source for Optogenetics

    Science.gov (United States)

    Sawadsaringkarn, Y.; Kimura, H.; Maezawa, Y.; Nakajima, A.; Kobayashi, T.; Sasagawa, K.; Noda, T.; Tokuda, T.; Ohta, J.

    2012-03-01

    A novel optoelectronic neural interface device is proposed for target applications in optogenetics for neural science. The device consists of a light emitting diode (LED) array implemented on a CMOS image sensor for on-chip local light stimulation. In this study, we designed a suitable CMOS image sensor equipped with on-chip electrodes to drive the LEDs, and developed a device structure and packaging process for LED integration. The prototype device produced an illumination intensity of approximately 1 mW with a driving current of 2.0 mA, which is expected to be sufficient to activate channelrhodopsin (ChR2). We also demonstrated the functions of light stimulation and on-chip imaging using a brain slice from a mouse as a target sample.

  6. Liquids on-chip: direct storage and release employing micro-perforated vapor barrier films.

    Science.gov (United States)

    Czurratis, Daniel; Beyl, Yvonne; Grimm, Alexander; Brettschneider, Thomas; Zinober, Sven; Lärmer, Franz; Zengerle, Roland

    2015-07-07

    Liquids on-chip describes a reagent storage concept for disposable pressure driven Lab-on-Chip (LoC) devices, which enables liquid storage in reservoirs without additional packaging. On-chip storage of liquids can be considered as one of the major challenges for the commercial break through of polymer-based LoC devices. Especially the ability for long-term storage and reagent release on demand are the most important aspects for a fully developed technology. On-chip storage not only replaces manual pipetting, it creates numerous advantages: fully automated processing, ease of use, reduction of contamination and transportation risks. Previous concepts for on-chip storage are based on liquid packaging solutions (e.g. stick packs, blisters, glass ampoules), which implicate manufacturing complexity and additional pick and place processes. That is why we prefer on-chip storage of liquids directly in reservoirs. The liquids are collected in reservoirs, which are made of high barrier polymers or coated by selected barrier layers. Therefore, commonly used polymers for LoC applications as cyclic olefin polymer (COP) and polycarbonate (PC) were investigated in the context of novel polymer composites. To ensure long-term stability the reservoirs are sealed with a commercially available barrier film by hot embossing. The barrier film is structured by pulsed laser ablation, which installs rated break points without affecting the barrier properties. A flexible membrane is actuated through pneumatic pressure for reagent release on demand. The membrane deflection breaks the barrier film and leads to efficient cleaning of the reservoirs in order to provide the liquids for further processing.

  7. CMOS capacitive sensors for lab-on-chip applications a multidisciplinary approach

    CERN Document Server

    Ghafar-Zadeh, Ebrahim

    2010-01-01

    The main components of CMOS capacitive biosensors including sensing electrodes, bio-functionalized sensing layer, interface circuitries and microfluidic packaging are verbosely explained in chapters 2-6 after a brief introduction on CMOS based LoCs in Chapter 1. CMOS Capacitive Sensors for Lab-on-Chip Applications is written in a simple pedagogical way. It emphasises practical aspects of fully integrated CMOS biosensors rather than mathematical calculations and theoretical details. By using CMOS Capacitive Sensors for Lab-on-Chip Applications, the reader will have circuit design methodologies,

  8. On-chip artificial magnon-polariton device for voltage control of electromagnetically induced transparency

    Science.gov (United States)

    Kaur, Sandeep; Yao, Bimu; Gui, Yong-Sheng; Hu, Can-Ming

    2016-11-01

    We demonstrate an on-chip device utilizing the concept of an artificial cavity magnon-polariton (CMP) generated via coupling between a microwave cavity mode and the artificial magnetism dynamics of a split ring resonator. This on-chip device allows the easy tuning of the artificial CMP gap by using a DC voltage signal, which enables tuneable electrodynamically induced transparency. The high tunability of the artificial magnon-polariton system not only enables the study of phenomena associated with the classical analogues of different coupling regimes, but also may open up avenues for designing advanced microwave devices and ultra-sensitive sensors.

  9. Migration selection of strategies for parallel genetic algorithms: implementation on networks on chips

    Science.gov (United States)

    Mourelle, L.; Ferreira, R. E.; Nedjah, N.

    2010-10-01

    The aim of the work described in this article is to investigate migration strategies for the execution of parallel genetic algorithms in a multi-processor system-on-chip (MPSoC). Some multimedia and internet applications for wireless communications are using genetic algorithms and can benefit from the advantages provided by parallel processing on MPSoCs. In order to run such algorithms, we use a network-on-chip platform, which provides the interconnection network required for the communication between processors. Two migration strategies are employed in order to analyse the speedup and efficiency each one can provide, considering the communication costs they require.

  10. Millimeter Wave on Chip Antenna Using Dogbone Shape Artificial Magnetic Conductor

    Directory of Open Access Journals (Sweden)

    Guo Qing Luo

    2013-01-01

    Full Text Available An artificial magnetic conductor (AMC applied in millimeter wave on chip antenna design based on a standard 0.18 μm CMOS technology is studied. The AMC consisting of two-dimensional periodic dogbone shape elements is constructed at one metal layer of the CMOS structure. After its performance has been completely investigated, it has been used in an on chip dipole antenna design as an artificial background to enhance efficiency of the dipole antenna. The result shows that 0.72 dB gain has been achieved at 75 GHz when the AMC is constructed by a 4*6 dogbone array.

  11. Autonomic networking-on-chip bio-inspired specification, development, and verification

    CERN Document Server

    Cong-Vinh, Phan

    2011-01-01

    Despite the growing mainstream importance and unique advantages of autonomic networking-on-chip (ANoC) technology, Autonomic Networking-On-Chip: Bio-Inspired Specification, Development, and Verification is among the first books to evaluate research results on formalizing this emerging NoC paradigm, which was inspired by the human nervous system. The FIRST Book to Assess Research Results, Opportunities, & Trends in ""BioChipNets"" The third book in the Embedded Multi-Core Systems series from CRC Press, this is an advanced technical guide and reference composed of contributions from prominent re

  12. An Innovative Gas Sensor with On-Chip Reference Using Monolithic Twin Laser

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-Gang; TIAN Zhao-Bing; ZHANG Xiao-Jun; GU Yi; LI Ai-Zhen; ZHU Xiang-Rong; ZHENG Yan-Lan; LIU Sheng

    2007-01-01

    An innovative gas sensor with on-chip reference using a monolithic twin laser is proposed. In this sensor a monolithic twin laser generates two closer laser beams with slight different wavelengths alternatively, one photodiode is used to catch both absorption and reference signals by time division multiplexing. The detection of nitrous oxide adopting this scheme using a 2.1 μm antimonide laser and an InGaAs photodiode has been demonstrated experimentally with detection limit below 1 ppm. Using this on chip reference scheme the fluctuations from the optical path and devices can be compensated effectively; the sensor system is simplified distinctly.

  13. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Kiyotaka Sasagawa

    2010-12-01

    Full Text Available In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors’ architecture on the basis of the type of electric measurement or imaging functionalities.

  14. A Network Traffic Generator Model for Fast Network-on-Chip Simulation

    DEFF Research Database (Denmark)

    Mahadevan, Shankar; Angiolini, Frederico; Storgaard, Michael

    2005-01-01

    For Systems-on-Chip (SoCs) development, a predominant part of the design time is the simulation time. Performance evaluation and design space exploration of such systems in bit- and cycle-true fashion is becoming prohibitive. We propose a traffic generation (TG) model that provides a fast...... and effective Network-on-Chip (NoC) development and debugging environment. By capturing the type and the timestamp of communication events at the boundary of an IP core in a reference environment, the TG can subsequently emulate the core's communication behavior in different environments. Access patterns...

  15. A 77 GHz on-chip strip dipole antenna integrated with balun circuits for automotive radar

    OpenAIRE

    2012-01-01

    In this paper, design and implementation of a 77 GHz on-chip strip dipole antenna integrated with both lumped and transmission line based balun circuits are presented. The on-chip antenna is realized by using IHP’s 0.25 μm SiGe BiCMOS technology with localized back-side etch (LBE) module to decrease substrate loss. The strip dipole antenna is fed by both a lumped LC circuit and strip line tapered baluns integrated on the same substrate and occupies an area of 1x1.2 mm2 including the RF pads. ...

  16. Kinetic characterization of on-chip DNA ligation on dendron-coated surfaces with nanoscaled lateral spacings

    Science.gov (United States)

    Kim, Eung-Sam; Lee, Namgyu; Park, Joon Won; Choi, Kwan Yong

    2013-10-01

    We analyzed the enzymatic profiles of on-chip DNA ligation as we controlled the lateral spacing of surface-immobilized DNA substrates using dendron molecules with different sizes at the nanoscale. Enzymatic on-chip DNA ligation was performed on the dendron-coated surface within 20 min with no need for post-ligation gel electrophoresis. The enzymatic DNA repair was assessed by the fluorescence intensity at the repaired DNA duplex after thermally dissociating the unligated Cy3-labeled DNA from the DNA duplex, in which the Cy3-labeled DNA was hybridized prior to the on-chip DNA ligation. The rate of the nick-sealing reaction on the 27-acid dendron surface was 3-fold higher than that on the 9-acid dendron surface, suggesting that the wider lateral spacing determined by the larger dendron molecule could facilitate the access of DNA ligase to the nick site. The performance of on-chip DNA ligation was dropped to 10% and 3% when the nick was replaced by one- and two-nucleotide-long gaps, respectively. The 5‧ terminal phosphorylation of DNA strands by polynucleotide kinase and the on-chip DNA cleavage by endonucleases were also quantitatively monitored throughout the on-chip DNA ligation on the dendron-coated surface. A better understanding of the enzymatic kinetics of on-chip DNA ligation will contribute to a more reliable performance of various on-chip DNA ligation-based assays.

  17. A power efficient 2Gb/s transceiver in 90nm CMOS for 10mm On-Chip interconnect

    NARCIS (Netherlands)

    Mensink, E.; Schinkel, D.; Klumperink, E.A.M.; Tuijl, van A.J.M.; Nauta, B.

    2007-01-01

    Global on-chip data communication is becoming a concern as the gap between transistor speed and interconnect bandwidth increases with CMOS process scaling. In this paper a low-swing transceiver for 10mm long 0.54μm wide on-chip interconnect is presented, which achieves a similar data rate as previou

  18. Organs-on-Chips in Drug Development: The Importance of Involving Stakeholders in Early Health Technology Assessment

    NARCIS (Netherlands)

    Middelkamp, Heleen H.T.; Meer, van der Andries D.; Hummel, J. Marjan; Stamatialis, Dimitrios F.; Mummery, Christine L.; Passier, Robert; IJzerman, Maarten J.

    2016-01-01

    Organs-on-chips are three-dimensional, microfluidic cell culture systems that simulate the function of tissues and organ subunits. Organ-on-chip systems are expected to contribute to drug candidate screening and the reduction of animal tests in preclinical drug development and may increase efficienc

  19. Radiative Characteristics of On-Chip Terahertz Undulatory Structures

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J

    2004-06-09

    Work on compact, variable, efficient, and high brightness radiation sources is extended by calculating the radiated power and angular distributions for characteristic configurations and drive sources. On the assumption that the transport physics with Maxwell's Equations are valid but modified by the material properties, a number of analogs are suggested between free and bound electron sources of radiation. Characteristics of representative 1-to-n port examples are discussed in terms of a few basic shape parameters and the wavelength. Conditions for coherence and interference are discussed and demonstrated for the latter. Figures-of-merit are defined in terms of brightness, efficiencies or effective impedances such as the radiation coupling impedance Z{sub rc}. Both time and frequency domain techniques are used and checked against other calculations and measurements where available. Finally, we discuss some further possibilities together with various impediments to realizing these kinds of devices such as the Terahertz (THz) modulation problem as well as nonlinear methods for their optimization. To our knowledge, there have been no implementations of such possibilities.

  20. Understanding ghost interference

    Science.gov (United States)

    Qureshi, Tabish; Chingangbam, Pravabati; Shafaq, Sheeba

    2016-08-01

    The ghost interference observed for entangled photons is theoretically analyzed using wave-packet dynamics. It is shown that ghost interference is a combined effect of virtual double-slit creation due to entanglement, and quantum erasure of which-path information for the interfering photon. For the case where the two photons are of different color, it is shown that fringe width of the interfering photon depends not only on its own wavelength, but also on the wavelength of the other photon which it is entangled with.

  1. Retroactive Interference and Forgetting

    Directory of Open Access Journals (Sweden)

    Vinishaa Ankala

    2011-01-01

    Full Text Available Retroactive interference is the amount of information that can be forgotten by a person over time due to newly learned material. In this paper we establish a relationship between the amount of information forgotten by college students while they read and watch television and the time taken to forget it. We equate these numerical equations to solve for the unknown constants. By doing so, we can find the exact equation and also the amount of forgetting information due to retroactive interference.

  2. Direct quantification of transendothelial electrical resistance in organs-on-chips

    NARCIS (Netherlands)

    Helm, van der Marinke W.; Odijk, M.; Frimat, Jean-Philippe; Meer, van der Andries D.; Eijkel, Jan C.T.; Berg, van den Albert; Segerink, Loes I.

    2016-01-01

    Measuring transendothelial or transepithelial electrical resistance (TEER) is a widely used method to monitor cellular barrier tightness in organs-on-chips. Unfortunately, integrated electrodes close to the cellular barrier hamper visual inspection of the cells or require specialized cleanroom proce

  3. Training probabilistic VLSI models on-chip to recognise biomedical signals under hardware nonidealities.

    Science.gov (United States)

    Jiang, P C; Chen, H

    2006-01-01

    VLSI implementation of probabilistic models is attractive for many biomedical applications. However, hardware non-idealities can prevent probabilistic VLSI models from modelling data optimally through on-chip learning. This paper investigates the maximum computational errors that a probabilistic VLSI model can tolerate when modelling real biomedical data. VLSI circuits capable of achieving the required precision are also proposed.

  4. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  5. A Transceiver for High-Speed Global On-Chip Data Communication

    NARCIS (Netherlands)

    Schinkel, Daniël; Mensink, Eisse; Klumperink, Eric; Tuijl, van Ed; Nauta, Bram

    2005-01-01

    Global on-chip data communication is becoming a concern as the gap between transistor speed and interconnect bandwidth increases with CMOS process scaling. In this paper we show how a special form of equalization, pulse-width pre-emphasis, can significantly increase the data rate for a given length

  6. A survey of efficient on-chip communications for SoC

    NARCIS (Netherlands)

    Kavaldjiev, N.K.; Smit, G.J.M.

    2003-01-01

    This paper provides a survey of methods and techniques for flexible on-chip inter-processor communications for Systems-on-a-Chip (SoC) components. These devices are applied in battery-powered mobile multimedia devices. A classification is made of the most popular interconnection methods, techniques

  7. Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

    Energy Technology Data Exchange (ETDEWEB)

    Highstrete, Clark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Quantum Information Sciences Dept.; Scott, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). RF/Optoelectronics Dept.; Nordquist, Christopher D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). RF/Optoelectronics Dept.; Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Tigges, Christopher P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Blain, Matthew Glenn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Heller, Edwin J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Microsystems Integration Dept.; Stevens, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). MESAFab Operations 2 Dept.

    2013-11-01

    Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb+ hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ion traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.

  8. Nanotechnology and the Developing World: Lab-on-Chip Technology for Health and Environmental Applications

    Science.gov (United States)

    Mehta, Michael D.

    2008-01-01

    This article argues that advances in nanotechnology in general, and lab-on-chip technology in particular, have the potential to benefit the developing world in its quest to control risks to human health and the environment. Based on the "risk society" thesis of Ulrich Beck, it is argued that the developed world must realign its science and…

  9. A simple clockless Network-on-Chip for a commercial audio DSP chip

    DEFF Research Database (Denmark)

    Stensgaard, Mikkel Bystrup; Bjerregaard, Tobias; Sparsø, Jens;

    2006-01-01

    We design a very small, packet-switched, clockless Network-on-Chip (NoC) as a replacement for the existing crossbar-based communication infrastructure in a commercial audio DSP chip. Both solutions are laid out in a 0.18 um process, and compared in terms of area, power consumption and routing...

  10. On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Weirich, Johannes; Alkeskjold, Thomas Tanggaard;

    2009-01-01

    We design and fabricate an on-chip tunable long-period grating device by integrating a liquid crystal photonic bandgap fiber on silicon structures. The transmission axis of the device can be electrically rotated in steps of 45° as well as switched on and off with the response time in the millisec...

  11. On-chip tunable long-period gratings in liquid crystal infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Weirich, Johannes; Alkeskjold, Thomas Tanggaard;

    2009-01-01

    An on-chip tunable long-period grating device in a liquid crystal infiltrated photonic crystal fiber is experimentally demonstrated. The depth and position of the notch are tuned electrically and thermally. The transmission axis can be electrically controlled as well as switched on and off....

  12. On-Chip Supercapacitor Electrode Based On Polypyrrole Deposited Into Nanoporous Au Scaffold

    Science.gov (United States)

    Lu, P.; Ohlckers, P.; Chen, X. Y.

    2016-11-01

    On-chip supercapacitors hold the potential promise for serving as the energy storage units in integrated circuit system, due to their much higher energy density in comparison with conventional dielectric capacitors, high power density and long-term cycling stability. In this study, nanoporous Au (NP-Au) film on-chip was employed as the electrode scaffold to help increase the electrolyte-accessible area for active material. Pseudo-capacitive polypyrrole (PPY) with high theoretical capacitance was deposited into the NP-Au scaffold, to construct the tailored NP-Au/PPY hybrid on-chip electrode with improved areal capacitance. Half cell test in three- electrode system revealed the improved capacitor performance of nanoporous Au supported PPY electrode, compared to the densely packed PPY nanowire film electrode on planer Au substrate (Au/PPY). The areal capacitance of 37 mF/cm2∼10 mV/s, 32 mF/cm2∼50 mV/s, 28 mF/cm2∼100 mV/s, 16 mF/cm2∼500 mV/s, were offered by NP-Au/PPY. Also, the cycling performance was enhanced via using NP-Au scaffold. The developed NP-Au/PPY on-chip electrode demonstrated herein paves a feasible pathway to employ dealloying derived porous metal as the scaffold for improving both the energy density and cycling performance for supercapacitor electrodes.

  13. Laser light-field fusion for wide-field lensfree on-chip phase contrast nanoscopy

    CERN Document Server

    Kazemzadeh, Farnoud

    2016-01-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. Nanoscopy is often synonymous with high equipment costs and limited FOV. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast nanoscopy, where interferometric laser light-field encodings acquired using an on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images with resolving power below the pixel pitch of the sensor array as well as the wavelength of the probing light source, beyond the diffraction limit. Experimental results demonstrate, for the first time, a lensfree on-chip instrument successfully detecting 500 nm nanoparticles without any specialized or intricate sample preparation or the use of synthetic aperture- or lateral shift-based t...

  14. Static Routing in Symmetric Real-Time Network-on-Chips

    DEFF Research Database (Denmark)

    Brandner, Florian; Schoeberl, Martin

    2012-01-01

    With the rising number of cores on a single chip the question on how to organize the communication among those cores becomes more and more relevant. A common solution is to use a network-on-chip (NoC) that provides communication bandwidth, routing, and arbitration among the cores. The use of No...

  15. Nanotechnology and the Developing World: Lab-on-Chip Technology for Health and Environmental Applications

    Science.gov (United States)

    Mehta, Michael D.

    2008-01-01

    This article argues that advances in nanotechnology in general, and lab-on-chip technology in particular, have the potential to benefit the developing world in its quest to control risks to human health and the environment. Based on the "risk society" thesis of Ulrich Beck, it is argued that the developed world must realign its science and…

  16. Electrochemistry-on-chip for on-line conversions in drug metabolism studies

    NARCIS (Netherlands)

    Odijk, Mathieu; Baumann, A.; Olthuis, Wouter; van den Berg, Albert; Karst, U.

    2010-01-01

    We have designed an integrated 3-electrode electrochemical cell on-chip with high analyte conversion rates for use in drug metabolism studies. The electrochemical cell contains platinum working and counter electrodes and an iridium oxide pseudo-reference electrode. The pseudo-reference electrode has

  17. Power Efficient Gigabit Communication Over Capacitively Driven RC-Limited On-Chip Interconnects

    NARCIS (Netherlands)

    Mensink, E.; Schinkel, Daniel; Klumperink, Eric A.M.; van Tuijl, Adrianus Johannes Maria; Nauta, Bram

    2010-01-01

    Abstract—This paper presents a set of circuit techniques to achieve high data rate point-to-point communication over long on-chip RC-limited wire-pairs. The ideal line termination impedances for a flat transfer function with linear phase (pure delay) are derived, using an s-parameter wire-pair

  18. Low-Power, High-Speed Transceivers for Network-on-Chip Communication

    NARCIS (Netherlands)

    Schinkel, Daniel; Mensink, E.; Klumperink, Eric A.M.; van Tuijl, Adrianus Johannes Maria; Nauta, Bram

    Networks on chips (NoCs) are becoming popular as they provide a solution for the interconnection problems on large integrated circuits (ICs). But even in a NoC, link-power can become unacceptably high and data rates are limited when conventional data transceivers are used. In this paper, we present

  19. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Piels, Molly;

    2016-01-01

    For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating en-ergy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have a chall...

  20. Network Traffic Generator Model for Fast Network-on-Chip Simulation

    DEFF Research Database (Denmark)

    2008-01-01

    For Systems-on-Chip (SoCs) development, a predominant part of the design time is the simulation time. Performance evaluation and design space exploration of such systems in bit- and cycle-true fashion is becoming prohibitive. We propose a traffic generation (TG) model that provides a fast...

  1. On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions

    DEFF Research Database (Denmark)

    Donolato, M.; Sogne, E.; Dalslet, Bjarke Thomas

    2011-01-01

    We demonstrate the detection of the Brownian relaxation frequency of 250 nm diameter magnetic beads using a lab-on-chip platform based on current lines for exciting the beads with alternating magnetic fields and highly sensitive magnetic tunnel junction (MTJ) sensors with a superparamagnetic free...

  2. Highly Stable On-Chip Embedded Organic Whispering Gallery Mode Lasers

    NARCIS (Netherlands)

    Lu, Shi-Yang; Fang, Hong-Hua; Feng, Jing; Xia, Hong; Zhang, Tie-Qiang; Chen, Qi-Dai; Sun, Hong-Bo; Fang, Honghua

    2014-01-01

    Chip-embedded organic resonator is fabricated with 2,5-Bis(4-biphenylyl)thiophene (BP1T) crystals encapsulated with polydimethylsiloxane (PDMS). Whispering gallery mode lasing is demonstrated in these on-chip embedded crystalline microresonators, without decline in the spectral properties, and perfo

  3. Integrated separation and optical detection for novel on-chip chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Warren, M.E.; Anex, D.S.; Rakestraw, D.; Gourley, P.L.

    1998-03-01

    This report represents the completion of a two years Laboratory Directed Research and Development (LDRD) program to investigate miniaturized systems for chemical detection and analysis. The future of advanced chemical detection and analysis is in miniature devices that are able to characterize increasingly complex samples, a laboratory on a chip. In this concept, chemical operations used to analyze complicated samples in a chemical laboratory sample handling, species separation, chemical derivitization and detection are incorporated into a miniature device. By using electrokinetic flow, this approach does not require pumps or valves, as fluids in microfabricated channels can be driven by externally applied voltages. This is ideal for sample handling in miniature devices. This project was to develop truly miniature on-chip optical systems based on Vertical Cavity Surface Emitting Lasers (VCSELs) and diffractive optics. These can be built into a complete system that also has on-chip electrokinetic fluid handling and chemical separation in a microfabricated column. The primary goal was the design and fabrication of an on-chip separation column with fluorescence sources and detectors that, using electrokinetic flow, can be used as the basis of an automated chemical analysis system. Secondary goals involved investigation of a dispersed fluorescence module that can be used to extend the versatility of the basic system and on chip, intracavity laser absorption as a high sensitivity detection technique.

  4. Microfluidic cytometers with integrated on-chip optical components for blood cell analysis

    Science.gov (United States)

    Zhao, Yingying; Li, Qin; Hu, Xiao-Ming

    2016-10-01

    In the last two decades, microfluidic technologies have shown the great potential in developing portable and point-of care testing blood cell analysis devices. It is challenging to integrate all free-space detecting components in a single microfluidic platform. In this paper, a microfluidic cytometer with integrated on-chip optical components was demonstrated. To facilitate on-chip detection, the device integrated optical fibers and on-chip microlens with microfluidic channels on one polydimethylsiloxane layer by standard soft photolithography. This compact design increased the sensitivity of the device and also eliminated time-consuming free-space optical alignments. Polystyrene particles, together with red blood cells and platelets, were measured in the microfluidic cytometer by small angle forward scatter. Experimental results indicated that the performance of the microfluidic device was comparable to a conventional cytometer. And it was also demonstrated its ability to detect on-chip optical signals in a highly compact, simple, truly portable and low cost format which was perfect suitable for point-of-care testing clinical hematology diagnostics.

  5. Analysis and design of an on-chip retargeting engine for IEEE 1687 networks

    NARCIS (Netherlands)

    Ibrahim, Ahmed; Kerkhoff, Hans G.

    2016-01-01

    IEEE 1687 (iJTAG) standard introduces a methodology for accessing the increasing number of embedded instruments found in modern System-on-Chips. Retargeting is defined by iJTAG as the procedure of translating instrument-level patterns to system-level scan vectors for a certain network organization.

  6. Heat management in integrated circuits on-chip and system-level monitoring and cooling

    CERN Document Server

    Ogrenci-Memik, Seda

    2016-01-01

    This essential overview covers the subject of thermal monitoring and management in integrated circuits. Specifically, it focuses on devices and materials that are intimately integrated on-chip (as opposed to in-package or on-board) for the purposes of thermal monitoring and thermal management.

  7. Vertical Integration of System-on-Chip Concepts in the Digital Design Curriculum

    Science.gov (United States)

    Tang, Ying; Head, L. M.; Ramachandran, R. P.; Chatman, L. M.

    2011-01-01

    The rapid evolution of System-on-Chip (SoC) challenges academic curricula to keep pace with multidisciplinary/interdisciplinary system thinking. This paper presents a curricular prototype that cuts across artificial course boundaries and provides a meaningful exploration of diverse facets of SoC design. Specifically, experimental contents of a…

  8. Overview of status and challenges of system testing on chip with embedded DRAMS

    Science.gov (United States)

    Falter, T.; Richter, D.

    2000-05-01

    The combination of logic together with DRAM as a system on chip (SOC) has many advantages for a large variety of computing and network applications. The goal of testing a system is to detect the fabrication caused faults in order to guarantee the defined quality. The increasing size of memories, shrinking dimensions, higher demands on application (frequency and temperature range) and quality cause new problems and higher costs of testing. On the other hand the pressure to serve the market with low cost products forces the test engineer to reduce test costs by reducing test times and using low cost test equipment. Different solutions are discussed in this paper in order to meet these challenges. The variety of test approaches for testing SOC with embedded DRAMs reaches from testing with completely chip external test logic, a simple on-chip test logic up to a full blown built-in self test (BIST) on chip. Which choice is the right one depends on different criteria e.g. memory size, quality demands and application of the product. As an example the modular embedded DRAM core concept from Infineon Technologies is discussed, which includes a dedicated modular test concept based on on-chip integration of a test controller.

  9. A Metaheuristic Scheduler for Time Division Multiplexed Network-on-Chip

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Bo; Sparsø, Jens; Pedersen, Mark Ruvald

    2014-01-01

    This paper presents a metaheuristic scheduler for inter-processor communication in multi-processor platforms using time division multiplexed (TDM) networks on chip (NOC). Compared to previous works, the scheduler handles a broader and more general class of platforms. Another contribution, which has...

  10. CoMPSoC: a template for composable and predictable multi-processor system on chips

    NARCIS (Netherlands)

    Hansson, Andreas; Goossens, Kees; Bekooij, Marco; Huisken, Jos

    2009-01-01

    A growing number of applications, often with firm or soft real-time requirements, are integrated on the same System on Chip, in the form of either hardware or software intellectual property. The applications are started and stopped at run time, creating different use-cases. Resources, such as interc

  11. On-chip detection of ferromagnetic resonance of a single submicron Permalloy strip

    NARCIS (Netherlands)

    Costache, M. V.; Sladkov, M.; van der Wal, C. H.; van Wees, B. J.

    2006-01-01

    The authors measured ferromagnetic resonance of a single submicron ferromagnetic strip, embedded in an on-chip microwave transmission line device. The method used is based on detection of the oscillating magnetic flux due to the magnetization dynamics, with an inductive pickup loop. The dependence o

  12. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.

    Science.gov (United States)

    Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D

    2017-08-30

    Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.

  13. Study of Network on Chip resources allocation for QoS Management

    Directory of Open Access Journals (Sweden)

    Abdelhamid HELALI

    2006-01-01

    Full Text Available The increasing complexity of integrated circuits and application requirements drive the research of new on-chip interconnection architectures. A network on chip draws on concepts inherited from distributed systems and computer networks subject areas to interconnect IP cores in a structured and scalable way. The main goal pursued is to achieve superior bandwidth when compared to conventional on-chip bus architectures. The complexity of Systems-on-Chip (SoC is growing; meeting real-time requirements is becoming increasingly difficult. Predictability for computation, memory and communication components are needed to build up real-time SoC. To achieve guaranteed throughput and bounded delivery delay, buffers in network interfaces (NIs must be dimensioned to hide round-trip latency and rate difference between computation and IPs communication.. It is crucial to shape these buffers according to the network requirements and to bring out the right specification before the design step to provide desired performances in the SoC. In this field this paper describes and presents a performance analyses of NoC shaped on mesh architecture. The goal of this work is to quantify buffering requirements in the NoC nodes by the analyze of some QoS metrics such as drop, compute latency, and throughput. This study presented in this paper is based on simulation approach of a mesh (4 x 4 NoC behavior under multimedia communication process with MPEG-4 (Moving Picture Experts Group flows.

  14. Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas

    DEFF Research Database (Denmark)

    Zenin, Vladimir A.; Andryieuski, Andrei; Malureanu, Radu

    2015-01-01

    -field enhancement that can advantageously be exploited in modern optical nanotechnologies, including signal processing, biochemical sensing, imaging, and spectroscopy. Here, we propose, analyze, and experimentally demonstrate on-chip nanofocusing followed by impedance-matched nanowire antenna excitation in the end...

  15. Low-Power, High-Speed Transceivers for Network-on-Chip Communication

    NARCIS (Netherlands)

    Schinkel, Daniel; Mensink, E.; Klumperink, Eric A.M.; van Tuijl, Adrianus Johannes Maria; Nauta, Bram

    2009-01-01

    Networks on chips (NoCs) are becoming popular as they provide a solution for the interconnection problems on large integrated circuits (ICs). But even in a NoC, link-power can become unacceptably high and data rates are limited when conventional data transceivers are used. In this paper, we present

  16. Simple and stable transendothelial electrical resistance measurement in organs-on-chips

    NARCIS (Netherlands)

    van der Helm, Marieke Willemijn; Odijk, Mathieu; Frimat, Jean-Philippe; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene

    2015-01-01

    Measuring transendothelial electrical resistance (TEER) is a popular way to monitor cellular barrier tightness in organs-on-chips. However, in these devices integrated electrodes often block sight on the cells and the measured part often includes fluid-filled channels with variable resistance.

  17. Integration of a Pulse Generator on Chip Into a Compact Ultrawideband Antenna

    NARCIS (Netherlands)

    Vorobyov, A.V.; Bagga, S.; Yarovoy, A.G.; Haddad, S.A.P.; Serdijn, W.A.; Long, J.R.; Irahhauten, Z.; Ligthart, L.P.

    For impulse radio ultrawideband communications an “antenna plus generator” system is co-designed and an on chip generator is integrated into the antenna. This approach does away with the need for intermediate transmission lines conventionally placed between an RF device/generator and an antenna and

  18. Integration of a Pulse Generator on Chip Into a Compact Ultrawideband Antenna

    NARCIS (Netherlands)

    Vorobyov, A.V.; Bagga, S.; Yarovoy, A.G.; Haddad, S.A.P.; Serdijn, W.A.; Long, J.R.; Irahhauten, Z.; Ligthart, L.P.

    For impulse radio ultrawideband communications an “antenna plus generator” system is co-designed and an on chip generator is integrated into the antenna. This approach does away with the need for intermediate transmission lines conventionally placed between an RF device/generator and an antenna and

  19. Power Efficient Gigabit Communication Over Capacitively Driven RC-Limited On-Chip Interconnects

    NARCIS (Netherlands)

    Mensink, Eisse; Schinkel, Daniël; Klumperink, Eric A.M.; Tuijl, van Ed; Nauta, Bram

    2010-01-01

    This paper presents a set of circuit techniques to achieve high data rate point-to-point communication over long on-chip RC-limited wire-pairs. The ideal line termination impedances for a flat transfer function with linear phase (pure delay) are derived, using an s-parameter wire-pair model. It is s

  20. Synthesis and Layout of an Asynchronous Network-on-Chip using Standard EDA Tools

    DEFF Research Database (Denmark)

    Müller, Christoph; Kasapaki, Evangelia; Sørensen, Rasmus Bo

    2014-01-01

    is the key role that clock signals play in specifying time-constraints for the synthesis. In this paper explain how we handled the synthesis and layout of an asynchronous network-on-chip for a multi-core platform. Focus is on the design process while the actual NOC-design and its performance are presented...

  1. A Scheduling Discipline for Latency and Bandwidth Guarantees in Asynchronous Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Sparsø, Jens

    2005-01-01

    Guaranteed services (GS) are important in that they provide predictability in the complex dynamics of shared communication structures. This paper discusses the implementation of GS in asynchronous Network-on-Chip. We present a novel scheduling discipline called Asynchronous Latency Guarantee (ALG...

  2. A Statically Scheduled Time-Division-Multiplexed Network-on-Chip for Real-Time Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Brandner, Florian; Sparsø, Jens

    2012-01-01

    This paper explores the design of a circuit-switched network-on-chip (NoC) based on time-division-multiplexing (TDM) for use in hard real-time systems. Previous work has primarily considered application-specific systems. The work presented here targets general-purpose hardware platforms. We...

  3. An On-Chip interconnect and protocol stack for multiple communication paradigms and programming models

    NARCIS (Netherlands)

    Hansson, Andreas; Goossens, Kees

    2009-01-01

    A growing number of applications, with diverse requirements, are integrated on the same System on Chip (SoC) in the form of hardware and software Intellectual Property (IP). The diverse requirements, coupled with the IPs being developed by unrelated design teams, lead to multiple communication parad

  4. Hong-Ou-Mandel Interference in Circuit QED Experiments

    Science.gov (United States)

    Woolley, Matthew; Lang, Christian; Eichler, Christopher; Wallraff, Andreas; Blais, Alexandre

    2012-02-01

    The Hong-Ou-Mandel (HOM) effect is a quantum interference effect whereby two indistinguishable photons incident at either side of a balanced beam splitter will be detected together at one output port or the other, but never with one photon at each output port. Such experiments have long been performed in the optical domain, but recent developments have raised the possibility of performing such experiments in the microwave domain, using linear amplifiers and quadrature amplitude detectors instead of photon counting [Bozyigit et al., Nat. Phys. 7, 154-158 (2010)]. Here we determine the signature of HOM interference in a system consisting of two independent circuit QED systems out-coupled into an on-chip microwave beam splitter. We have calculated the beam splitter output intensity auto- and cross-correlations for both trains of pulsed Lorentzian photons, and continuously-driven sources based on photon blockade. The HOM interference is manifest as antibunching in the output intensity cross-correlation. Controllable distinguishability may be introduced via a time delay in the pulsed case, or via a frequency offset in the continuously-driven case. The frequency offset leads to a quantum beat effect. Preliminary experimental results will be discussed.

  5. Destructive Interference of Dualities

    CERN Document Server

    Wotzasek, C

    1998-01-01

    We show that the fusion of two (diffeomorphism) invariant self-dual scalars described by right and left chiral-WZW actions, produces a Hull non-mover field. After fusion, right and left moving modes disappear from the spectrum, displaying in this way the phenomenon of (destructive) quantum interference of dualities.

  6. Interference Alignment for Secrecy

    CERN Document Server

    Koyluoglu, Onur Ozan; Lai, Lifeng; Poor, H Vincent

    2008-01-01

    This paper studies the frequency/time selective $K$-user Gaussian interference channel with secrecy constraints. Two distinct models, namely the interference channel with confidential messages and the one with an external eavesdropper, are analyzed. The key difference between the two models is the lack of channel state information (CSI) about the external eavesdropper. Using interference alignment along with secrecy pre-coding, it is shown that each user can achieve non-zero secure Degrees of Freedom (DoF) for both cases. More precisely, the proposed coding scheme achieves $\\frac{K-2}{2K-2}$ secure DoF {\\em with probability one} per user in the confidential messages model. For the external eavesdropper scenario, on the other hand, it is shown that each user can achieve $\\frac{K-2}{2K}$ secure DoF {\\em in the ergodic setting}. Remarkably, these results establish the {\\em positive impact} of interference on the secrecy capacity region of wireless networks.

  7. Quantum interference in polyenes

    Science.gov (United States)

    Tsuji, Yuta; Hoffmann, Roald; Movassagh, Ramis; Datta, Supriyo

    2014-12-01

    The explicit form of the zeroth Green's function in the Hückel model, approximated by the negative of the inverse of the Hückel matrix, has direct quantum interference consequences for molecular conductance. We derive a set of rules for transmission between two electrodes attached to a polyene, when the molecule is extended by an even number of carbons at either end (transmission unchanged) or by an odd number of carbons at both ends (transmission turned on or annihilated). These prescriptions for the occurrence of quantum interference lead to an unexpected consequence for switches which realize such extension through electrocyclic reactions: for some specific attachment modes the chemically closed ring will be the ON position of the switch. Normally the signs of the entries of the Green's function matrix are assumed to have no physical significance; however, we show that the signs may have observable consequences. In particular, in the case of multiple probe attachments - if coherence in probe connections can be arranged - in some cases new destructive interference results, while in others one may have constructive interference. One such case may already exist in the literature.

  8. Quantum interference in polyenes

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Yuta; Hoffmann, Roald, E-mail: rh34@cornell.edu [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853 (United States); Movassagh, Ramis [Department of Mathematics, Northeastern University, Boston, Massachusetts 02115, USA and Department of Mathematics, Massachusetts Institute of Technology, Building E18, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307 (United States); Datta, Supriyo [School of Electrical and Computer Engineering, Purdue University, Electrical Engineering Building, 465 Northwestern Ave., West Lafayette, Indiana 47907-2035 (United States)

    2014-12-14

    The explicit form of the zeroth Green's function in the Hückel model, approximated by the negative of the inverse of the Hückel matrix, has direct quantum interference consequences for molecular conductance. We derive a set of rules for transmission between two electrodes attached to a polyene, when the molecule is extended by an even number of carbons at either end (transmission unchanged) or by an odd number of carbons at both ends (transmission turned on or annihilated). These prescriptions for the occurrence of quantum interference lead to an unexpected consequence for switches which realize such extension through electrocyclic reactions: for some specific attachment modes the chemically closed ring will be the ON position of the switch. Normally the signs of the entries of the Green's function matrix are assumed to have no physical significance; however, we show that the signs may have observable consequences. In particular, in the case of multiple probe attachments – if coherence in probe connections can be arranged – in some cases new destructive interference results, while in others one may have constructive interference. One such case may already exist in the literature.

  9. Laser Interference Lithography

    NARCIS (Netherlands)

    van Wolferen, Hendricus A.G.M.; Abelmann, Leon; Hennessy, Theodore C.

    In this chapter we explain how submicron gratings can be prepared by Laser Interference Lithography (LIL). In this maskless lithography technique, the standing wave pattern that exists at the intersection of two coherent laser beams is used to expose a photosensitive layer. We show how to build the

  10. Downlink Interference Alignment

    CERN Document Server

    Suh, Changho; Tse, David

    2010-01-01

    We develop an interference alignment (IA) technique for a downlink cellular system. In the uplink, IA schemes need channel-state-information exchange across base-stations of different cells, but our downlink IA technique requires feedback only within a cell. As a result, the proposed scheme can be implemented with a few changes to an existing cellular system where the feedback mechanism (within a cell) is already being considered for supporting multi-user MIMO. Not only is our proposed scheme implementable with little effort, it can in fact provide substantial gain especially when interference from a dominant interferer (base-station) is significantly stronger than the remaining interference: it is shown that in the two-isolated cell layout, our scheme provides four-fold gain in throughput performance over a standard multi-user MIMO technique. We show through simulations that our technique provides respectable gain under more realistic scenarios: it gives approximately 55% and 20% gain for a linear cell layou...

  11. Interference and radioastronomy

    Science.gov (United States)

    Thompson, A. R.; Vanden Bout, Paul A.; Gergely, Tomas E.

    1991-11-01

    The vulnerabilty of radio astronomy to the growing flood of interfering sources ranging from garage door openers to digital audio broadcast satellites is reviewed. Technical solutions to these problems are briefly examined, and work that needs to be done in the international regulatory system to ameliorate the interference is addressed. An overview is given of existing regulations.

  12. Interference Decoding for Deterministic Channels

    CERN Document Server

    Bandemer, Bernd

    2010-01-01

    An inner bound to the capacity region of a class of three user pair deterministic interference channels is presented. The key idea is to simultaneously decode the combined interference signal and the intended message at each receiver. It is shown that this interference decoding inner bound is strictly larger than the inner bound obtained by treating interference as noise, which includes interference alignment for deterministic channels. The gain comes from judicious analysis of the number of combined interference sequences in different regimes of input distributions and message rates.

  13. ChIP on chip and ChIP-Seq assays: genome-wide analysis of transcription factor binding and histone modifications.

    Science.gov (United States)

    Pillai, Smitha; Chellappan, Srikumar P

    2015-01-01

    Deregulation of transcriptional activity of many genes has been causatively linked to human diseases including cancer. Altered patterns of gene expression in normal and cancer cells are the result of inappropriate expression of transcription factors and chromatin modifying proteins. Chromatin immunoprecipitation assay is a well-established tool for investigating the interactions between regulatory proteins and DNA at distinct stages of gene activation. ChIP coupled with DNA microarrays, known as ChIP on chip, or sequencing of DNA associated with the factors (ChIP-Seq) allow us to determine the entire spectrum of in vivo DNA binding sites for a given protein. This has been of immense value because ChIP on chip assays and ChIP-Seq experiments can provide a snapshot of the transcriptional regulatory mechanisms on a genome-wide scale. This chapter outlines the general strategies used to carry out ChIP-chip assays to study the differential recruitment of regulatory molecules based on the studies conducted in our lab as well as other published protocols; these can be easily modified to a ChIP-Seq analysis.

  14. Transmission of Correlated Messages over Interference Channels with Strong Interference

    Science.gov (United States)

    Choi, Suhan; Yoon, Eunchul; Moon, Hichan

    Transmission of correlated messages over interference channels with strong interference is considered. As a result, an achievable rate region is presented. It is shown that if the messages are correlated, the achievable rate region can be larger than the capacity region given by Costa and El Gamal. As an example, the Gaussian interference channel is considered.

  15. Electromagnetic interference: a radiant future!

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the S

  16. Electromagnetic interference: a radiant future!

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the

  17. An Energy-Efficient High-Throughput Mesh-Based Photonic On-Chip Interconnect for Many-Core Systems

    OpenAIRE

    Achraf Ben Ahmed; Abderazek Ben Abdallah

    2016-01-01

    Future high-performance embedded and general purpose processors and systems-on-chip are expected to combine hundreds of cores integrated together to satisfy the power and performance requirements of large complex applications. As the number of cores continues to increase, the employment of low-power and high-throughput on-chip interconnect fabrics becomes imperative. In this work, we present a novel mesh-based photonic on-chip interconnect, named PHENIC-II, for future high-performance many-co...

  18. Recent lab-on-chip developments for novel drug discovery.

    Science.gov (United States)

    Khalid, Nauman; Kobayashi, Isao; Nakajima, Mitsutoshi

    2017-02-17

    Microelectromechanical systems (MEMS) and micro total analysis systems (μTAS) revolutionized the biochemical and electronic industries, and this miniaturization process became a key driver for many markets. Now, it is a driving force for innovations in life sciences, diagnostics, analytical sciences, and chemistry, which are called 'lab-on-a-chip, (LOC)' devices. The use of these devices allows the development of fast, portable, and easy-to-use systems with a high level of functional integration for applications such as point-of-care diagnostics, forensics, the analysis of biomolecules, environmental or food analysis, and drug development. In this review, we report on the latest developments in fabrication methods and production methodologies to tailor LOC devices. A brief overview of scale-up strategies is also presented together with their potential applications in drug delivery and discovery. The impact of LOC devices on drug development and discovery has been extensively reviewed in the past. The current research focuses on fast and accurate detection of genomics, cell mutations and analysis, drug delivery, and discovery. The current research also differentiates the LOC devices into new terminology of microengineering, like organ-on-a-chip, stem cells-on-a-chip, human-on-a-chip, and body-on-a-chip. Key challenges will be the transfer of fabricated LOC devices from lab-scale to industrial large-scale production. Moreover, extensive toxicological studies are needed to justify the use of microfabricated drug delivery vehicles in biological systems. It will also be challenging to transfer the in vitro findings to suitable and promising in vivo models. For further resources related to this article, please visit the WIREs website.

  19. Quasi-3D modeling, design, and analysis of symmetric on-chip inductors in silicon-on-sapphire technology

    Science.gov (United States)

    Kong, Wan-Chul; Al-Sarawi, Said F.; Lim, Cheng-Chew; Wong, Louis

    2004-03-01

    A design and analysis of symmetric on-chip planar inductors are presented based in 0.5 μm silicon-on-sapphire CMOS process of Peregrine Semiconductor. Compared to conventional CMOS processes, an insulating thick sapphire (Al2O3) substrate enables higher quality factor inductors due to low energy loss in the substrate. In addition, symmetric cross-coupled configuration of identical asymmetric inductors of thick top metalization minimizes the insertion loss. Such differentially connected inductors are simulated on 2.5D electromagnetic field environment and a modeling method of quasi-3D structures is introduced for the metal strips. Maximum quality factor of 53.6 with 2.34 nH at 8.9 GHz is achieved by optimizing the symmetric circular inductors. This inductor is used in the design of a low power (0.42 mW) LC VCO operating at 5.8 GHz and exhibits a phase noise of -120.6 dBc/Hz at 3 MHz offset frequency.

  20. Comparative proteomic analysis of normal and tumor stromal cells by tissue on chip based mass spectrometry (toc-MS

    Directory of Open Access Journals (Sweden)

    Friedrich Karlheinz

    2010-01-01

    Full Text Available Abstract In carcinoma tissues, genetic and metabolic changes not only occur at the tumor cell level, but also in the surrounding stroma. This carcinoma-reactive stromal tissue is heterogeneous and consists e.g. of non-epithelial cells such as fibroblasts or fibrocytes, inflammatory cells and vasculature-related cells, which promote carcinoma growth and progression of carcinomas. Nevertheless, there is just little knowledge about the proteomic changes from normal connective tissue to tumor stroma. In the present study, we acquired and analysed specific protein patterns of small stromal sections surrounding head and neck cell complexes in comparison to normal subepithelial connective tissue. To gain defined stromal areas we used laser-based tissue microdissection. Because these stromal areas are limited in size we established the highly sensitive 'tissue on chip based mass spectrometry' (toc-MS. Therefore, the dissected areas were directly transferred to chromatographic arrays and the proteomic profiles were subsequently analysed with mass spectrometry. At least 100 cells were needed for an adequate spectrum. The locating of differentially expressed proteins enables a precise separation of normal and tumor stroma. The newly described toc-MS technology allows an initial insight into proteomic differences between small numbers of exactly defined cells from normal and tumor stroma.

  1. On-Chip Implantable Antennas for Wireless Power and Data Transfer in a Glaucoma-Monitoring SoC

    KAUST Repository

    Marnat, Loic

    2013-02-02

    For the first time separate transmit and receive onchip antennas have been designed in a eye environment for implantable intraocular pressure monitoring application. The miniaturized antennas fit on a 1.4 mm3 CMOS (0.18 μm) chip with the rest of the circuitry. A 5.2 GHz novel inductive fed and loaded receive monopole antenna is used for wireless powering the chip and is conjugately matched to the rectifier in the energy harvesting and storage unit. The 2.4 GHz transmit antenna is an octagonal loop which also acts as the inductor of the voltage control oscillator resonant tank. To emulate the eye environment in measurements, a custom test setup is developed which comprises plexiglass cavities filled with saline solution. A transition, employing a balun, is also designed which transforms the differential impedance of on-chip antennas immersed in saline solution to a 50 ! single-ended micrsotrip line. The antennas on a lossy Si substrate and eye environment provide sufficient gain to establish wireless communication with an external reader placed few cm away from the eye.

  2. On-Chip Implantable Antennas for Wireless Power and Data Transfer in a Glaucoma-Monitoring SoC

    KAUST Repository

    Marnat, Loic

    2013-04-17

    For the first time separate transmit and receive onchip antennas have been designed in a eye environment for implantable intraocular pressure monitoring application. The miniaturized antennas fit on a 1.4 mm3 CMOS (0.18 μm) chip with the rest of the circuitry. A 5.2 GHz novel inductive fed and loaded receive monopole antenna is used for wireless powering the chip and is conjugately matched to the rectifier in the energy harvesting and storage unit. The 2.4 GHz transmit antenna is an octagonal loop which also acts as the inductor of the voltage control oscillator resonant tank. To emulate the eye environment in measurements, a custom test setup is developed which comprises plexiglass cavities filled with saline solution. A transition, employing a balun, is also designed which transforms the differential impedance of on-chip antennas immersed in saline solution to a 50 ! single-ended micrsotrip line. The antennas on a lossy Si substrate and eye environment provide sufficient gain to establish wireless communication with an external reader placed few cm away from the eye.

  3. Influence of Electric Fields and Conductivity on Pollen Tube Growth assessed via Electrical Lab-on-Chip.

    Science.gov (United States)

    Agudelo, Carlos; Packirisamy, Muthukumaran; Geitmann, Anja

    2016-01-25

    Pollen tubes are polarly growing plant cells that are able to rapidly respond to a combination of chemical, mechanical, and electrical cues. This behavioural feature allows them to invade the flower pistil and deliver the sperm cells in highly targeted manner to receptive ovules in order to accomplish fertilization. How signals are perceived and processed in the pollen tube is still poorly understood. Evidence for electrical guidance in particular is vague and highly contradictory. To generate reproducible experimental conditions for the investigation of the effect of electric fields on pollen tube growth we developed an Electrical Lab-on-Chip (ELoC). Pollen from the species Camellia displayed differential sensitivity to electric fields depending on whether the entire cell or only its growing tip was exposed. The response to DC fields was dramatically higher than that to AC fields of the same strength. However, AC fields were found to restore and even promote pollen growth. Surprisingly, the pollen tube response correlated with the conductivity of the growth medium under different AC frequencies--consistent with the notion that the effect of the field on pollen tube growth may be mediated via its effect on the motion of ions.

  4. Interference Confocal Microscope Integrated with Spatial Phase Shifter.

    Science.gov (United States)

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-08-24

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.

  5. Compact high-resolution micro-spectrometer on chip: spectral calibration and first spectrum

    Science.gov (United States)

    Diard, Thomas; de la Barrière, Florence; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Le Coarer, Etienne; Martin, Guillermo

    2016-05-01

    Compact and hand-held spectrometers may be very interesting for the measurement of spectral signatures of chemicals or objects. To achieve this goal, ONERA and IPAG have developed a new on chip Fourier Transform Spectrometer operating in the visible spectral range with a high spectral resolution (near 2 cm-1), named visible HR SPOC (visible High Resolution Spectrometer On Chip). It is directly inspired from the MICROSPOC infrared spectrometer, studied at ONERA in the past years. This spectrometer is made of a stair-step two-wave interferometer directly glued on a CMOS detector making it a very compact prototype. After calibrating the optical path difference, measurements of experimental spectra are presented.

  6. Lab-on-chip for liquid biopsy (LoC-LB) based on dielectrophoresis.

    Science.gov (United States)

    Mathew, Bobby; Alazzam, Anas; Khashan, Saud; Abutayeh, Mohammad

    2017-03-01

    This short communication presents the proof-of-concept of a novel dielectrophoretic lab-on-chip for identifying/separating circulating tumor cells for purposes of liquid biopsy. The device consists of a polydimethylsiloxane layer, containing a microchannel, bonded on a glass substrate that holds two sets of planar interdigitated transducer electrodes. The lab-on-chip is operated at a frequency that enables dielectrophoretic force to sort cells, based on type, along the lateral direction. The operating frequency ensures attraction force toward the electrodes on cancer cells and repulsion force toward the center of the microchannel on other cells. Initial tests for demonstrating proof-of-concept have successfully identified/separated green fluorescent protein-labelled MDA-MB-231 breast cancer cells from a mixture of the same and regular blood cells suspended in low conductivity sucrose/dextrose medium.

  7. Low latency on chip communication based on hybrid NOC Architecture using X-Y router

    Directory of Open Access Journals (Sweden)

    Tejas wini Deotare

    2014-05-01

    Full Text Available On-chip co mmunication has two different type of architecture which can be classified as Bus and mesh based Networks- on-Chip (No C. Each of them has diffe rent features and applications. In this paper, we construct the hybrid architecture with using bus and mesh NOC architecture. In the hybrid architecture, heavy communication affinity IPcores are placed in the same subsystem. and this large mesh No C get partitioned into several subsystems and one on one individual IPs, so that there is the reduction in the transmission latency of NoC.Efficient partition and mapping algorith m is proposed for reduction of the latency on the hybrid NOC arch itecture.It shows that an average latency improvement of 17.6% and more can be obtained when compared with the conventional mesh No C arch itecture.

  8. ASIC design of a digital fuzzy system on chip for medical diagnostic applications.

    Science.gov (United States)

    Roy Chowdhury, Shubhajit; Roy, Aniruddha; Saha, Hiranmay

    2011-04-01

    The paper presents the ASIC design of a digital fuzzy logic circuit for medical diagnostic applications. The system on chip under consideration uses fuzzifier, memory and defuzzifier for fuzzifying the patient data, storing the membership function values and defuzzifying the membership function values to get the output decision. The proposed circuit uses triangular trapezoidal membership functions for fuzzification patients' data. For minimizing the transistor count, the proposed circuit uses 3T XOR gates and 8T adders for its design. The entire work has been carried out using TSMC 0.35 µm CMOS process. Post layout TSPICE simulation of the whole circuit indicates a delay of 31.27 ns and the average power dissipation of the system on chip is 123.49 mW which indicates a less delay and less power dissipation than the comparable embedded systems reported earlier.

  9. An on-chip coupled resonator optical waveguide single-photon buffer.

    Science.gov (United States)

    Takesue, Hiroki; Matsuda, Nobuyuki; Kuramochi, Eiichi; Munro, William J; Notomi, Masaya

    2013-01-01

    Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor.

  10. An on-chip coupled resonator optical waveguide single-photon buffer

    CERN Document Server

    Takesue, Hiroki; Kuramochi, Eiichi; Munro, Willian J; Notomi, Masaya

    2013-01-01

    Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single photon quantum information processing. Many of the core elements for such circuits have been realized including sources, gates and detectors. However, a significant missing function necessary for photonic information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line defect nanocavities. By using the CROW, a pulsed single photon was successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we showed that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor.

  11. Core-shell magnetic nanoparticles for on-chip RF inductors

    KAUST Repository

    Koh, Kisik

    2013-01-01

    FeNi3 based core-shell magnetic nanoparticles are demonstrated as the magnetic core material for on-chip, radio frequency (RF) inductors. FeNi3 nanoparticles with 50-150 nm in diameter with 15-20 nm-thick SiO2 coating are chemically synthesized and deposited on a planar inductor as the magnetic core to enhance both inductance (L) and quality factor (Q) of the inductor. Experimentally, the ferromagnetic resonant frequency of the on-chip inductors based on FeNi3 core-shell nanoparticles has been shown to be over several GHz. A post-CMOS process has been developed to integrate the magnetic nanoparticles to a planar inductor and inductance enhancements up to 50% of the original magnitude with slightly enhanced Q-factor up to 1 GHz have been achieved. © 2013 IEEE.

  12. Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation.

    Science.gov (United States)

    Ashok, P C; Marchington, R F; Mthunzi, P; Krauss, T F; Dholakia, K

    2010-03-15

    We describe the realization of integrated optical chromatography, in conjunction with on-chip fluorescence excitation, in a monolithically fabricated poly-dimethylsiloxane (PDMS) microfluidic chip. The unique endlessly-single-mode guiding property of the Photonic Crystal Fiber (PCF) facilitates simultaneous on-chip delivery of beams to perform optical sorting in conjunction with fluorescence excitation. We use soft lithography to define the chip and insert the specially capped PCF into it through a predefined fiber channel that is intrinsically aligned with the sorting channel. We compare the performance of the system to a standard ray optics model and use the system to demonstrate both size-driven and refractive index-driven separations of colloids. Finally we demonstrate a new technique of enhanced optofluidic separation of biological particles, by sorting of human kidney embryonic cells (HEK-293), internally tagged with fluorescing microspheres through phagocytocis, from those without microspheres and the separation purity is monitored using fluorescence imaging.

  13. Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs

    CERN Document Server

    Teuscher, Christof

    2007-01-01

    Future nano-scale electronics built up from an Avogadro number of components needs efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regular or fully customized, both of which represent implausible assumptions for emerging bottom-up self-assembled molecular electronics that are generally assumed to have a high degree of irregularity and imperfection. Here, we pragmatically and experimentally investigate important design trade-offs and properties of an irregular, abstract, yet physically plausible 3D small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, the number of switch nodes, the distribution of long- versus short-range connections, and measure the net...

  14. High Performance Hybrid Two Layer Router Architecture for FPGAs Using Network On Chip

    CERN Document Server

    Ezhumalai, P; Arun, C; Sakthivel, P; Sridharan, D

    2010-01-01

    Networks on Chip is a recent solution paradigm adopted to increase the performance of Multicore designs. The key idea is to interconnect various computation modules (IP cores) in a network fashion and transport packets simultaneously across them, thereby gaining performance. In addition to improving performance by having multiple packets in flight, NoCs also present a host of other advantages including scalability, power efficiency, and component reuse through modular design. This work focuses on design and development of high performance communication architectures for FPGAs using NoCs Once completely developed, the above methodology could be used to augment the current FPGA design flow for implementing multicore SoC applications. We design and implement an NoC framework for FPGAs, MultiClock OnChip Network for Reconfigurable Systems (MoCReS). We propose a novel microarchitecture for a hybrid two layer router that supports both packetswitched communications, across its local and directional ports, as well as...

  15. Modeling, analysis and optimization of network-on-chip communication architectures

    CERN Document Server

    Ogras, Umit Y

    2013-01-01

    Traditionally, design space exploration for Systems-on-Chip (SoCs) has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip and their performance continue to increase, the communication architecture plays a major role in the area, performance and energy consumption of the overall system. As a result, a shift from computation-based to communication-based design becomes mandatory. Towards this end, network-on-chip (NoC) communication architectures have emerged recently as a promising alternative to classical bus and point-to-point communication architectures. This book explores outstanding research problems related to modeling, analysis and optimization of NoC communication architectures. More precisely, we present novel design methodologies, software tools and FPGA prototypes to aid the design of application-specific NoCs.

  16. A survey of research and practices of network-on-chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Mahadevan, Shankar

    2006-01-01

    The scaling of microchip technologies has enabled large scale systems-on-chip (SoC). Network-on-chip (NoC) research addresses global communication in SoC, involving (i) a move from computation-centric to communication-centric design and (ii) the implementation of scalable communication structures....... This survey presents a perspective on existing NoC research. We define the following abstractions: system, network adapter, network, and link to explain and structure the fundamental concepts. First, research relating to the actual network design is reviewed. Then system level design and modeling...... are discussed. We also evaluate performance analysis techniques. The research shows that NoC constitutes a unification of current trends of intrachip communication rather than an explicit new alternative....

  17. The Distributed Network Processor: a novel off-chip and on-chip interconnection network architecture

    CERN Document Server

    Biagioni, Andrea; Lonardo, Alessandro; Paolucci, Pier Stanislao; Perra, Mersia; Rossetti, Davide; Sidore, Carlo; Simula, Francesco; Tosoratto, Laura; Vicini, Piero

    2012-01-01

    One of the most demanding challenges for the designers of parallel computing architectures is to deliver an efficient network infrastructure providing low latency, high bandwidth communications while preserving scalability. Besides off-chip communications between processors, recent multi-tile (i.e. multi-core) architectures face the challenge for an efficient on-chip interconnection network between processor's tiles. In this paper, we present a configurable and scalable architecture, based on our Distributed Network Processor (DNP) IP Library, targeting systems ranging from single MPSoCs to massive HPC platforms. The DNP provides inter-tile services for both on-chip and off-chip communications with a uniform RDMA style API, over a multi-dimensional direct network with a (possibly) hybrid topology.

  18. On-chip high-voltage generator design design methodology for charge pumps

    CERN Document Server

    Tanzawa, Toru

    2016-01-01

    This book provides various design techniques for switched-capacitor on-chip high-voltage generators, including charge pump circuits, regulators, level shifters, references, and oscillators.  Readers will see these techniques applied to system design in order to address the challenge of how the on-chip high-voltage generator is designed for Flash memories, LCD drivers, and other semiconductor devices to optimize the entire circuit area and power efficiency with a low voltage supply, while minimizing the cost.  This new edition includes a variety of useful updates, including coverage of power efficiency and comprehensive optimization methodologies for DC-DC voltage multipliers, modeling of extremely low voltage Dickson charge pumps, and modeling and optimum design of AC-DC switched-capacitor multipliers for energy harvesting and power transfer for RFID.

  19. Monitoring CO2 invasion processes at the pore scale using geological labs on chip.

    Science.gov (United States)

    Morais, S; Liu, N; Diouf, A; Bernard, D; Lecoutre, C; Garrabos, Y; Marre, S

    2016-09-21

    In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes.

  20. A CDMA Based Scalable Hierarchical Architecture for Network-On-Chip

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abd El Ghany

    2012-09-01

    Full Text Available A Scalable hierarchical architecture based Code-Division Multiple Access (CDMA is proposed for high performance Network-on-Chip (NoC. This hierarchical architecture provides the integration of a large number of IPs in a single on-chip system. The network encoding and decoding schemes for CDMA transmission are provided. The proposed CDMA NoC architecture is compared to the conventional architecture in terms of latency, area and power dissipation. The overall area required to implement the proposed CDMA NoC design is reduced by 24.2%. The design decreases the latency of the network by 40%. The total power consumption required to achieve the proposed design is also decreased by 25%.

  1. Buffer planning for application-specific networks-on-chip design

    Institute of Scientific and Technical Information of China (English)

    YIN ShouYi; LIU LeiBo; WEI ShaoJun

    2009-01-01

    Networks-on-chip (NoC) is a promising communication architecture for next generation SoC. The size of buffer used In on-chip routers impacts the silicon area and power consumption of NoC dominantly. It is important to plan the total buffer-size and each muter buffer-allocation carefully for an efficient NoC design. In this paper, we propose two buffer planning algorithms for application-specific NoC design. More precisely, given the traffic parameters and performance constraints of target application, the proposed algorithms automatically determine minimal buffer budget and assign the buffer depth for each input channel in different routers. The experimental results show that the proposed algorithms can significantly reduce total buffer usage and guarantee the performance requirements.

  2. Circuit Design of On-Chip BP Learning Neural Network with Programmable Neuron Characteristics

    Institute of Scientific and Technical Information of China (English)

    卢纯; 石秉学; 陈卢

    2000-01-01

    A circuit system of on chip BP(Back-Propagation) learning neural network with pro grammable neurons has been designed,which comprises a feedforward network,an error backpropagation network and a weight updating circuit. It has the merits of simplicity,programmability, speedness,low power-consumption and high density. A novel neuron circuit with pro grammable parameters has been proposed. It generates not only the sigmoidal function but also its derivative. HSPICE simulations are done to a neuron circuit with level 47 transistor models as a standard 1.2tμm CMOS process. The results show that both functions are matched with their respec ive ideal functions very well. The non-linear partition problem is used to verify the operation of the network. The simulation result shows the superior performance of this BP neural network with on-chip learning.

  3. Debugging systems-on-chip communication-centric and abstraction-based techniques

    CERN Document Server

    Vermeulen, Bart

    2014-01-01

    This book describes an approach and supporting infrastructure to facilitate debugging the silicon implementation of a System-on-Chip (SOC), allowing its associated product to be introduced into the market more quickly.  Readers learn step-by-step the key requirements for debugging a modern, silicon SOC implementation, nine factors that complicate this debugging task, and a new debug approach that addresses these requirements and complicating factors.  The authors’ novel communication-centric, scan-based, abstraction-based, run/stop-based (CSAR) debug approach is discussed in detail, showing how it helps to meet debug requirements and address the nine, previously identified factors that complicate debugging silicon implementations of SOCs. The authors also derive the debug infrastructure requirements to support debugging of a silicon implementation of an SOC with their CSAR debug approach. This debug infrastructure consists of a generic on-chip debug architecture, a configurable automated design-for-debug ...

  4. Ant colony optimization approach for test scheduling of system on chip

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; PAN Zhong-liang

    2009-01-01

    It is necessary to perform the test of system on chip, the test scheduling determines the test start and finishing time of every core in the system on chip such that the overall test time is minimized. A new test scheduling approach based on chaotic ant colony algorithm is presented in this paper. The optimization model of test scheduling was studied, the model uses the information such as the scale of test sets of both cores and user defined logic. An approach based on chaotic ant colony algorithm was proposed to solve the optimization model of test scheduling. The test of signal integrity faults such as crosstalk were also investigated when performing the test scheduling. Experimental results on many circuits show that the proposed approach can be used to solve test scheduling problems.

  5. On-Chip Test Infrastructure Design for Optimal Multi-Site Testing of System Chips

    CERN Document Server

    Goel, Sandeep Kumar

    2011-01-01

    Multi-site testing is a popular and effective way to increase test throughput and reduce test costs. We present a test throughput model, in which we focus on wafer testing, and consider parameters like test time, index time, abort-on-fail, and contact yield. Conventional multi-site testing requires sufficient ATE resources, such as ATE channels, to allow to test multiple SOCs in parallel. In this paper, we design and optimize on-chip DfT, in order to maximize the test throughput for a given SOC and ATE. The on-chip DfT consists of an E-RPCT wrapper, and, for modular SOCs, module wrappers and TAMs. We present experimental results for a Philips SOC and several ITC'02 SOC Test Benchmarks.

  6. Sequential and selective localized optical heating in water via on-chip dielectric nanopatterning.

    Science.gov (United States)

    Morsy, Ahmed M; Biswas, Roshni; Povinelli, Michelle L

    2017-07-24

    We study the use of nanopatterned silicon membranes to obtain optically-induced heating in water. We show that by varying the detuning between an absorptive optical resonance of the patterned membrane and an illumination laser, both the magnitude and response time of the temperature rise can be controlled. This allows for either sequential or selective heating of different patterned areas on chip. We obtain a steady-state temperature of approximately 100 °C for a 805.5nm CW laser power density of 66 µW/μm(2) and observe microbubble formation. The ability to spatially and temporally control temperature on the microscale should enable the study of heat-induced effects in a variety of chemical and biological lab-on-chip applications.

  7. A Complete Multi-Processor System-on-Chip FPGA-Based Emulation Framework

    OpenAIRE

    Valle, Del; Pablo, G.; Atienza, David; Magan, Ivan; Flores, Javier G.; Perez, Esther A.; Mendias, Jose M.; Benini, Luca; De Micheli, Giovanni

    2006-01-01

    With the growing complexity in consumer embedded products and the improvements in process technology, Multi-Processor System-On-Chip (MPSoC) architectures have become widespread. These new systems are very complex to design as they must execute multiple complex real-time applications (e.g. video processing, or videogames), while meeting several additional design constraints (e.g. energy consumption or time-to-market). Therefore, mechanisms to efficiently explore the different possible HW-SW d...

  8. Thermodynamics and efficiency of an autonomous on-chip Maxwell’s demon

    OpenAIRE

    Aki Kutvonen; Jonne Koski; Tapio Ala-Nissila

    2016-01-01

    In his famous letter in 1870, Maxwell describes how Joule's law can be violated only by the intelligent action of a mere guiding agent later coined as Maxwell's demon by Lord Kelvin. In this letter we study thermodynamics of information using an experimentally feasible Maxwell's demon setup based a single electron transistor capacitively coupled to a single electron box, where both the system and the Demon can be clearly identified. Such an engineered on-chip Demon measures and performes feed...

  9. Direct quantification of transendothelial electrical resistance in organs-on-chips.

    Science.gov (United States)

    van der Helm, Marinke W; Odijk, Mathieu; Frimat, Jean-Philippe; van der Meer, Andries D; Eijkel, Jan C T; van den Berg, Albert; Segerink, Loes I

    2016-11-15

    Measuring transendothelial or transepithelial electrical resistance (TEER) is a widely used method to monitor cellular barrier tightness in organs-on-chips. Unfortunately, integrated electrodes close to the cellular barrier hamper visual inspection of the cells or require specialized cleanroom processes to fabricate see-through electrodes. Out-of-view electrodes inserted into the chip's outlets are influenced by the fluid-filled microchannels with relatively high resistance. In this case, small changes in temperature or medium composition strongly affect the apparent TEER. To solve this, we propose a simple and universally applicable method to directly determine the TEER in microfluidic organs-on-chips without the need for integrated electrodes close to the cellular barrier. Using four electrodes inserted into two channels - two on each side of the porous membrane - and six different measurement configurations we can directly derive the isolated TEER independent of channel properties. We show that this method removes large variation of non-biological origin in chips filled with culture medium. Furthermore, we demonstrate the use of our method by quantifying the TEER of a monolayer of human hCMEC/D3 cerebral endothelial cells, mimicking the blood-brain barrier inside our microfluidic organ-on-chip device. We found stable TEER values of 22 Ω cm(2)±1.3 Ω cm(2) (average ± standard error of the mean of 4 chips), comparable to other TEER values reported for hCMEC/D3 cells in well-established Transwell systems. In conclusion, we demonstrate a simple and robust way to directly determine TEER that is applicable to any organ-on-chip device with two channels separated by a membrane. This enables stable and easily applicable TEER measurements without the need for specialized cleanroom processes and with visibility on the measured cell layer.

  10. Titanium nitride based hybrid plasmonic-photonic waveguides for on-chip plasmonic interconnects

    Science.gov (United States)

    Dutta, A.; Saha, S.; Kinsey, N.; Guler, U.; Shalaev, V. M.; Boltasseva, A.

    2017-02-01

    Over the past few decades, photonic technologies have emerged as a promising technology for data communications. They offer advantages such as high data bandwidths at comparable or even lower power consumption than electronics. However, photonic integrated circuits suffer from the diffraction limit of light which is a major obstacle in achieving small device footprints and densely packed on-chip interconnects. In recent years, plasmonics has emerged as a possible solution for densely packed on-chip nanophotonic circuitry. The field of plasmonics deals with oscillations of free electrons in a metal coupled to an electromagnetic field. The large wave-vector associated with these oscillations enables light to be localized in volumes much smaller than the diffraction limit. Consequently, there have been many demonstrations of plasmonic interconnects for on-chip communications, using well known metals such as gold and silver. However these materials are not CMOS compatible and hence their use is not technologically feasible. The growing need for plasmonic materials which are robust, cost-effective, and CMOS-compatible has led to the study of alternate plasmonic materials. For the visible and near infrared ranges, transition metal nitrides have been shown to be suitable metals for plasmonic applications These materials have optical properties comparable to that of gold and are CMOS-compatible, hence, they can be easily integrated into a silicon platform for on-chip applications. In this work, we demonstrate titanium nitride based plasmonic interconnects in an all-solid state geometry which can be easily integrated on a silicon platform.

  11. Performance Analysis and Implementationof Predictable Streaming Applications onMultiprocessor Systems-on-Chip

    OpenAIRE

    2010-01-01

    Driven by the increasing capacity of integrated circuits, multiprocessorsystems-on-chip (MPSoCs) are widely used in modern consumer electron-ics devices. In this thesis, the performance analysis and implementationmethodologies are explored to design predictable streaming applications onMPSoCs computing platforms. The application functionality and concur-rency are described in synchronous data flow (SDF) computational models,and two state-of-the-art architecture templates are adopted as multip...

  12. Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview

    OpenAIRE

    Sabo Wada Dutse; Nor Azah Yusof

    2011-01-01

    Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offe...

  13. Novel microfluidic platform for automated lab-on-chip testing of hypercoagulability panel.

    Science.gov (United States)

    Emani, Sirisha; Sista, Ramakrishna; Loyola, Hugo; Trenor, Cameron C; Pamula, Vamsee K; Emani, Sitaram M

    2012-12-01

    Current methods for hypercoagulability panel testing require large blood volumes and long turn-around testing times. A novel microfluidic platform has been designed to perform automated multiplexed hypercoagulability panel testing at near patient, utilizing only a single droplet of blood sample. We test the hypothesis that this novel platform could be utilized to perform specific multiplexed ELISA-based hypercoagulability panel testing for antithrombin III, protein C, protein S and factor VIII antigens, as well as anticardiolipin/human anti-β2-glycoprotein-1 IgG antibodies--on blood samples. Sandwich ELISA was modified by utilizing magnetic beads coated with specific antibodies as the solid phase using fluorescence readout. Percentage recovery was calculated using four-parameter logistic curves. On-chip ELISA with single factors was compared with multiplex factor ELISA for known concentrations of sample. Blood samples were analyzed on-chip and compared with traditional bench-top assays. Time for multiplexed performance of hypercoagulability panel ELISA on-chip with controls is 72 min. Recovery rates (range 80-120%) for known concentrations of specific factors was not significantly different when assays were performed using a single factor vs. multiplex factor analysis. Assay results were not significantly different between individual assays performed either on bench-top or on-chip with patient blood and/or plasma. Utilizing a novel digital microfluidic platform, we demonstrate the feasibility of automated hypercoagulability panel testing on small volume of plasma and whole blood patient samples with high fidelity. Further investigation is required to test the application of this novel technology at point-of-care clinical settings.

  14. Two-Dimensional Programmable Manipulation of Magnetic Nanoparticles on-Chip

    DEFF Research Database (Denmark)

    Sarella, Anandakumar; Torti, Andrea; Donolato, Marco

    2014-01-01

    A novel device is designed for on-chip selective trap and two-dimensional remote manipulation of single and multiple fluid-borne magnetic particles using field controlled magnetic domain walls in circular nanostructures. The combination of different ring-shaped nanostructures and field sequences...... allows for remote manipulation of magnetic particles with high-precision along any arbitrary pathway on a chip surface....

  15. Design of a Virtual Component Neutral Network-on-Chip Transaction Layer

    CERN Document Server

    Martin, Philippe

    2011-01-01

    Research studies have demonstrated the feasibility and advantages of Network-on-Chip (NoC) over traditional bus-based architectures but have not focused on compatibility communication standards. This paper describes a number of issues faced when designing a VC-neutral NoC, i.e. compatible with standards such as AHB 2.0, AXI, VCI, OCP, and various other proprietary protocols, and how a layered approach to communication helps solve these issues.

  16. Single-event upset (SEU) in a DRAM with on-chip error correction

    Science.gov (United States)

    Zoutendyk, J. A.; Schwartz, H. R.; Watson, R. K.; Hasnain, Z.; Nevile, L. R.

    1987-01-01

    Results are given of SEU measurements on 256K dynamic RAMs with on-chip error correction. They are claimed to be the first ever reported. A (12/8) Hamming error-correcting code was incorporated in the layout. Physical separation of the bits in each code word was used to guard against multiple bits being disrupted in any given word. Significant reduction in observed errors is reported.

  17. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS

    Science.gov (United States)

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-01-01

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<−9 dB) with excellent transmission efficiency (averagely −1.9 dB) from 110 GHz–325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author’s knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology. PMID:27444782

  18. Legal Protection on IP Cores for System-on-Chip Designs

    Science.gov (United States)

    Kinoshita, Takahiko

    The current semiconductor industry has shifted from vertical integrated model to horizontal specialization model in term of integrated circuit manufacturing. In this circumstance, IP cores as solutions for System-on-Chip (SoC) have become increasingly important for semiconductor business. This paper examines to what extent IP cores of SoC effectively can be protected by current intellectual property system including integrated circuit layout design law, patent law, design law, copyright law and unfair competition prevention act.

  19. On-chip mid-infrared gas detection using chalcogenide glass waveguide

    Science.gov (United States)

    Han, Z.; Lin, P.; Singh, V.; Kimerling, L.; Hu, J.; Richardson, K.; Agarwal, A.; Tan, D. T. H.

    2016-04-01

    We demonstrate an on-chip sensor for room-temperature detection of methane gas using a broadband spiral chalcogenide glass waveguide coupled with off-chip laser and detector. The waveguide is fabricated using UV lithography patterning and lift-off after thermal evaporation. We measure the intensity change due to the presence and concentration of methane gas in the mid-infrared (MIR) range. This work provides an approach for broadband planar MIR gas sensing.

  20. CLOSED FORM MODELING OF CROSSTALK FOR DISTRIBUTED RLCG ON-CHIP INTERCONNECTS USING DIFFERENCE MODEL APPROACH

    OpenAIRE

    Rajib Kar; Vikas Maheshwari; Md. Maqbool; A. K. Mal; Bhattacharjee, A.K.

    2010-01-01

    On chip interconnect plays a dominant role on the circuit performance in both analog and digital domains. Interconnects can no longer be treated as mere delays or lumped RC networks. Crosstalk, ringing and reflections are just some of the issues that need to be addressed for the efficient design of high speed VLSI circuits. In order to accurately model these high frequency effects, inductance had been taken into consideration. Within this frequency range, the most accurate simulation model fo...

  1. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits

    DEFF Research Database (Denmark)

    Donolato, Marco; Vavassori, Paolo; Gobbi, Marco;

    2010-01-01

    Geometrically constrained magnetic domain walls (DWs) in magnetic nanowires can be manipulated at the nanometer scale. The inhomogeneous magnetic stray field generated by a DW can capture a magnetic nanoparticle in solution. On-chip nanomanipulation of individual magnetic beads coated with proteins...... is demonstrated through the motion of geometrically constrained DWs in specially designed magnetic nanoconduits fully integrated in a lab-on-a-chip platform....

  2. Design of a CMOS integrated on-chip oscilloscope for spin wave characterization

    Science.gov (United States)

    Egel, Eugen; Meier, Christian; Csaba, György; Breitkreutz-von Gamm, Stephan

    2017-05-01

    Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF) receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz) signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA). Then, it is down-converted by a mixer to Intermediate Frequency (IF). Finally, an Operational Amplifier (OpAmp) brings the IF signal to higher voltages (50-300 mV). The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO) is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.

  3. Technologies for autonomous integrated lab-on-chip systems for space missions

    Science.gov (United States)

    Nascetti, A.; Caputo, D.; Scipinotti, R.; de Cesare, G.

    2016-11-01

    Lab-on-chip devices are ideal candidates for use in space missions where experiment automation, system compactness, limited weight and low sample and reagent consumption are required. Currently, however, most microfluidic systems require external desktop instrumentation to operate and interrogate the chip, thus strongly limiting their use as stand-alone systems. In order to overcome the above-mentioned limitations our research group is currently working on the design and fabrication of "true" lab-on-chip systems that integrate in a single device all the analytical steps from the sample preparation to the detection without the need for bulky external components such as pumps, syringes, radiation sources or optical detection systems. Three critical points can be identified to achieve 'true' lab-on-chip devices: sample handling, analytical detection and signal transduction. For each critical point, feasible solutions are presented and evaluated. Proposed microfluidic actuation and control is based on electrowetting on dielectrics, autonomous capillary networks and active valves. Analytical detection based on highly specific chemiluminescent reactions is used to avoid external radiation sources. Finally, the integration on the same chip of thin film sensors based on hydrogenated amorphous silicon is discussed showing practical results achieved in different sensing tasks.

  4. Integrated lab-on-chip biosensing systems based on magnetic particle actuation--a comprehensive review.

    Science.gov (United States)

    van Reenen, Alexander; de Jong, Arthur M; den Toonder, Jaap M J; Prins, Menno W J

    2014-06-21

    The demand for easy to use and cost effective medical technologies inspires scientists to develop innovative lab-on-chip technologies for point-of-care in vitro diagnostic testing. To fulfill medical needs, the tests should be rapid, sensitive, quantitative, and miniaturizable, and need to integrate all steps from sample-in to result-out. Here, we review the use of magnetic particles actuated by magnetic fields to perform the different process steps that are required for integrated lab-on-chip diagnostic assays. We discuss the use of magnetic particles to mix fluids, to capture specific analytes, to concentrate analytes, to transfer analytes from one solution to another, to label analytes, to perform stringency and washing steps, and to probe biophysical properties of the analytes, distinguishing methodologies with fluid flow and without fluid flow (stationary microfluidics). Our review focuses on efforts to combine and integrate different magnetically actuated assay steps, with the vision that it will become possible in the future to realize integrated lab-on-chip biosensing assays in which all assay process steps are controlled and optimized by magnetic forces.

  5. Blood cleaner on-chip design for artificial human kidney manipulation

    Directory of Open Access Journals (Sweden)

    Suwanpayak N

    2011-05-01

    Full Text Available N Suwanpayak1, MA Jalil2, MS Aziz3, FD Ismail3, J Ali3, PP Yupapin11Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Bangkok, Thailand; 2Ibnu Sina Institute of Fundamental Science Studies (IIS, 3Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, MalaysiaAbstract: A novel design of a blood cleaner on-chip using an optical waveguide known as a PANDA ring resonator is proposed. By controlling some suitable parameters, the optical vortices (gradient optical fields/wells can be generated and used to form the trapping tools in the same way as optical tweezers. In operation, the trapping force is formed by the combination between the gradient field and scattering photons by using the intense optical vortices generated within the PANDA ring resonator. This can be used for blood waste trapping and moves dynamically within the blood cleaner on-chip system (artificial kidney, and is performed within the wavelength routers. Finally, the blood quality test is exploited by the external probe before sending to the destination. The advantage of the proposed kidney on-chip system is that the unwanted substances can be trapped and filtered from the artificial kidney, which can be available for blood cleaning applications.Keywords: optical trapping, blood dialysis, blood cleaner, human kidney manipulation

  6. Low Latency Network-on-Chip Router Microarchitecture Using Request Masking Technique

    Directory of Open Access Journals (Sweden)

    Alireza Monemi

    2015-01-01

    Full Text Available Network-on-Chip (NoC is fast emerging as an on-chip communication alternative for many-core System-on-Chips (SoCs. However, designing a high performance low latency NoC with low area overhead has remained a challenge. In this paper, we present a two-clock-cycle latency NoC microarchitecture. An efficient request masking technique is proposed to combine virtual channel (VC allocation with switch allocation nonspeculatively. Our proposed NoC architecture is optimized in terms of area overhead, operating frequency, and quality-of-service (QoS. We evaluate our NoC against CONNECT, an open source low latency NoC design targeted for field-programmable gate array (FPGA. The experimental results on several FPGA devices show that our NoC router outperforms CONNECT with 50% reduction of logic cells (LCs utilization, while it works with 100% and 35%~20% higher operating frequency compared to the one- and two-clock-cycle latency CONNECT NoC routers, respectively. Moreover, the proposed NoC router achieves 2.3 times better performance compared to CONNECT.

  7. Simulation study of microstrip line in on-chip THz system

    Science.gov (United States)

    Zhang, Cong; Su, Bo; Fan, Ning; Zhang, Cunlin

    2016-11-01

    Waveguides, which can transmit high frequency electromagnetic waves, have a lot of types, such as microstrip line (MSL), coplanar waveguides (CPW), coplanar-strip-line (CPS) and so forth. In the waveguides mentioned above, CPW has the advantages of easy fabrication and superior performance. Meanwhile MSL also has many advantages such as small size, light weight and high spectral resolution, but it also shows a higher attenuation and dispersion compared with the free-space waveguides. So in on-chip terahertz system, CPW and MSL was used as waveguides to transmit terahertz waves and the HFSS software was used to simulate and analyze the transmission characteristics of the MSL and CPW based on the on-chip system researched by University of Leeds (America) and Hiroshima University (Japan). The simulation results show that the scattering parameters of the two waveguides are similar to the known literatures. Meanwhile we also have designed a new structure of MSL which is applicable for our on-chip system.

  8. Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces

    Science.gov (United States)

    Tsao, Simon Chang-Hao; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Christophi, Christopher; Cebon, Jonathan; Shiddiky, Muhammad J. A.; Behren, Andreas; Trau, Matt

    2016-01-01

    With new systemic therapies becoming available for metastatic melanoma such as BRAF and PD-1 inhibitors, there is an increasing demand for methods to assist with treatment selection and response monitoring. Quantification and characterisation of circulating melanoma cells (CMCs) has been regarded as an excellent non-invasive candidate but a sensitive and efficient tool to do these is lacking. Herein we demonstrate a microfluidic approach for melanoma cell capture and subsequent on-chip evaluation of BRAF mutation status. Our approach utilizes a recently discovered alternating current electrohydrodynamic (AC-EHD)-induced surface shear forces, referred to as nanoshearing. A key feature of nanoshearing is the ability to agitate fluid to encourage contact with surface-bound antibody for the cell capture whilst removing nonspecific cells from the surface. By adjusting the AC-EHD force to match the binding affinity of antibodies against the melanoma-associated chondroitin sulphate proteoglycan (MCSP), a commonly expressed melanoma antigen, this platform achieved an average recovery of 84.7% from biological samples. Subsequent staining with anti-BRAFV600E specific antibody enabled on-chip evaluation of BRAFV600E mutation status in melanoma cells. We believe that the ability of nanoshearing-based capture to enumerate melanoma cells and subsequent on-chip characterisation has the potential as a rapid screening tool while making treatment decisions.

  9. CMOS current-mode neural associative memory design with on-chip learning.

    Science.gov (United States)

    Wu, C Y; Lan, J F

    1996-01-01

    Based on the Grossberg mathematical model called the outstar, a modular neural net with on-chip learning and memory is designed and analyzed. The outstar is the minimal anatomy that can interpret the classical conditioning or associative memory. It can also be served as a general-purpose pattern learning device. To realize the outstar, CMOS (complimentary metal-oxide semiconductor) current-mode analog dividers are developed to implement the special memory called the ratio-type memory. Furthermore, a CMOS current-mode analog multiplier is used to implement the correlation. The implemented CMOS outstar can on-chip store the relative ratio values of the trained weights for a long time. It can also be modularized to construct general neural nets. HSPICE (a circuit simulator of Meta Software, Inc.) simulation results of the CMOS outstar circuits as associative memory and pattern learner have successfully verified their functions. The measured results of the fabricated CMOS outstar circuits have also successfully confirmed the ratio memory and on-chip learning capability of the circuits. Furthermore, it has been shown that the storage time of the ratio memory can be as long as five minutes without refreshment. Also the outstar can enhance the contrast of the stored pattern within a long period. This makes the outstar circuits quite feasible in many applications.

  10. Robust thermal control for CMOS-based lab-on-chip systems

    Science.gov (United States)

    Martinez-Quijada, Jose; Ma, Tianchi; Hall, Gordon H.; Reynolds, Matt; Sloan, David; Caverhill-Godkewitsch, Saul; Glerum, D. Moira; Sameoto, Dan; Elliott, Duncan G.; Backhouse, Christopher J.

    2015-07-01

    The need for precise temperature control at small scales has provided a formidable challenge to the lab-on-chip community. It requires, at once, good thermal conductivity for high speed operation, good thermal isolation for low power consumption and the ability to have small (mm-scale) thermally independent regions on the same substrate. Most importantly, and, in addition to these conflicting requirements, there is a need to accurately measure the temperature of the active region without the need for device-to-device calibrations. We have developed and tested a design that enables thermal control of lab-on-chip devices atop silicon substrates in a way that could be integrated with the standard methods of mass-manufacture used in the electronics industry (i.e. CMOS). This is a significant step towards a single-chip lab-on-chip solution, one in which the microfluidics, high voltage electronics, optoelectronics, instrumentation electronics, and the world-chip interface are all integrated on a single substrate with multiple, independent, thermally-controlled regions based on active heating and passive cooling.

  11. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.

    Science.gov (United States)

    Chen, Arnold; Pan, Tingrui

    2014-09-07

    Bistable microvalves are of particular interest because of their distinct nature of requiring energy consumption only during the transition between the open and closed states. This characteristic can be highly advantageous in reducing the number of external inputs and the complexity of control circuitries since microfluidic devices as contemporary lab-on-a-chip platforms are transferring from research settings to low-resource environments with high integrability and a small form factor. In this paper, we first present manually operatable, on-chip bistable pneumatic microstructures (BPMs) for microfluidic manipulation. The structural design and operation of the BPM devices can be readily integrated into any pneumatically powered microfluidic network consisting of pneumatic and fluidic channels. It is mainly composed of a vacuum activation chamber (VAC) and a pressure release chamber (PRC), of which users have direct control through finger pressing to switch either to the bistable vacuum state (VS) or the atmospheric state (AS). We have integrated multiple BPM devices into a 4-to-1 microfluidic multiplexor to demonstrate on-chip digital flow switching from different sources. Furthermore, we have shown its clinical relevance in a point-of-care diagnostic chip that processes blood samples to identify the distinct blood types (A/B/O) on-chip.

  12. Monolithically Integrated Microelectromechanical Systems for On-Chip Strain Engineering of Quantum Dots.

    Science.gov (United States)

    Zhang, Yang; Chen, Yan; Mietschke, Michael; Zhang, Long; Yuan, Feifei; Abel, Stefan; Hühne, Ruben; Nielsch, Kornelius; Fompeyrine, Jean; Ding, Fei; Schmidt, Oliver G

    2016-09-14

    Elastic strain fields based on single crystal piezoelectric elements represent an effective way for engineering the quantum dot (QD) emission with unrivaled precision and technological relevance. However, pioneering researches in this direction were mainly based on bulk piezoelectric substrates, which prevent the development of chip-scale devices. Here, we present a monolithically integrated Microelectromechanical systems (MEMS) device with great potential for on-chip quantum photonic applications. High-quality epitaxial PMN-PT thin films have been grown on SrTiO3 buffered Si and show excellent piezoelectric responses. Dense arrays of MEMS with small footprints are then fabricated based on these films, forming an on-chip strain tuning platform. After transferring the QD-containing nanomembranes onto these MEMS, the nonclassical emissions (e.g., single photons) from single QDs can be engineered by the strain fields. We envision that the strain tunable QD sources on the individually addressable and monolithically integrated MEMS pave the way toward complex quantum photonic applications on chip.

  13. On-chip passive three-port circuit of all-optical ordered-route transmission

    Science.gov (United States)

    Liu, Li; Dong, Jianji; Gao, Dingshan; Zheng, Aoling; Zhang, Xinliang

    2015-05-01

    On-chip photonic circuits of different specific functions are highly desirable and becoming significant demands in all-optical communication network. Especially, the function to control the transmission directions of the optical signals in integrated circuits is a fundamental research. Previous schemes, such as on-chip optical circulators, are mostly realized by Faraday effect which suffers from material incompatibilities between semiconductors and magneto-optical materials. Achieving highly functional circuits in which light circulates in a particular direction with satisfied performances are still difficult in pure silicon photonics platform. Here, we propose and experimentally demonstrate a three-port passive device supporting optical ordered-route transmission based on silicon thermo-optic effect for the first time. By injecting strong power from only one port, the light could transmit through the three ports in a strict order (1→2, 2→3, 3→1) while be blocked in the opposite order (1→3, 3→2, 2→1). The blocking extinction ratios and operation bandwidths have been investigated in this paper. Moreover, with compact size, economic fabrication process and great extensibility, this proposed photonic integrated circuit is competitive to be applied in on-chip all-optical information processing systems, such as path priority selector.

  14. Design of a Wideband Antenna for Wireless Network-On-Chip in Multimedia Applications

    Directory of Open Access Journals (Sweden)

    Fernando Gutierrez

    2017-03-01

    Full Text Available To allow fast communication—at several Gb/s—of multimedia content among processors and memories in a multi-processor system-on-chip, a new approach is emerging in literature: Wireless Network-on-Chip (WiNoC. With reference to this scenario, this paper presents the design of the key element of the WiNoC: the antenna. Specifically, a bow-tie antenna is proposed, which operates at mm-waves and can be implemented on-chip using the top metal layer of a conventional silicon CMOS (Complementary Metal Oxide Semiconductor technology. The antenna performance is discussed in the paper and is compared to the state-of-the-art, including the zig-zag antenna topology that is typically used in literature as a reference for WiNoC. The proposed bow-tie antenna design for WiNoC stands out for its good trade-off among bandwidth, gain, size and beamwidth vs. the state-of-the-art.

  15. AREA-EFFICIENT DESIGN OF SCHEDULER FOR ROUTING NODE OF NETWORK-ON-CHIP

    Directory of Open Access Journals (Sweden)

    Rehan Maroof

    2011-09-01

    Full Text Available Traditional System-on-Chip (SoC design employed shared buses for data transfer among various subsystems. As So Cs become more complex involving a larger number of subsystems, traditional bus based architecture is giving way to a new paradigm for on-chip communication. This paradigm is called Network-on-Chip (NoC. A communication network of point-to-point links and routing switches is used to facilitate communication between subsystems. The routing switch proposed in this paper consists of four components, namely the input ports, output ports, switching fabric, and scheduler. The scheduler design is described in this paper. The function of the scheduler is to arbitrate between requests by data packets for use of the switching fabric. The scheduler uses an improved round robin based arbitration algorithm. Due to the symmetric structure of the scheduler, an area-efficient design is proposed by folding the scheduler onto itself, thereby reducing its area roughly by 50%.

  16. On-chip lysis of mammalian cells through a handheld corona device.

    Science.gov (United States)

    Escobedo, C; Bürgel, S C; Kemmerling, S; Sauter, N; Braun, T; Hierlemann, A

    2015-07-21

    On-chip lysis is required in many lab-on-chip applications involving cell studies. In these applications, the complete disruption of the cellular membrane and a high lysis yield is essential. Here, we present a novel approach to lyse cells on-chip through the application of electric discharges from a corona handheld device. The method only requires a microfluidic chip and a low-cost corona device. We demonstrate the effective lysis of BHK and eGFP HCT 116 cells in the sub-second time range using an embedded microelectrode. We also show cell lysis of non-adherent K562 leukemia cells without the use of an electrode in the chip. Cell lysis has been assessed through the use of bright-field microscopy, high-speed imaging and cell-viability fluorescence probes. The experimental results show effective cell lysis without any bubble formation or significant heating. Due to the simplicity of both the components involved and the lysis procedure, this technique offers an inexpensive lysis option with the potential for integration into lab-on-a-chip devices.

  17. On-chip steering of entangled photons in nonlinear photonic crystals.

    Science.gov (United States)

    Leng, H Y; Yu, X Q; Gong, Y X; Xu, P; Xie, Z D; Jin, H; Zhang, C; Zhu, S N

    2011-08-16

    One promising technique for working toward practical photonic quantum technologies is to implement multiple operations on a monolithic chip, thereby improving stability, scalability and miniaturization. The on-chip spatial control of entangled photons will certainly benefit numerous applications, including quantum imaging, quantum lithography, quantum metrology and quantum computation. However, external optical elements are usually required to spatially control the entangled photons. Here we present the first experimental demonstration of on-chip spatial control of entangled photons, based on a domain-engineered nonlinear photonic crystal. We manipulate the entangled photons using the inherent properties of the crystal during the parametric downconversion, demonstrating two-photon focusing and beam-splitting from a periodically poled lithium tantalate crystal with a parabolic phase profile. These experimental results indicate that versatile and precise spatial control of entangled photons is achievable. Because they may be operated independent of any bulk optical elements, domain-engineered nonlinear photonic crystals may prove to be a valuable ingredient in on-chip integrated quantum optics.

  18. Designing a WISHBONE Protocol Network Adapter for an Asynchronous Network-on-Chip

    CERN Document Server

    Soliman, Ahmed H M; El-Bably, M; Keshk, Hesham M A M

    2012-01-01

    The Scaling of microchip technologies, from micron to submicron and now to deep sub-micron (DSM) range, has enabled large scale systems-on-chip (SoC). In future deep submicron (DSM) designs, the interconnect effect will definitely dominate performance. Network-on-Chip (NoC) has become a promising solution to bus-based communication infrastructure limitations. NoC designs usually targets Application Specific Integrated Circuits (ASICs), however, the fabrication process costs a lot. Implementing a NoC on an FPGA does not only reduce the cost but also decreases programming and verification cycles. In this paper, an Asynchronous NoC has been implemented on a SPARTAN-3E\\textregistered device. The NoC supports basic transactions of both widely used on-chip interconnection standards, the Open Core Protocol (OCP) and the WISHBONE Protocol. Although, FPGA devices are synchronous in nature, it has been shown that they can be used to prototype a Global Asynchronous Local Synchronous (GALS) systems, comprising an Asynchr...

  19. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy

    Science.gov (United States)

    Greenbaum, Alon; Luo, Wei; Khademhosseinieh, Bahar; Su, Ting-Wei; Coskun, Ahmet F.; Ozcan, Aydogan

    2013-04-01

    Pixel-size limitation of lensfree on-chip microscopy can be circumvented by utilizing pixel-super-resolution techniques to synthesize a smaller effective pixel, improving the resolution. Here we report that by using the two-dimensional pixel-function of an image sensor-array as an input to lensfree image reconstruction, pixel-super-resolution can improve the numerical aperture of the reconstructed image by ~3 fold compared to a raw lensfree image. This improvement was confirmed using two different sensor-arrays that significantly vary in their pixel-sizes, circuit architectures and digital/optical readout mechanisms, empirically pointing to roughly the same space-bandwidth improvement factor regardless of the sensor-array employed in our set-up. Furthermore, such a pixel-count increase also renders our on-chip microscope into a Giga-pixel imager, where an effective pixel count of ~1.6-2.5 billion can be obtained with different sensors. Finally, using an ultra-violet light-emitting-diode, this platform resolves 225 nm grating lines and can be useful for wide-field on-chip imaging of nano-scale objects, e.g., multi-walled-carbon-nanotubes.

  20. Design of a CMOS integrated on-chip oscilloscope for spin wave characterization

    Directory of Open Access Journals (Sweden)

    Eugen Egel

    2017-05-01

    Full Text Available Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA. Then, it is down-converted by a mixer to Intermediate Frequency (IF. Finally, an Operational Amplifier (OpAmp brings the IF signal to higher voltages (50-300 mV. The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.

  1. Applying Partial Power-Gating to Direction-Sliced Network-on-Chip

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2015-01-01

    Full Text Available Network-on-Chip (NoC is one of critical communication architectures for future many-core systems. As technology is continually scaling down, on-chip network meets the increasing leakage power crisis. As a leakage power mitigation technique, power-gating can be utilized in on-chip network to solve the crisis. However, the network performance is severely affected by the disconnection in the conventional power-gated NoC. In this paper, we propose a novel partial power-gating approach to improve the performance in the power-gated NoC. The approach mainly involves a direction-slicing scheme, an improved routing algorithm, and a deadlock recovery mechanism. In the synthetic traffic simulation, the proposed design shows favorable power-efficiency at low-load range and achieves better performance than the conventional power-gated one. For the application trace simulation, the design in the mesh/torus network consumes 15.2%/18.9% more power on average, whereas it can averagely obtain 45.0%/28.7% performance improvement compared with the conventional power-gated design. On balance, the proposed design with partial power-gating has a better tradeoff between performance and power-efficiency.

  2. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    Science.gov (United States)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  3. Dynamic On-Chip micro Temperature and Flow Sensor for miniaturized lab-on-a-chip instruments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to design, fabricate, and characterize a Dynamic On-Chip Flow and Temperature Sensor (DOCFlaTS) to mature and enable miniaturized...

  4. Arbitrary photonic wave plate operations on chip: realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits

    National Research Council Canada - National Science Library

    Heilmann, René; Gräfe, Markus; Nolte, Stefan; Szameit, Alexander

    2014-01-01

    .... In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides...

  5. Invited Article: Electrically tunable silicon-based on-chip microdisk resonator for integrated microwave photonic applications

    National Research Council Canada - National Science Library

    Zhang, Weifeng; Yao, Jianping

    2016-01-01

    ... difference in realizing on-chip integration of photonic systems. A microdisk resonator (MDR) with a strong capacity in trapping and storing photons is a versatile element in photonic integrated circuits...

  6. Holographic interference filters

    Science.gov (United States)

    Diehl, Damon W.

    Holographic mirrors have wavelength-selection properties and thus qualify as a class of interference filters. Two theoretical methods for analyzing such structures are developed. The first method uses Hill's matrix method to yield closed-forms solutions in terms of the Floquet-Bloch waves within a periodic structure. A process is developed for implementing this solution method on a computer, using sparse-matrix memory allocation, numerical root-finding algorithms, and inverse-iteration techniques. It is demonstrated that Hill's matrix method is valid for the analysis of finite and multi-periodic problems. The second method of theoretical analysis is a transfer-matrix technique, which is herein termed thin-film decomposition. It is shown that the two methods of solution yield results that differ by, at worst, a fraction of a percent. Using both calculation techniques, a number of example problems are explored. Of key importance is the construction of a set of curves that are useful for the design and characterization of holographic interference filters. In addition to the theoretical development, methods are presented for the fabrication of holographic interference filters using DuPont HRF-800X001 photopolymer. Central to the exposure system is a frequency-stabilized, tunable dye laser. The types of filters fabricated include single-tone reflection filters, two types of multitone reflection filters, and reflection filters for infrared wavelengths. These filters feature index profiles that are not easily attainable through other fabrication methods. As a supplement to the body of the dissertation, the computer algorithms developed to implement Hill's matrix method and thin-film decomposition are also included as an appendix. Further appendices provide more information on Floquet's theorem and Hill's matrix method. A final appendix presents a design for an infrared laser spectrophotometer.

  7. Partial Interference Alignment for K-user MIMO Interference Channels

    CERN Document Server

    Huang, Huang

    2011-01-01

    In this paper, we consider a Partial Interference Alignment and Interference Detection (PIAID) design for $K$-user quasi-static MIMO interference channels with discrete constellation inputs. Each transmitter has M antennas and transmits L independent data streams to the desired receiver with N receive antennas. We focus on the case where not all K-1 interfering transmitters can be aligned at every receiver. As a result, there will be residual interference at each receiver that cannot be aligned. Each receiver detects and cancels the residual interference based on the constellation map. However, there is a window of unfavorable interference profile at the receiver for Interference Detection (ID). In this paper, we propose a low complexity Partial Interference Alignment scheme in which we dynamically select the user set for IA so as to create a favorable interference profile for ID at each receiver. We first derive the average symbol error rate (SER) by taking into account of the non-Guassian residual interfere...

  8. RF Calibration of On-Chip DfT Chain by DC Stimuli and Statistical Multivariate Regression Technique

    OpenAIRE

    Ramzan, Rashad; Dabrowski, Jerzy

    2015-01-01

    The problem of parameter variability in RF and analog circuits is escalating with CMOS scaling. Consequently every RF chip produced in nano-meter CMOS technologies needs to be tested. On-chip Design for Testability (DfT) features, which are meant to reduce test time and cost also suffer from parameter variability. Therefore, RF calibration of all on-chip test structures is mandatory. In this paper, Artificial Neural Networks (ANN) are employed as a multivariate regression technique to archite...

  9. An Evaluation of an Integrated On-Chip/Off-Chip Network for High-Performance Reconfigurable Computing

    OpenAIRE

    Andrew G. Schmidt; Kritikos, William V.; Shanyuan Gao; Ron Sass

    2012-01-01

    As the number of cores per discrete integrated circuit (IC) device grows, the importance of the network on chip (NoC) increases. However, the body of research in this area has focused on discrete IC devices alone which may or may not serve the high-performance computing community which needs to assemble many of these devices into very large scale, parallel computing machines. This paper describes an integrated on-chip/off-chip network that has been implemented on an a...

  10. On-chip wavelength switch based on thermally tunable discrete four-wave mixing in a silicon waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Chen, Yaohui; Hu, Hao

    2014-01-01

    An on-chip wavelength switch is proposed based on discrete four-wave mixing in a silicon waveguide. Switching operation can be realized by thermal tuning the waveguide dispersion. We also discuss optimal dimension design concerning device performances.......An on-chip wavelength switch is proposed based on discrete four-wave mixing in a silicon waveguide. Switching operation can be realized by thermal tuning the waveguide dispersion. We also discuss optimal dimension design concerning device performances....

  11. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.

    Science.gov (United States)

    Schumacher, Soeren; Nestler, Jörg; Otto, Thomas; Wegener, Michael; Ehrentreich-Förster, Eva; Michel, Dirk; Wunderlich, Kai; Palzer, Silke; Sohn, Kai; Weber, Achim; Burgard, Matthias; Grzesiak, Andrzej; Teichert, Andreas; Brandenburg, Albrecht; Koger, Birgit; Albers, Jörg; Nebling, Eric; Bier, Frank F

    2012-02-07

    A novel innovative approach towards a marketable lab-on-chip system for point-of-care in vitro diagnostics is reported. In a consortium of seven Fraunhofer Institutes a lab-on-chip system called "Fraunhofer ivD-platform" has been established which opens up the possibility for an on-site analysis at low costs. The system features a high degree of modularity and integration. Modularity allows the adaption of common and established assay types of various formats. Integration lets the system move from the laboratory to the point-of-need. By making use of the microarray format the lab-on-chip system also addresses new trends in biomedicine. Research topics such as personalized medicine or companion diagnostics show that multiparameter analyses are an added value for diagnostics, therapy as well as therapy control. These goals are addressed with a low-cost and self-contained cartridge, since reagents, microfluidic actuators and various sensors are integrated within the cartridge. In combination with a fully automated instrumentation (read-out and processing unit) a diagnostic assay can be performed in about 15 min. Via a user-friendly interface the read-out unit itself performs the assay protocol, data acquisition and data analysis. So far, example assays for nucleic acids (detection of different pathogens) and protein markers (such as CRP and PSA) have been established using an electrochemical read-out based on redoxcycling or an optical read-out based on total internal reflectance fluorescence (TIRF). It could be shown that the assay performance within the cartridge is similar to that found for the same assay in a microtiter plate. Furthermore, recent developments are the integration of sample preparation and polymerase chain reaction (PCR) on-chip. Hence, the instrument is capable of providing heating-and-cooling cycles necessary for DNA-amplification. In addition to scientific aspects also the production of such a lab-on-chip system was part of the development since

  12. Sensing via optical interference

    Directory of Open Access Journals (Sweden)

    Ryan C. Bailey

    2005-04-01

    Full Text Available Chemical and biological sensing are problems of tremendous contemporary technological importance in multiple regulatory and human health contexts, including environmental monitoring, water quality assurance, workplace air quality assessment, food quality control, many aspects of biodiagnostics, and, of course, homeland security. Frequently, what is needed, or at least wanted, are sensors that are simultaneously cheap, fast, reliable, selective, sensitive, robust, and easy to use. Unfortunately, these are often conflicting requirements. Over the past few years, however, a number of promising ideas based on optical interference effects have emerged. Each is based to some extent on advances in the design and fabrication of functional materials. Generally, the advances are of two kinds: chemo- and bio-selective recognition and binding, and efficient methods for micropatterning or microstructuring.

  13. RNA interference in Lepidoptera

    DEFF Research Database (Denmark)

    Terenius, Ole; Papanicolaou, Alexie; Garbutt, Jennie S.

    2011-01-01

    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive...... is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success...... in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our...

  14. Quantum Interference in Graphene Nanoconstrictions.

    Science.gov (United States)

    Gehring, Pascal; Sadeghi, Hatef; Sangtarash, Sara; Lau, Chit Siong; Liu, Junjie; Ardavan, Arzhang; Warner, Jamie H; Lambert, Colin J; Briggs, G Andrew D; Mol, Jan A

    2016-07-13

    We report quantum interference effects in the electrical conductance of chemical vapor deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multimode Fabry-Pérot interferences can be attributed to reflections at potential steps inside the channel. Sharp antiresonance features with a Fano line shape are observed. Theoretical modeling reveals that these Fano resonances are due to localized states inside the constriction, which couple to the delocalized states that also give rise to the Fabry-Pérot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions.

  15. Interference in motor learning - is motor interference sensory?

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C

    mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory...

  16. Multiple-input multiple-output based high density on-chip optical interconnect

    Science.gov (United States)

    Shen, Po-Kuan; Xu, Xiaochuan; Hosseini, Amir; Pan, Zeyu; Chen, Ray T.

    2015-03-01

    In on-chip optical interconnect, dielectric waveguide arrays are usually designed with pitches of a few wavelengths to avoid crosstalk, which greatly limits the integration density. In this paper, we for the first time propose to use multipleinput multiple-output (MIMO), a well-known technique in wireless communication, to recover the data from entangled signals and reduce the waveguide pitch to subwavelength range. In the proposed on-chip MIMO system, there is significant coupling among the adjacent waveguides in the high density waveguide region. In order to recover signals, the N×N transmission matrix of N high-density waveguides is calculated to describe the relation between each input ports and output ports. In the receiving part, homodyne coherent receivers are used to receive the transmitted signals, and obtain the signal in phase and ?/2 out of phase with local oscillator. In the electrical signal processing, the inverse transmission matrix is utilized to recover the signals in the electronic domain. To verify the proposed on-chip MIMO, we used the INTERCONNECT package in Lumerical software to simulate a 10x10 MIMO system. The cross section of each waveguide is 500 nm x 220 nm. The spacing is 250 nm. The simulation verifies the possibility of recovering 10 Gbps data from the heavily coupled 10 waveguides with a BER better than 10-12. The minimum input optical power for a BER of 10-12 is greater than -18.1 dBm, and the maximum phase shift between input laser and local oscillator can reach to 73.5˚.

  17. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging.

    Science.gov (United States)

    Cui, Xiquan; Lee, Lap Man; Heng, Xin; Zhong, Weiwei; Sternberg, Paul W; Psaltis, Demetri; Yang, Changhuei

    2008-08-05

    Low-cost and high-resolution on-chip microscopes are vital for reducing cost and improving efficiency for modern biomedicine and bioscience. Despite the needs, the conventional microscope design has proven difficult to miniaturize. Here, we report the implementation and application of two high-resolution (approximately 0.9 microm for the first and approximately 0.8 microm for the second), lensless, and fully on-chip microscopes based on the optofluidic microscopy (OFM) method. These systems abandon the conventional microscope design, which requires expensive lenses and large space to magnify images, and instead utilizes microfluidic flow to deliver specimens across array(s) of micrometer-size apertures defined on a metal-coated CMOS sensor to generate direct projection images. The first system utilizes a gravity-driven microfluidic flow for sample scanning and is suited for imaging elongate objects, such as Caenorhabditis elegans; and the second system employs an electrokinetic drive for flow control and is suited for imaging cells and other spherical/ellipsoidal objects. As a demonstration of the OFM for bioscience research, we show that the prototypes can be used to perform automated phenotype characterization of different Caenorhabditis elegans mutant strains, and to image spores and single cellular entities. The optofluidic microscope design, readily fabricable with existing semiconductor and microfluidic technologies, offers low-cost and highly compact imaging solutions. More functionalities, such as on-chip phase and fluorescence imaging, can also be readily adapted into OFM systems. We anticipate that the OFM can significantly address a range of biomedical and bioscience needs, and engender new microscope applications.

  18. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement

    Directory of Open Access Journals (Sweden)

    Chun-Chi Chen

    2016-01-01

    Full Text Available This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs. Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of −20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI system.

  19. Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries.

    Science.gov (United States)

    Ning, Hailong; Pikul, James H; Zhang, Runyu; Li, Xuejiao; Xu, Sheng; Wang, Junjie; Rogers, John A; King, William P; Braun, Paul V

    2015-05-26

    As sensors, wireless communication devices, personal health monitoring systems, and autonomous microelectromechanical systems (MEMS) become distributed and smaller, there is an increasing demand for miniaturized integrated power sources. Although thin-film batteries are well-suited for on-chip integration, their energy and power per unit area are limited. Three-dimensional electrode designs have potential to offer much greater power and energy per unit area; however, efforts to date to realize 3D microbatteries have led to prototypes with solid electrodes (and therefore low power) or mesostructured electrodes not compatible with manufacturing or on-chip integration. Here, we demonstrate an on-chip compatible method to fabricate high energy density (6.5 μWh cm(-2)⋅μm(-1)) 3D mesostructured Li-ion microbatteries based on LiMnO2 cathodes, and NiSn anodes that possess supercapacitor-like power (3,600 μW cm(-2)⋅μm(-1) peak). The mesostructured electrodes are fabricated by combining 3D holographic lithography with conventional photolithography, enabling deterministic control of both the internal electrode mesostructure and the spatial distribution of the electrodes on the substrate. The resultant full cells exhibit impressive performances, for example a conventional light-emitting diode (LED) is driven with a 500-μA peak current (600-C discharge) from a 10-μm-thick microbattery with an area of 4 mm(2) for 200 cycles with only 12% capacity fade. A combined experimental and modeling study where the structural parameters of the battery are modulated illustrates the unique design flexibility enabled by 3D holographic lithography and provides guidance for optimization for a given application.

  20. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-30

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.

  1. An Efficient Radio Access Control Mechanism for Wireless Network-On-Chip Architectures

    Directory of Open Access Journals (Sweden)

    Maurizio Palesi

    2015-03-01

    Full Text Available Modern systems-on-chip (SoCs today contain hundreds of cores, and this number is predicted to reach the thousands by the year 2020. As the number of communicating elements increases, there is a need for an efficient, scalable and reliable communication infrastructure. As technology geometries shrink to the deep submicron regime, however, the communication delay and power consumption of global interconnections become the major bottleneck. The network-on-chip (NoC design paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues, such as the performance limitations of long interconnects and integration of large number of cores on a chip. Recently, new communication technologies based on the NoC concept have emerged with the aim of improving the scalability limitations of conventional NoC-based architectures. Among them, wireless NoCs (WiNoCs use the radio medium for reducing the performance and energy penalties of long-range and multi-hop communications. As the radio medium can be accessed by a single transmitter at a time, a radio access control mechanism (RACM is needed. In this paper, we present a novel RACM, which allows one to improve both the performance and energy figures of the WiNoC. Experiments, carried out on both synthetic and real traffic scenarios, have shown the effectiveness of the proposed RACM. On average, a 30% reduction in communication delay and a 25% energy savings have been observed when the proposed RACM is applied to a known WiNoC architecture.

  2. Exploration of magnetic memory for ultra low-power systems-on-chip

    OpenAIRE

    Patrigeon, Guillaume; Senni, Sophiane; Benoit, Pascal; Torres, Lionel

    2017-01-01

    National audience; Memories are currently a real bottleneck to design high speed, low area and energy-efficient systems-on-chip (SoC). An important proportion of total power is spent on memory systems. Ultra low-power (ULP) SoC often use different memory technologies to keep the advantages of each one (area, energy consumption, latency and non-volatility), however there are still penalties and this add more complexity at every development levels. MRAM (Magnetic Random Access Memory) is seen a...

  3. Interfacing Hardware Accelerators to a Time-Division Multiplexing Network-on-Chip

    DEFF Research Database (Denmark)

    Pezzarossa, Luca; Sørensen, Rasmus Bo; Schoeberl, Martin

    2015-01-01

    This paper addresses the integration of stateless hardware accelerators into time-predictable multi-core platforms based on time-division multiplexing networks-on-chip. Stateless hardware accelerators, like floating-point units, are typically attached as co-processors to individual processors in ...... implementation. The design evaluation is carried out using the open source T-CREST multi-core platform implemented on an Altera Cyclone IV FPGA. The size of the proposed design, including a floating-point accelerator, is about two-thirds of a processor....

  4. Low-power system-on-chip implementation for respiratory rate detection and transmission.

    Science.gov (United States)

    Padasdao, Bryson; Yee, Roxanne; Boric-Lubecke, Olga

    2012-01-01

    Recent biosensors can measure respiratory rate non-invasively, but limits patient mobility or requires regular battery replacement. Respiratory effort, which can scavenge mW, may power the sensor, but requires minimal sensor power usage. This paper demonstrates feasibility of respiratory rate measurement by using a comparator instead of ADC. A low-power system-on-chip can implement respiratory rate detection and wireless data transmission with a total power consumption under 82 µW. This approach produces significant power savings, and transmission uses under 30% of total power consumption.

  5. A System on Chip approach to enhanced learning in interdisciplinary robotics

    DEFF Research Database (Denmark)

    Sørensen, Anders Stengaard; Falsig, Simon

    2011-01-01

    p, li { white-space: pre-wrap; } To sustain interdisciplinary teaching and learning in the rapidly growing and diversifying field of robotics, we have successfully employed FPGA based System on Chip (SoC) technology to provide abstraction between high level software and low level IO/ and control...... hardware. Our approach is to provides students with a simple FPGA based framework for hardware access, and hardware I/O development, which is independent of computer platform and programming language, and enable the students to add to, or change I/O hardware in accordance with their skills. We have tested...

  6. Embedded 3D Graphics Core for FPGA-based System-on-Chip Applications

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik

    2005-01-01

    This paper presents a 3D graphics accelerator core for an FPGA based system, and illustrates how to build a System-on-Chip containing a Xilinx MicroBlaze soft-core CPU and our 3D graphics accelerator core. The system is capable of running uClinux and hardware accelerated 3D graphics applications...... consumption is reduced as well. We show how an FPGA based embedded system is capable of most tasks in a single chip solution, without requiring additional CPU or graphics chips....

  7. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.

    Science.gov (United States)

    Yang, Zhaochu; Dong, Tao; Halvorsen, Einar

    2014-01-01

    This work describes a capacitive sensor for identification of microfluidic two-phase flow in lab-on-chip devices. With interdigital electrodes and thin insulation layer utilized, this sensor is capable of being integrated with the microsystems easily. Transducing principle and design considerations are presented with respect to the microfluidic gas/liquid flow patterns. Numerical simulation results verify the operational principle. And the factors affecting the performance of the sensor are discussed. Besides, a feasible process flow for the fabrication is also proposed.

  8. Detection of silver nanoparticles on a lab-on-chip platform.

    Science.gov (United States)

    Chua, Chun Kiang; Pumera, Martin

    2013-07-01

    The prevalent use of silver nanoparticles (AgNPs) in commercial goods has brought forth an urgent need for environmental salvation. With the global river systems being contaminated by AgNPs, fast and efficient detection systems are needed to trace the presence of AgNPs in common water to prevent detrimental effects to the public health. In this work, the detection of AgNPs via electrochemical oxidation has been achieved on a "Lab-on-chip" platform. This platform provides a fast, convenient, and portable detection system for the detection of AgNPs in common water.

  9. On-chip pretreatment of whole blood by using MEMS technology

    CERN Document Server

    Chen, Xing

    2012-01-01

    Microfabrication technology has stimulated a plurality of lab-on-a-chip research and development efforts aimed at enabling biomedical researchers and health care practitioners to manipulate and analyze complex biological fluids at the nano and microliter scale. On-chip pretreatment of whole blood is one of the hottest topics in lab-on-a-chip research since whole blood has been regarded as the most important clinical sample. Various microfluidic chips for blood sample pretreatment, such as plasma isolation, cells separation, cells lysis, gene or protein purification, etc., are described in this

  10. Support for Programming Models in Network-on-Chip-based Many-core Systems

    DEFF Research Database (Denmark)

    Rasmussen, Morten Sleth

    and scalability in an image processing application with the aim of providing insight into parallel programming issues. The second part proposes and presents the tile-based Clupea many-core architecture, which has the objective of providing configurable support for programming models to allow different programming......This thesis addresses aspects of support for programming models in Network-on- Chip-based many-core architectures. The main focus is to consider architectural support for a plethora of programming models in a single system. The thesis has three main parts. The first part considers parallelization...

  11. Low-power wireless on-chip microparticle manipulation with process variation compensation

    OpenAIRE

    Kishiwada, Yasushi; Iwasaki, Hirosuke; Ueda, Shun; Dei, Yoshiaki; Miyawaki, Yusuke; Matsuoka, Toshimasa

    2013-01-01

    A chip with which to manipulate microparticles using wireless power transfer and pulse-driven dielectrophoresis has been designed and fabricated using a 0.18-µm CMOS process. The chip enables microparticle manipulation using a 0.35-V power supply and a 10∼100kHz clock, which are generated on the chip by means of an on-chip coil, a rectifier and a ring oscillator circuit with process variation compensation circuits. The proposed process variation compensation with effective gate-width tuning a...

  12. On-Chip Microplasmas for the Detection of Radioactive Cesium Contamination in Seawater

    Directory of Open Access Journals (Sweden)

    Joshua B. Joffrion

    2017-08-01

    Full Text Available On-chip microplasmas have previously been used in designing a compact and portable device for identifying pollutants in a water sample. By exciting a liquid sample with a high energy microdischarge and recording the spectral wavelengths emitted, the individual elements in the liquid are distinguishable. In particular, this study focuses on cesium, a contaminant from nuclear incidents such as the collapse of the nuclear power plant in Fukushima, Japan. This article shows that not only can the presence of cesium be clearly determined at concentrations as low as 10 ppb, but the relative concentration contained in the sample can be determined through the discharges’ relative spectral intensity.

  13. Turbo NOC: a framework for the design of Network On Chip based turbo decoder architectures

    CERN Document Server

    Martina, Maurizio

    2009-01-01

    This work proposes a general framework for the design and simulation of network on chip based turbo decoder architectures. Several parameters in the design space are investigated, namely the network topology, the parallelism degree, the rate at which messages are sent by processing nodes over the network and the routing strategy. The main results of this analysis are: i) the most suited topologies to achieve high throughput with a limited complexity overhead are generalized de-Bruijn and generalized Kautz topologies; ii) depending on the throughput requirements different parallelism degrees, message injection rates and routing algorithms can be used to minimize the network area overhead.

  14. A Scalable, Timing-Safe, Network-on-Chip Architecture with an Integrated Clock Distribution Method

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Stensgaard, Mikkel Bystrup; Sparsø, Jens

    2007-01-01

    Growing system sizes together with increasing performance variability are making globally synchronous operation hard to realize. Mesochronous clocking constitutes a possible solution to the problems faced. The most fundamental of problems faced when communicating between mesochronously clocked...... is based purely on local observations. It is demonstrated with a 90 nm CMOS standard cell network-on-chip design which implements completely timing-safe, global communication in a modular system...... regions concerns the possibility of data corruption caused by metastability. This paper presents an integrated communication and mesochronous clocking strategy, which avoids timing related errors while maintaining a globally synchronous system perspective. The architecture is scalable as timing integrity...

  15. A Joint-Coding Scheme With Crosstalk Avoidance in Network On Chip

    Directory of Open Access Journals (Sweden)

    Fen Ge

    2013-01-01

    Full Text Available The reliable transfer in Network on Chip can be guaranteed by crosstalk avoidance and error detection code. In this paper,we propose a joint coding scheme combined with crosstalk avoidance coding with error control coding. The Fibonacci numeral system is applied to satisfy the requirement of crosstalk avoidance coding, and the error detection is achieved by adding parity bits. We also implement the codec in register transfer level. Furthermore, the schemes of codec applying to fault-tolerant router are analyzed. The experimental result shows that "once encode, multiple decode" scheme outperforms other schemes in trade-o_ of delay, area and power.

  16. A novel compact model for on-chip stacked transformers in RF-CMOS technology

    Institute of Scientific and Technical Information of China (English)

    Liu Jun; Wen Jincai; Zhao Qian; Sun Lingling

    2013-01-01

    A novel compact model for on-chip stacked transformers is presented.The proposed model topology gives a clear distinction to the eddy current,resistive and capacitive losses of the primary and secondary coils in the substrate.A method to analytically determine the non-ideal parasitics between the primary coil and substrate is provided.The model is further verified by the excellent match between the measured and simulated S-parameters on the extracted parameters for a 1 ∶ 1 stacked transformer manufactured in a commercial RF-CMOS technology.

  17. On-Chip Integrated, Silicon–Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain

    Science.gov (United States)

    2016-01-01

    We report an on-chip integrated metal graphene–silicon plasmonic Schottky photodetector with 85 mA/W responsivity at 1.55 μm and 7% internal quantum efficiency. This is one order of magnitude higher than metal–silicon Schottky photodetectors operated in the same conditions. At a reverse bias of 3 V, we achieve avalanche multiplication, with 0.37A/W responsivity and avalanche photogain ∼2. This paves the way to graphene integrated silicon photonics. PMID:27053042

  18. On-chip, self-detected THz dual-comb spectrometer

    CERN Document Server

    Rösch, Markus; Villares, Gustavo; Bosco, Lorenzo; Beck, Mattias; Faist, Jérôme

    2016-01-01

    We present a directly generated on-chip dual-comb source at THz frequencies. The multi-heterodyne beating signal of two free-running THz quantum cascade laser frequency combs is measured electrically using one of the combs as a detector, fully exploiting the unique characteristics of quantum cascade active regions. Up to 30 modes can be detected corresponding to a spectral bandwidth of 630 GHz, being the available bandwidth of the dual comb configuration. The multi-heterodyne signal is used to investigate the equidistance of the comb modes showing an accuracy of $10^{-12}$ at the carrier frequency of 2.5 THz.

  19. On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Szedlak, Rolf, E-mail: rolf.szedlak@tuwien.ac.at; Schwarzer, Clemens; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Schrenk, Werner; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology, 1040 Vienna (Austria)

    2014-04-14

    We report on collimated emission beams from substrate emitting ring quantum cascade lasers with an on-chip focusing element fabricated into the bottom side of the device. It is formed by a gradient index metamaterial layer, realized by etching subwavelength holes into the substrate. The generated optical path length difference for rays emitted under different angles from the ring waveguide flattens the wavefront and focuses the light. Our far field measurements show an increased peak intensity corresponding to 617% of the initial value without the focusing element. Far field calculations, based on a Fourier transformation of the metamaterial area, are in good agreement with our experimental data.

  20. Design verification and performance analysis of Serial AXI Links in Broadcom System-on-Chip

    OpenAIRE

    Sarai, Simran Kaur

    2014-01-01

    Design verification is an essential step in the development of any product. Also referred to as qualification testing, design verification ensures that the product as designed is the same as the product as intended. In this project, design verification and performance analysis of Thin Advanced Extensible Interface Links (T-AXI) is conducted on a Broadcom’s SoC (System on Chip). T-AXI is a Broadcom’s proprietary bus that interfaces all the subsystems on the System-onchip (SoC) to the system me...

  1. A Metaheuristic Scheduler for Time Division Multiplexed Network-on-Chip

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Bo; Sparsø, Jens; Pedersen, Mark Ruvald

    This report presents a metaheuristic scheduler for inter-processor communication in multi-core platforms using time division multiplexed (TDM) networks on chip (NOC). Input to the scheduler is a specification of the target multi-core platform and a specification of the application. Compared...... that this is possible with only negligible impact on the schedule period. We evaluate the scheduler with seven different applications from the MCSL NOC benchmark suite. We observe that the metaheuristics perform better than the greedy solution. In the special case of all-to-all communication with equal bandwidths...

  2. On-Chip integration of sample pretreatment and Multiplex polymerase chain reaction (PCR) for DNA analysis

    DEFF Research Database (Denmark)

    Brivio, Monica; Snakenborg, Detlef; Søgaard, E.

    2008-01-01

    In this paper we present a modular lab-on-a-chip system for integrated sample pre-treatment (PT) by magnetophoresis and DNA amplification by polymerase chain reaction (PCR). It consists of a polymer-based microfluidic chip mounted on a custom-made thermocycler (Figure 1) and includes a simple...... and efficient method for switching the liquid flow between the PT and PCR chamber. Purification of human genomic DNA from EDTA-treated blood and multiplex PCR were successfully carried out on-chip using the developed lab-on-a-chip system....

  3. Vertical-coupling optical interface for on-chip optical interconnection.

    Science.gov (United States)

    Yamada, Hirohito; Nozawa, Michinao; Kinoshita, Masao; Ohashi, Keishi

    2011-01-17

    We present a vertical-coupling optical interface with a grating coupler for transmitting and receiving optical signals between single-mode optical fibers and microphotonic waveguides with a view to realize on-chip optical interconnection. The optical interface consisting of a simple grating structure with a reflective mirror and an optical power combiner exhibits high optical coupling efficiency and wide tolerance range for the misalignment of optical fibers. The optical interface exhibits high coupling efficiency even if the optical input is almost vertical to the chip surface.

  4. On-chip tunable dispersion in a ring laser gyroscope for enhanced rotation sensing

    Science.gov (United States)

    Zhang, Hao; Liu, Jiaming; Lin, Jian; Li, Wenxiu; Xue, Xia; Huang, Anping; Xiao, Zhisong

    2016-05-01

    A gyroscope structure with tailored local dispersion profile to enhance sensitivity is proposed, which uses lithium niobate (LiNbO3) thin film as the on-chip material of gyroscope's resonator. A Mach-Zehnder interferometer (MZI) structure as a coupler, which induces a different reference phase shift in each arm, is inserted into the position between ring resonator and output bus waveguide. Through modulating reference phase shift in MZI, theoretical rotation sensitivity enhancement as large as one order of magnitude is presented.

  5. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    Science.gov (United States)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  6. On-chip measurements of Brownian relaxation vs. concentration of 40nm magnetic beads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2012-01-01

    are needed as the beads are magnetized by the field generated by the applied sensor bias current. We show that the Brownian relaxation frequency can be extracted from fitting the Cole-Cole model to measurements for bead concentrations of 64 mu g/ml or higher and that the measured dynamic magnetic response......We present on-chip Brownian relaxation measurements on a logarithmic dilution series of 40 nm beads dispersed in water with bead concentrations between 16 mu g/ml and 4000 mu g/ml. The measurements are performed using a planar Hall effect bridge sensor at frequencies up to 1 MHz. No external fields...

  7. On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Andreas C., E-mail: andreas.liapis@gmail.com; Gao, Boshen; Siddiqui, Mahmudur R. [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Shi, Zhimin [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Boyd, Robert W. [The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-11

    Spectroscopic methods are a sensitive way to determine the chemical composition of potentially hazardous materials. Here, we demonstrate that thermally tuned high-Q photonic crystal cavities can be used as a compact high-resolution on-chip spectrometer. We have used such a chip-scale spectrometer to measure the absorption spectra of both acetylene and hydrogen cyanide in the 1550 nm spectral band and show that we can discriminate between the two chemical species even though the two materials have spectral features in the same spectral region. Our results pave the way for the development of chip-size chemical sensors that can detect toxic substances.

  8. On-chip spectroscopy with thermally-tuned high-Q photonic crystal cavities

    CERN Document Server

    Liapis, Andreas C; Siddiqui, Mahmudur R; Shi, Zhimin; Boyd, Robert W

    2015-01-01

    Spectroscopic methods are a sensitive way to determine the chemical composition of potentially hazardous materials. Here, we demonstrate that thermally-tuned high-Q photonic crystal cavities can be used as a compact high-resolution on-chip spectrometer. We have used such a chip-scale spectrometer to measure the absorption spectra of both acetylene and hydrogen cyanide in the 1550 nm spectral band, and show that we can discriminate between the two chemical species even though the two materials have spectral features in the same spectral region. Our results pave the way for the development of chip-size chemical sensors that can detect toxic substances.

  9. Invited Article: Electrically tunable silicon-based on-chip microdisk resonator for integrated microwave photonic applications

    Directory of Open Access Journals (Sweden)

    Weifeng Zhang

    2016-11-01

    Full Text Available Silicon photonics with advantages of small footprint, compatibility with the mature CMOS fabrication technology, and its potential for seamless integration with electronics is making a significant difference in realizing on-chip integration of photonic systems. A microdisk resonator (MDR with a strong capacity in trapping and storing photons is a versatile element in photonic integrated circuits. Thanks to the large index contrast, a silicon-based MDR with an ultra-compact footprint has a great potential for large-scale and high-density integrations. However, the existence of multiple whispering gallery modes (WGMs and resonance splitting in an MDR imposes inherent limitations on its widespread applications. In addition, the waveguide structure of an MDR is incompatible with that of a lateral PN junction, which leads to the deprivation of its electrical tunability. To circumvent these limitations, in this paper we propose a novel design of a silicon-based MDR by introducing a specifically designed slab waveguide to surround the disk and the lateral sides of the bus waveguide to suppress higher-order WGMs and to support the incorporation of a lateral PN junction for electrical tunability. An MDR based on the proposed design is fabricated and its optical performance is evaluated. The fabricated MDR exhibits single-mode operation with a free spectral range of 28.85 nm. Its electrical tunability is also demonstrated and an electro-optic frequency response with a 3-dB modulation bandwidth of ∼30.5 GHz is measured. The use of the fabricated MDR for the implementation of an electrically tunable optical delay-line and a tunable fractional-order temporal photonic differentiator is demonstrated.

  10. Invited Article: Electrically tunable silicon-based on-chip microdisk resonator for integrated microwave photonic applications

    Science.gov (United States)

    Zhang, Weifeng; Yao, Jianping

    2016-11-01

    Silicon photonics with advantages of small footprint, compatibility with the mature CMOS fabrication technology, and its potential for seamless integration with electronics is making a significant difference in realizing on-chip integration of photonic systems. A microdisk resonator (MDR) with a strong capacity in trapping and storing photons is a versatile element in photonic integrated circuits. Thanks to the large index contrast, a silicon-based MDR with an ultra-compact footprint has a great potential for large-scale and high-density integrations. However, the existence of multiple whispering gallery modes (WGMs) and resonance splitting in an MDR imposes inherent limitations on its widespread applications. In addition, the waveguide structure of an MDR is incompatible with that of a lateral PN junction, which leads to the deprivation of its electrical tunability. To circumvent these limitations, in this paper we propose a novel design of a silicon-based MDR by introducing a specifically designed slab waveguide to surround the disk and the lateral sides of the bus waveguide to suppress higher-order WGMs and to support the incorporation of a lateral PN junction for electrical tunability. An MDR based on the proposed design is fabricated and its optical performance is evaluated. The fabricated MDR exhibits single-mode operation with a free spectral range of 28.85 nm. Its electrical tunability is also demonstrated and an electro-optic frequency response with a 3-dB modulation bandwidth of ˜30.5 GHz is measured. The use of the fabricated MDR for the implementation of an electrically tunable optical delay-line and a tunable fractional-order temporal photonic differentiator is demonstrated.

  11. Sleep can reduce proactive interference.

    Science.gov (United States)

    Abel, Magdalena; Bäuml, Karl-Heinz T

    2014-01-01

    Sleep has repeatedly been connected to processes of memory consolidation. While extensive research indeed documents beneficial effects of sleep on memory, little is yet known about the role of sleep for interference effects in episodic memory. Although two prior studies reported sleep to reduce retroactive interference, no sleep effect has previously been found for proactive interference. Here we applied a study format differing from that employed by the prior studies to induce a high degree of proactive interference, and asked participants to encode a single list or two interfering lists of paired associates via pure study cycles. Testing occurred after 12 hours of diurnal wakefulness or nocturnal sleep. Consistent with the prior work, we found sleep in comparison to wake did not affect memory for the single list, but reduced retroactive interference. In addition we found sleep reduced proactive interference, and reduced retroactive and proactive interference to the same extent. The finding is consistent with the view that arising benefits of sleep are caused by the reactivation of memory contents during sleep, which has been suggested to strengthen and stabilise memories. Such stabilisation may make memories less susceptible to competition from interfering memories at test and thus reduce interference effects.

  12. Output Interference in Recognition Memory

    Science.gov (United States)

    Criss, Amy H.; Malmberg, Kenneth J.; Shiffrin, Richard M.

    2011-01-01

    Dennis and Humphreys (2001) proposed that interference in recognition memory arises solely from the prior contexts of the test word: Interference does not arise from memory traces of other words (from events prior to the study list or on the study list, and regardless of similarity to the test item). We evaluate this model using output…

  13. The RNA interference revolution

    Directory of Open Access Journals (Sweden)

    G. Lenz

    2005-12-01

    Full Text Available The discovery of double-stranded RNA-mediated gene silencing has rapidly led to its use as a method of choice for blocking a gene, and has turned it into one of the most discussed topics in cell biology. Although still in its infancy, the field of RNA interference has already produced a vast array of results, mainly in Caenorhabditis elegans, but recently also in mammalian systems. Micro-RNAs are short hairpins of RNA capable of blocking translation, which are transcribed from genomic DNA and are implicated in several aspects from development to cell signaling. The present review discusses the main methods used for gene silencing in cell culture and animal models, including the selection of target sequences, delivery methods and strategies for a successful silencing. Expected developments are briefly discussed, ranging from reverse genetics to therapeutics. Thus, the development of the new paradigm of RNA-mediated gene silencing has produced two important advances: knowledge of a basic cellular mechanism present in the majority of eukaryotic cells and access to a potent and specific new method for gene silencing.

  14. Two-dimensional isoelectric focusing OFFGEL and microfluidic lab-on-chip electrophoresis for assessing dissolved proteins in seawater.

    Science.gov (United States)

    García-Otero, Natalia; Peña-Vázquez, Elena; Barciela-Alonso, María Carmen; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-06-18

    Dissolved proteins were assessed in surface and deep seawater by two-dimensional isoelectric focusing (IEF) OFFGEL-lab-on-chip (LOC) electrophoresis after tangential flow ultrafiltration followed by centrifugal ultrafiltration (preconcentration factor of 3000). Dissolved protein isolation was performed by treating the ultrafiltrated retentate with cold acetone and also with chloroform as precipitating reagents. The best electrophoretic behavior of the isolated proteins was obtained after protein precipitation with chloroform before different rinsing stages for removing methanol and water interferences. Metals bound to proteins in the different OFFGEL fractions were assessed by inductively coupled plasma-optical emission spectrometry and electrothermal atomic absorption spectrometry, under optimized operating conditions. Experiments regarding stability of the metal-binding proteins [superoxide dismutase (SOD) and alcohol dehydrogenase (ADH) as protein models] showed the integrity of the Zn-binding SOD/ADH under the OFFGEL electrophoretic conditions. However, stability of Cu bound to SOD is not guaranteed. The first electrophoretic dimension (IEF OFFGEL) showed that dissolved proteins in surface seawater exhibit alkaline isoelectric points (pIs of 8.10 and 8.37) and also acid Ips (4.82, 5.13, 5.43, and 5.73), while LOC showed that the isolated proteins exhibit a spread molecular weight range (within 15 - 63 kDa); although, high molecular weights were the most commonly found. Regarding deep seawater, isolated proteins were of acid Ips (from 3.30 to 4.22) and low molecular weight (within the 21-24 kDa range). Elements such as Cd, Cu, Mn, and Ni were mainly associated with dissolved proteins of alkaline pIs in surface seawater, while Zn was mainly associated to proteins of acid pIs. However, only Cu and Mn were found to be bound to dissolved proteins of higher Ips in deep seawater, and the amount of Mn (from 68 to 84 μg L(-1)) was higher than that found in dissolved

  15. A Novel Architecture for Adaptive Traffic Control in Network on Chip using Code Division Multiple Access Technique

    Directory of Open Access Journals (Sweden)

    Fatemeh. Dehghani

    2016-08-01

    Full Text Available Network on chip has emerged as a long-term and effective method in Multiprocessor System-on-Chip communications in order to overcome the bottleneck in bus based communication architectures. Efficiency and performance of network on chip is so dependent on the architecture and structure of the network. In this paper a new structure and architecture for adaptive traffic control in network on chip using Code Division Multiple Access technique is presented. To solve the problem of synchronous access to bus based interconnection the code division multiple access technique was applied. In the presented structure that is based upon mesh topology and simple routing method we attempted to increase the exchanged data bandwidth rate among different cores. Also an attempt has been made to increase the performance by isolating the target address transfer path from data transfer path. The main goal of this paper is presenting a new structure to improve energy consumption, area and maximum frequency in network on chip systems using information coding and decoding techniques. The presented structure is simulated using Xilinx ISE software and the results show effectiveness of this architecture.

  16. Extreme ultraviolet Talbot interference lithography.

    Science.gov (United States)

    Li, Wei; Marconi, Mario C

    2015-10-05

    Periodic nanopatterns can be generated using lithography based on the Talbot effect or optical interference. However, these techniques have restrictions that limit their performance. High resolution Talbot lithography is limited by the very small depth of focus and the demanding requirements in the fabrication of the master mask. Interference lithography, with large DOF and high resolution, is limited to simple periodic patterns. This paper describes a hybrid extreme ultraviolet lithography approach that combines Talbot lithography and interference lithography to render an interference pattern with a lattice determined by a Talbot image. As a result, the method enables filling the arbitrary shaped cells produced by the Talbot image with interference patterns. Detailed modeling, system design and experimental results using a tabletop EUV laser are presented.

  17. Communications in interference limited networks

    CERN Document Server

    2016-01-01

    This book offers means to handle interference as a central problem of operating wireless networks. It investigates centralized and decentralized methods to avoid and handle interference as well as approaches that resolve interference constructively. The latter type of approach tries to solve the joint detection and estimation problem of several data streams that share a common medium. In fact, an exciting insight into the operation of networks is that it may be beneficial, in terms of an overall throughput, to actively create and manage interference. Thus, when handled properly, "mixing" of data in networks becomes a useful tool of operation rather than the nuisance as which it has been treated traditionally. With the development of mobile, robust, ubiquitous, reliable and instantaneous communication being a driving and enabling factor of an information centric economy, the understanding, mitigation and exploitation of interference in networks must be seen as a centrally important task.

  18. A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells.

    Science.gov (United States)

    Zheng, Wenfu; Wang, Zhuo; Zhang, Wei; Jiang, Xingyu

    2010-11-07

    This report shows methods to fabricate polydimethylsiloxane (PDMS) microfluidic systems for long-term (up to 10 day) cell culture. Undesired bubble accumulation in microfluidic channels abruptly changes the microenvironment of adherent cells and leads to the damage and death of cells. Existing bubble trapping approaches have drawbacks such as the need to pause fluid flow, requirement for external vacuum or pressure source, and possible cytotoxicity. This study reports two kinds of integrated bubble trap (IBT) which have excellent properties, including simplicity in structure, ease in fabrication, no interference with the flow, and long-term stability. IBT-A provides the simplest solution to prevent bubbles from entering microfluidic channels. In situ time-lapse imaging experiments indicate that IBT-B is an excellent device both for bubble trapping and debubbling in cell-loaded microfluidics. MC 3T3 E1 cells, cultured in a long and curved microfluidic channel equipped with IBT-B, showed high viability and active proliferation after 10 days of continuous fluid flow. The comprehensive measures taken in our experiments have led to successful long-term, bubble-free, on-chip culture of cells.

  19. A novel low-voltage low-power analogue VLSI implementation of neural networks with on-chip back-propagation learning

    Science.gov (United States)

    Carrasco, Manuel; Garde, Andres; Murillo, Pilar; Serrano, Luis

    2005-06-01

    In this paper a novel design and implementation of a VLSI Analogue Neural Net based on Multi-Layer Perceptron (MLP) with on-chip Back Propagation (BP) learning algorithm suitable for the resolution of classification problems is described. In order to implement a general and programmable analogue architecture, the design has been carried out in a hierarchical way. In this way the net has been divided in synapsis-blocks and neuron-blocks providing an easy method for the analysis. These blocks basically consist on simple cells, which are mainly, the activation functions (NAF), derivatives (DNAF), multipliers and weight update circuits. The analogue design is based on current-mode translinear techniques using MOS transistors working in the weak inversion region in order to reduce both the voltage supply and the power consumption. Moreover, with the purpose of minimizing the noise, offset and distortion of even order, the topologies are fully-differential and balanced. The circuit, named ANNE (Analogue Neural NEt), has been prototyped and characterized as a proof of concept on CMOS AMI-0.5A technology occupying a total area of 2.7mm2. The chip includes two versions of neural nets with on-chip BP learning algorithm, which are respectively a 2-1 and a 2-2-1 implementations. The proposed nets have been experimentally tested using supply voltages from 2.5V to 1.8V, which is suitable for single cell lithium-ion battery supply applications. Experimental results of both implementations included in ANNE exhibit a good performance on solving classification problems. These results have been compared with other proposed Analogue VLSI implementations of Neural Nets published in the literature demonstrating that our proposal is very efficient in terms of occupied area and power consumption.

  20. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics

    Science.gov (United States)

    Park, Gyeong Cheol; Xue, Weiqi; Piels, Molly; Zibar, Darko; Mørk, Jesper; Semenova, Elizaveta; Chung, Il-Sug

    2016-12-01

    For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating en-ergy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have a challenge in obtaining a sufficient output power. Here, as an alternative, we propose an ultrahigh-speed microcavity laser structure, based on a vertical cavity with a high-contrast grating (HCG) mirror for transverse magnetic (TM) polarisation. By using the TM HCG, a very small mode volume and an un-pumped compact optical feedback structure can be realised, which together tailor the frequency response function for achieving a very high speed at low injection currents. Furthermore, light can be emitted laterally into a Si waveguide. From an 1.54-μm optically-pumped laser, a 3-dB frequency of 27 GHz was obtained at a pumping level corresponding to sub-mA. Using measured 3-dB frequen-cies and calculated equivalent currents, the modulation current efficiency factor (MCEF) is estimated to be 42.1 GHz/mA1/2, which is superior among microcavity lasers. This shows a high potential for a very high speed at low injection currents or avery small heat generation at high bitrates, which are highly desirable for both on-chip and off-chip applications.

  1. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Directory of Open Access Journals (Sweden)

    Cally Gill

    2013-09-01

    Full Text Available The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  2. High performance magnesium anode in paper-based microfluidic battery, powering on-chip fluorescence assay.

    Science.gov (United States)

    Koo, Youngmi; Sankar, Jagannathan; Yun, Yeoheung

    2014-09-01

    A high power density and long-lasting stable/disposable magnesium battery anode was explored for a paper-based fluidic battery to power on-chip functions of various Point of Care (POC) devices. The single galvanic cell with magnesium foil anode and silver foil cathode in Origami cellulose chip provided open circuit potential, 2.2 V, and power density, 3.0 mW/cm(2). A paper-based fluidic galvanic cell was operated with one drop of water (80 μl) and continued to run until it was dry. To prove the concept about powering on-chip POC devices, two-serial galvanic cells are developed and incorporated with a UV-light emitting diode (λ = 365 nm) and fluorescence assay for alkaline phosphatase reaction. Further, detection using smart phones was performed for quantitative measurement of fluorescent density. To conclude, a magnesium-based fluidic battery paper chip was extremely low-cost, required minute sample volumes, was easy to dispose of, light weight, easy to stack, store and transport, easy to fabricate, scalable, and has faster analysis times.

  3. Energy Efficient Run-Time Incremental Mapping for 3-D Networks-on-Chip

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hang Wang; Peng Liu; Mei Yang; Maurizio Palesi; Ying-Tao Jiang; Michael C Huang

    2013-01-01

    3-D Networks-on-Chip (NoC) emerge as a potent solution to address both the interconnection and design complexity problems facing future Multiprocessor System-on-Chips (MPSoCs).Effective run-time mapping on such 3-D NoC-based MPSoCs can be quite challenging,as the arrival order and task graphs of the target applications are typically not known a priori,which can be further complicated by stringent energy requirements for NoC systems.This paper thus presents an energy-aware run-time incremental mapping algorithm (ERIM) for 3-D NoC which can minimize the energy consumption due to the data communications among processor cores,while reducing the fragmentation effect on the incoming applications to be mapped,and simultaneously satisfying the thermal constraints imposed on each incoming application.Specifically,incoming applications are mapped to cuboid tile regions for lower energy consumption of communication and the minimal routing.Fragment tiles due to system fragmentation can be gleaned for better resource utilization.Extensive experiments have been conducted to evaluate the performance of the proposed algorithm ERIM,and the results are compared against the optimal mapping algorithm (branch-and-bound) and two heuristic algorithms (TB and TL).The experiments show that ERIM outperforms TB and TL methods with significant energy saving (more than 10%),much reduced average response time,and improved system utilization.

  4. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  5. HARDWARE IMPLEMENTATION OF PIPELINE BASED ROUTER DESIGN FOR ON-CHIP NETWORK

    Directory of Open Access Journals (Sweden)

    U. Saravanakumar

    2012-12-01

    Full Text Available As the feature size is continuously decreasing and integration density is increasing, interconnections have become a dominating factor in determining the overall quality of a chip. Due to the limited scalability of system bus, it cannot meet the requirement of current System-on-Chip (SoC implementations where only a limited number of functional units can be supported. Long global wires also cause many design problems, such as routing congestion, noise coupling, and difficult timing closure. Network-on-Chip (NoC architectures have been proposed to be an alternative to solve the above problems by using a packet-based communication network. In this paper, the Circuit-Switched (CS Router was designed and analysed the various parameters such as power, timing and area. The CS router has taken more number of cycles to transfer the data from source to destination. So the pipelining concept was implemented by adding registers in the CS router architecture. The proposed architecture increases the speed of operation and reduces the critical path of the circuit. The router has been implemented using Verilog HDL. The parameters area, power and timing were calculated in 130 nm CMOS technology using Synopsys tool with nominal operating voltage of 1V and packet size is 39 bits. Finally power, area and time of these two routers have been analysed and compared.

  6. On-chip lithium cells for electrical and structural characterization of single nanowire electrodes

    Science.gov (United States)

    Subramanian, A.; Hudak, N. S.; Huang, J. Y.; Zhan, Y.; Lou, J.; Sullivan, J. P.

    2014-07-01

    We present a transmission electron microscopy (TEM)-compatible, hybrid nanomachined, on-chip construct for probing the structural and electrical changes in individual nanowire electrodes during lithium insertion. We have assembled arrays of individual β-phase manganese dioxide (β-MnO2) nanowires (NWs), which are employed as a model material system, into functional electrochemical cells through a combination of bottom-up (dielectrophoresis) and top-down (silicon nanomachining) unit processes. The on-chip NWs are electrochemically lithiated inside a helium-filled glovebox and their electrical conductivity is studied as a function of incremental lithium loading during initial lithiation. We observe a dramatic reduction in NW conductivity (on the order of two to three orders in magnitude), which is not reversed when the lithium is extracted from the nanoelectrode. This conductivity change is attributed to an increase in lattice disorder within the material, which is observed from TEM images of the lithiated NWs. Furthermore, electron energy loss spectroscopy (EELS) was employed to confirm the reduction in valence state of manganese, which occurs due to the transformation of MnO2 to LixMnO2.

  7. Compact Electrochemical System Using On-Chip Sensor Electrodes and Integrated Devices

    Science.gov (United States)

    Yamazaki, Tomoyuki; Ikeda, Takaaki; Ishida, Makoto; Sawada, Kazuaki

    2011-04-01

    We report a compact electrochemical sensing system to implement cyclic voltammetry. This type of sensor needs a working electrode, counter electrode, and reference electrode, all of which were integrated on a single chip. The electrochemical system also needs a potentiostat and an input voltage-generating circuit, which were developed using on-chip active devices and a few discrete passive components. This is the first sensor system incorporating electrode-side input voltage generation for electrochemical measurements using an on-chip operational amplifier, which replaces a bulky external voltage controller. A continuous cyclic voltammetry measurement was conducted with a well-studied ferricyanide solution to demonstrate the operation of the intelligent sensor chip. A clear peak was observed and linearity to the target chemical concentration was obtained between the peak height and concentration of the ferricyanide solution. With potential for mass production and small size, this sensor chip could be the best candidate to realize point-of-care testing. This sensor chip is a milestone of a fully integrated electrochemical sensor chip.

  8. Reconfigurable VLSI implementation for learning vector quantization with on-chip learning circuit

    Science.gov (United States)

    Zhang, Xiangyu; An, Fengwei; Chen, Lei; Jürgen Mattausch, Hans

    2016-04-01

    As an alternative to conventional single-instruction-multiple-data (SIMD) mode solutions with massive parallelism for self-organizing-map (SOM) neural network models, this paper reports a memory-based proposal for the learning vector quantization (LVQ), which is a variant of SOM. A dual-mode LVQ system, enabling both on-chip learning and classification, is implemented by using a reconfigurable pipeline with parallel p-word input (R-PPPI) architecture. As a consequence of the reuse of R-PPPI for solving the most severe computational demands in both modes, power dissipation and Si-area consumption can be dramatically reduced in comparison to previous LVQ implementations. In addition, the designed LVQ ASIC has high flexibility with respect to feature-vector dimensionality and reference-vector number, allowing the execution of many different machine-learning applications. The fabricated test chip in 180 nm CMOS with parallel 8-word inputs and 102 K-bit on-chip memory achieves low power consumption of 66.38 mW (at 75 MHz and 1.8 V) and high learning speed of (R + 1) × \\lceil d/8 \\rceil + 10 clock cycles per d-dimensional sample vector where R is the reference-vector number.

  9. Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light

    KAUST Repository

    Daloglu, Mustafa Ugur

    2017-03-09

    Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.

  10. Improved color metrics in solid-state lighting via utilization of on-chip quantum dots

    Science.gov (United States)

    Mangum, Benjamin D.; Landes, Tiemo S.; Theobald, Brian R.; Kurtin, Juanita N.

    2017-02-01

    While Quantum Dots (QDs) have found commercial success in display applications, there are currently no widely available solid state lighting products making use of QD nanotechnology. In order to have real-world success in today's lighting market, QDs must be capable of being placed in on-chip configurations, as remote phosphor configurations are typically much more expensive. Here we demonstrate solid-state lighting devices made with on-chip QDs. These devices show robust reliability under both dry and wet high stress conditions. High color quality lighting metrics can easily be achieved using these narrow, tunable QD downconverters: CRI values of Ra > 90 as well as R9 values > 80 are readily available when combining QDs with green phosphors. Furthermore, we show that QDs afford a 15% increase in overall efficiency compared to traditional phosphor downconverted SSL devices. The fundamental limit of QD linewidth is examined through single particle QD emission studies. Using standard Cd-based QD synthesis, it is found that single particle linewidths of 20 nm FWHM represent a lower limit to the narrowness of QD emission in the near term.

  11. Microfluidic integration of wirebonded microcoils for on-chip applications in nuclear magnetic resonance

    Science.gov (United States)

    Meier, Robert Ch; Höfflin, Jens; Badilita, Vlad; Wallrabe, Ulrike; Korvink, Jan G.

    2014-04-01

    We present an integrated microfluidic device for on-chip nuclear magnetic resonance (NMR) studies of microscopic samples. The devices are fabricated by means of a MEMS compatible process, which joins the automatic wirebond winding of solenoidal microcoils and the manufacturing of a complex microfluidic network using dry-photoresist lamination. The wafer-scale cleanroom process is potentially capable of mass fabrication. Since the non-invasive NMR analysis technique is rather insensitive, particularly when microscopic sample volumes are to be investigated, we also focus on the optimization of the wirebonded microcoil for this purpose. The on-chip measurement of NMR signals from a 20 nl sample are evaluated for imaging analysis of microparticles, as well as for spectroscopy. Whereas the latter revealed that the sensitivity of the MEMS microcoil is comparable with hand-wound devices and achieves a full-width-half-maximum linewidth of 8 Hz, the imaging experiment demonstrated 10 μm isotropic spatial resolution within an experiment time of 38 min for a 3D image with a field of view of 1 mm × 1 mm × 0.5 mm (500 000 voxels).

  12. Performance-driven assignment and mapping for reliable networks-on-chips

    Institute of Scientific and Technical Information of China (English)

    Qian-qi LE; Guo-wu YANG; William N.N.HUNG; Xiao-yu SONG; Fu-you FAN

    2014-01-01

    Network-on-chip (NoC) communication architectures present promising solutions for scalable communication re-quests in large system-on-chip (SoC) designs. Intellectual property (IP) core assignment and mapping are two key steps in NoC design, significantly affecting the quality of NoC systems. Both are NP-hard problems, so it is necessary to apply intelligent algorithms. In this paper, we propose improved intelligent algorithms for NoC assignment and mapping to overcome the draw-backs of traditional intelligent algorithms. The aim of our proposed algorithms is to minimize power consumption, time, area, and load balance. This work involves multiple conflicting objectives, so we combine multiple objective optimization with intelligent algorithms. In addition, we design a fault-tolerant routing algorithm and take account of reliability using comprehensive perfor-mance indices. The proposed algorithms were implemented on embedded system synthesis benchmarks suite (E3S). Experimental results show the improved algorithms achieve good performance in NoC designs, with high reliability.

  13. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system

    Science.gov (United States)

    Choi, Jin-Ha; Lee, Jaewon; Shin, Woojung; Choi, Jeong-Woo; Kim, Hyun Jung

    2016-10-01

    Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D organoid models. However, a lack of experimental models that have strong human physiological relevance has hampered accurate validation of the safety and functionality of NPs. Alternatively, biomimetic human "Organs-on-Chips" microphysiological systems have recapitulated the mechanically dynamic 3D tissue interface of human organ microenvironment, in which the transport, cytotoxicity, biocompatibility, and therapeutic efficacy of NPs and their conjugates may be more accurately validated. Finally, integration of NP-guided diagnostic detection and targeted nanotherapeutics in conjunction with human organs-on-chips can provide a novel avenue to accelerate the NP-based drug development process as well as the rapid detection of cellular secretomes associated with pathophysiological processes.

  14. Design and simulation of a Torus topology for network on chip

    Institute of Scientific and Technical Information of China (English)

    Wu Chang; Li Yubai; Chai Song

    2008-01-01

    Aiming at the applications of NOC(network on chip)technology in rising scale and complexity on chip systems,a Torus structure and corresponding route algorithm for NOC is proposed.This Torus structure improves traditional Torus topology and redefines the denotations of the routers.Through redefining the router denotations and changing the origihal router locations,the Torns structure for NOC application is reconstructed.On the basis of this structure.a dead-lock and live-lock free route algorithm is designed according to dimension increase.System C is used to implement this structure and the route algorithm is simulated.In the four different traffic patterns.average,hotspot 13%,hotspot 67% and transpose,the average delay and normalization throughput of this Torus structure are evaluated.Then,the performance of delay and throughput between this Torns and Mesh structure is compared.The results indicate that this Torns structure is more suitable for NOC applications.

  15. Analysis and design of networks-on-chip under high process variation

    CERN Document Server

    Ezz-Eldin, Rabab; Hamed, Hesham F A

    2015-01-01

    This book describes in detail the impact of process variations on Network-on-Chip (NoC) performance. The authors evaluate various NoC topologies under high process variation and explain the design of efficient NoCs, with advanced technologies. The discussion includes variation in logic and interconnect, in order to evaluate the delay and throughput variation with different NoC topologies. The authors describe an asynchronous router, as a robust design to mitigate the impact of process variation in NoCs and the performance of different routing algorithms is determined with/without process variation for various traffic patterns. Additionally, a novel Process variation Delay and Congestion aware Routing algorithm (PDCR) is described for asynchronous NoC design, which outperforms different adaptive routing algorithms in the average delay and saturation throughput for various traffic patterns. Demonstrates the impact of process variation on Networks-on-Chip of different topologies;  Includes an overview of the sy...

  16. Marker Pen Lithography for Flexible and Curvilinear On-Chip Energy Storage

    KAUST Repository

    Jiang, Qiu

    2015-07-14

    On-chip energy storage using microsupercapacitors can serve the dual role of supplementing batteries for pulse power delivery, and replacement of bulky electrolytic capacitors in ac-line filtering applications. Despite complexity and processing costs, microfabrication techniques are being employed in fabricating a great variety of microsupercapacitor devices. Here, a simple, cost-effective, and versatile strategy is proposed to fabricate flexible and curvilinear microsupercapacitors (MSCs). The protocol involves writing sacrificial ink patterns using commercial marker pens on rigid, flexible, and curvilinear substrates. It is shown that this process can be used in both lift-off and etching modes, and the possibility of multistack design of active materials using simple pen lithography is demonstrated. As a prototype, this method is used to produce conducting polymer MSCs involving both poly(3,4-ethylenedioxythiophene), polyaniline, and metal oxide (MnO2) electrode materials. Typical values of energy density in the range of 5-11 mWh cm-3 at power densities of 1-6 W cm-3 are achieved, which is comparable to thin film batteries and superior to the carbon and metal oxide based microsupercapacitors reported in the literature. The simplicity and broad scope of this innovative strategy can open up new avenues for easy and scalable fabrication of a wide variety of on-chip energy storage devices. © 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.

  17. Implantable Biomedical Signal Monitoring Using RF Energy Harvestingand On-Chip Antenna

    Directory of Open Access Journals (Sweden)

    Jiann-Shiun Yuan

    2015-08-01

    Full Text Available This paper presents the design of an energy harvesting wireless and battery-less silicon-on-chip (SoC device that can be implanted in the human body to monitor certain health conditions. The proposed architecture has been designed on TSMC 0.18μm CMOS ICs and is an integrated system with a rectenna (antenna and rectifier and transmitting circuit, all on a single chip powered by an external transmitter and that is small enough to be inserted in the human eye, heart or brain. The transmitting and receiving antennas operate in the 5.8- GHz ISM band and have a -10dB gain. The distinguishing feature of this design is the rectenna that comprises of a singlestage diode connected NMOS rectifier and a 3-D on-chip antenna that occupies only 2.5 × 1 × 2.8 mm3 of chip area and has the ability to communicate within proximity of 5 cm while giving 10% efficiency. The external source is a reader that powers up the RF rectifier in the implantable chip triggering it to start sending data back to the reader enabling an efficient method of health evaluation for the patient.

  18. An Implantable Cardiovascular Pressure Monitoring System with On-Chip Antenna and RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Yu-Chun Liu

    2015-08-01

    Full Text Available An implantable wireless system with on-chip antenna for cardiovascular pressure monitor is studied. The implantable device is operated in a batteryless manner, powered by an external radio frequency (RF power source. The received RF power level can be sensed and wirelessly transmitted along with blood pressure signal for feedback control of the external RF power. The integrated electronic system, consisting of a capacitance-to-voltage converter, an adaptive RF powering system, an RF transmitter and digital control circuitry, is simulated using a TSMC 0.18 μm CMOS technology. The implanted RF transmitter circuit is combined with a low power voltage-controlled oscillator resonating at 5.8 GHz and a power amplifier. For the design, the simulation model is setup using ADS and HFSS software. The dimension of the antenna is 1 × 0.6 × 4.8 mm3 with a 1 × 0.6 mm2 on-chip circuit which is small enough to place in human carotid artery.

  19. Dynamics of semiconductor microring lasers subject to on-chip filtered optical feedback

    Science.gov (United States)

    Khoder, Mulham; Friart, Gaetan; Danckaert, Jan; Erneux, Thomas; Van der Sande, Guy; Verschaffelt, Guy

    2016-04-01

    Tunable laser diodes are needed in a range of applications including wavelength division multiplexing, optical instrument testing, optical sensing and tera hertz generation. In this work, we investigate the stability of lasers which use filtered optical feedback for wavelength tuning. We investigate experimentally the dynamics induced by this on-chip filtered optical feedback. In this study, we choose to use a compact device which combines a semiconductor ring laser with on-chip filtered optical feedback to achieve wavelength tunability. The filtered optical feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback of each wavelength channel independently. Experimental observations show that the stability of the clockwise and counterclockwise propagation modes depends on the feedback strength. Experiments also show that for a specific range of the feedback strength, anti-phase oscillations in the intensity of the clockwise and counterclockwise propagating modes can be induced. These oscillations could not be seen in the same semiconductor ring laser without filtered optical feedback. We investigate how the frequency and the amplitude of these oscillations change under the effect of filtered optical feedback. We also discuss how these anti-phase oscillations can be suppressed by properly choosing the feedback strength.

  20. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS.

    Science.gov (United States)

    Liang, Yuan; Yu, Hao; Zhang, Hao Chi; Yang, Chang; Cui, Tie Jun

    2015-10-08

    A low-loss and low-crosstalk surface-wave transmission line (T-line) is demonstrated at sub-THz in CMOS. By introducing periodical sub-wavelength structures onto the metal transmission line, surface plasmon polaritons (SPP) are excited and propagate signals via a strongly localized surface wave. Two coupled SPP T-lines and two quasi-TEM T-lines are both fabricated on-chip, each with a separation distance of 2.4 μm using standard 65 nm CMOS technology. Measurement results show that the SPP T-lines achieve wideband reflection coefficient lower than -14 dB and crosstalk ratio better than -24 dB, which is 19 dB lower on average than the traditional T-lines from 220 GHz to 325 GHz. The demonstrated compact and wideband SPP T-lines have shown great potential for future realization of highly dense on-chip sub-THz communications in CMOS.