WorldWideScience

Sample records for on-axis multimode spectrometer

  1. Compact silicon multimode waveguide spectrometer with enhanced bandwidth

    Science.gov (United States)

    Piels, Molly; Zibar, Darko

    2017-01-01

    Compact, broadband, and high-resolution spectrometers are appealing for sensing applications, but difficult to fabricate. Here we show using calibration data a spectrometer based on a multimode waveguide with 2 GHz resolution, 250 GHz bandwidth, and a 1.6 mm × 2.1 mm footprint. Typically, such spectrometers have a bandwidth limited by the number of modes supported by the waveguide. In this case, an on-chip mode-exciting element is used to repeatably excite distinct collections of waveguide modes. This increases the number of independent spectral channels from the number of modes to this number squared, resulting in an extension of the usable range. PMID:28290537

  2. Using a multimode fiber as a high resolution, low loss spectrometer

    CERN Document Server

    Redding, Brandon

    2015-01-01

    We propose and demonstrate that a conventional multimode fiber can function as a high resolution, low loss spectrometer. The proposed spectrometer consists only of the fiber and a camera that images the speckle pattern generated by interference among the fiber modes. While this speckle pattern is detrimental to many applications, it encodes information about the spectral content of the input signal which can be recovered using calibration data. We achieve a spectral resolution of 0.15 nm over 25 nm bandwidth using 1 meter long fiber, and 0.03 nm resolution over 5 nm bandwidth with a 5 meter fiber. The insertion loss is less than 10%, and the signal to noise ratio in the reconstructed spectra is over 1000.

  3. Multimodality

    DEFF Research Database (Denmark)

    Buhl, Mie

    2010-01-01

    In this paper, I address an ongoing discussion in Danish E-learning research about how to take advantage of the fact that digital media facilitate other communication forms than text, so-called ‘multimodal' communication, which should not be confused with the term ‘multimedia'. While multimedia...... on their teaching and learning situations. The choices they make involve e-learning resources like videos, social platforms and mobile devices, not just as digital artefacts we interact with, but the entire practice of using digital media. In a life-long learning perspective, multimodality is potentially very...... represent the use of various media for communication, multimodality refers to the different symbol systems we employ in communication practices. As new educational practices emerge from the application of ICT, multimodality becomes a matter for all teachers when they plan, practice and reflect...

  4. Multimodality

    DEFF Research Database (Denmark)

    Buhl, Mie

    2010-01-01

    on their teaching and learning situations. The choices they make involve e-learning resources like videos, social platforms and mobile devices, not just as digital artefacts we interact with, but the entire practice of using digital media. In a life-long learning perspective, multimodality is potentially very...... represent the use of various media for communication, multimodality refers to the different symbol systems we employ in communication practices. As new educational practices emerge from the application of ICT, multimodality becomes a matter for all teachers when they plan, practice and reflect......In this paper, I address an ongoing discussion in Danish E-learning research about how to take advantage of the fact that digital media facilitate other communication forms than text, so-called ‘multimodal' communication, which should not be confused with the term ‘multimedia'. While multimedia...

  5. Multimodality

    DEFF Research Database (Denmark)

    Buhl, Mie

    In this paper, I address an ongoing discussion in Danish E-learning research about how to take advantage of the fact that digital media facilitate other communication forms than text, so-called ‘multimodal’ communication, which should not be confused with the term ‘multimedia’. While multimedia...... and learning situations. The choices they make involve E-learning resources like videos, social platforms and mobile devices, not just as digital artefacts we interact with, but the entire practice of using digital media. In a life-long learning perspective, multimodality is potentially very useful...... represent the use of various media for communication, multimodality refers to the different symbol systems we employ in communication practices. As new educational practices emerge from the application of ICT, all teachers address multimodality when they plan, practice and reflect on their teaching...

  6. Multimodality

    DEFF Research Database (Denmark)

    Buhl, Mie

    and learning situations. The choices they make involve E-learning resources like videos, social platforms and mobile devices, not just as digital artefacts we interact with, but the entire practice of using digital media. In a life-long learning perspective, multimodality is potentially very useful...... represent the use of various media for communication, multimodality refers to the different symbol systems we employ in communication practices. As new educational practices emerge from the application of ICT, all teachers address multimodality when they plan, practice and reflect on their teaching......In this paper, I address an ongoing discussion in Danish E-learning research about how to take advantage of the fact that digital media facilitate other communication forms than text, so-called ‘multimodal’ communication, which should not be confused with the term ‘multimedia’. While multimedia...

  7. Multimodal optical setup based on spectrometer and cameras combination for biological tissue characterization with spatially modulated illumination

    Science.gov (United States)

    Baruch, Daniel; Abookasis, David

    2017-04-01

    The application of optical techniques as tools for biomedical research has generated substantial interest for the ability of such methodologies to simultaneously measure biochemical and morphological parameters of tissue. Ongoing optimization of optical techniques may introduce such tools as alternative or complementary to conventional methodologies. The common approach shared by current optical techniques lies in the independent acquisition of tissue's optical properties (i.e., absorption and reduced scattering coefficients) from reflected or transmitted light. Such optical parameters, in turn, provide detailed information regarding both the concentrations of clinically relevant chromophores and macroscopic structural variations in tissue. We couple a noncontact optical setup with a simple analysis algorithm to obtain absorption and scattering coefficients of biological samples under test. Technically, a portable picoprojector projects serial sinusoidal patterns at low and high spatial frequencies, while a spectrometer and two independent CCD cameras simultaneously acquire the reflected diffuse light through a single spectrometer and two separate CCD cameras having different bandpass filters at nonisosbestic and isosbestic wavelengths in front of each. This configuration fills the gaps in each other's capabilities for acquiring optical properties of tissue at high spectral and spatial resolution. Experiments were performed on both tissue-mimicking phantoms as well as hands of healthy human volunteers to quantify their optical properties as proof of concept for the present technique. In a separate experiment, we derived the optical properties of the hand skin from the measured diffuse reflectance, based on a recently developed camera model. Additionally, oxygen saturation levels of tissue measured by the system were found to agree well with reference values. Taken together, the present results demonstrate the potential of this integrated setup for diagnostic and

  8. Multimodal Afslapning

    Directory of Open Access Journals (Sweden)

    Stephen Palmer

    2012-10-01

    Full Text Available Artiklen beskriver Multimodal Relaxation Method (MRM, fremover Multimodal Afslapningsmetode, somkan anvendes i livs-, ledelses-, virksomheds-, sports- eller sundhedscoaching til at forbedre ydeevnen hos denenkelte og reducere eller håndtere stress. Inden for sports- og sundhedscoaching kan metoden anvendes til atreducere fysiske spændinger og styrke fysiologisk kontrol, fx lavere hjertefrekvens og nedsætte blodtrykket.

  9. Monolithic spectrometer

    Science.gov (United States)

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  10. Compact Grism Spectrometer

    Science.gov (United States)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  11. Portable smartphone optical fibre spectrometer

    Science.gov (United States)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  12. Multimodal stilistik

    DEFF Research Database (Denmark)

    Nørgaard, Nina

    2012-01-01

    socialsemiotiske multimodalitetsteori. Formålet med en sådan multimodal stilistik er således at udvikle et konsistent systematisk analyseapparat, der kan fange og beskrive den multimodale semiosis, der realiseres i romanen såvel som i andre typer tekst. Med nedslag i et udvalg af skandinaviske og oversatte...

  13. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  14. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  15. Fast and accurate measurement of on-axis gain and on-axis polarization at a finite distance

    DEFF Research Database (Denmark)

    Pivnenko, S.; Breinbjerg, O.

    2013-01-01

    In this paper, a technique for fast and accurate measurement of on-axis gain and on-axis polarization characteristics of antennas, such as Standard Gain Horns, compact range feed horns, and near-field probes, is described. The proposed gain determination procedure is a modification of the far-field...... orientations versus a polarization calibrated probe. A complete set of measurements for one AUT takes less than two hours. The measurement uncertainty for the gain is comparable to the one obtained with the near-field substitution technique and typically does not exceed 0.1 dB (1 sigma)....

  16. Spectrometer gun

    Science.gov (United States)

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  17. On-chip spiral spectrometer

    CERN Document Server

    Redding, Brandon; Bromberg, Yaron; Sarma, Raktim; Cao, Hui

    2016-01-01

    We designed an on-chip spectrometer based on an evanescently-coupled multimode spiral waveguide. Interference between the modes in the waveguide forms a wavelength-dependent speckle pattern which can be used as a fingerprint to identify the input wavelength after calibration. Evanescent coupling between neighboring arms of the spiral enhances the temporal spread of light propagating through the spiral, leading to a dramatic increase in the spectral resolution. Experimentally, we demonstrated that a 250 {\\mu}m radius spiral spectrometer provides a resolution of 0.01 nm at a wavelength of 1520 nm. Spectra containing 40 independent spectral channels can be recovered simultaneously and the operation bandwidth can be increased further when measuring sparse spectra.

  18. The Spectrometer

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  19. Multimodal perception and simulation

    NARCIS (Netherlands)

    Werkhoven, P.J.; Erp, J.B.F. van

    2013-01-01

    This chapter discusses mechanisms of multimodal perception in the context of multimodal simulators and virtual worlds. We review some notable findings from psychophysical experiments with a focus on what we call touch-inclusive multimodal perception—that is, the sensory integration of the tactile sy

  20. Microscope system with on axis programmable Fourier transform filtering

    Science.gov (United States)

    Martínez, José Luis; García-Martínez, Pascuala; Moreno, Ignacio

    2017-02-01

    We propose an on-axis microscope optical system to implement programmable optical Fourier transform image processing operations, taking advantage of phase and polarization modulation of a liquid crystal on silicon (LCOS) display. We use a Hamamatsu spatial light modulator (SLM), free of flickering, which therefore can be tuned to fully eliminate the zero order component of the encoded diffractive filter. This allows the realization of filtering operation on axis (as opposed to other systems in the literature that require operating off axis), therefore making use of the full space bandwidth provided by the SLM. The system is first demonstrated by implementing different optical processing operations based on phase-only blazed gratings such as phase contrast, band-pass filtering, or additive and substractive imaging. Then, a simple Differential interference contrast (DIC) imaging is obtained changing to a polarization modulation scheme, achieved simply by selecting a different incident state of polarization on the incident beam.

  1. Mid infrared MEMS FTIR spectrometer

    Science.gov (United States)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  2. MASS SPECTROMETER

    Science.gov (United States)

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  3. The Intersection of Multimodality and Critical Perspective: Multimodality as Subversion

    Science.gov (United States)

    Huang, Shin-ying

    2015-01-01

    This study explores the relevance of multimodality to critical media literacy. It is based on the understanding that communication is intrinsically multimodal and multimodal communication is inherently social and ideological. By analysing two English-language learners' multimodal ensembles, the study reports on how multimodality contributes to a…

  4. Computer Spectrometers

    Science.gov (United States)

    Dattani, Nikesh S.

    2017-06-01

    Ideally, the cataloguing of spectroscopic linelists would not demand laborious and expensive experiments. Whatever an experiment might achieve, the same information would be attainable by running a calculation on a computer. Kolos and Wolniewicz were the first to demonstrate that calculations on a computer can outperform even the most sophisticated molecular spectroscopic experiments of the time, when their 1964 calculations of the dissociation energies of H_2 and D_{2} were found to be more than 1 cm^{-1} larger than the best experiments by Gerhard Herzberg, suggesting the experiment violated a strict variational principle. As explained in his Nobel Lecture, it took 5 more years for Herzberg to perform an experiment which caught up to the accuracy of the 1964 calculations. Today, numerical solutions to the Schrödinger equation, supplemented with relativistic and higher-order quantum electrodynamics (QED) corrections can provide ro-vibrational spectra for molecules that we strongly believe to be correct, even in the absence of experimental data. Why do we believe these calculated spectra are correct if we do not have experiments against which to test them? All evidence seen so far suggests that corrections due to gravity or other forces are not needed for a computer simulated QED spectrum of ro-vibrational energy transitions to be correct at the precision of typical spectrometers. Therefore a computer-generated spectrum can be considered to be as good as one coming from a more conventional spectrometer, and this has been shown to be true not just for the H_2 energies back in 1964, but now also for several other molecules. So are we at the stage where we can launch an array of calculations, each with just the atomic number changed in the input file, to reproduce the NIST energy level databases? Not quite. But I will show that for the 6e^- molecule Li_2, we have reproduced the vibrational spacings to within 0.001 cm^{-1} of the experimental spectrum, and I will

  5. Towards Multimodal Content Representation

    CERN Document Server

    Bunt, Harry

    2009-01-01

    Multimodal interfaces, combining the use of speech, graphics, gestures, and facial expressions in input and output, promise to provide new possibilities to deal with information in more effective and efficient ways, supporting for instance: - the understanding of possibly imprecise, partial or ambiguous multimodal input; - the generation of coordinated, cohesive, and coherent multimodal presentations; - the management of multimodal interaction (e.g., task completion, adapting the interface, error prevention) by representing and exploiting models of the user, the domain, the task, the interactive context, and the media (e.g. text, audio, video). The present document is intended to support the discussion on multimodal content representation, its possible objectives and basic constraints, and how the definition of a generic representation framework for multimodal content representation may be approached. It takes into account the results of the Dagstuhl workshop, in particular those of the informal working group...

  6. Critical Analysis of Multimodal Discourse

    DEFF Research Database (Denmark)

    van Leeuwen, Theo

    2013-01-01

    This is an encyclopaedia article which defines the fields of critical discourse analysis and multimodality studies, argues that within critical discourse analysis more attention should be paid to multimodality, and within multimodality to critical analysis, and ends reviewing a few examples...... of recent work in the critical analysis of multimodal discourse....

  7. Development of Miniature Spectrometers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo

    2007-01-01

    Spectrometer is an essential and necessary optical element used for measuring the chemical components and content of the matter.The development of miniature spectrometers can be traced back to 1980s.The development state and different manufacturing methods of micro-spectrometers are presented.Finally,we analyze the miniaturization trend of spectrometers.Some groundwork for the scientific research is offered by introducing micro-spectrometers development.

  8. A SSS Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The SSS spectrometer, so called simple scintillation spectrometer, is made by BTI (Bubble Technology Industries). The spectrometer can be used in the neutron energy range from 4.0 to 17 MeV. The SSS includes two sections: A probe and an analyzer module

  9. Multimodal Resources in Transnational Adoption

    DEFF Research Database (Denmark)

    Raudaskoski, Pirkko Liisa

    The paper discusses an empirical analysis which highlights the multimodal nature of identity construction. A documentary on transnational adoption provides real life incidents as research material. The incidents involve (or from them emerge) various kinds of multimodal resources and participants...

  10. Multimodal Resources in Transnational Adoption

    DEFF Research Database (Denmark)

    Raudaskoski, Pirkko Liisa

    The paper discusses an empirical analysis which highlights the multimodal nature of identity construction. A documentary on transnational adoption provides real life incidents as research material. The incidents involve (or from them emerge) various kinds of multimodal resources and participants...

  11. Multimodal sequence learning.

    Science.gov (United States)

    Kemény, Ferenc; Meier, Beat

    2016-02-01

    While sequence learning research models complex phenomena, previous studies have mostly focused on unimodal sequences. The goal of the current experiment is to put implicit sequence learning into a multimodal context: to test whether it can operate across different modalities. We used the Task Sequence Learning paradigm to test whether sequence learning varies across modalities, and whether participants are able to learn multimodal sequences. Our results show that implicit sequence learning is very similar regardless of the source modality. However, the presence of correlated task and response sequences was required for learning to take place. The experiment provides new evidence for implicit sequence learning of abstract conceptual representations. In general, the results suggest that correlated sequences are necessary for implicit sequence learning to occur. Moreover, they show that elements from different modalities can be automatically integrated into one unitary multimodal sequence.

  12. Beam profile for the Herschel-SPIRE Fourier transform spectrometer.

    Science.gov (United States)

    Makiwa, Gibion; Naylor, David A; Ferlet, Marc; Salji, Carl; Swinyard, Bruce; Polehampton, Edward; van der Wiel, Matthijs H D

    2013-06-01

    One of the instruments on board the Herschel Space Observatory is the Spectral and Photometric Imaging Receiver (SPIRE). SPIRE employs a Fourier transform spectrometer with feed-horn-coupled bolometers to provide imaging spectroscopy. To interpret the resultant spectral images requires knowledge of the wavelength-dependent beam, which in the case of SPIRE is complicated by the use of multimoded feed horns. In this paper we describe a series of observations and the analysis conducted to determine the wavelength dependence of the SPIRE spectrometer beam profile.

  13. Multimodal Processes Rescheduling

    DEFF Research Database (Denmark)

    Bocewicz, Grzegorz; Banaszak, Zbigniew A.; Nielsen, Peter

    2013-01-01

    Cyclic scheduling problems concerning multimodal processes are usually observed in FMSs producing multi-type parts where the Automated Guided Vehicles System (AGVS) plays a role of a material handling system. Schedulability analysis of concurrently flowing cyclic processes (SCCP) exe-cuted in the......Cyclic scheduling problems concerning multimodal processes are usually observed in FMSs producing multi-type parts where the Automated Guided Vehicles System (AGVS) plays a role of a material handling system. Schedulability analysis of concurrently flowing cyclic processes (SCCP) exe...

  14. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  15. Multimode geodesic branching components

    Science.gov (United States)

    Schulz, D.; Voges, E.

    1983-01-01

    Geodesic branching components are investigated for multimode guided wave optics. Geodesic structures with particular properties, e.g. focussing star couplers, are derived by a synthesis technique based on a theorem of Toraldo di Francia. Experimentally, the geodesic surfaces are printed on acrylic glass and are spin-coated with organic film waveguides.

  16. Multimodal emergens via musik

    DEFF Research Database (Denmark)

    Bonde, Anders

    2010-01-01

    I denne artikel præsenteres og argumenteres for en værkanalytisk indfaldsvinkel i forhold til det at undersøge multimodal betydningsdannelse i audiovisuelle medieprodukter såsom reklamefilm og dokumentarfilm, hvor flere forskellige modaliteter eller semiotiske ressourcer samvirker. Som teoretisk...

  17. Multimodal Strategies of Theorization

    DEFF Research Database (Denmark)

    Cartel, Melodie; Colombero, Sylvain; Boxenbaum, Eva

    This paper examines the role of multimodal strategies in processes of theorization. Empirically, we investigate the theorization process of a highly disruptive innovation in the history of architecture: reinforced concrete. Relying on archival data from a dominant French architectural journal fro...

  18. Multimodal Strategies of Theorization

    DEFF Research Database (Denmark)

    Cartel, Melodie; Colombero, Sylvain; Boxenbaum, Eva

    This paper examines the role of multimodal strategies in processes of theorization. Empirically, we investigate the theorization process of a highly disruptive innovation in the history of architecture: reinforced concrete. Relying on archival data from a dominant French architectural journal from...... with well-known rhetorical strategies and develop a process model of theorization....

  19. Modeling Multimodal Stratification

    DEFF Research Database (Denmark)

    Boeriis, Morten

    2017-01-01

    This article discusses one of the core axioms of social semiotic theory, namely stratification, in the light of developments in multimodality in recent years. The discussion takes a point of departure in the approaches to stratification taken by Hjelmslev, Halliday, and Kress and van Leeuwen...

  20. Multimodal eye recognition

    Science.gov (United States)

    Zhou, Zhi; Du, Yingzi; Thomas, N. L.; Delp, Edward J., III

    2010-04-01

    Multimodal biometrics use more than one means of biometric identification to achieve higher recognition accuracy, since sometimes a unimodal biometric is not good enough used to do identification and classification. In this paper, we proposed a multimodal eye recognition system, which can obtain both iris and sclera patterns from one color eye image. Gabor filter and 1-D Log-Gabor filter algorithms have been applied as the iris recognition algorithms. In sclera recognition, we introduced automatic sclera segmentation, sclera pattern enhancement, sclera pattern template generation, and sclera pattern matching. We applied kernelbased matching score fusion to improve the performance of the eye recognition system. The experimental results show that the proposed eye recognition method can achieve better performance compared to unimodal biometric identification, and the accuracy of our proposed kernel-based matching score fusion method is higher than two classic linear matching score fusion methods: Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).

  1. Programmable Multimode Quantum Networks

    CERN Document Server

    Armstrong, Seiji; Janousek, Jiri; Hage, Boris; Treps, Nicolas; Lam, Ping Koy; Bachor, Hans-A

    2012-01-01

    Entanglement between large numbers of quantum modes is the quintessential resource for quantum information processing and future applications such as the quantum internet. Conventionally the generation of multimode entanglement in optics requires complex layouts of beam-splitters and phase shifters in order to transform the input modes in to entangled modes. These networks need substantial modification for every new set of entangled modes to be generated. Further, the complexity grows rapidly with the number of entangled modes as the number of detectors, phase locks and optical components needs to be increased. Here we report on the highly efficient and versatile generation of various multimode entangled states within one optical beam. By defining our modes to be combinations of different spatial regions of the beam, we may use just one pair of multi-pixel detectors and one local oscillator to measure an orthogonal set of modes. The transformation of this set into a desired set of entangled modes is calculate...

  2. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  3. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    Science.gov (United States)

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  4. Improved Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Mass Spectrometer project will develop system requirements and analyze the path to space qualification.   The results of this project...

  5. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  6. Simplified Multimodal Biometric Identification

    Directory of Open Access Journals (Sweden)

    Abhijit Shete

    2014-03-01

    Full Text Available Multibiometric systems are expected to be more reliable than unimodal biometric systems for personal identification due to the presence of multiple, fairly independent pieces of evidence e.g. Unique Identification Project "Aadhaar" of Government of India. In this paper, we present a novel wavelet based technique to perform fusion at the feature level and score level by considering two biometric modalities, face and fingerprint. The results indicate that the proposed technique can lead to substantial improvement in multimodal matching performance. The proposed technique is simple because of no preprocessing of raw biometric traits as well as no feature and score normalization.

  7. Multimodality of Learning Through Anchored Instruction

    Science.gov (United States)

    Love, Mary Susan

    2004-01-01

    Multimodality of learning results from the intertextual relationship between multimodal design and other meaning-making modes. Meaning making is becoming more multimodal because language is continually reshaped by new forms of communication media. This article examines anchored instruction from a multimodal perspective. The first section includes…

  8. Learning multimodal latent attributes.

    Science.gov (United States)

    Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang

    2014-02-01

    The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular, we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multimodal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we 1) introduce a concept of semilatent attribute space, expressing user-defined and latent attributes in a unified framework, and 2) propose a novel scalable probabilistic topic model for learning multimodal semilatent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multitask learning, learning with label noise, N-shot transfer learning, and importantly zero-shot learning.

  9. A micromachined mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, G.; Siebert, P.; Mueller, J. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Dept. of Microsystemtechnology

    2001-07-01

    This paper presents the concept, the processing and the simulated and measured characteristics of a miniaturised mass spectrometer, with dimensions of approximately only a few cm{sup 3}. The mass spectrometer consists of three main parts to be manufactured by micro structuring: an electron source, an ionisation chamber including accelerating and focusing units and a mass analyser with detector. Its fabrication is based on techniques used in micro-system processing and in particular anisotropic etching, thin film deposition, electroplating, and anodic bonding. The aim of the concept for this micro mass spectrometer is not only to scale down a macroscopic system but it also takes advantage of the added features of a micro system, i.e. a high Knudsen number of about 3 at a pressure of a few Pascal, and high field strengths at a relatively low voltage. Therefore, the demands on the vacuum systems and the electrical circuits are much more simple compared to a macroscopic mass spectrometer. In the presented design of the micro mass spectrometer the resolution is in the range of 10 to 20 at a sensitivity of several tens of ppm. (orig.)

  10. The GRIFFIN spectrometer

    Science.gov (United States)

    Svensson, C. E.; Garnsworthy, A. B.

    2014-01-01

    Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) is an advanced new high-efficiency γ-ray spectrometer being developed for use in decay spectroscopy experiments with low-energy radioactive ion beams provided by TRIUMF's Isotope Separator and Accelerator (ISAC-I) radioactive ion beam facility. GRIFFIN will be comprised of sixteen large-volume clover-type high-purity germanium (HPGe) γ-ray detectors coupled to custom digital signal processing electronics and used in conjunction with a suite of auxiliary detection systems. This article provides an overview of the GRIFFIN spectrometer and its expected performance characteristics.

  11. Miniaturised TOF mass spectrometer

    Science.gov (United States)

    Rohner, U.; Wurz, P.; Whitby, J.

    2003-04-01

    For the BepiColombo misson of ESA to Mercury, we built a prototype of a miniaturised Time of Flight mass spectrometer with a low mass and low power consumption. Particles will be set free form the surface and ionized by short laser pluses. The mass spectrometer is dedicated to measure the elemental and isotopic composition of almost all elements of Mercurys planetary surface with an adequate dynamique range, mass range and mass resolution. We will present first results of our prototype and future designs.

  12. Multimodal responsive action

    DEFF Research Database (Denmark)

    Oshima, Sae

    While a first pair part projects a limited set of second pair parts to be provided next, responders select different types and formats for second pair parts to assemble activities (Schegloff 2007). Accordingly, various ways of shaping responses have been extensively studied (e.g. Pomerantz 1984......; Raymond 2003; Schegloff and Lerner 2009), including those with multimodal actions (e.g. Olsher 2004; Fasulo & Monzoni 2009). Some responsive actions can also be completed with bodily behavior alone, such as: when an agreement display is achieved by using only nonvocal actions (Jarmon 1996), when...... both verbal and body-behavioral elements. This paper explores one such situation in professional-client interaction, during the event of evaluating a service outcome in a haircutting session. In general, a haircutting session is brought to its closure through the service-assessment sequence, in which...

  13. Robustness of multimodal processes itineraries

    DEFF Research Database (Denmark)

    Bocewicz, G.; Banaszak, Z.; Nielsen, Izabela Ewa

    2013-01-01

    This paper concerns multimodal transport systems (MTS) represented by a supernetworks in which several unimodal networks are connected by transfer links and focuses on the scheduling problems encountered in these systems. Assuming unimodal networks are modeled as cyclic lines, i.e. the routes det...... of multimodal processes driven itinerary planning problem is our main contribution. Illustrative examples providing alternative itineraries in some cases of MTS malfunction are presented....

  14. The Omega spectrometer

    CERN Multimedia

    1972-01-01

    The Omega spectrometer which came into action during the year. An array of optical spark chambers can be seen withdrawn from the magnet aperture. In the 'igloo' above the magnet is located the Plumbicon camera system which collects information from the spark chambers.

  15. Speckle-based spectrometer

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2015-01-01

    A novel spectrometer concept is analyzed and experimentally verified. The method relies on probing the speckle displacement due to a change in the incident wavelength. A rough surface is illuminated at an oblique angle, and the peak position of the covariance between the speckle patterns observed...

  16. Light-guide snapshot spectrometer for biomedical applications

    Science.gov (United States)

    Wang, Ye; Pawlowski, Michal E.; Tkaczyk, Tomasz S.

    2016-04-01

    We present a proof-of-principle prototype of a fiber-based snapshot spectrometer to provide high spatial and spectral sampling for biomedical application such as cell signaling or diagnostics. An image is collected by a custom fiber bundle and then divided into spatial groups with spaces in between for dispersion. The image is later scaled down by an image taper (to scale down the image size and allow smaller optical components), dispersed with a prism and captured by a CCD camera. An interpolation algorithm is used to locate each wavelength and reconstruct the image for each spectral channel. The fiber bundle is fabricated by aligning multi-mode bare fiber ribbons as matrix, gluing together in Teflon molds, laser cutting and polishing. We present preliminary finger occlusion results obtained with the spectrometer where the oxy- and deoxy-hemoglobin spectrum could be differentiated.

  17. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  18. Fusion of regularized femtosecond filaments in air: far field on-axis emission

    Science.gov (United States)

    Shipilo, D. E.; Panov, N. A.; Sunchugasheva, E. S.; Mokrousova, D. V.; Andreeva, V. A.; Kosareva, O. G.; Seleznev, L. V.; Savel'ev, A. B.; Ionin, A. A.; Chin, S. L.

    2016-11-01

    The fusion of several coherent 800 nm femtosecond filaments is induced experimentally and numerically by transmitting a beam through a mask with circular apertures followed by the focusing lens. The far-field image of the four-filament fusion region reveals bright on-axis maximum and differs drastically from the diffraction pattern of a low energy beam propagating through the mask in the linear regime. In 3D+time numerical simulations with the carrier wave resolved we show a factor-of-5 saturable growth in the peak plasma density with successive increase in the number of mask openings. An overall spectral blueshift of the fundamental and the third harmonics follows the plasma density increase. The simulated far-field on-axis emission agrees with the experiment and serves as the indication of nonlinear interaction in the fusion region.

  19. Note: Leaf undulator to realize polarization control with low on-axis heat load.

    Science.gov (United States)

    Yan, J; Qiao, S

    2010-05-01

    Here, a new operational mode of an electromagnetic elliptical undulator, called leaf undulator, is proposed and studied. It can provide linearly polarized radiation at an arbitrary polarization direction depending on the magnitude and polarity of the horizontal and vertical magnetic fields. The polarization direction becomes 45 degrees when the horizontal and vertical magnetic fields are equal in strength. It is also able to switch the operational mode to purely circular or elliptical one. To lower the on-axis power density generated by undulators operating in linear mode, different designs have been presented in the past. Leaf undulator can suppress the on-axis power density by an order of magnitude compared to the so-called Knot and Figure-8 undulators, while maintaining comparable photon flux of the fundamental harmonic. Furthermore, it is possible to reach a lower fundamental energy under linear mode than by any other design using comparable magnetic field strengths.

  20. Stochastic dual-plane on-axis digital holographic imaging on irregular surfaces.

    Science.gov (United States)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2016-05-10

    An imaging method based on dual-plane on-axis digital holography is proposed for the situation in which an object is on the irregular surface of a transparent medium. Light propagation of the object on the uneven surface of the medium is analyzed and simulated. The diffracted pattern of the object is deformed or destroyed by the refracted light of the medium. Dual-plane on-axis digital holography is used to eliminate the twin image. In order to retrieve the information lost in the reconstructed image due to destructive interference, the object is illuminated by a stochastic beam that is a speckle wave produced by a ground glass. Simulated and experimental results are presented, to demonstrate that the proposed method can be used for imaging on the irregular surface of a transparent medium.

  1. On the validity of localized approximation for an on-axis zeroth-order Bessel beam

    Science.gov (United States)

    Gouesbet, Gérard; Lock, J. A.; Ambrosio, L. A.; Wang, J. J.

    2017-07-01

    Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles.

  2. Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography

    CERN Document Server

    Clerc, Frédérique Le; Collot, Laurent

    2011-01-01

    We have developed a new on-axis digital holographic technique, heterodyne holography. The resolution of this technique is limited mainly by the amount of data recorded on two-dimensional photodetectors, i.e., the number of pixels and their size. We demonstrate that it is possible to increase the resolution linearly with the amount of recorded data by aperture synthesis as done in the radar technique but with an optical holographic field.

  3. New gas detector setup for on-axis STIM tomography experiments

    Science.gov (United States)

    Marques, A. C.; Fraga, M. M. F. R.; Fonte, P.; Beasley, D. G.; Alves, L. C.; da Silva, R. C.

    2013-07-01

    A gas flow ionization chamber for use with on-axis scanning transmission ion microscopy tomography (STIM-T) has been developed. The entrance window is composed of a square silicon nitride membrane 100 nm thick and 1 mm2 in area. The use of this type of window does not add significantly to the energy resolution with the MeV H+ or He+ particles used in STIM, and proved to be resistant to high proton fluence in the irradiated spot. The ability of such detector to withstand direct beam hit with acceptable energy resolution makes it suitable for on-axis STIM-T, in this respect outperforming the more standard Si PIN diodes, which performance is known to degrade above fluences of ∼1010-1012 cm-2. The present in-line design while allowing easy mounting of the detector to the existing target chamber, has the peculiarity of providing a practical way of replacing the Si3N4 membrane in case it brakes while operating. The concept of gas ionization chamber under development is expected to become ideal for on-axis STIM-T experiments due to its low ageing during operation, and anticipated attainable speed and energy resolution.

  4. New gas detector setup for on-axis STIM tomography experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marques, A.C., E-mail: ana.marques@ctn.ist.utl.pt [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Centro de Física Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Fraga, M.M.F.R. [Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra (Portugal); Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Fonte, P. [Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra (Portugal); Instituto Superior de Engenharia de Coimbra, 3030-199 Coimbra (Portugal); Beasley, D.G.; Alves, L.C.; Silva, R.C. da [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Centro de Física Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2013-07-01

    A gas flow ionization chamber for use with on-axis scanning transmission ion microscopy tomography (STIM-T) has been developed. The entrance window is composed of a square silicon nitride membrane 100 nm thick and 1 mm{sup 2} in area. The use of this type of window does not add significantly to the energy resolution with the MeV H{sup +} or He{sup +} particles used in STIM, and proved to be resistant to high proton fluence in the irradiated spot. The ability of such detector to withstand direct beam hit with acceptable energy resolution makes it suitable for on-axis STIM-T, in this respect outperforming the more standard Si PIN diodes, which performance is known to degrade above fluences of ∼10{sup 10}–10{sup 12} cm{sup −2}. The present in-line design while allowing easy mounting of the detector to the existing target chamber, has the peculiarity of providing a practical way of replacing the Si{sub 3}N{sub 4} membrane in case it brakes while operating. The concept of gas ionization chamber under development is expected to become ideal for on-axis STIM-T experiments due to its low ageing during operation, and anticipated attainable speed and energy resolution.

  5. Al-implanted on-axis 4H-SiC MOSFETs

    Science.gov (United States)

    Florentin, M.; Cabello, M.; Rebollo, J.; Montserrat, J.; Brosselard, P.; Henry, A.; Godignon, P.

    2017-03-01

    In this paper, the impact of temperature and time stress on gate oxide stability of several multi-implanted and epitaxied 4H-SiC nMOSFET is presented. The oxide layer was processed under a rapid thermal process (RTP) furnace. The variation of the main electrical parameters is shown. We report the high quality and stability of such implanted MOSFETs, and point out the very low roughness effect of the on-axis-cut sample. Particularly, in the best case, effective channel mobility (μ fe) overcomes 20 cm2.V‑1.s‑1 at 300 °C for a channel length of 12 μm, which is very encouraging for implantation technology. Starting from 200 °C, the apparent increase of the μ fe peak of the MOSFET ceases and tends to saturate with further temperature increase. This is an indication of the potential of MOSFETs built on on-axis substrates. Thus, starting from the real case of an implanted MOSFET, the global purpose is to show that the electrical performance of such an on-axis-built device can tend to reach that of the ideal case, i.e. epitaxied MOSFET, and even overcome its electrical limitation, e.g. in terms of threshold voltage stability at high temperature.

  6. Surface Plasmon Based Spectrometer

    Science.gov (United States)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  7. The Composite Infrared Spectrometer

    Science.gov (United States)

    Calcutt, Simon; Taylor, Fredric; Ade, Peter; Kunde, Virgil; Jennings, Donald

    1992-01-01

    The Composite Infrared Spectrometer (CIRS) is a remote sensing instrument to be flown on the Cassini orbiter. It contains two Fourier transform spectrometers covering wavelengths of 7-1000 microns. The instrument is expected to have higher spectral resolution, smaller field of view, and better signal-to-noise performance than its counterpart, IRIS, on the Voyager missions. These improvements allow the study of the variability of the composition and temperature of the atmospheres of both Saturn and Titan with latitude, longitude and height, as well as allowing the possibility of discovery of previously undetected chemical species in these atmospheres. The long wavelengths accessible to CIRS allow sounding deeper into both atmospheres than was possible with IRIS.

  8. Galileo Ultraviolet Spectrometer experiment

    Science.gov (United States)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  9. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  10. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  11. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  12. Vector-Resonance-Multimode Instability

    Science.gov (United States)

    Sergeyev, S. V.; Kbashi, H.; Tarasov, N.; Loiko, Yu.; Kolpakov, S. A.

    2017-01-01

    The modulation and multimode instabilities are the main mechanisms which drive spontaneous spatial and temporal pattern formation in a vast number of nonlinear systems ranging from biology to laser physics. Using an Er-doped fiber laser as a test bed, here for the first time we demonstrate both experimentally and theoretically a new type of a low-threshold vector-resonance-multimode instability which inherits features of multimode and modulation instabilities. The same as for the multimode instability, a large number of longitudinal modes can be excited without mode synchronization. To enable modulation instability, we modulate the state of polarization of the lasing signal with the period of the beat length by an adjustment of the in-cavity birefringence and the state of polarization of the pump wave. As a result, we show the regime's tunability from complex oscillatory to periodic with longitudinal mode synchronization in the case of resonance matching between the beat and cavity lengths. Apart from the interest in laser physics for unlocking the tunability and stability of dynamic regimes, the proposed mechanism of the vector-resonance-multimode instability can be of fundamental interest for the nonlinear dynamics of various distributed systems.

  13. Mass spectrometers: instrumentation

    Science.gov (United States)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  14. The Multimodal Possibilities of Online Instructions

    DEFF Research Database (Denmark)

    Kampf, Constance

    2006-01-01

    The WWW simplifies the process of delivering online instructions through multimodal channels because of the ease of use for voice, video, pictures, and text modes of communication built into it.  Given that instructions are being produced in multimodal format for the WWW, how do multi-modal analy...

  15. Multimodal Friction Ignition Tester

    Science.gov (United States)

    Davis, Eddie; Howard, Bill; Herald, Stephen

    2009-01-01

    The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal

  16. Multimodal pain management and arthrofibrosis.

    Science.gov (United States)

    Lavernia, Carlos; Cardona, Diego; Rossi, Mark D; Lee, David

    2008-09-01

    Pain control after arthroplasty has been a key concern for orthopedic surgeons. After total knee arthroplasty (TKA), a small group of patients developed a painful joint with suboptimal range of motion. Manipulation under anesthesia increases flexion and extension while decreasing pain in most cases. The objective of the present investigation is to asses the effect of a multimodal pain management protocol on arthrofibrosis in primary TKAs. A cohort of 1136 patients who underwent primary TKA was selected. Patients were divided into 2 groups: group A had 778 procedures performed using a traditional approach to pain control; group B included 358 procedures that received multimodal pain management. Group A had an incidence of manipulation of 4.75% (37/778). Of 357 patients, 8 required manipulation in group B, which is an incidence of 2.24%. We recommend that orthopedic surgeons consider using a multimodal pain management protocol for TKA.

  17. Switchable lasing in multimode microcavities

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei V.; Chigrin, Dmitry N.; Lavrinenko, Andrei

    2007-01-01

    We propose the new concept of a switchable multimode microlaser. As a generic, realistic model of a multimode microresonator a system of two coupled defects in a two-dimensional photonic crystal is considered. We demonstrate theoretically that lasing of the cavity into one selected resonator mode...... can be caused by injecting an appropriate optical pulse at the onset of laser action (injection seeding). Temporal mode-to-mode switching by reseeding the cavity after a short cooldown period is demonstrated by direct numerical solution. A qualitative analytical explanation of the mode switching...

  18. MASS SPECTROMETER LEAK

    Science.gov (United States)

    Shields, W.R.

    1960-10-18

    An improved valve is described for precisely regulating the flow of a sample fluid to be analyzed, such as in a mass spectrometer, where a gas sample is allowed to "leak" into an evacuated region at a very low, controlled rate. The flow regulating valve controls minute flow of gases by allowing the gas to diffuse between two mating surfaces. The structure of the valve is such as to prevent the corrosive feed gas from contacting the bellows which is employed in the operation of the valve, thus preventing deterioration of the bellows.

  19. Multimodal Aspects of Corporate Social Responsibility Communication

    Directory of Open Access Journals (Sweden)

    Carmen Daniela Maier

    2014-12-01

    Full Text Available This article addresses how the multimodal persuasive strategies of corporate social responsibility communication can highlight a company’s commitment to gender empowerment and environmental protection while advertising simultaneously its products. Drawing on an interdisciplinary methodological framework related to CSR communication, multimodal discourse analysis and gender theory, the article proposes a multimodal analysis model through which it is possible to map and explain the multimodal persuasive strategies employed by Coca-Cola company in their community-related films. By examining the semiotic modes’ interconnectivity and functional differentiation, this analytical endeavour expands the existing research work as the usual textual focus is extended to a multimodal one.

  20. The SPEDE electron spectrometer

    CERN Document Server

    O'Neill, George

    This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its construction, testing and performance during commissioning at Jyvaskyla, Finland, before deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion beams. Commissioning experiments took place in two two-day stints during spring 2015, coupled with several JUROGAMII gamma-detectors. This spectrometer will help aid in fully understanding exotic regions of the nuclear chart such as regions with a high degree of octupole deformation, and in those nuclei exhibiting shape coexistence. For the rst time, electron spectroscopy has been performed at the target position from states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler broadened peaks. The results are intended to give the reader a full understanding of the dete...

  1. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  2. A Learning Algorithm for Multimodal Grammar Inference.

    Science.gov (United States)

    D'Ulizia, A; Ferri, F; Grifoni, P

    2011-12-01

    The high costs of development and maintenance of multimodal grammars in integrating and understanding input in multimodal interfaces lead to the investigation of novel algorithmic solutions in automating grammar generation and in updating processes. Many algorithms for context-free grammar inference have been developed in the natural language processing literature. An extension of these algorithms toward the inference of multimodal grammars is necessary for multimodal input processing. In this paper, we propose a novel grammar inference mechanism that allows us to learn a multimodal grammar from its positive samples of multimodal sentences. The algorithm first generates the multimodal grammar that is able to parse the positive samples of sentences and, afterward, makes use of two learning operators and the minimum description length metrics in improving the grammar description and in avoiding the over-generalization problem. The experimental results highlight the acceptable performances of the algorithm proposed in this paper since it has a very high probability of parsing valid sentences.

  3. Integrated processing in multimodal argumentation

    NARCIS (Netherlands)

    Hoven, P.J. van den; Jiang, W.

    2011-01-01

    The question addressed in this paper is simple. If the argumentative function of a multimodal narrative text requires the integration of the information from different modes, among which verbal ones, what model for the order of processing and the integration of information do we need to adopt? Using

  4. Multimodal approach to postoperative recovery

    DEFF Research Database (Denmark)

    Kehlet, Henrik

    2009-01-01

    PURPOSE OF REVIEW: To provide updated information on recent developments within individual components of multimodal interventions to improve postoperative outcome (fast-track methodology). RECENT FINDINGS: The value of the fast-track methodology to improve recovery and decrease hospital stay...

  5. Multimodality as a Sociolinguistic Resource

    Science.gov (United States)

    Collister, Lauren Brittany

    2013-01-01

    This work explores the use of multimodal communication in a community of expert "World of Warcraft"® players and its impact on politeness, identity, and relationships. Players in the community regularly communicated using three linguistic modes quasi-simultaneously: text chat, voice chat, and face-to-face interaction. Using the…

  6. Multimodal imaging of ischemic wounds

    Science.gov (United States)

    Zhang, Shiwu; Gnyawali, Surya; Huang, Jiwei; Liu, Peng; Gordillo, Gayle; Sen, Chandan K.; Xu, Ronald

    2012-12-01

    The wound healing process involves the reparative phases of inflammation, proliferation, and remodeling. Interrupting any of these phases may result in chronically unhealed wounds, amputation, or even patient death. Quantitative assessment of wound tissue ischemia, perfusion, and inflammation provides critical information for appropriate detection, staging, and treatment of chronic wounds. However, no method is available for noninvasive, simultaneous, and quantitative imaging of these tissue parameters. We integrated hyperspectral, laser speckle, and thermographic imaging modalities into a single setup for multimodal assessment of tissue oxygenation, perfusion, and inflammation characteristics. Advanced algorithms were developed for accurate reconstruction of wound oxygenation and appropriate co-registration between different imaging modalities. The multimodal wound imaging system was validated by an ongoing clinical trials approved by OSU IRB. In the clinical trial, a wound of 3mm in diameter was introduced on a healthy subject's lower extremity and the healing process was serially monitored by the multimodal imaging setup. Our experiments demonstrated the clinical usability of multimodal wound imaging.

  7. Multi-Modality Phantom Development

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe both our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.

  8. Simulation of the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.M.; Herzberg, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [Universite Paris-Sud, CSNSM-IN2P3-CNRS, Orsay (France)

    2015-06-15

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  9. Stochastic dual-plane on-axis digital holography based on Mach-Zehnder interferometer

    Science.gov (United States)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2016-09-01

    For traditional dual-plane on-axis digital holography, the robustness is lower because it is difficult to maintain the stability of the phase difference between the object beam and the reference beam, and it may be invalid when the objects are on the surface of a medium with uneven thickness. An improved dual-plane digital holographic method based on Mach-Zehnder interferometer is presented to address these problems. Two holograms are recorded at two different planes separated by a small distance. Then, the zero-order image and conjugated image are eliminated by Fourier domain processing. In order to enhance the robustness of the system, the object is illuminated by a stochastic beam that is a speckle wave produced by a diffuser. Simulated and experimental results are shown to demonstrate that the proposed method has greater robustness than the traditional dual-plane on-axis digital holography and it can be used to imaging on the irregular surface of a transparent medium.

  10. Spatial heterodyne spectrometer for FLEX

    Science.gov (United States)

    Scott, Alan; Zheng, Sheng-Hai; Brown, Stephen; Bell, Andrew

    2007-10-01

    A spatial heterodyne spectrometer (SHS) has significant advantages for high spectral resolution imaging over narrow pre-selected bands compared to traditional solutions. Given comparable optical étendue at R~6500, a field-widened SHS will have a throughput-resolution product ~170 x larger than an air-spaced etalon spectrometer, and ~1000 x larger than a standard grating spectrometer. The monolithic glass Michelson design and lack of moving parts allows maximum stability of spectral calibration over the mission life. For these reasons, SHS offers considerable advantages for the core spectrometer instrument in the European Space Agency's (ESA) Fluorescence Explorer (FLEX) mission.

  11. Multimode-singlemode-multimode fiber sensor for alcohol sensing application

    Science.gov (United States)

    Rofi'ah, Iftihatur; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol is volatile and flammable liquid which is soluble substances both on polar and non polar substances that has been used in some industrial sectors. Alcohol detection method now widely used one of them is the optical fiber sensor. In this paper used fiber optic sensor based on Multimode-Single-mode-Multimode (MSM) to detect alcohol solution at a concentration range of 0-3%. The working principle of sensor utilizes the modal interference between the core modes and the cladding modes, thus make the sensor sensitive to environmental changes. The result showed that characteristic of the sensor not affect the length of the single-mode fiber (SMF). We obtain that the sensor with a length of 5 mm of single-mode can sensing the alcohol with a sensitivity of 0.107 dB/v%.

  12. CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer

    Science.gov (United States)

    Tartari, A.; Battistelli, E. S.; Piat, M.; Prêle, D.

    2016-08-01

    Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE-FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE-FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across ˜ 2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz-6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh-Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from ˜ tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit.

  13. Creation of multiple on-axis foci and ultra-long focal depth for SPPs.

    Science.gov (United States)

    Wang, Jiayuan; Chen, Cuiyun; Sun, Zhijun

    2017-01-23

    We present the design of a plasmonic lens (PL) which is composed of pixelated nano-grooves on a gold film for the coupling and focusing of surface plasmon polaritons (SPPs) into multiple focal spots on the optical axis. The pixelated grooves are arranged along the y-axis and the x-position of each groove is optimized by the simulated annealing algorithm. PLs that implement two and three on-axis foci are presented and the designed structures have been validated with FDTD simulations. We also successfully constructed a long-focal-depth PL with a longitudinal FWHM of the focus that reached 25 plasmonic wavelengths, while its transverse field profile is maintained over 15 µm distance. The presented design method constitutes a new basis for plasmonic beam engineering, and the proposed particular SPP focal fields have potential applications in multiple imaging, particle manipulating, and plasmonic on-chip signal transmission.

  14. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  15. Cognitive Principles in Robust Multimodal Interpretation

    CERN Document Server

    Chai, J Y; Qu, S; 10.1613/jair.1936

    2011-01-01

    Multimodal conversational interfaces provide a natural means for users to communicate with computer systems through multiple modalities such as speech and gesture. To build effective multimodal interfaces, automated interpretation of user multimodal inputs is important. Inspired by the previous investigation on cognitive status in multimodal human machine interaction, we have developed a greedy algorithm for interpreting user referring expressions (i.e., multimodal reference resolution). This algorithm incorporates the cognitive principles of Conversational Implicature and Givenness Hierarchy and applies constraints from various sources (e.g., temporal, semantic, and contextual) to resolve references. Our empirical results have shown the advantage of this algorithm in efficiently resolving a variety of user references. Because of its simplicity and generality, this approach has the potential to improve the robustness of multimodal input interpretation.

  16. Multimodal Biometrics using Feature Fusion

    Directory of Open Access Journals (Sweden)

    K. Krishneswari

    2012-01-01

    Full Text Available Problem statement: Biometrics is a unique, measurable physiological or behavioural characteristic of a person and finds extensive applications in authentication and authorization. Fingerprint, palm print, iris, voice, are some of the most widely used biometrics for personal identification. To reduce the error rates and enhance the usability of biometric system, multimodal biometric systems are used where more than one biometric characteristics are used. Approach: In this study it is proposed to investigate the performance of multimodal biometrics using palm print and fingerprint. Features are extracted using Discrete Cosine Transform (DCT and attributes selected using Information Gain (IG. Results and Conclusion: The proposed technique shows an average improvement of 8.52% compared to using palmprint technique alone. The processing time does not increase for verification compared to palm print techniques.

  17. Continuous verification using multimodal biometrics.

    Science.gov (United States)

    Sim, Terence; Zhang, Sheng; Janakiraman, Rajkumar; Kumar, Sandeep

    2007-04-01

    Conventional verification systems, such as those controlling access to a secure room, do not usually require the user to reauthenticate himself for continued access to the protected resource. This may not be sufficient for high-security environments in which the protected resource needs to be continuously monitored for unauthorized use. In such cases, continuous verification is needed. In this paper, we present the theory, architecture, implementation, and performance of a multimodal biometrics verification system that continuously verifies the presence of a logged-in user. Two modalities are currently used--face and fingerprint--but our theory can be readily extended to include more modalities. We show that continuous verification imposes additional requirements on multimodal fusion when compared to conventional verification systems. We also argue that the usual performance metrics of false accept and false reject rates are insufficient yardsticks for continuous verification and propose new metrics against which we benchmark our system.

  18. The bicriterion multimodal assignment problem

    DEFF Research Database (Denmark)

    Pedersen, Christian Roed; Nielsen, Lars Relund; Andersen, Kim Allan

    2008-01-01

    We consider the bicriterion multimodal assignment problem, which is a new generalization of the classical linear assignment problem. A two-phase solution method using an effective ranking scheme is presented. The algorithm is valid for generating all nondominated criterion points...... or an approximation. Extensive computational results are conducted on a large library of test instances to test the performance of the algorithm and to identify hard test instances. Also, test results of the algorithm applied to the bicriterion assignment problem are provided....

  19. Evaluation of multimodal ground cues

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Lecuyer, Anatole; Serafin, Stefania

    2012-01-01

    This chapter presents an array of results on the perception of ground surfaces via multiple sensory modalities,with special attention to non visual perceptual cues, notably those arising from audition and haptics, as well as interactions between them. It also reviews approaches to combining synth...... synthetic multimodal cues, from vision, haptics, and audition, in order to realize virtual experiences of walking on simulated ground surfaces or other features....

  20. The Theme in the Multimodality

    Institute of Scientific and Technical Information of China (English)

    Liu; Xiaolin

    2014-01-01

    <正>1.Systemic Functional Linguistic(SFL)and Multimodality The theoretical foundation for this analysis is mainly extrapolated from the approach of language as a social semiotic process(Halliday 1978,2004).SFL deals with the way texts are articulated to be appropriate for particular situations of use.Halliday develops a Systemic Functional approach in relation to verbal language and offers a set of grammatical systems which realize the three metafunctions of language.In them,the clause

  1. Multi-Mode Broadband Patch Antenna

    Science.gov (United States)

    Romanofsky, Robert R. (Inventor)

    2001-01-01

    A multi-mode broad band patch antenna is provided that allows for the same aperture to be used at independent frequencies such as reception at 19 GHz and transmission at 29 GHz. Furthermore, the multi-mode broadband patch antenna provides a ferroelectric film that allows for tuning capability of the multi-mode broadband patch antenna over a relatively large tuning range. The alternative use of a semiconductor substrate permits reduced control voltages since the semiconductor functions as a counter electrode.

  2. Multimodal CT in stroke imaging: new concepts.

    Science.gov (United States)

    Ledezma, Carlos J; Wintermark, Max

    2009-01-01

    A multimodal CT protocol provides a comprehensive noninvasive survey of acute stroke patients with accurate demonstration of the site of arterial occlusion and its hemodynamic tissue status. It combines widespread availability with the ability to provide functional characterization of cerebral ischemia, and could potentially allow more accurate selection of candidates for acute stroke reperfusion therapy. This article discusses the individual components of multimodal CT and addresses the potential role of a combined multimodal CT stroke protocol in acute stroke therapy.

  3. Multimodal Diversity of Postmodernist Fiction Text

    Directory of Open Access Journals (Sweden)

    U. I. Tykha

    2016-12-01

    Full Text Available The article is devoted to the analysis of structural and functional manifestations of multimodal diversity in postmodernist fiction texts. Multimodality is defined as the coexistence of more than one semiotic mode within a certain context. Multimodal texts feature a diversity of semiotic modes in the communication and development of their narrative. Such experimental texts subvert conventional patterns by introducing various semiotic resources – verbal or non-verbal.

  4. Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination

    Energy Technology Data Exchange (ETDEWEB)

    Goldin, F. J. [Livermore Operations, National Security Technologies, LLC, Livermore, California 94550 (United States); Meehan, B. T.; Hagen, E. C. [North Las Vegas Facility, National Security Technologies, LLC, North Las Vegas, Nevada 89030 (United States); Wilkins, P. R. [Lawrence Livermore National Laboratories, Livermore, California 94550 (United States)

    2010-10-15

    A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny-Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.

  5. Time-Resolved Spectra of Dense Plasma Focus Using Spectrometer, Streak Camera, CCD Combination

    Energy Technology Data Exchange (ETDEWEB)

    F. J. Goldin, B. T. Meehan, E. C. Hagen, P. R. Wilkins

    2010-10-01

    A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny–Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.

  6. Multimodal nanoparticulate bioimaging contrast agents.

    Science.gov (United States)

    Sharma, Parvesh; Singh, Amit; Brown, Scott C; Bengtsson, Niclas; Walter, Glenn A; Grobmyer, Stephen R; Iwakuma, Nobutaka; Santra, Swadeshmukul; Scott, Edward W; Moudgil, Brij M

    2010-01-01

    A wide variety of bioimaging techniques (e.g., ultrasound, computed X-ray tomography, magnetic resonance imaging (MRI), and positron emission tomography) are commonly employed for clinical diagnostics and scientific research. While all of these methods use a characteristic "energy-matter" interaction to provide specific details about biological processes, each modality differs from another in terms of spatial and temporal resolution, anatomical and molecular details, imaging depth, as well as the desirable material properties of contrast agents needed for augmented imaging. On many occasions, it is advantageous to apply multiple complimentary imaging modalities for faster and more accurate prognosis. Since most imaging modalities employ exogenous contrast agents to improve the signal-to-noise ratio, the development and use of multimodal contrast agents is considered to be highly advantageous for obtaining improved imagery from sought-after imaging modalities. Multimodal contrast agents offer improvements in patient care, and at the same time can reduce costs and enhance safety by limiting the number of contrast agent administrations required for imaging purposes. Herein, we describe the synthesis and characterization of nanoparticulate-based multimodal contrast agent for noninvasive bioimaging using MRI, optical, and photoacoustic tomography (PAT)-imaging modalities. The synthesis of these agents is described using microemulsions, which enable facile integration of the desired diversity of contrast agents and material components into a single entity.

  7. Advances in multimodality molecular imaging

    Directory of Open Access Journals (Sweden)

    Zaidi Habib

    2009-01-01

    Full Text Available Multimodality molecular imaging using high resolution positron emission tomography (PET combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT and functional or metabolic (PET information provided in a "one-stop shop" and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed.

  8. Diffusion Maps for Multimodal Registration

    Directory of Open Access Journals (Sweden)

    Gemma Piella

    2014-06-01

    Full Text Available Multimodal image registration is a difficult task, due to the significant intensity variations between the images. A common approach is to use sophisticated similarity measures, such as mutual information, that are robust to those intensity variations. However, these similarity measures are computationally expensive and, moreover, often fail to capture the geometry and the associated dynamics linked with the images. Another approach is the transformation of the images into a common space where modalities can be directly compared. Within this approach, we propose to register multimodal images by using diffusion maps to describe the geometric and spectral properties of the data. Through diffusion maps, the multimodal data is transformed into a new set of canonical coordinates that reflect its geometry uniformly across modalities, so that meaningful correspondences can be established between them. Images in this new representation can then be registered using a simple Euclidean distance as a similarity measure. Registration accuracy was evaluated on both real and simulated brain images with known ground-truth for both rigid and non-rigid registration. Results showed that the proposed approach achieved higher accuracy than the conventional approach using mutual information.

  9. Multimodality imaging of pulmonary infarction

    Energy Technology Data Exchange (ETDEWEB)

    Bray, T.J.P., E-mail: timothyjpbray@gmail.com [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom); Mortensen, K.H., E-mail: mortensen@doctors.org.uk [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom); University Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Box 318, Cambridge CB2 0QQ (United Kingdom); Gopalan, D., E-mail: deepa.gopalan@btopenworld.com [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom)

    2014-12-15

    Highlights: • A plethora of pulmonary and systemic disorders, often associated with grave outcomes, may cause pulmonary infarction. • A stereotypical infarct is a peripheral wedge shaped pleurally based opacity but imaging findings can be highly variable. • Multimodality imaging is key to diagnosing the presence, aetiology and complications of pulmonary infarction. • Multimodality imaging of pulmonary infarction together with any ancillary features often guide to early targeted treatment. • CT remains the principal imaging modality with MRI increasingly used alongside nuclear medicine studies and ultrasound. - Abstract: The impact of absent pulmonary arterial and venous flow on the pulmonary parenchyma depends on a host of factors. These include location of the occlusive insult, the speed at which the occlusion develops and the ability of the normal dual arterial supply to compensate through increased bronchial arterial flow. Pulmonary infarction occurs when oxygenation is cut off secondary to sudden occlusion with lack of recruitment of the dual supply arterial system. Thromboembolic disease is the commonest cause of such an insult but a whole range of disease processes intrinsic and extrinsic to the pulmonary arterial and venous lumen may also result in infarcts. Recognition of the presence of infarction can be challenging as imaging manifestations often differ from the classically described wedge shaped defect and a number of weighty causes need consideration. This review highlights aetiologies and imaging appearances of pulmonary infarction, utilising cases to illustrate the essential role of a multimodality imaging approach in order to arrive at the appropriate diagnosis.

  10. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  11. Photo ion spectrometer

    Science.gov (United States)

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  12. VEGAS: VErsatile GBT Astronomical Spectrometer

    Science.gov (United States)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  13. Spectrometers and Polyphase Filterbanks in Radio Astronomy

    CERN Document Server

    Price, Danny C

    2016-01-01

    This review gives an introduction to spectrometers and discusses their use within radio astronomy. While a variety of technologies are introduced, particular emphasis is given to digital systems. Three different types of digital spectrometers are discussed: autocorrelation spectrometers, Fourier transform spectrometers, and polyphase filterbank spectrometers. Given their growing ubiquity and significant advantages, polyphase filterbanks are detailed at length. The relative advantages and disadvantages of different spectrometer technologies are compared and contrasted, and implementation considerations are presented.

  14. Novel Micro Fourier Transform Spectrometers

    Institute of Scientific and Technical Information of China (English)

    KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun

    2008-01-01

    The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.

  15. Adaptive Computed Tomography Imaging Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The present proposal describes the development of an adaptive Computed Tomography Imaging Spectrometer (CTIS), or "Snapshot" spectrometer which can "instantaneously"...

  16. PANDA: Cold three axes spectrometer

    Directory of Open Access Journals (Sweden)

    Astrid Schneidewind

    2015-08-01

    Full Text Available The cold three axes spectrometer PANDA, operated by JCNS, Forschungszentrum Jülich, offers high neutron flux over a large dynamic range keeping the instrumental background comparably low.

  17. The GRAVITY spectrometers: optical qualification

    Science.gov (United States)

    Yazici, Senol; Straubmeier, Christian; Wiest, Michael; Wank, Imke; Fischer, Sebastian; Horrobin, Matthew; Eisenhauer, Frank; Perrin, Guy; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY1 is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument2 (BCI) four Fiber Couplers3 (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer4 (FT) and a science channel for the science spectrometer4 (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept.5 The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics6 (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors7 (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism.8 The Science spectrometer is more diverse and allows to choose from three different spectral resolutions8 (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the ux in 2 × 2 pixel (36 × 36 μm2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present

  18. Automated Nuclear Quadruple Resonance Spectrometer

    Directory of Open Access Journals (Sweden)

    IVANCHUK, M.

    2008-06-01

    Full Text Available Improvement of an autodyne Nuclear quadruple resonance spectrometer is offered. The change of frequency of oscillatory LC circuit of the spectrometer is carried out in two ways: by varicap and variable capacitor. A processor module for the capacitor and varicap control is developed. The unit allows to scan and measure the level and frequency of the NQR-signal. The unit is controlled by the personal computer.

  19. Automated Nuclear Quadruple Resonance Spectrometer

    OpenAIRE

    2008-01-01

    Improvement of an autodyne Nuclear quadruple resonance spectrometer is offered. The change of frequency of oscillatory LC circuit of the spectrometer is carried out in two ways: by varicap and variable capacitor. A processor module for the capacitor and varicap control is developed. The unit allows to scan and measure the level and frequency of the NQR-signal. The unit is controlled by the personal computer.

  20. Multimodal non-contact photoacoustic and OCT imaging using a fiber based approach

    Science.gov (United States)

    Berer, T.; Leiss-Holzinger, E.; Hochreiner, A.; Bauer-Marschallinger, J.; Leitner, M.; Buchsbaum, A.

    2014-03-01

    In this paper we present multimodal non-contact photoacoustic and OCT imaging. Photoacoustic signals are acquired remotely on the surface of a specimen with a Mach-Zehnder interferometer. The interferometer is realized in a fiberoptic network using a fiber laser at 1550nm as source. In the same fiber-optic network a spectral-domain OCT system is realized. The OCT system utilizes a superluminescent diode at 1325nm as light source; imaging data are acquired using a spectrometer with an InGaAs line array. Light from the fiber laser and the superluminescent diode are multiplexed into one fiber and the same objective is used for both imaging modalities. Reflected light is demultiplexed and guided to the respective imaging systems. We demonstrate the photoacoustic and OCT imaging modalities on different phantom samples. Finally, we show multimodal imaging with both modalities simultaneously. The resulting photoacoustic and OCT images match perfectly.

  1. First absolutely calibrated on-axis ion flow measurements in MST

    Science.gov (United States)

    Schott, B.; Baltzer, M.; Craig, D.; den Hartog, D. J.; Nishizawa, T.; Nornberg, M. D.

    2016-10-01

    Improvements in absolute calibration techniques allow for the first direct measurements of the flow profile in the core of MST. We use both active charge exchange recombination spectroscopy and passive emission near 343 nm to measure ion temperature and flow. It is generally assumed that O VI is the brightest passive emission source. However, we show that there are cases, such as high temperature, pulsed poloidal current drive (PPCD) plasmas where the passive emission is dominated by C VI. Differences in the fine structure for O VI and C VI result in a systematic velocity error of about 12 km/s if the wrong model is assumed. Active measurements, however, are relatively insensitive to background model choice. The dominant source of error in active velocity measurements remains the systematic errors in calibration. The first absolutely calibrated, localized toroidal velocity measurements were obtained using an updated calibration technique. During PPCD, the on-axis ion flow is up to 40 km/s larger than both the n = 6 mode velocity and the line-averaged ion velocity. These measurements provide the first direct look at the flow profile in the core of MST. This work has been supported by the US DOE and the Wheaton College summer research program.

  2. On-axis reverse Hartmann test in aspheric optical surface test with the optical flat calibration

    Science.gov (United States)

    Xia, Zhengzheng; Hui, Mei; Zhao, Zhu; Liu, Ming; Dong, Liquan; Liu, Xiaohua; Kong, Lingqin; Zhao, Yuejin

    2016-09-01

    The Reverse Hartmann test is developed rapidly, robustly, and accurately in measuring precision aspheric surface. The onaxis design provides better control of the astigmatism in the test. We use an on-axis Hartmann test in reverse to measure the aspheric optical mirrors. In the configuration, the LCD with a light pattern on the screen illuminates to the tested surface, and a 2μm-thick pellicle beam splitter is employed to obtain the coaxial light model. An optical flat with 1/20λ surface precision is used to calibrate the rays which pass through the external pinhole and image at the detector, and the data are processed to obtain the direction vectors of arbitrary reflected rays. The surface gradients are determined by the spatial equations of incident and reflected rays which have been calibrated. The shape of surface is finally reconstructed by Zernike polynomial fitting. The experiments include measuring a 76.2mm off-axis parabolic mirror and a 76.2mm spherical mirror. The experimental results show coaxial reverse Hartmann test system may allow for accurate measurements with uncertainties in the micrometer range using cost-effective equipments.

  3. Multimodal Interactions with Agents in Virtual Worlds

    NARCIS (Netherlands)

    Nijholt, A.; Hulstijn, J.; Kasabov, N.

    2000-01-01

    In this chapter we discuss our research on multimodal interaction in a virtual environment. The environment we have developed can be considered as a ‘laboratory’ for research on multimodal interactions and multimedia presentation, where we have multiple users and various agents that help the users t

  4. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  5. Multimodal Literacies in the Secondary English Classroom

    Science.gov (United States)

    Sewell, William C.; Denton, Shawn

    2011-01-01

    To provide insight into the issue of multimodal literacy instruction, the authors explore presentation techniques and instructional activities employed in their secondary language arts classes. They collaborate on assignments that focus students on "anchored media instruction" and engage them in producing multimodal, technology-infused projects,…

  6. Multimodal Narrative Inquiry: Six Teacher Candidates Respond

    Science.gov (United States)

    Morawski, Cynthia M.; Rottmann, Jennifer

    2016-01-01

    In this paper we present findings of a study on the implementation of a multimodal teacher narrative inquiry component, theoretically grounded by Rosenblatt's theory of transaction analysis, methodologically supported by action research and practically enacted by narrative inquiry and multimodal learning. In particular, the component offered…

  7. Multimodal Pedagogies for Teacher Education in TESOL

    Science.gov (United States)

    Yi, Youngjoo; Angay-Crowder, Tuba

    2016-01-01

    As a growing number of English language learners (ELLs) engage in digital and multimodal literacy practices in their daily lives, teachers are starting to incorporate multimodal approaches into their instruction. However, anecdotal and empirical evidence shows that teachers often feel unprepared for integrating such practices into their curricula…

  8. (Re-)Examination of Multimodal Augmented Reality

    NARCIS (Netherlands)

    Rosa, N.E.; Werkhoven, P.J.; Hürst, W.O.

    The majority of augmented reality (AR) research has been concerned with visual perception, however the move towards multimodality is imminent. At the same time, there is no clear vision of what multimodal AR is. The purpose of this position paper is to consider possible ways of examining AR other

  9. Evaluating Multimodal Literacies in Student Blogs

    Science.gov (United States)

    O'Byrne, Barbara; Murrell, Stacey

    2014-01-01

    This research presents ways in which high school students used the multimodal and interactive affordances of blogs to create, organize, communicate and participate on an educational blog. Their actions demonstrated how plural modes of literacy are infiltrating digital environments and reshaping literacy and learning. Multimodal blogging practices…

  10. A cuckoo search algorithm for multimodal optimization.

    Science.gov (United States)

    Cuevas, Erik; Reyna-Orta, Adolfo

    2014-01-01

    Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration.

  11. Addressing multimodality in overt aggression detection

    NARCIS (Netherlands)

    Lefter, I.; Rothkrantz, L.J.M.; Burghouts, G.; Yang, Z.; Wiggers, P.

    2011-01-01

    Automatic detection of aggressive situations has a high societal and scientific relevance. It has been argued that using data from multimodal sensors as for example video and sound as opposed to unimodal is bound to increase the accuracy of detections. We approach the problem of multimodal aggressio

  12. The Multimodal Possibilities of Online Instructions

    DEFF Research Database (Denmark)

    Kampf, Constance

    2006-01-01

    The WWW simplifies the process of delivering online instructions through multimodal channels because of the ease of use for voice, video, pictures, and text modes of communication built into it.  Given that instructions are being produced in multimodal format for the WWW, how do multi......-modal analysis tools help us understand the impact of multimodal channels used in instructions?  This paper looks at Kress and VanLeewan's questions of "how narrative is shaped in a specific mode and how it is reshaped when it appears in different modes?" (2001:128)  In addition, the intersection of linguistics...... and rhetoric is explored as a means of understanding the multimodal possibilities for technical communication genres such as instructions....

  13. Multifuel multimodal network design; Projeto de redes multicombustiveis multimodal

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Carolina; Dias, Gustavo; Bahiense, Laura; Ferreira Filho, Virgilio J.M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia de Producao

    2008-07-01

    The objective of the Multi commodity Multimodal Network Project is the development of modeling tools and methodologies for the optimal sizing of production networks and multimodal distribution of multiple fuel and its incomes, considering investments and transportation costs. Given the inherently non-linear combinatory nature of the problem, the resolution of real instances by the complete model, in an exact way, becomes computationally intractable. Thus, the strategy for resolution should contain a combination of exacts and heuristics methods, that must be applied to subdivisions of the original problem. This paper deals with one of these subdivisions, tackling the problem of modeling a network of pipelines in order to drain the production of ethanol away from the producing plants. The objective consists in defining the best network topology, minimizing investment and operational costs, and attending the total demand. In order to do that, the network was considered a tree, where the nodes are the center of producing regions and the edges are the pipelines, trough where the ethanol produced by plants must be drained away. The main objective also includes the decision over the optimal diameter of each pipeline and the optimal size of the bombs, in order to minimize the pumping costs. (author)

  14. Metawidgets in the multimodal interface

    Energy Technology Data Exchange (ETDEWEB)

    Blattner, M.M. (Lawrence Livermore National Lab., CA (United States) Anderson (M.D.) Cancer Center, Houston, TX (United States)); Glinert, E.P.; Jorge, J.A.; Ormsby, G.R. (Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Computer Science)

    1991-01-01

    We analyze two intertwined and fundamental issues concerning computer-to-human communication in the multimodal interfaces: the interplay between sound and graphics, and the role of object persistence. Our observations lead us to introduce metawidgets as abstract entities capable of manifesting themselves to users as image, as sound, or as various combinations and/or sequences of the two media. We show examples of metawidgets in action, and discuss mechanisms for choosing among alternative media for metawidget instantiation. Finally, we describe a couple of experimental microworlds we have implemented to test out some of our ideas. 17 refs., 7 figs.

  15. Multimodal Treatment of Chronic Pain.

    Science.gov (United States)

    Dale, Rebecca; Stacey, Brett

    2016-01-01

    Most patients with chronic pain receive multimodal treatment. There is scant literature to guide us, but when approaching combination pharmacotherapy, the practitioner and patient must weigh the benefits with the side effects; many medications have modest effect yet carry significant side effects that can be additive. Chronic pain often leads to depression, anxiety, and deconditioning, which are targets for treatment. Structured interdisciplinary programs are beneficial but costly. Interventions have their place in the treatment of chronic pain and should be a part of a multidisciplinary treatment plan. Further research is needed to validate many common combination treatments.

  16. Modal dynamics in multimode fibers

    CERN Document Server

    Fridman, Moti; Nixon, Micha; Friesem, Asher A; Davidson, Nir

    2010-01-01

    The dynamics of modes and their states of polarizations in multimode fibers as a function of time, space, and wavelength are experimentally and theoretically investigated. The results reveal that the states of polarizations are displaced in Poincare sphere representation when varying the angular orientations of the polarization at the incident light. Such displacements, which complicates the interpretation of the results, are overcome by resorting to modified Poincare spheres representation. With such modification it should be possible to predict the output modes and their state of polarization when the input mode and state of polarization are known.

  17. Multimodal therapy in perioperative analgesia.

    Science.gov (United States)

    Gritsenko, Karina; Khelemsky, Yury; Kaye, Alan David; Vadivelu, Nalini; Urman, Richard D

    2014-03-01

    This article reviews the current evidence for multimodal analgesic options for common surgical procedures. As perioperative physicians, we have come a long way from using only opioids for postoperative pain to combinations of acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs), selective Cyclo-oxygenase (COX-2) inhibitors, local anesthetics, N-methyl-d-aspartate (NMDA) receptor antagonists, and regional anesthetics. As discussed in this article, many of these agents have decreased narcotic requirements, improved patient satisfaction, and decreased postanesthesia care unit (PACU) times, as well as morbidity in the perioperative period.

  18. Cardiac imaging. A multimodality approach

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, Manfred [Johannes Gutenberg University Hospital, Mainz (Germany); Erbel, Raimund [University Hospital Essen (Germany). Dept. of Cardiology; Kreitner, Karl-Friedrich [Johannes Gutenberg University Hospital, Mainz (Germany). Clinic and Polyclinic for Diagnostic and Interventional Radiology; Barkhausen, Joerg (eds.) [University Hospital Schleswig-Holstein, Luebeck (Germany). Dept. of Radiology and Nuclear Medicine

    2009-07-01

    An excellent atlas on modern diagnostic imaging of the heart Written by an interdisciplinary team of experts, Cardiac Imaging: A Multimodality Approach features an in-depth introduction to all current imaging modalities for the diagnostic assessment of the heart as well as a clinical overview of cardiac diseases and main indications for cardiac imaging. With a particular emphasis on CT and MRI, the first part of the atlas also covers conventional radiography, echocardiography, angiography and nuclear medicine imaging. Leading specialists demonstrate the latest advances in the field, and compare the strengths and weaknesses of each modality. The book's second part features clinical chapters on heart defects, endocarditis, coronary heart disease, cardiomyopathies, myocarditis, cardiac tumors, pericardial diseases, pulmonary vascular diseases, and diseases of the thoracic aorta. The authors address anatomy, pathophysiology, and clinical features, and evaluate the various diagnostic options. Key features: - Highly regarded experts in cardiology and radiology off er image-based teaching of the latest techniques - Readers learn how to decide which modality to use for which indication - Visually highlighted tables and essential points allow for easy navigation through the text - More than 600 outstanding images show up-to-date technology and current imaging protocols Cardiac Imaging: A Multimodality Approach is a must-have desk reference for cardiologists and radiologists in practice, as well as a study guide for residents in both fields. It will also appeal to cardiac surgeons, general practitioners, and medical physicists with a special interest in imaging of the heart. (orig.)

  19. Untangled modes in multimode waveguides

    Science.gov (United States)

    Plöschner, Martin; Tyc, TomáÅ.¡; Čižmár, TomáÅ.¡

    2016-03-01

    Small, fibre-based endoscopes have already improved our ability to image deep within the human body. A novel approach introduced recently utilised disordered light within a standard multimode optical fibre for lensless imaging. Importantly, this approach brought very significant reduction of the instruments footprint to dimensions below 100 μm. The most important limitations of this exciting technology is the lack of bending flexibility - imaging is only possible as long as the fibre remains stationary. The only route to allow flexibility of such endoscopes is in trading-in all the knowledge about the optical system we have, particularly the cylindrical symmetry of refractive index distribution. In perfect straight step-index cylindrical waveguides we can find optical modes that do not change their spatial distribution as they propagate through. In this paper we present a theoretical background that provides description of such modes in more realistic model of real-life step-index multimode fibre taking into account common deviations in distribution of the refractive index from its ideal step-index profile. Separately, we discuss how to include the influence of fibre bending.

  20. States of an on-axis two-hydrogenic-impurity complex in concentric double quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    R-Fulla, M., E-mail: marlonfulla@yahoo.com [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Institución Universitaria Pascual Bravo, A.A. 6564, Medellín (Colombia); Marín, J.H.; Suaza, Y.A. [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Duque, C.A. [Grupo de Materia Condensada-U de A, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)

    2014-06-13

    The energy structure of an on-axis two-donor system (D{sub 2}{sup 0}) confined in GaAs concentric double quantum rings under the presence of magnetic field and hydrostatic pressure was analyzed. Based on structural data for the double quantum ring morphology, a rigorous adiabatic procedure was implemented to separate the electrons' rapid in-plane motions from the slow rotational ones. A one-dimensional equation with an effective angular-dependent potential, which describes the two-electron rotations around the common symmetry axis of quantum rings was obtained. It was shown that D{sub 2}{sup 0} complex characteristic features are strongly dependent on the quantum ring geometrical parameters. Besides, by changing the hydrostatic pressure and magnetic field strengths, it is possible to tune the D{sub 2}{sup 0} energy structure. Our results are comparable to those previously reported for a single and negative ionized donor in a spherical quantum dot after a selective setting of the geometrical parameters of the structure. - Highlights: • We report the eigenenergies of a D{sub 2}{sup 0} complex in concentric double quantum rings. • Our model is versatile enough to analyze the dissociation process D{sub 2}{sup 0}→D{sup 0}+D{sup +}+e{sup −}. • We compare the D{sup 0} eigenenergies in horn toroidal and spherical shaped quantum dots. • We show the effects of hydrostatic pressure and magnetic field on the D{sub 2}{sup 0} spectrum. • The use of hydrostatic pressure provides higher thermal stability to the D{sub 2}{sup 0} complex.

  1. Ultra Compact Imaging Spectrometer (UCIS)

    Science.gov (United States)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  2. Construction of the Solenoid Spectrometer for Nuclear AstroPhysics (SSNAP) at Notre Dame

    Science.gov (United States)

    Allen, Jacob; Bardayan, Dan; Blankstein, Drew; Hall, Matthew; Hall, Oscar; Kolata, James; O'Malley, Patrick; Becchetti, Frederick; Blackmon, Jeffery; Pain, Steven

    2016-09-01

    The study of nucleon transfer reactions gives information about many nuclei involved in astrophysical processes. The design and use of new detector systems improves our ability to accurately characterize these nuclei. The Solenoid Spectrometer for Nuclear AstroPhysics (SSNAP) is a new helical orbit spectrometer being designed at the University of Notre Dame to study transfer reactions with high-energy light ion beams from the FN tandem accelerator. SSNAP incorporates a series of position-sensitive silicon detectors to be set on-axis inside the second TwinSol solenoid. SSNAP will be sensitive to light ions produced in different reactions and the charged-particle decay products from the exotic nuclei produced. Results of initial testing and future plans with this detector system will be shown in this presentation. This work is supported by the National Science Foundation and the Joint Institute for Nuclear Astrophysics.

  3. JPL Fourier transform ultraviolet spectrometer

    Science.gov (United States)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  4. Mediating multimodal environmental knowledge across animation techniques

    DEFF Research Database (Denmark)

    Maier, Carmen Daniela

    2011-01-01

    in the technology- mediated discourse of short animation films. This is done by employing the model of multimodal discourse analysis proposed by Van Leeuwen (2008) and Machin and Van Leeuwen (2007) to the analysis of a series of animation films focused on environmental problems. These films are united under......://www.sustainlane.com/. The multimodal discourse analysis is meant to reveal how selection and representation of environmental knowledge about social actors, social actions, resources, time and space are influenced by animation techniques. Furthermore, in the context of this multimodal discourse analysis, their influence upon...

  5. Tibial cortical lesions: A multimodality pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, P.A., E-mail: philippa.tyler@rnoh.nhs.uk [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Mohaghegh, P., E-mail: pegah1000@gmail.com [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Foley, J., E-mail: jfoley1@nhs.net [Department of Radiology, Glasgow Royal Infirmary, 16 Alexandra Parade, Glasgow G31 2ES (United Kingdom); Isaac, A., E-mail: amandaisaac@doctors.org.uk [Department of Radiology, King' s College Hospital, Denmark Hill, London SE5 9RS (United Kingdom); Zavareh, A., E-mail: ali.zavareh@gmail.com [Department of Radiology, North Bristol NHS Trust, Frenchay, Bristol BS16 1LE (United Kingdom); Thorning, C., E-mail: cthorning@doctors.org.uk [Department of Radiology, East Surrey Hospital, Canada Avenue, Redhill, Surrey RH1 5RH (United Kingdom); Kirwadi, A., E-mail: anandkirwadi@gmail.com [Department of Radiology, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL (United Kingdom); Pressney, I., E-mail: ipressney@hotmail.com [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Amary, F., E-mail: fernanda.amary@rnoh.nhs.uk [Department of Histopathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Rajeswaran, G., E-mail: grajeswaran@gmail.com [Department of Radiology, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH (United Kingdom)

    2015-01-15

    Highlights: • Multimodality imaging plays an important role in the investigation and diagnosis of shin pain. • We review the multimodality imaging findings of common cortically based tibial lesions. • We also describe the rarer pathologies of tibial cortical lesions. - Abstract: Shin pain is a common complaint, particularly in young and active patients, with a wide range of potential diagnoses and resulting implications. We review the natural history and multimodality imaging findings of the more common causes of cortically-based tibial lesions, as well as the rarer pathologies less frequently encountered in a general radiology department.

  6. The multimodal argumentation of persuasive counter discourses

    DEFF Research Database (Denmark)

    Maier, Carmen Daniela

    are given prominence in the argumentation by examining their complex interplay and functional differentiation. The ways in which speech, writing and images articulate the counter discourse occupy a central position in the analysis. A special focus is put on the multimodal configuration of specific...... and new multimodal ways of discussing them. References Kress, G. 2010. Multimodality. A Social Semiotic Approach to Contemporary Communication. London: Routledge. Van Leeuwen, Theo. 2008. Discourse and Practice. New Tools for Critical Discourse Analysis. Oxford: Oxford University Press. Chouliaraki, L...

  7. A high-throughput neutron spectrometer

    Science.gov (United States)

    Stampfl, Anton; Noakes, Terry; Bartsch, Friedl; Bertinshaw, Joel; Veliscek-Carolan, Jessica; Nateghi, Ebrahim; Raeside, Tyler; Yethiraj, Mohana; Danilkin, Sergey; Kearley, Gordon

    2010-03-01

    A cross-disciplinary high-throughput neutron spectrometer is currently under construction at OPAL, ANSTO's open pool light-water research reactor. The spectrometer is based on the design of a Be-filter spectrometer (FANS) that is operating at the National Institute of Standards research reactor in the USA. The ANSTO filter-spectrometer will be switched in and out with another neutron spectrometer, the triple-axis spectrometer, Taipan. Thus two distinct types of neutron spectrometers will be accessible: one specialised to perform phonon dispersion analysis and the other, the filter-spectrometer, designed specifically to measure vibrational density of states. A summary of the design will be given along with a detailed ray-tracing analysis. Some preliminary results will be presented from the spectrometer.

  8. Photon correlations in multimode waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Poem, Eilon; Silberberg, Yaron [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2011-10-15

    We consider the propagation of classical and nonclassical light in multimode optical waveguides. We focus on the evolution of the few-photon correlation functions, which, much as the light-intensity distribution in such systems, evolve in a periodic manner, culminating in the ''revival'' of the initial correlation pattern at the end of each period. It is found that when the input state possesses nontrivial symmetries, the correlation revival period can be longer than that of the intensity, and thus the same intensity pattern can display different correlation patterns. We experimentally demonstrate this effect for classical, pseudothermal light, and compare the results with the predictions for nonclassical, quantum light.

  9. Multimode waveguide based directional coupler

    Science.gov (United States)

    Ahmed, Rajib; Rifat, Ahmmed A.; Sabouri, Aydin; Al-Qattan, Bader; Essa, Khamis; Butt, Haider

    2016-07-01

    The Silicon-on-Insulator (SOI) based platform overcomes limitations of the previous copper and fiber based technologies. Due to its high index difference, SOI waveguide (WG) and directional couplers (DC) are widely used for high speed optical networks and hybrid Electro-Optical inter-connections; TE00-TE01, TE00-TE00 and TM00-TM00 SOI direction couplers are designed with symmetrical and asymmetrical configurations to couple with TE00, TE01 and TM00 in a multi-mode semi-triangular ring-resonator configuration which will be applicable for multi-analyte sensing. Couplers are designed with effective index method and their structural parameters are optimized with consideration to coupler length, wavelength and polarization dependence. Lastly, performance of the couplers are analyzed in terms of cross-talk, mode overlap factor, coupling length and coupling efficiency.

  10. Multimodal integration in statistical learning

    DEFF Research Database (Denmark)

    Mitchell, Aaron; Christiansen, Morten Hyllekvist; Weiss, Dan

    2014-01-01

    Recent advances in the field of statistical learning have established that learners are able to track regularities of multimodal stimuli, yet it is unknown whether the statistical computations are performed on integrated representations or on separate, unimodal representations. In the present study......, we investigated the ability of adults to integrate audio and visual input during statistical learning. We presented learners with a speech stream synchronized with a video of a speaker’s face. In the critical condition, the visual (e.g., /gi/) and auditory (e.g., /mi/) signals were occasionally...... incongruent, which we predicted would produce the McGurk illusion, resulting in the perception of an audiovisual syllable (e.g., /ni/). In this way, we used the McGurk illusion to manipulate the underlying statistical structure of the speech streams, such that perception of these illusory syllables...

  11. Multimodal signalling in estrildid finches

    DEFF Research Database (Denmark)

    Gomes, A. C. R.; Funghi, C.; Soma, M.

    2017-01-01

    radiations, and one that includes many model species for research in sexual selection and communication. We found little evidence for either joint evolution or trade-offs between song and colour ornamentation. Some negative correlations between dance repertoire and song traits may suggest a functional...... compromise, but generally courtship dance also evolved independently from other signals. Instead of correlated evolution, we found that song, dance and colour are each related to different socio-ecological traits. Song complexity evolved together with ecological generalism, song performance with investment...... in reproduction, dance with commonness and habitat type, whereas colour ornamentation was shown previously to correlate mostly with gregariousness. We conclude that multimodal signals evolve in response to various socio-ecological traits, suggesting the accumulation of distinct signalling functions....

  12. The smallsat TIR spectrometer MIBS

    NARCIS (Netherlands)

    Leijtens, J.A.P.; Court, A.J.; Lucas, J.W.

    2005-01-01

    In frame of the ESA Earthcare MSI study, TNO Science and Industry has developed a compact spectrometer which is optimized for operation in the 7 to 14 μm wavelength region. By optimizing the throughput of the system, and using the advantages of modern manufacturing technologies to the largest extend

  13. Inside the ETH spectrometer magnet

    CERN Multimedia

    1974-01-01

    The ETH spectrometer magnet being prepared for experiment S134, which uses a frozen spin polarized target to study the associated production of a kaon and a lambda by negative pions interacting with protons (CERN-ETH, Zurich-Helsinki-Imperial College, London-Southampton Collaboration). (See Photo Archive 7406316)

  14. Alpha proton x ray spectrometer

    Science.gov (United States)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  15. Inventory Control: Multiport Student Spectrometer.

    Science.gov (United States)

    Bishop, Carl B.

    1989-01-01

    Described is a spectrometer that can be used simultaneously by seven students to observe a single spectrum emitted by an element or compound in a single light tube against a calibrated screen. Included is a list of materials, directions for assembly, and procedures for use. (CW)

  16. Histology image search using multimodal fusion.

    Science.gov (United States)

    Caicedo, Juan C; Vanegas, Jorge A; Páez, Fabian; González, Fabio A

    2014-10-01

    This work proposes a histology image indexing strategy based on multimodal representations obtained from the combination of visual features and associated semantic annotations. Both data modalities are complementary information sources for an image retrieval system, since visual features lack explicit semantic information and semantic terms do not usually describe the visual appearance of images. The paper proposes a novel strategy to build a fused image representation using matrix factorization algorithms and data reconstruction principles to generate a set of multimodal features. The methodology can seamlessly recover the multimodal representation of images without semantic annotations, allowing us to index new images using visual features only, and also accepting single example images as queries. Experimental evaluations on three different histology image data sets show that our strategy is a simple, yet effective approach to building multimodal representations for histology image search, and outperforms the response of the popular late fusion approach to combine information.

  17. Intelligent Multimodal Signal Adaptation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Micro Analysis and Design (MA&D) is pleased to submit this proposal to design an Intelligent Multimodal Signal Adaptation System. This system will dynamically...

  18. Multimode siloxane polymer components for optical interconnects

    Science.gov (United States)

    Bamiedakis, Nikolaos; Beals, Joseph, IV; Penty, Richard V.; White, Ian H.; DeGroot, Jon v., Jr.; Clapp, Terry V.; De Shazer, David

    2009-02-01

    This paper presents an overview of multimode waveguides and waveguide components formed from siloxane polymer materials which are suitable for use in optical interconnection applications. The components can be cost-effectively integrated onto conventional PCBs and offer increased functionality in optical transmission. The multimode waveguides exhibit low loss (0.04 dB/cm at 850 nm) and low crosstalk (benefit from the multimode nature of the waveguides allowing low loss combining (4 dB for an 8×1 device). A large range of power splitting ratios between 30% and 75% is achieved with multimode coupler devices. Examples of system applications benefiting from the use of these components are briefly presented including a terabit capacity optical backplane, a radio-over-fibre multicasting system and a SCM passive optical network.

  19. Mediating multimodal environmental knowledge across animation techniques

    DEFF Research Database (Denmark)

    Maier, Carmen Daniela

    2011-01-01

    The growing awareness of and concern about present environmental problems generate a proliferation of new forms of environmental discourses that are mediated in various ways. This chapter explores issues related to the ways in which environmental knowledge is multimodally communicated...... in the technology- mediated discourse of short animation films. This is done by employing the model of multimodal discourse analysis proposed by Van Leeuwen (2008) and Machin and Van Leeuwen (2007) to the analysis of a series of animation films focused on environmental problems. These films are united under......://www.sustainlane.com/. The multimodal discourse analysis is meant to reveal how selection and representation of environmental knowledge about social actors, social actions, resources, time and space are influenced by animation techniques. Furthermore, in the context of this multimodal discourse analysis, their influence upon...

  20. Multi-Modal Treatment of Nocturnal Enuresis.

    Science.gov (United States)

    Mohr, Caroline; Sharpley, Christopher F.

    1988-01-01

    The article reports a multimodal treatment of nocturnal enuresis and anxious behavior in a mildly mentally retarded woman. Behavioral treatment and removal of caffeine from the subject's diet eliminated both nocturnal enuresis and anxious behavior. (Author/DB)

  1. Engineering gestures for multimodal user interfaces

    OpenAIRE

    Echtler, Florian; Kammer, Dietrich; Vanacken, Davy; Hoste, Lode; Signer, Beat

    2014-01-01

    Despite increased presence of gestural and multimodal user interfaces in research as well as daily life, development of such systems still mostly relies on programming concepts which have emerged from classic WIMP user interfaces. This workshop proposes to explore the gap between attempts to formalize and structure development for multimodal interfaces in the research community on the one hand and the lack of adoption of these formal languages and frameworks by practitioners and other researc...

  2. Esthesioneuroblastoma: Multimodal management and review of literature

    Science.gov (United States)

    Kumar, Ritesh

    2015-01-01

    Esthesioneuroblastoma (ENB) is a rare malignant neoplasm arising from the olfactory neuroepithelium. ENB constitutes only 3% of all malignant intranasal neoplasm. Because of the rarity, the number of patients of ENB treated in individual departments is small. Most of these patients presents in locally advanced stages and require multimodality treatment in form of surgery, chemotherapy and radiotherapy. Multimodality approach with a risk-adapted strategy is required to achieve good control rates while minimizing treatment related toxicity. PMID:26380824

  3. Quantifying Quality Aspects of Multimodal Interactive Systems

    CERN Document Server

    Kühnel, Christine

    2012-01-01

    This book systematically addresses the quantification of quality aspects of multimodal interactive systems. The conceptual structure is based on a schematic view on human-computer interaction where the user interacts with the system and perceives it via input and output interfaces. Thus, aspects of multimodal interaction are analyzed first, followed by a discussion of the evaluation of output and input and concluding with a view on the evaluation of a complete system.

  4. Multimodal pain stimulation of the gastrointestinal tract

    Institute of Scientific and Technical Information of China (English)

    Asbjφrn Mohr Drewes; Hans Gregersen

    2006-01-01

    Understanding and characterization of pain and other sensory symptoms are among the most important issues in the diagnosis and assessment of patient with gastrointestinal disorders. Methods to evoke and assess experimental pain have recently developed into a new area with the possibility for multimodal stimulation (e.g.,electrical, mechanical, thermal and chemical stimulation)of different nerves and pain pathways in the human gut. Such methods mimic to a high degree the pain experienced in the clinic. Multimodal pain methods have increased our basic understanding of different peripheral receptors in the gut in health and disease. Together with advanced muscle analysis, the methods have increased our understanding of receptors sensitive to mechanical,chemical and temperature stimuli in diseases, such as systemic sclerosis and diabetes. The methods can also be used to unravel central pain mechanisms, such as those involved in allodynia, hyperalgesia and referred pain. Abnormalities in central pain mechanisms are often seen in patients with chronic gut pain and hence methods relying on multimodal pain stimulation may help to understand the symptoms in these patients.Sex differences have been observed in several diseases of the gut, and differences in central pain processing between males and females have been hypothesized using multimodal pain stimulations. Finally, multimodal methods have recently been used to gain more insight into the effect of drugs against pain in the GI tract.Hence, the multimodal methods undoubtedly represents a major step forward in the future characterization and treatment of patients with various diseases of the gut.

  5. Growth optimization and applicability of thick on-axis SiC layers using sublimation epitaxy in vacuum

    Science.gov (United States)

    Jokubavicius, Valdas; Sun, Jianwu; Liu, Xinyu; Yazdi, Gholamreza; Ivanov, Ivan. G.; Yakimova, Rositsa; Syväjärvi, Mikael

    2016-08-01

    We demonstrate growth of thick SiC layers (100-200 μm) on nominally on-axis hexagonal substrates using sublimation epitaxy in vacuum (10-5 mbar) at temperatures varying from 1700 to 1975 °C with growth rates up to 270 μm/h and 70 μm/h for 6H- and 4H-SiC, respectively. The stability of hexagonal polytypes are related to process growth parameters and temperature profile which can be engineered using different thermal insulation materials and adjustment of the induction coil position with respect to the graphite crucible. We show that there exists a range of growth rates for which single-hexagonal polytype free of foreign polytype inclusions can be maintained. Further on, foreign polytypes like 3C-SiC can be stabilized by moving out of the process window. The applicability of on-axis growth is demonstrated by growing a 200 μm thick homoepitaxial 6H-SiC layer co-doped with nitrogen and boron in a range of 1018 cm-3 at a growth rate of about 270 μm/h. Such layers are of interest as a near UV to visible light converters in a monolithic white light emitting diode concept, where subsequent nitride-stack growth benefits from the on-axis orientation of the SiC layer.

  6. 4H-SiC homoepitaxy on nearly on-axis substrates using TFS-towards high quality epitaxial growth

    Science.gov (United States)

    Balachandran, Anusha; Song, Haizheng; Sudarshan, T. S.; Chandrashekhar, M. V. S.

    2016-08-01

    We report high quality homoepitaxial growth on nearly on-axis (± 0.5 °) 4H-SiC substrates by chemical vapor deposition (CVD) using Tetrafluorosilane and Propane as Si and C-precursors, respectively. N-type unintentional doping (1017-1014 cm-3) was obtained for 0.6rates Rg- 5-14 μm/h, which was found to be C-controlled. At C/Si2.0, a linear dependence on C-flow is established, with a return to step-mediated growth, shown by the surface morphology (RMS roughness ∼1 nm), and high polytype uniformity from Raman at high Rg- 14 μm/h. These two behaviors were ascribed to a decrease in the etch rate of SiC by SiF4 with increasing C/Si due to C-aided decomposition of SiF4, both of which make available a greater amount of elemental Si at the surface, thereby suppressing spiral growth. Use of on-axis or near on-axis substrates can eliminate/reduce basal plane dislocations which limit the performance of SiC bipolar electronic devices.

  7. Multimodal microscopy and the stepwise multi-photon activation fluorescence of melanin

    Science.gov (United States)

    Lai, Zhenhua

    The author's work is divided into three aspects: multimodal microscopy, stepwise multi-photon activation fluorescence (SMPAF) of melanin, and customized-profile lenses (CPL) for on-axis laser scanners, which will be introduced respectively. A multimodal microscope provides the ability to image samples with multiple modalities on the same stage, which incorporates the benefits of all modalities. The multimodal microscopes developed in this dissertation are the Keck 3D fusion multimodal microscope 2.0 (3DFM 2.0), upgraded from the old 3DFM with improved performance and flexibility, and the multimodal microscope for targeting small particles (the "Target" system). The control systems developed for both microscopes are low-cost and easy-to-build, with all components off-the-shelf. The control system have not only significantly decreased the complexity and size of the microscope, but also increased the pixel resolution and flexibility. The SMPAF of melanin, activated by a continuous-wave (CW) mode near-infrared (NIR) laser, has potential applications for a low-cost and reliable method of detecting melanin. The photophysics of melanin SMPAF has been studied by theoretical analysis of the excitation process and investigation of the spectra, activation threshold, and photon number absorption of melanin SMPAF. SMPAF images of melanin in mouse hair and skin, mouse melanoma, and human black and white hairs are compared with images taken by conventional multi-photon fluorescence microscopy (MPFM) and confocal reflectance microscopy (CRM). SMPAF images significantly increase specificity and demonstrate the potential to increase sensitivity for melanin detection compared to MPFM images and CRM images. Employing melanin SMPAF imaging to detect melanin inside human skin in vivo has been demonstrated, which proves the effectiveness of melanin detection using SMPAF for medical purposes. Selective melanin ablation with micrometer resolution has been presented using the Target system

  8. Raman-in-SEM, a multimodal and multiscale analytical tool: performance for materials and expertise.

    Science.gov (United States)

    Wille, Guillaume; Bourrat, Xavier; Maubec, Nicolas; Lahfid, Abdeltif

    2014-12-01

    The availability of Raman spectroscopy in a powerful analytical scanning electron microscope (SEM) allows morphological, elemental, chemical, physical and electronic analysis without moving the sample between instruments. This paper documents the metrological performance of the SEMSCA commercial Raman interface operated in a low vacuum SEM. It provides multiscale and multimodal analyses as Raman/EDS, Raman/cathodoluminescence or Raman/STEM (STEM: scanning transmission electron microscopy) as well as Raman spectroscopy on nanomaterials. Since Raman spectroscopy in a SEM can be influenced by several SEM-related phenomena, this paper firstly presents a comparison of this new tool with a conventional micro-Raman spectrometer. Then, some possible artefacts are documented, which are due to the impact of electron beam-induced contamination or cathodoluminescence contribution to the Raman spectra, especially with geological samples. These effects are easily overcome by changing or adapting the Raman spectrometer and the SEM settings and methodology. The deletion of the adverse effect of cathodoluminescence is solved by using a SEM beam shutter during Raman acquisition. In contrast, this interface provides the ability to record the cathodoluminescence (CL) spectrum of a phase. In a second part, this study highlights the interest and efficiency of the coupling in characterizing micrometric phases at the same point. This multimodal approach is illustrated with various issues encountered in geosciences.

  9. Generalized modulational instability in multimode fibers: wideband multimode parametric amplification

    CERN Document Server

    Guasoni, M

    2015-01-01

    In this paper intermodal modulational instability (IM-MI) is analyzed in a multimode fiber where several spatial and polarization modes propagate. The coupled nonlinear Schr\\"{o}dinger equations describing the modal evolution in the fiber are linearized and reduced to an eigenvalue problem. As a result, the amplification of each mode can be described by means of the eigenvalues and eigenvectors of a matrix that stores the information about the dispersion properties of the modes and the modal power distribution of the pump. Some useful analytical formulas are also provided that estimate the modal amplification as function of the system parameters. Finally, the impact of third-order dispersion and of absorbtion losses is evaluated, which reveals some surprising phenomena into the IM-MI dynamics. These outcomes generalize previous studies on bimodal-MI, related to the interaction between 2 spatial or polarization modes, to the most general case of $N>2$ interacting modes. Moreover, they pave the way towards the ...

  10. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  11. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  12. Acquisition of HPLC-Mass Spectrometer

    Science.gov (United States)

    2015-08-18

    31-Jan-2015 Approved for Public Release; Distribution Unlimited Final Report: Acquisition of HPLC -Mass Spectrometer The views, opinions and/or findings...published in peer-reviewed journals: Final Report: Acquisition of HPLC -Mass Spectrometer Report Title The acquisition of the mass spectrometer has been a

  13. New schemes of static mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Baisanov, O.A. [Military Institute of Air Defense Forces, Aktobe (Kazakhstan); Doskeyev, G.A. [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan); Spivak-Lavrov, I.F., E-mail: baisanov@mail.ru [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan)

    2011-07-21

    Different possibilities to increase the 'quality', or Q-quantity, of static mass spectrometers by expanding the ion beam before it enters the magnetic field are analyzed. The design of mass spectrometers using a cone-shaped achromatic prism is discussed. Different variants of achromatic mass spectrometers using electrostatic prisms and sector magnetic fields are also considered.

  14. Holographic Fabry-Perot spectrometer.

    Science.gov (United States)

    Martínez-Matos, O; Rodrigo, José A; Vaveliuk, P; Calvo, M L

    2011-02-15

    We propose a spectrum analyzer based on the properties of a hologram recorded with the field transmitted by a Fabry-Perot etalon. The spectral response of this holographic Fabry-Perot spectrometer (HFPS) is analytically investigated in the paraxial approximation and compared with a conventional Fabry-Perot etalon of similar characteristics. We demonstrate that the resolving power is twice increased and the free spectral range (FSR) is reduced to one-half. The proposed spectrometer could improve the operational performance of the etalon because it can exhibit high efficiency and it would be insensible to environmental conditions such as temperature and vibrations. Our analysis also extends to another variant of the HFPS based on holographic multiplexing of the transmitted field of a Fabry-Perot etalon. This device increases the FSR, keeping the same HFPS performance.

  15. On-Chip Random Spectrometer

    CERN Document Server

    Redding, Brandon; Sarma, Raktim

    2013-01-01

    Light scattering in disordered media has been studied extensively due to its prevalence in natural and artificial systems [1]. In the field of photonics most of the research has focused on understanding and mitigating the effects of scattering, which are often detrimental. For certain applications, however, intentionally introducing disorder can actually improve the device performance, e.g., in photovoltaics optical scattering improves the efficiency of light harvesting [2-5]. Here, we utilize multiple scattering in a random photonic structure to build a compact on-chip spectrometer. The probe signal diffuses through a scattering medium generating wavelength-dependent speckle patterns which can be used to recover the input spectrum after calibration. Multiple scattering increases the optical pathlength by folding the paths in a confined geometry, enhancing the spectral decorrelation of speckle patterns and thus increasing the spectral resolution. By designing and fabricating the spectrometer on a silicon wafe...

  16. Exploiting a Transmission Grating Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  17. On-chip plasmonic spectrometer.

    Science.gov (United States)

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings.

  18. Multimodal analgesia and regional anaesthesia.

    Science.gov (United States)

    Tornero Tornero, C; Fernández Rodríguez, L E; Orduña Valls, J

    Multimodal analgesia provides quality analgesia, with fewer side effects due to the use of combined analgesics or analgesic techniques. Regional anaesthesia plays a fundamental role in achieving this goal. The different techniques of regional anaesthesia that include both peripheral and central blocks in either a single dose or in continuous infusion help to modulate the nociceptive stimuli that access the central level. The emergence of the ultrasound as an effective system to perform regional anaesthesia techniques has allowed the development of new regional anaesthesia techniques that formerly could not be carried out since only neurostimulation or skin references were used. It is essential to take into account that even with effective blocking it is advisable to associate other drugs by other routes, in this way we will be able to reduce the required doses individually and attempt to achieve a synergistic, not purely additive, effect. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Multimodality Management of Trigeminal Schwannomas.

    Science.gov (United States)

    Niranjan, Ajay; Barnett, Samuel; Anand, Vijay; Agazzi, Siviero

    2016-08-01

    Patients presenting with trigeminal schwannomas require multimodality management by a skull base surgical team that can offer expertise in both transcranial and transnasal approaches as well as radiosurgical and microsurgical strategies. Improvement in neurologic symptoms, preservation of cranial nerve function, and control of mass effect are the primary goals of management for trigeminal schwannomas. Complete surgical resection is the treatment of choice but may not be possible in all cases. Radiosurgery is an option as primary management for small- to moderate-sized tumors and can be used for postoperative residuals or recurrences. Planned surgical resection followed by SRS for residual tumor is an effective option for larger trigeminal schwannomas. The endoscopic resection is an excellent approach for patients with an extradural tumor or tumors isolated to the Meckel cave. A detailed analysis of a tumor and its surroundings based on high-quality imaging can help better estimate the expected outcome from each treatment. An expert skull base team should be able to provide precise counseling for each patient's situation for selecting the best option.

  20. Miniature multimode monolithic flextensional transducers.

    Science.gov (United States)

    Hladky-Hennion, Anne-Christine; Uzgur, A Erman; Markley, Douglas C; Safari, Ahmad; Cochran, Joe K; Newnham, Robert E

    2007-10-01

    Traditional flextensional transducers classified in seven groups based on their designs have been used extensively in 1-100 kHz range for mine hunting, fish finding, oil explorations, and biomedical applications. In this study, a new family of small, low cost underwater, and biomedical transducers has been developed. After the fabrication of transducers, finite-elements analysis (FEA) was used extensively in order to optimize these miniature versions of high-power, low-frequency flextensional transducer designs to achieve broad bandwidth for both transmitting and receiving, engineered vibration modes, and optimized acoustic directivity patterns. Transducer topologies with various shapes, cross sections, and symmetries can be fabricated through high-volume, low-cost ceramic and metal extrusion processes. Miniaturized transducers posses resonance frequencies in the range of above 1 MHz to below 10 kHz. Symmetry and design of the transducer, polling patterns, driving and receiving electrode geometries, and driving conditions have a strong effect on the vibration modes, resonance frequencies, and radiation patterns. This paper is devoted to small, multimode flextensional transducers with active shells, which combine the advantages of small size and low-cost manufacturing with control of the shape of the acoustic radiation/receive pattern. The performance of the transducers is emphasized.

  1. Squeezing Properties of the Generalized Multimode Squeezed States

    Institute of Scientific and Technical Information of China (English)

    SONGTong-Qiang

    2001-01-01

    By means of the invariance of Weyl ordering under similar transformations we derive the explicit form of the generalized multimode squeezed states.Moreover,the completeness relation and the squeezing properties of the generalized multimode squeezed states are discussed.

  2. Squeezing Properties of the Generalized Multimode Squeezed States

    Institute of Scientific and Technical Information of China (English)

    SONG Tong-Qiang

    2001-01-01

    By means of the invariance of Weyl ordering under similar transformations we derive the explicit form of the generalized multimode squeezed states. Moreover, the completeness relation and the squeezing properties of the generalized multimode squeezed states are discussed.

  3. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time

  4. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  5. Multimodal image fusion with SIMS: Preprocessing with image registration.

    Science.gov (United States)

    Tarolli, Jay Gage; Bloom, Anna; Winograd, Nicholas

    2016-06-14

    In order to utilize complementary imaging techniques to supply higher resolution data for fusion with secondary ion mass spectrometry (SIMS) chemical images, there are a number of aspects that, if not given proper consideration, could produce results which are easy to misinterpret. One of the most critical aspects is that the two input images must be of the same exact analysis area. With the desire to explore new higher resolution data sources that exists outside of the mass spectrometer, this requirement becomes even more important. To ensure that two input images are of the same region, an implementation of the insight segmentation and registration toolkit (ITK) was developed to act as a preprocessing step before performing image fusion. This implementation of ITK allows for several degrees of movement between two input images to be accounted for, including translation, rotation, and scale transforms. First, the implementation was confirmed to accurately register two multimodal images by supplying a known transform. Once validated, two model systems, a copper mesh grid and a group of RAW 264.7 cells, were used to demonstrate the use of the ITK implementation to register a SIMS image with a microscopy image for the purpose of performing image fusion.

  6. Single LP(0,n) mode excitation in multimode fibers.

    Science.gov (United States)

    Bhatia, Nitin; Rustagi, Kailash C; John, Joseph

    2014-07-14

    We analyze the transmission of a Single mode - Multimode -Multimode (SMm) fiber structure with the aim of exciting a single radial mode in the second multimode fiber. We show that by appropriate choice of the length of the central multimode fiber one can obtain > 90% of the total core power in a chosen mode. We also discuss methods of removing undesirable cladding and radiation modes and estimate tolerances for practical applications.

  7. Multimodale trafiknet i GIS (Multimodal Traffic Network in GIS)

    DEFF Research Database (Denmark)

    Kronbak, Jacob; Brems, Camilla Riff

    1996-01-01

    The report introduces the use of multi-modal traffic networks within a geographical Information System (GIS). The necessary theory of modelling multi-modal traffic network is reviewed and applied to the ARC/INFO GIS by an explorative example.......The report introduces the use of multi-modal traffic networks within a geographical Information System (GIS). The necessary theory of modelling multi-modal traffic network is reviewed and applied to the ARC/INFO GIS by an explorative example....

  8. Reference Resolution in Multi-modal Interaction: Position paper

    NARCIS (Netherlands)

    Fernando, T.; Nijholt, Antinus

    2002-01-01

    In this position paper we present our research on multimodal interaction in and with virtual environments. The aim of this presentation is to emphasize the necessity to spend more research on reference resolution in multimodal contexts. In multi-modal interaction the human conversational partner can

  9. Reference resolution in multi-modal interaction: Preliminary observations

    NARCIS (Netherlands)

    González González, G.R.; Nijholt, Antinus

    2002-01-01

    In this paper we present our research on multimodal interaction in and with virtual environments. The aim of this presentation is to emphasize the necessity to spend more research on reference resolution in multimodal contexts. In multi-modal interaction the human conversational partner can apply

  10. Reference resolution in multi-modal interaction: Preliminary observations

    NARCIS (Netherlands)

    Nijholt, A.; González González, G.R.

    2002-01-01

    In this paper we present our research on multimodal interaction in and with virtual environments. The aim of this presentation is to emphasize the necessity to spend more research on reference resolution in multimodal contexts. In multi-modal interaction the human conversational partner can apply mo

  11. [Multimodal pain therapy: principles and indications].

    Science.gov (United States)

    Arnold, B; Brinkschmidt, T; Casser, H-R; Gralow, I; Irnich, D; Klimczyk, K; Müller, G; Nagel, B; Pfingsten, M; Schiltenwolf, M; Sittl, R; Söllner, W

    2009-04-01

    Multimodal pain therapy describes an integrated multidisciplinary treatment in small groups with a closely coordinated therapeutical approach. Somatic and psychotherapeutic procedures cooperate with physical and psychological training programs. For chronic pain syndromes with complex somatic, psychological and social consequences, a therapeutic intensity of at least 100 hours is recommended. Under these conditions multimodal pain therapy has proven to be more effective than other kinds of treatment. If monodisciplinary and/or outpatient therapies fail, health insurance holders have a legitimate claim to this form of therapy.Medical indications are given for patients with chronic pain syndromes, but also if there is an elevated risk of chronic pain in the early stadium of the disease and aiming at delaying the process of chronification. Relative contraindications are a lack of motivation for behavioural change, severe mental disorders or psychopathologies and addiction problems. The availability of multimodal pain treatment centers in Germany is currently insufficient.

  12. Instrumentation challenges in multi-modality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brasse, D., E-mail: david.brasse@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France); Boisson, F. [Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2016-02-11

    Based on different physical principles, imaging procedures currently used in both clinical and preclinical applications present different performance that allow researchers to achieve a large number of studies. However, the relevance of obtaining a maximum of information relating to the same subject is undeniable. The last two decades have thus seen the advent of a full-fledged research axis, the multimodal in vivo imaging. Whether from an instrumentation point of view, for medical research or the development of new probes, all these research works illustrate the growing interest of the scientific community for multimodal imaging, which can be approached with different backgrounds and perspectives from engineers to end-users point of views. In the present review, we discuss the multimodal imaging concept, which focuses not only on PET/CT and PET/MRI instrumentation but also on recent investigations of what could become a possible future in the field.

  13. Multimodality Data Integration in Epilepsy

    Directory of Open Access Journals (Sweden)

    Otto Muzik

    2007-01-01

    Full Text Available An important goal of software development in the medical field is the design of methods which are able to integrate information obtained from various imaging and nonimaging modalities into a cohesive framework in order to understand the results of qualitatively different measurements in a larger context. Moreover, it is essential to assess the various features of the data quantitatively so that relationships in anatomical and functional domains between complementing modalities can be expressed mathematically. This paper presents a clinically feasible software environment for the quantitative assessment of the relationship among biochemical functions as assessed by PET imaging and electrophysiological parameters derived from intracranial EEG. Based on the developed software tools, quantitative results obtained from individual modalities can be merged into a data structure allowing a consistent framework for advanced data mining techniques and 3D visualization. Moreover, an effort was made to derive quantitative variables (such as the spatial proximity index, SPI characterizing the relationship between complementing modalities on a more generic level as a prerequisite for efficient data mining strategies. We describe the implementation of this software environment in twelve children (mean age 5.2±4.3 years with medically intractable partial epilepsy who underwent both high-resolution structural MR and functional PET imaging. Our experiments demonstrate that our approach will lead to a better understanding of the mechanisms of epileptogenesis and might ultimately have an impact on treatment. Moreover, our software environment holds promise to be useful in many other neurological disorders, where integration of multimodality data is crucial for a better understanding of the underlying disease mechanisms.

  14. The Pickup Ion Composition Spectrometer

    Science.gov (United States)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  15. The Alpha Magnetic Spectrometer (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buenerd, M.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y.H.; Chen, H.F.; Chen, H.S.; Chen, Z.G.; Chernoplekov, N.A.; Chiueh, T.H.; Chuang, Y.L.; Cindolo, F.; Commichau, V.; Contin, A. E-mail: contin@bo.infn.it; Crespo, P.; Cristinziani, M.; Cunha, J.P. da; Dai, T.S.; Deus, J.D.; Dinu, N.; Djambazov, L.; DAntone, I.; Dong, Z.R.; Emonet, P.; Engelberg, J.; Eppling, F.J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P.H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W.Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M.A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S.C.; Levi, G.; Levtchenko, P.; Liu, C.L.; Liu, H.T.; Lopes, I.; Lu, G.; Lu, Y.S.; Luebelsmeyer, K.; Luckey, D.; Lustermann, W.; Mana, C.; Margotti, A.; Mayet, F.; McNeil, R.R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, I.H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postolache, V.; Produit, N.; Rancoita, P.G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J.P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.S.; Shoutko, V.

    2002-02-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m{sup 2}) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  16. The Alpha Magnetic Spectrometer (AMS)

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Crespo, P; Cristinziani, M; Cunha, J P D; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; Dantone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu, H T; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourao, A; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Vandenhirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Gunten, H V; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan, L G; Yang, C G; Yang, M; Ye, S W; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m sup 2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  17. FPGA based pulsed NQR spectrometer

    Science.gov (United States)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  18. Static Fourier transform infrared spectrometer.

    Science.gov (United States)

    Schardt, Michael; Murr, Patrik J; Rauscher, Markus S; Tremmel, Anton J; Wiesent, Benjamin R; Koch, Alexander W

    2016-04-01

    Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared.

  19. Fourier-Transform Infrared Spectrometer

    Science.gov (United States)

    Schindler, R. A.

    1986-01-01

    Fourier-transform spectrometer provides approximately hundredfold increase in luminosity at detector plane over that achievable with older instruments of this type. Used to analyze such weak sources as pollutants and other low-concentration substances in atmosphere. Interferometer creates fringe patterns on two distinct arrays of light detectors, which observe different wavelength bands. Objective lens focuses scene on image plane, which contains optical chopper. To make instrument less susceptible to variations in scene under observation, field and detector lenses focus entrance aperture, rather that image, onto detector array.

  20. Multimodal surveillance sensors, algorithms, and systems

    CERN Document Server

    Zhu, Zhigang

    2007-01-01

    From front-end sensors to systems and environmental issues, this practical resource guides you through the many facets of multimodal surveillance. The book examines thermal, vibration, video, and audio sensors in a broad context of civilian and military applications. This cutting-edge volume provides an in-depth treatment of data fusion algorithms that takes you to the core of multimodal surveillance, biometrics, and sentient computing. The book discusses such people and activity topics as tracking people and vehicles and identifying individuals by their speech.Systems designers benefit from d

  1. Detecting multimode entanglement by symplectic uncertainty relations

    CERN Document Server

    Serafini, A

    2005-01-01

    Quantities invariant under symplectic (i.e. linear and canonical) transformations are constructed as functions of the second moments of N pairs of bosonic field operators. A general multimode uncertainty relation is derived as a necessary constraint on such symplectic invariants. In turn, necessary conditions for the separability of multimode continuous variable states under (MxN)-mode bipartitions are derived from the uncertainty relation. These conditions are proven to be necessary and sufficient for (1+N)-mode Gaussian states and for (M+N)-mode bisymmetric Gaussian states.

  2. Strategy development management of Multimodal Transport Network

    Directory of Open Access Journals (Sweden)

    Nesterova Natalia S.

    2016-01-01

    Full Text Available The article gives a brief overview of works on the development of transport infrastructure for multimodal transportation and integration of Russian transport system into the international transport corridors. The technology for control of the strategy, that changes shape and capacity of Multi-modal Transport Network (MTN, is considered as part of the methodology for designing and development of MTN. This technology allows to carry out strategic and operational management of the strategy implementation based on the use of the balanced scorecard.

  3. Translating board games: multimodality and play

    OpenAIRE

    Evans, Jonathan

    2013-01-01

    This article examines the translation of modern board games as multimodal texts. It argues that games are produced in the interaction between players, pieces and rules, making them a participatory form of text. The article analyses the elements of the rules and in-game text in order to show how the multimodal elements of the text are essential to the experience of the game and how they affect the translation process. Many games are designed to be translated for many markets and avoid unnecess...

  4. Cross-Calibration of the XMM-Newton EPIC pn & MOS On-Axis Effective Areas Using 2XMM Sources

    CERN Document Server

    Read, A M; Sembay, S

    2014-01-01

    We aim to examine the relative cross-calibration accuracy of the on-axis effective areas of the XMM-Newton EPIC pn and MOS instruments. Spectra from a sample of 46 bright, high-count, non-piled-up isolated on-axis point sources are stacked together, and model residuals are examined to characterize the EPIC MOS-to-pn inter-calibration. The MOS1-to-pn and MOS2-to-pn results are broadly very similar. The cameras show the closest agreement below 1 keV, with MOS excesses over pn of 0-2% (MOS1/pn) and 0-3% (MOS2/pn). Above 3 keV, the MOS/pn ratio is consistent with energy-independent (or only mildly increasing) excesses of 7-8% (MOS1/pn) and 5-8% (MOS2/pn). In addition, between 1-2 keV there is a `silicon bump' - an enhancement at a level of 2-4% (MOS1/pn) and 3-5% (MOS2/pn). Tests suggest that the methods employed here are stable and robust. The results presented here provide the most accurate cross-calibration of the effective areas of the XMM-Newton EPIC pn and MOS instruments to date. They suggest areas of furt...

  5. Photonic bandgap fiber bundle spectrometer

    CERN Document Server

    Hang, Qu; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim

    2010-01-01

    We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our work is equivalent in its function to a set of 100 optical filters densely packed in the area of ~1cm2. Black and white CCD camera is then used to capture spectrally "binned" image of the incoming light at the output facet of a fiber bundle. To reconstruct the test spectrum from a single CCD image we developed an algorithm based on pseudo-inversion of the spectrometer transmission matrix. We then study resolution limit of this spectroscopic system by testing its performance using spectrally narrow test peaks (FWHM 5nm-25nm) centered at va...

  6. The SPEDE spectrometer arXiv

    CERN Document Server

    Papadakis, P.; O'Neill, G.G.; Borge, M.J.G.; Butler, P.A.; Gaffney, L.P.; Greenlees, P.T.; Herzberg, R.-D.; Illana, A.; Joss, D.T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R.D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of {\\gamma} rays and conversion electrons in Coulomb-excitation experiments using radioactive ion beams.

  7. Connecting multimodality in human communication.

    Science.gov (United States)

    Regenbogen, Christina; Habel, Ute; Kellermann, Thilo

    2013-01-01

    DCM analysis instead showed a pronounced top-down control. Remarkably, all connections from the dmPFC to the three other regions were modulated by the experimental conditions. This observation is in line with the presumed role of the dmPFC in the allocation of attention. In contrary, all incoming connections to the AG were modulated, indicating its key role in integrating multimodal information and supporting comprehension. Notably, the input from the FFG to the AG was enhanced when facial expressions conveyed emotional information. These findings serve as preliminary results in understanding network dynamics in human emotional communication and empathy.

  8. Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, Nicholas Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, John Oliver [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coleman, Joshua Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-11

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.

  9. A Pulsed Spectrometer Designed for Feedback NQR

    Science.gov (United States)

    Schiano, J. L.; Ginsberg, M. D.

    2000-02-01

    A pulsed NQR spectrometer specifically designed to facilitate real-time tuning of pulse sequence parameters is described. A modular approach based on the interconnection of several rack-mounted blocks provides easy access to all spectrometer signals and simplifies the task of modifying the spectrometer design. We also present experimental data that demonstrates the ability of the spectrometer to increase the signal to noise ratio of NQR measurements by automatically adjusting the pulse width in the strong off-resonant comb pulse sequence.

  10. CHIRON - A Fiber Fed Spectrometer for Precise Radial Velocities

    CERN Document Server

    Tokovinin, Andrei; Bonati, Marco; Giguere, Matthew J; Moore, Peter; Schwab, Christian; Spronck, Julien F P; Szymkowiak, Andrew

    2013-01-01

    The CHIRON optical high-resolution echelle spectrometer was commissioned at the 1.5m telescope at CTIO in 2011. The instrument was designed for high throughput and stability, with the goal of monitoring radial velocities of bright stars with high precision and high cadence for the discovery of low-mass exoplanets. Spectral resolution of R=79,000 is attained when using a slicer with a total (including telescope and detector) efficiency of 6% or higher, while a resolution of R=136,000 is available for bright stars. A fixed spectral range of 415 to 880 nm is covered. The echelle grating is housed in a vacuum enclosure and the instrument temperature is stabilized to +-0.2deg. Stable illumination is provided by an octagonal multimode fiber with excellent light-scrambling properties. An iodine cell is used for wavelength calibration. We describe the main optics, fiber feed, detector, exposure-meter, and other aspects of the instrument, as well as the observing procedure and data reduction.

  11. Love that Book: Multimodal Response to Literature

    Science.gov (United States)

    Dalton, Bridget; Grisham, Dana L.

    2013-01-01

    Composing with different modes--image, sound, video and the written word--to respond to and analyze literary and informational text helps students develop as readers and digital communicators. This article showcases five multimodal strategies for engaging children in rich literature-based learning using digital tools and Internet resources.

  12. Design Options for Multimodal Web Applications

    Science.gov (United States)

    Stanciulescu, Adrian; Vanderdonckt, Jean

    The capabilities of multimodal applications running on the web are well de-lineated since they are mainly constrained by what their underlying standard mark up language offers, as opposed to hand-made multimodal applications. As the experience in developing such multimodal web applications is growing, the need arises to identify and define major design options of such application to pave the way to a structured development life cycle. This paper provides a design space of independent design options for multimodal web applications based on three types of modalities: graphical, vocal, tactile, and combined. On the one hand, these design options may provide designers with some explicit guidance on what to decide or not for their future user interface, while exploring various design alternatives. On the other hand, these design options have been implemented as graph transformations per-formed on a user interface model represented as a graph. Thanks to a transformation engine, it allows designers to play with the different values of each design option, to preview the results of the transformation, and to obtain the corresponding code on-demand

  13. Love that Book: Multimodal Response to Literature

    Science.gov (United States)

    Dalton, Bridget; Grisham, Dana L.

    2013-01-01

    Composing with different modes--image, sound, video and the written word--to respond to and analyze literary and informational text helps students develop as readers and digital communicators. This article showcases five multimodal strategies for engaging children in rich literature-based learning using digital tools and Internet resources.

  14. Multimodal representations in collaborative history learning

    NARCIS (Netherlands)

    Prangsma, M.E.

    2007-01-01

    This dissertation focuses on the question: How does making and connecting different types of multimodal representations affect the collaborative learning process and the acquisition of a chronological frame of reference in 12 to 14-year olds in pre vocational education? A chronological frame of refe

  15. A Multimodal Interaction Framework for Blended Learning

    DEFF Research Database (Denmark)

    Vidakis, Nikolaos; Kalafatis, Konstantinos; Triantafyllidis, Georgios

    2017-01-01

    Humans interact with each other by utilizing the five basic senses as input modalities, whereas sounds, gestures, facial expressions etc. are utilized as output modalities. Multimodal interaction is also used between humans and their surrounding environment, although enhanced with further senses ...... framework enabling deployment of a vast variety of modalities, tailored appropriately for use in blended learning environment....

  16. Controllable spatiotemporal nonlinear effects in multimode fibres

    Science.gov (United States)

    Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.

    2015-05-01

    Multimode fibres are of interest for next-generation telecommunications systems and the construction of high-energy fibre lasers. However, relatively little work has explored nonlinear pulse propagation in multimode fibres. Here, we consider highly nonlinear ultrashort pulse propagation in the anomalous-dispersion regime of a graded-index multimode fibre. Low modal dispersion and strong nonlinear coupling between the fibre's many spatial modes result in interesting behaviour. We observe spatiotemporal effects reminiscent of nonlinear optics in bulk media—self-focusing and multiple filamentation—at a fraction of the usual power. By adjusting the spatial initial conditions, we generate on-demand, megawatt, ultrashort pulses tunable between 1,550 and 2,200 nm dispersive waves over one octave; intense combs of visible light; and a multi-octave-spanning supercontinuum. Our results indicate that multimode fibres present unique opportunities for observing new spatiotemporal dynamics and phenomena. They also enable the realization of a new type of tunable, broadband fibre source that could be useful for many applications.

  17. Multimode waveguide speckle patterns for compressive sensing.

    Science.gov (United States)

    Valley, George C; Sefler, George A; Justin Shaw, T

    2016-06-01

    Compressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS. We measure and calculate the MM for a multimode fiber and perform simulations using this MM in a CS system. We show that the speckle MM exhibits the sharp phase transition and coherence properties needed for CS and that these properties are similar to those of a sub-Gaussian MM with the same mean and standard deviation. We calculate the MM for a multimode planar waveguide and find dimensions of the planar guide that give a speckle MM with a performance similar to that of the multimode fiber. The CS simulations show that all measured and calculated speckle MMs exhibit a robust performance with equal amplitude signals that are sparse in time, in frequency, and in wavelets (Haar wavelet transform). The planar waveguide results indicate a path to a microwave photonic integrated circuit for measuring sparse gigahertz-band RF signals using CS.

  18. The Arts, New Literacies, and Multimodality

    Science.gov (United States)

    Albers, Peggy; Harste, Jerome C.

    2007-01-01

    The arts, multimodality, and new literacies studies, each with its own distinct principles, together can redefine literacy and what constitutes being literate. To recognize the roles that each of these fields plays in literacy necessitates a cultural shift in reading, interpreting, creating, and responding to a range of multimedia messages. The…

  19. Multimode interferometer for guided matter waves.

    Science.gov (United States)

    Andersson, Erika; Calarco, Tommaso; Folman, Ron; Andersson, Mauritz; Hessmo, Björn; Schmiedmayer, Jörg

    2002-03-11

    Atoms can be trapped and guided with electromagnetic fields, using nanofabricated structures. We describe the fundamental features of an interferometer for guided matter waves, built of two combined Y-shaped beam splitters. We find that such a device is expected to exhibit high contrast fringes even in a multimode regime, analogous to a white light interferometer.

  20. Brain-Computer Interaction: Can Multimodality Help?

    NARCIS (Netherlands)

    Nijholt, Antinus; Allison, Brendan Z.; Jacobs, Robert J.K.; Vidal, E.; Gatica-Perez, D.; Morency, L.P.; Sebe, N.

    2011-01-01

    This paper is a short introduction to a special ICMI session on brain-computer interaction. During this paper, we first discuss problems, solutions, and a five-year view for brain-computer interaction. We then talk further about unique issues with multimodal and hybrid brain-computer interfaces,

  1. Single versus multimodality training basic laparoscopic skills

    NARCIS (Netherlands)

    Brinkman, W.M.; Havermans, S.Y.; Buzink, S.N.; Botden, S.M.B.I.; Jakimowicz, J.J.; Schoot, B.C.

    2012-01-01

    Introduction - Even though literature provides compelling evidence of the value of simulators for training of basic laparoscopic skills, the best way to incorporate them into a surgical curriculum is unclear. This study compares the training outcome of single modality training with multimodality tra

  2. Academic Knowledge Construction and Multimodal Curriculum Development

    Science.gov (United States)

    Loveless, Douglas J., Ed.; Griffith, Bryant, Ed.; Bérci, Margaret E., Ed.; Ortlieb, Evan, Ed.; Sullivan, Pamela, Ed.

    2014-01-01

    While incorporating digital technologies into the classroom has offered new ways of teaching and learning into educational processes, it is essential to take a look at how the digital shift impacts teachers, school administration, and curriculum development. "Academic Knowledge Construction and Multimodal Curriculum Development" presents…

  3. Multimodal Dialogue Management - State of the art

    NARCIS (Netherlands)

    Bui Huu Trung, B.H.T.

    This report is about the state of the art in dialogue management. We first introduce an overview of a multimodal dialogue system and its components. Second, four main approaches to dialogue management are described (finite-state and frame-based, information-state based and probabilistic, plan-based,

  4. Reconceptualising Poetry as a Multimodal Genre

    Science.gov (United States)

    Newfield, Denise; D'abdon, Raphael

    2015-01-01

    This conceptual article theorises the role of poetry in English classrooms from a multimodal perspective. It discusses the gap between the practices of poetry inside and outside South African schools, particularly where English is taught as an additional language (EAL). The former is shown to be monomodal and prescriptive, while the latter is…

  5. Multimodal Interaction with a Virtual Guide

    NARCIS (Netherlands)

    Hofs, D.H.W.; Theune, Mariet; op den Akker, Hendrikus J.A.

    2008-01-01

    We demonstrate the Virtual Guide, an embodied conversational agent that gives directions in a 3D environment. We briefly describe multimodal dialogue management, language and gesture generation, and a special feature of the Virtual Guide: the ability to align her linguistic style to the user’s level

  6. Visible Quotation : The multimodal expression of viewpoint

    NARCIS (Netherlands)

    Stec, Kashmiri Kristina Mukti

    2016-01-01

    The central theme of this dissertation is multimodal viewpoint – that is, the way that bodily actions work together with spoken language to express the perspective of characters within a narrative. Drawing on research in cognitive linguistics, conversation analysis, gesture studies, and signed langu

  7. Multimodal representations in collaborative history learning

    NARCIS (Netherlands)

    Prangsma, M.E.

    2007-01-01

    This dissertation focuses on the question: How does making and connecting different types of multimodal representations affect the collaborative learning process and the acquisition of a chronological frame of reference in 12 to 14-year olds in pre vocational education? A chronological frame of refe

  8. Single versus multimodality training basic laparoscopic skills

    NARCIS (Netherlands)

    Brinkman, W.M.; Havermans, S.Y.; Buzink, S.N.; Botden, S.M.B.I.; Jakimowicz, J.J.; Schoot, B.C.

    2012-01-01

    Introduction - Even though literature provides compelling evidence of the value of simulators for training of basic laparoscopic skills, the best way to incorporate them into a surgical curriculum is unclear. This study compares the training outcome of single modality training with multimodality

  9. Academic Knowledge Construction and Multimodal Curriculum Development

    Science.gov (United States)

    Loveless, Douglas J., Ed.; Griffith, Bryant, Ed.; Bérci, Margaret E., Ed.; Ortlieb, Evan, Ed.; Sullivan, Pamela, Ed.

    2014-01-01

    While incorporating digital technologies into the classroom has offered new ways of teaching and learning into educational processes, it is essential to take a look at how the digital shift impacts teachers, school administration, and curriculum development. "Academic Knowledge Construction and Multimodal Curriculum Development" presents…

  10. Equilibrium models in multimodal container transport systems

    NARCIS (Netherlands)

    Corman, F.; Viti, F.; Negenborn, R.R.

    2015-01-01

    Optimizing the performance of multimodal freight transport networks involves adequately balancing the interplay between costs, volumes, times of departure and arrival, and times of travel. In order to study this interplay, we propose an assignment model that is able to efficiently determine flows an

  11. Multimodal representations in collaborative history learning

    NARCIS (Netherlands)

    Prangsma, M.E.

    2007-01-01

    This dissertation focuses on the question: How does making and connecting different types of multimodal representations affect the collaborative learning process and the acquisition of a chronological frame of reference in 12 to 14-year olds in pre vocational education? A chronological frame of

  12. Interactive Multimodal Learning for Venue Recommendation

    NARCIS (Netherlands)

    Zahálka, J.; Rudinac, S.; Worring, M.

    2015-01-01

    In this paper, we propose City Melange, an interactive and multimodal content-based venue explorer. Our framework matches the interacting user to the users of social media platforms exhibiting similar taste. The data collection integrates location-based social networks such as Foursquare with genera

  13. Affective multimodal mirror: sensing and eliciting laughter

    NARCIS (Netherlands)

    Melder, W.A.; Truong, K.P.; Uyl, M. den; Leeuwen, D.A. van; Neerincx, M.A.; Loos, L.R.; Stock Plum, B.

    2007-01-01

    In this paper, we present a multimodal affective mirror that senses and elicits laughter. Currently, the mirror contains a vocal and a facial affect-sensing module, a component that fuses the output of these two modules to achieve a user-state assessment, a user state transition model, and a compone

  14. The Geostationary Fourier Transform Spectrometer

    Science.gov (United States)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  15. Fluorescence imaging spectrometer optical design

    Science.gov (United States)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  16. Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector

    CERN Document Server

    Abe, K; Ajima, Y; Aihara, H; Albert, J B; Andreopoulos, C; Andrieu, B; Anerella, M D; Aoki, S; Araoka, O; Argyriades, J; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Badertscher, A; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S; Berardi, V; Berger, B E; Bertram, I; Besnier, M; Beucher, J; Beznosko, D; Bhadra, S; Blaszczyk, F d M; Blocki, J; Blondel, A; Bojechko, C; Bouchez, J; Boyd, S B; Bravar, A; Bronner, C; Brook-Roberge, D G; Buchanan, N; Budd, H; Calvet, D; Cartwright, S L; Carver, A; Castillo, R; Catanesi, M G; Cazes, A; Cervera, A; Chavez, C; Choi, S; Christodoulou, G; Coleman, J; Collazuol, G; Coleman, W; Connolly, K; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davies, G S; Davis, S; Day, M; De Rosa, G; de André, J P A M; de Perio, P; Dealtry, T; Delbart, A; Densham, C; Di Lodovico, F; Di Luise, S; Tran, P Dinh; Dobson, J; Dore, U; Drapier, O; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Dziomba, M; Emery, S; Ereditato, A; Escallier, J E; Escudero, L; Esposito, L S; Fechner, M; Ferrero, A; Finch, A J; Frank, E; Fujii, Y; Fukuda, Y; Galymov, V; Ganetis, G L; Gannaway, F C; Gaudin, A; Gendotti, A; George, M; Giffin, S; Giganti, C; Gilje, K; Ghosh, A K; Golan, T; Goldhaber, M; Gomez-Cadenas, J J; Gomi, S; Gonin, M; Grant, N; Grant, A; Gumplinger, P; Guzowski, P; Haesler, A; Haigh, M D; Hamano, K; Hansen, C; Hansen, D; Hara, T; Harrison, P F; Hartfiel, B; Hartz, M; Haruyama, T; Hasegawa, T; Hastings, N C; Hatzikoutelis, A; Hayashi, K; Hayato, Y; Hearty, C; Helmer, R L; Henderson, R; Higashi, N; Hignight, J; Hillairet, A; Hirose, E; Holeczek, J; Horikawa, S; Hyndman, A; Ichikawa, A K; Ieki, K; Ieva, M; Iida, M; Ikeda, M; Ilic, J; Imber, J; Ishida, T; Ishihara, C; Ishii, T; Ives, S J; Iwasaki, M; Iyogi, K; Izmaylov, A; Jamieson, B; Johnson, R A; Joo, K K; Jover-Manas, G V; Jung, C K; Kaji, H; Kajita, T; Kakuno, H; Kameda, J; Kaneyuki, K; Karlen, D; Kasami, K; Kato, I; Kawamuko, H; Kearns, E; Khabibullin, M; Khanam, F; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, J; Kim, J Y; Kim, S B; Kimura, N; Kirby, B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Koike, S; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kouzuma, Y; Kowalik, K; Kravtsov, V; Kreslo, I; Kropp, W; Kubo, H; Kubota, J; Kudenko, Y; Kulkarni, N; Kurimoto, Y; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lee, K P; Le, P T; Levy, J M; Licciardi, C; Lim, I T; Lindner, T; Litchfield, R P; Litos, M; Longhin, A; Lopez, G D; Loverre, P F; Ludovici, L; Lux, T; Macaire, M; Mahn, K; Makida, Y; Malek, M; Manly, S; Marchionni, A; Marino, A D; Marone, A J; Marteau, J; Martin, J F; Maruyama, T; Maryon, T; Marzec, J; Masliah, P; Mathie, E L; Matsumura, C; Matsuoka, K; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCauley, N; McFarland, K S; McGrew, C; McLachlan, T; Messina, M; Metcalf, W; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A D; Mituka, G; Miura, M; Mizouchi, K; Monfregola, L; Moreau, F; Morgan, B; Moriyama, S; Muir, A; Murakami, A; Muratore, J F; Murdoch, M; Murphy, S; Myslik, J; Nagai, N; Nakadaira, T; Nakahata, M; Nakai, T; Nakajima, K; Nakamoto, T; Nakamura, K; Nakayama, S; Nakaya, T; Naples, D; Navin, M L; Nelson, B; Nicholls, T C; Nielsen, C; Nishikawa, K; Nishino, H; Nitta, K; Nobuhara, T; Nowak, J A; Obayashi, Y; Ogitsu, T; Ohhata, H; Okamura, T; Okumura, K; Okusawa, T; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Ozaki, T; Pac, M Y; Palladino, V; Paolone, V; Paul, P; Payne, D; Pearce, G F; Perkin, J D; Pettinacci, V; Pierre, F; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Qian, W; Raaf, J L; Radicioni, E; Ratoff, P N; Raufer, T M; Ravonel, M; Raymond, M; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roney, J M; Rossi, B; Roth, S; Rubbia, A; Ruterbories, D; Sabouri, S; Sacco, R; Sakashita, K; Sánchez, F; Sarrat, A; Sasaki, K; Scholberg, K; Schwehr, J; Scott, M; Scully, D I; Seiya, Y; Sekiguchi, T; Sekiya, H; Shibata, M; Shimizu, Y; Shiozawa, M; Short, S; Siyad, M; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Stahl, A; Stamoulis, P; Steinmann, J; Still, B; Stone, J; Stodulski, M; Strabel, C; Sulej, R; Suzuki, A; Suzuki, K; Suzuki, S; Suzuki, S Y; Suzuki, Y; Suzuki, Y; Swierblewski, J; Szeglowski, T; Szeptycka, M; Tacik, R; Tada, M; Taguchi, M; Takahashi, S; Takeda, A; Takenaga, Y; Takeuchi, Y; Tanaka, K; Tanaka, H A; Tanaka, M; Tanaka, M M; Tanimoto, N; Tashiro, K; Taylor, I; Terashima, A; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Toki, W; Tobayama, S; Tomaru, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Walding, J J; Waldron, A V; Walter, C W; Wanderer, P J; Wang, J; Ward, M A; Ward, G P; Wark, D; Wascko, M O; Weber, A; Wendell, R; West, N; Whitehead, L H; Wikström, G; Wilkes, R J; Wilking, M J; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, S; Yamada, Y; Yamamoto, A; Yamamoto, K; Yamanoi, Y; Yamaoka, H; Yamauchi, T; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2011-01-01

    Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision.

  17. General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Chong, K.K.; Wong, C.W. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Off Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur (Malaysia)

    2009-03-15

    Azimuth-elevation and tilt-roll tracking mechanism are among the most commonly used sun-tracking methods for aiming the solar collector towards the sun at all times. It has been many decades that each of these two sun-tracking methods has its own specific sun-tracking formula and they are not interrelated. In this paper, the most general form of sun-tracking formula that embraces all the possible on-axis tracking methods is presented. The general sun-tracking formula not only can provide a general mathematical solution, but more significantly it can improve the sun-tracking accuracy by tackling the installation error of the solar collector. (author)

  18. Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector

    Science.gov (United States)

    Abe, K.; Abgrall, N.; Ajima, Y.; Aihara, H.; Albert, J. B.; Andreopoulos, C.; Andrieu, B.; Anerella, M. D.; Aoki, S.; Araoka, O.; Argyriades, J.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Badertscher, A.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S.; Berardi, V.; Berger, B. E.; Bertram, I.; Besnier, M.; Beucher, J.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blocki, J.; Blondel, A.; Bojechko, C.; Bouchez, J.; Boyd, S. B.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Budd, H.; Calvet, D.; Cartwright, S. L.; Carver, A.; Castillo, R.; Catanesi, M. G.; Cazes, A.; Cervera, A.; Chavez, C.; Choi, S.; Christodoulou, G.; Coleman, J.; Collazuol, G.; Coleman, W.; Connolly, K.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davies, G. S.; Davis, S.; Day, M.; De Rosa, G.; de André, J. P. A. M.; de Perio, P.; Dealtry, T.; Delbart, A.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dinh Tran, P.; Dobson, J.; Dore, U.; Drapier, O.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escallier, J. E.; Escudero, L.; Esposito, L. S.; Fechner, M.; Ferrero, A.; Finch, A. J.; Frank, E.; Fujii, Y.; Fukuda, Y.; Galymov, V.; Ganetis, G. L.; Gannaway, F. C.; Gaudin, A.; Gendotti, A.; George, M.; Giffin, S.; Giganti, C.; Gilje, K.; Ghosh, A. K.; Golan, T.; Goldhaber, M.; Gomez-Cadenas, J. J.; Gomi, S.; Gonin, M.; Grant, N.; Grant, A.; Gumplinger, P.; Guzowski, P.; Haesler, A.; Haigh, M. D.; Hamano, K.; Hansen, C.; Hansen, D.; Hara, T.; Harrison, P. F.; Hartfiel, B.; Hartz, M.; Haruyama, T.; Hasegawa, T.; Hastings, N. C.; Hatzikoutelis, A.; Hayashi, K.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Henderson, R.; Higashi, N.; Hignight, J.; Hillairet, A.; Hirose, E.; Holeczek, J.; Horikawa, S.; Hyndman, A.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Iida, M.; Ikeda, M.; Ilic, J.; Imber, J.; Ishida, T.; Ishihara, C.; Ishii, T.; Ives, S. J.; Iwasaki, M.; Iyogi, K.; Izmaylov, A.; Jamieson, B.; Johnson, R. A.; Joo, K. K.; Jover-Manas, G. V.; Jung, C. K.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kaneyuki, K.; Karlen, D.; Kasami, K.; Kato, I.; Kawamuko, H.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, J.; Kim, J. Y.; Kim, S. B.; Kimura, N.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Koike, S.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kouzuma, Y.; Kowalik, K.; Kravtsov, V.; Kreslo, I.; Kropp, W.; Kubo, H.; Kubota, J.; Kudenko, Y.; Kulkarni, N.; Kurimoto, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laveder, M.; Lee, K. P.; Le, P. T.; Levy, J. M.; Licciardi, C.; Lim, I. T.; Lindner, T.; Litchfield, R. P.; Litos, M.; Longhin, A.; Lopez, G. D.; Loverre, P. F.; Ludovici, L.; Lux, T.; Macaire, M.; Mahn, K.; Makida, Y.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marone, A. J.; Marteau, J.; Martin, J. F.; Maruyama, T.; Maryon, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matsumura, C.; Matsuoka, K.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metcalf, W.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A. D.; Mituka, G.; Miura, M.; Mizouchi, K.; Monfregola, L.; Moreau, F.; Morgan, B.; Moriyama, S.; Muir, A.; Murakami, A.; Muratore, J. F.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagai, N.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamoto, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Naples, D.; Navin, M. L.; Nelson, B.; Nicholls, T. C.; Nielsen, C.; Nishikawa, K.; Nishino, H.; Nitta, K.; Nobuhara, T.; Nowak, J. A.; Obayashi, Y.; Ogitsu, T.; Ohhata, H.; Okamura, T.; Okumura, K.; Okusawa, T.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Ozaki, T.; Pac, M. Y.; Palladino, V.; Paolone, V.; Paul, P.; Payne, D.; Pearce, G. F.; Perkin, J. D.; Pettinacci, V.; Pierre, F.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Qian, W.; Raaf, J. L.; Radicioni, E.; Ratoff, P. N.; Raufer, T. M.; Ravonel, M.; Raymond, M.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roney, J. M.; Rossi, B.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sabouri, S.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sarrat, A.; Sasaki, K.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Shibata, M.; Shimizu, Y.; Shiozawa, M.; Short, S.; Siyad, M.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Stahl, A.; Stamoulis, P.; Steinmann, J.; Still, B.; Stone, J.; Stodulski, M.; Strabel, C.; Sulej, R.; Suzuki, A.; Suzuki, K.; Suzuki, S.; Suzuki, S. Y.; Suzuki, Y.; Suzuki, Y.; Swierblewski, J.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Taguchi, M.; Takahashi, S.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.; Tanaka, K.; Tanaka, H. A.; Tanaka, M.; Tanaka, M. M.; Tanimoto, N.; Tashiro, K.; Taylor, I.; Terashima, A.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Toki, W.; Tobayama, S.; Tomaru, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Walding, J. J.; Waldron, A. V.; Walter, C. W.; Wanderer, P. J.; Wang, J.; Ward, M. A.; Ward, G. P.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; West, N.; Whitehead, L. H.; Wikström, G.; Wilkes, R. J.; Wilking, M. J.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, S.; Yamada, Y.; Yamamoto, A.; Yamamoto, K.; Yamanoi, Y.; Yamaoka, H.; Yamauchi, T.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Zmuda, J.; T2K Collaboration

    2012-12-01

    Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision.

  19. Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka (Japan); Abgrall, N. [University of Geneva, Section de Physique, DPNC, Geneva (Switzerland); Ajima, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Aihara, H. [University of Tokyo, Department of Physics, Tokyo (Japan); Albert, J.B. [Duke University, Department of Physics, Durham, NC (United States); Andreopoulos, C. [STFC, Rutherford Appleton Laboratory, Harwell Oxford (United Kingdom); Andrieu, B. [UPMC, Universite Paris Diderot, CNRS/IN2P3, Laboratoire de Physique Nucleaire et de Hautes Energies (LPNHE), Paris (France); Anerella, M.D. [Brookhaven National Laboratory, Physics Department, Upton, NY (United States); Aoki, S. [Kobe University, Kobe (Japan); Araoka, O. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Argyriades, J. [University of Geneva, Section de Physique, DPNC, Geneva (Switzerland); Ariga, A.; Ariga, T. [University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), Bern (Switzerland); Assylbekov, S. [Colorado State University, Department of Physics, Fort Collins, CO (United States); Autiero, D. [Universite de Lyon, Universite Claude Bernard Lyon 1, IPN Lyon (IN2P3), Villeurbanne (France); Badertscher, A. [ETH Zurich, Institute for Particle Physics, Zurich (Switzerland); Barbi, M. [University of Regina, Physics Department, Regina, Saskatchewan (Canada); Barker, G.J. [University of Warwick, Department of Physics, Coventry (United Kingdom); Barr, G. [Oxford University, Department of Physics, Oxford (United Kingdom); Bass, M. [Colorado State University, Department of Physics, Fort Collins, CO (United States); and others

    2012-12-01

    Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision.

  20. Convection-Diffusion Model for Atmospheric Pressure Plasma Jets: Obtaining Off-Axis Data from On-Axis Measurements

    Science.gov (United States)

    Schmidt-Bleker, Ansgar; Dünnbier, Mario; Winter, Jörn; Weltmann, Klaus-Dieter; Reuter, Stephan

    2012-10-01

    An analytical convection-diffusion model for atmospheric pressure plasma jets is presented. The model can be applied both for ambient air species diffusion and for heat transfer into a jets effluent. Using on-axis data from experiments as input, the model can be used to extrapolate the measured quantities to the complete domain for laminar flows and near-axis region for turbulent flows. The method is applied to experimental data obtained from molecular beam mass spectrometry as well as from a VUV absorption spectrometry method using the plasma jet itself as a VUV emitter. The measurements are conducted on a turbulent atmospheric pressure argon plasma jet with a protective gas nozzle, allowing for the creation of a shielding gas curtain around the plasma jets effluent. The results obtained from the hybrid analytical-experimental method are compared to computational fluid dynamics simulations.

  1. A Mass Spectrometer Simulator in Your Computer

    Science.gov (United States)

    Gagnon, Michel

    2012-01-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

  2. Objective Crystal Spectrometer on the SRG satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Westergaard, Niels Jørgen Stenfeldt; Rasmussen, I.

    1994-01-01

    The flight version of the Objective Crystal Spectrometer (OXS) on the SPECTRUM-X- GAMMA satellite is presented. The spectrometer is a panel that is placed in front of one of the SODART telescopes. It is composed of an array of the three Bragg crystals, LiF(220), Si(111) and RAP(001) for high...

  3. Digital Landscapes: Rethinking Poetry Interpretation in Multimodal Texts

    Directory of Open Access Journals (Sweden)

    Hessa A. Alghadeer

    2014-03-01

    Full Text Available Regardless of the fact that a great deal of scholarly studies in the field of digital humanities have emphasized implementing various modes of digital literacy, critical perspectives considering the use of multimodal texts in literature, namely poetry, have received scant attention. Beyond the boundaries of printed texts and verbal means, the present study aims to cast some light on how meaning making in poetry into multimodal contexts becomes crucial to poetry interpretation in multimodal contexts. In particular, the study tackles the theory of multimodality in regard to the poetry genre and briefly reviews its significance in relevant studies. The paper then shifts to show how the multimodalities in question enhance the transformation of print-based poetic texts into creative multimodal poetry experiences. Ultimately, the study provides insight into how digital media have altered our perspectives on definitions, interpretations, and appreciation of poetry.

  4. An Adaptive Multimodal Biometrics System using PSO

    Directory of Open Access Journals (Sweden)

    Ola M. Aly

    2013-08-01

    Full Text Available Multimodal biometric systems which fuse information from a number of biometrics, are gaining more attentions lately because they are able to overcome limitations in unimodal biometric systems. These systems are suited for high security applications. Most of the proposed multibiometric systems offer one level of security. In this paper a new approach for adaptive combination of multiple biometrics has been proposed to ensure multiple levels of security. The score level fusion rule is adapted using (PSO Particle Swarm Optimization to ensure the desired system performance corresponding to the desired level of security. The experimental results prove that the proposed multimodal biometric system is appropriate for applications that require different levels of security.

  5. A Multimodal Nanocomposite for Biomedical Imaging

    Science.gov (United States)

    Wu, Aiguo; Paunesku, Tatjana; Zhang, Zhuoli; Vogt, Stefan; Lai, Barry; Maser, Jörg; Yaghmai, Vahid; Li, Debiao; Omary, Reed A.; Woloschak, Gayle E.

    2013-01-01

    A multimodal nanocomposite was designed, synthesized with super-paramagnetic core (CoFe2O4), noble metal corona (Au), and semiconductor shell (TiO2). The sizes of core, core-corona, and core-corona-shell particles were determined by TEM. This multimodal nanocrystal showed promise as a contrast agent for two of the most widely used biomedical imaging techniques: magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Finally, these nanocomposites were coated with a peptide SN-50. This led to their ready uptake by the cultured cells and targeted the nanocomposites to the pores of nuclear membrane. Inside cells, this nanocomposite retained its integrity as shown by X-ray fluorescence microscopy (XFM). Inside cells imaged by XFM we found the complex elemental signature of nanoconjugates (Ti-Co-Fe-Au) always co-registered in the 2D elemental map of the cell. PMID:24817775

  6. Comparing Paper and Tangible, Multimodal Tools

    Energy Technology Data Exchange (ETDEWEB)

    McGee, David R.(BATTELLE (PACIFIC NW LAB)); Cohen, Philip R.(Oregon Graduate Institute); Wesson, R M.(Oregon Graduate Institute); Horman, Sheilah (Oregon Graduate Institute)

    2002-01-01

    Officers in command posts maintain situational awareness using paper maps, Post-it notes, and hand-written annotations. They do so because paper is robust to failure, it is portable and malleable, it offers ultra-high resolution and supports face-to-face collaboration. We report herein on an evaluation comparing maps and Post-its with a tangible multimodal system called Rasa that augments the paper tools with sensors, enabling it to recognize the multimodal language (both written and spoken) that naturally occurs there. In this study, we found that not only do users prefer Rasa to paper alone, they find it as easy or easier to use than paper tools. Moreover, Rasa introduces no discernible overhead in its operation other than error repair, yet grants the benefits inherent in digital systems. Finally, subjects confirmed that by combining physical and computational tools, Rasa is resistant to computational failure.

  7. Multimodal interaction in image and video applications

    CERN Document Server

    Sappa, Angel D

    2013-01-01

    Traditional Pattern Recognition (PR) and Computer Vision (CV) technologies have mainly focused on full automation, even though full automation often proves elusive or unnatural in many applications, where the technology is expected to assist rather than replace the human agents. However, not all the problems can be automatically solved being the human interaction the only way to tackle those applications. Recently, multimodal human interaction has become an important field of increasing interest in the research community. Advanced man-machine interfaces with high cognitive capabilities are a hot research topic that aims at solving challenging problems in image and video applications. Actually, the idea of computer interactive systems was already proposed on the early stages of computer science. Nowadays, the ubiquity of image sensors together with the ever-increasing computing performance has open new and challenging opportunities for research in multimodal human interaction. This book aims to show how existi...

  8. Towards multimodal nonlinear optical tomography - experimental methodology

    Science.gov (United States)

    Vogler, N.; Medyukhina, A.; Latka, I.; Kemper, S.; Böhm, M.; Dietzek, B.; Popp, J.

    2011-08-01

    All-optical microspectroscopic and tomographic tools reveal great potential for clinical dermatologic diagnostics, i.e., investigation of human skin and skin diseases. While optical-coherence tomography has been complemented by two-photon fluorescence tomography and second-harmonic generation tomography, a joint study of various nonlinear optical microspectroscopies, i.e., application of the recently developed multimodal imaging approach, to sizable human-tissue samples has not been evaluated up to now. Here, we present such multimodal approach combining different nonlinear optical contrast mechanisms for imaging, namely two-photon excited fluorescence (TPF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) into a joint microscopic experiment. We show the potential of imaging large skin areas and discuss the information obtained in a case study comparing normal skin and keloid tissue.

  9. Fock expansion of multimode pure Gaussian states

    Energy Technology Data Exchange (ETDEWEB)

    Cariolaro, Gianfranco; Pierobon, Gianfranco, E-mail: gianfranco.pierobon@unipd.it [Università di Padova, Padova (Italy)

    2015-12-15

    The Fock expansion of multimode pure Gaussian states is derived starting from their representation as displaced and squeezed multimode vacuum states. The approach is new and appears to be simpler and more general than previous ones starting from the phase-space representation given by the characteristic or Wigner function. Fock expansion is performed in terms of easily evaluable two-variable Hermite–Kampé de Fériet polynomials. A relatively simple and compact expression for the joint statistical distribution of the photon numbers in the different modes is obtained. In particular, this result enables one to give a simple characterization of separable and entangled states, as shown for two-mode and three-mode Gaussian states.

  10. Multimodality imaging in nanomedicine and nanotheranostics

    Institute of Scientific and Technical Information of China (English)

    Xue Li; Xue-Ning Zhang; Xiao-Dong Li; Jin Chang

    2016-01-01

    Accurate diagnosis of tumors needs much detailed information. However, available single imaging modality cannot provide complete or comprehensive data. Nanomedicine is the application of nanotechnology to medicine, and multimodality imaging based on nanoparticles has been receiving extensive attention. This new hybrid imaging technology could provide complementary information from different imaging modalities using only a single injection of contrast agent. In this review, we introduce recent developments in multifunctional nanoparticles and their biomedical applications to multimodal imaging and theragnosis as nanomedicine. Most of the reviewed studies are based on the intrinsic properties of nanoparticles and their application in clinical imaging technology. The imaging techniques include positron emission tomography, single-photon emission computed tomography, computerized tomography, magnetic resonance imaging, optical imaging, and ultrasound imaging.

  11. Multimodality imaging of the postoperative shoulder

    Energy Technology Data Exchange (ETDEWEB)

    Woertler, Klaus [Technische Universitaet Muenchen, Department of Radiology, Munich (Germany)

    2007-12-15

    Multimodality imaging of the postoperative shoulder includes radiography, magnetic resonance (MR) imaging, MR arthrography, computed tomography (CT), CT arthrography, and ultrasound. Target-oriented evaluation of the postoperative shoulder necessitates familiarity with surgical techniques, their typical complications and sources of failure, knowledge of normal and abnormal postoperative findings, awareness of the advantages and weaknesses with the different radiologic techniques, and clinical information on current symptoms and function. This article reviews the most commonly used surgical procedures for treatment of anterior glenohumeral instability, lesions of the labral-bicipital complex, subacromial impingement, and rotator cuff lesions and highlights the significance of imaging findings with a view to detection of recurrent lesions and postoperative complications in a multimodality approach. (orig.)

  12. Multimodal location estimation of videos and images

    CERN Document Server

    Friedland, Gerald

    2015-01-01

    This book presents an overview of the field of multimodal location estimation, i.e. using acoustic, visual, and/or textual cues to estimate the shown location of a video recording. The authors' sample research results in this field in a unified way integrating research work on this topic that focuses on different modalities, viewpoints, and applications. The book describes fundamental methods of acoustic, visual, textual, social graph, and metadata processing as well as multimodal integration methods used for location estimation. In addition, the text covers benchmark metrics and explores the limits of the technology based on a human baseline. ·         Discusses localization of multimedia data; ·         Examines fundamental methods of establishing location metadata for images and videos (other than GPS tagging); ·         Covers Data-Driven as well as Semantic Location Estimation.

  13. Digital confocal microscopy through a multimode fiber

    CERN Document Server

    Loterie, Damien; Papadopoulos, Ioannis; Goy, Alexandre; Psaltis, Demetri; Moser, Christophe

    2015-01-01

    Acquiring high-contrast optical images deep inside biological tissues is still a challenging issue. Confocal microscopy is an important tool for biomedical imaging since it improves image quality by rejecting background signals. On the other hand, it suffers from low sensitivities in deep tissues due to light scattering. Recently, multimode fibers have provided a new paradigm for minimally invasive endoscopic imaging by controlling light propagation through them. Here we introduce a combined imaging technique where confocal images of a human epithelial cell are acquired through a multimode fiber. We achieve this by digitally engineering the excitation wavefront and then applying a virtual digital pinhole on the collected signal. In this way, we are able to acquire images through the fiber with significantly increased contrast.

  14. The multimodal argumentation of persuasive counter discourses

    DEFF Research Database (Denmark)

    Maier, Carmen Daniela

    with the characteristics and potential fallacies of the advertising discourse of commercials. The original advertising discourse is deconstructed and reconstructed with additional visual material in front of the viewers’ eyes who are instructed by a voiceover narrator what to look at and how to identify and decode...... and critical participants in the process of message understanding. In this paper, I explore the Media Bites videos that identify and discuss problematic gender issues in commercials advertising various products. I adopt a multimodal approach in my discourse analysis and I establish which semiotic modes...... are given prominence in the argumentation by examining their complex interplay and functional differentiation. The ways in which speech, writing and images articulate the counter discourse occupy a central position in the analysis. A special focus is put on the multimodal configuration of specific...

  15. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  16. Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film

    Science.gov (United States)

    Qiu, Hengwei; Gao, Saisai; Chen, Peixi; Li, Zhen; Liu, Xiaoyun; Zhang, Chao; Xu, Yuanyuan; Jiang, Shouzhen; Yang, Cheng; Huo, Yanyan; Yue, Weiwei

    2016-05-01

    An evanescent wave absorption (EWA) sensor based on tapered multimode fiber (TMMF) coated with monolayer graphene film for the detection of double-stranded DNA (DS-DNA) is investigated in this work. The TMMF is a silica multimode fiber (nominally at 62.5 μm), which was tapered to symmetric taper with waist diameters of ~30 μm and total length of ~3 mm. Monolayer graphene film was grown on a copper foil via chemical vapor deposition (CVD) technology and transferred onto skinless tapered fiber core via dry transfer technology. All the components of the sensor are coupled together by fusion splicer in order to eliminate the external disturbance. DS-DNA is created by the assembly of two relatively complemented oligonucleotides. The measurements are obtained by using a spectrometer in the optical wavelength range of 400-900 nm. With the increase of DS-DNA concentration, the output light intensity (OPLI) arisen an obvious attenuation. Importantly, the absorbance (A) and the DS-DNA concentrations shown a reasonable linear variation in a wide range of 5-400 μM. Through a series of comparison, the accuracy of TMMF sensor with graphene (G-TMMF) is much better than that without graphene (TMMF), which can be attributed to the molecular enrichment of graphene by π-π stacking.

  17. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  18. Handheld spectrometers: the state of the art

    Science.gov (United States)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  19. Multimode FPGA with Flexible Embedded FPUS

    OpenAIRE

    G.Murugaboopathi; S.Hariharasitaraman; Sankar, G.

    2012-01-01

    The Performance of field-programmable gate arrays used for Floating-point applications are poor due to complexity of floating-point arithmetic. Implementing floating-point units on FPGAs consume a large amount of resources. This makes FPGAs less attractive for use in floating-point intensive applications. There is a need for embedded FPUs in FPGAs. We proposed a flexible multimode embedded FPU for FPGAs that can be configured to perform a wide range of operations. The floatingpoint adder and ...

  20. Multimodal Sensor Fusion for Personnel Detection

    Science.gov (United States)

    2011-07-01

    Multimodal Sensor Fusion for Personnel Detection Xin Jin Shalabh Gupta Asok Ray Department of Mechanical Engineering The Pennsylvania State...have con- sidered relations taken only two at a time, but we propose to explore relations between higher order cliques as future work. D. Feature...detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 577–589, 2001. [11] A. Ray , “Symbolic dynamic analysis

  1. Multimodal Semantic Analysis of Public Transport Movements

    Science.gov (United States)

    Halb, Wolfgang; Neuschmied, Helmut

    We present a system for multimodal, semantic analysis of person movements that incorporates data from surveillance cameras, weather sensors, and third-party information providers. The interactive demonstration will show the automated creation of a survey of passenger transfer behavior at a public transport hub. Such information is vital for public transportation planning and the presented approach increases the cost-effectiveness and data accuracy as compared to traditional methods.

  2. Multimodal CARS microscopy of structured carbohydrate biopolymers

    OpenAIRE

    Slepkov, Aaron D.; Ridsdale, Andrew; Pegoraro, Adrian F.; Moffatt, Douglas J.; Stolow, Albert

    2010-01-01

    We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm−1–3400 cm−1), together with the comm...

  3. Performance Enhancement Of Multimodal Biometrics Using Cryptosystem

    Directory of Open Access Journals (Sweden)

    Muskaan,

    2015-06-01

    Full Text Available Multimodal biometrics means the unification of two or more uni modal biometrics so as to make the system more reliable and secure. Such systems promise better security. This study is a blend of iris and fingerprint recognition technique and their fusion at feature level. Our work comprises of two main sections: feature extraction of both modalities and fusing them before matching and finally application of an encryption technique to enhance the security of the fused template.

  4. Multi-Modal Interaction for Robotic Mules

    Science.gov (United States)

    2014-02-26

    Multi-Modal Interaction for Robotic Mules Glenn Taylor, Mike Quist , Matt Lanting, Cory Dunham, Patrick Theisen, Paul Muench Abstract...Taylor, Mike Quist , Matt Lanting, Cory Dunham, and Patrick Theisen are with Soar Technology, Inc. (corresponding author: 734-887- 7620; email: glenn...soartech.com; quist @soartech.com; matt.lanting@soartech.com; dunham@soartech.com; patrick.theisen@soartech.com Paul Muench is with US Army TARDEC

  5. Research Progress on Multimode Interference Switches

    Institute of Scientific and Technical Information of China (English)

    GAO Qing; SHENG Zhi-rui; JIANG Xiao-qing; WANG Ming-hua

    2005-01-01

    Optical switches are key components for constructing optical communication networks, so it is necessary to design optical switches and optical switch arrays with high performance and low cost. As one type of optical switches, the multimode interference(MMI) switches have received considerable attention due to their unique merits. The structures and operation principles of various types of MMI switches are introduced,and the recent progresses of MMI switches are also discussed.

  6. Automatic Multimodal Cognitive Load Measurement (AMCLM)

    Science.gov (United States)

    2011-06-01

    Final Project Report Grant AOARD-10-4029 Automatic Multimodal Cognitive Load Measurement (AMCLM) June 2011 NICTA DSIM Team...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 12 AUG 2011 2. REPORT TYPE 3. DATES COVERED 4...human-computer interface, such as air traffic control , in-car safety and electronic games. By quantifying the mental efforts of a person when

  7. [The coding correction of slit diffraction in Hadamard transform spectrometer].

    Science.gov (United States)

    Li, Bo; Wang, Shu-Rong; Huang, Yu; Wang, Jun-Bo

    2013-08-01

    According to the principles of Hadamard transform spectrometer and the slit diffraction characteristics, the influence of spectrometer entrance slit diffraction of Hadamard transform spectrometer on the measurement result was analyzed, for the diffraction case, the Hadamard transform spectrometer instrument structure matrix was studied, and the Hadamard transform spectrometer encoding/decoding method was established. The analysis of incident spectral verified the correctness of the coding/ decoding. This method is very important for the high precision measurement of Hadamard transform spectrometer.

  8. Fiber Optic Temperature Sensor Based on Multimode Interference Effects

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Soto, J G; Antonio-Lopez, J E; Sanchez-Mondragon, J J [Photonics and Optical Physics Laboratory, Optics Department, INAOE Apdo. Postal 51 and 216, Tonantzintla, Puebla 72000 (Mexico); May-Arrioja, D A, E-mail: darrioja@uat.edu.mx

    2011-01-01

    A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25 deg. C to 375 deg. C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.

  9. Medical Image Retrieval: A Multimodal Approach.

    Science.gov (United States)

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system.

  10. Digital Logarithmic Airborne Gamma Ray Spectrometer

    OpenAIRE

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energ...

  11. A Compact High-Energy Neutron Spectrometer

    CERN Document Server

    Brooks, F D; Buffler, A; Dangendorf, V; Herbert, M S; Jones, D T L; Nchodu, M R; Nolte, R; Smit, F D

    2007-01-01

    A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.

  12. Mini-Orange Spectrometer at CIAE

    CERN Document Server

    Zheng, Yun; Li, Guang-Sheng; Li, Cong-Bo; He, Chuang-Ye; Chen, Qi-Ming; Zhong, Jian; Zhou, Wen-Kui; Deng, Li-Tao; Zhu, Bao-Ji

    2016-01-01

    A Mini-Orange spectrometer used for in-beam measurements of internal conversion electrons, which consists of a Si(Li) detector and different sets of SmO$_5$ permanent magnets for filtering and transporting the conversion electrons to the Si(Li) detector, has been developed at China Institute of Atomic Energy. The working principle and configuration of the Mini-Orange spectrometer are described. The performance of the setup is illustrated by measured singles conversion electron spectra using the Mini-Orange spectrometer.

  13. Radiation calibration for LWIR Hyperspectral Imager Spectrometer

    Science.gov (United States)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2014-11-01

    The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.

  14. Next Generation Multi-mode Remote Sensing Radar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort leverages ESTO and SBIR investments aimed at enabling fully polarimetric digital beamforming multimode radar, high resolution (wideband) measurements,...

  15. Multimodal integration of anatomy and physiology classes: How instructors utilize multimodal teaching in their classrooms

    Science.gov (United States)

    McGraw, Gerald M., Jr.

    Multimodality is the theory of communication as it applies to social and educational semiotics (making meaning through the use of multiple signs and symbols). The term multimodality describes a communication methodology that includes multiple textual, aural, and visual applications (modes) that are woven together to create what is referred to as an artifact. Multimodal teaching methodology attempts to create a deeper meaning to course content by activating the higher cognitive areas of the student's brain, creating a more sustained retention of the information (Murray, 2009). The introduction of multimodality educational methodologies as a means to more optimally engage students has been documented within educational literature. However, studies analyzing the distribution and penetration into basic sciences, more specifically anatomy and physiology, have not been forthcoming. This study used a quantitative survey design to determine the degree to which instructors integrated multimodality teaching practices into their course curricula. The instrument used for the study was designed by the researcher based on evidence found in the literature and sent to members of three associations/societies for anatomy and physiology instructors: the Human Anatomy and Physiology Society; the iTeach Anatomy & Physiology Collaborate; and the American Physiology Society. Respondents totaled 182 instructor members of two- and four-year, private and public higher learning colleges collected from the three organizations collectively with over 13,500 members in over 925 higher learning institutions nationwide. The study concluded that the expansion of multimodal methodologies into anatomy and physiology classrooms is at the beginning of the process and that there is ample opportunity for expansion. Instructors continue to use lecture as their primary means of interaction with students. Email is still the major form of out-of-class communication for full-time instructors. Instructors with

  16. Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump.

    Science.gov (United States)

    Bai, Neng; Ip, Ezra; Wang, Ting; Li, Guifang

    2011-08-15

    We propose a method for controlling modal gain in a multimode Erbium-doped fiber amplifier (MM-EDFA) by tuning the mode content of a multimode pump. By adjusting the powers and orientation of input pump modes, modal dependent gain can be tuned over a large dynamic range. Performance impacts due to excitation of undesired pump modes, mode coupling and macro-bending loss within the erbium-doped fiber are also investigated. The MM-EDFA may potentially be a key element for long haul mode-division multiplexed transmission.

  17. The VERDI fission fragment spectrometer

    Science.gov (United States)

    Frégeau, M. O.; Bryś, T.; Gamboni, Th.; Geerts, W.; Oberstedt, S.; Oberstedt, A.; Borcea, R.

    2013-12-01

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD) diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD) show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  18. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  19. Fabrication of petal-shaped masks for suppression of the on-axis Poisson spot in telescope systems

    Science.gov (United States)

    Shiri, Ron; Stein, Ryan; Murphy, Kaitlin; Hagopian, Kimberly; Salari, Shirin; Sankar, Shannon; Hagopian, John; Showalter, Matthew; Stevenson, Thomas; Quijada, Manuel; Threat, Felix; Friedlander, Jay; Dillon, Thomas; Livas, Jeffrey

    2016-04-01

    The presence of a bright (Poisson) spot in the geometrical shadow of circular/spherical shapes has been known for the past two centuries. A broad class of telescopes that involve simultaneous transmit and receive require suppression of the reflected light from the secondary mirror on the detector. For instance, the on-axis design of optical telescope for the evolved Laser Interferometric Space Antenna (eLISA), a re-scoped version of the baseline LISA mission concept, requires suppression of reflected laser light from the secondary mirror on the detector. In the past few years, the hypergaussian functions with petal-shaped realization have been shown to significantly suppress intensity along the optical axis. This work reports on fabrication of a series of petal-shaped masks using a variety of techniques such as 3D printing, photolithography, and wire Electro Discharge Machining. These masks are designed and fabricated to operate in the range of Fresnel numbers between 4 and 120. This paper discusses the challenges, successes, and failures of each fabrication technique and the optical performance of typical masks with suggestions for potential follow up work.

  20. Development of long wavelength semiconductor diode lasers near 28 microns for use in infrared heterodyne spectrometers

    Science.gov (United States)

    Linden, K. J.

    1984-01-01

    The development of tunable diode lasers operating in the 28 micrometers spectral region for use in infrared heterodyne spectrometers is reported. A process capable of yielding lasers emitting 500 micron W of multimode power, 112 micron W in a true single mode and true single mode operation at laser currents of up to 35% above threshold was developed. Results were obtained from narrow mesastripe (20 micrometer wide) short cavity (120 micrometer length) laser configurations. Six stripe geometry lasers, with a variety of cavity widths and lengths were delivered. The techniques to fabricate such devices was obtained and the long term reliability of such lasers by reproducible electrical and optical output characteristics fabrication from lasers are demonstrated.

  1. Remote UV Fluorescence Lifetime Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop, demonstrate, and deliver to NASA an innovative, portable, and power efficient Remote UV Fluorescence Lifetime Spectrometer...

  2. Portable Remote Imaging Spectrometer (PRISM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an UV-NIR (350nm to 1050 nm) portable remote imaging spectrometer (PRISM) for flight on a variety of airborne platforms with high SNR and response...

  3. Long-Wave Infrared Dyson Spectrometer

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis Z.; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2008-01-01

    Preliminary results are presented for an ultra compact long-wave infrared slit spectrometer based on the dyson concentric design. The dyson spectrometer has been integrated in a dewar environment with a quantum well infrared photodetecor (QWIP), concave electron beam fabricated diffraction grating and ultra precision slit. The entire system is cooled to cryogenic temperatures to maximize signal to noise ratio performance, hence eliminating thermal signal from transmissive elements and internal stray light. All of this is done while maintaining QWIP thermal control. A general description is given of the spectrometer, alignment technique and predicated performance. The spectrometer has been designed for optimal performance with respect to smile and keystone distortion. A spectral calibration is performed with NIST traceable targets. A 2-point non-uniformity correction is performed with a precision blackbody source to provide radiometric accuracy. Preliminary laboratory results show excellent agreement with modeled noise equivalent delta temperature and detector linearity over a broad temperature range.

  4. Low Power Mass Spectrometer employing TOF Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A low power Mass Spectrometer employing multiple time of flight circuits for parallel processing is possible with a new innovation in design of the Time of flight...

  5. Calibration of a photomultiplier array spectrometer

    Science.gov (United States)

    Bailey, Steven A.; Wright, C. Wayne; Piazza, Charles R.

    1989-01-01

    A systematic approach to the calibration of a photomultiplier array spectrometer is presented. Through this approach, incident light radiance derivation is made by recognizing and tracing gain characteristics for each photomultiplier tube.

  6. Low Power FPGA Based Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design a general purpose reconfigurable wide bandwidth spectrometer for use in NASA's passive microwave missions, deep space network and radio...

  7. Electronically-Scanned Fourier-Transform Spectrometer

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.

    1984-01-01

    Instrument efficient, lightweight, and stable. Fourier-transform spectrometer configuration uses electronic, instead of mechanical, scanning. Configuration insensitive to vibration-induced sampling errors introduced into mechanically scanned systems.

  8. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  9. ISLA: An Isochronous Spectrometer with Large Acceptances

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, D., E-mail: bazin@nscl.msu.edu; Mittig, W.

    2013-12-15

    A novel type of recoil mass spectrometer and separator is proposed for the future secondary radioactive beams of the ReA12 accelerator at NSCL/FRIB, inspired from the TOFI spectrometer developed at the Los Alamos National Laboratory for online mass measurements. The Isochronous Spectrometer with Large Acceptances (ISLA) is able to achieve superior characteristics without the compromises that usually plague the design of large acceptance spectrometers. ISLA can provide mass-to-charge ratio (m/q) measurements to better than 1 part in 1000 by using an optically isochronous time-of-flight independent of the momentum vector of the recoiling ions, despite large acceptances of 20% in momentum and 64 msr in solid angle. The characteristics of this unique design are shown, including requirements for auxiliary detectors around the target and the various types of reactions to be used with the re-accelerated radioactive beams of the future ReA12 accelerator.

  10. Ruggedized Spectrometers Are Built for Tough Jobs

    Science.gov (United States)

    2015-01-01

    The Mars Curiosity Chemistry and Camera instrument, or ChemCam, analyzes the elemental composition of materials on the Red Planet by using a spectrometer to measure the wavelengths of light they emit. Principal investigator Roger Wiens worked with Ocean Optics, out of Dunedin, Florida, to rework the company's spectrometer to operate in cold and rowdy conditions and also during the stresses of liftoff. Those improvements have been incorporated into the firm's commercial product line.

  11. A Spectrometer Based on Diffractive Lens

    Institute of Scientific and Technical Information of China (English)

    WANG Daoyi; YAN Yingbai; JIN Guofan; WU Minxian

    2001-01-01

    A novel spectrometer is designed based on diffractive lens. It is essentially a flat field spectrometer. All the focal points are along the optical axis. Besides, all the asymmetrical aberrations vanish in our mounting. Thus low aberration can be obtained. In this article a diffractive lens is modeled as a special grating and analyzed by using a grating-based method. And a stigmatic point is introduced to reduce the aberrations.

  12. Design and construction of a NIR spectrometer

    CERN Document Server

    Barcala-Riveira, J M; Fernandez-Marron, J L; Molero-Menendez, F; Navarrete-Marin, J J; Oller-Gonzalez, J C

    2003-01-01

    This document describes the design and construction of a NIR spectrometer based on an acoustic-optic tunable filter. The spectrometer will be used for automatic identification of plastics in domestic waste. The system works between 1200 and 1800 nm. Instrument is controlled by a personal computer. Computer receives and analyses data. A software package has been developed to do these tasks. (Author) 27 refs.

  13. 1987 calibration of the TFTR neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Strachan, J.D. (Los Alamos National Lab., NM (USA); Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  14. Mass Spectrometer for Airborne Micro-Organisms

    Science.gov (United States)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  15. Optical Calibration For Jefferson Lab HKS Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  16. A digital control system for neutron spectrometers

    DEFF Research Database (Denmark)

    Hansen, Knud Bent; Skaarup, Per

    1968-01-01

    A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer.......A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer....

  17. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  18. NIST Calibration of a Neutron Spectrometer ROSPEC.

    Science.gov (United States)

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  19. Observation of Multimode Solitons in Few-Mode Fiber

    CERN Document Server

    Zhu, Zimu; Christodoulides, Demetrios N; Wise, Frank W

    2016-01-01

    We experimentally isolate and directly observe multimode solitons in few-mode graded-index fiber. By varying the input energy and modal composition of the launched pulse, we observe a continuous variation of multimode solitons with different spatiotemporal properties. They exhibit an energy-volume relation that is distinct from those of single-mode and fully spatiotemporal solitons.

  20. Multimodal warnings to enhance risk communication and safety

    NARCIS (Netherlands)

    Haas, E.C.; Erp, J.B.F. van

    2014-01-01

    Multimodal warnings incorporate audio and/or skin-based (tactile) cues to supplement or replace visual cues in environments where the user’s visual perception is busy, impaired, or nonexistent. This paper describes characteristics of audio, tactile, and multimodal warning displays and their role in

  1. Fracturing Writing Spaces: Multimodal Storytelling Ignites Process Writing

    Science.gov (United States)

    Lenters, Kimberly; Winters, Kari-Lynn

    2013-01-01

    In this paper, we explore the affordances of literature-based, arts-infused and digital media processes for students, as multimodal practices take centre stage in an English Language Arts unit on fractured fairy tales. The study takes up the challenge of addressing multimodal literacy instruction and research in ways that utilize a range of…

  2. Instantiation of Multimodal Semiotic Systems in Science Classroom Discourse

    Science.gov (United States)

    Tang, Kok-Sing

    2013-01-01

    Science classroom discourse is inherently multimodal in that scientific meanings are made through an integration of multiple semiotic systems (e.g., language, diagrams, equations). Although some studies have described this multimodal nature, few have examined and explained the relationship between the integration of multiple semiotic systems and…

  3. Multimodal Teaching and Learning: Creating Spaces for Content Teachers

    Science.gov (United States)

    Thompson, Mary

    2008-01-01

    In this article, the author describes her multimodal teaching practices in her "Adolescent Literacy Methods" course at a graduate university in the United States. By doing so, she highlights content teacher's understanding and use of various multimodal texts to effectively teach adolescents inside the classroom. In lieu of this, she raises…

  4. Multimodal transports in the Unidted States and Europe

    DEFF Research Database (Denmark)

    Ulfbeck, Vibe Garf

    2009-01-01

    Transport law has traditionally been regarded as an international area of the law. The modern multimodal transport, combining different types of transports, has changed this. Multimodal transports are not regulated by any international conventions. In commercial practice, one liability model is p...

  5. Teaching Visual Texts with the Multimodal Analysis Software

    Science.gov (United States)

    Lim Fei, Victor; O'Halloran, Kay L.; Tan, Sabine; E., Marissa K. L.

    2015-01-01

    This exploratory study introduces the systemic approach and the explicit teaching of a meta-language to provide conceptual tools for students for the analysis and interpretation of multimodal texts. Equipping students with a set of specialised vocabulary with conventionalised meanings associated with specific choices in multimodal texts empowers…

  6. The semiotics of typography in literary texts. A multimodal approach

    DEFF Research Database (Denmark)

    Nørgaard, Nina

    2009-01-01

    to multimodal discourse proposed, for instance, by Kress & Van Leeuwen (2001) and Baldry & Thibault (2006), and, more specifically, the multimodal approach to typography suggested by Van Leeuwen (2005b; 2006), in order to sketch out a methodological framework applicable to the description and analysis...... of the semiotic potential of typography in literary texts....

  7. Composition at Washington State University: Building a Multimodal Bricolage

    Science.gov (United States)

    Ericsson, Patricia; Hunter, Leeann Downing; Macklin, Tialitha Michelle; Edwards, Elizabeth Sue

    2016-01-01

    Multimodal pedagogy is increasingly accepted among composition scholars. However, putting such pedagogy into practice presents significant challenges. In this profile of Washington State University's first-year composition program, we suggest a multi-vocal and multi-theoretical approach to addressing the challenges of multimodal pedagogy. Patricia…

  8. Cultural Shifts, Multimodal Representations, and Assessment Practices: A Case Study

    Science.gov (United States)

    Curwood, Jen Scott

    2012-01-01

    Multimodal texts involve the presence, absence, and co-occurrence of alphabetic text with visual, audio, tactile, gestural, and spatial representations. This article explores how teachers' evaluation of students' multimodal work can be understood in terms of cognition and culture. When teachers apply a paradigm of assessment rooted in print-based…

  9. A Multimodal Discourse Analysis of Tmall's Double Eleven Advertisement

    Science.gov (United States)

    Hu, Chunyu; Luo, Mengxi

    2016-01-01

    From the 1990s, the multimodal turn in discourse studies makes multimodal discourse analysis a popular topic in linguistics and communication studies. An important approach to applying Systemic Functional Linguistics to non-verbal modes is Visual Grammar initially proposed by Kress and van Leeuwen (1996). Considering that commercial advertisement…

  10. Multimodal network design for sustainable household plastic recycling

    NARCIS (Netherlands)

    Bing Xiaoyun, Xiaoyun; Groot, J.J.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2013-01-01

    Purpose – This research studies a plastic recycling system from a reverse logistics angle and investigates the potential benefits of a multimodality strategy to the network design of plastic recycling. This research aims to quantify the impact of multimodality on the network, to provide decision

  11. Multimodal network design for sustainable household plastic recycling

    NARCIS (Netherlands)

    Bing Xiaoyun, Xiaoyun; Groot, J.J.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2013-01-01

    Purpose – This research studies a plastic recycling system from a reverse logistics angle and investigates the potential benefits of a multimodality strategy to the network design of plastic recycling. This research aims to quantify the impact of multimodality on the network, to provide decision sup

  12. Composition 2.0: Toward a Multilingual and Multimodal Framework

    Science.gov (United States)

    Fraiberg, Steven

    2010-01-01

    This article argues that tracing multimodal-multilingual literacy practices across official and unofficial spaces is key to moving composition into the twenty-first century. Key to this remixing of the field is a situated framework that locates multimodal-multilingual activities in wider genre, cultural, national, and global ecologies. (Contains 3…

  13. A Multimodal Discourse Analysis of a Yoruba Song-Drama

    Science.gov (United States)

    Olateju, Moji. A.

    2015-01-01

    This paper presents a multimodal discourse analysis of a story that has been turned into a Yoruba song-drama, highlighting the ideational, interpersonal and textual aspects of the song-drama. The data is a short song-drama meant to teach children importunity, determination and hard work through persistence. The multimodal and narrative conventions…

  14. Using Multimodal Writing to Motivate Struggling Students to Write

    Science.gov (United States)

    Darrington, Brett; Dousay, Tonia

    2014-01-01

    One of the reasons that many secondary students fail English classes is because they are not motivated to write. This literature review was conducted to look into the use of multimodal works to increase the motivation for struggling students to write. Change theory was used to evaluate the benefits of multimodal works compared to more traditional…

  15. The semiotics of typography in literary texts. A multimodal approach

    DEFF Research Database (Denmark)

    Nørgaard, Nina

    2009-01-01

    to multimodal discourse proposed, for instance, by Kress & Van Leeuwen (2001) and Baldry & Thibault (2006), and, more specifically, the multimodal approach to typography suggested by Van Leeuwen (2005b; 2006), in order to sketch out a methodological framework applicable to the description and analysis...

  16. Generation of a hollow laser beam by a multimode fiber

    Institute of Scientific and Technical Information of China (English)

    Hongyu Ma; Huadong Cheng; Wenzhuo Zhang; Liang Liu; Yuzhu Wang

    2007-01-01

    A simple method to generate a hollow laser beam by multimode fiber is reported. A dark hollow laser beam is generated from a multimode fiber and the dependence of the output beam profile on the incident angle of laser beam is analyzed. The results show that this hollow laser beam can be used to trap and guide cold atoms.

  17. New developments in multimodal clinical multiphoton tomography

    Science.gov (United States)

    König, Karsten

    2011-03-01

    80 years ago, the PhD student Maria Goeppert predicted in her thesis in Goettingen, Germany, two-photon effects. It took 30 years to prove her theory, and another three decades to realize the first two-photon microscope. With the beginning of this millennium, first clinical multiphoton tomographs started operation in research institutions, hospitals, and in the cosmetic industry. The multiphoton tomograph MPTflexTM with its miniaturized flexible scan head became the Prism-Award 2010 winner in the category Life Sciences. Multiphoton tomographs with its superior submicron spatial resolution can be upgraded to 5D imaging tools by adding spectral time-correlated single photon counting units. Furthermore, multimodal hybrid tomographs provide chemical fingerprinting and fast wide-field imaging. The world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph in spring 2010. In particular, nonfluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen have been imaged in patients with dermatological disorders. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution imaging tools such as ultrasound, optoacoustic, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer (malignant melanoma), optimization of treatment strategies (wound healing, dermatitis), and cosmetic research including long-term biosafety tests of ZnO sunscreen nanoparticles and the measurement of the stimulated biosynthesis of collagen by anti-ageing products.

  18. Partial order approach to compute shortest paths in multimodal networks

    CERN Document Server

    Ensor, Andrew

    2011-01-01

    Many networked systems involve multiple modes of transport. Such systems are called multimodal, and examples include logistic networks, biomedical phenomena, manufacturing process and telecommunication networks. Existing techniques for determining optimal paths in multimodal networks have either required heuristics or else application-specific constraints to obtain tractable problems, removing the multimodal traits of the network during analysis. In this paper weighted coloured--edge graphs are introduced to model multimodal networks, where colours represent the modes of transportation. Optimal paths are selected using a partial order that compares the weights in each colour, resulting in a Pareto optimal set of shortest paths. This approach is shown to be tractable through experimental analyses for random and real multimodal networks without the need to apply heuristics or constraints.

  19. Percorsi linguistici e semiotici: Critical Multimodal Analysis of Digital Discourse

    Directory of Open Access Journals (Sweden)

    edited by Ilaria Moschini

    2014-12-01

    Full Text Available The language section of LEA - edited by Ilaria Moschini - is dedicated to the Critical Multimodal Analysis of Digital Discourse, an approach that encompasses the linguistic and semiotic detailed investigation of texts within a socio-cultural perspective. It features an interview with Professor Theo van Leeuwen by Ilaria Moschini and four essays: “Retwitting, reposting, repinning; reshaping identities online: Towards a social semiotic multimodal analysis of digital remediation” by Elisabetta Adami; “Multimodal aspects of corporate social responsibility communication” by Carmen Daniela Maier; “Pervasive Technologies and the Paradoxes of Multimodal Digital Communication” by Sandra Petroni and “Can the powerless speak? Linguistic and multimodal corporate media manipulation in digital environments: the case of Malala Yousafzai” by Maria Grazia Sindoni. 

  20. An echelle diffraction grating for imaging spectrometer

    Science.gov (United States)

    Yang, Minyue; Wang, Han; Li, Mingyu; He, Jian-Jun

    2016-09-01

    We demonstrate an echelle diffraction grating (EDG) of 17 input waveguides and 33 output waveguides. For each input waveguide, only 17 of 33 output waveguides are used, receiving light ranging from 1520 nm to 1600 nm wavelength. The channel spacing of the EDG is 5 nm, with loss of -6dB and crosstalk of -17dB for center input waveguide and -15dB for edge input waveguides. Based on the 3 μm SOI platform the device is polarization insensitive. As a simple version of EDG spectrometer it is designed to be a part of the on-chip spectroscopic system of the push-broom scanning imaging spectrometer. The whole on-chip spectrometer consists of an optical on-off switch array, a multi-input EDG and detector array. With the help of on-off switch array the multiple input waveguides of the EDG spectrometer could work in a time division multiplexed fashion. Since the switch can scan very fast (less than 10 microseconds), the imaging spectrometer can be operated in push-broom mode. Due to the CMOS compatibility, the 17_channel EDG scales 2.5×3 mm2. The full version of EDG spectrometer is designed to have 129 input waveguides and 257 output waveguides (129 output channel for each input waveguide), working in wavelength ranging from 1250 nm to 1750 nm, and had similar blazed facet size with the 17_channel one, which means similar fabrication tolerance in grating facets. The waveguide EDG based imaging spectrometer can provide a low-cost solution for remote sensing on unmanned aerial vehicles, with advantages of small size, light weight, vibration-proof, and high scalability.

  1. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  2. Invariant measures on multimode quantum Gaussian states

    Science.gov (United States)

    Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.

    2012-12-01

    We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom—the symplectic eigenvalues—which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.

  3. Invariant measures on multimode quantum Gaussian states

    CERN Document Server

    Lupo, C; De Pasquale, A; Facchi, P; Florio, G; Pascazio, S

    2012-01-01

    We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom -- the symplectic eigenvalues -- which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest or applications in quantum optics and quantum information.

  4. Invariant measures on multimode quantum Gaussian states

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, C. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Mancini, S. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); De Pasquale, A. [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy); Facchi, P. [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Roma (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); Pascazio, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy)

    2012-12-15

    We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.

  5. Multimodal neuromonitoring in pediatric cardiac anesthesia

    Directory of Open Access Journals (Sweden)

    Alexander J. C. Mittnacht

    2014-01-01

    Full Text Available Despite significant improvements in overall outcome, neurological injury remains a feared complication following pediatric congenital heart surgery (CHS. Only if adverse events are detected early enough, can effective actions be initiated preventing potentially serious injury. The multifactorial etiology of neurological injury in CHS patients makes it unlikely that one single monitoring modality will be effective in capturing all possible threats. Improving current and developing new technologies and combining them according to the concept of multimodal monitoring may allow for early detection and possible intervention with the goal to further improve neurological outcome in children undergoing CHS.

  6. Multimodality imaging for resuscitated sudden cardiac death.

    Science.gov (United States)

    Chen, Yingming Amy; Deva, Djeven; Kirpalani, Anish; Prabhudesai, Vikram; Marcuzzi, Danny W; Graham, John J; Verma, Subodh; Jimenez-Juan, Laura; Yan, Andrew T

    2015-01-01

    We present a case that elegantly illustrates the utility of two novel noninvasive imaging techniques, computed tomography (CT) coronary angiography and cardiac MRI, in the diagnosis and management of a 27-year-old man with exertion-induced cardiac arrest caused by an anomalous right coronary artery. CT coronary angiography with 3D reformatting delineated the interarterial course of an anomalous right coronary artery compressed between the aorta and pulmonary artery, whereas cardiac MRI showed a small myocardial infarction in the right coronary artery territory not detected on echocardiography. This case highlights the value of novel multimodality imaging techniques in the risk stratification and management of patients with resuscitated cardiac arrest.

  7. Multimodal CARS microscopy of structured carbohydrate biopolymers

    Science.gov (United States)

    Slepkov, Aaron D.; Ridsdale, Andrew; Pegoraro, Adrian F.; Moffatt, Douglas J.; Stolow, Albert

    2010-01-01

    We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm−1–3400 cm−1), together with the commonly-measured C-H stretch (2750 cm−1–2970 cm−1) and SHG provide potentially important structural information and contrast in these materials. PMID:21258555

  8. Ultrasonic motors using piezoelectric ceramic multimode vibrators.

    Science.gov (United States)

    Takano, T; Tomikawa, Y; Ogasawara, T; Sugawara, S; Konno, M

    1990-01-01

    The development is reported of an ultrasonic motor using piezoelectric ceramic multimode vibrators consisting of circular or annular plates in which degenerate horizontal vibration modes of the same or different form are used. Two orthogonal nonaxisymmetric vibration modes were used in the same-form case, and the combination of a nonaxisymmetric vibration mode and a radial vibration mode was used in the different-forms case. Some details of the motor design and its experimental characteristics are presented. The ultrasonic motor presented here has a special advantage in its thin construction.

  9. Multimodal CARS microscopy of structured carbohydrate biopolymers.

    Science.gov (United States)

    Slepkov, Aaron D; Ridsdale, Andrew; Pegoraro, Adrian F; Moffatt, Douglas J; Stolow, Albert

    2010-11-08

    We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm(-1)-3400 cm(-1)), together with the commonly-measured C-H stretch (2750 cm(-1)-2970 cm(-1)) and SHG provide potentially important structural information and contrast in these materials.

  10. Multimodal Biometrics Recognition by Dimensionality Diminution Method

    Directory of Open Access Journals (Sweden)

    Suvarnsing Bhable

    2015-12-01

    Full Text Available Multimodal biometric system utilizes two or more character modalities, e.g., face, ear, and fingerprint, Signature, plamprint to improve the recognition accuracy of conventional unimodal methods. We propose a new dimensionality reduction method called Dimension Diminish Projection (DDP in this paper. DDP can not only preserve local information by capturing the intra-modal geometry, but also extract between-class relevant structures for classification effectively. Experimental results show that our proposed method performs better than other algorithms including PCA, LDA and MFA.

  11. Multimodality Imaging of Heart Valve Disease

    Energy Technology Data Exchange (ETDEWEB)

    Rajani, Ronak, E-mail: Dr.R.Rajani@gmail.com [Department of Cardiology, St. Thomas’ Hospital, London (United Kingdom); Khattar, Rajdeep [Department of Cardiology, Royal Brompton Hospital, London (United Kingdom); Chiribiri, Amedeo [Divisions of Imaging Sciences, The Rayne Institute, St. Thomas' Hospital, London (United Kingdom); Victor, Kelly; Chambers, John [Department of Cardiology, St. Thomas’ Hospital, London (United Kingdom)

    2014-09-15

    Unidentified heart valve disease is associated with a significant morbidity and mortality. It has therefore become important to accurately identify, assess and monitor patients with this condition in order that appropriate and timely intervention can occur. Although echocardiography has emerged as the predominant imaging modality for this purpose, recent advances in cardiac magnetic resonance and cardiac computed tomography indicate that they may have an important contribution to make. The current review describes the assessment of regurgitant and stenotic heart valves by multimodality imaging (echocardiography, cardiac computed tomography and cardiac magnetic resonance) and discusses their relative strengths and weaknesses.

  12. A novel multimodal CARS miniaturized microscope

    Science.gov (United States)

    Smith, Brett; Naji, Majid; Murugkar, Sangeeta; Brideau, Craig; Stys, Peter; Anis, Hanan

    2012-03-01

    We demonstrate the operation of a novel portable, fibre delivery miniaturized multimodal microscope (exoscope) for coherent anti-Stokes Raman scattering and two-photon excitation fluorescence imaging using a single Ti:sapphire femtosecond pulsed laser. This microscope features a large mode area photonic crystal fibre for light delivery, as well as biaxial scanning microelectromechanical system mirrors and custom miniaturized optics corrected for chromatic aberration. We demonstrate imaging of polystyrene beads, two photon excitation fluorescence beads in both forward and backward (epi) directions. This miniaturized exoscope will enable in-vivo imaging of rat spinal cord.

  13. Multimode Hong-Ou-Mandel interference

    CERN Document Server

    Walborn, S P; Pádua, S; Monken, C H

    2003-01-01

    We consider multimode two-photon interference at a beam splitter by photons created by spontaneous parametric down-conversion. The resulting interference pattern is shown to depend upon the transverse spatial symmetry of the pump beam. In an experiment, we employ the first-order Hermite-Gaussian modes in order to show that, by manipulating the pump beam, one can control the resulting two-photon interference behavior. We expect these results to play an important role in the engineering of quantum states of light for use in quantum information processing and quantum imaging.

  14. Surgical management of complications of multimodal therapy.

    Science.gov (United States)

    Chui, Chan-Hon

    2012-08-01

    Multimodality therapies that include surgery, chemotherapy, radiotherapy, and various newer forms of targeted therapies have been commonly applied in childhood cancers. Such modalities are associated with complications that may adversely affect the outcome of cancer treatment. Acute complications that require surgical management form the focus of our discussion. These patients are often compromised by immunosuppression, thrombocytopenia, and malnutrition. The complications discussed include typhlitis, invasive aspergillosis (IA), pancreatitis, hemorrhagic cystitis, gastrointestinal hemorrhage, necrotizing skin and soft-tissue infections, and perianal infection. Familiarity with the spectrum of complications and their appropriate management approaches will minimize the patients' morbidity.

  15. Multimodality Imaging of Heart Valve Disease

    Directory of Open Access Journals (Sweden)

    Ronak Rajani

    2014-09-01

    Full Text Available Unidentified heart valve disease is associated with a significant morbidity and mortality. It has therefore become important to accurately identify, assess and monitor patients with this condition in order that appropriate and timely intervention can occur. Although echocardiography has emerged as the predominant imaging modality for this purpose, recent advances in cardiac magnetic resonance and cardiac computed tomography indicate that they may have an important contribution to make. The current review describes the assessment of regurgitant and stenotic heart valves by multimodality imaging (echocardiography, cardiac computed tomography and cardiac magnetic resonance and discusses their relative strengths and weaknesses.

  16. MUVA: a MUltimodal Visceral design Ambient device

    DEFF Research Database (Denmark)

    Kivac, Robert; Klem, Sune Øllgaard; Olsen, Sophus Béneé

    2016-01-01

    This paper presents MUVA (MUltimodal Visceral design Ambient device), a prototype for a storytelling light- and sound-based ambient device. The aim of this device is to encourage social interaction and expand the emotional closeness in families with children where at least one parent has irregular...... work schedule. MUVA differs from the other ambient devices, because it is targeted to children, and it adopts a visceral design approach in order to be appealing to its users. It is a raindrop-shaped lamp, which features audio playing, while its light color is affected by the audio playing. MUVA can...

  17. Confocal microscopy via multimode fibers: fluorescence bandwidth

    Science.gov (United States)

    Loterie, Damien; Psaltis, Demetri; Moser, Christophe

    2016-03-01

    We recently described a method for confocal reflection imaging through fibers, as a way to increase contrast when imaging unstained biological specimens. Using a transmission matrix, focused spots can be created at the distal end of a fiber. The backscattered field coming back from the sample can be filtered using optical correlation to obtain spatial selectivity in the detection. In this proceedings article, we briefly review the working principle of this method, and we discuss how the scheme could be adapted to confocal fluorescence imaging. In particular, we show simulations of the achievable detection bandwidth when using step-index multimode fibers as imaging devices.

  18. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    Science.gov (United States)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  19. Fiber Optic Pressure Sensor using Multimode Interference

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Perez, V I; Sanchez-Mondragon, J J [INAOE, Apartado Postal 51 y 216, Puebla 72000 (Mexico); Basurto-Pensado, M A [CIICAp, Universidad Autonoma del Estado de Morelos (Mexico); LiKamWa, P [CREOL, University of Central Florida, Orlando, FL 32816 (United States); May-Arrioja, D A, E-mail: iruiz@inaoep.mx, E-mail: mbasurto@uaem.mx, E-mail: delta_dirac@hotmail.com, E-mail: daniel_may_arrioja@hotmail.com [UAT Reynosa Rodhe, Universidad Autonoma de Tamaulipas (Mexico)

    2011-01-01

    Based on the theory of multimode interference (MMI) and self-image formation, we developed a novel intrinsic optical fiber pressure sensor. The sensing element consists of a section of multimode fiber (MMF) without cladding spliced between two single mode fibers (SMF). The MMI pressure sensor is based on the intensity changes that occur in the transmitted light when the effective refractive index of the MMF is changed. Basically, a thick layer of Polydimethylsiloxane (PDMS) is placed in direct contact with the MMF section, such that the contact area between the PDMS and the fiber will change proportionally with the applied pressure, which results in a variation of the transmitted light intensity. Using this configuration, a good correlation between the measured intensity variations and the applied pressure is obtained. The sensitivity of the sensor is 3 {mu}V/psi, for a range of 0-60 psi, and the maximum resolution of our system is 0.25 psi. Good repeatability is also observed with a standard deviation of 0.0019. The key feature of the proposed pressure sensor is its low fabrication cost, since the cost of the MMF is minimal.

  20. Multimodal brain monitoring in fulminant hepatic failure

    Institute of Scientific and Technical Information of China (English)

    Fernando; Mendes; Paschoal; Jr; Ricardo; Carvalho; Nogueira; Karla; De; Almeida; Lins; Ronconi; Marcelo; de; Lima; Oliveira; Manoel; Jacobsen; Teixeira; Edson; Bor-Seng-Shu

    2016-01-01

    Acute liver failure, also known as fulminant hepatic failure(FHF), embraces a spectrum of clinical entities characterized by acute liver injury, severe hepatocellular dysfunction, and hepatic encephalopathy. Cerebral edema and intracranial hypertension are common causes of mortality in patients with FHF. The management of patients who present acute liver failure starts with determining the cause and an initial evaluation of prognosis. Regardless of whether or not patients are listed for liver transplantation, they should still be monitored for recovery, death, or transplantation. In the past, neuromonitoring was restricted to serial clinical neurologic examination and, in some cases, intracranial pressure monitoring. Over the years, this monitoring has proven insufficient, as brain abnormalities were detected at late and irreversible stages. The need for real-time monitoring of brain functions to favor prompt treatment and avert irreversible brain injuries led to the concepts of multimodal monitoring and neurophysiological decision support. New monitoring techniques, such as brain tissue oxygen tension, continuous electroencephalogram, transcranial Doppler, and cerebral microdialysis, have been developed. These techniques enable early diagnosis of brain hemodynamic, electrical, and biochemical changes, allow brain anatomical and physiological monitoring-guided therapy, and have improved patient survival rates. The purpose of this review is to discuss the multimodality methods available for monitoring patients with FHF in the neurocritical care setting.

  1. Multimodal pain management after arthroscopic surgery

    DEFF Research Database (Denmark)

    Rasmussen, Sten

    Multimodal Pain Management after Arthroscopic Surgery By Sten Rasmussen, M.D. The thesis is based on four randomized controlled trials. The main hypothesis was that multimodal pain treatment provides faster recovery after arthroscopic surgery. NSAID was tested against placebo after knee arthrosco...... after knee and ankle arthroscopy with the use of oral NSAIDs combined with bupivacaine plus morphine or combined with bupivacaine, morphine plus steroid....... ankle arthroscopy. Oral NSAID reduced time to work from 17 to 14 days after knee arthroscopy. Intra-articular treatment with bupivacaine plus morphine and bupivacaine plus morphine plus steroid after arthroscopic knee meniscectomy reduced time to work from 10 to 5 to 3 days. Intraarticular treatment...... with bupivacaine plus morphine and bupivacaine plus morphine plus steroid after diagnostic knee arthroscopy reduced time to work from 10 to 5 to 2 days. Additional analysis revealed that the surgical trauma and the use of tourniquet influenced recovery. The thesis proves a reduction in the time to return to work...

  2. Multimodal Imaging in Hereditary Retinal Diseases

    Directory of Open Access Journals (Sweden)

    Francesco Pichi

    2013-01-01

    Full Text Available Introduction. In this retrospective study we evaluated the multimodal visualization of retinal genetic diseases to better understand their natural course. Material and Methods. We reviewed the charts of 70 consecutive patients with different genetic retinal pathologies who had previously undergone multimodal imaging analyses. Genomic DNA was extracted from peripheral blood and genotyped at the known locus for the different diseases. Results. The medical records of 3 families of a 4-generation pedigree affected by North Carolina macular dystrophy were reviewed. A total of 8 patients with Stargardt disease were evaluated for their two main defining clinical characteristics, yellow subretinal flecks and central atrophy. Nine male patients with a previous diagnosis of choroideremia and eleven female carriers were evaluated. Fourteen patients with Best vitelliform macular dystrophy and 6 family members with autosomal recessive bestrophinopathy were included. Seven patients with enhanced s-cone syndrome were ascertained. Lastly, we included 3 unrelated patients with fundus albipunctatus. Conclusions. In hereditary retinal diseases, clinical examination is often not sufficient for evaluating the patient’s condition. Retinal imaging then becomes important in making the diagnosis, in monitoring the progression of disease, and as a surrogate outcome measure of the efficacy of an intervention.

  3. Ten unanswered questions in multimodal communication.

    Science.gov (United States)

    Partan, Sarah R

    2013-01-01

    The study of multimodal communication has become an active and vibrant field. This special issue of Behavioral Ecology and Sociobiology brings together new developments in this rapidly expanding area. In this final contribution to the special issue, I look to the future and discuss ten questions in need of further work, touching on issues ranging from theoretical modeling and the evolution of behavior to molecular mechanisms and the development of behavior. In particular, I emphasize that the use of multimodal communication allows animals to switch between sensory channels when one channel becomes too noisy, and suggest that a better understanding of this process may help us both to understand the evolution of multisensory signaling and to predict the success of species facing environmental changes that affect signaling channels, such as urbanization and climate change. An expanded section is included on the effects of climate change on animal communication across sensory channels, urging researchers to pursue this topic due to the rapidity with which the environment is currently transforming.

  4. ANALYSING SPACE: ADAPTING AND EXTENDING MULTIMODAL SEMIOTICS

    Directory of Open Access Journals (Sweden)

    Louise J. Ravelli

    2015-07-01

    Full Text Available In the field of multimodal discourse analysis, one of the most exciting sites of application is that of 3D space: examining aspects of built environment for its meaningmaking potential. For the built environment – homes, offices, public buildings, parks, etc. – does indeed make meaning. These are spaces which speak – often their meanings are so familiar, we no longer hear what they say; sometimes, new and unusual sites draw attention to their meanings, and they are hotly contested. This chapter will suggest ways of analyzing 3D texts, based on the framework of Kress and van Leeuwen (2006. This framework, developed primarily for the analysis of 2D images, has been successfully extended to a range of other multimodal texts. Extension to the built environment includes Pang (2004, O’Toole (1994, Ravelli (2006, Safeyton (2004, Stenglin (2004 and White (1994, whose studies will inform the analyses presented here. This article will identify some of the key theoretical principles which underline this approach, including the notions of text, context and metafunction, and will describe some of the main areas of analysis for 3D texts. Also, ways of bringing the analyses together will be considered. The analyses will be demonstrated in relation to the Scientia building at the University of New South Wales, Australia.

  5. Multimodal brain monitoring in fulminant hepatic failure.

    Science.gov (United States)

    Paschoal, Fernando Mendes; Nogueira, Ricardo Carvalho; Ronconi, Karla De Almeida Lins; de Lima Oliveira, Marcelo; Teixeira, Manoel Jacobsen; Bor-Seng-Shu, Edson

    2016-08-01

    Acute liver failure, also known as fulminant hepatic failure (FHF), embraces a spectrum of clinical entities characterized by acute liver injury, severe hepatocellular dysfunction, and hepatic encephalopathy. Cerebral edema and intracranial hypertension are common causes of mortality in patients with FHF. The management of patients who present acute liver failure starts with determining the cause and an initial evaluation of prognosis. Regardless of whether or not patients are listed for liver transplantation, they should still be monitored for recovery, death, or transplantation. In the past, neuromonitoring was restricted to serial clinical neurologic examination and, in some cases, intracranial pressure monitoring. Over the years, this monitoring has proven insufficient, as brain abnormalities were detected at late and irreversible stages. The need for real-time monitoring of brain functions to favor prompt treatment and avert irreversible brain injuries led to the concepts of multimodal monitoring and neurophysiological decision support. New monitoring techniques, such as brain tissue oxygen tension, continuous electroencephalogram, transcranial Doppler, and cerebral microdialysis, have been developed. These techniques enable early diagnosis of brain hemodynamic, electrical, and biochemical changes, allow brain anatomical and physiological monitoring-guided therapy, and have improved patient survival rates. The purpose of this review is to discuss the multimodality methods available for monitoring patients with FHF in the neurocritical care setting.

  6. Multimodal Network Equilibrium with Stochastic Travel Times

    Directory of Open Access Journals (Sweden)

    M. Meng

    2014-01-01

    Full Text Available The private car, unlike public traffic modes (e.g., subway, trolley running along dedicated track-ways, is invariably subject to various uncertainties resulting in travel time variation. A multimodal network equilibrium model is formulated that explicitly considers stochastic link capacity variability in the road network. The travel time of combined-mode trips is accumulated based on the concept of the mean excess travel time (METT which is a summation of estimated buffer time and tardy time. The problem is characterized by an equivalent VI (variational inequality formulation where the mode choice is expressed in a hierarchical logit structure. Specifically, the supernetwork theory and expansion technique are used herein to represent the multimodal transportation network, which completely represents the combined-mode trips as constituting multiple modes within a trip. The method of successive weighted average is adopted for problem solutions. The model and solution method are further applied to study the trip distribution and METT variations caused by the different levels of the road conditions. Results of numerical examples show that travelers prefer to choose the combined travel mode as road capacity decreases. Travelers with different attitudes towards risk are shown to exhibit significant differences when making travel choice decisions.

  7. A multimodal behavioral approach to performance anxiety.

    Science.gov (United States)

    Lazarus, Arnold A; Abramovitz, Arnold

    2004-08-01

    Cognitive-behavior therapy (CBT) stresses a trimodal assessment framework (affect, behavior, and cognition [ABC]), whereas the multimodal approach assesses seven discrete but interactive components--behavior, affect, sensation, imagery, cognition, interpersonal relationships, and drugs/biological factors (BASIC I.D.). Only complex or recalcitrant cases call for the entire seven-pronged range of multimodal interventions. Various case illustrations are offered as examples of how a clinician might proceed when confronted with problems that fall under the general heading of performance anxiety. The main example is of a violinist in a symphony orchestra whose career was in serious jeopardy because of his extreme fear of performing in public. He responded very well to a focused but elaborate desensitization procedure. The hierarchy that was eventually constructed contained many dimensions and subhierarchies featuring interlocking elements that evoked his anxiety. In addition to imaginal systematic desensitization, sessions were devoted to his actual performance in the clinical setting. As a homework assignment, he found it helpful to listen to a long-playing record of an actual rehearsal and to play along with the world-renowned orchestra and conductor. The subsequent disclosure by the client of an important sexual problem was dealt with concomitantly by using a fairly conventional counseling procedure. Therapy required 20 sessions over a 3-month period.

  8. Photonic lantern with multimode fibers embedded

    Science.gov (United States)

    Yu, Hai-Jiao; Yan, Qi; Huang, Zong-Jun; Tian, He; Jiang, Yu; Liu, Yong-Jun; Zhang, Jian-Zhong; Sun, Wei-Min

    2014-08-01

    A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined.

  9. Micro-Spec: An Ultracompact, High-sensitivity Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2014-01-01

    High-performance, integrated spectrometers operating in the far-infrared and submillimeter ranges promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a 4 inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (micron-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of (is) approximately 90% has been developed for initial demonstration and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

  10. Fast neutron detection with a segmented spectrometer

    Science.gov (United States)

    Langford, T. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Erwin, D. K.; Heimbach, C. R.; Nico, J. S.

    2015-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and 3He proportional counters was constructed for the measurement of neutrons in the energy range 1-200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  11. Digital Logarithmic Airborne Gamma Ray Spectrometer

    CERN Document Server

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  12. Digital logarithmic airborne gamma ray spectrometer

    Science.gov (United States)

    Zeng, Guo-Qiang; Zhang, Qing-Xian; Li, Chen; Tan, Cheng-Jun; Ge, Liang-Quan; Gu, Yi; Cheng, Feng

    2014-07-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range because the low-energy pulse signal has a larger gain than the high-energy pulse signal. After energy calibration, the spectrometer can clearly distinguish photopeaks at 239, 352, 583 and 609 keV in the low-energy spectral sections. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, it is possible to effectively measure energy from 20 keV to 10 MeV.

  13. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  14. A compact multichannel spectrometer for Thomson scattering.

    Science.gov (United States)

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  15. Fast Neutron Detection with a Segmented Spectrometer

    CERN Document Server

    Langford, T J; Beise, E J; Breuer, H; Erwin, D K; Heimbach, C R; Nico, J S

    2014-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination The spectrometer was characterized for energy resolution and efficiency in fast neutron fields of 2.5 MeV, 14 MeV, and fission spectrum neutrons, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  16. Gas-dust-impact mass spectrometer

    CERN Document Server

    Semkin, N D; Myasnikov, S V; Pomelnikov, R A

    2002-01-01

    Paper describes design of a mass spectrometer to study element composition of micro meteorite and man-made particles in space. Paper describes a way to improve resolution of mass spectrometer based on variation of parameters of accelerating electric field in time. The advantage of the given design of mass spectrometer in comparison with similar ones is its large operating area and higher resolution at the comparable weight and dimensions. Application of a combined design both for particles and for gas enables to remove space vehicle degassing products from the spectrum and, thus, to improve reliability of the acquired information, as well as, to acquire information on a gas component of the external atmosphere of a space vehicle

  17. Fast neutron detection with a segmented spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Langford, T.J., E-mail: thomas.langford@yale.edu [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Bass, C.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Beise, E.J.; Breuer, H.; Erwin, D.K. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Heimbach, C.R.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2015-01-21

    A fast neutron spectrometer consisting of segmented plastic scintillator and {sup 3}He proportional counters was constructed for the measurement of neutrons in the energy range 1–200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  18. A compact multichannel spectrometer for Thomson scatteringa)

    Science.gov (United States)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  19. Performance Evaluation of Multimodal Multifeature Authentication System Using KNN Classification

    Directory of Open Access Journals (Sweden)

    Gayathri Rajagopal

    2015-01-01

    Full Text Available This research proposes a multimodal multifeature biometric system for human recognition using two traits, that is, palmprint and iris. The purpose of this research is to analyse integration of multimodal and multifeature biometric system using feature level fusion to achieve better performance. The main aim of the proposed system is to increase the recognition accuracy using feature level fusion. The features at the feature level fusion are raw biometric data which contains rich information when compared to decision and matching score level fusion. Hence information fused at the feature level is expected to obtain improved recognition accuracy. However, information fused at feature level has the problem of curse in dimensionality; here PCA (principal component analysis is used to diminish the dimensionality of the feature sets as they are high dimensional. The proposed multimodal results were compared with other multimodal and monomodal approaches. Out of these comparisons, the multimodal multifeature palmprint iris fusion offers significant improvements in the accuracy of the suggested multimodal biometric system. The proposed algorithm is tested using created virtual multimodal database using UPOL iris database and PolyU palmprint database.

  20. Performance evaluation of similarity measures for dense multimodal stereovision

    Science.gov (United States)

    Yaman, Mustafa; Kalkan, Sinan

    2016-05-01

    Multimodal imaging systems have recently been drawing attention in fields such as medical imaging, remote sensing, and video surveillance systems. In such systems, estimating depth has become possible due to the promising progress of multimodal matching techniques. We perform a systematic performance evaluation of similarity measures frequently used in the literature for dense multimodal stereovision. The evaluated measures include mutual information (MI), sum of squared distances, normalized cross-correlation, census transform, local self-similarity (LSS) as well as descriptors adopted to multimodal settings, like scale invariant feature transform (SIFT), speeded-up robust features (SURF), histogram of oriented gradients (HOG), binary robust independent elementary features, and fast retina keypoint (FREAK). We evaluate the measures over datasets we generated, compiled, and provided as a benchmark and compare the performances using the Winner Takes All method. The datasets are (1) synthetically modified four popular pairs from the Middlebury Stereo Dataset (namely, Tsukuba, Venus, Cones, and Teddy) and (2) our own multimodal image pairs acquired using the infrared and the electro-optical cameras of a Kinect device. The results show that MI and HOG provide promising results for multimodal imagery, and FREAK, SURF, SIFT, and LSS can be considered as alternatives depending on the multimodality level and the computational complexity requirements of the intended application.

  1. Towards an intelligent framework for multimodal affective data analysis.

    Science.gov (United States)

    Poria, Soujanya; Cambria, Erik; Hussain, Amir; Huang, Guang-Bin

    2015-03-01

    An increasingly large amount of multimodal content is posted on social media websites such as YouTube and Facebook everyday. In order to cope with the growth of such so much multimodal data, there is an urgent need to develop an intelligent multi-modal analysis framework that can effectively extract information from multiple modalities. In this paper, we propose a novel multimodal information extraction agent, which infers and aggregates the semantic and affective information associated with user-generated multimodal data in contexts such as e-learning, e-health, automatic video content tagging and human-computer interaction. In particular, the developed intelligent agent adopts an ensemble feature extraction approach by exploiting the joint use of tri-modal (text, audio and video) features to enhance the multimodal information extraction process. In preliminary experiments using the eNTERFACE dataset, our proposed multi-modal system is shown to achieve an accuracy of 87.95%, outperforming the best state-of-the-art system by more than 10%, or in relative terms, a 56% reduction in error rate.

  2. Multimodal Task-Driven Dictionary Learning for Image Classification.

    Science.gov (United States)

    Bahrampour, Soheil; Nasrabadi, Nasser M; Ray, Asok; Jenkins, William Kenneth

    2016-01-01

    Dictionary learning algorithms have been successfully used for both reconstructive and discriminative tasks, where an input signal is represented with a sparse linear combination of dictionary atoms. While these methods are mostly developed for single-modality scenarios, recent studies have demonstrated the advantages of feature-level fusion based on the joint sparse representation of the multimodal inputs. In this paper, we propose a multimodal task-driven dictionary learning algorithm under the joint sparsity constraint (prior) to enforce collaborations among multiple homogeneous/heterogeneous sources of information. In this task-driven formulation, the multimodal dictionaries are learned simultaneously with their corresponding classifiers. The resulting multimodal dictionaries can generate discriminative latent features (sparse codes) from the data that are optimized for a given task such as binary or multiclass classification. Moreover, we present an extension of the proposed formulation using a mixed joint and independent sparsity prior, which facilitates more flexible fusion of the modalities at feature level. The efficacy of the proposed algorithms for multimodal classification is illustrated on four different applications--multimodal face recognition, multi-view face recognition, multi-view action recognition, and multimodal biometric recognition. It is also shown that, compared with the counterpart reconstructive-based dictionary learning algorithms, the task-driven formulations are more computationally efficient in the sense that they can be equipped with more compact dictionaries and still achieve superior performance.

  3. Vacuum system for the SAMURAI spectrometer

    Science.gov (United States)

    Shimizu, Y.; Otsu, H.; Kobayashi, T.; Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K.

    2013-12-01

    The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  4. SAMURAI spectrometer for RI beam experiments

    Science.gov (United States)

    Kobayashi, T.; Chiga, N.; Isobe, T.; Kondo, Y.; Kubo, T.; Kusaka, K.; Motobayashi, T.; Nakamura, T.; Ohnishi, J.; Okuno, H.; Otsu, H.; Sako, T.; Sato, H.; Shimizu, Y.; Sekiguchi, K.; Takahashi, K.; Tanaka, R.; Yoneda, K.

    2013-12-01

    A large-acceptance multiparticle spectrometer SAMURAI has been constructed at the RIKEN RI Beam Factory (RIBF) for RI beam experiments. It was designed primarily for kinematically complete experiments such as the invariant-mass spectroscopy of particle-unbound states in exotic nuclei, by detecting heavy fragments and projectile-rapidity nucleons in coincidence. The system consists of a superconducting dipole magnet, beam line detectors, heavy fragment detectors, neutron detectors, and proton detectors. The SAMURAI spectrometer was commissioned in March 2012, and a rigidity resolution of about 1/1500 was obtained for RI beams up to 2.4 GeV/c.

  5. SAMURAI spectrometer for RI beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: kobayash@lambda.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Chiga, N. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Isobe, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Kondo, Y. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Kubo, T.; Kusaka, K.; Motobayashi, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nakamura, T. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Ohnishi, J.; Okuno, H.; Otsu, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Sako, T. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Sato, H.; Shimizu, Y. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Sekiguchi, K.; Takahashi, K. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Tanaka, R. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Yoneda, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2013-12-15

    A large-acceptance multiparticle spectrometer SAMURAI has been constructed at the RIKEN RI Beam Factory (RIBF) for RI beam experiments. It was designed primarily for kinematically complete experiments such as the invariant-mass spectroscopy of particle-unbound states in exotic nuclei, by detecting heavy fragments and projectile-rapidity nucleons in coincidence. The system consists of a superconducting dipole magnet, beam line detectors, heavy fragment detectors, neutron detectors, and proton detectors. The SAMURAI spectrometer was commissioned in March 2012, and a rigidity resolution of about 1/1500 was obtained for RI beams up to 2.4 GeV/c.

  6. Acousto-optic spectrometer for radio astronomy

    Science.gov (United States)

    Chin, G.; Buhl, D.; Florez, J. M.

    1980-01-01

    A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be performed. The experiment is controlled and the data are displayed and stored with an LSI-2 microcomputer system with dual floppy discs. The performance of the prototype acousto-optic spectrometer obtained from initial tests is reported.

  7. Wide size range fast integrated mobility spectrometer

    Science.gov (United States)

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  8. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  9. Preliminary results from a new spin spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G.; Bedrossian, P.J. [Lawrence Livermore National Lab., CA (United States); Cummins, T.R. [Univ. of Missouri, Rolla, MO (United States). Dept. of Physics] [and others

    1998-12-31

    The first preliminary results from a novel spectrometer for elementally-specific measurements of magnetic surfaces and ultrathin films are presented here. The key measurements are based upon spin-resolving and photon-dichroic photoelectron spectroscopy. True spin-resolution is achieved by the use of a Mini-Mott detection scheme. The photon-dichroic measurements include the variant magnetic x-ray linear dichroism (MXLD). Both a multi-channel, energy dispersive collection scheme as well as the spin-detecting Mini-Mott apparatus are used in data collection. The Spin Spectrometer is based at the Spectromicroscopy Facility (Beamline 7) at the Advanced Light Source.

  10. A 4[pi] dilepton spectrometer: PEPSI

    Energy Technology Data Exchange (ETDEWEB)

    Buda, A. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Bacelar, J.C.S. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Balanda, A. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Klinken, J. van (Kernfysisch Versneller Inst., Groningen (Netherlands)); Sujkowski, Z. (Kernfysisch Versneller Inst., Groningen (Netherlands)); Woude, A. van der (Kernfysisch Versneller Inst., Groningen (Netherlands))

    1993-11-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd[sub 2]Fe[sub 14]B permanent magnets forming a compact 4[pi] magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ([alpha][sub [pi

  11. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  12. Aberrations of the point spread function of a multimode fiber

    CERN Document Server

    Descloux, Adrien; Pinkse, Pepijn W H

    2016-01-01

    We investigate the point spread function of a multimode fiber. The distortion of the focal spot created on the fiber output facet is studied for a variety of the parameters. We develop a theoretical model of wavefront shaping through a multimode fiber and use it to confirm our experimental results and analyze the nature of the focal distortions. We show that aberration-free imaging with a large field of view can be achieved by using an appropriate number of segments on the spatial light modulator during the wavefront-shaping procedure. The results describe aberration limits for imaging with multimode fibers as in, e.g., microendoscopy.

  13. Multimodal approaches to use mobile, digital devices in learning practies

    DEFF Research Database (Denmark)

    Buhl, Mie

    In this paper, I discuss the potential of multimodal approaches to enhance learning processes. I draw on a case based on Danish Master Courses in ICT and didactic designs where multimodal approaches are in the center of students’ practical design experience as well as in generation of theoretical...... framework draws on recent currents in the field of multimodality and learning, visual culture pedagogy, ict and didactic designs, art and aesthetics....... that support and facilitate the processes of transforming experiences into theoretical knowledge. I argue that this didactic concept enhances a sensitive cognition based on rationality as described by the philosopher Baumgarten (1750). Furthermore, I argue that the emergence of mobile digital devices...

  14. In vivo multimodal nonlinear optical imaging of mucosal tissue

    Science.gov (United States)

    Sun, Ju; Shilagard, Tuya; Bell, Brent; Motamedi, Massoud; Vargas, Gracie

    2004-05-01

    We present a multimodal nonlinear imaging approach to elucidate microstructures and spectroscopic features of oral mucosa and submucosa in vivo. The hamster buccal pouch was imaged using 3-D high resolution multiphoton and second harmonic generation microscopy. The multimodal imaging approach enables colocalization and differentiation of prominent known spectroscopic and structural features such as keratin, epithelial cells, and submucosal collagen at various depths in tissue. Visualization of cellular morphology and epithelial thickness are in excellent agreement with histological observations. These results suggest that multimodal nonlinear optical microscopy can be an effective tool for studying the physiology and pathology of mucosal tissue.

  15. Multi-modality molecular imaging for gastric cancer research

    Science.gov (United States)

    Liang, Jimin; Chen, Xueli; Liu, Junting; Hu, Hao; Qu, Xiaochao; Wang, Fu; Nie, Yongzhan

    2011-12-01

    Because of the ability of integrating the strengths of different modalities and providing fully integrated information, multi-modality molecular imaging techniques provide an excellent solution to detecting and diagnosing earlier cancer, which remains difficult to achieve by using the existing techniques. In this paper, we present an overview of our research efforts on the development of the optical imaging-centric multi-modality molecular imaging platform, including the development of the imaging system, reconstruction algorithms and preclinical biomedical applications. Primary biomedical results show that the developed optical imaging-centric multi-modality molecular imaging platform may provide great potential in the preclinical biomedical applications and future clinical translation.

  16. Monitoring of the molecular structure of lubricant oil using a FT-Raman spectrometer prototype

    Science.gov (United States)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Curticapean, Dan; Javahiraly, Nicolas; Meyrueis, Patrick

    2014-05-01

    The determination of the physical state of the lubricant materials in complex mechanical systems is highly critical from different points of view: operative, economical, environmental, etc. Furthermore, there are several parameters that a lubricant oil must meet for a proper performance inside a machine. The monitoring of these lubricants can represent a serious issue depending on the analytical approach applied. The molecular change of aging lubricant oils have been analyzed using an all-standard-components and self-designed FT-Raman spectrometer. This analytical tool allows the direct and clean study of the vibrational changes in the molecular structure of the oils without having direct contact with the samples and without extracting the sample from the machine in operation. The FT-Raman spectrometer prototype used in the analysis of the oil samples consist of a Michelson interferometer and a self-designed photon counter cooled down on a Peltier element arrangement. The light coupling has been accomplished by using a conventional 62.5/125μm multi-mode fiber coupler. The FT-Raman arrangement has been able to extract high resolution and frequency precise Raman spectra, comparable to those obtained with commercial FT-Raman systems, from the lubricant oil samples analyzed. The spectral information has helped to determine certain molecular changes in the initial phases of wearing of the oil samples. The proposed instrument prototype has no additional complex hardware components or costly software modules. The mechanical and thermal irregularities influencing the FT-Raman spectrometer have been removed mathematically by accurately evaluating the optical path difference of the Michelson interferometer. This has been achieved by producing an additional interference pattern signal with a λ= 632.8 nm helium-neon laser, which differs from the conventional zero-crossing sampling (also known as Connes advantage) commonly used by FT-devices. It enables the FT-Raman system to

  17. MMI-based MOEMS FT spectrometer for visible and IR spectral ranges

    Science.gov (United States)

    Al-Demerdash, Bassem M.; Medhat, Mostafa; Sabry, Yasser M.; Saadany, Bassam; Khalil, Diaa

    2014-03-01

    MEMS spectrometers have very strong potential in future healthcare and environmental monitoring applications, where Michelson interferometers are the core optical engine. Recently, MEMS Michelson interferometers based on using silicon interface as a beam splitter (BS) has been proposed [7, 8]. This allows having a monolithically-integrated on-chip FTIR spectrometer. However silicon BS exhibits high absorption loss in the visible range and high material dispersion in the near infrared (NIR) range. For this reason, we propose in this work a novel MOEMS interferometer allowing operation over wider spectral range covering both the infrared (IR) and the visible ranges. The proposed architecture is based on spatial splitting and combining of optical beams using the imaging properties of Multi-Mode Interference MMI waveguide. The proposed structure includes an optical splitter for spatial splitting an input beam into two beams and a combiner for spatial combining the two interferometer beams. A MEMS moveable mirror is provided to produce an optical path difference between the two beams. The new interferometer is fabricated using DRIE technology on an SOI wafer. The movable mirror is metalized and attached to a comb-drive actuator fabricated in the same lithography step in a self-aligned manner on chip. The novel interferometer is tested as a Fourier transform spectrometer. Red laser, IR laser and absorption spectra of different materials are measured with a resolution of 2.5 nm at 635-nm wavelength. The structure is a very compact one that allows its integration and fabrication on a large scale with very low cost.

  18. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  19. Investigation on a compact in-line multimode-single-mode-multimode fiber structure

    Science.gov (United States)

    Yin, Bin; Li, Yang; Liu, Zhi-bo; Feng, Suchun; Bai, Yunlong; Xu, Yao; Jian, Shuisheng

    2016-06-01

    We carried out a detailed investigation on a compact in-line multimode single-mode multimode (MSM) fiber structure. Both theoretical modal and experimental setup were established to demonstrate the transmission characteristics and the corresponding responses of the applied strain and temperature. The proposed structure simply involves a section of the single-mode fiber (SMF) spliced to two sections of multimode fiber (MMF) and lead-in and lead-out SMFs. The excited environment-sensitive cladding modes together with the fundamental mode in the central SMF form a typical Mach-Zehnder interferometer (MZI). We analyzed the transmission characteristics of the different length of the middle SMF and the MMF in detail. In the experiment, we obtained the extinction ratio of the MSM fiber structure based MZI comb spectrum which was up to 20 dB, and sensitivities of 0.7096 pm/με (0-2000 με) and 44.12 pm/°C (10-70 °C), which proved the potential sensing applications of the proposed fiber structure.

  20. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  1. IR spectrometer project for the BTA telescope

    Science.gov (United States)

    Afanasiev, V. L.; Emelianov, E. V.; Murzin, V. A.; Vdovin, V. F.

    2013-07-01

    We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).

  2. A 4-PI DILEPTON SPECTROMETER - PEPSI

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JCS; BALANDA, A; VANKLINKEN, J; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd2Fe14B permanent magnets forming a compact 4 pi magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response f

  3. Handheld miniature ion trap mass spectrometers.

    Science.gov (United States)

    Ouyang, Zheng; Noll, Robert J; Cooks, R Graham

    2009-04-01

    For field applications, "miniature" and "rapid" have become almost synonymous, yet these small mass spectrometers are not useful if performance is too severely compromised. (To listen to a podcast about this feature, please go to the Analytical Chemistry website at pubs.acs.org/journal/ancham .).

  4. Triple-axis spectrometer DruechaL

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W.; Keller, P. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs.

  5. Neutron spectrometer for fast nuclear reactors

    CERN Document Server

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  6. Resolution of a triple axis spectrometer

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1969-01-01

    A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, involving a combination of direct measurement and analytical calculation. All factors which contribute to the finite resolution of the instrument may be taken into account, and Gaussian...

  7. Study and Demarcating of Electron Magnetic Spectrometer

    Institute of Scientific and Technical Information of China (English)

    LIYe-jun; SHANYu-sheng; TAOYe-zheng; CHENGYou-jian; ZHANGHai-feng

    2003-01-01

    The principle of electron magnetic spectrometer is a moving charged particle circles a central point for the Lorenz force when it moves in a steady magnetic field, at the same time, we consider the influence of gravity excursion, magnetic grads excursion and curvature excursion. Having adopted yoke iron equalizing technology and had magnetic field and gravity field at the same line.

  8. Imaging mass spectrometer with mass tags

    Science.gov (United States)

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  9. A compact positron annihilation lifetime spectrometer

    Institute of Scientific and Technical Information of China (English)

    李道武; 刘军辉; 章志明; 王宝义; 张天保; 魏龙

    2011-01-01

    Using LYSO scintillator coupled on HAMAMATSU R9800 (a fast photomultiplier) to form the small size γ-ray detectors, a compact lifetime spectrometer has been built for the positron annihilation experiments. The system time resolution FWHM=193 ps and the co

  10. A 4-PI DILEPTON SPECTROMETER - PEPSI

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JCS; BALANDA, A; VANKLINKEN, J; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd2Fe14B permanent magnets forming a compact 4 pi magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response f

  11. HyTES: Thermal Imaging Spectrometer Development

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

    2011-01-01

    The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

  12. Cryogenic imaging x-ray spectrometer

    NARCIS (Netherlands)

    Wiegerink, Remco J.; van Baar, J.J.J.; de Boer, J.H.; Ridder, M.L.; Bruijn, M.P.; Germeau, A.; Hoevers, H.F.C.

    2005-01-01

    A micro-calorimeter array consisting of superconducting transition-edge sensors is under development for the X-ray imaging spectrometer on board of ESA's XEUS (X-ray Evolving Universe Spectroscopy) mission. An array of 32 /spl times/ 32 pixels with a pixel size of 250 micron square is envisaged. So

  13. Digital Signal Processing in the GRETINA Spectrometer

    Science.gov (United States)

    Cromaz, Mario

    2015-10-01

    Developments in the segmentation of large-volume HPGe crystals has enabled the development of high-efficiency gamma-ray spectrometers which have the ability to track the path of gamma-rays scattering through the detector volume. This technology has been successfully implemented in the GRETINA spectrometer whose high efficiency and ability to perform precise event-by-event Doppler correction has made it an important tool in nuclear spectroscopy. Tracking has required the spectrometer to employ a fully digital signal processing chain. Each of the systems 1120 channels are digitized by 100 Mhz, 14-bit flash ADCs. Filters that provide timing and high-resolution energies are implemented on local FPGAs acting on the ADC data streams while interaction point locations and tracks, derived from the trace on each detector segment, are calculated in real time on a computing cluster. In this presentation we will give a description of GRETINA's digital signal processing system, the impact of design decisions on system performance, and a discussion of possible future directions as we look towards soon developing larger spectrometers such as GRETA with full 4 π solid angle coverage. This work was supported by the Office of Science in the Department of Energy under grant DE-AC02-05CH11231.

  14. A 4-PI DILEPTON SPECTROMETER - PEPSI

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JCS; BALANDA, A; VANKLINKEN, J; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd2Fe14B permanent magnets forming a compact 4 pi magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response

  15. Broadband Infrared Heterodyne Spectrometer: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, C G; Cunningham, C T; Tringe, J W

    2010-12-16

    This report summarizes the most important results of our effort to develop a new class of infrared spectrometers based on a novel broadband heterodyne design. Our results indicate that this approach could lead to a near-room temperature operation with performance limited only by quantum noise carried by the incoming signal. Using a model quantum-well infrared photodetector (QWIP), we demonstrated key performance features of our approach. For example, we directly measured the beat frequency signal generated by superimposing local oscillator (LO) light of one frequency and signal light of another through a spectrograph, by injecting the LO light at a laterally displaced input location. In parallel with the development of this novel spectrometer, we modeled a new approach to reducing detector volume though plasmonic resonance effects. Since dark current scales directly with detector volume, this ''photon compression'' can directly lead to lower currents. Our calculations indicate that dark current can be reduced by up to two orders of magnitude in an optimized ''superlens'' structure. Taken together, our spectrometer and dark current reduction strategies provide a promising path toward room temperature operation of a mid-wave and possibly long-wave infrared spectrometer.

  16. IR Spectrometer Project for the BTA Telescope

    OpenAIRE

    Afanasiev, V. L.; Emelianov, E. V.; Murzin, V. A.; Vdovin, V. F.

    2013-01-01

    We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).

  17. Computer Enhanced SRO NQR-Spectrometer

    Science.gov (United States)

    Mano, Koichi; Hashimoto, Masao

    1986-02-01

    An automatic computer supported SRO NQR spectrometer system was constructed for the measurement of time dependent NQR signal intensities. The system has several functions: fast scanning (500 kH z/25 s), averaging, smoothing, automatic noise level estimation, automatic peak detection, etc. The process of the ß → α phase transition of p-dichlorobenzene is illustrated by the 3-dimensional spectrum .

  18. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Schulze-Briese, Clemens [DECTRIS Ltd, CH-5400 Baden (Switzerland); Fuchs, Martin R., E-mail: mfuchs@bnl.gov [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2013-09-01

    The new version MS2 of the in situ on-axis micro-spectrophotometer at the macromolecular crystallography beamline X10SA of the Swiss Light Source supports the concurrent acquisition of Raman, resonance Raman, fluorescence and UV/Vis absorption spectra along with diffraction data. The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  19. Multimodal interfaces with voice and gesture input

    Energy Technology Data Exchange (ETDEWEB)

    Milota, A.D.; Blattner, M.M.

    1995-07-20

    The modalities of speech and gesture have different strengths and weaknesses, but combined they create synergy where each modality corrects the weaknesses of the other. We believe that a multimodal system such a one interwining speech and gesture must start from a different foundation than ones which are based solely on pen input. In order to provide a basis for the design of a speech and gesture system, we have examined the research in other disciplines such as anthropology and linguistics. The result of this investigation was a taxonomy that gave us material for the incorporation of gestures whose meanings are largely transparent to the users. This study describes the taxonomy and gives examples of applications to pen input systems.

  20. Entanglement frustration in multimode Gaussian states

    CERN Document Server

    Lupo, Cosmo; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio

    2011-01-01

    Bipartite entanglement between two parties of a composite quantum system can be quantified in terms of the purity of one party and there always exists a pure state of the total system that maximizes it (and minimizes purity). When many different bipartitions are considered, the requirement that purity be minimal for all bipartitions gives rise to the phenomenon of entanglement frustration. This feature, observed in quantum systems with both discrete and continuous variables, can be studied by means of a suitable cost function whose minimizers are the maximally multipartite-entangled states (MMES). In this paper we extend the analysis of multipartite entanglement frustration of Gaussian states in multimode bosonic systems. We derive bounds on the frustration, under the constraint of finite mean energy, in the low and high energy limit.

  1. Anatomy and efficiency of urban multimodal mobility

    CERN Document Server

    Gallotti, Riccardo

    2014-01-01

    The growth of transportation networks and their increasing interconnections, although positive, has the downside effect of an increasing complexity which make them difficult to use, to assess, and limits their efficiency. On average in the UK, 23% of travel time is lost in connections for trips with more than one mode, and the lack of synchronization decreases very slowly with population size. This lack of synchronization between modes induces differences between the theoretical quickest trip and the `time-respecting' path, which takes into account waiting times at interconnection nodes. We analyse here the statistics of these paths on the multilayer, temporal network of the entire, multimodal british public transportation system. We propose a statistical decomposition -- the `anatomy' -- of trips in urban areas, in terms of riding, waiting and walking times, and which shows how the temporal structure of trips varies with distance and allows us to compare different cities. Weaknesses in systems can be either ...

  2. Multimodal Evolution Approach to Multidimensional Intrusion Detection

    Institute of Scientific and Technical Information of China (English)

    Weng Guang'an; Yu Shengsheng; Zhou Jingli

    2006-01-01

    An artificial immunity based multimodal evolution algorithm is developed to generate detectors with variable coverage for multidimensional intrusion detection. In this algorithm, a proper fitness function is used to drive the detectors to fill in those detection holes close to self set or among self spheres, and genetic algorithm is adopted to reduce the negative effects that different distribution of self imposes on the detector generating process. The validity of the algorithm is tested with spherical and rectangular detectors,respectively, and experiments performed on two real data sets ( machine learning database and DAPRA99) indicate that the proposed algorithm can obtain good results on spherical detectors, and that its performances in detection rate, false alarm rate, stability, time cost, and adaptability to incomplete training set on spherical detectors are all better than on rectangular ones.

  3. Compressive multi-mode superresolution display

    KAUST Repository

    Heide, Felix

    2014-01-01

    Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image. © 2014 Optical Society of America.

  4. Photon correlations in multi-mode waveguides

    CERN Document Server

    Poem, Eilon; 10.1103/PhysRevA.84.041805

    2012-01-01

    We consider the propagation of classical and non-classical light in multi-mode optical waveguides. We focus on the evolution of the few-photon correlation functions, which, much like the light-intensity distribution in such systems, evolve in a periodic manner, culminating in the 'revival' of the initial correlation pattern at the end of each period. It is found that when the input state possesses non trivial symmetries, the correlation revival period can be longer than that of the intensity, and thus the same intensity pattern can display different correlation patterns. We experimentally demonstrate this effect for classical, pseudo-thermal light, and compare the results with the predictions for non-classical, quantum light.

  5. Adesivos universais ou multi-mode

    OpenAIRE

    Tavares, Ana Sofia Peixe

    2016-01-01

    Os adesivos Universais (SAU) ou Multi-mode são dispositivos recentemente lançados no mercado que visam oferecer ao Médico Dentista a livre escolha da estratégia de adesão (ER e SE) a usar consoante o tipo de condição clínica. Estes adesivos são categorizados como Universais por serem versáteis quanto ás suas instruções de uso e áreas de aplicação. Na realidade, os SAU são uma extensão melhorada e adaptada, dos adesivos SE. O presente trabalho consiste numa revisão narrativa sob...

  6. Multimode bolometer development for the PIXIE instrument

    CERN Document Server

    Nagler, Peter C; Denis, Kevin L; Devasia, Archana M; Fixsen, Dale J; Kogut, Alan J; Manos, George; Porter, Scott; Stevenson, Thomas R

    2016-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With $\\sim30$ times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance ...

  7. Multimodality imaging of structure and function

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, D W [Departments of Medicine and Radiology, University of Tennessee Medical Center, 1924 Alcoa Highway, Knoxville, TN 37920 (United States)], E-mail: dtownsend@mc.utmck.edu

    2008-02-21

    Historically, medical devices to image either anatomical structure or functional processes have developed along somewhat independent paths. The recognition that combining images from different modalities can nevertheless offer significant diagnostic advantages gave rise to sophisticated software techniques to coregister structure and function. Recently, alternatives to retrospective software-based fusion have become available through instrumentation that combines two imaging modalities within a single device, an approach that has since been termed hardware fusion. As a result, following their recent introduction into the clinic, combined PET/CT and SPECT/CT devices are now playing an increasingly important role in the diagnosis and staging of human disease. Recently, although limited to the brain, the first clinical MR scanner with a PET insert, a technically-challenging design, has been undergoing evaluation. This review will follow the development of multimodality instrumentation for clinical use from conception to present-day technology and assess the status and future potential for such devices. (topical review)

  8. Multimode directionality in all-dielectric metasurfaces

    CERN Document Server

    Yang, Yuanqing; Kostinski, Sarah V; Odit, Mikhail; Kapitanova, Polina; Qiu, Min; Kivshar, Yuri

    2016-01-01

    All-dielectric resonant nanophotonics has emerged recently as a new direction of research aiming at the manipulation of strong optically-induced electric and magnetic Mie resonances in dielectric nanoparticles with high refractive index, for a design of metadevices with reduced dissipative losses and large resonant enhancement of both electric and magnetic fields. Usually, the geometry of dielectric nanoparticles is considered to be close to either sphere or rod, so the exact Mie solutions of the scattering problem are applied. Here we study nanoparticles with a large aspect ratio (such as nanobars) and describe a novel type of hybrid Mie-Fabry-Perot modes responsible for the existence of multiple magnetic dipole resonances. The multiple magnetic dipoles originate from a combination of a magnetic dipolar mode and a number of standing waves of an elongated anisotropic nanobar. We reveal that these novel hybrid modes can interfere constructively with the induced electric dipoles and thereby lead to multimode un...

  9. Hearables: Multimodal physiological in-ear sensing

    CERN Document Server

    Goverdovsky, Valentin; Nakamura, Takashi; Looney, David; Sharp, David J; Papavassiliou, Christos; Morrell, Mary J; Mandic, Danilo P

    2016-01-01

    Future health systems require the means to assess and track the neural and physiological function of a user over long periods of time and in the community. Human body responses are manifested through multiple modalities, such as the mechanical, electrical and chemical; yet current physiological monitors (actigraphy, heart rate) largely lack in both the desired cross-modal and non-stigmatizing aspects. We address these challenges through an inconspicuous and comfortable earpiece, equipped with miniature multimodal sensors, which benefits from the relatively stable position of the ear canal with respect to vital organs to robustly measure the brain, cardiac and respiratory functions. Comprehensive experiments validate each modality within the proposed earpiece, while its potential in health monitoring is illustrated through case studies. We further demonstrate how combining data from multiple sensors within such an integrated wearable device improves both the accuracy of measurements and the ability to deal wit...

  10. Azimut: a multimodal locomotion robotic platform

    Science.gov (United States)

    Michaud, Francois; Letourneau, Dominic; Arsenault, Martin; Bergeron, Yann; Cadrin, Richard; Gagnon, Frederic; Legault, Marc-Antoine; Millette, Mathieu; Pare, Jean-Francois; Tremblay, Marie-Christine; Lepage, Pierre; Morin, Yan; Caron, Serge

    2003-09-01

    Other than from its sensing and processing capabilities, a mobile robotic platform can be limited in its use by its ability to move in the environment. A wheeled robot works well on flat surfaces. Tracks are useful over rough terrains, while legs allow a robot to move over obstacles. In this paper we present a new concept of mobile robot with the objective of combining different locomotion mechanisms on the same platform to increase its locomotion capabilities. After presenting a review of multi-modal robotic platforms, we describe the design of our robot called AZIMUT. AZIMUT combines wheels, legs and tracks to move in three-dimensional environments. The robot is symmetrical and is made of four independent leg-track-wheel articulations. It can move with its articulations up, down or straight, or move sideways without changing the robot's orientation. The robot could be used in surveillance and rescue missions, exploration or operation in hazardous environments.

  11. Investigating multimodal communication in virtual meetings

    DEFF Research Database (Denmark)

    Persson, John Stouby; Mathiassen, Lars

    2014-01-01

    propositions that explain how interrelating of verbal and visual acts based on shared dynamic representations enable communication repairs during virtual meetings. We argue the proposed framework provides researchers with a novel and practical approach to investigate the complex data involved in virtual......To manage distributed work, organizations increasingly rely on virtual meetings based on multimodal, synchronous communication technologies. However, despite technological advances, it is still challenging to coordinate knowledge through these meetings with spatial and cultural separation. Against...... recordings of their oral exchanges and video recordings of their shared dynamic representation of the project’s status and plans, our analysis reveals how their interrelating of visual and verbal communication acts enabled effective communication and coordination. In conclusion, we offer theoretical...

  12. Automatic processing of multimodal tomography datasets.

    Science.gov (United States)

    Parsons, Aaron D; Price, Stephen W T; Wadeson, Nicola; Basham, Mark; Beale, Andrew M; Ashton, Alun W; Mosselmans, J Frederick W; Quinn, Paul D

    2017-01-01

    With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickly as possible is required in order to be able to address the core scientific problems during the experimental data collection. Savu is an accessible and flexible big data processing framework that is able to deal with both the variety and the volume of data of multimodal and multidimensional scientific datasets output such as those from chemical tomography experiments on the I18 microfocus scanning beamline at Diamond Light Source.

  13. Managing hyperemesis gravidarum: a multimodal challenge

    Directory of Open Access Journals (Sweden)

    Mylonas I

    2010-07-01

    Full Text Available Abstract Up to 90% of pregnant women experience nausea and vomiting. When prolonged or severe, this is known as hyperemesis gravidarum (HG, which can, in individual cases, be life threatening. In this article the aetiology, diagnosis and treatment strategies will be presented based on a selective literature review. Treatment strategies range from outpatient dietary advice and antiemetic drugs to hospitalization and intravenous (IV fluid replacement in persistent or severe cases. Alternative methods, such as acupuncture, are not yet evidence based but sometimes have a therapeutic effect. In most cases, the condition is self limiting and subsides by around 20 weeks gestation. More severe forms require medical intervention once other organic causes of nausea and vomiting have been excluded. In addition, a psychosomatic approach is often helpful. In view of its potential complexity, general practitioners and obstetricians should be well informed about HG and therapy should be multimodal.

  14. Multimodal event streams for virtual reality

    Science.gov (United States)

    von Spiczak, J.; Samset, E.; DiMaio, S.; Reitmayr, G.; Schmalstieg, D.; Burghart, C.; Kikinis, R.

    2007-01-01

    Applications in the fields of virtual and augmented reality as well as image-guided medical applications make use of a wide variety of hardware devices. Existing frameworks for interconnecting low-level devices and high-level application programs do not exploit the full potential for processing events coming from arbitrary sources and are not easily generalizable. In this paper, we will introduce a new multi-modal event processing methodology using dynamically-typed event attributes for event passing between multiple devices and systems. The existing OpenTracker framework was modified to incorporate a highly flexible and extensible event model, which can store data that is dynamically created and arbitrarily typed at runtime. The main factors impacting the library's throughput were determined and the performance was shown to be sufficient for most typical applications. Several sample applications were developed to take advantage of the new dynamic event model provided by the library, thereby demonstrating its flexibility and expressive power.

  15. Testing Two Tools for Multimodal Navigation

    Directory of Open Access Journals (Sweden)

    Mats Liljedahl

    2012-01-01

    Full Text Available The latest smartphones with GPS, electronic compasses, directional audio, touch screens, and so forth, hold a potential for location-based services that are easier to use and that let users focus on their activities and the environment around them. Rather than interpreting maps, users can search for information by pointing in a direction and database queries can be created from GPS location and compass data. Users can also get guidance to locations through point and sweep gestures, spatial sound, and simple graphics. This paper describes two studies testing two applications with multimodal user interfaces for navigation and information retrieval. The applications allow users to search for information and get navigation support using combinations of point and sweep gestures, nonspeech audio, graphics, and text. Tests show that users appreciated both applications for their ease of use and for allowing users to interact directly with the surrounding environment.

  16. Managing hyperemesis gravidarum: a multimodal challenge.

    Science.gov (United States)

    Jueckstock, J K; Kaestner, R; Mylonas, I

    2010-07-15

    Up to 90% of pregnant women experience nausea and vomiting. When prolonged or severe, this is known as hyperemesis gravidarum (HG), which can, in individual cases, be life threatening. In this article the aetiology, diagnosis and treatment strategies will be presented based on a selective literature review. Treatment strategies range from outpatient dietary advice and antiemetic drugs to hospitalization and intravenous (IV) fluid replacement in persistent or severe cases. Alternative methods, such as acupuncture, are not yet evidence based but sometimes have a therapeutic effect.In most cases, the condition is self limiting and subsides by around 20 weeks gestation. More severe forms require medical intervention once other organic causes of nausea and vomiting have been excluded. In addition, a psychosomatic approach is often helpful.In view of its potential complexity, general practitioners and obstetricians should be well informed about HG and therapy should be multimodal.

  17. Multimodal Indexing of Multilingual News Video

    Directory of Open Access Journals (Sweden)

    Hiranmay Ghosh

    2010-01-01

    Full Text Available The problems associated with automatic analysis of news telecasts are more severe in a country like India, where there are many national and regional language channels, besides English. In this paper, we present a framework for multimodal analysis of multilingual news telecasts, which can be augmented with tools and techniques for specific news analytics tasks. Further, we focus on a set of techniques for automatic indexing of the news stories based on keywords spotted in speech as well as on the visuals of contemporary and domain interest. English keywords are derived from RSS feed and converted to Indian language equivalents for detection in speech and on ticker texts. Restricting the keyword list to a manageable number results in drastic improvement in indexing performance. We present illustrative examples and detailed experimental results to substantiate our claim.

  18. Condensation of Thresholds in Multimode Microlasers

    CERN Document Server

    Ge, Li; Stone, A Douglas

    2016-01-01

    We show from ab initio laser theory that by choosing an appropriate spatial pump profile, many different spatial modes of a typical microlaser can be turned on at the same pump energy, substantially increasing the number, N, of simultaneous lasing modes. The optimal pump profile can be obtained simply from knowledge of the space-dependent saturated gain profile when the system is uniformly pumped up to the Nth modal threshold. We test this general result by applying it to a two-dimensional diffusive random laser and a microdisk laser. Achieving highly multimode lasing at reasonable pump powers is useful for reducing the spatial coherence of laser sources, making them suitable for use in speckle-free imaging and other applications.

  19. Implementation of a speckle-based spectrometer

    OpenAIRE

    Ugarte La Torre, Diego Renato

    2016-01-01

    Existen diversos métodos para medir la longitud de onda de la luz. Uno de estos métodos está basado en la relación que existe entre la longitud de onda y los patrones de moteado. La implementación de este método consiste en hacer ingresar luz con un ancho espectral peque˜no sobre un extremo de una fibra óptica multimodal, para generar patrones de moteado a la salida de la fibra óptica. Estos patrones de moteado se relacionan con las longitudes de onda que contiene la luz que ingresa a la fibr...

  20. INFORMATION SUPPORT TRANSPORTATION PROCESS MULTIMODAL SYSTEM

    Directory of Open Access Journals (Sweden)

    N. A. Filippova

    2015-02-01

    Full Text Available Background: is to improve information support for the organization and functioning of multimodal systems delive-ry modes of transport in the northern regions of the Russian Federation on the basis of the development of theoretical and methodological and practical provisions, criteria, methods and mathematical models.Method or methodology of the work: a methodology placement vehicle logistics center (TLC in the Nordic region, providing links all transport modes involved in the delivery of energy, developed a model to optimize the parameters of the transport network, used for traffic, the most effective schemes of delivery of goods in multimodal report, taking into account the specifics of the Nordic region, and funding.Results: Studies have applied and may be used by the fe-deral and regional authorities and management in the deve-lopment of integrated programs for energy-Northern regions. Proposed in the theoretical research and methodological approaches are one way to increase the efficiency of the delivery of goods in the event of a little predictable situations on the route, TLC and transhipment points. The developed techniques are used and can be used to improve the northern region of the process control of cargo delivery.Conclusion: Therefore, based on the analysis of the status of the issue, it is quite obvious that the very topical area of optimization of the transport needs of the region to ensure the development and implementation of methods to improve the efficiency and quality of freight traffic by improving organizational structures and technology traffic control all transport space in the region.

  1. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  2. Asynchronous Multimodal Process Approach to Cross-Docking Hub Optimization

    National Research Council Canada - National Science Library

    Pawlewski, Pawel

    2015-01-01

    ... in a supply chain. It shows modern approaches to the model supply chain: multimodal, based on the idea of Physical Internet and based on Cyber-Physical Internet. The main goal of this paper is to...

  3. Multi-Modal Intelligent Traffic Signal Systems GPS

    Data.gov (United States)

    Department of Transportation — Data were collected during the Multi-Modal Intelligent Transportation Signal Systems (MMITSS) study. MMITSS is a next-generation traffic signal system that seeks to...

  4. implementation and comparative study of a high speed multimode ...

    African Journals Online (AJOL)

    SUMAN HALDAR, SOUMITA HALDAR CHAKRABORTY, PRADIPTAMAITI, PRATIK KUMAR SINHA, PIJUSH BISWAS, Dr. AMITAVA SINHA

    2016-07-07

    Jul 7, 2016 ... The key feature of the work is reduced power and simple circuitry, without ... Keywords: Digital Communication, Multimode Modulator, High Speed ..... Implementation of Universal Modulator using Co-ordinate Rotation Digital ...

  5. Multi-Modal Intelligent Traffic Signal Systems Basic Safety Message

    Data.gov (United States)

    Department of Transportation — Data were collected during the Multi-Modal Intelligent Transportation Signal Systems (MMITSS) study. MMITSS is a next-generation traffic signal system that seeks to...

  6. Natural multimodal communication for human–robot collaboration

    National Research Council Canada - National Science Library

    Maurtua, Iñaki; Fernández, Izaskun; Tellaeche, Alberto; Kildal, Johan; Susperregi, Loreto; Ibarguren, Aitor; Sierra, Basilio

    2017-01-01

    This article presents a semantic approach for multimodal interaction between humans and industrial robots to enhance the dependability and naturalness of the collaboration between them in real industrial settings...

  7. Spatial beam self-cleaning in multimode fiber

    CERN Document Server

    Krupa, Katarzyna; Shalaby, Badr M; Fabert, Marc; Barthélémy, Alain; Millot, Guy; Wabnitz, Stefan; Couderc, Vincent

    2016-01-01

    Multimode optical fibers are today enjoying a new spring, boosted by the urgent need to overcome the current capacity crunch of single-mode fiber systems, and by recent advances in multimode complex nonlinear optics. In this work we demonstrate that standard multimode fibers can be used as ultrafast all-optical tool for transverse beam manipulation of high power laser pulses. Experiments show that the Kerr effect in a graded-index multimode fiber is the driving mechanism for overcoming speckle distortions, leading to the counter-intuitive result of a spatially clean output beam, which is robust against fiber bending. Our observations disprove the common belief that modal control in fibers can only be obtained by limiting the number of guided modes, by reducing the core size or the refractive index contrast, or by exploiting Raman gain at the Stokes wavelength.

  8. Manifold learning based registration algorithms applied to multimodal images.

    Science.gov (United States)

    Azampour, Mohammad Farid; Ghaffari, Aboozar; Hamidinekoo, Azam; Fatemizadeh, Emad

    2014-01-01

    Manifold learning algorithms are proposed to be used in image processing based on their ability in preserving data structures while reducing the dimension and the exposure of data structure in lower dimension. Multi-modal images have the same structure and can be registered together as monomodal images if only structural information is shown. As a result, manifold learning is able to transform multi-modal images to mono-modal ones and subsequently do the registration using mono-modal methods. Based on this application, in this paper novel similarity measures are proposed for multi-modal images in which Laplacian eigenmaps are employed as manifold learning algorithm and are tested against rigid registration of PET/MR images. Results show the feasibility of using manifold learning as a way of calculating the similarity between multimodal images.

  9. A multimodal end-2-end approach to accessible computing

    CERN Document Server

    Biswas, Pradipta; Langdon, Patrick; Almeida, Luis; Jung, Christoph

    2013-01-01

    This book surveys the phases of delivering accessible products and services through design, development, deployment and maintenance. Examines user models for inclusive design, adaptable multimodal system development for digital TV and ubiquitous devices.

  10. Rethinking Resources: Multimodal Pedagogies in the ESL Classroom.

    Science.gov (United States)

    Stein, Pippa

    2000-01-01

    Describes a process for rethinking resources in the English-as-a-Second-Language classroom. Rethinking resources is possible through multimodal pedagogies that recognize students as remakers and transformers of the representational resources available to them. (Author/VWL)

  11. Multimode Spontaneous Parametric Down-Conversion in the Lossy Medium

    CERN Document Server

    Chrapkiewicz, Radoslaw

    2009-01-01

    We study the process of multimode Spontaneous Parametric Down--Conversion (SPDC) in the lossy, one dimensional waveguide. We propose a description using first order Correlation Functions (CF) in the fluorescence fields, as a very fruitful and easy approach providing us with a complete information about the final multimode state. We formulate the equation of the evolution of the multimode CF along the crystal using four characteristic length scales. We solve it analytically in the one mode case and numerically in the multimode case. We capture simultaneous effects of three wave mixing with ultrashort pump, linear propagation and attenuation, and we are able to divide the evolution into three stages and predict it qualitatively. We find that losses do not destroy the quantum properties of SPDC but stabilize the final state.

  12. On a Combined Analysis Framework for Multimodal Discourse Analysis

    Institute of Scientific and Technical Information of China (English)

    窦瑞芳

    2015-01-01

    When people communicate,they do not only use language,that is,a single mode of communication,but also simultaneously use body languages,eye contacts,pictures,etc,which is called multimodal communication. The multimodal communication,as a matter of fact,is the most natural way of communication.Therefore,in order to make a complete discourse analysis,all the modes involved in an interaction or discourse should be taken into account and the new analysis framework for Multimodal Discourse Analysis ought to be created to move forward such type of analysis.In this passage,the author makes a tentative move to shape a new analysis framework for Multimodal Discourse Analysis.

  13. On a Combined Analysis Framework for Multimodal Discourse Analysis

    Institute of Scientific and Technical Information of China (English)

    窦瑞芳

    2015-01-01

    When people communicate,they do not only use language,that is,a single mode of communication,but also simultaneously use body languages,eye contacts,pictures,etc,which is called multimodal communication.The multimodal communication,as a matter of fact,is the most natural way of communication.Therefore,in order to make a complete discourse analysis,all the modes involved in an interaction or discourse should be taken into account and the new analysis framework for Multimodal Discourse Analysis ought to be created to move forward such type of analysis.In this passage,the author makes a tentative move to shape a new analysis framework for Multimodal Discourse Analysis.

  14. Introducing tunable special heterodyne spectrometers in cometary studies

    Science.gov (United States)

    Hosseini, S.; Harris, W.

    2014-07-01

    Cometary remote sensing, in many cases, depends on measurement of fine spectral features from targets covering relatively large angular areas on the sky. The range of studies in cometary science is highly diverse. Size scales and perspectives vary dramatically, with opportunities for both Earth-based and in situ studies. Many characteristics of comets, such as coma dynamics, outflow/escape, radiative transfer, and isotopic ratios, are best addressed with high-resolving-power studies that integrate a large FOV. In addition, it is of great importance to obtain high-resolution data to resolve small Doppler shifts, fine structure, line shapes, and atomic multiplets/molecular bands. However, more detection is not enough, because the coma is inherently active; it can manifest substantial variation both temporally and spatially. As a result, we must combine a study of the target's global evolution parallel to the ability to measure with some spatial fidelity across the FOV and to map its variation in time. This combination of requirements is a challenge that modern instrumental approaches are limited in their ability to meet. One method for addressing these needs is through the use of a broadly tunable all-reflective Special Heterodyne Spectrometer (SHS). SHS instruments are common-path two-beam Fourier-transform spectrometers that produce 2-D spatial interference patterns without the requirement for moving parts. The utility of SHS comes from its combination of a wide input acceptance angle (0.5--1°), high resolving power (of order ˜ 10^5), compact format, high dynamic range, and relaxed optical tolerances compared with other interferometer designs. This combination makes them extremely useful for velocity-resolved observations of wide field targets from both small and large telescopes. We have constructed a tunable SHS, Khayyam, at fixed focal plane of the Coudé Auxiliary Telescope (CAT) at Mt. Hamilton. The CAT provides a test case for on-axis use of SHS, and the

  15. MULTIMODE THEORY OF WHISPERING GALLERY-MODE MICROSPHERE LASER

    Institute of Scientific and Technical Information of China (English)

    CHAI JIN-HUA; LU YI-QUN; LEUNG PUI-TANG

    2000-01-01

    A multimode theory of whispering-gallery-mode microsphere laser is developed based on the linear and nonlinear semiclassical theory of the microsphere laser. The average photon-number of each lasing mode and the pumping level requirement for multimode coexistence are derived. The comparison between the theory and experimental results shows that the theory can be used to treat the practical problems on microsphere laser.

  16. Pre-service teacher discourses: Authoring selves through multimodal compositions

    Directory of Open Access Journals (Sweden)

    John Bishop

    2009-05-01

    Full Text Available This article explores the use of digital and multimodal compositions among preservice elementary education students in a university language and literacy methods course. Furthermore, this piece argues for the inclusion of multimodal representation in our literacy courses given the changes in our digital landscape and the ever-increasing multimodality of our representational and communicational means online. This research aligns with a burgeoning collection of literature, namely New Literacies (Knobel & Lankshear, 2007 and multimodality (Kress & van Leeuwen, 2001. In addition, this research merges with ‘traditional’ print-based literacy pedagogies that argue for models of teacher learning that foreground opportunities to ‘do’ digital composition in order to more effectively prepare students for 21st century literacy skills in epistemologically diverse digital environments. A combination of discourse and multimodal analysis provides a means to couple both linguistic and semiotic data to examine how multimodal design functions in the construction of teacher identities and how the flexibility of these identities in turn work to prepare new teachers for successful transitions into public school cultures. In other words, how might the practice of multimedia production, and reflection on those processes, foster a deeper self-awareness during a time when students are moving from university settings into public schools? This article argues that multimodal text design is dialogic and purposeful with regards to constructions of teacher identities and highlights two ‘Digital Literacy Projects,’ multimodal video compositions designed and produced by preservice teachers with video editing software. The two DLPs contrast the potential for authors to stabilize and/or improvise formations of identity, both which create opportunities to engage in praxis that merge university experiences with public school responsibilities.

  17. Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves

    CERN Document Server

    Wright, Logan G; Christodoulides, Demetrios N; Wise, Frank W

    2015-01-01

    Despite the abundance and importance of three-dimensional systems, relatively little progress has been made on spatiotemporal nonlinear optical waves compared to time-only or space-only systems. Here we study radiation emitted by three-dimensionally evolving nonlinear optical waves in multimode fiber. Spatiotemporal oscillations of solitons in the fiber generate multimode dispersive wave sidebands over an ultrabroadband spectral range. This work suggests routes to multipurpose sources of coherent electromagnetic waves, with unprecedented wavelength coverage.

  18. Multimode uncertainty relations and separability of continuous variable states

    CERN Document Server

    Serafini, A

    2006-01-01

    A multimode uncertainty relation (generalising the Robertson-Schroedinger relation) is derived as a necessary constraint on the second moments of n pairs of canonical operators. In turn, necessary conditions for the separability of multimode continuous variable states under (m+n)-mode bipartitions are derived from the uncertainty relation. These conditions are proven to be necessary and sufficient for (1+n)-mode Gaussian states and for (m+n)-mode bisymmetric Gaussian states.

  19. The rotational memory effect of a multimode fiber

    CERN Document Server

    Amitonova, L V; Pinkse, P W H

    2015-01-01

    We demonstrate the rotational memory effect in a multimode fiber. Rotating the incident wavefront around the fiber core axis leads to a rotation of the resulting pattern of the fiber output without significant changes in the resulting speckle pattern. The rotational memory effect can be exploited for non-invasive imaging or ultrafast high-resolution scanning through a multimode fiber. Our experiments demonstrate this effect over a full range of angles in two experimental configurations.

  20. Cognitive Construction of Multimodal Metaphor in COLOURFUL GUIZHOU promo

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Based on multimodal metaphor theory,the processes of cognitive construction of Multimodal Metaphor in dynamic discourse are analyzed in colorful Guizhou promo as the subject. The thesis focuses on the interaction of different modal and the process of dynamic metaphor’s construction with the genre characteristic of promos.We find that this promo is not only to impressed audiences with language,image and voice,but also has direct connection with audiences for largely propagandizin.

  1. Cognitive Construction of Multimodal Metaphor in COLOURFUL GUIZHOU promo

    Institute of Scientific and Technical Information of China (English)

    王然; 颜至敏; 曾贤模

    2015-01-01

    Based on multimodal metaphor theory,the processes of cognitive construction of Multimodal Metaphor in dynamic discourse are analyzed in colorful Guizhou promo as the subject.The thesis focuses on the interaction of different modal and the process of dynamic metaphor’s construction with the genre characteristic of promos.We find that this promo is not only to impressed audiences with language,image and voice,but also has direct connection with audiences for largely propagandizin.

  2. Knowledge translation in health care as a multimodal interactional accomplishment

    DEFF Research Database (Denmark)

    Kjær, Malene

    2014-01-01

    In the theory of health care, knowledge translation is regarded as a crucial phenomenon that makes the whole health care system work in a desired manner. The present paper studies knowledge translation from the student nurses’ perspective and does that through a close analysis of the part...... knowledge gets translated through the use of rich multimodal embodied interactions, whereas the more abstract aspects of knowledge remain untranslated. Overall, the study contributes to the understanding of knowledge translation as a multimodal, locally situated accomplishment....

  3. Deep Dynamic Neural Networks for Multimodal Gesture Segmentation and Recognition

    OpenAIRE

    Wu, Di; Pigou, Lionel; Kindermans, Pieter-Jan; Le, Nam Do-Hoang; Shao, Ling; Dambre, Joni; Odobez, Jean-Marc

    2016-01-01

    This paper describes a novel method called Deep Dynamic Neural Networks (DDNN) for multimodal gesture recognition. A semi-supervised hierarchical dynamic framework based on a Hidden Markov Model (HMM) is proposed for simultaneous gesture segmentation and recognition where skeleton joint information, depth and RGB images, are the multimodal input observations. Unlike most traditional approaches that rely on the construction of complex handcrafted features, our approach learns high-level spatio...

  4. Fusion of Multimodal Information in Music Content Analysis

    OpenAIRE

    Essid, Slim; Richard, Gaël

    2012-01-01

    Music is often processed through its acoustic realization. This is restrictive in the sense that music is clearly a highly multimodal concept where various types of heterogeneous information can be associated to a given piece of music (a musical score, musicians' gestures, lyrics, user-generated metadata, etc.). This has recently led researchers to apprehend music through its various facets, giving rise to "multimodal music analysis" studies. This article gives a synthetic overview of methods...

  5. Joint Sparsity-Based Robust Multimodal Biometrics Recognition

    Science.gov (United States)

    2012-10-07

    joint sparsity-based algorithm for multimodal biometrics recognition. Our method is based on the well known regu- larized regression method, multi-task...multivariate Lasso [7, 8]. Figure. 1 presents an overview of our method. This paper makes the following contributions: – We present a robust feature...reduces to the conventional Lasso [10] when D = 1 and d = 1. For D = 1 (1), it is equivalent to multivariate Lasso [7]. 2.2 Robust Multimodal

  6. Low-Power Wideband Digital Spectrometer for Planetary Science Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a wideband digital spectrometer to support space-born measurements of planetary atmospheric composition. The spectrometer...

  7. Multi-mode interaction middleware for software services

    Institute of Scientific and Technical Information of China (English)

    TAO XianPing; MA XiaoXing; LU Jian; YU Ping; ZHOU Yu

    2008-01-01

    Due to the independency, variability, and tailorability of software service in the open environment, the research of middleware which supports software services multi-mode interaction is thus of great importance. In this paper, an agent-based multi-mode interaction middleware model and its supporting system for software services were proposed. This model includes an interaction feature decomposition and configuration model to enable interaction programming, an agent-based mid-dleware model, and a programmable coordination media based on reflection technology. The decomposition and configuration model for interaction features can assist programmers in interaction programming by analyzing and synthesizing interaction features. The agent-based middleware model provides a runtime framework for service multi-mode interaction. The programmable coordination media is able to effectively support software service coordination based on multi-mode interaction. To verify feasibility and efficiency of the above method, the de-sign, implementation and performance analysis of Artemis-M3C, a multi-mode in-teraction middleware for software services, were introduced. The result shows that the above method is feasible and that the Artemis-M3C system is practical and ef-fective in multi-mode interaction.

  8. A Single-Photon Subtractor for Multimode Quantum States

    Science.gov (United States)

    Ra, Young-Sik; Jacquard, Clément; Averchenko, Valentin; Roslund, Jonathan; Cai, Yin; Dufour, Adrien; Fabre, Claude; Treps, Nicolas

    2016-05-01

    In the last decade, single-photon subtraction has proved to be key operations in optical quantum information processing and quantum state engineering. Implementation of the photon subtraction has been based on linear optics and single-photon detection on single-mode resources. This technique, however, becomes unsuitable with multimode resources such as spectrally multimode squeezed states or continuous variables cluster states. We implement a single-photon subtractor for such multimode resources based on sum-frequency generation and single-photon detection. An input multimode quantum state interacts with a bright control beam whose spectrum has been engineered through ultrafast pulse-shaping. The multimode quantum state resulting from the single-photon subtractor is analyzed with multimode homodyne detection whose local oscillator spectrum is independently engineered. We characterize the single-photon subtractor via coherent-state quantum process tomography, which provides its mode-selectivity and subtraction modes. The ability to simultaneously control the state engineering and its detection ensures both flexibility and scalability in the production of highly entangled non-Gaussian quantum states.

  9. Multimodal processes scheduling in mesh-like network environment

    Directory of Open Access Journals (Sweden)

    Bocewicz Grzegorz

    2015-06-01

    Full Text Available Multimodal processes planning and scheduling play a pivotal role in many different domains including city networks, multimodal transportation systems, computer and telecommunication networks and so on. Multimodal process can be seen as a process partially processed by locally executed cyclic processes. In that context the concept of a Mesh-like Multimodal Transportation Network (MMTN in which several isomorphic subnetworks interact each other via distinguished subsets of common shared intermodal transport interchange facilities (such as a railway station, bus station or bus/tram stop as to provide a variety of demand-responsive passenger transportation services is examined. Consider a mesh-like layout of a passengers transport network equipped with different lines including buses, trams, metro, trains etc. where passenger flows are treated as multimodal processes. The goal is to provide a declarative model enabling to state a constraint satisfaction problem aimed at multimodal transportation processes scheduling encompassing passenger flow itineraries. Then, the main objective is to provide conditions guaranteeing solvability of particular transport lines scheduling, i.e. guaranteeing the right match-up of local cyclic acting bus, tram, metro and train schedules to a given passengers flow itineraries.

  10. High resolution solar soft X-ray spectrometer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fei; WANG Huan-Yu; PENG Wen-Xi; LIANG Xiao-Hua; ZHANG Chun-Lei; CAO Xue-Lei; JIANG Wei-Chun; ZHANG Jia-Yu; CUI Xing-Zhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed.A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer.The spectrometer consists of the detectors and their readout electronics,a data acquisition unit and a payload data handling unit.A ground test system is also developed to test SOX.The test results show that the design goals of the spectrometer system have been achieved.

  11. BaF2 TIME DIFFERENTIAL PERTURBED ANGULAR DISTRIBUTION SPECTROMETER

    Institute of Scientific and Technical Information of China (English)

    朱升云; 勾振辉; 等

    1994-01-01

    A BaF2 time differential perturbed angular distribution spectrometer has been established at the HI-13 tandem accelerator in CIAE.The time resolution of the spectrometer is 195ps and the nonlinearity is less than 2%.The spectrometer works very stably and no time drift is found over a period of experimental runs.This spectrometer has been successfully used in the g-factor measurement of 43Sc(19/2-,3.1232MeV).

  12. Miniature anastigmatic spectrometer design with a concave toroidal mirror.

    Science.gov (United States)

    Dong, Jianing; Chen, He; Zhang, Yinchao; Chen, Siying; Guo, Pan

    2016-03-01

    An advanced optical design for a low-cost and astigmatism-corrected spectrometer with a high resolution is presented. The theory and method of astigmatism correction are determined with the use of a concave toroidal mirror. The performances of a modified spectrometer and a traditional spectrometer are compared, and the analysis is verified. Experimentally, the limiting resolution of our spectrometer is 0.1 nm full width at half-maximum, as measured for 579.1 nm.

  13. Editorial: New 1.2 GHz NMR Spectrometers- New Horizons?

    Science.gov (United States)

    Schwalbe, Harald

    2017-08-21

    The latest ultrahigh-field NMR spectrometers are a huge technological challenge that require large financial investments. In his Guest Editorial, Harald Schwalbe justifies the need for spectrometers with higher magnetic field strengths. The important results from previous generations of high-field NMR spectrometers are discussed, and research areas are identified that will benefit from the latest spectrometers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  15. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    Science.gov (United States)

    Yoneda, K.

    2012-11-01

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  16. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, K. [RIKEN Nishina Center, 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan)

    2012-11-12

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  17. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2016-11-15

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  18. Fourier and Hadamard transform spectrometers - A limited comparison. II

    Science.gov (United States)

    Harwit, M.; Tai, M. H.

    1977-01-01

    A mathematical approach was used to compare interferometric spectrometers and Hadamard transform spectrometers. The principle results are reported, noting that the simple Hadamard spectrometer encodes more efficiently than a Michelson interferometer which, in turn, encodes less efficiently than is usually acknowledged. Hirschfeld's (1977) major objections to these findings are discussed, although it is noted that none of his objections is supported by evidence.

  19. Multimodal Communication in an Eighth Grade History Classroom : A study from a design theoretical and multimodal perspective

    OpenAIRE

    Parry, Michael

    2016-01-01

    The following essay was written in Stockholm, Sweden in the autumn of 2015 at Stockholm University. The purpose of this study is to explore the forms of multimodal communication that are used in the classroom as meaning making prompts. The study is from a multimodal and design theoretical perspective and uses the model Learning Design Sequence as a framework for collecting and analysing data. A qualitative method is being used for collecting data from video observation, from two eighth grade ...

  20. A wideband spectrometer for the SRT

    Science.gov (United States)

    Comoretto, G.; Natale, V.

    A radiotelescope operating at millimeter wavelengths must be able to analyze an instantaneous bandwidth of at least a few GHz in spectroscopic mode, with a number of spectral points of the order of thousands. Two solutions are examined. In the first, it is assumed that a multi-channel digital spectrometer, with a bandwidth of the order of 100 MHz for each channel, will be available. In this case, a digital filterbank derived from the experience with the ALMA correlator could be used to synthesize a total bandwidth of 1-2 GHz. For wider bandwidths, an acousto-optical spectrometer is proposed. The experience at IRA, Sez. di Firenze with these instruments is presented, and possible solutions are outlined.

  1. Neutron spectrometer for improved SNM search.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  2. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  3. WSPEC: A Waveguide Filter Bank Spectrometer

    CERN Document Server

    Che, George; Underhill, Matthew; Mauskopf, Philip; Groppi, Christopher; Jones, Glenn; Johnson, Bradley; McCarrick, Heather; Flanigan, Daniel; Day, Peter

    2015-01-01

    We have designed, fabricated, and measured a 5-channel prototype spectrometer pixel operating in the WR10 band to demonstrate a novel moderate-resolution (R=f/{\\Delta}f~100), multi-pixel, broadband, spectrometer concept for mm and submm-wave astronomy. Our design implements a transmission line filter bank using waveguide resonant cavities as a series of narrow-band filters, each coupled to an aluminum kinetic inductance detector (KID). This technology has the potential to perform the next generation of spectroscopic observations needed to drastically improve our understanding of the epoch of reionization (EoR), star formation, and large-scale structure of the universe. We present our design concept, results from measurements on our prototype device, and the latest progress on our efforts to develop a 4-pixel demonstrator instrument operating in the 130-250 GHz band.

  4. Imaging spectrometer wide field catadioptric design

    Science.gov (United States)

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  5. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrometer by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  6. PAC Spectrometer for Condensed Matter Investigation

    CERN Document Server

    Brudanin, V B; Kochetov, O I; Korolev, N A; Milanov, M; Ostrovsky, I V; Pavlov, V N; Salamatin, A V; Timkin, V V; Velichkov, A I; Fomicheva, L N; Tsvyaschenko, A V; Akselrod, Z Z

    2005-01-01

    A four-detector spectrometer of perturbed angular $\\gamma \\gamma $ correlations is developed for investigation of hyperfine interactions in condensed matter. It allows measurements with practically any types of detectors. A unique circuit design involving a specially developed Master PAC unit combined with a computer allows a substantially higher efficiency, reduced setup time and simpler operation in comparison with traditional PAC spectrometers. A cryostat and a high-temperature oven allow measurements in the temperature range from 120 to 1300 K. An encased electromagnet makes it possible to generate a magnetic field up to 2 T on a sample. The measurement system includes a press with a specially designed high-pressure chamber allowing on-line PAC measurements in samples under pressure up to 60 GPa.

  7. A 4 π dilepton spectrometer: PEPSI

    Science.gov (United States)

    Buda, A.; Bacelar, J. C. S.; Bałanda, A.; van Klinken, J.; Sujkowski, Z.; van der Woude, A.

    1993-11-01

    A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd 2Fe 14B permanent magnets forming a compact 4 π magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ( απ) of the 15.1 MeV M1 transition from a Jπ = 1 + state to the ground state in 12C. Our experimental value of απ = (3.3 ± 0.5) × 10 -3 is in good agreement with theoretical estimates.

  8. Data Reduction with the MIKE Spectrometer

    CERN Document Server

    Bernstein, Rebecca A; Prochaska, J Xavier

    2015-01-01

    This manuscript describes the design, usage, and data-reduction pipeline developed for the Magellan Inamori Kyocera Echelle (MIKE) spectrometer used with the Magellan telescope at the Las Campanas Observatory. We summarize the basic characteristics of the instrument and discuss observational procedures recommended for calibrating the standard data products. We detail the design and implementation of an IDL based data-reduction pipeline for MIKE data (since generalized to other echelle spectrometers, e.g. Keck/HIRES, VLT/UVES). This includes novel techniques for flat-fielding, wavelength calibration, and the extraction of echelle spectroscopy. Sufficient detail is provided in this manuscript to enable inexperienced observers to understand the strengths and weaknesses of the instrument and software package and an assessment of the related systematics.

  9. Cryogenic system for a superconducting spectrometer

    Science.gov (United States)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. The cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy are described. The system normally operates with a 4 K heat load of 150 watts; the LN2 circuits absorb an additional 4000 watts. The 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations.

  10. The transition-edge EBIT microcalorimeter spectrometer

    Science.gov (United States)

    Betancourt-Martinez, Gabriele L.; Adams, Joseph; Bandler, Simon; Beiersdorfer, Peter; Brown, Gregory; Chervenak, James; Doriese, Randy; Eckart, Megan; Irwin, Kent; Kelley, Richard; Kilbourne, Caroline; Leutenegger, Maurice; Porter, F. S.; Reintsema, Carl; Smith, Stephen; Ullom, Joel

    2014-07-01

    The Transition-edge EBIT Microcalorimeter Spectrometer (TEMS) is a 1000-pixel array instrument to be delivered to the Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory (LLNL) in 2015. It will be the first fully operational array of its kind. The TEMS will utilize the unique capabilities of the EBIT to verify and benchmark atomic theory that is critical for the analysis of high-resolution data from microcalorimeter spectrometers aboard the next generation of x-ray observatories. We present spectra from the present instrumentation at EBIT, as well as our latest results with time-division multiplexing using the current iteration of the TEMS focal plane assembly in our test platform at NASA/GSFC.

  11. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    TAN ChengMing; YAN YiHua; TAN BaoLin; XU GuiRong

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrom-eter by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  12. The MIRI Medium Resolution Spectrometer calibration pipeline

    CERN Document Server

    Labiano, A; Bailey, J I; Beard, S; Dicken, D; García-Marín, M; Geers, V; Glasse, A; Glauser, A; Gordon, K; Justtanont, K; Klaassen, P; Lahuis, F; Law, D; Morrison, J; Müller, M; Rieke, G; Vandenbussche, B; Wright, G

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments, such as fringe corrections and wavelength offsets, with different algorithms for point source or extended source data. The MRS pipeline has also two different variants: the baseline pipeline, optimized for most foreseen science cases, and the optimal pipeline, where extra steps will be needed for specific science cases. This paper provides a comprehensive description of the MRS Calibration Pipeline from uncalibrated slope images to final scientific products, with brief descriptions of its algorithms, input and output data, and the accessory data and calibration data products necessary to run the pipeline.

  13. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  14. Midrapidity measurements with the BRAHMS spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D. [Brookhaven National Lab., Upton, NY (United States)

    1995-07-15

    The forward- and midrapidity-arms of the BRAHMS experiment are designed to measure charged particle production over a wide range of transverse momentum for rapidities, 0{le}y{le}4. Details of the midrapidity spectrometer, which provides coverage for 0{le}{eta}{le}1.3, are presented here. The capabilities for inclusive {pi}{sup +-}, K{sup +-}, and p{sup +-} measurements and boson pair correlations are discussed.

  15. Development of Electron Magnetic Spectrometer and Application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The interaction between ultra-short pulse laser and solid plasma produces hot electron. Thereare many methods to study hot electron spectrum and space distribution. But the way of electron magnetic spectrometer is the most directional method. Particles with charge act circle movement in spare magnetic field. Different energy electrons have different whirl radius. So along whirl diameter direction electron spectrum can be obtained. Actually, electron is affected by gravity excursion and magnetic grads and curvature excursion besides lawrence power. The direction of

  16. VAMOS: a VAriable MOde high acceptance Spectrometer

    CERN Document Server

    Savajols, H

    1999-01-01

    The study of reactions induced by the future SPIRAL beams at GANIL requires new techniques: the low intensity of secondary beams implies the need of a very high efficiency detection system ; the study of nearly or completely unknown nuclei, over a wide range of masses and energies, needs a very efficient method for attributing a reaction product to a nucleus. The VAriable MOde high acceptance Spectrometer VAMOS is being designed and built especially for this purpose.

  17. Calibration and monitoring of spectrometers and spectrophotometers.

    Science.gov (United States)

    Frings, C S; Broussard, L A

    1979-06-01

    We have delineated some of the factors affecting the performance of spectrometers and spectrophotometers in the clinical laboratory and have presented some of the methods for verifying that these instruments are functioning properly. At a minimum, every laboratory should perform periodic inspections of spectrometric functions to check wavelength calibration, linearity of detector response, and stray radiation. Only through such an inspection program can a laboratory ensure that these instruments are not contributing to inaccurate analytical results.

  18. The Berkeley tunable far infrared laser spectrometers

    Science.gov (United States)

    Blake, G. A.; Laughlin, K. B.; Cohen, R. C.; Busarow, K. L.; Gwo, D.-H.

    1991-01-01

    A detailed description is presented for a tunable far infrared laser spectrometer based on frequency mixing of an optically pumped molecular gas laser with tunable microwave radiation in a Schottky point contact diode. The system has been operated on over 30 laser lines in the range 10-100/cm and exhibits a maximum absorption sensitivity near one part in a million. Each laser line can be tuned by + or - 110 GHz with first-order sidebands.

  19. One module of the ALICE photon spectrometer

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first module for the ALICE photon spectrometer has been completed. Each of the five modules will contain 3584 lead-tungstate crystals, a material as transparent as ordinary silica glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, allowing the energy of electrons, positrons and photons to be measured through the 17 920 detection channels.

  20. VERITAS: Versatile Triple-Axis Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Il

    2006-04-15

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, {approx} 5 m Curved Guide, {approx} 26 m w/ R 1500 m Straight Guide before the Instrument, {approx} 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world.

  1. Vacuum system for the SAMURAI spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y., E-mail: yshimizu@ribf.riken.jp [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Otsu, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Kobayashi, T. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2013-12-15

    Highlights: • The paper describes the vacuum system for the SAMURAI spectrometer including its beam line and the SAMURAI vacuum chamber. • The windows for detecting neutrons and charged particles are mounted on the SAMURAI vacuum chamber. • The deflection and induced stress of the windows were calculated by ANSYS program code. • The windows were constructed and examined with the test chamber before mounting on the SAMURAI vacuum chamber. • The SAMURAI was kept on a few Pa of the pressure during the experiment without any problems caused by these windows. -- Abstract: The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  2. Composite Infrared Spectrometer (CIRS) on Cassini

    Science.gov (United States)

    Jennings, Donald E.; Flasar, F. M.; Kunde, V. G.; Nixon, C. A.; Segura, M. E.; Romani, P. N.; Gorius, N.; Albright, S.; Brasunas, J. C.; Carlson, R. C.; hide

    2017-01-01

    The Cassini spacecraft orbiting Saturn carries the composite infrared spectrometer (CIRS) designed to study thermal emission from Saturn and its rings and moons. CIRS, a Fourier transform spectrometer, is an indispensable part of the payload providing unique measurements and important synergies with the other instruments. It takes full advantage of Cassini's 13-year-long mission and surpasses the capabilities of previous spectrometers on Voyager 1 and 2. The instrument, consisting of two interferometers sharing a telescope and a scan mechanism, covers over a factor of 100 in wavelength in the mid and far infrared. It is used to study temperature, composition, structure, and dynamics of the atmospheres of Jupiter, Saturn, and Titan, the rings of Saturn, and surfaces of the icy moons. CIRS has returned a large volume of scientific results, the culmination of over 30 years of instrument development, operation, data calibration, and analysis. As Cassini and CIRS reach the end of their mission in 2017, we expect that archived spectra will be used by scientists for many years to come.

  3. What Happened with Spectrometer Magnet 2B

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A

    2010-05-27

    The spectrometer solenoid is supposed to be the first magnets installed in MICE [1]-[4]. This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A [5], magnet 2A [6], and magnet 2B [7]. Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  4. Compact high performance spectrometers using computational imaging

    Science.gov (United States)

    Morton, Kenneth; Weisberg, Arel

    2016-05-01

    Compressive sensing technology can theoretically be used to develop low cost compact spectrometers with the performance of larger and more expensive systems. Indeed, compressive sensing for spectroscopic systems has been previously demonstrated using coded aperture techniques, wherein a mask is placed between the grating and a charge coupled device (CCD) and multiple measurements are collected with different masks. Although proven effective for some spectroscopic sensing paradigms (e.g. Raman), this approach requires that the signal being measured is static between shots (low noise and minimal signal fluctuation). Many spectroscopic techniques applicable to remote sensing are inherently noisy and thus coded aperture compressed sensing will likely not be effective. This work explores an alternative approach to compressed sensing that allows for reconstruction of a high resolution spectrum in sensing paradigms featuring significant signal fluctuations between measurements. This is accomplished through relatively minor changes to the spectrometer hardware together with custom super-resolution algorithms. Current results indicate that a potential overall reduction in CCD size of up to a factor of 4 can be attained without a loss of resolution. This reduction can result in significant improvements in cost, size, and weight of spectrometers incorporating the technology.

  5. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  6. Imaging spectrometer for fugitive gas leak detection

    Science.gov (United States)

    Hinnrichs, Michele

    1999-12-01

    Under contract to the U.S. Air Force and Navy, Pacific Advanced Technology has developed a very sensitive infrared imaging spectrometer that can perform remote imaging and spectro-radiometry. One of the most exciting applications for this technology is in the remote monitoring of smoke stack emissions and fugitive leaks. To date remote continuous emission monitoring (CEM) systems have not been approved by the EPA, however, they are under consideration. If the remote sensing technology is available with the sensitivity to monitor emission at the required levels and man portable it can reduce the cost and improve the reliability of performing such measurements. Pacific Advanced Technology (PAT) believes that it currently has this technology available to industry. This paper will present results from a field test where gas vapors during a refueling process were imaged and identified. In addition images of propane from a leaking stove will be presented. We at PAT have developed a real time image processing board that enhances the signal to noise ratio of low contrast gases and makes them easily viewable using the Image Multispectral Sensing (IMSS) imaging spectrometer. The IMSS imaging spectrometer is the size of a camcorder. Currently the data is stored in a Notebook computer thus allowing the system to be easily carried into power plants to look for fugitive leaks. In the future the IMSS will have an embedded processor and DSP and will be able to transfer data over an Ethernet link.

  7. Method of multiplexed analysis using ion mobility spectrometer

    Science.gov (United States)

    Belov, Mikhail E.; Smith, Richard D.

    2009-06-02

    A method for analyzing analytes from a sample introduced into a Spectrometer by generating a pseudo random sequence of a modulation bins, organizing each modulation bin as a series of submodulation bins, thereby forming an extended pseudo random sequence of submodulation bins, releasing the analytes in a series of analyte packets into a Spectrometer, thereby generating an unknown original ion signal vector, detecting the analytes at a detector, and characterizing the sample using the plurality of analyte signal subvectors. The method is advantageously applied to an Ion Mobility Spectrometer, and an Ion Mobility Spectrometer interfaced with a Time of Flight Mass Spectrometer.

  8. Measurements for the Performance of the Digital Autocorrelation Spectrometer

    Institute of Scientific and Technical Information of China (English)

    Fa-Chun Lu; Jarken Esimbek; Jian-Jun Zhou; Xing-Wu Zheng

    2007-01-01

    Injecting phase calibration (PCAL) signals to the feed horn of the observation system and analyzing the output response signals of the spectrometer, we measured the working performance of a 4096-channel digital autocalibration spectrometer. The results demonstrate that the spectrometer has a fine working performance: (1) the channels are distributed uniformly in the spectrometer; (2) line drift produces little effect on the observation results; (3)spectral resolution shows little changes with observation time. The distribution of the frequency resolution in an 80 MHz bandwidth was measured. A trial observation on the two molecular spectral lines of H2CO and H 110α taken with this spectrometer is described.

  9. [Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].

    Science.gov (United States)

    Liu, Yi-xuan; Yan, Chang-xiang

    2015-07-01

    Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers.

  10. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    Science.gov (United States)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  11. New generation VNIR/SWIR/TIR airborne imaging spectrometer

    Science.gov (United States)

    Wang, Yueming; Wei, Liqin; Yuan, Liyin; Li, Chunlai; Lv, Gang; Xie, Feng; Han, Guicheng; Shu, Rong; Wang, Jianyu

    2016-10-01

    Imaging spectrometer plays an important role in the remote sensing application. Imaging spectrometer can collects and provides a unique spectral signature of many materials. The spectral signature may be absorbing, reflecting, and emitting. Generally, optical spectral bands for earth observing consist of VNIR, SWIR, TIR/LWIR. VNIR band imaging spectrometer is well-known in vegetation remote sensing and ocean detection. SWIR band imaging spectrometer is widely applied in mineralogy investigation. For its uniquely capability of spectral radiance measurement, TIR/LWIR imaging spectrometer attracts much attention these years. This paper will present a new generation VNIR/SWIR/TIR imaging spectrometer. The preliminary result of its first flight will also be shared. The spectral sampling intervals of VNIR/SWIR/TIR are 2.4nm/3nm/30nm, respectively. The spatial pixel numbers are 2800/1400/700,respectively. It's a push-broom imaging spectrometer.

  12. Multimode optomechanical system in the quantum regime

    CERN Document Server

    Nielsen, William H P; Møller, Christoffer B; Polzik, Eugene S; Schliesser, Albert

    2016-01-01

    We realise a simple and robust optomechanical system with a multitude of long-lived ($Q>10^7$) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate ($96~\\mathrm{kHz}$) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures ($10\\,\\mathrm{K}$). Reaching this quantum regime entails, i.~a., quantum measurement backaction exceeding thermal forces, and thus detectable optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths $\\lesssim 90\\,\\mathrm{ kHz}$. The multi-mode nature of the employed membrane and Fabry-Perot resonators lends itself to hybrid entanglement schemes involving multiple electromagnetic, mechanical, and spin degrees of freedom.

  13. Multimodal interaction for human-robot teams

    Science.gov (United States)

    Burke, Dustin; Schurr, Nathan; Ayers, Jeanine; Rousseau, Jeff; Fertitta, John; Carlin, Alan; Dumond, Danielle

    2013-05-01

    Unmanned ground vehicles have the potential for supporting small dismounted teams in mapping facilities, maintaining security in cleared buildings, and extending the team's reconnaissance and persistent surveillance capability. In order for such autonomous systems to integrate with the team, we must move beyond current interaction methods using heads-down teleoperation which require intensive human attention and affect the human operator's ability to maintain local situational awareness and ensure their own safety. This paper focuses on the design, development and demonstration of a multimodal interaction system that incorporates naturalistic human gestures, voice commands, and a tablet interface. By providing multiple, partially redundant interaction modes, our system degrades gracefully in complex environments and enables the human operator to robustly select the most suitable interaction method given the situational demands. For instance, the human can silently use arm and hand gestures for commanding a team of robots when it is important to maintain stealth. The tablet interface provides an overhead situational map allowing waypoint-based navigation for multiple ground robots in beyond-line-of-sight conditions. Using lightweight, wearable motion sensing hardware either worn comfortably beneath the operator's clothing or integrated within their uniform, our non-vision-based approach enables an accurate, continuous gesture recognition capability without line-of-sight constraints. To reduce the training necessary to operate the system, we designed the interactions around familiar arm and hand gestures.

  14. A System for Multimodal Context-Awareness

    Directory of Open Access Journals (Sweden)

    Georgios Galatas

    2013-10-01

    Full Text Available in this paper we present the improvement of our novel localization system, by introducing radio-frequency identification (RFID which adds person identification capabilities and increases multi-person localization robustness. Our system aims at achieving multi-modal context-awareness in an assistive, ambient intelligence environment. The unintrusive devices used are RFID and 3-D audio-visual information from 2 Kinect sensors deployed at various locations of a simulated apartment to continuously track and identify its occupants, thus enabling activity monitoring. More specifically, we use skeletal tracking conducted on the depth images and sound source localization conducted on the audio signals captured by the Kinect sensors to accurately localize and track multiple people. RFID information is used mainly for identification purposes but also for rough location estimation, enabling mapping of the location information from the Kinect sensors to the identification events of the RFID. Our system was evaluated in a real world scenario and attained promising results exhibiting high accuracy, therefore showing the great prospect of using the RFID and Kinect sensors jointly to solve the simultaneous identification and localization problem.

  15. Exploring Academic Voice in Multimodal Quantitative Texts

    Directory of Open Access Journals (Sweden)

    Robert Prince

    2014-10-01

    Full Text Available Research on students’ academic literacies practices has tended to focus on the written mode in order to understand the academic conventions necessary to access Higher Education. However, the representation of quantitative information can be a challenge to many students. Quantitative information can be represented through a range of modes (such as writing, visuals and numbers and different information graphics (such as tables, charts, graphs. This paper focuses on the semiotic aspects of graphic representation in academic work, using student and published data from the Health Science, and an information graphic from the social domain as a counterpoint to explore aspects about agency and choice in academic voice in multimodal texts. It explores voice in terms of three aspects which work across modes, namely authorial engagement, citation and modality. The work of different modes and their inter-relations in quantitative texts is established, as is the use of sources in citation. We also look at the ways in which credibility and validity are established through modality. This exploration reveals that there is a complex interplay of modes in the construction of academic voice, which are largely tacit. This has implications for the way we think about and teach writing and text-making in quantitative disciplines in Higher Education.

  16. Multimodal approaches for emotion recognition: a survey

    Science.gov (United States)

    Sebe, Nicu; Cohen, Ira; Gevers, Theo; Huang, Thomas S.

    2005-01-01

    Recent technological advances have enabled human users to interact with computers in ways previously unimaginable. Beyond the confines of the keyboard and mouse, new modalities for human-computer interaction such as voice, gesture, and force-feedback are emerging. Despite important advances, one necessary ingredient for natural interaction is still missing-emotions. Emotions play an important role in human-to-human communication and interaction, allowing people to express themselves beyond the verbal domain. The ability to understand human emotions is desirable for the computer in several applications. This paper explores new ways of human-computer interaction that enable the computer to be more aware of the user's emotional and attentional expressions. We present the basic research in the field and the recent advances into the emotion recognition from facial, voice, and physiological signals, where the different modalities are treated independently. We then describe the challenging problem of multimodal emotion recognition and we advocate the use of probabilistic graphical models when fusing the different modalities. We also discuss the difficult issues of obtaining reliable affective data, obtaining ground truth for emotion recognition, and the use of unlabeled data.

  17. Haptic-Multimodal Flight Control System Update

    Science.gov (United States)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2011-01-01

    The rapidly advancing capabilities of autonomous aircraft suggest a future where many of the responsibilities of today s pilot transition to the vehicle, transforming the pilot s job into something akin to driving a car or simply being a passenger. Notionally, this transition will reduce the specialized skills, training, and attention required of the human user while improving safety and performance. However, our experience with highly automated aircraft highlights many challenges to this transition including: lack of automation resilience; adverse human-automation interaction under stress; and the difficulty of developing certification standards and methods of compliance for complex systems performing critical functions traditionally performed by the pilot (e.g., sense and avoid vs. see and avoid). Recognizing these opportunities and realities, researchers at NASA Langley are developing a haptic-multimodal flight control (HFC) system concept that can serve as a bridge between today s state of the art aircraft that are highly automated but have little autonomy and can only be operated safely by highly trained experts (i.e., pilots) to a future in which non-experts (e.g., drivers) can safely and reliably use autonomous aircraft to perform a variety of missions. This paper reviews the motivation and theoretical basis of the HFC system, describes its current state of development, and presents results from two pilot-in-the-loop simulation studies. These preliminary studies suggest the HFC reshapes human-automation interaction in a way well-suited to revolutionary ease-of-use.

  18. Practical applications of multimodal NDT data

    Science.gov (United States)

    Frankle, Robert S.

    1993-01-01

    Today's powerful computer workstations enable multimodal nondestructive testing (NDT) to be used for such practical applications as detecting and evaluating defects in structures. Radiography (x ray) and ultrasonics (UT) are examples of two different nondestructive tests, or modalities, which measure characteristics of materials and structures without affecting them. Traditionally, NDT produced an analog result, such as an image on x-ray film, which was difficult to review, interpret, and store. New and more powerful digital NDT techniques, such as industrial x-ray computed tomography (CT), produce digital output that is readily amenable to computerized analysis and storage. Computers are now available with sufficient memory and performance to support interactive processing of digital NDT data sets, which can easily exceed 100 megabytes. Numerous data sets can be stored on small, inexpensive tape cassettes. Failure Analysis Associates, Inc. (FaAA) has developed software-based techniques for using NDT to identify defects in structures. These techniques are also used to visualize the NDT data and to analyze the structural integrity of parts containing NDT-detected defects. FaAA's approach employs state-of-the-art scientific visualization and computer workstation technology. For some types of materials, such as advanced composites, data from different NDT modalities are needed to locate different types of defects. Applications of this technology include assessment of impact damage in composite aerospace structures, investigation of failed assemblies, and evaluation of metallic casting defects.

  19. Multimodal optical imaging for detecting breast cancer

    Science.gov (United States)

    Patel, Rakesh; Khan, Ashraf; Wirth, Dennis; Kamionek, Michal; Kandil, Dina; Quinlan, Robert; Yaroslavsky, Anna N.

    2012-06-01

    The goal of the study was to evaluate wide-field and high-resolution multimodal optical imaging, including polarization, reflectance, and fluorescence for the intraoperative detection of breast cancer. Lumpectomy specimens were stained with 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged. Wide-field reflectance images were acquired between 390 and 750 nm. Wide-field fluorescence images were excited at 640 nm and registered between 660 and 750 nm. High resolution confocal reflectance and fluorescence images were excited at 642 nm. Confocal fluorescence images were acquired between 670 nm and 710 nm. After imaging, the specimens were processed for hematoxylin and eosin (H&E) histopathology. Histological slides were compared with wide-field and high-resolution optical images to evaluate correlation of tumor boundaries and cellular morphology, respectively. Fluorescence polarization imaging identified the location, size, and shape of the tumor in all the cases investigated. Averaged fluorescence polarization values of tumor were higher as compared to normal tissue. Statistical analysis confirmed the significance of these differences. Fluorescence confocal imaging enabled cellular-level resolution. Evaluation and statistical analysis of MB fluorescence polarization values registered from single tumor and normal cells demonstrated higher fluorescence polarization from cancer. Wide-field high-resolution fluorescence and fluorescence polarization imaging shows promise for intraoperative delineation of breast cancers.

  20. Multimodal MR examination in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Mezzapesa, D.M.; Petruzzellis, M.; Lucivero, V.; Prontera, M.; Tinelli, A.; Sancilio, M.; Carella, A.; Federico, F. [University of Bari, Department of Neurological and Psychiatric Sciences, Bari (Italy)

    2006-04-15

    In recent years, combined diffusion-weighted imaging (DWI) with perfusion imaging (PI) has become an important investigational tool in the acute phase of ischemic stroke, as it may differentiate reversible from irreversible brain tissue damage. We consecutively examined 20 subjects within 12 h of stroke onset using a multiparametric magnetic resonance (MR) examination consisting of DWI, mean transit time (MTT) as PI parameter, and MR angiography (MRA). T2-weighted and fluid-attenuated inversion recovery (FLAIR) on day 7 were also acquired in order to obtain final infarct volume. The following MR parameters were considered: volumetric measures of lesion growth and MTT abnormalities, quantification of regional apparent diffusion coefficient (ADC) and visual inspection of MRA findings. Our results showed: (1) an acute DWI lesion was not predictive of lesion growth and the DWI abnormality did not represent the irreversibly infarcted tissue; (2) ADC values in the ischemic penumbra could not predict tissue at risk; (3) the DWI-PI mismatch did not predict lesion growth, and the PI abnormality overestimated the amount of tissue at risk; and (4) patients with proximal middle cerebral artery occlusion had greater initial and final infarct volumes. This study did not demonstrate the prognostic value of a multimodal MR approach in early ischemic stroke; MRA alone provided predictive information about the volumetric evolution of the lesion. (orig.)