WorldWideScience

Sample records for ompt site deleted

  1. Oncogenic activation of v-kit involves deletion of a putative tyrosine-substrate interaction site.

    Science.gov (United States)

    Herbst, R; Munemitsu, S; Ullrich, A

    1995-01-19

    The transforming gene of the Hardy-Zuckerman-4 strain of feline sarcoma virus, v-kit, arose by transduction of the cellular c-kit gene, which encodes the receptor tyrosine kinase (RTK) p145c-kit. To gain insight into the molecular basis of the v-kit transforming potential, we characterized the feline c-kit by cDNA cloning. Comparison of the feline v-kit and c-kit sequences revealed, in addition to deletions of the extracellular and transmembrane domains, three additional mutations in the v-kit oncogene product: deletion of tyrosine-569 and valine-570, the exchange of aspartate at position 761 to glycine, and replacement of the C-terminal 50 amino acids by five unrelated residues. Examinations of individual v-kit mutations in the context of chimeric receptors yielded inhibitory effects for some mutants on both autophosphorylation and substrate phosphorylation functions. In contrast, deletion of tyrosine-569 and valine-570 significantly enhanced transforming and mitogenic activities of p145c-kit, while the other mutations had no significant effects. Conservation in subclass III RTKs and the identification of the corresponding residue in beta PDGF-R, Y579, as a binding site for src family tyrosine kinases suggests an important role for Y568 in kit signal regulation and the definition of its oncogenic potential. Repositioning of Y571 by an inframe two codon deletion may be the crucial alteration resulting in enhancement of v-kit oncogenic activity.

  2. Structural and Functional Consequences of Chaperone Site Deletion in αA-Crystallin

    Science.gov (United States)

    Santhoshkumar, Puttur; Karmakar, Srabani; Sharma, Krishna K.

    2016-01-01

    The chaperone-like activity of αA-crystallin has an important role in maintaining lens transparency. Previously we identified residues 70–88 as a chaperone site in αA-crystallin. In this study, we deleted the chaperone site residues to generate αAΔ70–76 and αAΔ70–88 mutants and investigated if there are additional substrate-binding sites in αA-crystallin. Both mutant proteins when expressed in E. coli formed inclusion bodies, and on solubilizing and refolding, they exhibited similar structural properties, with a 2- to 3-fold increase in molar mass compared to the molar mass of wild-type protein. The deletion mutants were less stable than the wild-type αA-crystallin. Functionally αAΔ70–88 was completely inactive as a chaperone, while αAΔ70–76 demonstrated a 40–50% reduction in anti-aggregation activity against alcohol dehydrogenase (ADH). Deletion of residues 70–88 abolished the ADH binding sites in αA-crystallin at physiological temperature. At 45 °C, cryptic ADH binding site(s) became exposed, which contributed subtly to the chaperone-like activity of αAΔ70–88. Both of the deletion mutants were completely inactive in suppressing aggregation of βL-crystallin at 53 °C. The mutants completely lost the anti-apoptotic property that αA-crystallin exhibits while they protected ARPE-19 (a human retinal pigment epithelial cell line) and primary human lens epithelial (HLE) cells from oxidative stress. Our studies demonstrate that residues 70–88 in αA-crystallin act as a primary substrate binding site and account for the bulk of the total chaperone activity. The β3 and β4 strands in αA-crystallin comprising 70–88 residues play an important role in maintenance of the structure and in preventing aggregation of denaturing proteins. PMID:27524665

  3. Naturally occurring deletions of hunchback binding sites in the even-skipped stripe 3+7 enhancer.

    Directory of Open Access Journals (Sweden)

    Arnar Palsson

    Full Text Available Changes in regulatory DNA contribute to phenotypic differences within and between taxa. Comparative studies show that many transcription factor binding sites (TFBS are conserved between species whereas functional studies reveal that some mutations segregating within species alter TFBS function. Consistently, in this analysis of 13 regulatory elements in Drosophila melanogaster populations, single base and insertion/deletion polymorphism are rare in characterized regulatory elements. Experimentally defined TFBS are nearly devoid of segregating mutations and, as has been shown before, are quite conserved. For instance 8 of 11 Hunchback binding sites in the stripe 3+7 enhancer of even-skipped are conserved between D. melanogaster and Drosophila virilis. Oddly, we found a 72 bp deletion that removes one of these binding sites (Hb8, segregating within D. melanogaster. Furthermore, a 45 bp deletion polymorphism in the spacer between the stripe 3+7 and stripe 2 enhancers, removes another predicted Hunchback site. These two deletions are separated by ∼250 bp, sit on distinct haplotypes, and segregate at appreciable frequency. The Hb8Δ is at 5 to 35% frequency in the new world, but also shows cosmopolitan distribution. There is depletion of sequence variation on the Hb8Δ-carrying haplotype. Quantitative genetic tests indicate that Hb8Δ affects developmental time, but not viability of offspring. The Eve expression pattern differs between inbred lines, but the stripe 3 and 7 boundaries seem unaffected by Hb8Δ. The data reveal segregating variation in regulatory elements, which may reflect evolutionary turnover of characterized TFBS due to drift or co-evolution.

  4. Naturally occurring deletions of hunchback binding sites in the even-skipped stripe 3+7 enhancer.

    Science.gov (United States)

    Palsson, Arnar; Wesolowska, Natalia; Reynisdóttir, Sigrún; Ludwig, Michael Z; Kreitman, Martin

    2014-01-01

    Changes in regulatory DNA contribute to phenotypic differences within and between taxa. Comparative studies show that many transcription factor binding sites (TFBS) are conserved between species whereas functional studies reveal that some mutations segregating within species alter TFBS function. Consistently, in this analysis of 13 regulatory elements in Drosophila melanogaster populations, single base and insertion/deletion polymorphism are rare in characterized regulatory elements. Experimentally defined TFBS are nearly devoid of segregating mutations and, as has been shown before, are quite conserved. For instance 8 of 11 Hunchback binding sites in the stripe 3+7 enhancer of even-skipped are conserved between D. melanogaster and Drosophila virilis. Oddly, we found a 72 bp deletion that removes one of these binding sites (Hb8), segregating within D. melanogaster. Furthermore, a 45 bp deletion polymorphism in the spacer between the stripe 3+7 and stripe 2 enhancers, removes another predicted Hunchback site. These two deletions are separated by ∼250 bp, sit on distinct haplotypes, and segregate at appreciable frequency. The Hb8Δ is at 5 to 35% frequency in the new world, but also shows cosmopolitan distribution. There is depletion of sequence variation on the Hb8Δ-carrying haplotype. Quantitative genetic tests indicate that Hb8Δ affects developmental time, but not viability of offspring. The Eve expression pattern differs between inbred lines, but the stripe 3 and 7 boundaries seem unaffected by Hb8Δ. The data reveal segregating variation in regulatory elements, which may reflect evolutionary turnover of characterized TFBS due to drift or co-evolution.

  5. Markerless Escherichia coli rrn Deletion Strains for Genetic Determination of Ribosomal Binding Sites

    DEFF Research Database (Denmark)

    Quan, Selwyn; Skovgaard, Ole; McLaughlin, Robert E

    2015-01-01

    Single-copy rrn strains facilitate genetic ribosomal studies in Escherichia coli. Consecutive markerless deletion of rrn operons resulted in slower growth upon inactivation of the fourth copy, which was reversed by supplying transfer RNA genes encoded in rrn operons in trans. Removal of the sixth...

  6. Deletions in cox2 mRNA result in loss of splicing and RNA editing and gain of novel RNA editing sites.

    Directory of Open Access Journals (Sweden)

    Stefanie Grüttner

    Full Text Available As previously demonstrated, the maize cox2 RNA is fully edited in cauliflower mitochondria. Use of constructs with a deleted cox2 intron, however, led to a loss of RNA editing at almost all editing sites, with only a few sites still partially edited. Likewise, one deletion in exon 1 and three in exon 2 abolish RNA editing at all cox2 sites analyzed. Furthermore, intron splicing is abolished using these deletions. Mutation of a cytosine residue, which is normally edited and localized directly adjacent to the intron, to thymidine did not result in restoration of splicing, indicating that the loss of splicing was not due to loss of RNA editing. One deletion in exon 2 did not lead to loss of splicing. Instead, most editing sites were found to be edited, only three were not edited. Unexpectedly, we observed additional RNA editing events at new sites. Thus it appears that deletions in the cox2 RNA sequence can have a strong effect on RNA processing, leading to loss of splicing, loss of editing at all sites, or even to a gain of new editing sites. As these effects are not limited to the vicinity of the respective deletions, but appear to be widespread or even affect all editing sites, they may not be explained by the loss of PPR binding sites. Instead, it appears that several parts of the cox2 transcript are required for proper RNA processing. This indicates the roles of the RNA sequence and structural elements in the recognition of the editing sites.

  7. Development of Insertion and Deletion Markers for Bottle Gourd Based on Restriction Site-associated DNA Sequencing Data

    Directory of Open Access Journals (Sweden)

    Xinyi WU

    2017-01-01

    Full Text Available Bottle gourd is an important cucurbit crop worldwide. To provide more available molecular markers for this crop, a bioinformatic approach was employed to develop insertion–deletions (InDels markers in bottle gourd based on restriction site-associated DNA sequencing (RAD-Seq data. A total of 892 Indels were predicted, with the length varying from 1 bp to 167 bp. Single-nucleotide InDels were the predominant types of InDels. To validate these InDels, PCR primers were designed from 162 loci where InDels longer than 2 bp were predicated. A total of 112 InDels were found to be polymorphic among 9 bottle gourd accessions under investigation. The rate of prediction accuracy was thus at a high level of 72.7%. DNA fingerprinting for 4 cultivars were performed using 8 selected Indels markers, demonstrating the usefulness of these markers.

  8. Physical mapping of a commonly deleted region, the site of a candidate tumor suppressor gene, at 12q22 in human male germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Murty, V.V.V.S.; Bosl, G.J.; Chaganti, R.S.K. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)] [and others

    1996-08-01

    A candidate tumor suppressor gene (TSG) site at 12q22 characterized by a high frequency of loss of heterozygosity (LOH) and a homozygous deletion has previously (LOH) and a homozygous deletion has previously been reported in human male germ cell tumors (GCTs). In a detailed deletion mapping analysis of 67 normal-tumor DNAs utilizing 20 polymorphic markers mapped to 12q22-q24, we identified the limits of the minimal region of deletion at 12q22 between D12S377 (priximal) and D12S296 (distal). We have constructed a YAC contig map of a 3-cM region of this band between the proximal marker D12S101 and the distal marker D12S346, which contained the minimal region of deletion in GCTs. The map is composed of 53 overlapping YACs and 3 cosmids onto which 25 polymorphic and nonpolymorphic sequence-tagged sites (STSs) were placed in a unique order. The size of the minimal region of deletion was approximately 2 Mb from overlapping, nonchimeric YACs that spanned the region. We also developed a radiation hybrid (RH) map of the region between D12S101 and D12S346 containing 17 loci. The consensus order developed by RH mapping is in good agreement with the YAC STS-content map order. The RH map estimated the distance between D12S101 and D12S346 to be 246 cR{sub 8000} and the minimal region of deletion to be 141 cR{sub 8000}. In addition, four genes that were previously mapped to 12q22 have been excluded as candidate genes. The leads gained from the deletion mapping and physical maps should expedite the isolation and characterization of the TSG at 12q22. 35 refs., 4 figs., 2 tabs.

  9. Targeted Deletion of a Plasmodium Site-2 Protease Impairs Life Cycle Progression in the Mammalian Host

    OpenAIRE

    Koussis, K.; Goulielmaki, E.; Chalari, A.; Withers-Martinez, C.; Siden-Kiamos, I.; Matuschewski, K.; Loukeris, T.

    2017-01-01

    Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane?bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways througho...

  10. Targeted Deletion of a Plasmodium Site-2 Protease Impairs Life Cycle Progression in the Mammalian Host.

    Science.gov (United States)

    Koussis, Konstantinos; Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai; Loukeris, Thanasis G

    2017-01-01

    Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane-bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.

  11. Targeted Deletion of a Plasmodium Site-2 Protease Impairs Life Cycle Progression in the Mammalian Host.

    Directory of Open Access Journals (Sweden)

    Konstantinos Koussis

    Full Text Available Site-2 proteases (S2P belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane-bound transcription factors through regulated intramembrane proteolysis (RIP. Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.

  12. Size does matter: Cre-mediated somatic deletion efficiency depends on the distance between the target lox-sites

    NARCIS (Netherlands)

    Coppoolse, E.R.; Vroomen, de M.J.; Gennip, van F.; Hersmus, B.J.M.; Haaren, van M.J.

    2005-01-01

    Cre/lox recombination in vivo has become an important tool to induce chromosomal rearrangements like deletions. Using a combination of Ds transposition and Cre/lox recombination in two independent experiments on chromosomes 6 and 7 of tomato, two sets of somatic deletions up to a size of 200 kb were

  13. Deletion mutations of bacteriophage

    International Nuclear Information System (INIS)

    Ryo, Yeikou

    1975-01-01

    Resolution of mutation mechanism with structural changes of DNA was discussed through the studies using bacteriophage lambda. One of deletion mutations inductions of phage lambda is the irradiation of ultraviolet ray. It is not clear if the inductions are caused by errors in reparation of ultraviolet-induced damage or by the activation of int gene. Because the effective site of int gene lies within the regions unnecessary for existing, it is considered that int gene is connected to deletion mutations induction. A certain system using prophage complementarity enables to detect deletion mutations at essential hereditary sites and to solve the relations of deletion mutations with other recombination system, DNA reproduction and repairment system. Duplication and multiplication of hereditary elements were discussed. If lambda deletion mutations of the system, which can control recombination, reproduction and repairment of added DNA, are constructed, mutations mechanism with great changes of DNA structure can be solved by phage lambda. (Ichikawa, K.)

  14. Histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in Plasmodium falciparum isolates from select sites in Brazil and Bolivia.

    Science.gov (United States)

    Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F; Morton, Lindsay C; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Udhayakumar, Venkatachalam; Barnwell, John W

    2017-01-01

    More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region.

  15. Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair.

    Directory of Open Access Journals (Sweden)

    Yong Jun Choi

    Full Text Available Ku70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS to repair DNA double strand breaks (DSBs through the nonhomologous end joining (NHEJ pathway. As expected mutating these genes in mice caused a similar DSB repair-defective phenotype. However, ku70(-/- cells and ku80(-/- cells also appeared to have a defect in base excision repair (BER. BER corrects base lesions, apurinic/apyrimidinic (AP sites and single stand breaks (SSBs utilizing a variety of proteins including glycosylases, AP endonuclease 1 (APE1 and DNA Polymerase β (Pol β. In addition, deleting Ku70 was not equivalent to deleting Ku80 in cells and mice. Therefore, we hypothesized that free Ku70 (not bound to Ku80 and/or free Ku80 (not bound to Ku70 possessed activity that influenced BER. To further test this hypothesis we performed two general sets of experiments. The first set showed that deleting either Ku70 or Ku80 caused an NHEJ-independent defect. We found ku80(-/- mice had a shorter life span than dna-pkcs(-/- mice demonstrating a phenotype that was greater than deleting the holoenzyme. We also found Ku70-deletion induced a p53 response that reduced the level of small mutations in the brain suggesting defective BER. We further confirmed that Ku80-deletion impaired BER via a mechanism that was not epistatic to Pol β. The second set of experiments showed that free Ku70 and free Ku80 could influence BER. We observed that deletion of either Ku70 or Ku80, but not both, increased sensitivity of cells to CRT0044876 (CRT, an agent that interferes with APE1. In addition, free Ku70 and free Ku80 bound to AP sites and in the case of Ku70 inhibited APE1 activity. These observations support a novel role for free Ku70 and free Ku80 in altering BER.

  16. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.; Donis, Ruben O.; Stevens, James (CDC)

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avian receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.

  17. Structures of receptor complexes of a North American H7N2 influenza hemagglutinin with a loop deletion in the receptor binding site.

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2010-09-01

    Full Text Available Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107, including complexes with an avian receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb. Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type (alpha2-3 receptor binding profile, with only moderate binding to human-type (alpha2-6 receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.

  18. Factor IX[sub Madrid 2]: A deletion/insertion in Facotr IX gene which abolishes the sequence of the donor junction at the exon IV-intron d splice site

    Energy Technology Data Exchange (ETDEWEB)

    Solera, J. (Unidades de Genetica Molecular, Madrid (Spain)); Magallon, M.; Martin-Villar, J. (Hemofilia Hospital, Madrid (Spain)); Coloma, A. (Departamento deBioquimica de la Facultad de Medicina de la Universidad Autonoma, Madrid (Spain))

    1992-02-01

    DNA from a patient with severe hemophilia B was evaluated by RFLP analysis, producing results which suggested the existence of a partial deletion within the factor IX gene. The deletion was further localized and characterized by PCR amplification and sequencing. The altered allele has a 4,442-bp deletion which removes both the donor splice site located at the 5[prime] end of intron d and the two last coding nucleotides located at the 3[prime] end of exon IV in the normal factor IX gene; this fragment has been inserted in inverted orientation. Two homologous sequences have been discovered at the ends of the deleted DNA fragment.

  19. Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness In Vivo and Display Enhanced Zoonotic Characteristics.

    Science.gov (United States)

    Peacock, Thomas P; Benton, Donald J; James, Joe; Sadeyen, Jean-Remy; Chang, Pengxiang; Sealy, Joshua E; Bryant, Juliet E; Martin, Stephen R; Shelton, Holly; Barclay, Wendy S; Iqbal, Munir

    2017-07-15

    H9N2 avian influenza viruses are enzootic in poultry across Asia and North Africa, where they pose a threat to human health as both zoonotic agents and potential pandemic candidates. Poultry vaccination against H9N2 viruses has been employed in many regions; however, vaccine effectiveness is frequently compromised due to antigenic drift arising from amino acid substitutions in the major influenza virus antigen hemagglutinin (HA). Using selection with HA-specific monoclonal antibodies, we previously identified H9N2 antibody escape mutants that contained deletions of amino acids in the 220 loop of the HA receptor binding sites (RBSs). Here we analyzed the impact of these deletions on virus zoonotic infection characteristics and fitness. We demonstrated that mutant viruses with RBS deletions are able to escape polyclonal antiserum binding and are able to infect and be transmitted between chickens. We showed that the deletion mutants have increased binding to human-like receptors and greater replication in primary human airway cells; however, the mutant HAs also displayed reduced pH and thermal stability. In summary, we infer that variant influenza viruses with deletions in the 220 loop could arise in the field due to immune selection pressure; however, due to reduced HA stability, we conclude that these viruses are unlikely to be transmitted from human to human by the airborne route, a prerequisite for pandemic emergence. Our findings underscore the complex interplay between antigenic drift and viral fitness for avian influenza viruses as well as the challenges of predicting which viral variants may pose the greatest threats for zoonotic and pandemic emergence. IMPORTANCE Avian influenza viruses, such as H9N2, cause disease in poultry as well as occasionally infecting humans and are therefore considered viruses with pandemic potential. Many countries have introduced vaccination of poultry to try to control the disease burden; however, influenza viruses are able to

  20. Mutations within Four Distinct Gag Proteins Are Required To Restore Replication of Human Immunodeficiency Virus Type 1 after Deletion Mutagenesis within the Dimerization Initiation Site

    Science.gov (United States)

    Liang, Chen; Rong, Liwei; Quan, Yudong; Laughrea, Michael; Kleiman, Lawrence; Wainberg, Mark A.

    1999-01-01

    Human immunodeficiency virus type 1 (HIV-1) genomic RNA segments at nucleotide (nt) positions +240 to +274 are thought to form a stem-loop secondary structure, termed SL1, that serves as a dimerization initiation site for viral genomic RNA. We have generated two distinct deletion mutations within this region, termed BH10-LD3 and BH10-LD4, involving nt positions +238 to +253 and +261 to +274, respectively, and have shown that each of these resulted in significant diminutions in levels of viral infectiousness. However, long-term culture of each of these viruses in MT-2 cells resulted in a restoration of infectiousness, due to a series of compensatory point mutations within four distinct proteins that are normally cleaved from the Gag precursor. In the case of BH10-LD3, these four mutations were MA1, CA1, MP2, and MNC, and they involved changes of amino acid Val-35 to Ile within the matrix protein (MA), Ile-91 to Thr within the capsid (CA), Thr-12 to Ile within p2, and Thr-24 to Ile within the nucleocapsid (NC). The order in which these mutations were acquired by the mutated BH10-LD3 was MNC > CA1 > MP2 > MA1. The results of site-directed mutagenesis studies confirmed that each of these four substitutions contributed to the increased viability of the mutated BH10-LD3 viruses and that the MNC substitution, which was acquired first, played the most important role in this regard. Three point mutations, MP2, MNC, and MA2, were also shown to be sequentially acquired by viruses that had emerged in culture from the BH10-LD4 deletion. The first two of these were identical to those described above, while the last involved a change of Val-35 to Leu. All three of these substitutions were necessary to restore the infectiousness of mutated BH10-LD4 viruses to wild-type levels, although the MP2 mutation alone, but neither of the other two substitutions, was able to confer some viability on BH10-LD4 viruses. Studies of viral RNA packaging showed that the BH10-LD4 deletion only

  1. A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps

    Directory of Open Access Journals (Sweden)

    Etchells J Peter

    2009-10-01

    Full Text Available Abstract Background The progress and completion of various plant genome sequencing projects has paved the way for diverse functional genomic studies that involve cloning, modification and subsequent expression of target genes. This requires flexible and efficient procedures for generating binary vectors containing: gene fusions, variants from site-directed mutagenesis, addition of protein tags together with domain swaps and deletions. Furthermore, efficient cloning procedures, ideally high throughput, are essential for pyramiding of multiple gene constructs. Results Here, we present a simple, flexible and efficient PCR-fusion/Gateway cloning procedure for construction of binary vectors for a range of gene fusions or variants with single or multiple nucleotide substitutions, short sequence insertions, domain deletions and swaps. Results from selected applications of the procedure which include ORF fusion, introduction of Cys>Ser mutations, insertion of StrepII tag sequence and domain swaps for Arabidopsis secondary cell wall AtCesA genes are demonstrated. Conclusion The PCR-fusion/Gateway cloning procedure described provides an elegant, simple and efficient solution for a wide range of diverse and complicated cloning tasks. Through streamlined cloning of sets of gene fusions and modification variants into binary vectors for systematic functional studies of gene families, our method allows for efficient utilization of the growing sequence and expression data.

  2. Deleted in malignant brain tumors-1 protein (DMBT1): a pattern recognition receptor with multiple binding sites.

    Science.gov (United States)

    Ligtenberg, Antoon J M; Karlsson, Niclas G; Veerman, Enno C I

    2010-01-01

    Deleted in Malignant Brain Tumors-1 protein (DMBT1), salivary agglutinin (DMBT1(SAG)), and lung glycoprotein-340 (DMBT1(GP340)) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.

  3. Deleted in Malignant Brain Tumors-1 Protein (DMBT1: A Pattern Recognition Receptor with Multiple Binding Sites

    Directory of Open Access Journals (Sweden)

    Enno C. I. Veerman

    2010-12-01

    Full Text Available Deleted in Malignant Brain Tumors-1 protein (DMBT1, salivary agglutinin (DMBT1SAG, and lung glycoprotein-340 (DMBT1GP340 are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW. Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.

  4. Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair

    Science.gov (United States)

    Gelincik, Ozkan; Blecua, Pedro; Edelmann, Winfried; Kucherlapati, Raju; Zhou, Kathy; Jasin, Maria; Gümüş, Zeynep H.; Lipkin, Steven M.

    2017-01-01

    Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression. PMID:29069730

  5. A novel deletion in the splice donor site of MLH1 exon 6 in a Japanese colon cancer patient with Lynch syndrome.

    Science.gov (United States)

    Yamaguchi, Junya; Sato, Yuri; Kita, Mizuho; Nomura, Sachio; Yamamoto, Noriko; Kato, Yo; Ishikawa, Yuichi; Arai, Masami

    2015-10-01

    Lynch syndrome is an autosomal dominantly inherited disease that is characterized by a predisposition to cancers, mainly colorectal cancer. Germline mutations of DNA mismatch repair genes such as MLH1, MSH2, MSH6 and PMS2 have been described in patients with Lynch syndrome. Here, we report deletion of 2 bp in the splice donor site of the MLH1 exon 6 (c.545+4_545+5delCA) in a 48-year-old Japanese woman with Lynch syndrome. RT-PCR direct sequencing analysis revealed that this mutation led to an increase in the level of an MLH1 transcript in which exon 6 was skipped, and may cause a frameshift (p.E153FfsX8). Therefore, this mutation appears to be pathogenic and is responsible for Lynch syndrome. Additionally, analysis of the patient's tumor cells indicated microsatellite instability high phenotype and loss of the MLH1 and PMS2 proteins. To our knowledge, this is a germline splice site mutation of MLH1 that has not been reported previously. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Negative subthreshold psychotic symptoms distinguish 22q11.2 deletion syndrome from other neurodevelopmental disorders: A two-site study.

    Science.gov (United States)

    Mekori-Domachevsky, Ehud; Guri, Yael; Yi, James; Weisman, Omri; Calkins, Monica E; Tang, Sunny X; Gross, Raz; McDonald-McGinn, Donna M; Emanuel, Beverly S; Zackai, Elaine H; Zalsman, Gil; Weizman, Abraham; Gur, Ruben C; Gur, Raquel E; Gothelf, Doron

    2017-10-01

    About one third of individuals with 22q11.2 deletion syndrome (22q11.2DS) develop schizophrenia. Notably, a full-blown psychotic disorder is usually preceded by subthreshold symptoms. Therefore, it is important to identify early signs of psychosis in this population, a task that is complicated by the intellectual disabilities typically seen in 22q11.2DS. We aimed to identify subthreshold psychotic symptoms that distinguish 22q11.2DS from other neurodevelopmental disorders. The study included two independent cohorts from Tel Aviv and Philadelphia. 22q11.2DS (N=171) and typically developing (TD; N=832) individuals were enrolled at both sites and further compared to two groups with intellectual disabilities: Williams syndrome (WS; N=21) in the Tel Aviv cohort and idiopathic developmental disabilities (IDD; N=129) in the Philadelphia cohort. Participants and their primary caregivers were interviewed with the Structured Interview for Prodromal Symptoms (SIPS) and psychopathologies were assessed using standardized tools; general cognitive abilities were assessed with the Computerized Neurocognitive Battery. Negative/disorganized subthreshold syndrome was significantly more common in the 22q11.2DS group than in the WS (OR=3.90, 95% CI=1.34-11.34) or IDD (OR=5.05, 95% CI=3.01-10.08) groups. The 22q11.2DS group had higher scores than the two intellectual disabilities groups on several SIPS negative items, including avolition and decreased expression of emotion. Overall, there were few significant correlations between level of cognitive deficits and severity of negative symptoms in 22q11.2DS and only in the Tel Aviv cohort. Our findings suggest that 22q11.2DS individuals at the age of risk for developing psychosis should be closely monitored for negative symptoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. ATLAS DQ2 Deletion Service

    International Nuclear Information System (INIS)

    Oleynik, Danila; Petrosyan, Artem; Garonne, Vincent; Campana, Simone

    2012-01-01

    The ATLAS Distributed Data Management project DQ2 is responsible for the replication, access and bookkeeping of ATLAS data across more than 100 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. The DQ2 Deletion Service is one of the most important DDM services. This distributed service interacts with 3rd party grid middleware and the DQ2 catalogues to serve data deletion requests on the grid. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this paper special attention is paid to the technical details which are used to achieve the high performance of service, accomplished without overloading either site storage, catalogues or other DQ2 components. Special attention is also paid to the deletion monitoring service that allows operators a detailed view of the working system.

  8. NPL deletion policy for RCRA-regulated TSD facilities finalized

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Under a new policy published by EPA on March 20, 1995, certain sites may be deleted from the National Priorities List (NPL) and deferred to RCRA corrective action. To be deleted from the NPL, a site must (1) be regulated under RCRA as a treatment, storage, or disposal (TSD) facility and (2) meet the four criteria specified by EPA. The new NPL deletion policy, which does not pertain to federal TSD facilities, became effective on April 19, 1995. 1 tab

  9. Partial deletion 11q

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Tommerup, N; Sørensen, F B

    1995-01-01

    We describe the cytogenetic findings and the dysmorphic features in a stillborn girl with a large de novo terminal deletion of the long arm of chromosome 11. The karyotype was 46,XX,del(11)(q21qter). By reviewing previous reports of deletion 11q, we found that cleft lip and palate are most...

  10. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  11. Quantum deletion: Beyond the no-deletion principle

    International Nuclear Information System (INIS)

    Adhikari, Satyabrata

    2005-01-01

    Suppose we are given two identical copies of an unknown quantum state and we wish to delete one copy from among the given two copies. The quantum no-deletion principle restricts us from perfectly deleting a copy but it does not prohibit us from deleting a copy approximately. Here we construct two types of a 'universal quantum deletion machine' which approximately deletes a copy such that the fidelity of deletion does not depend on the input state. The two types of universal quantum deletion machines are (1) a conventional deletion machine described by one unitary operator and (2) a modified deletion machine described by two unitary operators. Here it is shown that the modified deletion machine deletes a qubit with fidelity 3/4, which is the maximum limit for deleting an unknown quantum state. In addition to this we also show that the modified deletion machine retains the qubit in the first mode with average fidelity 0.77 (approx.) which is slightly greater than the fidelity of measurement for two given identical states, showing how precisely one can determine its state [S. Massar and S. Popescu, Phys. Rev. Lett. 74, 1259 (1995)]. We also show that the deletion machine itself is input state independent, i.e., the information is not hidden in the deleting machine, and hence we can delete the information completely from the deletion machine

  12. Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4

    DEFF Research Database (Denmark)

    Sternberg, Claus; Eberl, Leo; Sanchezromero, Juan M.

    1995-01-01

    The multimer resolution system (mrs) of the broad-host-range plasmid RP4 has been exploited to develop a general method that permits the precise excision of chromosomal segments in a variety of gram-negative bacteria. The procedure is based on the site-specific recombination between two directly ...

  13. A short in-frame deletion in NTRK1 tyrosine kinase domain caused by a novel splice site mutation in a patient with congenital insensitivity to pain with anhidrosis

    Directory of Open Access Journals (Sweden)

    Arístegui Javier

    2011-06-01

    Full Text Available Abstract Background Congenital insensitivity to pain with anhidrosis (CIPA is a rare autosomal recessive genetic disease characterized by the lack of reaction to noxious stimuli and anhidrosis. It is caused by mutations in the NTRK1 gene, which encodes the high affinity tyrosine kinase receptor I for Neurotrophic Growth Factor (NGF. Case Presentation We present the case of a female patient diagnosed with CIPA at the age of 8 months. The patient is currently 6 years old and her psychomotor development conforms to her age (RMN, SPECT and psychological study are in the range of normality. PCR amplification of DNA, followed by direct sequencing, was used to investigate the presence of NTRK1 gene mutations. Reverse transcriptase (RT-PCR amplification of RNA, followed by cloning and sequencing of isolated RT-PCR products was used to characterize the effect of the mutations on NTRK1 mRNA splicing. The clinical diagnosis of CIPA was confirmed by the detection of two splice-site mutations in NTRK1, revealing that the patient was a compound heterozygote at this gene. One of these alterations, c.574+1G>A, is located at the splice donor site of intron 5. We also found a second mutation, c.2206-2 A>G, not previously reported in the literature, which is located at the splice acceptor site of intron 16. Each parent was confirmed to be a carrier for one of the mutations by DNA sequencing analysis. It has been proposed that the c.574+1G>A mutation would cause exon 5 skipping during NTRK1 mRNA splicing. We could confirm this prediction and, more importantly, we provide evidence that the novel c.2206-2A>G mutation also disrupts normal NTRK1 splicing, leading to the use of an alternative splice acceptor site within exon 17. As a consequence, this mutation would result in the production of a mutant NTRK1 protein with a seven aminoacid in-frame deletion in its tyrosine kinase domain. Conclusions We present the first description of a CIPA-associated NTRK1 mutation

  14. The fate of deleted DNA produced during programmed genomic deletion events in Tetrahymena thermophila.

    Science.gov (United States)

    Saveliev, S V; Cox, M M

    1994-01-01

    Thousands of DNA deletion events occur during macronuclear development in the ciliate Tetrahymena thermophila. In two deleted genomic regions, designated M and R, the eliminated sequences form circles that can be detected by PCR. However, the circles are not normal products of the reaction pathway. The circular forms occur at very low levels in conjugating cells, but are stable. Sequencing analysis showed that many of the circles (as many as 50% of those examined) reflected a precise deletion in the M and R regions. The remaining circles were either smaller or larger and contained varying lengths of sequences derived from the chromosomal DNA surrounding the eliminated region. The chromosomal junctions left behind after deletion were more precise, although deletions in either the M or R regions can generate any of several alternative junctions (1). Some new chromosomal junctions were detected in the present study. The results suggest that the deleted segment is released as a linear DNA species that is degraded rapidly. The species is only rarely converted to the stable circles we detect. The deletion mechanism is different from those proposed for deletion events in hypotrichous ciliates (2-4), and does not reflect a conservative site-specific recombination process such as that promoted by the bacteriophage lambda integrase (5). Images PMID:7838724

  15. Genetic deletion of cdc42 reveals a crucial role for astrocyte recruitment to the injury site in vitro and in vivo

    DEFF Research Database (Denmark)

    Robel, Stefanie; Bardehle, Sophia; Lepier, Alexandra

    2011-01-01

    signals, the small RhoGTPase Cdc42, selectively in mouse astrocytes in vitro and in vivo. We used an in vitro scratch assay as a minimal wounding model and found that astrocytes lacking Cdc42 (Cdc42Δ) were still able to form protrusions, although in a nonoriented way. Consequently, they failed to migrate...... in a directed manner toward the scratch. When animals were injured in vivo through a stab wound, Cdc42Δ astrocytes developed protrusions properly oriented toward the lesion, but the number of astrocytes recruited to the lesion site was significantly reduced. Surprisingly, however, lesions in Cdc42Δ animals...

  16. Ku80-deleted cells are defective at base excision repair

    International Nuclear Information System (INIS)

    Li, Han; Marple, Teresa; Hasty, Paul

    2013-01-01

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H 2 O 2 and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs

  17. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  18. A strong deletion bias in nonallelic gene conversion.

    Directory of Open Access Journals (Sweden)

    Raquel Assis

    Full Text Available Gene conversion is the unidirectional transfer of genetic information between orthologous (allelic or paralogous (nonallelic genomic segments. Though a number of studies have examined nucleotide replacements, little is known about length difference mutations produced by gene conversion. Here, we investigate insertions and deletions produced by nonallelic gene conversion in 338 Drosophila and 10,149 primate paralogs. Using a direct phylogenetic approach, we identify 179 insertions and 614 deletions in Drosophila paralogs, and 132 insertions and 455 deletions in primate paralogs. Thus, nonallelic gene conversion is strongly deletion-biased in both lineages, with almost 3.5 times as many conversion-induced deletions as insertions. In primates, the deletion bias is considerably stronger for long indels and, in both lineages, the per-site rate of gene conversion is orders of magnitudes higher than that of ordinary mutation. Due to this high rate, deletion-biased nonallelic gene conversion plays a key role in genome size evolution, leading to the cooperative shrinkage and eventual disappearance of selectively neutral paralogs.

  19. On Deletion of Sutra Translation

    Institute of Scientific and Technical Information of China (English)

    CHEN Shu-juan

    2017-01-01

    Dao An's the metaphor of translation "wine diluted with water' ' expressed a view about translation that had been abridged.Later Kumarajiva provided metaphor "rice chewed—tasteless and downright disgusting".Both of them felt regretted at the weakening of taste,sometimes even the complete loss of flavor caused by deletion in translation of Buddhist sutras.In early sutra translation,deletion is unavoidable which made many sutra translators felt confused and drove them to study it further and some even managed to give their understanding to this issue.This thesis will discuss the definition,and what causes deletion and the measures adopted by the sutra translators.

  20. UCP2 and 3 deletion screening and distribution in 15 pig breeds.

    Science.gov (United States)

    Li, Yanhua; Li, Hanjie; Zhao, Xingbo; Li, Ning; Wu, Changxin

    2007-02-01

    The uncoupling protein family is a mitochondrial anion carrier family. It plays an important role in the biological traits of animal body weight, basal metabolic rate and energy conversion. Using PCR and PCR-SSCP, we scanned the porcine uncoupling protein 2 gene (UCP2) and uncoupling protein 3 gene (UCP3) and found seven deletion sites, three in UCP2 and four in UCP3. The deletions in 15 pig breeds showed that deletion influenced weight. The genotype compounding of seven deletion sites in 15 pig breeds had significant effects on performance traits of the pig, such as body weight. We predicted the potential protein factor binding sites using the transcription factor analysis tool TFSearch version 1.3 online. Two deletions (1830 nt and 3219 nt) in UCP3 were found to change the transcriptional factor sites. The 16 bp deletion in 1830 nt added a SP1 site and a 6 bp deletion in 3219 nt removed two MZF1 sites. Seven deletion polymorphisms were covered in introns of linkage genes of UCP2 and UCP3, showing that UCPs have conservation and genetic reliability.

  1. Strategies for state-dependent quantum deleting

    International Nuclear Information System (INIS)

    Song Wei; Yang Ming; Cao Zhuoliang

    2004-01-01

    A quantum state-dependent quantum deleting machine is constructed. We obtain a upper bound of the global fidelity on N-to-M quantum deleting from a set of K non-orthogonal states. Quantum networks are constructed for the above state-dependent quantum deleting machine when K=2. Our deleting protocol only involves a unitary interaction among the initial copies, with no ancilla. We also present some analogies between quantum cloning and deleting

  2. Method for introducing unidirectional nested deletions

    Science.gov (United States)

    Dunn, J.J.; Quesada, M.A.; Randesi, M.

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.

  3. Amino-acid composition after loop deletion drives domain swapping.

    Science.gov (United States)

    Nandwani, Neha; Surana, Parag; Udgaonkar, Jayant B; Das, Ranabir; Gosavi, Shachi

    2017-10-01

    Rational engineering of a protein to enable domain swapping requires an understanding of the sequence, structural and energetic factors that favor the domain-swapped oligomer over the monomer. While it is known that the deletion of loops between β-strands can promote domain swapping, the spliced sequence at the position of the loop deletion is thought to have a minimal role to play in such domain swapping. Here, two loop-deletion mutants of the non-domain-swapping protein monellin, frame-shifted by a single residue, were designed. Although the spliced sequence in the two mutants differed by only one residue at the site of the deletion, only one of them (YEIKG) promoted domain swapping. The mutant containing the spliced sequence YENKG was entirely monomeric. This new understanding that the domain swapping propensity after loop deletion may depend critically on the chemical composition of the shortened loop will facilitate the rational design of domain swapping. © 2017 The Protein Society.

  4. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages.

    Science.gov (United States)

    Han, Kyudong; Sen, Shurjo K; Wang, Jianxin; Callinan, Pauline A; Lee, Jungnam; Cordaux, Richard; Liang, Ping; Batzer, Mark A

    2005-01-01

    Long INterspersed Elements (LINE-1s or L1s) are abundant non-LTR retrotransposons in mammalian genomes that are capable of insertional mutagenesis. They have been associated with target site deletions upon insertion in cell culture studies of retrotransposition. Here, we report 50 deletion events in the human and chimpanzee genomes directly linked to the insertion of L1 elements, resulting in the loss of approximately 18 kb of sequence from the human genome and approximately 15 kb from the chimpanzee genome. Our data suggest that during the primate radiation, L1 insertions may have deleted up to 7.5 Mb of target genomic sequences. While the results of our in vivo analysis differ from those of previous cell culture assays of L1 insertion-mediated deletions in terms of the size and rate of sequence deletion, evolutionary factors can reconcile the differences. We report a pattern of genomic deletion sizes similar to those created during the retrotransposition of Alu elements. Our study provides support for the existence of different mechanisms for small and large L1-mediated deletions, and we present a model for the correlation of L1 element size and the corresponding deletion size. In addition, we show that internal rearrangements can modify L1 structure during retrotransposition events associated with large deletions.

  5. Construction of a psb C deletion strain in Synechocystis 6803.

    Science.gov (United States)

    Goldfarb, N; Knoepfle, N; Putnam-Evans, C

    1997-01-01

    Synechocystis 6803 is a cyanobacterium that carries out-oxygenic photosynthesis. We are interested in the introduction of mutations in the large extrinsic loop region of the CP43 protein of Photosystem II (PSII). CP43 appears to be required for the stable assembly of the PSII complex and also appears to play a role in photosynthetic oxygen evolution. Deletion of short segments of the large extrinsic loop results in mutants incapable of evolving oxygen. Alterations in psbC, the gene encoding CP43, are introduced into Synechocystis 6803 by transformation and homologous recombination. Specifically, plasmid constructs bearing the site-directed mutations are introduced into a deletion strain where the portion of the gene encoding the area of mutation has been deleted and replaced by a gene conferring antibiotic resistance. We have constructed a deletion strain of Synechocystis appropriate for the introduction of mutations in the large extrinsic loop of CP43 and have used it successfully to produce site-directed mutants.

  6. Deletion map of CYC1 mutants and its correspondence to mutationally altered iso-1-cytochromes c of yeast

    International Nuclear Information System (INIS)

    Sherman, F.; Jackson, M.; Liebman, S.W.; Schweingruber, A.M.; Stewart, J.W.

    1975-01-01

    Mutants arising spontaneously from sporulated cultures of certain strains of yeast, Saccharomyces cerevisiae, contained deletions of the CYC1 gene which controls the primary structure of iso-1-cytochrome c. At least 60 different kinds of deletions were uncovered among the 104 deletions examined and these ranged in length from those encompassing only two adjacent point mutants to those encompassing at least the entire CYC1 gene. X-ray-induced recombination rates of crosses involving these deletions and cyc1 point mutants resulted in the assignment of 211 point mutants to 47 mutational sites and made it possible to unambiguously order 40 of these 47 sites. Except for one mutant, cyc1-15, there was a strict colinear relationship between the deletion map and the positions of 13 sites that were previously determined by amino acid alterations in iso-1-cytochromes c from intragenic revertants

  7. Spontaneous and mutagen-induced deletions: mechanistic studies in Salmonella tester strain TA102

    International Nuclear Information System (INIS)

    Levin, D.E.; Marnett, L.J.; Ames, B.N.

    1984-01-01

    Salmonella tester strain TA102 carries the hisG428 ochre mutation on the multicopy plasmid pAQ1. DNA sequence analysis of 45 spontaneous revertants of hisG428 on the chromosome in the presence of pKM101 (strain TA103) indicates that hisG428 revertants fall into three major categories: (i) small, in-frame deletions (3 or 6 base pairs) that remove part or all of the ochre triplet; (ii) base substitution mutations at the ochre site; (iii) extragenic ochre suppressors. Deletion revertants are identified in a simple phenotypic screen by their resistance to the inhibitory histidine analog thiazolealanine, which feedback inhibits the wild-type hisG enzyme but not the enzyme resulting from the deletions. The effect of various genetic backgrounds on the generation of spontaneous deletion revertants was examined. The presence of a uvrB mutation or a recA mutation suppressed the generation of spontaneous deletion revertants to approximately 1/2.5. When hisG428 was in multiple copies on pAQ1, the frequency of spontaneous deletion revertants increased by 40-fold, which is the approximate copy number of pAQ1. Mutagenic agents that induce single-strand breaks in DNA (e.g., x-rays, bleomycin, and nalidixic acid) induced deletion revertants in TA102. These agents induced deletion revertants only in hisG428 on pAQ1 and only in the presence of pKM101. Deletion revertants were not induced by frameshift mutagens (i.e., ICR-191 and 9aminoacridine). These results indicate that different pathways exist for the generation of spontaneous and mutagen-induced deletion revertants of hisG428. 41 references, 2 figures, 3 tables

  8. Characterization of novel RS1 exonic deletions in juvenile X-linked retinoschisis.

    Science.gov (United States)

    D'Souza, Leera; Cukras, Catherine; Antolik, Christian; Craig, Candice; Lee, Ji-Yun; He, Hong; Li, Shibo; Smaoui, Nizar; Hejtmancik, James F; Sieving, Paul A; Wang, Xinjing

    2013-01-01

    X-linked juvenile retinoschisis (XLRS) is a vitreoretinal dystrophy characterized by schisis (splitting) of the inner layers of the neuroretina. Mutations within the retinoschisis (RS1) gene are responsible for this disease. The mutation spectrum consists of amino acid substitutions, splice site variations, small indels, and larger genomic deletions. Clinically, genomic deletions are rarely reported. Here, we characterize two novel full exonic deletions: one encompassing exon 1 and the other spanning exons 4-5 of the RS1 gene. We also report the clinical findings in these patients with XLRS with two different exonic deletions. Unrelated XLRS men and boys and their mothers (if available) were enrolled for molecular genetics evaluation. The patients also underwent ophthalmologic examination and in some cases electroretinogram (ERG) recording. All the exons and the flanking intronic regions of the RS1 gene were analyzed with direct sequencing. Two patients with exonic deletions were further evaluated with array comparative genomic hybridization to define the scope of the genomic aberrations. After the deleted genomic region was identified, primer walking followed by direct sequencing was used to determine the exact breakpoints. Two novel exonic deletions of the RS1 gene were identified: one including exon 1 and the other spanning exons 4 and 5. The exon 1 deletion extends from the 5' region of the RS1 gene (including the promoter) through intron 1 (c.(-35)-1723_c.51+2664del4472). The exon 4-5 deletion spans introns 3 to intron 5 (c.185-1020_c.522+1844del5764). Here we report two novel exonic deletions within the RS1 gene locus. We have also described the clinical presentations and hypothesized the genomic mechanisms underlying these schisis phenotypes.

  9. Probabilistic cloning and deleting of quantum states

    International Nuclear Information System (INIS)

    Feng Yuan; Zhang Shengyu; Ying Mingsheng

    2002-01-01

    We construct a probabilistic cloning and deleting machine which, taking several copies of an input quantum state, can output a linear superposition of multiple cloning and deleting states. Since the machine can perform cloning and deleting in a single unitary evolution, the probabilistic cloning and other cloning machines proposed in the previous literature can be thought of as special cases of our machine. A sufficient and necessary condition for successful cloning and deleting is presented, and it requires that the copies of an arbitrarily presumed number of the input states are linearly independent. This simply generalizes some results for cloning. We also derive an upper bound for the success probability of the cloning and deleting machine

  10. Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells*♦

    Science.gov (United States)

    Canver, Matthew C.; Bauer, Daniel E.; Dass, Abhishek; Yien, Yvette Y.; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H.; Orkin, Stuart H.

    2014-01-01

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. PMID:24907273

  11. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells.

    Science.gov (United States)

    Canver, Matthew C; Bauer, Daniel E; Dass, Abhishek; Yien, Yvette Y; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H; Orkin, Stuart H

    2014-08-01

    The clustered regularly interspaced short [corrected] palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A New Intergenic α-Globin Deletion (α-αΔ125) Found in a Kabyle Population.

    Science.gov (United States)

    Singh, Amrathlal Rabbind; Lacan, Philippe; Cadet, Estelle; Bignet, Patricia; Dumesnil, Cécile; Vannier, Jean-Pierre; Joly, Philippe; Rochette, Jacques

    2016-01-01

    We have identified a deletion of 125 bp (α-α(Δ125)) (NG_000006.1: g.37040_37164del) in the α-globin gene cluster in a Kabyle population. A combination of singlex and multiplex polymerase chain reaction (PCR)-based assays have been used to identify the molecular defect. Sequencing of the abnormal PCR amplification product revealed a novel α1-globin promoter deletion. The endpoints of the deletion were characterized by sequencing the deletion junctions of the mutated allele. The observed deletion was located 378 bp upstream of the α1-globin gene transcription initiation site and leaves the α2 gene intact. In some patients, the α-α(Δ125) deletion was shown to segregate with Hb S (HBB: c.20A>T) and/or Hb C (HBB: c.19G>A) or a β-thalassemic allele. The α-α(Δ125) deletion has no discernible effect on red cell indices when inherited with no other abnormal globin genes. The family study demonstrated that the deletion is heritable. This is the only example of an intergenic α2-α1 non coding DNA deletion, leaving the α2-globin gene and the α1 coding part intact.

  13. A Novel Splice-Site Mutation in Angiotensin I-Converting Enzyme (ACE) Gene, c.3691+1G>A (IVS25+1G>A), Causes a Dramatic Increase in Circulating ACE through Deletion of the Transmembrane Anchor

    Science.gov (United States)

    Persu, Alexandre; Lambert, Michel; Deinum, Jaap; Cossu, Marta; de Visscher, Nathalie; Irenge, Leonid; Ambroise, Jerôme; Minon, Jean-Marc; Nesterovitch, Andrew B.; Churbanov, Alexander; Popova, Isolda A.; Danilov, Sergei M.; Danser, A. H. Jan; Gala, Jean-Luc

    2013-01-01

    Background Angiotensin-converting enzyme (ACE) (EC 4.15.1) metabolizes many biologically active peptides and plays a key role in blood pressure regulation and vascular remodeling. Elevated ACE levels are associated with different cardiovascular and respiratory diseases. Methods and Results Two Belgian families with a 8-16-fold increase in blood ACE level were incidentally identified. A novel heterozygous splice site mutation of intron 25 - IVS25+1G>A (c.3691+1G>A) - cosegregating with elevated plasma ACE was identified in both pedigrees. Messenger RNA analysis revealed that the mutation led to the retention of intron 25 and Premature Termination Codon generation. Subjects harboring the mutation were mostly normotensive, had no left ventricular hypertrophy or cardiovascular disease. The levels of renin-angiotensin-aldosterone system components in the mutated cases and wild-type controls were similar, both at baseline and after 50 mg captopril. Compared with non-affected members, quantification of ACE surface expression and shedding using flow cytometry assay of dendritic cells derived from peripheral blood monocytes of affected members, demonstrated a 50% decrease and 3-fold increase, respectively. Together with a dramatic increase in circulating ACE levels, these findings argue in favor of deletion of transmembrane anchor, leading to direct secretion of ACE out of cells. Conclusions We describe a novel mutation of the ACE gene associated with a major familial elevation of circulating ACE, without evidence of activation of the renin-angiotensin system, target organ damage or cardiovascular complications. These data are consistent with the hypothesis that membrane-bound ACE, rather than circulating ACE, is responsible for Angiotensin II generation and its cardiovascular consequences. PMID:23560051

  14. Seven gene deletions in seven days

    DEFF Research Database (Denmark)

    Ingemann Jensen, Sheila; Lennen, Rebecca; Herrgard, Markus

    2015-01-01

    Generation of multiple genomic alterations is currently a time consuming process. Here, a method was established that enables highly efficient and simultaneous deletion of multiple genes in Escherichia coli. A temperature sensitive plasmid containing arabinose inducible lambda Red recombineering ...

  15. Conditional Deletion of Pten Causes Bronchiolar Hyperplasia

    OpenAIRE

    Davé, Vrushank; Wert, Susan E.; Tanner, Tiffany; Thitoff, Angela R.; Loudy, Dave E.; Whitsett, Jeffrey A.

    2007-01-01

    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (PtenΔ/Δ) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as in...

  16. A novel large deletion of the ICR1 region including H19 and putative enhancer elements.

    Science.gov (United States)

    Fryssira, Helen; Amenta, Stella; Kanber, Deniz; Sofocleous, Christalena; Lykopoulou, Evangelia; Kanaka-Gantenbein, Christina; Cerrato, Flavia; Lüdecke, Hermann-Josef; Bens, Susanne; Riccio, Andrea; Buiting, Karin

    2015-05-06

    Beckwith-Wiedemann syndrome (BWS) is a rare pediatric overgrowth disorder with a variable clinical phenotype caused by deregulation affecting imprinted genes in the chromosomal region 11p15. Alterations of the imprinting control region 1 (ICR1) at the IGF2/H19 locus resulting in biallelic expression of IGF2 and biallelic silencing of H19 account for approximately 10% of patients with BWS. The majority of these patients have epimutations of the ICR1 without detectable DNA sequence changes. Only a few patients were found to have deletions. Most of these deletions are small affecting different parts of the ICR1 differentially methylated region (ICR1-DMR) removing target sequences for CTCF. Only a very few deletions reported so far include the H19 gene in addition to the CTCF binding sites. None of these deletions include IGF2. A male patient was born with hypotonia, facial dysmorphisms and hypoglycemia suggestive of Beckwith-Wiedemann syndrome. Using methylation-specific (MS)-MLPA (Multiplex ligation-dependent probe amplification) we have identified a maternally inherited large deletion of the ICR1 region in a patient and his mother. The deletion results in a variable clinical expression with a classical BWS in the mother and a more severe presentation of BWS in her son. By genome-wide SNP array analysis the deletion was found to span ~100 kb genomic DNA including the ICR1DMR, H19, two adjacent non-imprinted genes and two of three predicted enhancer elements downstream to H19. Methylation analysis by deep bisulfite next generation sequencing revealed hypermethylation of the maternal allele at the IGF2 locus in both, mother and child, although IGF2 is not affected by the deletion. We here report on a novel large familial deletion of the ICR1 region in a BWS family. Due to the deletion of the ICR1-DMR CTCF binding cannot take place and the residual enhancer elements have access to the IGF2 promoters. The aberrant methylation (hypermethylation) of the maternal IGF2

  17. 46 CFR 67.171 - Deletion; requirement and procedure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Deletion; requirement and procedure. 67.171 Section 67...; Requirement for Exchange, Replacement, Deletion, Cancellation § 67.171 Deletion; requirement and procedure. (a... provided in § 67.161, and the vessel is subject to deletion from the roll of actively documented vessels...

  18. 19 CFR 142.49 - Deletion of C-4 Code.

    Science.gov (United States)

    2010-04-01

    .... Entry filers may delete C-4 Codes from Line Release by notifying the port director in writing on a Deletion Data Loading Sheet. Such notification shall state the C-4 Code which is to be deleted, the port... TREASURY (CONTINUED) ENTRY PROCESS Line Release § 142.49 Deletion of C-4 Code. (a) By Customs. A port...

  19. Skin fibroblasts from a D-deletion type retinoblastoma patient are abnormally X-ray sensitive

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Nove, J.; Little, J.B.

    1977-01-01

    Retinoblastoma is a rare malignant eye tumour that appears either spontaneously or in genetically predisposed persons. The latter group is composed of persons who inherit the tumour with a dominant mode of transmission (the familial type) and those who have a deletion in the long arm of chromosome 13 referred to as the D-deletion type. When this deletion is present it is observed in many somatic cells and is often associated with structural defects. Survivors of the genetic forms of retinoblastoma have an increased risk of the development of cancers at other sites. A single genetic locus is unlikely to predispose many somatic cells to tumour formation unless a fundamental molecular defect, possibly related to DNA repair, is present. In order to investigate this hypothesis a study was made of the in vitro X-ray sensitivity of skin fibroblasts derived from three retinoblastoma patients, comprising a pair of twins with the familial type accompanied by no gross chromosome abnormalities, and a patient with the D-deletion type. It was found that fibroblasts derived from the D-deletion patient were significantly more radiosensitive than those from the other two patients. X-ray survival curves are shown. It is concluded that skin fibroblasts derived from a patient with the D-deletion variant of retinoblastoma are abnormally radiosensitive. Future investigations may indicate a specific defect in molecular repair of DNA that will explain the predisposition of these patients to the development of other tumours. (U.K.)

  20. Rapid deletion production in fungi via Agrobacterium mediated transformation of OSCAR deletion contructs.

    Science.gov (United States)

    Precise deletion of gene(s) of interest, while leaving the rest of the genome unchanged, provides the ideal product to determine that particular gene’s function in the living organism. In this protocol we describe the OSCAR method of precise and rapid deletion plasmid construction. OSCAR relies on t...

  1. Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bova, G.S.; Pin, S.S.; Isaacs, W.B. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)]|[Brady Urological Institute, Baltimore, MD (United States)] [and others

    1996-07-01

    Numerous studies have implicated the short arm of chromosome 8 as the site of one or more tumor suppressor genes inactivated in carcinogenesis of the prostate, colon, lung, and liver. Previously, we identified a homozygous deletion on chromosome 8p22 in a metastatic prostate cancer. To map this homozygous deletion physically, long-range restriction mapping was performed using yeast artificial chromosomes (YACs) spanning approximately 2 Mb of chromosome band 8p22. Subcloned genomic DNA and cDNA probes isolated by hybrid capture from these YACs were mapped in relation to one another, reinforcing map integrity. Mapped single-copy probes from the region were then applied to DNA isolated from a metastatic prostate cancer containing a chromosome 8p22 homozygous deletion and indicated that its deletion spans 730-970 kb. Candidate genes PRLTS (PDGF-receptor {beta}-like tumor suppressor) and CTSB (cathepsin B) are located outside the region of homozygous deletion. Genethon marker D8S549 is located approximately at the center of this region of homozygous deletion. Two new microsatellite polymorphisms, D8S1991 and D8S1992, also located within the region of homozygous deletion on chromosome 8p22, are described. Physical mapping places cosmid CI8-2644 telomeric to MSR (macrophage scavenger receptor), the reverse of a previously published map, altering the interpretation of published deletion studies. This work should prove helpful in the identification of candidate tumor suppressor genes in this region. 47 refs., 5 figs., 1 tab.

  2. New traits in crops produced by genome editing techniques based on deletions

    NARCIS (Netherlands)

    Wiel, van de C.C.M.; Schaart, J.G.; Lotz, L.A.P.; Smulders, M.J.M.

    2017-01-01

    One of the most promising New Plant Breeding Techniques is genome editing (also called gene editing) with the help of a programmable site-directed nuclease (SDN). In this review, we focus on SDN-1, which is the generation of small deletions or insertions (indels) at a precisely defined location in

  3. 9q22 Deletion - First Familial Case

    Directory of Open Access Journals (Sweden)

    Yamamoto Toshiyuki

    2011-06-01

    Full Text Available Abstract Background Only 29 cases of constitutional 9q22 deletions have been published and all have been sporadic. Most associate with Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS, MIM #109400 due to haploinsufficiency of the PTCH1 gene (MIM *601309. Methods and Results We report two mentally retarded female siblings and their cognitively normal father, all carrying a similar 5.3 Mb microdeletion at 9q22.2q22.32, detected by array CGH (244 K. The deletion does not involve the PTCH1 gene, but instead 30 other gene,s including the ROR2 gene (MIM *602337 which causing both brachydactyly type 1 (MIM #113000 and Robinow syndrome (MIM #268310, and the immunologically active SYK gene (MIM *600085. The deletion in the father was de novo and FISH analysis of blood lymphocytes did not suggest mosaicism. All three patients share similar mild dysmorphic features with downslanting palpebral fissures, narrow, high bridged nose with small nares, long, deeply grooved philtrum, ears with broad helix and uplifted lobuli, and small toenails. All have significant dysarthria and suffer from continuous middle ear and upper respiratory infections. The father also has a funnel chest and unilateral hypoplastic kidney but the daughters have no malformations. Conclusions This is the first report of a familial constitutional 9q22 deletion and the first deletion studied by array-CGH which does not involve the PTCH1 gene. The phenotype and penetrance are variable and the deletion found in the cognitively normal normal father poses a challenge in genetic counseling.

  4. Deletion 22q13.3 syndrome

    Directory of Open Access Journals (Sweden)

    Phelan Mary C

    2008-05-01

    Full Text Available Abstract The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH or array comparative genomic hybridization (CGH is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy. Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements

  5. Some analogies between quantum cloning and quantum deleting

    International Nuclear Information System (INIS)

    Qiu Daowen

    2002-01-01

    We further verify the impossibility of deleting an arbitrary unknown quantum state, and also show it is impossible to delete two nonorthogonal quantum states as a consequence of unitarity of quantum mechanics. A quantum approximate (deterministic) deleting machine and a probabilistic (exact) deleting machine are constructed. The estimation for the global fidelity characterizing the efficiency of the quantum approximate deleting is given. We then demonstrate that unknown nonorthogonal states chosen from a set with their multiple copies can evolve into a linear superposition of multiple deletions and failure branches by a unitary process if and only if the states are linearly independent. It is notable that the proof for necessity is somewhat different from Pati's [Phys. Rev. Lett. 83, 2849 (1999)]. Another deleting machine for the input states that are unnecessarily linearly independent is also presented. The bounds on the success probabilities of these deleting machines are derived. So we expound some preliminary analogies between quantum cloning and deleting

  6. Familial deletion 18p syndrome: case report

    Directory of Open Access Journals (Sweden)

    Lemyre Emmanuelle

    2006-07-01

    Full Text Available Abstract Background Deletion 18p is a frequent deletion syndrome characterized by dysmorphic features, growth deficiencies, and mental retardation with a poorer verbal performance. Until now, five families have been described with limited clinical description. We report transmission of deletion 18p from a mother to her two daughters and review the previous cases. Case presentation The proband is 12 years old and has short stature, dysmorphic features and moderate mental retardation. Her sister is 9 years old and also has short stature and similar dysmorphic features. Her cognitive performance is within the borderline to mild mental retardation range. The mother also presents short stature. Psychological evaluation showed moderate mental retardation. Chromosome analysis from the sisters and their mother revealed the same chromosomal deletion: 46, XX, del(18(p11.2. Previous familial cases were consistent regarding the transmission of mental retardation. Our family differs in this regard with variable cognitive impairment and does not display poorer verbal than non-verbal abilities. An exclusive maternal transmission is observed throughout those families. Women with del(18p are fertile and seem to have a normal miscarriage rate. Conclusion Genetic counseling for these patients should take into account a greater range of cognitive outcome than previously reported.

  7. 78 FR 37525 - Procurement List; Deletions

    Science.gov (United States)

    2013-06-21

    .... Contracting Activity: Dept of the Air Force, FA7014 AFDW A7KI, Andrews AFB, MD. Service Type/Location: Laundry... Procurement List. SUMMARY: This action deletes products and services from the Procurement List that were... products and services listed below are no longer suitable for procurement by the Federal Government under...

  8. Sequence analysis of 17 NRXN1 deletions

    DEFF Research Database (Denmark)

    Hoeffding, Louise Kristine Enggaard; Hansen, Thomas; Ingason, Andrés

    2014-01-01

    into the molecular mechanisms governing such genomic rearrangements may increase our understanding of disease pathology and evolutionary processes. Here we analyse 17 carriers of non-recurrent deletions in the NRXN1 gene, which have been associated with neurodevelopmental disorders, e.g. schizophrenia, autism...

  9. Angiotensin Converting Enzyme Insertion/Deletion Gene ...

    African Journals Online (AJOL)

    Angiotensin Converting Enzyme Insertion/Deletion Gene Polymorphism: An Observational Study among Diabetic Hypertensive Subjects in Malaysia. ... Methods: The pharmacological effect of ACE inhibition on mean arterial pressure (MAP) and glomerular filtration rate (GFR) were observed among a total of 62 subjects for ...

  10. Obtaining a Proportional Allocation by Deleting Items

    NARCIS (Netherlands)

    Dorn, B.; de Haan, R.; Schlotter, I.; Röthe, J.

    2017-01-01

    We consider the following control problem on fair allocation of indivisible goods. Given a set I of items and a set of agents, each having strict linear preference over the items, we ask for a minimum subset of the items whose deletion guarantees the existence of a proportional allocation in the

  11. Union-Find with Constant Time Deletions

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Thorup, Mikkel; Gørtz, Inge Li

    2014-01-01

    operations performed, and α_M/N_(n) is a functional inverse of Ackermann’s function. They left open the question whether delete operations can be implemented more efficiently than find operations, for example, in o(log n) worst-case time. We resolve this open problem by presenting a relatively simple...

  12. Mapping genomic deletions down to the base

    DEFF Research Database (Denmark)

    Dunø, Morten; Hove, Hanne; Kirchhoff, Maria

    2004-01-01

    the breakpoint of the third patient was mapped to a region previously predicted to be prone for rearrangements. One patient also harboured an inversion in connection with the deletion that disrupted the HDAC9 gene. All three patients showed clinical characteristics reminiscent of the hand-foot-genital syndrome...

  13. Delayed chromosomal instability caused by large deletion

    International Nuclear Information System (INIS)

    Ojima, M.; Suzuki, K.; Kodama, S.; Watanabe, M.

    2003-01-01

    Full text: There is accumulating evidence that genomic instability, manifested by the expression of delayed phenotypes, is induced by X-irradiation but not by ultraviolet (UV) light. It is well known that ionizing radiation, such as X-rays, induces DNA double strand breaks, but UV-light mainly causes base damage like pyrimidine dimers and (6-4) photoproducts. Although the mechanism of radiation-induced genomic instability has not been thoroughly explained, it is suggested that DNA double strand breaks contribute the induction of genomic instability. We examined here whether X-ray induced gene deletion at the hprt locus induces delayed instability in chromosome X. SV40-immortalized normal human fibroblasts, GM638, were irradiated with X-rays (3, 6 Gy), and the hprt mutants were isolated in the presence of 6-thioguanine (6-TG). A 2-fold and a 60-fold increase in mutation frequency were found by 3 Gy and 6 Gy irradiation, respectively. The molecular structure of the hprt mutations was determined by multiplex polymerase chain reaction of nine exons. Approximately 60% of 3 Gy mutants lost a part or the entire hprt gene, and the other mutants showed point mutations like spontaneous mutants. All 6 Gy mutants show total gene deletion. The chromosomes of the hprt mutants were analyzed by Whole Human Chromosome X Paint FISH or Xq telomere FISH. None of the point or partial gene deletion mutants showed aberrations of X-chromosome, however total gene deletion mutants induced translocations and dicentrics involving chromosome X. These results suggest that large deletion caused by DNA double strand breaks destabilizes chromosome structure, which may be involved in an induction of radiation-induced genomic instability

  14. Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila.

    Science.gov (United States)

    Saveliev, S V; Cox, M M

    2001-06-15

    DNA sequences (IES elements) eliminated from the developing macronucleus in the ciliate Tetrahymena thermophila are released as linear fragments, which have now been detected and isolated. A PCR-mediated examination of fragment end structures reveals three types of strand scission events, reflecting three steps in the deletion process. New evidence is provided for two steps proposed previously: an initiating double-stranded cleavage, and strand transfer to create a branched deletion intermediate. The fragment ends provide evidence for a previously uncharacterized third step: the branched DNA strand is cleaved at one of several defined sites located within 15-16 nucleotides of the IES boundary, liberating the deleted DNA in a linear form.

  15. Partial Gene Deletions of PMP22 Causing Hereditary Neuropathy with Liability to Pressure Palsies

    Directory of Open Access Journals (Sweden)

    Sun-Mi Cho

    2014-01-01

    Full Text Available Hereditary neuropathy with liability to pressure palsies (HNPP is an autosomal neuropathy that is commonly caused by a reciprocal 1.5 Mb deletion on chromosome 17p11.2, at the site of the peripheral myelin protein 22 (PMP22 gene. Other patients with similar phenotypes have been shown to harbor point mutations or small deletions, although there is some clinical variation across these patients. In this report, we describe a case of HNPP with copy number changes in exon or promoter regions of PMP22. Multiplex ligation-dependent probe analysis revealed an exon 1b deletion in the patient, who had been diagnosed with HNPP in the first decade of life using molecular analysis.

  16. A Tool for Multiple Targeted Genome Deletions that Is Precise, Scar-Free, and Suitable for Automation.

    Directory of Open Access Journals (Sweden)

    Wayne Aubrey

    Full Text Available Many advances in synthetic biology require the removal of a large number of genomic elements from a genome. Most existing deletion methods leave behind markers, and as there are a limited number of markers, such methods can only be applied a fixed number of times. Deletion methods that recycle markers generally are either imprecise (remove untargeted sequences, or leave scar sequences which can cause genome instability and rearrangements. No existing marker recycling method is automation-friendly. We have developed a novel openly available deletion tool that consists of: 1 a method for deleting genomic elements that can be repeatedly used without limit, is precise, scar-free, and suitable for automation; and 2 software to design the method's primers. Our tool is sequence agnostic and could be used to delete large numbers of coding sequences, promoter regions, transcription factor binding sites, terminators, etc in a single genome. We have validated our tool on the deletion of non-essential open reading frames (ORFs from S. cerevisiae. The tool is applicable to arbitrary genomes, and we provide primer sequences for the deletion of: 90% of the ORFs from the S. cerevisiae genome, 88% of the ORFs from S. pombe genome, and 85% of the ORFs from the L. lactis genome.

  17. Genetics Home Reference: 17q12 deletion syndrome

    Science.gov (United States)

    ... with 17q12 deletion syndrome have delayed development (particularly speech and language delays), intellectual disability, or behavioral or psychiatric disorders. Behavioral and psychiatric conditions that have been reported in people with 17q12 deletion syndrome include autism ...

  18. Probabilistic deletion of copies of linearly independent quantum states

    International Nuclear Information System (INIS)

    Feng Jian; Gao Yunfeng; Wang Jisuo; Zhan Mingsheng

    2002-01-01

    We show that each of two copies of the nonorthogonal states randomly selected from a certain set S can be probabilistically deleted by a general unitary-reduction operation if and only if the states are linearly independent. We derive a tight bound on the best possible deleting efficiencies. These results for 2→1 probabilistic deleting are also generalized into the case of N→M deleting (N,M positive integers and N>M)

  19. An RNA secondary structure bias for non-homologous reverse transcriptase-mediated deletions in vivo

    DEFF Research Database (Denmark)

    Duch, Mogens; Carrasco, Maria L; Jespersen, Thomas

    2004-01-01

    Murine leukemia viruses harboring an internal ribosome entry site (IRES)-directed translational cassette are able to replicate, but undergo loss of heterologous sequences upon continued passage. While complete loss of heterologous sequences is favored when these are flanked by a direct repeat......, deletion mutants with junction sites within the heterologous cassette may also be retrieved, in particular from vectors without flanking repeats. Such deletion mutants were here used to investigate determinants of reverse transcriptase-mediated non-homologous recombination. Based upon previous structural...... result from template switching during first-strand cDNA synthesis and that the choice of acceptor sites for non-homologous recombination are guided by non-paired regions. Our results may have implications for recombination events taking place within structured regions of retroviral RNA genomes...

  20. 78 FR 29119 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2013-05-17

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and Deletion from the Procurement List. SUMMARY: This action adds products and services to the... Activity: Washington Headquarters Services (WHS), Acquisition Directorate, Washington, DC. Deletion On 4/5...

  1. 5 CFR 1631.17 - Deletion of exempted information.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Deletion of exempted information. 1631.17... Deletion of exempted information. Where requested records contain matters which are exempted under 5 U.S.C... disclosed by the Board with deletions. To each such record, the Board shall attach a written justification...

  2. 75 FR 56995 - Procurement List Proposed Additions and Deletion

    Science.gov (United States)

    2010-09-17

    ... Additions and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions to and Deletion From the Procurement List. SUMMARY: The Committee is proposing to add... aggregated by the Defense Logistics Agency Troop Support, Philadelphia, PA. Deletion Regulatory Flexibility...

  3. 5 CFR 2502.18 - Deletion of exempted information.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Deletion of exempted information. 2502.18... Charges for Search and Reproduction § 2502.18 Deletion of exempted information. Where requested records... the remainder of the records, they shall be disclosed by the Office with deletions. To each such...

  4. 78 FR 75912 - Procurement List; Addition and Deletion

    Science.gov (United States)

    2013-12-13

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Addition to and deletion from the Procurement List. SUMMARY: This action adds a service to the Procurement...: General Services Administration, Fort Worth, TX Deletion On 11/1/2013 (78 FR 65618), the Committee for...

  5. 78 FR 27369 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2013-05-10

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and Deletion from the Procurement List. SUMMARY: This action adds products to the Procurement..., Philadelphia, PA. Deletion On 4/5/2013 (78 FR 20622-20623), the Committee for Purchase From People Who Are...

  6. 75 FR 7450 - Procurement List: Proposed Addition and Deletion

    Science.gov (United States)

    2010-02-19

    ... Addition and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed addition to and deletion from Procurement List. SUMMARY: The Committee is proposing to add to the... W6BA ACA, FT CARSON, COLORADO. Deletion Regulatory Flexibility Act Certification I certify that the...

  7. 77 FR 20795 - Procurement List Proposed Addition and Deletion

    Science.gov (United States)

    2012-04-06

    ... Addition and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Addition to and Deletion from the Procurement List. SUMMARY: The Committee is proposing to add a.... Deletion Regulatory Flexibility Act Certification I certify that the following action will not have a...

  8. 36 CFR 1275.58 - Deletion of restricted portions.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Deletion of restricted... HISTORICAL MATERIALS OF THE NIXON ADMINISTRATION Access by the Public § 1275.58 Deletion of restricted... materials after the deletion of the portions which are restricted under this § 1275.50 or § 1275.52. ...

  9. 75 FR 69638 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2010-11-15

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and deletion from the Procurement List. SUMMARY: This action adds products and a service to the...), DENVER, CO. Deletion On 9/17/2010 (75 FR 56995-56996), the Committee for Purchase From People Who Are...

  10. 76 FR 60810 - Procurement List; Proposed Additions and Deletion

    Science.gov (United States)

    2011-09-30

    ... Additions and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions to and Deletion from the Procurement List. SUMMARY: The Committee is proposing to add... Activity: Department of Energy, Idaho Operations Office, Idaho Falls, ID. DELETION Regulatory Flexibility...

  11. 44 CFR 5.27 - Deletion of identifying details.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Deletion of identifying... Availability of General Agency Information, Rules, Orders, Policies, and Similar Material § 5.27 Deletion of..., interpretation, or staff manual or instruction. However, the justification for each deletion will be explained...

  12. 29 CFR 1610.20 - Deletion of exempted matters.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records... the remainder of the records, they shall be disclosed by the Commission with deletions. To each such...

  13. 49 CFR 7.6 - Deletion of identifying detail.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Deletion of identifying detail. 7.6 Section 7.6... To Be Made Public by DOT § 7.6 Deletion of identifying detail. Whenever it is determined to be... the deletion will accompany the record published or made available for inspection. ...

  14. 76 FR 5142 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2011-01-28

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and deletion from the Procurement List. SUMMARY: This action adds services to the Procurement.... Contracting Activity: Department of Transportation, Federal Aviation Administration, Jamaica, NY. Deletion On...

  15. Genetics Home Reference: proximal 18q deletion syndrome

    Science.gov (United States)

    ... characteristic features. Most cases of proximal 18q deletion syndrome are the result of a new (de novo) deletion and are not inherited from a ... J, Fox PT, Stratton RF, Perry B, Hale DE. Recurrent interstitial deletions of proximal 18q: a new syndrome involving expressive speech delay. Am J Med Genet ...

  16. Characterization of five partial deletions of the factor VIII gene

    International Nuclear Information System (INIS)

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-01-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes

  17. An environment-mediated quantum deleter

    International Nuclear Information System (INIS)

    Srikanth, R.; Banerjee, Subhashish

    2007-01-01

    Environment-induced decoherence presents a great challenge to realizing a quantum computer. We point out the somewhat surprising fact that decoherence can be useful, indeed necessary, for practical quantum computation, in particular, for the effective erasure of quantum memory in order to initialize the state of the quantum computer. The essential point behind the deleter is that the environment, by means of a dissipative interaction, furnishes a contractive map towards a pure state. We present a specific example of an amplitude damping channel provided by a two-level system's interaction with its environment in the weak Born-Markov approximation. This is contrasted with a purely dephasing, non-dissipative channel provided by a two-level system's interaction with its environment by means of a quantum nondemolition interaction. We point out that currently used state preparation techniques, for example using optical pumping, essentially perform as quantum deleters

  18. Catalytic properties of ADAM12 and its domain deletion mutants

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Visse, Robert; Sørensen, Hans Peter

    2008-01-01

    of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits...... restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most...... active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower...

  19. Conditional deletion of Pten causes bronchiolar hyperplasia.

    Science.gov (United States)

    Davé, Vrushank; Wert, Susan E; Tanner, Tiffany; Thitoff, Angela R; Loudy, Dave E; Whitsett, Jeffrey A

    2008-03-01

    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (Pten(Delta/Delta)) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by beta-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, beta-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles.

  20. Large Genomic Deletions in CACNA1A Cause Episodic Ataxia Type 2

    Directory of Open Access Journals (Sweden)

    Jijun eWan

    2011-09-01

    Full Text Available Episodic ataxia (EA syndromes are heritable diseases characterized by dramatic episodes of imbalance and incoordination. Episodic ataxia type 2 (EA2, the most common and the best characterized subtype, is caused by mostly nonsense, splice site, small indel and sometimes missense mutations in CACNA1A. Direct sequencing of CACNA1A fails to identify mutations in some patients with EA2-like features, possibly due to incomplete interrogation of CACNA1A or defects in other EA genes not yet defined. Previous reports described genomic deletions between 4-40kb in EA2. In 47 subjects with EA (26 with EA2-like features who tested negative for mutations in the known EA genes, we used Multiplex Ligation-dependent Probe Amplification (MLPA to analyze CACNA1A for exonic copy number variations. Breakpoints were further defined by long-range PCR. We identified distinct multi-exonic deletions in three probands with classic EA2-like features: episodes of prolonged vertigo and ataxia triggered by stress and fatigue, interictal nystagmus, with onset during infancy or early childhood. The breakpoints in all three probands are located in Alu sequences, indicating errors in homologous recombination of Alu sequences as the underlying mechanism. The smallest deletion spanned exons 39 and 40, while the largest deletion spanned 200kb, missing all but the first three exons. One deletion involving exons 39 through 47 arose spontaneously. The search for mutations in CACNA1A appears most fruitful in EA patients with interictal nystagmus and onset early in life. The finding of large heterozygous deletions suggests haploinsufficiency as a possible pathomechanism of EA2.

  1. Chromosomal deletion unmasking a recessive disease: 22q13 deletion syndrome and metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Bisgaard, A-M; Kirchhoff, M; Nielsen, J E

    2008-01-01

    A deletion on one chromosome and a mutant allele on the other may cause an autosomal recessive disease. We report on two patients with mental retardation, dysmorphic features and low catalytic activity of arylsulfatase A. One patient had a pathogenic mutation in the arylsulfatase A gene (ARSA......) and succumbed to metachromatic leukodystrophy (MLD). The other patient had a pseudoallele, which does not lead to MLD. The presenting clinical features and low arylsulfatase A activity were explained, in each patients, by a deletion of 22q13 and, thereby, of one allele of ARSA....

  2. Writing and deleting single magnetic skyrmions.

    Science.gov (United States)

    Romming, Niklas; Hanneken, Christian; Menzel, Matthias; Bickel, Jessica E; Wolter, Boris; von Bergmann, Kirsten; Kubetzka, André; Wiesendanger, Roland

    2013-08-09

    Topologically nontrivial spin textures have recently been investigated for spintronic applications. Here, we report on an ultrathin magnetic film in which individual skyrmions can be written and deleted in a controlled fashion with local spin-polarized currents from a scanning tunneling microscope. An external magnetic field is used to tune the energy landscape, and the temperature is adjusted to prevent thermally activated switching between topologically distinct states. Switching rate and direction can then be controlled by the parameters used for current injection. The creation and annihilation of individual magnetic skyrmions demonstrates the potential for topological charge in future information-storage concepts.

  3. Potential complications when developing gene deletion clones in Xylella fastidiosa.

    Science.gov (United States)

    Johnson, Kameka L; Cursino, Luciana; Athinuwat, Dusit; Burr, Thomas J; Mowery, Patricia

    2015-04-16

    The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce's disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.

  4. Two novel types of contiguous gene deletion of the AVPR2 and ARHGAP4 genes in unrelated Japanese kindreds with nephrogenic diabetes insipidus.

    Science.gov (United States)

    Demura, Masashi; Takeda, Yoshiyu; Yoneda, Takashi; Furukawa, Kenji; Usukura, Mikiya; Itoh, Yuji; Mabuchi, Hiroshi

    2002-01-01

    Study of two families containing individuals with nephrogenic diabetes insipidus (NDI) indicated different types of 21.3 kb and 26.3 kb deletions involving the AVPR2 and ARHGAP4 (RhoGAP C1) genes. In the case of the 21.3 kb deletion, the deletion consensus motif (5'-TGAAGG-3') and polypurine runs, known as the arrest site of polymerase alpha, were detected in the vicinity of the deletion junction. Inverted repeats (7/8 matches), believed to potentiate DNA loop formation, flank the deletion breakpoint. We propose this deletion to be the result of slipped mispairing during DNA replication. In the case of the 26.3 kb deletion, the 12,945 bp inverted region with the 10,003 bp internal deletion was accompanied with the 2,509 bp deletion in the 5'-side and the 13,785 bp deletion in the 3'-side. We defined three deletion junctions in this rearrangement (DJ1, DJ2, and DJ3) from the 5'-side. The surrounding sequence of DJ1 (5'-CCC-3') closely resembled that of DJ3 (5'-AGGG-3') (DJ1; 5'-cCCCgaggg-3', DJ3; 5'-ccccAGGG-3'), and DJ1 was located in the 5'-side of DJ3 without any overlapping in sequence. The immunoglobulin class switch (ICS) motif (5'-TGGGG-3') was found around the complementary sequence of DJ3. There was a 10-base palindrome (5'-aGACAtgtct-3') in the alignment of the DJ2 (5'-GACA-3') region. From these findings, we propose a novel mutation process with the rearrangement probably resulting from stem-loop induced non-homologous recombination in an ICS-like fashion. Both patients, despite lacking ARHGAP4, had no morphological, clinical, or laboratory abnormalities except for those usually found in patients with NDI. Copyright 2001 Wiley-Liss, Inc.

  5. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Science.gov (United States)

    2012-01-01

    Background Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone

  6. Deletion of ultraconserved elements yields viable mice

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  7. Rare human diseases: 9p deletion syndrome

    Directory of Open Access Journals (Sweden)

    Galagan V.O.

    2014-09-01

    Full Text Available Objective of the study was to review the anamnesis, pheno - and genotype in patients with rare chromosome disorders such as 9p deletion syndrome. Genetic methods of investigation (clinical and genealogical, cytogenetic, FISH- method, paraclinical and instrumental methods of examination were used. Karyotyping was performed by the G-method of differential staining of chromosomes. Only three cases of pathology were diagnosed in the Medical Genetics Center over the last 10 years. By anamnesis data nobody in the probands’ families had bad habits, was exposed to occupational hazards, took part in the elimination of the Chernobyl accident or lived in contaminated areas. Clinical signs of diseases have not been identified in probands’ parents. All probands had trigonocephaly, bilateral epicanthal folds, ocular hypertelorism, downslanting palpebral fissures, long philtrum, flat face and nasal bridge, low set ears with malformed auricles. Two patients of three ones had exophthalmos, contracture of the second and third fingers, abnormal external genitalia. In all three cases there was monosomy of chromosome 9 of critical segment p 24. Normal karyotypes were seen in all parents, so there were three cases of new mutations of 9p deletion syndrome. Retardation of physical, psycho-spech, mental development in proband with or without congenital anomalies requires medical genetic counseling in a specialized institution. Cases of reproductive loss in anamnesis require cytogenetic investigation of fetal membranes and amniotic fluid.

  8. Mitochondrial DNA deletion in a patient with combined features of Leigh and Pearson syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Blok, R.B.; Thorburn, D.R.; Danks, D.M. [Royal Children`s Hospital, Melbourne (Australia)] [and others

    1994-09-01

    We describe a heteroplasmic 4237 bp mitochondrial DNA (mtDNA) deletion in an 11 year old girl who has suffered from progressive illness since birth. She has some features of Leigh syndrome (global developmental delay with regression, brainstem dysfunction and lactic acidosis), together with other features suggestive of Pearson syndrome (history of pancytopenia and failure to thrive). The deletion was present at a level greater than 50% in skeletal muscle, but barely detectable in skin fibroblasts following Southern blot analysis, and only observed in blood following PCR analysis. The deletion spanned nt 9498 to nt 13734, and was flanked by a 12 bp direct repeat. Genes for cytochrome c oxidase subunit III, NADH dehydrogenase subunits 3, 4L, 4 and 5, and tRNAs for glycine, arginine, histidine, serine({sup AGY}) and leucine({sup CUN}) were deleted. Southern blotting also revealed an altered Apa I restriction site which was shown by sequence analysis to be caused by G{r_arrow}A nucleotide substitution at nt 1462 in the 12S rRNA gene. This was presumed to be a polymorphism. No abnormalities of mitochondrial ultrastructure, distribution or of respiratory chain enzyme complexes I-IV in skeletal muscle were observed. Mitochondrial disorders with clinical features overlapping more than one syndrome have been reported previously. This case further demonstrates the difficulty in correlating observed clinical features with a specific mitochondrial DNA mutation.

  9. Are there ethnic differences in deletions in the dystrophin gene?

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.; Verma, I.C. [All India Inst. of Medical Sciences, New Delhi (India)

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  10. Panchromatic cooperative hyperspectral adaptive wide band deletion repair method

    Science.gov (United States)

    Jiang, Bitao; Shi, Chunyu

    2018-02-01

    In the hyperspectral data, the phenomenon of stripe deletion often occurs, which seriously affects the efficiency and accuracy of data analysis and application. Narrow band deletion can be directly repaired by interpolation, and this method is not ideal for wide band deletion repair. In this paper, an adaptive spectral wide band missing restoration method based on panchromatic information is proposed, and the effectiveness of the algorithm is verified by experiments.

  11. Clival encephalocele and 5q15 deletion: a case report.

    Science.gov (United States)

    Puvabanditsin, Surasak; Malik, Imran; Garrow, Eugene; Francois, Lissa; Mehta, Rajeev

    2015-03-01

    A preterm neonate presenting with respiratory distress after birth was found to have a clival encephalocele, which is a variant of a basal encephalocele, and hypoplasia of the cerebellum. Genetic studies revealed a small deletion of the long arm of chromosome 5: 5q15 deletion. We report a rare variant of a basal encephalocele with a cerebellar malformation and 5q15 deletion. © The Author(s) 2014.

  12. Male gametophytic sterility. 1 - Gametic sterilities and deletions in petunia

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, A.; Maizonnier, D. (Station d' Amelioration des Plantes de l' I.N.R.A., Dijon (France))

    1982-01-01

    Terminal deletions induced by ionizing radiations in Petunia are not sexually transmitted. Cytogenetic study of plants with a heterozygous deletion and their progenies shows that this lack of transmission is accompanied by a gametic semi-sterility due to the fact that gametes carrying the deleted chromosome are not viable. The interest of such a male sterility with a gametophytic determinism for the study of sporophyte-gametophyte relationships is underlined.

  13. HOXA genes cluster: clinical implications of the smallest deletion

    OpenAIRE

    Pezzani, Lidia; Milani, Donatella; Manzoni, Francesca; Baccarin, Marco; Silipigni, Rosamaria; Guerneri, Silvana; Esposito, Susanna

    2015-01-01

    Background HOXA genes cluster plays a fundamental role in embryologic development. Deletion of the entire cluster is known to cause a clinically recognizable syndrome with mild developmental delay, characteristic facies, small feet with unusually short and big halluces, abnormal thumbs, and urogenital malformations. The clinical manifestations may vary with different ranges of deletions of HOXA cluster and flanking regions. Case presentation We report a girl with the smallest deletion reporte...

  14. A Comparative Study of Quantum and Classical Deletion

    International Nuclear Information System (INIS)

    Shen Yao; Hao Liang; Long Guilu

    2010-01-01

    Here in this letter, we study the difference between quantum and classical deletion. We point out that the linear mapping deletion operation used in the impossibility proof for quantum systems applies also to classical system. The general classical deletion operation is a combined operation of measurement and transformation, i.e., first read the state and then transfer the state to the standard blank state. Though both quantum information and classical information can be deleted in an open system, quantum information cannot be recovered while classical information can be recovered. (general)

  15. Comprehensive analysis of pathogenic deletion variants in Fanconi anemia genes.

    Science.gov (United States)

    Flynn, Elizabeth K; Kamat, Aparna; Lach, Francis P; Donovan, Frank X; Kimble, Danielle C; Narisu, Narisu; Sanborn, Erica; Boulad, Farid; Davies, Stella M; Gillio, Alfred P; Harris, Richard E; MacMillan, Margaret L; Wagner, John E; Smogorzewska, Agata; Auerbach, Arleen D; Ostrander, Elaine A; Chandrasekharappa, Settara C

    2014-11-01

    Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution comparative genome hybridization arrays, single-nucleotide polymorphism arrays, and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by nonallelic homologous recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants. © 2014 WILEY PERIODICALS, INC.

  16. 75 FR 1355 - Procurement List Additions and Deletions

    Science.gov (United States)

    2010-01-11

    .../Location: Janitorial Services, Jamestown Service Center, 8430 Country Club Street, Jamestown, ND. NPA..., the following products and services are deleted from the Procurement List: Products Business Cards NSN...

  17. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways.

    Science.gov (United States)

    Xing, Changsheng; Ci, Xinpei; Sun, Xiaodong; Fu, Xiaoying; Zhang, Zhiqian; Dong, Eric N; Hao, Zhao-Zhe; Dong, Jin-Tang

    2014-11-01

    Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer-mutation/deletion of Pten and deletion of Klf5.

  18. Brand deletion: How the decision-making approach affects deletion success

    Directory of Open Access Journals (Sweden)

    Víctor Temprano-García

    2018-04-01

    Full Text Available Literature on brand deletion (BD, a critical and topical decision within a firm's marketing strategy, is extremely scarce. The present research is concerned with the decision-making process and examines the effect on BD success of three different approaches to decision-making – rational, intuitive and political – and of the interaction between the rational and political approaches. The moderating effect of the type of BD – i.e., total brand killing or disposal vs. brand name change – is also analyzed. The model is tested on a sample of 155 cases of BD. Results point to positive effects on BD success of both rationality and intuition, and a negative effect of politics. Findings also indicate that the negative impact of political behavior on BD success is minimized in the absence of evidence and objective information and when the BD is undertaken through a brand name change. JEL classification: L10, M31, Keywords: Brand deletion, Rational decision-making, Intuitive decision-making, Political decision-making, Brand deletion success

  19. Phosphatase and tensin homologue deleted on chromosome 10 ...

    African Journals Online (AJOL)

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH) for the PTEN ...

  20. Generalised deletion designs | Gachii | African Journal of Science ...

    African Journals Online (AJOL)

    In this paper asymmetrical single replicate factorial designs are constructed from symmetrical single replicate factorial designs using the deletion technique. The study is along the lines of Voss(1986), Chauhan(1989) and Gachii and Odhiambo(1997). We give results for the general order deletion designs of the form sn-m1(s ...

  1. 24 CFR 990.155 - Addition and deletion of units.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Addition and deletion of units. 990.155 Section 990.155 Housing and Urban Development Regulations Relating to Housing and Urban...; Computation of Eligible Unit Months § 990.155 Addition and deletion of units. (a) Changes in public housing...

  2. 4977-bp mitochondrial DNA deletion in infertile patients with varicocele.

    Science.gov (United States)

    Gashti, N G; Salehi, Z; Madani, A H; Dalivandan, S T

    2014-04-01

    Varicocele is the abnormal inflexion and distension of veins of the pampiniform plexus within spermatic cord and is one of the amendable causes of male infertility. It can increase reactive oxygen species (ROS) production in semen and cause oxidative stress. The purpose of this study was to analyse spermatozoa mtDNA 4977-bp deletion in infertile men with varicocele. To detect 4977-bp deletion in spermatozoa mtDNA, semen samples of 60 infertile patients with clinical varicocele and 90 normal men from northern Iran were prepared. After extraction of spermatozoa total DNA, Gap polymerase chain reaction (Gap PCR) was performed. 4977-bp deletion was observed in 81.66% of patients with varicocele, while approximately 15.55% of controls had this deletion. As spermatozoa from patients with varicocele had a high frequency of occurrence of 4977-bp deletion in mtDNA [OR = 24.18, 95% confidence interval (CI) = 10.15-57.57, P deletion in spermatozoa and cause infertility in north Iranian men. However, to determine the relation between sperm mtDNA 4977-bp deletion and varicocele-induced infertility, larger population-based studies are needed. It is concluded that there is an association between sperm mtDNA 4977-bp deletion and varicocele-induced infertility in the population studied. © 2013 Blackwell Verlag GmbH.

  3. 34 CFR 5.16 - Deletion of identifying details.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Deletion of identifying details. 5.16 Section 5.16 Education Office of the Secretary, Department of Education AVAILABILITY OF INFORMATION TO THE PUBLIC PURSUANT TO PUB. L. 90-23 (Eff. until 7-14-10) What Records Are Available § 5.16 Deletion of identifying...

  4. 42 CFR 401.118 - Deletion of identifying details.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Deletion of identifying details. 401.118 Section 401.118 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Deletion of identifying details. When CMS publishes or otherwise makes available an opinion or order...

  5. Coexistence of 9p Deletion Syndrome and Autism Spectrum Disorder

    Science.gov (United States)

    Günes, Serkan; Ekinci, Özalp; Ekinci, Nuran; Toros, Fevziye

    2017-01-01

    Deletion or duplication of the short arm of chromosome 9 may lead to a variety of clinical conditions including craniofacial and limb abnormalities, skeletal malformations, mental retardation, and autism spectrum disorder. Here, we present a case report of 5-year-old boy with 9p deletion syndrome and autism spectrum disorder.

  6. Linguistic and Psychomotor Development in Children with Chromosome 14 Deletions

    Science.gov (United States)

    Zampini, Laura; D'Odorico, Laura; Zanchi, Paola; Zollino, Marcella; Neri, Giovanni

    2012-01-01

    The present study focussed on a specific type of rare genetic condition: chromosome 14 deletions. Children with this genetic condition often show developmental delays and brain and neurological problems, although the type and severity of symptoms varies depending on the size and location of the deleted genetic material. The specific aim of the…

  7. 76 FR 78248 - Procurement List; Addition and Deletions

    Science.gov (United States)

    2011-12-16

    .... Service Type/Location: Laundry Service, Stratton Medical Center, 113 Holland Ave, Albany, NY. [[Page 78249...: Addition to and Deletions from the Procurement List. SUMMARY: This action adds a service to the Procurement... disabilities, and deletes products and services from the Procurement List previously furnished by such agencies...

  8. 75 FR 49481 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2010-08-13

    ... added to the Procurement List: Services Service Type/Locations: Laundry Service, Atlanta VA Medical...: Additions to and deletion from the Procurement List. SUMMARY: This action adds services to the Procurement... disabilities and deletes a service from the Procurement List previously furnished by such agency. DATES...

  9. 78 FR 21916 - Procurement List; Addition And Deletions

    Science.gov (United States)

    2013-04-12

    ..., the following service is added to the Procurement List: Service Service Type/Location: Laundry Service...: Addition to and Deletions from the Procurement List. SUMMARY: This action adds a service to the Procurement... disabilities, and deletes products and services from the Procurement List previously furnished by such agencies...

  10. 78 FR 53733 - Procurement List Additions and Deletions

    Science.gov (United States)

    2013-08-30

    .../Location: Industrial Laundry Service, Bureau of Engraving and Printing, 9000 Blue Mound Road, Fort Worth...: Additions to and Deletions from the Procurement List. SUMMARY: This action adds products and services to the... severe disabilities, and deletes services from the Procurement List previously provided by such agencies...

  11. Recurrence and Variability of Germline EPCAM Deletions in Lynch Syndrome

    NARCIS (Netherlands)

    Kuiper, Roland P.; Vissers, Lisenka E. L. M.; Venkatachalam, Ramprasath; Bodmer, Danielle; Hoenselaar, Eveline; Goossens, Monique; Haufe, Aline; Kamping, Eveline; Niessen, Renee C.; Hogervorst, Frans B. L.; Gille, Johan J. P.; Redeker, Bert; Tops, Carli M. J.; van Gijn, Marielle E.; van den Ouweland, Ans M. W.; Rahner, Nils; Steinke, Verena; Kahl, Philip; Holinski-Feder, Elke; Morak, Monika; Kloor, Matthias; Stemmler, Susanne; Betz, Beate; Hutter, Pierre; Bunyan, David J.; Syngal, Sapna; Culver, Julie O.; Graham, Tracy; Chan, Tsun L.; Nagtegaal, Iris D.; van Krieken, J. Han J. M.; Schackert, Hans K.; Hoogerbrugge, Nicoline; van Kessel, Ad Geurts; Ligtenberg, Marjolijn J. L.

    Recently, we identified 3' end deletions in the EPCAM gene as a novel cause of Lynch syndrome. These truncating EPCAM deletions cause allele-specific epigenetic silencing of the neighboring DNA mismatch repair gene MSH2 in tissues expressing EPCAM. Here we screened a cohort of unexplained Lynch-like

  12. PTEN C-Terminal Deletion Causes Genomic Instability and Tumor Development

    Directory of Open Access Journals (Sweden)

    Zhuo Sun

    2014-03-01

    Full Text Available Tumor suppressor PTEN controls genomic stability and inhibits tumorigenesis. The N-terminal phosphatase domain of PTEN antagonizes the PI3K/AKT pathway, but its C-terminal function is less defined. Here, we describe a knockin mouse model of a nonsense mutation that results in the deletion of the entire Pten C-terminal region, referred to as PtenΔC. Mice heterozygous for PtenΔC develop multiple spontaneous tumors, including cancers and B cell lymphoma. Heterozygous deletion of the Pten C-terminal domain also causes genomic instability and common fragile site rearrangement. We found that Pten C-terminal disruption induces p53 and its downstream targets. Simultaneous depletion of p53 promotes metastasis without influencing the initiation of tumors, suggesting that p53 mainly suppresses tumor progression. Our data highlight the essential role of the PTEN C terminus in the maintenance of genomic stability and suppression of tumorigenesis.

  13. Haemophilia A: Database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene

    Energy Technology Data Exchange (ETDEWEB)

    Tuddenham, E.G.D. (Clinical Research Centre, Harrow (United Kingdom)); Cooper, D.N. (Thrombosis Research Inst., London (United Kingdom)); Gitschier, J. (Univ. of California, San Francisco (United States)); Higuchi, M.; Kazazian, H.H.; Antonarakis, S.E. (Johns Hopkins Univ., Baltimore (United States)); Hoyer, L.W. (American Red Cross, Rockville (United States)); Yoshioka, A. (Nara Medical Coll., Kashihara City (Japan)); Peake, I.R. (Royal Hallamshire Hospital, Sheffield (United Kingdom)); Schwaab, R. (Inst. fuer Klinische Biochemie der Univ. Bonn (West Germany)); Lavergne, J.M. (Hopital de Bicetre (France)); Giannelli, F. (Guy' s Hospital, London (United Kingdom))

    1991-09-25

    Mutations at the factor VIII gene locus causing Haemophilia A have now been identified in many patients from a many ethnic groups. Earlier studies used biased methods which detected repetitive mutations at a few CG dinucleotides. More recently rapid gene scanning methods have uncovered an extreme diversity of mutations. Over 80 different point mutations, 6 insertions, 7 small deletions, and 60 large deletions have been characterized. Repetitive mutation has been proved for at least 16 CpG sites. All nonsense mutations cause severe disease. Most missense mutations appear to cause instability of the protein, but some are associated with production of dysfunctional factor VIII molecules, thereby localizing functionally critical regions of the cofactor. Variable phenotype has been observed in association with three of the latter class of genotype. This catalogue of gene lesions in Haemophilia A will be updated annually.

  14. Attenuation of monkeypox virus by deletion of genomic regions

    Science.gov (United States)

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  15. Role of DNA deletion length in mutation and cell survival

    International Nuclear Information System (INIS)

    Braby, L.A.; Morgan, T.L.

    1992-01-01

    A model is presented which is based on the assumption that malignant transformation, mutation, chromosome aberration, and reproductive death of cells are all manifestations of radiation induced deletions in the DNA of the cell, and that the size of the deletion in relation to the spacing of essential genes determines the consequences of that deletion. It is assumed that two independent types of potentially lethal lesions can result in DNA deletions, and that the relative numbers of these types of damage is dependent on radiation quality. The repair of the damage reduces the length of a deletion, but does not always eliminate it. The predictions of this model are in good agreement with a wide variety of experimental evidence. (author)

  16. Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions

    Science.gov (United States)

    Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.

    2018-01-01

    Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441

  17. Deletion mutants of the Escherichia coli K-12 mannitol permease: dissection of transport-phosphorylation, phospho-exchange, and mannitol-binding activities.

    Science.gov (United States)

    Grisafi, P L; Scholle, A; Sugiyama, J; Briggs, C; Jacobson, G R; Lengeler, J W

    1989-05-01

    We have constructed a series of deletion mutations of the cloned Escherichia coli K-12 mtlA gene, which encodes the mannitol-specific enzyme II of the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system. This membrane-bound permease consists of 637 amino acid residues and is responsible for the concomitant transport and phosphorylation of D-mannitol in E. coli. Deletions into the 3' end of mtlA were constructed by exonuclease III digestion. Restriction mapping of the resultant plasmids identified several classes of deletions that lacked approximately 5% to more than 75% of the gene. Immunoblotting experiments revealed that many of these plasmids expressed proteins within the size range predicted by the restriction analyses, and all of these proteins were membrane localized, which demonstrated that none of the C-terminal half of the permease is required for membrane insertion. Functional analyses of the deletion proteins, expressed in an E. coli strain deleted for the chromosomal copy of mtlA, showed that all but one of the strains containing confirmed deletions were inactive in transport and PEP-dependent phosphorylation of mannitol, but deletions removing up to at least 117 amino acid residues from the C terminus of the permease were still active in catalyzing phospho exchange between mannitol 1-phosphate and mannitol. A deletion protein that lacked 240 residues from the C terminus of the permease was inactive in phospho exchange but still bound mannitol with high affinity. These experiments localize sites important for transport and PEP-dependent phosphorylation to the extreme C terminus of the mannitol permease, sites important for phospho exchange to between residues 377 and 519, and sites necessary for mannitol binding to the N-terminal 60% of the molecule. The results are discussed with respect to the fact that the mannitol permease consists of structurally independent N- and C-terminal domains.

  18. Detection of genomic deletions in rice using oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Bordeos Alicia

    2009-03-01

    Full Text Available Abstract Background The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL. However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions. Results We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip® allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to ~500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations http://irfgc.irri.org/cgi-bin/gbrowse/IR64_deletion_mutants/. Conclusion We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a

  19. Tau deletion promotes brain insulin resistance.

    Science.gov (United States)

    Marciniak, Elodie; Leboucher, Antoine; Caron, Emilie; Ahmed, Tariq; Tailleux, Anne; Dumont, Julie; Issad, Tarik; Gerhardt, Ellen; Pagesy, Patrick; Vileno, Margaux; Bournonville, Clément; Hamdane, Malika; Bantubungi, Kadiombo; Lancel, Steve; Demeyer, Dominique; Eddarkaoui, Sabiha; Vallez, Emmanuelle; Vieau, Didier; Humez, Sandrine; Faivre, Emilie; Grenier-Boley, Benjamin; Outeiro, Tiago F; Staels, Bart; Amouyel, Philippe; Balschun, Detlef; Buee, Luc; Blum, David

    2017-08-07

    The molecular pathways underlying tau pathology-induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer's disease patients. © 2017 Marciniak et al.

  20. Usefulness of MLPA in the detection of SHOX deletions.

    Science.gov (United States)

    Funari, Mariana F A; Jorge, Alexander A L; Souza, Silvia C A L; Billerbeck, Ana E C; Arnhold, Ivo J P; Mendonca, Berenice B; Nishi, Mirian Y

    2010-01-01

    SHOX haploinsufficiency causes a wide spectrum of short stature phenotypes, such as Leri-Weill dyschondrosteosis (LWD) and disproportionate short stature (DSS). SHOX deletions are responsible for approximately two thirds of isolated haploinsufficiency; therefore, it is important to determine the most appropriate methodology for detection of gene deletion. In this study, three methodologies for the detection of SHOX deletions were compared: the fluorescence in situ hybridization (FISH), microsatellite analysis and multiplex ligation-dependent probe amplification (MLPA). Forty-four patients (8 LWD and 36 DSS) were analyzed. The cosmid LLNOYCO3'M'34F5 was used as a probe for the FISH analysis and microsatellite analysis were performed using three intragenic microsatellite markers. MLPA was performed using commercial kits. Twelve patients (8 LWD and 4 DSS) had deletions in SHOX area detected by MLPA and 2 patients generated discordant results with the other methodologies. In the first case, the deletion was not detected by FISH. In the second case, both FISH and microsatellite analyses were unable to identify the intragenic deletion. In conclusion, MLPA was more sensitive, less expensive and less laborious; therefore, it should be used as the initial molecular method for the detection of SHOX gene deletion. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  1. Conversion of Deletions during Recombination in Pneumococcal Transformation

    Science.gov (United States)

    Lefevre, J. C.; Mostachfi, P.; Gasc, A. M.; Guillot, E.; Pasta, F.; Sicard, M.

    1989-01-01

    Genetic analysis of 16 deletions obtained in the amiA locus of pneumococcus is described. When present on donor DNA, all deletions increased drastically the frequency of wild-type recombinants in two-point crosses. This effect was maximal for deletions longer than 200 bases. It was reduced for heterologies shorter than 76 bases and did not exist for very short deletions. In three-point crosses in which the deletion was localized between two point mutations, we demonstrated that this excess of wild-type recombinants was the result of a genetic conversion. This conversion extended over several scores of bases outside the deletion. Conversion takes place during the heteroduplex stage of recombination. Therefore, in pneumococcal transformation, long heterologies participated in this heteroduplex configuration. As this conversion did not require an active DNA polymerase A gene it is proposed that the mechanism of conversion is not a DNA repair synthesis but involves breakage and ligation between DNA molecules. Conversion of deletions did not require the Hex system of correction of mismatched bases. It differs also from localized conversion. It appears that it is a process that evolved to correct errors of replication which lead to long heterologies and which are not eliminated by other systems. PMID:2599365

  2. Performance of quantum cloning and deleting machines over coherence

    Science.gov (United States)

    Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis

    2017-10-01

    Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

  3. Brand deletion: How the decision-making approach affects deletion success

    OpenAIRE

    Víctor Temprano-García; Ana Isabel Rodríguez-Escudero; Javier Rodríguez-Pinto

    2018-01-01

    Literature on brand deletion (BD), a critical and topical decision within a firm's marketing strategy, is extremely scarce. The present research is concerned with the decision-making process and examines the effect on BD success of three different approaches to decision-making – rational, intuitive and political – and of the interaction between the rational and political approaches. The moderating effect of the type of BD – i.e., total brand killing or disposal vs. brand name change – is also...

  4. The Genetic Deletion of 6q21 and PRDM1 and Clinical Implications in Extranodal NK/T Cell Lymphoma, Nasal Type

    Directory of Open Access Journals (Sweden)

    Li Liang

    2015-01-01

    Full Text Available 6q21 genetic deletion has been frequently detected in extranodal NK/T cell lymphoma, nasal type (EN-NK/T-NT, and PRDM1 is considered as candidate gene. However, direct detection of PRDM1 deletion has not been well documented. We investigated genetic alterations of 6q21 and PRDM1 in 43 cases of EN-NK/T-NT and cell lines by FISH. PRDM1 expression was evaluated by immunohistochemistry and Western blot. The correlation between genetic alteration and PRDM1 expression and the significance in clinic-pathologic were analyzed. Heterozygous deletion of 6q21 and/or PRDM1 was observed in 24 of 43 cases (55.81% of EN-NK/T-NT including 16 cases (37.21% for 6q21 deletion and 19 cases (44.19% for PRDM1 deletion. Similarly, heterozygous codeletion of 6q21 and PRDM1 was identified in NK92 and NKL cells. The heterozygous deletion of 6q21 and/or PRDM1 was correlated with PRDM1 expression. However, genetic deletion of 6q21 and/or PRDM1 was not correlated with clinicopathological features of EN-NK/T-NT, while PRDM1 expression showed positive effect on the outcome of patients as those as disease site, B symptom, and clinical stage. Thus, heterozygous deletion of 6q21 and/or PRDM1 was frequently detected in EN-NK/T-NT and correlated with downregulation of PRDM1. But the prognostic role of genetic deletion needs to be further evaluated in larger cohort.

  5. Two novel partial deletions of LDL-receptor gene in Italian patients with familial hypercholesterolemia (FH Siracusa and FH Reggio Emilia).

    Science.gov (United States)

    Garuti, R; Lelli, N; Barozzini, M; Tiozzo, R; Ghisellini, M; Simone, M L; Li Volti, S; Garozzo, R; Mollica, F; Vergoni, W; Bertolini, S; Calandra, S

    1996-03-01

    In the present study we report two novel partial deletions of the LDL-R gene. The first (FH Siracusa), found in an FH-heterozygote, consists of a 20 kb deletion spanning from the 5' flanking region to the intron 2 of the LDL-receptor gene. The elimination of the promoter and the first two exons prevents the transcription of the deleted allele, as shown by Northern blot analysis of LDL-R mRNA isolated from the proband's fibroblasts. The second deletion (FH Reggio Emilia), which eliminates 11 nucleotides of exon 10, was also found in an FH heterozygote. The characterization of this deletion was made possible by a combination of techniques such as single strand conformation polymorphism (SSCP) analysis, direct sequence of exon 10 and cloning of the normal and deleted exon 10 from the proband's DNA. The 11 nt deletion occurs in a region of exon 10 which contains three triplets (CTG) and two four-nucleotides (CTGG) direct repeats. This structural feature might render this region more susceptible to a slipped mispairing during DNA duplication. Since this deletion causes a shift of the BamHI site at the 5' end of exon 10, a method has been devised for its rapid screening which is based on the PCR amplification of exon 10 followed by BamHI digestion. FH Reggio Emilia deletion produces a shift in the reading frame downstream from Lys458, leading to a sequence of 51 novel amino acids before the occurrence of a premature stop codon (truncated receptor). However, since RT-PCR failed to demonstrate the presence of the mutant LDL-R mRNA in proband fibroblasts, it is likely that the amount of truncated receptor produced in these cells is negligible.

  6. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions.

    Science.gov (United States)

    Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R

    2010-12-01

    Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.

  7. 22q11.2 deletion syndrome

    Science.gov (United States)

    McDonald-McGinn, Donna M.; Sullivan, Kathleen E.; Marino, Bruno; Philip, Nicole; Swillen, Ann; Vorstman, Jacob A. S.; Zackai, Elaine H.; Emanuel, Beverly S.; Vermeesch, Joris R.; Morrow, Bernice E.; Scambler, Peter J.; Bassett, Anne S.

    2016-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population. PMID:27189754

  8. Heme oxygenase-1 deletion affects stress erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Yu-An Cao

    Full Text Available Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1 deficiency leads to disrupted stress hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis.We used a transplant model to induce stress conditions. In irradiated recipients that received hmox(+/- or hmox(+/+ bone marrow cells, we evaluated (i the erythrocyte parameters in the peripheral blood; (ii the staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii the patterns of histological iron staining; and (iv the number of Mac-1(+-cells expressing TNF-α. In the spleens of mice that received hmox(+/- cells, we show (i decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii increases in the insoluble iron levels and decreases in the soluble iron levels; (iii increased numbers of Mac-1(+-cells expressing TNF-α; and (iv decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast populations.As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for hematologic diseases.

  9. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus.

    Science.gov (United States)

    Barutcu, A Rasim; Maass, Philipp G; Lewandowski, Jordan P; Weiner, Catherine L; Rinn, John L

    2018-04-13

    The binding of the transcriptional regulator CTCF to the genome has been implicated in the formation of topologically associated domains (TADs). However, the general mechanisms of folding the genome into TADs are not fully understood. Here we test the effects of deleting a CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conformation capture (Hi-C), we focus on one TAD boundary on chromosome X harboring ~ 15 CTCF binding sites and located at the long non-coding RNA (lncRNA) locus Firre. Specifically, this TAD boundary is invariant across evolution, tissues, and temporal dynamics of X-chromosome inactivation. We demonstrate that neither the deletion of this locus nor the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a sex-specific or allele-specific manner. In contrast, Firre's deletion disrupts the chromatin super-loop formation of the inactive X-chromosome. Collectively, our findings suggest that apart from CTCF binding, additional mechanisms may play roles in establishing TAD boundary formation.

  10. Multigene deletions in lung adenocarcinomas from irradiated and control mice

    International Nuclear Information System (INIS)

    Zhang, Y.; Woloschak, G.E.

    1996-01-01

    K-ras codon 12 point mutations mRb and p53 gene deletions were examined in tissues from 120 normal lungs and lung adenocarcinomas that were Formalin-treated and paraffin-embedded 25 years ago. The results showed that 12 of 60 (20%) lung adenocarcinomas had mRb deletions. All lung adenocarcinomas that were initially found bearing deleted mRb had p53 deletions (15 of 15; 100%). A significantly higher mutation frequency for K-ras codon 12 point mutations was also found in the lung adenocarcinomas from mice exposed to 24 once-weekly neutron irradiation (10 of 10; 100%) compared with those exposed to 24 or 60 once-weekly γ-ray doses (5 of 10; 50%). The data suggested that p53 and K-ras gene alterations were two contributory factors responsible for the increased incidence of lung adenocarcinoma in B6CF 1 male mice exposed to protracted neutron radiation

  11. Additions and deletions to the known cerambycidae (Coleoptera) of Bolivia

    Science.gov (United States)

    An additional 137 species and two tribes are added to the known cerambycid fauna of Bolivia while 12 species are deleted. Comments and statistics regarding the growth of knowledge on the Bolivian Cerambycid fauna and species endemicity are included....

  12. 78 FR 75911 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2013-12-13

    ... persons who are blind or have other severe disabilities and to delete products and a service previously...: General Services Administration, New York, NY NSN: 8955-01-E61-3689--Coffee, Roasted, Ground, 39 oz. bag...

  13. 76 FR 37069 - Procurement List; Proposed Additions and Deletion

    Science.gov (United States)

    2011-06-24

    ... Certification The following products and service are proposed for addition to Procurement List for production by... following product is proposed for deletion from the Procurement List: Product Detergent, Laundry NSN: 7930...

  14. Numt-mediated double-strand break repair mitigates deletions during primate genome evolution.

    Directory of Open Access Journals (Sweden)

    Einat Hazkani-Covo

    2008-10-01

    Full Text Available Non-homologous end joining (NHEJ is the major mechanism of double-strand break repair (DSBR in mammalian cells. NHEJ has traditionally been inferred from experimental systems involving induced double strand breaks (DSBs. Whether or not the spectrum of repair events observed in experimental NHEJ reflects the repair of natural breaks by NHEJ during chromosomal evolution is an unresolved issue. In primate phylogeny, nuclear DNA sequences of mitochondrial origin, numts, are inserted into naturally occurring chromosomal breaks via NHEJ. Thus, numt integration sites harbor evidence for the mechanisms that act on the genome over evolutionary timescales. We have identified 35 and 55 lineage-specific numts in the human and chimpanzee genomes, respectively, using the rhesus monkey genome as an outgroup. One hundred and fifty two numt-chromosome fusion points were classified based on their repair patterns. Repair involving microhomology and repair leading to nucleotide additions were detected. These repair patterns are within the experimentally determined spectrum of classical NHEJ, suggesting that information from experimental systems is representative of broader genetic loci and end configurations. However, in incompatible DSBR events, small deletions always occur, whereas in 54% of numt integration events examined, no deletions were detected. Numts show a statistically significant reduction in deletion frequency, even in comparison to DSBR involving filler DNA. Therefore, numts show a unique mechanism of integration via NHEJ. Since the deletion frequency during numt insertion is low, native overhangs of chromosome breaks are preserved, allowing us to determine that 24% of the analyzed breaks are cohesive with overhangs of up to 11 bases. These data represent, to the best of our knowledge, the most comprehensive description of the structure of naturally occurring DSBs. We suggest a model in which the sealing of DSBs by numts, and probably by other filler

  15. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Eidinger, Osnat; Leibu, Rina; Newman, Hadas; Rizel, Leah; Perlman, Ido; Ben-Yosef, Tamar

    2015-01-01

    To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron-exon junction, we observed a homozygous 10 bp deletion between positions -26 and -17 (c.2281-26_-17del). The deletion was linked to a known SNP, c.2281-6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281-26_-17del leads to complete exon 22 skipping. A novel

  16. The significance of chromosome deletions in atomic-bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Shigeta, Chiharu; Oguma, Nobuo; Kamada, Nanao; Deng, Z.; Niimi, Masanobu; Aisaka, Tadaichi.

    1986-01-01

    In 39 A-bomb survivors 40 years after exposure at ≤ 1,000 m from ground zero, the frequency and features of chromosome deletions in peripheral lymphocytes were examined using a differential staining technique. Simultaneously, in vitro irradiation experiment with Cf-252 was made to infer chromosome aberrations occuring immediately after exposure. Californium-252 with 100 rad induced dicentric and ring chromosomes in 40 % of the cells and acentric fragments in 44 %. Among the A-bomb survivors, chromosome aberrations were observed in 651 (21 %) of the total 3,136 cells. There were 146 cells with deletions (22 % of abnormal cells; 5 % of the total cells), and 10 cells with acentric fragment (0.3 % of the total cells). The figure for deletions was far higher than that reported in the literature. A large number of deletions were seen in chromosomes no.4, no.21, and no.22, and a few deletions in chromosomes no.7 and no.20. Significance of chromosome deletions is discussed. (Namekawa, K.)

  17. Fast detection of deletion breakpoints using quantitative PCR

    Directory of Open Access Journals (Sweden)

    Gulshara Abildinova

    2016-01-01

    Full Text Available Abstract The routine detection of large and medium copy number variants (CNVs is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories.

  18. The effect of the CCR5-delta32 deletion on global gene expression considering immune response and inflammation

    Directory of Open Access Journals (Sweden)

    Hütter Gero

    2011-10-01

    Full Text Available Abstract Background The natural function of the C-C chemokine receptor type 5 (CCR5 is poorly understood. A 32 base pair deletion in the CCR5 gene (CCR5-delta32 located on chromosome 3 results in a non-functional protein. It is supposed that this deletion causes an alteration in T-cell response to inflammation. For example, the presence of the CCR5-delta32 allele in recipients of allografts constitutes as an independent and protective factor associated with a decreased risk of graft-versus-host disease (GVHD and graft rejection. However, the mechanism of this beneficial effect of the deletion regarding GVHD is unknown. In this survey we searched for a CCR5-delta32 associated regulation of critical genes involved in the immune response and the development of GVHD. Methods We examined CD34+ hematopoietic progenitor cells derived from bone marrow samples from 19 healthy volunteers for the CCR5-delta32 deletion with a genomic PCR using primers flanking the site of the deletion. Results 12 individuals were found to be homozygous for CCR5 WT and 7 carried the CCR5-delta32 deletion heterozygously. Global gene expression analysis led to the identification of 11 differentially regulated genes. Six of them are connected with mechanisms of immune response and control: LRG1, CXCR2, CCRL2, CD6, CD7, WD repeat domain, and CD30L. Conclusions Our data indicate that the CCR5-delta32 mutation may be associated with differential gene expression. Some of these genes are critical for immune response, in the case of CD30L probably protective in terms of GVHD.

  19. MET gene exon 14 deletion created using the CRISPR/Cas9 system enhances cellular growth and sensitivity to a MET inhibitor.

    Science.gov (United States)

    Togashi, Yosuke; Mizuuchi, Hiroshi; Tomida, Shuta; Terashima, Masato; Hayashi, Hidetoshi; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-12-01

    MET splice site mutations resulting in an exon 14 deletion have been reported to be present in about 3% of all lung adenocarcinomas. Patients with lung adenocarcinoma and a MET splice site mutation who have responded to MET inhibitors have been reported. The CRISPR/Cas9 system is a recently developed genome-engineering tool that can easily and rapidly cause small insertions or deletions. We created an in vitro model for MET exon 14 deletion using the CRISPR/Cas9 system and the HEK293 cell line. The phenotype, which included MET inhibitor sensitivity, was then investigated in vitro. Additionally, MET splice site mutations were analyzed in several cancers included in The Cancer Genome Atlas (TCGA) dataset. An HEK293 cell line with a MET exon 14 deletion was easily and rapidly created; this cell line had a higher MET protein expression level, enhanced MET phosphorylation, and prolonged MET activation. In addition, a direct comparison of phenotypes using this system demonstrated enhanced cellular growth, colony formation, and MET inhibitor sensitivity. In the TCGA dataset, lung adenocarcinomas had the highest incidence of MET exon 14 deletions, while other cancers rarely carried such mutations. Approximately 10% of the lung adenocarcinoma samples without any of driver gene alterations carried the MET exon 14 deletion. These findings suggested that this system may be useful for experiments requiring the creation of specific mutations, and the present experimental findings encourage the development of MET-targeted therapy against lung cancer carrying the MET exon 14 deletion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. 41 CFR 51-2.3 - Notice of proposed addition or deletion.

    Science.gov (United States)

    2010-07-01

    ... addition or deletion. 51-2.3 Section 51-2.3 Public Contracts and Property Management Other Provisions... or deletion. At least 30 days prior to the Committee's consideration of the addition or deletion of a... Register announcing the proposed addition or deletion and providing interested persons an opportunity to...

  1. 10 CFR 9.19 - Segregation of exempt information and deletion of identifying details.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Segregation of exempt information and deletion of... Information Act Regulations § 9.19 Segregation of exempt information and deletion of identifying details. (a... deletions are made from parts of the record by computer, the amount of information deleted will be indicated...

  2. Hemolytic disease of the newborn caused by a new deletion of the entire beta-globin cluster.

    OpenAIRE

    Pirastu, M; Kan, Y W; Lin, C C; Baine, R M; Holbrook, C T

    1983-01-01

    We describe a new type of gamma delta beta-thalassemia in four generations of a family of Scotch-Irish descent. The proposita presented with hemolytic disease of the newborn, which was characterized by a microcytic anemia. Initial restriction endonuclease analysis of the DNA showed no grossly abnormal patterns, but studies of polymorphic restriction sites and gene dosage revealed an extensive deletion that removed all the beta- and beta-like globin genes from the affected chromosome. In situ ...

  3. The Yeast Deletion Collection: A Decade of Functional Genomics

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  4. Molecular studies of deletions at the human steroid sulfatase locus

    International Nuclear Information System (INIS)

    Shapiro, L.J.; Yen, P.; Pomerantz, D.; Martin, E.; Rolewic, L.; Mohandas, T.

    1989-01-01

    The human steroid sulfatase gene (STS) is located on the distal X chromosome short arm close to the pseudoautosomal region but in a segment of DNA that is unique to the X chromosome. In contrast to most X chromosome-encoded genes, STS expression is not extinguished during the process of X chromosome inactivation. Deficiency of STS activity produced the syndrome of X chromosome-linked ichthyosis, which is one of the most common inborn errors of metabolism in man. Approximately 90% of STS - individuals have large deletions at the STS locus. The authors and others have found that the end points of such deletions are heterogeneous in their location. One recently ascertained subject was observed to have a 40-kilobase deletion that is entirely intragenic, permitting the cloning and sequencing of the deletion junction. Studies of this patient and of other X chromosome sequences in other subjects permit some insight into the mechanism(s) responsible for generating frequent deletions on the short arm of the X chromosome

  5. Sorting genomes by reciprocal translocations, insertions, and deletions.

    Science.gov (United States)

    Qi, Xingqin; Li, Guojun; Li, Shuguang; Xu, Ying

    2010-01-01

    The problem of sorting by reciprocal translocations (abbreviated as SBT) arises from the field of comparative genomics, which is to find a shortest sequence of reciprocal translocations that transforms one genome Pi into another genome Gamma, with the restriction that Pi and Gamma contain the same genes. SBT has been proved to be polynomial-time solvable, and several polynomial algorithms have been developed. In this paper, we show how to extend Bergeron's SBT algorithm to include insertions and deletions, allowing to compare genomes containing different genes. In particular, if the gene set of Pi is a subset (or superset, respectively) of the gene set of Gamma, we present an approximation algorithm for transforming Pi into Gamma by reciprocal translocations and deletions (insertions, respectively), providing a sorting sequence with length at most OPT + 2, where OPT is the minimum number of translocations and deletions (insertions, respectively) needed to transform Pi into Gamma; if Pi and Gamma have different genes but not containing each other, we give a heuristic to transform Pi into Gamma by a shortest sequence of reciprocal translocations, insertions, and deletions, with bounds for the length of the sorting sequence it outputs. At a conceptual level, there is some similarity between our algorithm and the algorithm developed by El Mabrouk which is used to sort two chromosomes with different gene contents by reversals, insertions, and deletions.

  6. One in Four Individuals of African-American Ancestry Harbors a 5.5kb Deletion at chromosome 11q13.1

    Science.gov (United States)

    Zainabadi, Kayvan; Jain, Anuja V.; Donovan, Frank X.; Elashoff, David; Rao, Nagesh P.; Murty, Vundavalli V.; Chandrasekharappa, Settara C.; Srivatsan, Eri S.

    2014-01-01

    Cloning and sequencing of 5.5kb deletion at chromosome 11q13.1 from the HeLa cells, tumorigenic hybrids and two fibroblast cell lines has revealed homologous recombination between AluSx and AluY resulting in the deletion of intervening sequences. Long-range PCR of the 5.5kb sequence in 494 normal lymphocyte samples showed heterozygous deletion in 28.3% of African- American ancestry samples but only in 4.8% of Caucasian samples (pdeletion occurs in 27% of YRI (Yoruba – West African) population but none in non-African populations. The HapMap analysis further identified strong linkage disequilibrium between 5 single nucleotide polymorphisms and the 5.5kb deletion in the people of African ancestry. Computational analysis of 175kb sequence surrounding the deletion site revealed enhanced flexibility, low thermodynamic stability, high repetitiveness, and stable stem-loop/hairpin secondary structures that are hallmarks of common fragile sites. PMID:24412158

  7. A Rare Syndrome of Deletion in 2 Siblings

    Directory of Open Access Journals (Sweden)

    Aravindhan Veerapandiyan MBBS

    2017-08-01

    Full Text Available The Glutamate receptor, ionotropic, delta 2 gene codes for an ionotropic glutamate delta-2 receptor, which is selectively expressed in cerebellar Purkinje cells, and facilitates cerebellar synapse organization and transmission. The phenotype associated with the deletion of Glutamate receptor, ionotropic, delta 2 gene in humans was initially defined in 2013. In this case report, the authors describe 2 brothers who presented with developmental delay, tonic upward gaze, nystagmus, oculomotor apraxia, hypotonia, hyperreflexia, and ataxia. They were found to have a homozygous intragenic deletion within the Glutamate receptor, ionotropic, delta 2 gene at exon 2. Our patients serve as an addition to the literature of previously reported children with this rare clinical syndrome associated with Glutamate receptor, ionotropic, delta 2 deletion.

  8. A local-world node deleting evolving network model

    International Nuclear Information System (INIS)

    Gu Yuying; Sun Jitao

    2008-01-01

    A new type network growth rule which comprises node addition with the concept of local-world connectivity and node deleting is studied. A series of theoretical analysis and numerical simulation to the LWD network are conducted in this Letter. Firstly, the degree distribution p(k) of this network changes no longer pure scale free but truncates by an exponential tail and the truncation in p(k) increases as p a decreases. Secondly, the connectivity is tighter, as the local-world size M increases. Thirdly, the average path length L increases and the clustering coefficient decreases as generally node deleting increases. Finally, trends up when the local-world size M increases, so as to k max . Hence, the expanding local-world can compensate the infection of the node deleting

  9. A local-world node deleting evolving network model

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yuying [Department of Mathematics, Tongji University, Shanghai 200092 (China); Sun Jitao [Department of Mathematics, Tongji University, Shanghai 200092 (China)], E-mail: sunjt@sh163.net

    2008-06-16

    A new type network growth rule which comprises node addition with the concept of local-world connectivity and node deleting is studied. A series of theoretical analysis and numerical simulation to the LWD network are conducted in this Letter. Firstly, the degree distribution p(k) of this network changes no longer pure scale free but truncates by an exponential tail and the truncation in p(k) increases as p{sub a} decreases. Secondly, the connectivity is tighter, as the local-world size M increases. Thirdly, the average path length L increases and the clustering coefficient decreases as generally node deleting increases. Finally, trends up when the local-world size M increases, so as to k{sub max}. Hence, the expanding local-world can compensate the infection of the node deleting.

  10. Monoamine oxidase deficiency in males with an X chromosome deletion.

    Science.gov (United States)

    Sims, K B; de la Chapelle, A; Norio, R; Sankila, E M; Hsu, Y P; Rinehart, W B; Corey, T J; Ozelius, L; Powell, J F; Bruns, G

    1989-01-01

    Mapping of the human MAOA gene to chromosomal region Xp21-p11 prompted our study of two affected males in a family previously reported to have Norrie disease resulting from a submicroscopic deletion in this chromosomal region. In this investigation we demonstrate in these cousins deletion of the MAOA gene, undetectable levels of MAO-A and MAO-B activities in their fibroblasts and platelets, respectively, loss of mRNA for MAO-A in fibroblasts, and substantial alterations in urinary catecholamine metabolites. The present study documents that a marked deficiency of MAO activity is compatible with life and that genes for MAO-A and MAO-B are near each other in this Xp chromosomal region. Some of the clinical features of these MAO deletion patients may help to identify X-linked MAO deficiency diseases in humans.

  11. The diagnosis and molecular analysis of a novel 21.9kb deletion (Qinzhou type deletion) causing α+ thalassemia.

    Science.gov (United States)

    Long, Ju; Yan, Shanhuo; Lao, Kegan; Pang, Wanrong; Ye, Xuehe; Sun, Lei

    2014-04-01

    α-Thalassemia is a common single-gene genetic disease that can cause Hb Bart's hydrops fetalis and Hb H disease in tropical and subtropical regions. When examining conventional thalassemia genes, an only detected --(SEA) genotype sample needs further analysis. In doing so, we found a novel 21.9kb deletion (Qinzhou type deletion). The deletion position of the novel 21.9kb deletion is from 14373bp to 36299bp of the α-globin gene cluster (NG_000006.1); thus, there exists a 21927bp sequence deletion, into which a 29bp sequence is added. After sequence analysis, a group of Gap-PCR primers were synthesized to diagnose this novel thalassemia genotype. Through pedigree analysis, we deduced that the propositus obtained the novel alleles from her mother. The genotype of this propositus is --(SEA)/-α(21.9) and its phenotype conforms to the characteristics of Hb H disease, establishing that the combination between -α(21.9) genotype and α(0) genotype can lead to Hb H disease. By molecular analysis, we established that this case fits the characteristic of an α(+) thalassemia genotype. © 2013.

  12. Pseudotumor of the pituitary due to PROP-1 deletion.

    Science.gov (United States)

    Teinturier, C; Vallette, S; Adamsbaum, C; Bendaoud, M; Brue, T; Bougnères, P F

    2002-01-01

    Hypopituitarism associated with pituitary mass in childhood is most frequently the consequence of craniopharyngioma or Rathke's cleft cyst. We report a patient with an intrasellar pseudotumor associated with hypopituitarism, which led us to a misdiagnosis of intrasellar craniopharyngioma. After spontaneous involution of the mass, diagnosis was revised. DNA analysis showed a deletion in the Prophet of Pit-1 (PROP-1) gene, a pituitary transcription factor. It is important to recognize that a PROP-1 deletion can cause pituitary pseudotumor that can be mistaken for a craniopharyngioma or Rathke's pouch cyst.

  13. Partial AZFc duplications not deletions are associated with male infertility in the Yi population of Yunnan Province, China.

    Science.gov (United States)

    Ye, Jun-jie; Ma, Li; Yang, Li-juan; Wang, Jin-huan; Wang, Yue-li; Guo, Hai; Gong, Ning; Nie, Wen-hui; Zhao, Shu-hua

    2013-09-01

    There are many reports on associations between spermatogenesis and partial azoospermia factor c (AZFc) deletions as well as duplications; however, results are conflicting, possibly due to differences in methodology and ethnic background. The purpose of this study is to investigate the association of AZFc polymorphisms and male infertility in the Yi ethnic population, residents within Yunnan Province, China. A total of 224 infertile patients and 153 fertile subjects were selected in the Yi ethnic population. The study was performed by sequence-tagged site plus/minus (STS+/-) analysis followed by gene dosage and gene copy definition analysis. Y haplotypes of 215 cases and 115 controls were defined by 12 binary markers using single nucleotide polymorphism on Y chromosome (Y-SNP) multiplex assays based on single base primer extension technology. The distribution of Y haplotypes was not significantly different between the case and control groups. The frequencies of both gr/gr (7.6% vs. 8.5%) and b2/b3 (6.3% vs. 8.5%) deletions do not show significant differences. Similarly, single nucleotide variant (SNV) analysis shows no significant difference of gene copy definition between the cases and controls. However, the frequency of partial duplications in the infertile group (4.0%) is significantly higher than that in the control group (0.7%). Further, we found a case with sY1206 deletion which had two CDY1 copies but removed half of DAZ genes. Our results show that male infertility is associated with partial AZFc duplications, but neither gr/gr nor b2/b3 deletions, suggesting that partial AZFc duplications rather than deletions are risk factors for male infertility in Chinese-Yi population.

  14. Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters.

    Science.gov (United States)

    Unthan, Simon; Baumgart, Meike; Radek, Andreas; Herbst, Marius; Siebert, Daniel; Brühl, Natalie; Bartsch, Anna; Bott, Michael; Wiechert, Wolfgang; Marin, Kay; Hans, Stephan; Krämer, Reinhard; Seibold, Gerd; Frunzke, Julia; Kalinowski, Jörn; Rückert, Christian; Wendisch, Volker F; Noack, Stephan

    2015-02-01

    For synthetic biology applications, a robust structural basis is required, which can be constructed either from scratch or in a top-down approach starting from any existing organism. In this study, we initiated the top-down construction of a chassis organism from Corynebacterium glutamicum ATCC 13032, aiming for the relevant gene set to maintain its fast growth on defined medium. We evaluated each native gene for its essentiality considering expression levels, phylogenetic conservation, and knockout data. Based on this classification, we determined 41 gene clusters ranging from 3.7 to 49.7 kbp as target sites for deletion. 36 deletions were successful and 10 genome-reduced strains showed impaired growth rates, indicating that genes were hit, which are relevant to maintain biological fitness at wild-type level. In contrast, 26 deleted clusters were found to include exclusively irrelevant genes for growth on defined medium. A combinatory deletion of all irrelevant gene clusters would, in a prophage-free strain, decrease the size of the native genome by about 722 kbp (22%) to 2561 kbp. Finally, five combinatory deletions of irrelevant gene clusters were investigated. The study introduces the novel concept of relevant genes and demonstrates general strategies to construct a chassis suitable for biotechnological application. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs Licence, which permits use and distribution in any medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.

  15. Grin1 receptor deletion within CRF neurons enhances fear memory.

    Directory of Open Access Journals (Sweden)

    Georgette Gafford

    Full Text Available Corticotropin releasing factor (CRF dysregulation is implicated in mood and anxiety disorders such as posttraumatic stress disorder (PTSD. CRF is expressed in areas engaged in fear and anxiety processing including the central amygdala (CeA. Complicating our ability to study the contribution of CRF-containing neurons to fear and anxiety behavior is the wide variety of cell types in which CRF is expressed. To manipulate specific subpopulations of CRF containing neurons, our lab has developed a mouse with a Cre recombinase gene driven by a CRF promoter (CRFp3.0Cre (Martin et al., 2010. In these studies, mice that have the gene that encodes NR1 (Grin1 flanked by loxP sites (floxed were crossed with our previously developed CRFp3.0Cre mouse to selectively disrupt Grin1 within CRF containing neurons (Cre+/fGrin1+. We find that disruption of Grin1 in CRF neurons did not affect baseline levels of anxiety, locomotion, pain sensitivity or exploration of a novel object. However, baseline expression of Grin1 was decreased in Cre+/fGrin1+ mice as measured by RTPCR. Cre+/fGrin1+ mice showed enhanced auditory fear acquisition and retention without showing any significant effect on fear extinction. We measured Gria1, the gene that encodes AMPAR1 and the CREB activator Creb1 in the amygdala of Cre+/fGrin1+ mice after fear conditioning. Both Gria1 and Creb1 were enhanced in the amygdala after training. To determine if the Grin1-expressing CRF neurons within the CeA are responsible for the enhancement of fear memory in adults, we infused a lentivirus with Cre driven by a CRF promoter (LV pCRF-Cre/fGrin1+ into the CeA of floxed Grin1 mice. Cre driven deletion of Grin1 specifically within CRF expressing cells in the CeA also resulted in enhanced fear memory acquisition and retention. Altogether, these findings suggest that selective disruption of Grin1 within CeA CRF neurons strongly enhances fear memory.

  16. Deletion Mutagenesis and Identification of Causative Mutations in Maize.

    Science.gov (United States)

    Jia, Shangang; Li, Aixia; Zhang, Chi; Holding, David

    2018-01-01

    We describe a method for gamma-irradiation of mature maize seeds to generate mutants with opaque endosperm and reduced kernel fill phenotypes. We also describe methods for mapping mutants and identifying causal gene mutations. Using this method, a population of 1788M2 families and 47 Mo17 × F2s showing stable, segregating, and viable kernel phenotypes was developed. For molecular characterization of the mutants, we utilized a novel functional genomics platform that combines separate Bulked Segregant RNA and exome sequencing data sets (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. We also describe the use of exome capture sequencing of F2 mutant and normal pools to perform mapping and candidate gene identification without the need for separate RNA-seq (BSEx-seq). To exemplify the utility of the deletion mutants for functional genomics and provide proof-of-concept for the bioinformatics platform, we summarize the identification of the causative deletion in two mutants. Mutant 937, which was characterized by BSREx-seq, harbors a 6203-bp in-frame deletion covering six exons within the Opaque-1 gene on chromosome 4. Preliminary investigation of opaque mutant 1486 with BSEx-seq shows a tight mapping interval and associated deletion on chromosome 10.

  17. Genetics Home Reference: 22q13.3 deletion syndrome

    Science.gov (United States)

    ... 5 links) Diagnostic Tests Drug Therapy Genetic Counseling Palliative Care Surgery and Rehabilitation Related Information How are genetic ... Veltman JA, de Vries BB. Molecular characterisation of patients with subtelomeric 22q ... L, Enns GM, Hoyme HE. Terminal 22q deletion syndrome: a newly recognized cause of ...

  18. 78 FR 21348 - Procurement List; Additions and Deletions; Recissions

    Science.gov (United States)

    2013-04-10

    ... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions and Deletions; Recissions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Rescission of Previous Procurement List Decision. SUMMARY: The Committee for Purchase...

  19. Genetics Home Reference: 2q37 deletion syndrome

    Science.gov (United States)

    ... on PubMed or Free article on PubMed Central Casas KA, Mononen TK, Mikail CN, Hassed SJ, Li S, ... 2005 Aug 18. Citation on PubMed Falk RE, Casas KA. Chromosome 2q37 deletion: clinical and molecular aspects. ...

  20. The detection of large deletions or duplications in genomic DNA.

    Science.gov (United States)

    Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R

    2002-11-01

    While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.

  1. 78 FR 24733 - Procurement List, Additions and Deletions

    Science.gov (United States)

    2013-04-26

    ... Purchase From People Who Are Blind or Severely Disabled published notices of proposed additions to the... Services Administration. Portable Desktop Clipboard, 9\\1/2\\ W x 1\\1/2\\ D x 13\\1/2\\ H NSN: 7510-00-NIB-2133... for Purchase From People Who Are Blind or Severely Disabled published notices of proposed deletions...

  2. 76 FR 35415 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2011-06-17

    ... Command, Natick, MA. SERVICE: Service Type/Location: Laundry Services, Department of Veterans Affairs... proposing to add products and a service to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have other severe disabilities, and deletes products and a service...

  3. 76 FR 14942 - Procurement List; Additions and Deletions

    Science.gov (United States)

    2011-03-18

    ... DFAC. Service Type/Location: Laundry & Dry Cleaning Service, F.E. Warren, AFB, WY. NPA: Goodwill... Service Type/Location: Laundry Service, Atlanta VA Medical Center, Decatur, GA. NPA: GINFL Services, Inc...: Additions to and deletions from the Procurement List. SUMMARY: This action adds services to the Procurement...

  4. 75 FR 41449 - Procurement List Additions and Deletion

    Science.gov (United States)

    2010-07-16

    ... Customs and Border Protection, Office of Procurement, Washington, DC Service Type/Locations: Laundry.../Locations: Laundry Service, Naval Hospital System, 2800 Child Street, Jacksonville, FL NPA: GINFL Services...: Additions to and deletion from the Procurement List. SUMMARY: This action adds products and services to the...

  5. 77 FR 31335 - Procurement List; Proposed Additions and Deletion

    Science.gov (United States)

    2012-05-25

    .... Services Service Type/Location: Laundry and Dry Cleaning Service, Buckley Air Force Base Lodging & Medical... products and services to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have other severe disabilities, and deletes a service previously provided by such...

  6. 76 FR 62391 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2011-10-07

    ... Investigation, Washington, DC Service Type/Location: Laundry Service, Stratton Medical Center, 113 Holland Ave... persons who are blind or have other severe disabilities, and deletes services previously furnished by such... entities to furnish the services to the Government. 3. There are no known regulatory alternatives which...

  7. Induced pluripotent stem cells with a pathological mitochondrial DNA deletion

    Science.gov (United States)

    Cherry, Anne B. C.; Gagne, Katelyn E.; McLoughlin, Erin M.; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D.; Zhang, Jin; Zon, Rebecca L.; Ince, Tan A.; Neufeld, Ellis J.; Lerou, Paul H.; Fleming, Mark D.; Daley, George Q.; Agarwal, Suneet

    2013-01-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. PMID:23400930

  8. 78 FR 17641 - Procurement List; Proposed Addition and Deletion

    Science.gov (United States)

    2013-03-22

    ... People Who Are Blind or Severely Disabled, 1401 S. Clarke Street, Suite 10800, Arlington, Virginia 22202... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Addition and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION...

  9. 78 FR 45183 - Procurement List; Proposed Addition and Deletions

    Science.gov (United States)

    2013-07-26

    ... People Who Are Blind or Severely Disabled, 1401 S. Clark Street, Suite 10800, Arlington, Virginia, 22202... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Addition and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled...

  10. 78 FR 68823 - Procurement List Proposed Additions and Deletions

    Science.gov (United States)

    2013-11-15

    ... for Purchase From People Who Are Blind or Severely Disabled, 1401 S. Clark Street, Suite 10800... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Additions and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled...

  11. 78 FR 32631 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2013-05-31

    ... People Who Are Blind or Severely Disabled, 1401 S. Clark Street, Suite 10800, Arlington, Virginia 22202... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY: Committee for Purchase from People Who are Blind or Severely Disabled...

  12. 78 FR 43180 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2013-07-19

    ... for Purchase From People Who Are Blind or Severely Disabled, 1401 S. Clark Street, Suite 10800... COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY: Committee for Purchase from People Who Are Blind or Severely Disabled...

  13. Angiotensin-converting enzyme insertion/deletion gene ...

    Indian Academy of Sciences (India)

    Angiotensin-converting enzyme insertion/deletion gene polymorphism in cystic fibrosis patients. Sabrine Oueslati Sondess Hadj Fredj Hajer Siala Amina Bibi Hajer Aloulou Lamia Boughamoura Khadija Boussetta Sihem Barsaoui Taieb Messaoud. Research Note Volume 95 Issue 1 March 2016 pp 193-196 ...

  14. The insertion/deletion polymorphism of angiotensin-converting ...

    African Journals Online (AJOL)

    The association between type 2 diabetes mellitus (T2DM) and essential hypertension (EH) is not well understood. Both conditions result from an interaction of multiple genetic (ethnic) and environmental (geographical) factors. One possible genetic determinant is the angiotensin-converting enzyme (ACE) insertion/deletion ...

  15. Oncolytic Replication of E1b-Deleted Adenoviruses

    Directory of Open Access Journals (Sweden)

    Pei-Hsin Cheng

    2015-11-01

    Full Text Available Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viralmRNAexport, and cell cycle disruption.

  16. Remarks on Causative Verbs and Object Deletion in English

    Science.gov (United States)

    Onozuka, Hiromi

    2007-01-01

    Rappaport Hovav and Levin [Rappaport Hovav, M., Levin, B., 1998. "Building verb meanings." In: Butt, M., Geuder, W. (Eds.), "The Projection of Arguments: Lexical and Compositional Factors." CSLI Publications, Stanford, pp. 97-134] contend that result verbs disallow object deletion because of their lexical semantic properties. Their point is that…

  17. [An updated review of 1p36 deletion (monosomy) syndrome].

    Science.gov (United States)

    Bello, Sabina; Rodríguez-Moreno, Antonio

    The Monosomy 1p36 deletion syndrome is part of the group of diseases known as Rare Diseases. The objective of the present work is to review the characteristics of Monosomy 1p36 deletion syndrome. The monosomy 1p36 deletion syndrome phenotype includes: dysmorphic craniofacial features; large anterior fontanelle, unibrow, deep-set eyes, epicanthus, wide nasal root/bridge, mandible hypoplasia, abnormal location of the pinna, philtrum and pointed chin; neurological alterations: seizures and hydrocephalus (in some cases). Cerebral malformations: ventricular hypertrophy, increased subarachnoid space, morphological alterations of corpus callosum, cortical atrophy, delays in myelinisation, periventricular leukomalacia and periventricular heterotopia. These alterations produce intellectual disability and delays in motor growth, communication skills, language, social and adaptive behaviour. It is Hearing and vision impairments are also observed in subjects with this syndrome, as well as alterations of cardiac, endocrine and urinary systems and alterations at skin and skeletal level. Approximately 100 cases have been documented since 1981. This rare disease is the most common subtelomeric-micro-deletion syndrome. In situ hybridization with fluorescence (FISH) and array-comparative genomic hybridization (CGH-array) are at present the two best diagnostic techniques. There is currently no effective medical treatment for this disease. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. 78 FR 73503 - Procurement List Additions and Deletions

    Science.gov (United States)

    2013-12-06

    ... by the General Services Administration. NSN: MR 376--Resealable Bags, Holiday, 6.5'' x 5.875''. NSN..., Holiday, 24PC. NPA: Winston-Salem Industries for the Blind, Inc., Winston-Salem, NC. Contracting Activity... disabilities, and deletes a product and services from the Procurement List previously furnished by such...

  19. Genetics Home Reference: distal 18q deletion syndrome

    Science.gov (United States)

    ... 18q deletion syndrome chromosome 18q monosomy chromosome 18q- syndrome De Grouchy syndrome del(18q) syndrome monosomy 18q Related Information How ... MS, Tienari PJ, Wirtavuori KO, Valanne LK. 18q-syndrome: brain MRI shows poor differentiation of gray and white matter on ... RL, Hale DE, Rose SR, Leach RJ, Cody JD. The spectrum ...

  20. 77 FR 60969 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2012-10-05

    ...., Wichita, KS. Contracting Activity: Defense Logistics Agency Troop Support, Philadelphia, PA. Coverage: C-List for 100% of the requirement of the Department of Defense, as aggregated by the Defense Logistics...., Portsmouth, VA. Contracting Activity: Dept. of the Army, W071 Endist Kansas City, Kansas City, MO. Deletions...

  1. Frequency of heterozygous TET2 deletions in myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Joseph Tripodi

    2010-09-01

    Full Text Available Joseph Tripodi1, Ronald Hoffman1, Vesna Najfeld2, Rona Weinberg31The Myeloproliferative Disorders Program, Tisch Cancer Institute, Department of Medicine and 2Department of Medicine and Pathology, Mount Sinai School of Medicine, 3The Myeloproliferative Disorders Program, Cellular Therapy Laboratory, The New York Blood Center, New York, NY, USAAbstract: The Philadelphia chromosome (Ph-negative myeloproliferative neoplasms (MPNs, including polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a group of clonal hematopoietic stem cell disorders with overlapping clinical and cytogenetic features and a variable tendency to evolve into acute leukemia. These diseases not only share overlapping chromosomal abnormalities but also a number of acquired somatic mutations. Recently, mutations in a putative tumor suppressor gene, ten-eleven translocation 2 (TET2 on chromosome 4q24 have been identified in 12% of patients with MPN. Additionally 4q24 chromosomal rearrangements in MPN, including TET2 deletions, have also been observed using conventional cytogenetics. The goal of this study was to investigate the frequency of genomic TET2 rearrangements in MPN using fluorescence in situ hybridization as a more sensitive method for screening and identifying genomic deletions. Among 146 MPN patients, we identified two patients (1.4% who showed a common 4q24 deletion, including TET2. Our observations also indicated that the frequency of TET2 deletion is increased in patients with an abnormal karyotype (5%.Keywords: TET2, myeloproliferative neoplasms, fluorescence in situ hybridization, cytogenetics

  2. Differential DNA methylation at birth associated with mental disorder in individuals with 22q11.2 deletion syndrome

    DEFF Research Database (Denmark)

    Starnawska, A; Hansen, C S; Sparsø, T

    2017-01-01

    Individuals with 22q11.2 deletion syndrome (DS) have an increased risk of comorbid mental disorders including schizophrenia, attention deficit hyperactivity disorder, depression, as well as intellectual disability. Although most 22q11.2 deletion carriers have the long 3-Mb form of the hemizygous...... with mental disorder later in life. DNA methylation was measured genome-wide from neonatal dried blood spots in a cohort of 164 individuals with 22q11.2DS, including 48 individuals diagnosed with a psychiatric disorder. Among several CpG sites with P-value...-98), in NOSIP (P-value=5.12 × 10-8) with disorders of psychological development (F80-89) and in SEMA4B (P-value=4.02 × 10-7) with schizophrenia spectrum disorders (F20-29). In conclusion, our study suggests an association of DNA methylation differences at birth with development of mental disorder later in life...

  3. Study protocol for The Emory 3q29 Project: evaluation of neurodevelopmental, psychiatric, and medical symptoms in 3q29 deletion syndrome.

    Science.gov (United States)

    Murphy, Melissa M; Lindsey Burrell, T; Cubells, Joseph F; España, Roberto Antonio; Gambello, Michael J; Goines, Katrina C B; Klaiman, Cheryl; Li, Longchuan; Novacek, Derek M; Papetti, Ava; Sanchez Russo, Rossana Lucia; Saulnier, Celine A; Shultz, Sarah; Walker, Elaine; Mulle, Jennifer Gladys

    2018-06-08

    the disorder. Our project describes the protocol for a prospective study of the behavioral and clinical phenotype associated with 3q29 deletion syndrome. The paradigm described here could easily be adapted to study additional CNV or single gene disorders with high risk for neuropsychiatric phenotypes, and/or transferred to other study sites, providing a means for data harmonization and cross-disorder analysis.

  4. Deletion affecting band 7q36 not associated with holoprosencephaly

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, S.A.D.; Krivchenia, E.; Mohamed, A.N. [Wayne State Univ., Detroit, MI (United States)] [and others

    1994-09-01

    Although the appearance of 7q36 aberrations have been postulated to be responsible for holoprosencephaly (HPE), the presence of a de novo 7q36 deletion in fetus without HPE has not been reported. We report the first case of a fetus with 7q36 deletion but lacking HPE. Ultrasound examination of a 25-year-old G3P1 Caucasian female showed small head circumference with microcephaly at 28 weeks. Decreased amniotic fluid volume, bilateral renal dilatation and abnormal facial features were also noted. Chromosome analysis after cordocentesis showed an abnormal female karyotype with a deletion involving the chromosome band 7q36, 46,XX,del(7)(q36). Chromosome studies on the biological parents were normal. In view of the chromosome finding and after extensive counseling, the couple elected to terminate the pregnancy. The chromosome findings were confirmed by fetal blood chromosome analysis at termination. Post-mortem examination confirmed dysmorphic features including a depressed nasal bridge and large flat ears with no lobules, but no cleft lip or palate was noted. Internal abnormalities included a bicuspid pulmonary valve and abnormally located lungs. The brain weighed 190g (249 {plus_minus} 64g expected) and had symmetric cerebral hemispheres without evidence of HPE or other gross or microscopic malformation, except focal cerebellar cortical dysplasia. In summary, our patient showed a deletion of the same chromosomal band implicated in HPE but lacked HPE. This finding indicates that 7q36 deletion may be seen in the absence of HPE and suggests that other genetic mechanisms may be responsible for HPE in this setting.

  5. Rare copy number deletions predict individual variation in intelligence.

    Directory of Open Access Journals (Sweden)

    Ronald A Yeo

    2011-01-01

    Full Text Available Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in "mutation load" emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent copy number variations (CNVs, and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77 had been administered the Wechsler Abbreviated Scale of Intelligence (WASI. After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = -.30, p = .01. As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES, we also examined the impact of ethnicity (Anglo/White vs. Other, as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed.

  6. Rare Copy Number Deletions Predict Individual Variation in Intelligence

    Science.gov (United States)

    Yeo, Ronald A.; Gangestad, Steven W.; Liu, Jingyu; Calhoun, Vince D.; Hutchison, Kent E.

    2011-01-01

    Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in “mutation load” emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent) copy number variations (CNVs), and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77) had been administered the Wechsler Abbreviated Scale of Intelligence (WASI). After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = −.30, p = .01). As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES), we also examined the impact of ethnicity (Anglo/White vs. Other), as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less) adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed. PMID:21298096

  7. Association of Tissue-Specific DNA Methylation Alterations with α-Thalassemia Southeast Asian Deletion

    Directory of Open Access Journals (Sweden)

    Tanapat Pangeson

    2017-11-01

    Full Text Available In the wild-type allele, DNA methylation levels of 10 consecutive CpG sites adjacent to the upstream 5′-breakpoint of α-thalassemia Southeast Asian (SEA deletion are not different between placenta and leukocytes. However, no previous study has reported the map of DNA methylation in the SEA allele. This report aims to show that the SEA mutation is associated with DNA methylation changes, resulting in differential methylation between placenta and leukocytes. Methylation-sensitive high-resolution analysis was used to compare DNA methylation among placenta, leukocytes, and unmethylated control DNA. The result indicates that the DNA methylation between placenta and leukocyte DNA is different and shows that the CpG status of both is not fully unmethylated. Mapping of individual CpG sites was performed by targeted bisulfite sequencing. The DNA methylation level of the 10 consecutive CpG sites was different between placenta and leukocyte DNA. When the 10th CpG of the mutation allele was considered as a hallmark for comparing DNA methylation level, it was totally different from the unmethylated 10th CpG of the wild-type allele. Finally, the distinct DNA methylation patterns between both DNA were extracted. In total, 24 patterns were found in leukocyte samples and 9 patterns were found in placenta samples. This report shows that the large deletion is associated with DNA methylation change. In further studies for clinical application, the distinct DNA methylation pattern might be a potential marker for detecting cell-free fetal DNA.

  8. A VNTR element associated with steroid sulfatase gene deletions stimulates recombination in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.; Li, X.M.; Shapiro, L.J. [UCSF School of Medicine, San Francisco, CA (United States)] [and others

    1994-09-01

    Steroid sulfatase deficiency is a common genetic disorder, with a prevalence of approximately one in every 3500 males world wide. About 90% of these patients have complete gene deletions, which appear to result from recombination between members of a low-copy repeat family (CRI-232 is the prototype) that flank the gene. RU1 and RU2 are two VNTR elements found within each of these family members. RU1 consists of 30 bp repeating units and its length shows minimal variation among individuals. The RU2 element consists of repeating sequences which are highly asymmetric, with about 90% purines and no C`s on one strand, and range from 0.6 kb to over 23 kb among different individuals. We conducted a study to determine if the RU1 or RU2 elements can promote recombination in an in vivo test system. We inserted these elements adjacent to the neo gene in each of two pSV2neo derivatives, one of which has a deletion in the 5{prime} portion of the neo gene and the other having a deletion in the 3{prime} portion. These plasmids were combined and used to transfect EJ cells. Survival of cells in G418 indicates restoration of a functional neo gene by recombination between two deletion constructs. Thus counting G418 resistant colonies gives a quantitative measure of the enhancement of recombination by the inserted VNTR elements. The results showed no effect on recombination by the inserted RU1 element (compared to the insertion of a nonspecific sequence), while the RU2 element stimulated recombination by 3.5-fold (P<0.01). A separate set of constructs placed RU1 or RU2 within the intron of an exon trapping vector. Following tranfection of cells, recombination events were monitored by a PCR assay that detected the approximation of primer binding sites (as a result of recombination). These studies showed that, as in the first set of experiments, the highly variable RU2 element is capable of stimulating somatic recombination in mammalian cells.

  9. A 50 bp deletion in the SOD1 promoter lowers enzyme expression but is not associated with ALS in Sweden.

    Science.gov (United States)

    Ingre, Caroline; Wuolikainen, Anna; Marklund, Stefan L; Birve, Anna; Press, Rayomand; Andersen, Peter M

    2016-01-01

    Mutations in the superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). A 50 base pair (bp) deletion of SOD1 has been suggested to reduce transcription and to be associated with later disease onset in ALS. This study was aimed to reveal if the 50 bp deletion influenced SOD1 enzymatic activity, occurrence and phenotype of the disease in a Swedish ALS/control cohort. Blood samples from 512 Swedish ALS patients and 354 Swedish controls without coding SOD1 mutations were analysed for the 50 bp deletion allele. The enzymatic activity of SOD1 in erythrocytes was analysed and genotype-phenotype correlations were assessed. Results demonstrated that the genotype frequencies of the 50 bp deletion were all found to be in Hardy-Weinberg equilibrium. No significant differences were found for age of onset, disease duration or site of onset. SOD1 enzymatic activity showed a statistically significant decreasing trend in the control group, in which the allele was associated with a 5% reduction in SOD1 activity. The results suggest that the 50 bp deletion has a moderate reducing effect on SOD1 synthesis. No modulating effects, however, were found on ALS onset, phenotype and survival in the Swedish population.

  10. Severe intellectual disability, omphalocele, hypospadia and high blood pressure associated to a deletion at 2q22.1q22.3: case report

    Directory of Open Access Journals (Sweden)

    Mulatinho Milene

    2012-06-01

    Full Text Available Abstract Background Recently, array-comparative genomic hybridization (aCGH platforms have significantly improved the resolution of chromosomal analysis allowing the identification of genomic copy number gains and losses smaller than 5 Mb. Here we report on a young man with unexplained severe mental retardation, autism spectrum disorder, congenital malformations comprising hypospadia and omphalocele, and episodes of high blood pressure. An ~ 6 Mb interstitial deletion that includes the causative genes is identified by oligonucleotide-based aCGH. Results Our index case exhibited a de novo chromosomal abnormality at 2q22 [del(2(q22.1q22.3dn] which was not visible at the 550 haploid band level. The deleted region includes eight genes: HNMT, SPOPL, NXPH2, LOC64702, LRP1B, KYNU, ARHGAP15 and GTDC1. Discussion aCGH revealed an ~ 6 Mb deletion in 2q22.1 to 2q22.3 in an as-yet unique clinical case associated with intellectual disability, congenital malformations and autism spectrum disorder. Interestingly, the deletion is co-localized with a fragile site (FRA2K, which could be involved in the formation of this chromosomal aberration. Further studies are needed to determine if deletions of 2q22.1 to 2q22.3 define a new microdeletion syndrome.

  11. Prevalence of pfhrp2 and/or pfhrp3 Gene Deletion in Plasmodium falciparum Population in Eight Highly Endemic States in India.

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Bharti

    Full Text Available Plasmodium falciparum encoded histidine rich protein (HRP2 based malaria rapid diagnostic tests (RDTs are used in India. Deletion of pfhrp2 and pfhrp3 genes contributes to false negative test results, and large numbers of such deletions have been reported from South America, highlighting the importance of surveillance to detect such deletions.This is the first prospective field study carried out at 16 sites located in eight endemic states of India to assess the performance of PfHRP2 based RDT kits used in the national malaria control programme. In this study, microscopically confirmed P. falciparum but RDT negative samples were assessed for presence of pfhrp2, pfhrp3, and their flanking genes using PCR.Among 1521 microscopically positive P. falciparum samples screened, 50 were negative by HRP2 based RDT test. Molecular testing was carried out using these 50 RDT negative samples by assuming that 1471 RDT positive samples carried pfhrp2 gene. It was found that 2.4% (36/1521 and 1.8% (27/1521 of samples were negative for pfhrp2 and pfhrp3 genes, respectively. However, the frequency of pfhrp2 deletions varied between the sites ranging from 0-25% (2.4, 95% CI; 1.6-3.3. The frequency of both pfhrp2 and pfhrp3 gene deletion varied from 0-8% (1.6, 95% CI; 1.0-2.4.This study provides evidence for low level presence of pfhrp2 and pfhrp3 deleted P. falciparum parasites in different endemic regions of India, and periodic surveillance is warranted for reliable use of PfHRP2 based RDTs.

  12. Restoration of half the normal dystrophin sequence in a double-deletion Duchenne muscular dystrophy family

    Energy Technology Data Exchange (ETDEWEB)

    Hoop, R.C.; Schwartz, L.S.; Hoffman, E.P. [Univ. of Pittsburgh School of Medicine, Pittsburgh, PA (United States); Russo, L.S. [Univ. of Florida, Jacksonville, FL (United States); Riconda, D.L. [Orlando Regional Medical Center, Orlando, FL (United States)

    1994-02-01

    Two male cousins with Duchenne muscular dystrophy were found to have different maternal dystrophin gene haplotypes and different deletion mutations. One propositus showed two noncontiguous deletions-one in the 5{prime}, proximal deletional hotspot region, and the other in the 3{prime}, more distal deletional hotspot region. The second propositus showed only the 5{prime} deletion. Using multiple fluorescent exon dosage and fluorescent multiplex CA repeat linkage analyses, the authors show that the mother of each propositus carries both deletions on the same grandmaternal X chromosome. This paradox is explained by a single recombinational event between the 2 deleted regions of one of the carrier`s dystrophin genes, giving rise to a son with a partially {open_quotes}repaired{close_quotes} gene retaining only the 5{prime} deletion. 20 refs., 4 figs.

  13. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    Science.gov (United States)

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman W; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K; Craigen, William J; Schmitt, Eric S; Wong, Lee-Jun C

    2010-12-20

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.

  14. Differentiated psychopharmacological treatment in three genetic subtypes of 22q11.2 deletion syndrome

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Egger, J.I.M.; Leeuw, N. de

    2017-01-01

    Introduction: The 22q11.2 deletion syndrome (22q11DS), mostly caused by the common deletion including the TBX- and COMT-genes (LCR22A-D), is highly associated with somatic anomalies. The distal deletion (distal of LCR22D) comprises the MAPK1-gene and is associated with specific heart defects. The

  15. 41 CFR 51-6.8 - Deletion of items from the Procurement List.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Deletion of items from...-PROCUREMENT PROCEDURES § 51-6.8 Deletion of items from the Procurement List. (a) When a central nonprofit... shall notify the Committee staff immediately. Before reaching a decision to request a deletion of an...

  16. 36 CFR 902.14 - Deletion of nondiscloseable information from requested records.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Deletion of nondiscloseable... AVENUE DEVELOPMENT CORPORATION FREEDOM OF INFORMATION ACT General Administration § 902.14 Deletion of... segregable after deletion of the nondiscloseable portions, will be released. If the information in the...

  17. 46 CFR 67.513 - Application for evidence of deletion from documentation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Application for evidence of deletion from documentation... AND MEASUREMENT OF VESSELS DOCUMENTATION OF VESSELS Fees § 67.513 Application for evidence of deletion from documentation. An application fee is charged for evidence of deletion from documentation in...

  18. 14 CFR 1206.202 - Deletion of segregable portions of a record.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Deletion of segregable portions of a record... AVAILABILITY OF AGENCY RECORDS TO MEMBERS OF THE PUBLIC Records Available § 1206.202 Deletion of segregable... that indication would harm an interest protected by the exemption in Subpart 3 under which the deletion...

  19. 32 CFR 310.34 - Amendment and deletion of system notices.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Amendment and deletion of system notices. 310.34... (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Publication Requirements § 310.34 Amendment and deletion of... system. (see § 310.32(q)). (c) Deletion of system notices. (1) Whenever a system is discontinued...

  20. 19 CFR 176.22 - Deletion of protest or entry number.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Deletion of protest or entry number. 176.22... Facts § 176.22 Deletion of protest or entry number. If any protest number or entry number is to be... authorized official making and approving the deletion. [T.D. 70-181, 35 FR 13433, Aug. 22, 1970] ...

  1. 47 CFR 76.1601 - Deletion or repositioning of broadcast signals.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Deletion or repositioning of broadcast signals... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1601 Deletion or... to § 76.1601: No deletion or repositioning of a local commercial television station shall occur...

  2. Partial USH2A deletions contribute to Usher syndrome in Denmark

    DEFF Research Database (Denmark)

    Dad, Shzeena; Rendtorff, Nanna Dahl; Kann, Erik

    2015-01-01

    deletions identified in USH2A. Our results suggest that USH2 is caused by USH2A exon deletions in a small fraction of the patients, whereas deletions or duplications in PCDH15 might be rare in Danish Usher patients.European Journal of Human Genetics advance online publication, 25 March 2015; doi:10.1038...

  3. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    International Nuclear Information System (INIS)

    Lushaj, Entela B.; Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi

    2012-01-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  4. 31 CFR 363.144 - May I delete a pending transaction involving a certificate of indebtedness?

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false May I delete a pending transaction... I delete a pending transaction involving a certificate of indebtedness? (a) You may delete a pending... a pending purchase of a security using a certificate of indebtedness as payment. (c) You may not...

  5. Detection of three-base deletion by exciplex formation with perylene derivatives.

    Science.gov (United States)

    Kashida, Hiromu; Kondo, Nobuyo; Sekiguchi, Koji; Asanuma, Hiroyuki

    2011-06-14

    Here, we synthesized fluorescent DNA probes labeled with two perylene derivatives for the detection of a three-base deletion mutant. One such probe discriminated the three-base deletion mutant from the wild-type sequence by exciplex emission, and the deletion mutant was identifiable even by the naked eye. This journal is © The Royal Society of Chemistry 2011

  6. Common Deletion (CD) in mitochondrial DNA of irradiated rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Raquel Gomes; Ferreira-Machado, Samara C.; Almeida, Carlos E.V. de, E-mail: raquelgsiqueira@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Biologia Roberto Alcanatara Gomes. Lab. de Ciencias Radiologicas; Silva, Dayse A. da; Carvalho, Elizeu F. de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Biologia Roberto Alcanatara Gomes. Lab. de Diagnosticos por DNA; Melo, Luiz D.B. de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Biofisica Carlos Chagas Filho. Lab. de Parasitologia Molecular

    2014-05-15

    The purpose of this study was to map the common deletion (CD) area in mtDNA and investigate the levels of this deletion in irradiated heart. The assays were developed in male Wistar rats that were irradiated with three different single doses (5, 10 or 15 Gy) delivered directly to the heart and the analyses were performed at various times post-irradiation (3, 15 or 120 days). The CDs area were sequenced and the CD quantified by real-time PCR. Our study demonstrated that the CD levels progressively decreased from the 3rd until the 15th day after irradiation, and then increased thereafter. Additionally, it was observed that the levels of CD are modulated differently according to the different categories of doses (moderate and high). This study demonstrated an immediate response to ionizing radiation, measured by the presence of mutations in the CD area and a decrease in the CD levels. (author)

  7. Two novel deletions (array CGH findings) in pigment dispersion syndrome.

    Science.gov (United States)

    Mikelsaar, Ruth; Molder, Harras; Bartsch, Oliver; Punab, Margus

    2007-12-01

    We report the first male with pigment dispersion syndrome and a balanced translocation t(10;15)(p11.1;q11.1). Cytogenetic analyses using Giemsa banding and FISH methods, and array CGH were performed. Array CGH analyses did not show altered DNA sequences in the breakpoints of the translocation, but revealed two novel deletions in 2q22.1 and 18q22.1. We suppose that the coexistence of t(10;15) and pigment dispersion syndrome in our patient is a coincidence. The deletion in 2q22.1, where the gene LRP1B has been located, may play a major role in the dysembryogenesis of the eye and cause the disorder.

  8. Combinations of probabilistic and approximate quantum cloning and deleting

    International Nuclear Information System (INIS)

    Qiu Daowen

    2002-01-01

    We first construct a probabilistic and approximate quantum cloning machine (PACM) and then clarify the relation between the PACM and other cloning machines. After that, we estimate the global fidelity of the approximate cloning that improves the previous estimation for the deterministic cloning machine; and also derive a bound on the success probability of producing perfect multiple clones. Afterwards, we further establish a more generalized probabilistic and approximate cloning and deleting machine (PACDM) and discuss the connections of the PACDM to some of the existing quantum cloning and deleting machines. Finally the global fidelity and a bound on the success probability of the PACDM are obtained. Summarily, the quantum devices established in this paper improve and also greatly generalize some of the existing machines

  9. Detection of mitochondrial DNA deletions in human cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu, Qing-Jie; Feng, Jiang-Bin; Lu, Xue; Li, Yu-Wen; Chen, De-Qing

    2008-01-01

    Full text: Purpose: To screen the novel mitochondrial DNA (mt DNA) deletions induced by ionizing radiation, and analyze the several kinds of mt DNA deletions, known as 3895 bp, 889 bp, 7436 bp or 4934 bp deletions. Methods: Long-range PCR with two pairs of primers, which could amplify the whole human mitochondrial genome, was used to analyze the lymphoblastoid cell line before and after exposed to 10 Gy 60 Co γ-rays. The limited condition PCR was used to certify the possible mt DNA deletion showed by long-range PCR. The PCR products were purified, cloned, sequenced and the sequence result were BLASTed. Regular PCR or nest-PCR were used to analyze the 3895 bp, 889 bp, 7436 bp or 4934 bp deletions before and after radiation exposure. The final PCR products were purified, sequenced and BALSTed on standard human mitochondrial genome sequence database. Results: (1) The predicted bands of mt DNA were observed on the control cell lines, and the possible mt DNA deletions were also detected on the irradiated cell lines. The deletions were certified by the limited condition PCR. The sequence BLAST results of the cloned PCR products showed that two kinds of deletions, 7455 bp deletion (nt 475-7929 in heavy strand) and 9225 bp deletion (nt 7714-369 in heavy strand), which were between two 8 bp direct repeats. Further bioinformatics analysis showed that the two deletions were novel deletions. (2) The 889 bp and 3895 bp deletion were not detected for the cell line samples not exposed to 60 Co γ-rays. The 889 bp and 3895 bp deletions were detected on samples exposed to 10 Gy 60 Co γ-rays. The BALST results showed that the 889 bp and 3895 deletions flanked nt 11688 bp-12576, nt 548 bp-4443, respectively. The 7436 bp deletion levels were not changed much before and after irradiation. (3) The 4934 bp deletions had the same pattern as 7436 bp deletion, but it could induced by radiation. Conclusions: Ionizing radiation could induce the human lymphoblastoid two novel mt DNA

  10. Remarks on Causative Verbs and Object Deletion in English

    OpenAIRE

    Onozuka, Hiromi

    2007-01-01

    Rappaport Hovav and Levin (1998) contend that result verbs disallow object deletion becauseof their lexical semantic properties. Their point is that the distinction between result verbs andmanner verbs with their different event structure representation constitutes the important factorwhich dictates the possibility of the variation of argument realization, of which object deletionrepresents one instance. Responding to their claim, Goldberg (2001) presents the evidencewhich mainly concerns the...

  11. SHANK1 Deletions in Males with Autism Spectrum Disorder.

    Science.gov (United States)

    Sato, Daisuke; Lionel, Anath C; Leblond, Claire S; Prasad, Aparna; Pinto, Dalila; Walker, Susan; O'Connor, Irene; Russell, Carolyn; Drmic, Irene E; Hamdan, Fadi F; Michaud, Jacques L; Endris, Volker; Roeth, Ralph; Delorme, Richard; Huguet, Guillaume; Leboyer, Marion; Rastam, Maria; Gillberg, Christopher; Lathrop, Mark; Stavropoulos, Dimitri J; Anagnostou, Evdokia; Weksberg, Rosanna; Fombonne, Eric; Zwaigenbaum, Lonnie; Fernandez, Bridget A; Roberts, Wendy; Rappold, Gudrun A; Marshall, Christian R; Bourgeron, Thomas; Szatmari, Peter; Scherer, Stephen W

    2012-05-04

    Recent studies have highlighted the involvement of rare (number variations and point mutations in the genetic etiology of autism spectrum disorder (ASD); these variants particularly affect genes involved in the neuronal synaptic complex. The SHANK gene family consists of three members (SHANK1, SHANK2, and SHANK3), which encode scaffolding proteins required for the proper formation and function of neuronal synapses. Although SHANK2 and SHANK3 mutations have been implicated in ASD and intellectual disability, the involvement of SHANK1 is unknown. Here, we assess microarray data from 1,158 Canadian and 456 European individuals with ASD to discover microdeletions at the SHANK1 locus on chromosome 19. We identify a hemizygous SHANK1 deletion that segregates in a four-generation family in which male carriers--but not female carriers--have ASD with higher functioning. A de novo SHANK1 deletion was also detected in an unrelated male individual with ASD with higher functioning, and no equivalent SHANK1 mutations were found in >15,000 controls (p = 0.009). The discovery of apparent reduced penetrance of ASD in females bearing inherited autosomal SHANK1 deletions provides a possible contributory model for the male gender bias in autism. The data are also informative for clinical-genetics interpretations of both inherited and sporadic forms of ASD involving SHANK1. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. A Large PROP1 Gene Deletion in a Turkish Pedigree

    Directory of Open Access Journals (Sweden)

    Suheyla Gorar

    2018-01-01

    Full Text Available Pituitary-specific paired-like homeodomain transcription factor, PROP1, is associated with multiple pituitary hormone deficiency. Alteration of the gene encoding the PROP1 may affect somatotropes, thyrotropes, and lactotropes, as well as gonadotropes and corticotropes. We performed genetic analysis of PROP1 gene in a Turkish pedigree with three siblings who presented with short stature. Parents were first degree cousins. Index case, a boy, had somatotrope, gonadotrope, thyrotrope, and corticotrope deficiency. However, two elder sisters had somatotroph, gonadotroph, and thyrotroph deficiency and no corticotroph deficiency. On pituitary magnetic resonance, partial empty sella was detected with normal bright spot in all siblings. In genetic analysis, we found a gross deletion involving PROP1 coding region. In conclusion, we report three Turkish siblings with a gross deletion in PROP1 gene. Interestingly, although little boy with combined pituitary hormone deficiency has adrenocorticotropic hormone (ACTH deficiency, his elder sisters with the same gross PROP1 deletion have no ACTH deficiency. This finding is in line with the fact that patients with PROP1 mutations may have different phenotype/genotype correlation.

  13. A case of 18p deletion syndrome after blepharoplasty

    Directory of Open Access Journals (Sweden)

    Xu LJ

    2017-01-01

    Full Text Available Li-juan Xu,1 Lv-xian Wu,2 Qing Yuan,3 Zhi-gang Lv,1 Xue-yan Jiang2 1Department of Opthalmology, 2Department of Pediatrics, 3Department of Clinical Laboratory, Jinhua Central Hospital, Jinhua, Zhejiang, People’s Republic of China Objective: The deletion of the short arm of chromosome 18 is thought to be one of the rare chromosomal aberrations. Here, we report a case to review this disease.Case report: The proband is a five-and-a-half-year-old girl who has had phenotypes manifested mainly by ptosis, broad face, broad neck with low posterior hairline, mental retardation, short stature, and other malformations. Chromosomal analysis for her mother showed a normal karyotype. Her father and younger brother were phenotypically normal.Result: Phenotypical features were quite similar throughout other cases and in accordance with the usual phenotype of del(18p suggested within the same cases and among the del(18p cases described. She underwent blepharoplasty, which improved her appearance.Conclusion: 18p deletion syndrome is diagnosed by gene analysis. Plastic surgeries for improving the appearance might be an option for these patients. Keywords: chromosome, deletion, blepharoplasty

  14. Distinct phenotype of PHF6 deletions in females.

    Science.gov (United States)

    Di Donato, N; Isidor, B; Lopez Cazaux, S; Le Caignec, C; Klink, B; Kraus, C; Schrock, E; Hackmann, K

    2014-02-01

    We report on two female patients carrying small overlapping Xq26.2 deletions of 100 kb and 270 kb involving the PHF6 gene. Mutations in PHF6 have been reported in individuals with Borjeson-Forssman-Lehmann syndrome, a condition present almost exclusively in males. Two very recent papers revealed de novo PHF6 defects in seven female patients with intellectual disability and a phenotype resembling Coffin-Siris syndrome (sparse hair, bitemporal narrowing, arched eyebrows, synophrys, high nasal root, bulbous nasal tip, marked clinodactyly with the hypoplastic terminal phalanges of the fifth fingers and cutaneous syndactyly of the toes, Blaschkoid linear skin hyperpigmentation, dental anomalies and occasional major malformations). The clinical presentation of these patients overlaps completely with our first patient, who carries a germline deletion involving PHF6. The second patient has a mosaic deletion and presented with a very mild phenotype of PHF6 loss in females. Our report confirms that PHF6 loss in females results in a recognizable phenotype overlapping with Coffin-Siris syndrome and distinct from Borjeson-Forssman-Lehmann syndrome. We expand the clinical spectrum and provide the first summary of the recommended medical evaluation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; Murillo, Gina; Brookes, Steven J; Smith, Claire E L; Parry, David A; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-10-15

    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid. © The Author 2014. Published by Oxford University Press.

  16. Generating Bona Fide Mammalian Prions with Internal Deletions.

    Science.gov (United States)

    Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Chapuis, Jérôme; Ciric, Danica; Igel-Egalon, Angelique; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel

    2016-08-01

    Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative

  17. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    Energy Technology Data Exchange (ETDEWEB)

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H. [Kobe Univ. School of Medicine and Science (Japan)

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  18. Characterization of genetic deletions in Becker muscular dystrophy using monoclonal antibodies against a deletion-prone region of dystrophin

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, L.T.; Man, Nguyen Thi; Morris, G.E. [Wales Institute, Clwyd (United Kingdom)] [and others

    1995-08-28

    We have produced a new panel of 20 monoclonal antibodies (mAbs) against a region of the dystrophin protein corresponding to a deletion-prone region of the Duchenne muscular dystrophy gene (exons 45-50). We show that immunohistochemistry or Western blotting with these {open_quotes}exon-specific{close_quotes} mAbs can provide a valuable addition to Southern blotting or PCR methods for the accurate identification of genetic deletions in Becker muscular dystrophy patients. The antibodies were mapped to the following exons: exon 45 (2 mAbs), exon 46 (6), exon 47 (1), exons 47/48 (4), exons 48-50 (6), and exon 50 (1). PCR amplification of single exons or groups of exons was used both to produce specific dystrophin immunogens and to map the mAbs obtained. PCR-mediated mutagenesis was also used to identify regions of dystrophin important for mAb binding. Because the mAbs can be used to characterize the dystrophin produced by individual muscle fibres, they will also be useful for studying {open_quotes}revertant{close_quotes} fibres in Duchenne muscle and for monitoring the results of myoblast therapy trials in MD patients with deletions in this region of the dystrophin gene. 27 refs., 7 figs., 3 tabs.

  19. Molecular and cytogenetic investigation of Y chromosome deletions over three generations facilitated by intracytoplasmic sperm injection.

    Science.gov (United States)

    Minor, Agata; Wong, Edgar Chan; Harmer, Karynn; Ma, Sai

    2007-08-01

    The azoospermic factor (AZF) region is critical for normal spermatogenesis since microdeletions and partial deletions have been associated with infertility. We investigate the diagnostic ability of karyotyping in detecting clinically relevant Y chromosome deletions. The clinical significance of heterochromatin deletions, microdeletions and partial AZFc deletions is also evaluated. A patient with a Yq deletion, affected by severe oligoasthenoteratozoospermia, underwent intracytoplasmic sperm injection (ICSI) which resulted in the birth of a healthy baby boy. The patient, his father and his son underwent Y chromosome microdeletion and partial AZFc deletion screening. We also studied the aneuploidy rate in the sperm of the patient by fluorescent in situ hybridization. AZF microdeletions were absent in the family. However, microdeletion analysis confirmed that the Yq deletion was limited to the heterochromatin. We found a partial AZFc gr/gr deletion in all three family members. We observed an increased rate of sex chromosome aneuploidy in the infertile patient. Cytogenetic analysis was misleading in identifying the Yq breakpoint. Infertility observed in the patient was associated with the gr/gr partial deletion. However, because of the incomplete penetrance of gr/gr deletions, the consequence of the vertical transmission of the deletion through ICSI remains unknown. Copyright (c) 2007 John Wiley & Sons, Ltd.

  20. Site Features

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of various site features from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times...

  1. DNA-based detection of chromosome deletion and amplification: diagnostic and mechanistic significance

    International Nuclear Information System (INIS)

    Latt, S.A.; Lalande, M.; Donlon, T.

    1986-01-01

    This paper describes a few of the many possible examples in which application of a molecular cytogenetic approach can ultimately lead to a new, important understanding about the statics and dynamics of human chromosome structure. In the case of retinoblastoma, cytological observations of deletions and linkage analysis have positioned the retinoblastoma locus to bank 13q14. This locus is grossly deleted in some spontaneous tumors. It is still necessary to locate more precisely and characterize the nature of the retinoblastoma locus, as well as the basis for the heterogeneity in deletions removing one copy of this locus. One is left with the possibility that those deletions that may be observed cytologically reflect but the tip of the iceberg of deletions; detection of others may require molecular probes. A related question is the nature of the DNA sequences at the deletion boundaries and the role they play in promoting these deletions

  2. Deletion of the calmodulin-binding domain of Grb7 impairs cell attachment to the extracellular matrix and migration

    Energy Technology Data Exchange (ETDEWEB)

    García-Palmero, Irene; Villalobo, Antonio, E-mail: antonio.villalobo@iib.uam.es

    2013-06-28

    Highlights: •Grb7 is a calmodulin (CaM)-binding protein. •Deleting the CaM-binding site impairs cell attachment and migration. •CaM antagonists inhibit Grb7-mediated cell migration. •We conclude that CaM controls Grb7-mediated cell migration. -- Abstract: The adaptor Grb7 is a calmodulin (CaM)-binding protein that participates in signaling pathways involved in cell migration, proliferation and the control of angiogenesis, and plays a significant role in tumor growth, its metastatic spread and tumor-associated neo-vasculature formation. In this report we show that deletion of the CaM-binding site of Grb7, located in the proximal region of its pleckstrin homology (PH) domain, impairs cell migration, cell attachment to the extracellular matrix, and the reorganization of the actin cytoskeleton occurring during this process. Moreover, we show that the cell-permeable CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide (W-13) both retard the migration of cells expressing wild type Grb7, but not the migration of cells expressing the mutant protein lacking the CaM-binding site (Grb7Δ), underscoring the proactive role of CaM binding to Grb7 during this process.

  3. A novel approach to simultaneously scan genes at fragile sites

    International Nuclear Information System (INIS)

    Willem, Pascale; Brown, Jacqueline; Schouten, Jan

    2006-01-01

    Fragile sites are regions of the genome sensitive to replication stress and to exposure to environmental carcinogens. The two most commonly expressed fragile sites FRA3B and FRA16D host the histidine triad (FHIT) and WW domain containing oxidoreductase (WWOX) genes respectively. There is growing evidence that both genes contribute to cancer development and they are frequently altered by allelic and homozygous deletions in a variety of tumors. Their status is linked to prognosis in several malignancies and they are thought to be involved in early tumorigenesis. The loci for FHIT and WWOX both span over a megabase but the genes encode for small transcripts. Thus the screening of intragenic deletion can be difficult and has relied on loss of heterozygosity LOH assays, or genomic arrays. Multiplex ligation dependent probe amplification MLPA, allows for the detection of deletions/duplications and relative quantification of up to 40 specific probes in a single assay. A FHIT/WWOX MLPA assay was designed, applied and validated in five esophageal squamous cell carcinoma ESCC, cell lines established in South Africa where this cancer is of high prevalence. Sixteen probes covered all FHIT exons and 7 probes covered WWOX. Both homozygous and hemizygous deletions were detected in FHIT, in four of the cell lines with a preferential deletion of exons 5 and 4. Chromosome 3 short arm was present in normal copy number indicating that deletions were site specific. In contrast WWOX was not altered in any cell lines. RT-PCR expression pattern paralleled the pattern of deletions. Ten primary ESCC tumor specimens were subsequently screened with this assay. FHIT exon deletions were found in four of them. This method offers an alternative to loss of heterozygosity studies. Simultaneous scanning of FHIT and WWOX exons in the context of early tumorigenesis and tumor progression, may help clarify the mechanistic events related to cancer development which are not revealed by imuno

  4. Site decontamination

    International Nuclear Information System (INIS)

    Bicker, A.E.

    1981-01-01

    Among the several DOE sites that have been radiologically decontaminated under the auspices of the Nevada Operations Office are three whose physical characteristics are unique. These are the Tatum Dome Test Site (TDTS) near Hattiesburg, Mississippi; a location of mountainous terrain (Pahute Mesa) on the Nevada Test Site; and the GNOME site near Carlsbad, New Mexico. In each case the contamination, the terrain, and the climate conditions were different. This presentation includes a brief description of each site, the methods used to perform radiological surveys, the logistics required to support the decontamination (including health physics and sample analysis), and the specific techniques used to reduce or remove the contamination

  5. Site organization and site arrangement

    International Nuclear Information System (INIS)

    Boissonnet, B.; Macqueron, J.F.

    1976-01-01

    The present paper deals with criteria for the choice of a production unit or power plant site, the organization and development of a site in terms of its particular characteristics and takes into account personnel considerations in site organizations as well as the problem of integrating the architecture into the environment. (RW) [de

  6. A three amino acid deletion in the transmembrane domain of the nicotinic acetylcholine receptor α6 subunit confers high-level resistance to spinosad in Plutella xylostella.

    Science.gov (United States)

    Wang, Jing; Wang, Xingliang; Lansdell, Stuart J; Zhang, Jianheng; Millar, Neil S; Wu, Yidong

    2016-04-01

    Spinosad is a macrocyclic lactone insecticide that acts primarily at the nicotinic acetylcholine receptors (nAChRs) of target insects. Here we describe evidence that high levels of resistance to spinosad in the diamondback moth (Plutella xylostella) are associated with a three amino acid (3-aa) deletion in the fourth transmembrane domain (TM4) of the nAChR α6 subunit (Pxα6). Following laboratory selection with spinosad, the SZ-SpinR strain of P. xylostella exhibited 940-fold resistance to spinosad. In addition, the selected insect population had 1060-fold cross-resistance to spinetoram but, in contrast, no cross-resistance to abamectin was observed. Genetic analysis indicates that spinosad resistance in SZ-SpinR is inherited as a recessive and autosomal trait, and that the 3-aa deletion (IIA) in TM4 of Pxα6 is tightly linked to spinosad resistance. Because of well-established difficulties in functional expression of cloned insect nAChRs, the analogous resistance-associated deletion mutation was introduced into a prototype nAChR (the cloned human α7 subunit). Two-electrode voltage-clamp recording with wild-type and mutated nAChRs expressed in Xenopus laevis oocytes indicated that the mutation causes a complete loss of agonist activation. In addition, radioligand binding studies indicated that the 3-aa deletion resulted in significantly lower-affinity binding of the extracellular neurotransmitter-binding site. These findings are consistent with the 3-amino acid (IIA) deletion within the transmembrane domain of Pxα6 being responsible for target-site resistance to spinosad in the SZ-SpinR strain of P. xylostella. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    Science.gov (United States)

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  8. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Martinelli, Diego [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Dionisi-Vici, Carlo [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Nobili, Valerio [Gastroenterology and Liver Unit, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Francalanci, Paola; Boldrini, Renata; Callea, Francesco [Dept. Pathology, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Santorelli, Filippo Maria [UOC Neurogenetica e Malattie Neuromuscolari, Fondazione Stella Maris, Pisa (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); and others

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Expanded array of mtDNA deletions. Black-Right-Pointing-Pointer Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. Black-Right-Pointing-Pointer Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. Black-Right-Pointing-Pointer Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  9. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    International Nuclear Information System (INIS)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela; Martinelli, Diego; Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella; Dionisi-Vici, Carlo; Nobili, Valerio; Francalanci, Paola; Boldrini, Renata; Callea, Francesco; Santorelli, Filippo Maria; Bertini, Enrico

    2011-01-01

    Highlights: ► Expanded array of mtDNA deletions. ► Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. ► Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. ► Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  10. The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome.

    Science.gov (United States)

    Cook, R Kimberley; Christensen, Stacey J; Deal, Jennifer A; Coburn, Rachel A; Deal, Megan E; Gresens, Jill M; Kaufman, Thomas C; Cook, Kevin R

    2012-01-01

    Chromosomal deletions are used extensively in Drosophila melanogaster genetics research. Deletion mapping is the primary method used for fine-scale gene localization. Effective and efficient deletion mapping requires both extensive genomic coverage and a high density of molecularly defined breakpoints across the genome. A large-scale resource development project at the Bloomington Drosophila Stock Center has improved the choice of deletions beyond that provided by previous projects. FLP-mediated recombination between FRT-bearing transposon insertions was used to generate deletions, because it is efficient and provides single-nucleotide resolution in planning deletion screens. The 793 deletions generated pushed coverage of the euchromatic genome to 98.4%. Gaps in coverage contain haplolethal and haplosterile genes, but the sizes of these gaps were minimized by flanking these genes as closely as possible with deletions. In improving coverage, a complete inventory of haplolethal and haplosterile genes was generated and extensive information on other haploinsufficient genes was compiled. To aid mapping experiments, a subset of deletions was organized into a Deficiency Kit to provide maximal coverage efficiently. To improve the resolution of deletion mapping, screens were planned to distribute deletion breakpoints evenly across the genome. The median chromosomal interval between breakpoints now contains only nine genes and 377 intervals contain only single genes. Drosophila melanogaster now has the most extensive genomic deletion coverage and breakpoint subdivision as well as the most comprehensive inventory of haploinsufficient genes of any multicellular organism. The improved selection of chromosomal deletion strains will be useful to nearly all Drosophila researchers.

  11. Site operations

    International Nuclear Information System (INIS)

    House, W.B.; Ebenhack, D.G.

    1989-01-01

    This chapter is a discussion of the management and operations practices used at the Barnwell Waste Management Facility in Barnwell, SC. The following topics are discussed: (1) Waste receiving and inspection, including manifest and certificates of compliance, radiological surveys, disposition of nonconforming items, and decontamination and disposition of secondary waste streams; (2) Waste disposal, including Title 10 CFR 61 requirements, disposal area evaluations, shipment offloading, container emplacement, and radiation protection; (3) Trench closure, including trench backfilling, trench capping, and permanent markers; (4) Site maintenance and stabilization, including trench maintenance, surface water management, and site closure activities; (5) Site monitoring programs, including operational monitoring, and environmental monitoring program; (6) Personnel training and qualifications, including basic training program, safety training program, special skills training, and physical qualifications; (7) Records management, including waste records, personnel training records, personnel dosimetry records, site monitoring records, trench qualification and construction records, and site drawings and stabilization records; (8) Site security; (9) Emergency response plans; and (10) Quality assurance

  12. Sexual dimorphism in white campion: complex control of carpel number is revealed by Y chromosome deletions

    International Nuclear Information System (INIS)

    Lardon, A.; Georgiev, S.; Aghmir, A.; Le Merrer, G.; Negrutiu, I.

    1999-01-01

    Sexual dimorphism in the dioecious plant white campion (Silene latifolia = Melandrium album) is under the control of two main regions on the Y chromosome. One such region, encoding the gynoecium-suppressing function (GSF), is responsible for the arrest of carpel initiation in male flowers. To generate chromosomal deletions, we used pollen irradiation in male plants to produce hermaphroditic mutants (bsx mutants) in which carpel development was restored. The mutants resulted from alterations in at least two GSF chromosomal regions, one autosomal and one located on the distal half of the (p)-arm of the Y chromosome. The two mutations affected carpel development independently, each mutation showing incomplete penetrance and variegation, albeit at significantly different levels. During successive meiotic generations, a progressive increase in penetrance and a reduction in variegation levels were observed and quantified at the level of the Y-linked GSF (GSF-Y). Possible mechanisms are proposed to explain the behavior of the bsx mutations: epigenetic regulation or/and second-site mutation of modifier genes. In addition, studies on the inheritance of the hermaphroditic trait showed that, unlike wild-type Y chromosomes, deleted Y chromosomes can be transmitted through both the male and the female lines. Altogether, these findings bring experimental support, on the one hand, to the existence on the Y chromosome of genic meiotic drive function(s) and, on the other hand, to models that consider that dioecy evolved through multiple mutation events. As such, the GSF is actually a system containing more than one locus and whose primary component is located on the Y chromosome

  13. Microevolution of Duplications and Deletions and Their Impact on Gene Expression in the Nematode Pristionchus pacificus.

    Directory of Open Access Journals (Sweden)

    Praveen Baskaran

    Full Text Available The evolution of diversity across the animal kingdom has been accompanied by tremendous gene loss and gain. While comparative genomics has been fruitful to characterize differences in gene content across highly diverged species, little is known about the microevolution of structural variations that cause these differences in the first place. In order to investigate the genomic impact of structural variations, we made use of genomic and transcriptomic data from the nematode Pristionchus pacificus, which has been established as a satellite model to Caenorhabditis elegans for comparative biology. We exploit the fact that P. pacificus is a highly diverse species for which various genomic data including the draft genome of a sister species P. exspectatus is available. Based on resequencing coverage data for two natural isolates we identified large (> 2 kb deletions and duplications relative to the reference strain. By restriction to completely syntenic regions between P. pacificus and P. exspectatus, we were able to polarize the comparison and to assess the impact of structural variations on expression levels. We found that while loss of genes correlates with lack of expression, duplication of genes has virtually no effect on gene expression. Further investigating expression of individual copies at sites that segregate between the duplicates, we found in the majority of cases only one of the copies to be expressed. Nevertheless, we still find that certain gene classes are strongly depleted in deletions as well as duplications, suggesting evolutionary constraint acting on synteny. In summary, our results are consistent with a model, where most structural variations are either deleterious or neutral and provide first insights into the microevolution of structural variations in the P. pacificus genome.

  14. Clinical and genetic characterization of chanarin-dorfman syndrome patients: first report of large deletions in the ABHD5 gene

    Directory of Open Access Journals (Sweden)

    Prati Daniele

    2010-12-01

    Full Text Available Abstract Background Chanarin-Dorfman syndrome (CDS is a rare autosomal recessive disorder characterized by nonbullous congenital ichthyosiform erythroderma (NCIE and an intracellular accumulation of triacylglycerol (TG droplets in most tissues. The clinical phenotype involves multiple organs and systems, including liver, eyes, ears, skeletal muscle and central nervous system (CNS. Mutations in ABHD5/CGI58 gene are associated with CDS. Methods Eight CDS patients belonging to six different families from Mediterranean countries were enrolled for genetic study. Molecular analysis of the ABHD5 gene included the sequencing of the 7 coding exons and of the putative 5' regulatory regions, as well as reverse transcript-polymerase chain reaction analysis and sequencing of normal and aberrant ABHD5 cDNAs. Results Five different mutations were identified, four of which were novel, including two splice-site mutations (c.47+1G>A and c.960+5G>A and two large deletions (c.898_*320del and c.662-1330_773+46del. All the reported mutations are predicted to be pathogenic because they lead to an early stop codon or a frameshift producing a premature termination of translation. While nonsense, missense, frameshift and splice-site mutations have been identified in CDS patients, large genomic deletions have not previously been described. Conclusions These results emphasize the need for an efficient approach for genomic deletion screening to ensure an accurate molecular diagnosis of CDS. Moreover, in spite of intensive molecular screening, no mutations were identified in one patient with a confirmed clinical diagnosis of CDS, appointing to genetic heterogeneity of the syndrome.

  15. Insertion and deletion polymorphisms of the ancient AluS family in the human genome.

    Science.gov (United States)

    Kryatova, Maria S; Steranka, Jared P; Burns, Kathleen H; Payer, Lindsay M

    2017-01-01

    Polymorphic Alu elements account for 17% of structural variants in the human genome. The majority of these belong to the youngest AluY subfamilies, and most structural variant discovery efforts have focused on identifying Alu polymorphisms from these currently retrotranspositionally active subfamilies. In this report we analyze polymorphisms from the evolutionarily older AluS subfamily, whose peak activity was tens of millions of years ago. We annotate the AluS polymorphisms, assess their likely mechanism of origin, and evaluate their contribution to structural variation in the human genome. Of 52 previously reported polymorphic AluS elements ascertained for this study, 48 were confirmed to belong to the AluS subfamily using high stringency subfamily classification criteria. Of these, the majority (77%, 37/48) appear to be deletion polymorphisms. Two polymorphic AluS elements (4%) have features of non-classical Alu insertions and one polymorphic AluS element (2%) likely inserted by a mechanism involving internal priming. Seven AluS polymorphisms (15%) appear to have arisen by the classical target-primed reverse transcription (TPRT) retrotransposition mechanism. These seven TPRT products are 3' intact with 3' poly-A tails, and are flanked by target site duplications; L1 ORF2p endonuclease cleavage sites were also observed, providing additional evidence that these are L1 ORF2p endonuclease-mediated TPRT insertions. Further sequence analysis showed strong conservation of both the RNA polymerase III promoter and SRP9/14 binding sites, important for mediating transcription and interaction with retrotransposition machinery, respectively. This conservation of functional features implies that some of these are fairly recent insertions since they have not diverged significantly from their respective retrotranspositionally competent source elements. Of the polymorphic AluS elements evaluated in this report, 15% (7/48) have features consistent with TPRT-mediated insertion

  16. Hematological abnormalities and 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano Machado Rosa

    2011-01-01

    Full Text Available The 22q11.2 deletion syndrome (22q11DS is a common genetic disease characterized by broad phenotypic variability. Despite the small number of studies describing hematological alterations in individuals with 22q11DS, it appears that these abnormalities are more frequent than previously imagined. Thus, the objective of our study was to report on a patient with 22q11DS presenting thrombocytopenia and large platelets and to review the literature. The patient, a 13-year-old boy, was originally evaluated due to craniofacial dysmorphia and speech delay. He also had a history of behavioral changes, neuropsychomotor delay and recurrent otitis/sinusitis. The identification of a 22q11.2 microdeletion by fluorescent in situ hybridization diagnosed the syndrome. Despite his hematological alterations, he only had a history of epistaxis and bruising of the upper and lower limbs. Assessments of the prothrombin time, thrombin time, partial thromboplastin time, bleeding time, fibrinogen levels and platelet aggregation (including the ristocetin induced platelet aggregation test were all normal. Hematological alterations observed in 22q11DS are directly related to the genetic disorder itself (especially in respect to deletion of the GPIb gene and secondary to some clinical findings, such as immunodeficiency. Macrothrombocytopenia is increasingly being considered a feature of the broad spectrum of 22q11DS and may potentially be a clinical marker for the syndrome.

  17. Deletion Mutations in an Australian Series of HNPCC Patients

    Directory of Open Access Journals (Sweden)

    McPhillips Mary

    2005-11-01

    Full Text Available Abstract Hereditary non polyposis colorectal cancer (HNPCC is characterized by the presence of early onset colorectal cancer and other epithelial malignancies. The genetic basis of HNPCC is a deficiency in DNA mismatch repair, which manifests itself as DNA microsatellite instability in tumours. There are four genes involved in DNA mismatch repair that have been linked to HNPCC; these include hMSH2, hMLH1, hMSH6 and hPMS2. Of these four genes hMLH1 and hMSH2 account for the majority of families diagnosed with the disease. Notwithstanding, up to 40 percent of families do not appear to harbour a change in either hMSH2 or hMLH1 that can be detected using standard screening procedures such as direct DNA sequencing or a variety of methods all based on a heteroduplex analysis. In this report we have screened a series of 118 probands that all have the clinical diagnosis of HNPCC for medium to large deletions by the Multiplex Ligation-Dependent Probe Amplification assay (MLPA to determine the frequency of this type of mutation. The results indicate that a significant proportion of Australian HNPCC patients harbour deletion or duplication mutations primarily in hMSH2 but also in hMLH1.

  18. Files synchronization from a large number of insertions and deletions

    Science.gov (United States)

    Ellappan, Vijayan; Kumari, Savera

    2017-11-01

    Synchronization between different versions of files is becoming a major issue that most of the applications are facing. To make the applications more efficient a economical algorithm is developed from the previously used algorithm of “File Loading Algorithm”. I am extending this algorithm in three ways: First, dealing with non-binary files, Second backup is generated for uploaded files and lastly each files are synchronized with insertions and deletions. User can reconstruct file from the former file with minimizing the error and also provides interactive communication by eliminating the frequency without any disturbance. The drawback of previous system is overcome by using synchronization, in which multiple copies of each file/record is created and stored in backup database and is efficiently restored in case of any unwanted deletion or loss of data. That is, to introduce a protocol that user B may use to reconstruct file X from file Y with suitably low probability of error. Synchronization algorithms find numerous areas of use, including data storage, file sharing, source code control systems, and cloud applications. For example, cloud storage services such as Drop box synchronize between local copies and cloud backups each time users make changes to local versions. Similarly, synchronization tools are necessary in mobile devices. Specialized synchronization algorithms are used for video and sound editing. Synchronization tools are also capable of performing data duplication.

  19. Rag Deletion in Peripheral T Cells Blocks TCR Revision

    Science.gov (United States)

    Hale, J. Scott; Ames, Kristina T.; Boursalian, Tamar E.; Fink, Pamela J.

    2010-01-01

    Mature CD4+Vβ5+ T cells that recognize a peripherally expressed endogenous superantigen are tolerized either by deletion or T cell receptor (TCR) revision. In Vβ5 transgenic mice, this latter tolerance pathway results in the appearance of CD4+Vβ5−TCRβ+ T cells, coinciding with Rag1, Rag2, and TdT expression and the accumulation of Vβ-DJβ recombination intermediates in peripheral CD4+ T cells. Because post-thymic RAG-dependent TCR rearrangement has remained controversial, we sought to definitively determine whether TCR revision is an extrathymic process that occurs in mature peripheral T cells. We now show that Rag deletion in post-positive selection T cells in Vβ5 transgenic mice blocks TCR revision in vivo, and that mature peripheral T cells sorted to remove cells bearing endogenous TCRβ chains can express newly generated TCRβ molecules in adoptive hosts. These findings unambiguously demonstrate post-thymic, RAG-dependent TCR rearrangement and define TCR revision as a tolerance pathway that targets mature peripheral CD4+ T cells. PMID:20435935

  20. Deletion of Fanca or Fancd2 dysregulates Treg in mice

    Science.gov (United States)

    Du, Wei; Erden, Ozlem; Wilson, Andrew; Sipple, Jared M.; Schick, Jonathan; Mehta, Parinda; Myers, Kasiani C.; Steinbrecher, Kris A.; Davies, Stella M.

    2014-01-01

    Fanconi anemia (FA) is a genetic disorder associated with bone marrow (BM) failure and leukemia. Recent studies demonstrate variable immune defects in FA. However, the cause for FA immunodeficiency is unknown. Here we report that deletion of Fanca or Fancd2 dysregulates the suppressive activity of regulatory T cells (Tregs), shown functionally as exacerbation of graft-vs-host disease (GVHD) in mice. Recipient mice of Fanca−/− or Fancd2−/− BM chimeras exhibited severe acute GVHD after allogeneic BM transplantation (BMT). T cells from Fanca−/− or Fancd2−/− mice induced higher GVHD lethality than those from wild-type (WT) littermates. FA Tregs possessed lower proliferative suppression potential compared with WT Tregs, as demonstrated by in vitro proliferation assay and BMT. Analysis of CD25+Foxp3+ Tregs indicated that loss of Fanca or Fancd2 dysregulated Foxp3 target gene expression. Additionally, CD25+Foxp3+ Tregs of Fanca−/− or Fancd2−/− mice were less efficient in suppressing the production of GVHD-associated inflammatory cytokines. Consistently, aberrant NF-κB activity was observed in infiltrated T cells from FA GVHD mice. Conditional deletion of p65 in FA Tregs decreased GVHD mortality. Our study uncovers an essential role for FA proteins in maintaining Treg homeostasis, possibly explaining, at least in part, the immune deficiency reported in some FA patients. PMID:24501220

  1. Dystrophin in frameshift deletion patients with Becker Muscular Dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, S.B.; Ray, P.N.; Worton, R.G.; Sherratt, T.G.; Heckmatt, J.Z.; Dubowitz, V.; Strong, P.N.; Miller, G. (Penn State College of Medicine, Hershey, PA (United States)); Shokeir, M. (Univ. Hospital, Saskatchewan (Canada))

    1992-09-01

    In a previous study the authors identified 14 cases with Duchenne muscular dystrophy (DMD) or its milder variant, Becker muscular dystrophy (BMD), with a deletion of exons 3-7, a deletion that would be expected to shift the translational reading frame of the mRNA and give a severe phenotype. They have examined dystrophin and its mRNA from muscle biopsies of seven cases with either mild or intermediate phenotypes. In all cases they detected slightly lower-molecular-weight dystrophin in 12%-15% abundance relative to the normal. By sequencing amplified mRNA they have found that exon 2 is spliced to exon 8, a splice that produces a frameshifted mRNA, and have found no evidence for alternate splicing that might be involved in restoration of dystrophin mRNA reading frame in the patients with a mild phenotype. Other transcriptional and posttranscriptional mechanisms such as cryptic promoter, ribosomal frameshifting, and reinitiation are suggested that might play some role in restoring the reading frame. 34 refs., 5 figs. 1 tab.

  2. Targeted deletion of hepatocyte Ikkβ confers growth advantages

    International Nuclear Information System (INIS)

    Koch, Katherine S.; Maeda, Shin; He, Guobin; Karin, Michael; Leffert, Hyam L.

    2009-01-01

    Mice lacking hepatocyte IKKβ (Ikkβ Δhep ) are defective in TNFα-activation of hepatocellular transcription factor NF-κB, and highly susceptible to hepatotoxicity. Following diethylnitrosamine (DEN) exposure, Ikkβ Δhep mice develop more hepatocellular carcinoma (HCC) than control mice due partly to enhanced DEN-induced hepatocyte death. Here we show that Ikkβ Δhep hepatocytes display growth advantages over normal hepatocytes consisting of precocious PCNA and cyclin D1 expression during liver regeneration (shortened hepatocyte G 0 → G 1 transitions), and enhanced recovery efficiency, cyclin D1 expression and cell proliferation after plating. Ex vivo deletion of Ikkβ also accelerates hepatocyte growth. Ikkβ Δhep hepatocyte proliferative responses show heightened sensitivity to TGFα and TNFα, and heightened expression of fibronectin, collagens I/III, nidogen, β-actin and integrin β1 mRNAs. These findings suggest that altered mitogen signaling and expression of extracellular matrix and its associated components underlie growth advantages. Increased HCC development in Ikkβ Δhep mice may also be caused by growth advantages of surviving Ikkβ-deleted hepatocytes.

  3. Deletion of Fanca or Fancd2 dysregulates Treg in mice.

    Science.gov (United States)

    Du, Wei; Erden, Ozlem; Wilson, Andrew; Sipple, Jared M; Schick, Jonathan; Mehta, Parinda; Myers, Kasiani C; Steinbrecher, Kris A; Davies, Stella M; Pang, Qishen

    2014-03-20

    Fanconi anemia (FA) is a genetic disorder associated with bone marrow (BM) failure and leukemia. Recent studies demonstrate variable immune defects in FA. However, the cause for FA immunodeficiency is unknown. Here we report that deletion of Fanca or Fancd2 dysregulates the suppressive activity of regulatory T cells (Tregs), shown functionally as exacerbation of graft-vs-host disease (GVHD) in mice. Recipient mice of Fanca(-/-) or Fancd2(-/-) BM chimeras exhibited severe acute GVHD after allogeneic BM transplantation (BMT). T cells from Fanca(-/-) or Fancd2(-/-) mice induced higher GVHD lethality than those from wild-type (WT) littermates. FA Tregs possessed lower proliferative suppression potential compared with WT Tregs, as demonstrated by in vitro proliferation assay and BMT. Analysis of CD25(+)Foxp3(+) Tregs indicated that loss of Fanca or Fancd2 dysregulated Foxp3 target gene expression. Additionally, CD25(+)Foxp3(+) Tregs of Fanca(-/-) or Fancd2(-/-) mice were less efficient in suppressing the production of GVHD-associated inflammatory cytokines. Consistently, aberrant NF-κB activity was observed in infiltrated T cells from FA GVHD mice. Conditional deletion of p65 in FA Tregs decreased GVHD mortality. Our study uncovers an essential role for FA proteins in maintaining Treg homeostasis, possibly explaining, at least in part, the immune deficiency reported in some FA patients.

  4. Production planning and coronal stop deletion in spontaneous speech

    Directory of Open Access Journals (Sweden)

    James Tanner

    2017-06-01

    Full Text Available Many phonological processes can be affected by segmental context spanning word boundaries, which often lead to variable outcomes. This paper tests the idea that some of this variability can be explained by reference to production planning. We examine coronal stop deletion (CSD, a variable process conditioned by preceding and upcoming phonological context, in a corpus of spontaneous British English speech, as a means of investigating a number of variables associated with planning: Prosodic boundary strength, word frequency, conditional probability of the following word, and speech rate. From the perspective of production planning, (1 prosodic boundaries should affect deletion rate independently of following context; (2 given the locality of production planning, the effect of the following context should decrease at stronger prosodic boundaries; and (3 other factors affecting planning scope should modulate the effect of upcoming phonological material above and beyond the modulating effect of prosodic boundaries. We build a statistical model of CSD realization, using pause length as a quantitative proxy for boundary strength, and find support for these predictions. These findings are compatible with the hypothesis that the locality of production planning constrains variability in speech production, and have practical implications for work on CSD and other variable processes.

  5. An unusual insertion/deletion in the gene encoding the β-subunit of propionyl-CoA carboxylase is a frequent mutation in Caucasian propionic acidemia

    International Nuclear Information System (INIS)

    Tahara, T.; Kraus, J.P.; Rosenberg, L.E.

    1990-01-01

    Propionic acidemia is an inherited disorder of organic acid metabolism that is caused by deficiency of propionly-CoA carboxylase. Affected patients fall into two complementation groups, pccA and pccBC (subgroups B, C, and BC), resulting from deficiency of the nonidentical α and β subunits of PCC, respectively. The authors have detected an unusual insertion/deletion in the DNA of patients from the pccBC and pccC subgroups that replaces 14 nucleotides in the coding sequence of the β subunit with 12 nucleotides unrelated to this region of the gene. Among 14 unrelated Caucasian patients in the pccBc complementation group, this unique mutation was found in 8 of 28 mutant alleles examined. Mutant allele-specific oligonucleotide hybridization to amplified genomic DNAs revealed that the inserted 12 nucleotides do not originate in an ∼1000-bp region around the mutation. In the course of the investigation, they identified another mutation in the same exon: a 3-bp in-frame deletion that eliminates one of two isoleucine codons immediately preceding the Msp I site. Two unrelated patients were compound heterozygotes for this single-codon deletion and for the insertion/deletion described above. They conclude that either there is a propensity for the PCC β-subunit gene to undergo mutations of this sort at this position or, more likely, the mutations in all of the involved Caucasian patients have a common origin in preceding generations

  6. Analysis of the genome sequence of the pathogenic Muscovy duck parvovirus strain YY reveals a 14-nucleotide-pair deletion in the inverted terminal repeats.

    Science.gov (United States)

    Wang, Jianye; Huang, Yu; Zhou, Mingxu; Zhu, Guoqiang

    2016-09-01

    Genomic information about Muscovy duck parvovirus is still limited. In this study, the genome of the pathogenic MDPV strain YY was sequenced. The full-length genome of YY is 5075 nucleotides (nt) long, 57 nt shorter than that of strain FM. Sequence alignment indicates that the 5' and 3' inverted terminal repeats (ITR) of strain YY contain a 14-nucleotide-pair deletion in the stem of the palindromic hairpin structure in comparison to strain FM and FZ91-30. The deleted region contains one "E-box" site and one repeated motif with the sequence "TTCCGGT" or "ACCGGAA". Phylogenetic trees constructed based the protein coding genes concordantly showed that YY, together with nine other MDPV isolates from various places, clustered in a separate branch, distinct from the branch formed by goose parvovirus (GPV) strains. These results demonstrate that, despite the distinctive deletion, the YY strain still belongs to the classical MDPV group. Moreover, the deletion of ITR may contribute to the genome evolution of MDPV under immunization pressure.

  7. The rates and patterns of deletions in the human factor IX gene

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.L.; Lind, T.J.; Thorland, E.C.; Sommer S.S. (Mayo Clinic/Foundation, Rochester, MN (United States))

    1994-02-01

    Deletions are commonly observed in genes with either segments of highly homologous sequences or excessive gene length. However, in the factor IX gene and in most genes, deletions (of [ge]21 bp) are uncommon. The authors have analyzed DNA from 290 families with hemophilia B (203 independent mutations) and have found 12 deletions >20 bp. Eleven of these are >2 kb (range >3-163 kb), and one is 1.1 kb. The junctions of the four deletions that are completely contained within the factor IX gene have been determined. A novel mutation occurred in patient HB128: the data suggest that a 26.8-kb deletion occurred between two segments of alternating purines and pyrimidines and that a 2.3-kb sense strand segment derived from the deleted region was inserted. For a sample of 203 independent mutations, the authors estimate the [open quotes]baseline[close quotes] rates of deletional mutation per base pair per generation as a function of size. The rate for large (>2 kb)I deletions is exceedingly low. For every mutational event in which a given base is at the junction of a large deletion, there are an estimated 58 microdeletions (<20 bp) and 985 single-base substitutions at that base. Analysis of the nine reported deletion junctions in the factor IX gene literature reveals that (i) five are associated with inversion, orphan sequences, or sense strand insertions; (ii) four are simple deletions that display an excess of short direct repeats at their junctions; (iii) there is no dramatic clustering of junctions within the gene; and (iv) with the exception of alternating purines and pyrimidines, deletion junctions are not preferentially associated with repetitive DNA. 58 refs., 5 figs., 5 tabs.

  8. ASYMMETRIC EFFECTS OF ADDED VERSUS DELETED FEATURE OF STIMULUS ON RECOGNITION MEMORY

    OpenAIRE

    内野, 八潮; 箱田, 裕司

    2000-01-01

    This article reviewed a number of studies which revealed superiority of addition over deletion. Such an asymmetric effect was found in picture recognitioa memory, discrimination learning, proofreading for misspellings and so on. However, few studies have controlled typicality of original stimulus or the effect of addition and deletion on typicality of changed stimulus. Therefore this article focussed particularly on the studies in which addition and deletion applied to original stimulus was d...

  9. Submicroscopic deletions at the WAGR locus, revealed by nonradioactive in situ hybridization.

    OpenAIRE

    Fantes, J A; Bickmore, W A; Fletcher, J M; Ballesta, F; Hanson, I M; van Heyningen, V

    1992-01-01

    Fluorescence in situ hybridization (FISH) with biotin-labeled probes mapping to 11p13 has been used for the molecular analysis of deletions of the WAGR (Wilms tumor, aniridia, genitourinary abnormalities, and mental retardation) locus. We have detected a submicroscopic 11p13 deletion in a child with inherited aniridia who subsequently presented with Wilms tumor in a horseshoe kidney, only revealed at surgery. The mother, who has aniridia, was also found to carry a deletion including both the ...

  10. The male gametophytic sterility. 1 - Gametic sterilities and deletions in petunia

    International Nuclear Information System (INIS)

    Cornu, A.; Maizonnier, D.

    1982-01-01

    Terminal deletions induced by ionizing radiations in Petunia are not sexually transmitted. Cytogenetic study of plants with a heterozygous deletion and their progenies shows that this lack of transmission is accompanied by a gametic semi-sterility due to the fact that gametes carrying the deleted chromosome are not viable. The interest of such a male sterility with a gametophytic determinism for the study of sporophyte-gametophyte relationships is underlined [fr

  11. [Grave's disease in children with 22q11 deletion. Report of three cases].

    Science.gov (United States)

    Gosselin, J; Lebon-Labich, B; Lucron, H; Marçon, F; Leheup, B

    2004-12-01

    Hypothyroidism is a well recognized complication of 22q11.2 deletion syndrome. Auto-immune hyperthyroidism is less common. We report three patients with a 22q11.2 deletion and Graves' disease diagnosed at age 17, 14 and 11 years, respectively. The clinical and biological presentation was typical for auto-immune hyperthyroidism. Graves' disease should be periodically sought during the follow-up program of patients with 22q11.2 deletion syndrome.

  12. Mosaic deletion of 20pter due to rescue by somatic recombination.

    Science.gov (United States)

    Martin, Megan M; Vanzo, Rena J; Sdano, Mallory R; Baxter, Adrianne L; South, Sarah T

    2016-01-01

    We report on a unique case of a mosaic 20pter-p13 deletion due to a somatic repair event identified by allele differentiating single nucleotide polymorphism (SNP) probes on chromosomal microarray. Small terminal deletions of 20p have been reported in a few individuals and appear to result in a variable phenotype. This patient was a 24-month-old female who presented with failure to thrive and speech delay. Chromosomal microarray analysis (CMA) performed on peripheral blood showed a 1.6 Mb deletion involving the terminus of 20p (20pter-20p13). This deletion appeared mosaic by CMA and this suspicion was confirmed by fluorescence in situ hybridization (FISH) analysis. Additionally, the deletion interval at 20p was directly adjacent to 15 Mb of mosaic copy-neutral loss of heterozygosity (LOH). The pattern of SNP probes was highly suggestive of a somatic repair event that resulted in rescue of the deleted region using the non-deleted homologue as a template. Structural mosaicism is rare and most often believed to be due to a postzygotic mechanism. This case demonstrates the additional utility of allele patterns to help distinguish mechanisms and in this case identified the possibility of either a post-zygotic repair of a germline deletion or a post-zygotic deletion with somatic recombination repair in a single step. © 2015 Wiley Periodicals, Inc.

  13. Concurrent deletion of 16q23 and PTEN is an independent prognostic feature in prostate cancer.

    Science.gov (United States)

    Kluth, Martina; Runte, Frederic; Barow, Philipp; Omari, Jazan; Abdelaziz, Zaid M; Paustian, Lisa; Steurer, Stefan; Christina Tsourlakis, Maria; Fisch, Margit; Graefen, Markus; Tennstedt, Pierre; Huland, Hartwig; Michl, Uwe; Minner, Sarah; Sauter, Guido; Simon, Ronald; Adam, Meike; Schlomm, Thorsten

    2015-11-15

    The deletion of 16q23-q24 belongs to the most frequent chromosomal changes in prostate cancer, but the clinical consequences of this alteration have not been studied in detail. We performed fluorescence in situ hybridization analysis using a 16q23 probe in more than 7,400 prostate cancers with clinical follow-up data assembled in a tissue microarray format. Chromosome 16q deletion was found in 21% of cancers, and was linked to advanced tumor stage, high Gleason grade, accelerated cell proliferation, the presence of lymph node metastases (p Deletion was more frequent in ERG fusion-positive (27%) as compared to ERG fusion-negative cancers (16%, p deletions including phosphatase and tensin homolog (PTEN) (p deletion of 16q was linked to early biochemical recurrence independently from the ERG status (p deletion of 16q alone. Multivariate modeling revealed that the prognostic value of 16q/PTEN deletion patterns was independent from the established prognostic factors. In summary, the results of our study demonstrate that the deletion of 16q and PTEN cooperatively drives prostate cancer progression, and suggests that deletion analysis of 16q and PTEN could be of important clinical value particularly for preoperative risk assessment of the clinically most challenging group of low- and intermediated grade prostate cancers. © 2015 UICC.

  14. Risk of Psychiatric Disorders Among Individuals With the 22q11.2 Deletion or Duplication

    DEFF Research Database (Denmark)

    Hoeffding, Louise K; Trabjerg, Betina B; Olsen, Line

    2017-01-01

    ) age at diagnosis of any psychiatric disorder was 12.5 (8.3) years for individuals with deletions and 6.1 (0.9) years for duplication carriers. A parental diagnosis of schizophrenia-but not of other psychiatric diagnoses-was associated with a 22q11.2 deletion, and parental psychiatric diagnoses other.......2 deletion or duplicationwas performed. A total of 3 768 943 individuals born in Denmark from 1955 to 2012 were followed up during the study period (total follow-up, 57.1 million person-years). Indicators of 22q11.2 deletion or duplication and cumulative incidenceswere estimated using a nested case...

  15. The DrosDel Deletion Collection: A Drosophila Genomewide Chromosomal Deficiency Resource

    OpenAIRE

    Ryder, Edward; Ashburner, Michael; Bautista-Llacer, Rosa; Drummond, Jenny; Webster, Jane; Johnson, Glynnis; Morley, Terri; Chan, Yuk Sang; Blows, Fiona; Coulson, Darin; Reuter, Gunter; Baisch, Heiko; Apelt, Christian; Kauk, Andreas; Rudolph, Thomas

    2007-01-01

    We describe a second-generation deficiency kit for Drosophila melanogaster composed of molecularly mapped deletions on an isogenic background, covering ∼77% of the Release 5.1 genome. Using a previously reported collection of FRT-bearing P-element insertions, we have generated 655 new deletions and verified a set of 209 deletion-bearing fly stocks. In addition to deletions, we demonstrate how the P elements may also be used to generate a set of custom inversions and duplications, particularly...

  16. A Case With Short Stature, Growth Hormone Deficiency and 46, XX, Xq27-qter Deletion.

    Science.gov (United States)

    Yıldırım, Şule; Topaloğlu, Naci; Tekin, Mustafa; Sılan, Fatma

    2017-10-01

    We report a case of 11-year-old girl with growth retardation and 46, XX, Xq27-qter deletion. The endocrinologic evaluation revealed growth hormone deficiency. In karyotype analysis  46, XX, Xq27-qter deletion was determined. The deletion of terminal region of chromosome 27 is most commonly being detected during the evaluation of infertility, premature ovarian insufficiency or in screening for fragile X carrier status. To our knowledge, this is the first reported case with 46, XX, Xq27-qter deletion and growth hormone deficiency. Furthermore, this case might facilitate future search for candidate genes involved in growth hormone deficiency.

  17. Association between the CCR5 32-bp deletion allele and late onset of schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Timm, Sally; Wang, August G

    2006-01-01

    OBJECTIVE: The 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well. METHOD: The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission...... of the deletion allele in the latter subgroup of patients. CONCLUSIONS: These findings suggest that the CCR5 32-bp deletion allele is a susceptibility factor for schizophrenia with late onset. Alternatively, the CCR5 32-bp deletion allele may act as a modifier by delaying the onset of schizophrenia without...

  18. Analysis of spontaneous deletions and gene amplification in the lac region of Escherichia coli

    International Nuclear Information System (INIS)

    Albertini, A.M.; Hofer, M.; Calos, M.P.; Tlsty, T.D.; Miller, J.H.

    1983-01-01

    Spontaneous rearrangements, such as large deletions and duplications, have important implications for the structure of the genome. It is therefore of great interest to analyze these events at the molecular level. We have constructed derivatives of a lacI-Z fusion strain, which allow us to study deletions in a more systematic manner than was previously possible. These derivatives have been used to investigate how frequently larger deletions (> 700 bp) occur between short homologies on both recA and recA - strains and to determine the effect of the lengths of the short homologies and of the distance between homologies on the frequency of deletion formation. 38 references, 11 figures

  19. Novel and differential accumulation of mitochondrial DNA deletions in Swedish and vietnamese patients with colorectal cancer.

    Science.gov (United States)

    Dimberg, Jan; Hong, Thai Trinh; Skarstedt, Marita; Löfgren, Sture; Zar, Niklas; Matussek, Andreas

    2014-01-01

    Mitochondrial DNA (mtDNA) has been proposed to be involved in carcinogenesis and aging. The mtDNA 4977 bp deletion is one of the most frequently observed mtDNA mutations in human tissues and may play a role in colorectal cancer (CRC). In the present study, we aimed to evaluate the frequency of mtDNA 4977 bp deletion in CRC tissues and its association with clinical factors. We determined the presence of the 4977 bp common deletion in cancer and normal paired tissue samples from 105 Swedish and 88 Vietnamese patients with CRC using polymerase chain reaction (PCR) assays. The mtDNA 4977 bp deletion was shown to be significantly more frequent in normal tissues in comparison with paired cancer tissues in both Swedish and Vietnamese patients. The 4977 bp common deletion was significantly more frequent in cancer tissues of the Vietnamese patients compared to the Swedish patients, and in Vietnamese cancer tissues, the 4977 bp deletion was significantly over represented in those with localized disease compared to those with disseminated disease. Moreover, we detected nine novel mtDNA deletions and found a significantly higher rate of these in CRC tissues in Swedish in comparison to Vietnamese patients. The mtDNA 4977 bp deletion seems to have an impact on the clinical outcome of CRC in Vietnamese patients, that the Swedish patients accumulate more of the detected novel deletions in CRC tissue compared to Vietnamese patients probably indicates divergent mechanisms in colorectal carcinogenesis.

  20. Induction of Mitochondrial DNA Deletion by Ionizing Radiation in Human Lung Fibroblast IMR-90 Cells

    International Nuclear Information System (INIS)

    Eom, Hyeon Soo; Jung, U Hee; Park, Hae Ran; Jo, Sung Kee

    2009-01-01

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with 137 Cs -rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and H 2 O 2 -treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and H 2 O 2 -treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells

  1. Induction of Mitochondrial DNA Deletion by Ionizing Radiation in Human Lung Fibroblast IMR-90 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Park, Hae Ran; Jo, Sung Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-06-15

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with {sup 137}Cs -rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and H{sub 2}O{sub 2}-treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and H{sub 2}O{sub 2}-treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells.

  2. Superfund Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This layer represents active Superfund Sites published by the Environmental Protection Agency (EPA). These data were extracted from the Superfund Enterprise...

  3. Site development

    International Nuclear Information System (INIS)

    Noack, J.

    1975-01-01

    The subject of this paper is a general view over all necessary considerations to develop the site after it has been chosen and before starting with the construction of a nuclear power plant. (orig./RW) [de

  4. Site selection

    International Nuclear Information System (INIS)

    Olsen, C.W.

    1983-07-01

    The conditions and criteria for selecting a site for a nuclear weapons test at the Nevada Test Site are summarized. Factors considered are: (1) scheduling of drill rigs, (2) scheduling of site preparation (dirt work, auger hole, surface casing, cementing), (3) schedule of event (when are drill hole data needed), (4) depth range of proposed W.P., (5) geologic structure (faults, Pz contact, etc.), (6) stratigraphy (alluvium, location of Grouse Canyon Tuff, etc.), (7) material properties (particularly montmorillonite and CO 2 content), (8) water table depth, (9) potential drilling problems (caving), (10) adjacent collapse craters and chimneys, (11) adjacent expended but uncollapsed sites, (12) adjacent post-shot or other small diameter holes, (13) adjacent stockpile emplacement holes, (14) adjacent planned events (including LANL), (15) projected needs of Test Program for various DOB's and operational separations, and (16) optimal use of NTS real estate

  5. Hyperpolarization-activated inward leakage currents caused by deletion or mutation of carboxy-terminal tyrosines of the Na+/K+-ATPase {alpha} subunit.

    Science.gov (United States)

    Meier, Susan; Tavraz, Neslihan N; Dürr, Katharina L; Friedrich, Thomas

    2010-02-01

    The Na(+)/K(+)-ATPase mediates electrogenic transport by exporting three Na(+) ions in exchange for two K(+) ions across the cell membrane per adenosine triphosphate molecule. The location of two Rb(+) ions in the crystal structures of the Na(+)/K(+)-ATPase has defined two "common" cation binding sites, I and II, which accommodate Na(+) or K(+) ions during transport. The configuration of site III is still unknown, but the crystal structure has suggested a critical role of the carboxy-terminal KETYY motif for the formation of this "unique" Na(+) binding site. Our two-electrode voltage clamp experiments on Xenopus oocytes show that deletion of two tyrosines at the carboxy terminus of the human Na(+)/K(+)-ATPase alpha(2) subunit decreases the affinity for extracellular and intracellular Na(+), in agreement with previous biochemical studies. Apparently, the DeltaYY deletion changes Na(+) affinity at site III but leaves the common sites unaffected, whereas the more extensive DeltaKETYY deletion affects the unique site and the common sites as well. In the absence of extracellular K(+), the DeltaYY construct mediated ouabain-sensitive, hyperpolarization-activated inward currents, which were Na(+) dependent and increased with acidification. Furthermore, the voltage dependence of rate constants from transient currents under Na(+)/Na(+) exchange conditions was reversed, and the amounts of charge transported upon voltage pulses from a certain holding potential to hyperpolarizing potentials and back were unequal. These findings are incompatible with a reversible and exclusively extracellular Na(+) release/binding mechanism. In analogy to the mechanism proposed for the H(+) leak currents of the wild-type Na(+)/K(+)-ATPase, we suggest that the DeltaYY deletion lowers the energy barrier for the intracellular Na(+) occlusion reaction, thus destabilizing the Na(+)-occluded state and enabling inward leak currents. The leakage currents are prevented by aromatic amino acids at the

  6. Physiological characterisation of acuB deletion in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; De Jongh, Willem Adriaan; Olsson, Lisbeth

    2009-01-01

    The acuB gene of Aspergillus niger is an ortholog of facB in Aspergillus nidulans. Under carbon-repression conditions, facB is repressed, thereby preventing acetate metabolism when the repressing carbon source is present. Even though facB is reported to be repressed directly by CreA, it is believed...... that a basal level of FacB activity exists under glucose-repressive conditions. In the present study, the effect of deletion of acuB on the physiology of A. niger was assessed. Differences in organic acid and acetate production, enzyme activities and extracellular amino and non-amino organic acid production...... were determined under glucose-repressing and -derepressing conditions. Furthermore, consumption of alternative carbon sources (e.g. xylose, citrate, lactate and succinate) was investigated. It was shown that AcuB has pleiotropic effects on the physiology of A. niger. The results indicate that metabolic...

  7. Syndrome of proximal interstitial deletion 4p15

    Energy Technology Data Exchange (ETDEWEB)

    Fryns, J.P. [Univ. of Leuven (Belgium)

    1995-09-11

    In this journal, Chitayat et al. reported on 2 boys and a girl with interstitial deletion in the short arm of chromosome 4, including p15.2p15.33. All 3 patients had a characteristic face distinct from that of Wolf-Hirschhorn syndrome and multiple minor congenital anomalies. One patient had a congenitally enlarged penis. The authors noted that all had normal growth, and all had moderate psychomotor retardation (patient 1, developmental age of 4-6 years at age 9 years; patient 2, mental age 6 years at age 25 years; and patient 3, global delay with hypotonia, difficulties in both gross and fine motor development, and persistent delay in language skills). 5 refs., 1 fig.

  8. Kcne4 Deletion Sex-Dependently Alters Vascular Reactivity

    DEFF Research Database (Denmark)

    Abbott, Geoffrey W; Jepps, Thomas A

    2016-01-01

    transcripts, with no striking sex-specific differences. However, Kv7.4 protein expression in females was twice that in males, and was reduced in both sexes by Kcne4 deletion. Our findings confirm a crucial role for KCNE4 in regulation of Kv7 channel activity to modulate vascular tone, and provide the first......Voltage-gated potassium (Kv) channels formed by Kv7 (KCNQ) α-subunits are recognized as crucial for vascular smooth muscle function, in addition to their established roles in the heart (Kv7.1) and the brain (Kv7.2-5). In vivo, Kv7 α-subunits are often regulated by KCNE subfamily ancillary (β...... known molecular mechanism for sex-specificity of this modulation that has important implications for vascular reactivity and may underlie sex-specific susceptibility to cardiovascular diseases....

  9. Multiple homoplasious insertions and deletions of a Triticeae (Poaceae DNA transposon: a phylogenetic perspective

    Directory of Open Access Journals (Sweden)

    Mason-Gamer Roberta J

    2007-06-01

    Full Text Available Abstract Background Stowaway elements are short, non-autonomous DNA transposons categorized as miniature inverted-repeat transposable elements (MITEs. The high MITE copy number in grass genomes suggests an active history of amplification and insertion, but ongoing MITE activity has only rarely been seen, and ongoing Stowaway activity has never been observed. Thus, a phylogenetic perspective on presence vs. absence of elements in an aligned data set can provide valuable historical insights into the dynamics of MITE acquisition and loss. Results A Stowaway-like element resides within the fourth intron of a β-amylase gene in representatives of five genera in the wheat tribe, Triticeae. Its presence vs. absence was examined with reference to the β-amylase gene tree topology, and in light of sequence comparisons of the β-amylase elements to Triticeae Stowaway elements in the Entrez nucleotide database. Among the sequences lacking the element, there are five distinct putative excision footprints (one widespread and four restricted to unrelated lineages and two flanking deletions. The sequences that do contain elements are polyphyletic on the β-amylase tree, and their elements are divergent at the sequence level. The β-amylase elements do not form a monophyletic group relative to other Stowaway elements in Entrez; most are more similar to elements from other loci in other Triticeae genomes than they are to one another. Conclusion Combined, the phylogenetic distribution, sequence variation, and Entrez database comparisons indicate that a Stowaway-like element has undergone multiple deletions from and insertions into the same site in β-amylase intron 4 during the history of the tribe. The elements currently at the site represent multiple, distinct lineages that transcend generic boundaries. While patterns of Stowaway polymorphism across a phylogenetic data set do not allow evolutionary mechanisms to be inferred with certainty, they do provide

  10. Sex-specific aspects of endogenous retroviral insertion and deletion.

    Science.gov (United States)

    Gemmell, Patrick; Hein, Jotun; Katzourakis, Aris

    2013-11-07

    We wish to understand how sex and recombination affect endogenous retroviral insertion and deletion. While theory suggests that the risk of ectopic recombination will limit the accumulation of repetitive DNA in areas of high meiotic recombination, the experimental evidence so far has been inconsistent. Under the assumption of neutrality, we examine the genomes of eighteen species of animal in order to compute the ratio of solo-LTRs that derive from insertions occurring down the male germ line as opposed to the female one (male bias). We also extend the simple idea of comparing autosome to allosome in order to predict the ratio of full-length proviruses we would expect to see under conditions of recombination linked deletion or otherwise. Using our model, we predict the ratio of allosomal to autosomal full-length proviruses to lie between32 and 23 under increasing male bias in mammals and between 1 and 2 under increasing male bias in birds. In contrast to our expectations, we find that a pattern of male bias is not universal across species and that there is a frequent overabundance of full-length proviruses on the allosome beyond the ratios predicted by our model. We use our data as a whole to argue that full-length proviruses should be treated as deleterious mutations or as effectively neutral mutations whose persistence in a full-length state is linked to the rate of meiotic recombination and whose origin is not universally male biased. These conclusions suggest that retroviral insertions on the allosome may be more prolific and that it might be possible to identify mechanisms of replication that are enhanced in the female sex.

  11. Bad Clade Deletion Supertrees: A Fast and Accurate Supertree Algorithm.

    Science.gov (United States)

    Fleischauer, Markus; Böcker, Sebastian

    2017-09-01

    Supertree methods merge a set of overlapping phylogenetic trees into a supertree containing all taxa of the input trees. The challenge in supertree reconstruction is the way of dealing with conflicting information in the input trees. Many different algorithms for different objective functions have been suggested to resolve these conflicts. In particular, there exist methods based on encoding the source trees in a matrix, where the supertree is constructed applying a local search heuristic to optimize the respective objective function. We present a novel heuristic supertree algorithm called Bad Clade Deletion (BCD) supertrees. It uses minimum cuts to delete a locally minimal number of columns from such a matrix representation so that it is compatible. This is the complement problem to Matrix Representation with Compatibility (Maximum Split Fit). Our algorithm has guaranteed polynomial worst-case running time and performs swiftly in practice. Different from local search heuristics, it guarantees to return the directed perfect phylogeny for the input matrix, corresponding to the parent tree of the input trees, if one exists. Comparing supertrees to model trees for simulated data, BCD shows a better accuracy (F1 score) than the state-of-the-art algorithms SuperFine (up to 3%) and Matrix Representation with Parsimony (up to 7%); at the same time, BCD is up to 7 times faster than SuperFine, and up to 600 times faster than Matrix Representation with Parsimony. Finally, using the BCD supertree as a starting tree for a combined Maximum Likelihood analysis using RAxML, we reach significantly improved accuracy (1% higher F1 score) and running time (1.7-fold speedup). © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Kristen Dilzell

    2015-01-01

    Full Text Available This case report concerns a 16-year-old girl with a 9.92 Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome.

  13. Impaired spermatogenesis and gr/gr deletions related to Y chromosome haplogroups in Korean men.

    Directory of Open Access Journals (Sweden)

    Jin Choi

    Full Text Available Microdeletion of the Azoospermia Factor (AZF regions in Y chromosome is a well-known genetic cause of male infertility resulting from spermatogenetic impairment. However, the partial deletions of AZFc region related to spermatogenetic impairment are controversial. In this study, we characterized partial deletion of AZFc region in Korean patients with spermatogenetic impairment and assessed whether the DAZ and CDY1 contributes to the phenotype in patients with gr/gr deletions. Total of 377 patients with azoo-/oligozoospermia and 217 controls were analyzed using multiplex polymerase chain reaction (PCR, analysis of DAZ-CDY1 sequence family variants (SFVs, and quantitative fluorescent (QF-PCR. Of the 377 men with impaired spermatogenesis, 59 cases (15.6% had partial AZFc deletions, including 32 gr/gr (8.5%, 22 b2/b3 (5.8%, four b1/b3 (1.1% and one b3/b4 (0.3% deletion. In comparison, 14 of 217 normozoospermic controls (6.5% had partial AZFc deletions, including five gr/gr (2.3% and nine b2/b3 (4.1% deletions. The frequency of gr/gr deletions was significantly higher in the azoo-/oligozoospermic group than in the normozoospermic control group (p = 0.003; OR = 3.933; 95% CI = 1.509-10.250. Concerning Y haplogroup, we observed no significant differences in the frequency of gr/gr deletions between the case and the control groups in the YAP+ lineages, while gr/gr deletion were significantly higher in azoo-/oligozoospermia than normozoospermia in the YAP- lineage (p = 0.004; OR = 6.341; 95% CI = 1.472-27.312. Our data suggested that gr/gr deletion is associated with impaired spermatogenesis in Koreans with YAP- lineage, regardless of the gr/gr subtypes.

  14. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints

    Science.gov (United States)

    2014-01-01

    Background Genomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The mechanisms underlying these non-recurrent copy number changes have not yet been fully elucidated. Results We analyze large NF1 deletions with non-recurrent breakpoints as a model to investigate the full spectrum of causative mechanisms, and observe that they are mediated by various DNA double strand break repair mechanisms, as well as aberrant replication. Further, two of the 17 NF1 deletions with non-recurrent breakpoints, identified in unrelated patients, occur in association with the concomitant insertion of SINE/variable number of tandem repeats/Alu (SVA) retrotransposons at the deletion breakpoints. The respective breakpoints are refractory to analysis by standard breakpoint-spanning PCRs and are only identified by means of optimized PCR protocols designed to amplify across GC-rich sequences. The SVA elements are integrated within SUZ12P intron 8 in both patients, and were mediated by target-primed reverse transcription of SVA mRNA intermediates derived from retrotranspositionally active source elements. Both SVA insertions occurred during early postzygotic development and are uniquely associated with large deletions of 1 Mb and 867 kb, respectively, at the insertion sites. Conclusions Since active SVA elements are abundant in the human genome and the retrotranspositional activity of many SVA source elements is high, SVA insertion-associated large genomic deletions encompassing many hundreds of kilobases could constitute a novel and as yet under-appreciated mechanism underlying large-scale copy number changes in the human genome. PMID:24958239

  15. An ARHGEF10 deletion is highly associated with a juvenile-onset inherited polyneuropathy in Leonberger and Saint Bernard dogs.

    Directory of Open Access Journals (Sweden)

    Kari J Ekenstedt

    2014-10-01

    Full Text Available An inherited polyneuropathy (PN observed in Leonberger dogs has clinical similarities to a genetically heterogeneous group of peripheral neuropathies termed Charcot-Marie-Tooth (CMT disease in humans. The Leonberger disorder is a severe, juvenile-onset, chronic, progressive, and mixed PN, characterized by exercise intolerance, gait abnormalities and muscle atrophy of the pelvic limbs, as well as inspiratory stridor and dyspnea. We mapped a PN locus in Leonbergers to a 250 kb region on canine chromosome 16 (Praw = 1.16×10-10, Pgenome, corrected = 0.006 utilizing a high-density SNP array. Within this interval is the ARHGEF10 gene, a member of the rho family of GTPases known to be involved in neuronal growth and axonal migration, and implicated in human hypomyelination. ARHGEF10 sequencing identified a 10 bp deletion in affected dogs that removes four nucleotides from the 3'-end of exon 17 and six nucleotides from the 5'-end of intron 17 (c.1955_1958+6delCACGGTGAGC. This eliminates the 3'-splice junction of exon 17, creates an alternate splice site immediately downstream in which the processed mRNA contains a frame shift, and generates a premature stop codon predicted to truncate approximately 50% of the protein. Homozygosity for the deletion was highly associated with the severe juvenile-onset PN phenotype in both Leonberger and Saint Bernard dogs. The overall clinical picture of PN in these breeds, and the effects of sex and heterozygosity of the ARHGEF10 deletion, are less clear due to the likely presence of other forms of PN with variable ages of onset and severity of clinical signs. This is the first documented severe polyneuropathy associated with a mutation in ARHGEF10 in any species.

  16. Rapid deletion plasmid construction methods for protoplast and Agrobacterium based fungal transformation systems

    Science.gov (United States)

    Increasing availability of genomic data and sophistication of analytical methodology in fungi has elevated the need for functional genomics tools in these organisms. Gene deletion is a critical tool for functional analysis. The targeted deletion of genes requires both a suitable method for the trans...

  17. Deletion of /T, D/ and the Acquisition of Linguistic Variation by Second Language Learners of English

    Science.gov (United States)

    Edwards, Jette G. Hansen

    2011-01-01

    This study investigated second language (L2) learners' acquisition of English /t, d/ deletion patterns in word-final consonant clusters, (a) focusing on how constraints such as grammatical conditioning and phonological environment affect deletion of /t, d/ in L2 acquisition and (b) determining the extent to which these L2 learners had acquired…

  18. Multiple Patterns of FHIT Gene Homozygous Deletion in Egyptian Breast Cancer Patients

    International Nuclear Information System (INIS)

    Ismail, H.M.S.; Zakhary, N.I.; Medhat, A.M.; Karim, A.M.

    2011-01-01

    Fragile histidine triad (FHIT) gene encodes a putative tumour suppressor protein. Loss of Fhit protein in cancer is attributed to different genetic alterations that affect the FHIT gene structure. In this study, we investigated the pattern of homozygous deletion that target the FHIT gene exons 3 to 9 genomic structure in Egyptian breast cancer patients. We have found that 65% (40 out of 62) of the cases exhibited homozygous deletion in at least one FHIT exon. The incidence of homozygous deletion was not associated with patients clinico pathological parameters including patients age, tumour grade, tumour type, and lymph node involvement. Using correlation analysis, we have observed a strong correlation between homozygous deletions of exon 3 and exon 4 (P<0.0001). Deletions in exon 5 were positively correlated with deletions in exon 7 (P<0.0001), Exon 8 (P<0.027), and exon 9 (P=0.04). Additionally, a strong correlation was observed between exons 8 and exon 9 (P<0.0001).We conclude that FHIT gene exons are homozygously deleted at high frequency in Egyptian women population diagnosed with breast cancer. Three different patterns of homozygous deletion were observed in this population indicating different mechanisms of targeting FHIT gene genomic structure.

  19. 40 CFR 63.60 - Deletion of caprolactam from the list of hazardous air pollutants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of caprolactam from the list of hazardous air pollutants. 63.60 Section 63.60 Protection of Environment ENVIRONMENTAL PROTECTION..., Source Category List § 63.60 Deletion of caprolactam from the list of hazardous air pollutants. The...

  20. Autism, ADHD, Mental Retardation and Behavior Problems in 100 Individuals with 22q11 Deletion Syndrome

    Science.gov (United States)

    Niklasson, Lena; Rasmussen, Peder; Oskarsdottir, Solveig; Gillberg, Christopher

    2009-01-01

    This study assessed the prevalence and type of associated neuropsychiatric problems in children and adults with 22q11 deletion syndrome. One-hundred consecutively referred individuals with 22q11 deletion syndrome were given in-depth neuropsychiatric assessments and questionnaires screens. Autism spectrum disorders (ASDs) and/or attention…

  1. Prenatal Diagnosis and Molecular Analysis of a Large Novel Deletion (- -JS) Causing α0-Thalassemia.

    Science.gov (United States)

    Cao, Jinru; He, Shuzhen; Pu, Yudong; Liu, Jingjing; Liu, Fuping; Feng, Jun

    α-Thalassemia (α-thal) is a very common single gene hereditary disease caused by large deletions or point mutations of the α-globin gene cluster in tropical and subtropical regions of the world. Here, we report for the first time, a novel large α-thal deletion in a Chinese family from Jiangsu Province, People's Republic of China (PRC), which removes almost the entire α2 and α1 genes from the α-globin gene cluster. Thus, it was named the Jiangsu deletion (- - JS ) on the α-globin gene cluster causing α 0 -thal. Heterozygotes for this deletion showed an α-thal trait phenotype with reduced mean corpuscular volume (MCV) and mean corpuscular hemoglobin (Hb) (MCH) levels. The sequencing results showed that a 2538 bp deletion (NG_000006.1: g.35801_38338) existed in this novel genotype on the basis of -α 4.2 (leftward), indicating a deletion of about 6.8 kb from the α-globin cluster. In addition, a 29 bp sequence was inserted into the deletion during the recombination events that led to this deletion. Through pedigree analysis, we knew that the proband inherited the novel allele from his mother.

  2. Genotype call for chromosomal deletions using read-depth from whole genome sequence variants in cattle

    DEFF Research Database (Denmark)

    Mesbah-Uddin, Md; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2018-01-01

    We presented a deletion genotyping (copy-number estimation) method that leverages population-scale whole genome sequence variants data from 1K bull genomes project (1KBGP) to build reference panel for imputation. To estimate deletion-genotype likelihood, we extracted read-depth (RD) data of all...

  3. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma

    NARCIS (Netherlands)

    Santo, E. E.; Ebus, M. E.; Koster, J.; Schulte, J. H.; Lakeman, A.; van Sluis, P.; Vermeulen, J.; Gisselsson, D.; Øra, I.; Lindner, S.; Buckley, P. G.; Stallings, R. L.; Vandesompele, J.; Eggert, A.; Caron, H. N.; Versteeg, R.; Molenaar, J. J.

    2012-01-01

    Neuroblastoma tumors frequently show loss of heterozygosity of chromosome 11q with a shortest region of overlap in the 11q23 region. These deletions are thought to cause inactivation of tumor suppressor genes leading to haploinsufficiency. Alternatively, micro-deletions could lead to gene fusion

  4. 77 FR 17055 - Sunshine Act Meeting; Deletion of Agenda Items From March 21, 2012 Open Meeting

    Science.gov (United States)

    2012-03-23

    ... FEDERAL COMMUNICATIONS COMMISSION Sunshine Act Meeting; Deletion of Agenda Items From March 21, 2012 Open Meeting March 20, 2012. The following items have been deleted from the list of Agenda items scheduled for consideration at the Wednesday, March 21, 2012, Open Meeting and previously listed in the...

  5. New recurrent deletions in the PPARgamma and TP53 genes are associated with childhood myelodysplastic syndrome

    DEFF Research Database (Denmark)

    Silveira, Cássia G T; Oliveira, Fábio M; Valera, Elvis T

    2009-01-01

    Myelodysplastic syndrome (MDS) is a rare hematological malignancy in children. It was performed FISH analysis in 19 pediatric MDS patients to investigate deletions involving the PPARgamma and TP53 genes. Significant losses in the PPARgamma gene and deletions in the tumor suppressor gene TP53 were...

  6. A new alpha(0)-thalassemia deletion found in a Dutch family (--(AW)).

    NARCIS (Netherlands)

    Phylipsen, M.; Vogelaar, I.P.; Schaap, R.A.; Arkesteijn, S.G.; Boxma, G.L.; Helden, W.C. van; Wildschut, I.C.; Bruin-Roest, A.C. de; Giordano, P.C.; Harteveld, C.L.

    2010-01-01

    Alpha-thalassemia is an inherited hemoglobin disorder characterized by a microcytic hypochromic anemia caused by a quantitative reduction of the alpha-globin chain. The majority of the alpha-thalassemias is caused by deletions in the alpha-globin gene cluster. A deletion in the alpha-globin gene

  7. The smt-0 mutation which abolishes mating-type switching in fission yeast is a deletion

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1993-01-01

    Mating-type switching in the fission yeast, S. pombe, is initiated by a DNA double-strand break (DSB) between the mat1 cassette and the H1 homology box. The mat1-cis-acting mutant, smt-0, abolishes mating-type switching and is shown here to be a 263-bp deletion. This deletion starts in the middle...

  8. Neural correlates of reward processing in adults with 22q11 deletion syndrome

    NARCIS (Netherlands)

    van Duin, Esther D. A.; Goossens, Liesbet; Hernaus, Dennis; da Silva Alves, Fabiana; Schmitz, Nicole; Schruers, Koen; van Amelsvoort, Therese

    2016-01-01

    Background: 22q11.2 deletion syndrome (22q11DS) is caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk to develop psychosis. The gene coding for catechol-O-methyl-transferase (COMT) is located at the deleted region, resulting in disrupted dopaminergic

  9. Y chromosome gr/gr deletions are a risk factor for low semen quality

    NARCIS (Netherlands)

    Visser, L.; Westerveld, G. H.; Korver, C. M.; van Daalen, S. K. M.; Hovingh, S. E.; Rozen, S.; van der Veen, F.; Repping, S.

    2009-01-01

    Subfertility affects one in eight couples. In up to 50% of cases, the male partner has low semen quality. Four Y chromosome deletions, i.e. Azoospermia factor a (AZFa), P5/proximal-P1 (AZFb), P5/distal-P1 and AZFc deletions, are established causes of low semen quality. Whether a recently identified

  10. 78 FR 2363 - Notification of Deletion of a System of Records; Automated Trust Funds Database

    Science.gov (United States)

    2013-01-11

    ... [Docket No. APHIS-2012-0041] Notification of Deletion of a System of Records; Automated Trust Funds Database AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice of deletion of a system... establishing the Automated Trust Funds (ATF) database system of records. The Federal Information Security...

  11. Maladaptive Behavior Differences in Prader-Willi Syndrome Due to Paternal Deletion versus Maternal Uniparental Disomy.

    Science.gov (United States)

    Dykens, Elisabeth M.; King, Bryan H.; Cassidy, Suzanne B.

    1999-01-01

    This study compared maladaptive behavior in 23 people with Prader-Willi syndrome due to paternal deletion and in 23 age- and gender-matched subjects with maternal uniparental disomy. Controlling for IQs, the deletion cases showed significantly higher maladaptive ratings, more symptom-related distress, and more behavior problems. Findings suggest a…

  12. Site development

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1989-01-01

    Development of a low-level radioactive waste land disposal facility is little different than any industrial development of similar scope. Consideration must be made for normal business and operations management, security, facility maintenance, traffic control and necessary amenities for personnel. The item specific to the low-level waste site is the handling of radioactive waste materials and the regulatory and environmental protection procedures that must be planned for and accomodated in the site design and development. Each of these elements and the facility as a whole must be designed to be compatible with local land use plans, available transportation and support services, and the social and economic goals of the local community. Plans should also be made for quality control and orderly construction. This chapter deals with those aspects of the facility, its design and construction which are integral parts to the overall performance of the site

  13. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur P

    2004-01-01

    Full Text Available The diagnosis of Duchenna Muscular Dystrophy (DMD and Becker Muscular Dystorphy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hot spot′ regions allowing determinations of deletion end points. Intragenic deletions were detected in 74 patients indicating that the use of PCR- based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  14. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur R

    2003-01-01

    Full Text Available The diagnosis of Duchenne Muscular Dystrophy (DMD and Becker Muscular Dystrophy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. Most recent and accurate method for diagnosing DMD/BMD is by detection of mutations in the DMD gene. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hotspot′ regions allowing determination of deletion end point. Intragenic deletions were detected in 74 patients indicating that the use of PCR-based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  15. Heart defects and other features of the 22q11 distal deletion syndrome

    DEFF Research Database (Denmark)

    Fagerberg, Christina Ringmann; Graakjaer, Jesper; Heinl, Ulrike D

    2013-01-01

    patients with 22q11 distal deletions, of whom two have complex congenital heart malformation, thus broadening the phenotypic spectrum. We compare cardiac malformations reported in 22q11 distal deletion to those reported in the common 22q11 deletion syndrome. We also review the literature for patients...... with 22q11 distal deletions, and discuss the possible roles of haploinsufficiency of the MAPK1 gene. We find the most frequent features in 22q11 distal deletion to be developmental delay or learning disability, short stature, microcephalus, premature birth with low birth weight, and congenital heart...... malformation ranging from minor anomalies to complex malformations. Behavioral problems are also seen in a substantial portion of patients. The following dysmorphic features are relatively common: smooth philtrum, abnormally structured ears, cleft palate/bifid uvula, micro-/retrognathia, upslanting palpebral...

  16. 22q13.3 Deletion Syndrome: An Underdiagnosed Cause of Mental Retardation

    Directory of Open Access Journals (Sweden)

    ilknur Erol

    2015-03-01

    Full Text Available Phelan-McDermid syndrome, also known as 22q13.3 deletion syndrome, is characterized by global developmental delay, absent or delayed speech, generalized hypotonia, and minor physical anomalies. The deletion typically involves the terminal band 22q13.3 and has been associated with both familial and de-novo translocations. We report the case of an 11-year-old Turkish girl with 22q13.3 deletion syndrome presenting with repeated seizures during the course of a rubella infection. We also review the clinical features of 22q13.3 deletion syndrome and emphasize the importance of considering a rare microdeletion syndrome for idiopathic mental retardation when results of a routine karyotype analysis are normal. To the best of our knowledge, this is the first reported case of a Turkish patient with isolated 22q13.3 deletion syndrome. [Cukurova Med J 2015; 40(1.000: 169-173

  17. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    Energy Technology Data Exchange (ETDEWEB)

    Shomrat, R.; Gluck, E.; Legum, C.; Shiloh, Y. [Tel Aviv Univ. (Israel)

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.

  18. Site Practice

    DEFF Research Database (Denmark)

    Wahedi, Haseebullah

    2016-01-01

    different practices in the construction phase. The research is based on an ethnographic study of a case in Denmark. The empirical data were collected through direct observations and semi-structured interviews with site managers, contract managers, foremen and craftsmen. Findings revealed...... that the construction phase comprises several communities and practices, leading to various uses of the drawings. The results indicated that the craftsmen used drawings to position themselves in the correct location, and that the site managers and contract managers used them as management tools and legal documents...

  19. Subtelomeric deletion of chromosome 10p15.3: clinical findings and molecular cytogenetic characterization.

    Science.gov (United States)

    DeScipio, Cheryl; Conlin, Laura; Rosenfeld, Jill; Tepperberg, James; Pasion, Romela; Patel, Ankita; McDonald, Marie T; Aradhya, Swaroop; Ho, Darlene; Goldstein, Jennifer; McGuire, Marianne; Mulchandani, Surabhi; Medne, Livija; Rupps, Rosemarie; Serrano, Alvaro H; Thorland, Erik C; Tsai, Anne C-H; Hilhorst-Hofstee, Yvonne; Ruivenkamp, Claudia A L; Van Esch, Hilde; Addor, Marie-Claude; Martinet, Danielle; Mason, Thornton B A; Clark, Dinah; Spinner, Nancy B; Krantz, Ian D

    2012-09-01

    We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM 608668) and DIP2C (OMIM 611380; UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study. Copyright © 2012 Wiley Periodicals, Inc.

  20. Analysis of human HPRT- deletion mutants by the microarray-CGH (comparative genomic hybridization)

    International Nuclear Information System (INIS)

    Kodaira, M.; Sasaki, K.; Tagawa, H.; Omine, H.; Kushiro, J.; Takahashi, N.; Katayama, H.

    2003-01-01

    We are trying to evaluate genetic effects of radiation on human using mutation frequency as an indicator. For the efficient detection of mutations, it is important to understand the mechanism and the characteristics of radiation-induced mutations. We have started the analysis of hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutants induced by X-ray in order to clarify the deletion size and the mutation-distribution. We analyzed 39 human X-ray induced HPRT-deletion mutants by using the microarray-CGH. The array for this analysis contains 57 BAC clones covering as much as possible of the 4Mb of the 5' side and 10Mb of the 3' side of the HPRT gene based on the NCBI genome database. DNA from parent strain and each HPRT-mutant strain are labeled with Cy5 and Cy3 respectively, and were mixed and hybridized on the array. Fluorescent intensity ratio of the obtained spots was analyzed using software we developed to identify clones corresponding to the deletion region. The deletion in these strains ranged up to 3.5 Mb on the 5' side and 6 Mb on the 3' side of the HPRT gene. Deletions in 13 strains ended around BAC clones located at about 3 Mb on the 5' side. On the 3' side, deletions extended up to the specific clones located at 1.5 Mb in 11 strains. The mutations seem to be complex on the 3' end of deletion; some accompanied duplications with deletions and others could not be explained by one mutation event. We need to confirm these results, taking into account the experimental reproducibility and the accuracy of the published genetic map. The results of the research using the microarray-CGH help us to search the regions where deletions are easily induced and to identify the factors affecting the range of deletions

  1. TTY2 genes deletions as genetic risk factor of male infertility.

    Science.gov (United States)

    Shaveisi-Zadeh, F; Alibakhshi, R; Asgari, R; Rostami-Far, Z; Bakhtiari, M; Abdi, H; Movafagh, A; Mirfakhraie, R

    2017-02-28

    Y chromosome has a number of genes that are expressed in testis and have a role in spermatogenesis. TTY2L12A and TTY2L2A are the members of testis transcript Y2 (TTY2) that are Y linked multi-copy gene families, located on Yp11 and Yq11 loci respectively. The aim of this study was to investigate frequency of TTY2L12A and TTY2L2A deletions in azoospermic patients compared with fertile males. This study was performed on 45 infertile males with idiopathic azoospermia without any AZF micro deletions (group A), 33 infertile males with azoospermia which do not screened for AZF micro deletions (group B) and 65 fertile males (group C), from October 2013 to April 2015 in west of Iran. Polymerase chain reaction (PCR) method was used for detection of TTY2L12A and TTY2L2A gene deletions in studied groups. No deletions were detected in normal fertile males of group C. 1 out of 45 azoospermic males of group A (2.22%) and 3 out of 33 azoospermic males of group B (9.09%) had TTY2L2A deletion (p= 0.409 and p= 0.036 respectively), also 1 out of 45 azoospermic males of group A (2.22%) and 4 out of 33 azoospermic males of group B (12.12%) had TTY2L12A deletion (p= 0.409 and p= 0.011 respectively).  None of azoospermic males in Group A and B had deletions in both genes. Our data showed significant correlation between non-obstructive azoospermia and TTY2L12A and TTY2L2A deletions. Thus, it seems that TTY2L12A and TTY2L2A deletions can consider as one of the genetic risk factors for non-obstructive azoospermia.

  2. In Vivo Deletion of the Cebpa +37 kb Enhancer Markedly Reduces Cebpa mRNA in Myeloid Progenitors but Not in Non-Hematopoietic Tissues to Impair Granulopoiesis

    Science.gov (United States)

    Guo, Hong; Cooper, Stacy; Friedman, Alan D.

    2016-01-01

    The murine Cebpa gene contains a +37 kb, evolutionarily conserved 440 bp enhancer that directs high-level expression to myeloid progenitors in transgenic mice. The enhancer is bound and activated by Runx1, Scl, GATA2, C/EBPα, c-Myb, Pu.1, and additional Ets factors in myeloid cells. CRISPR/Cas9-mediated replacement of the wild-type enhancer with a variant mutant in its seven Ets sites leads to 20-fold reduction of Cebpa mRNA in the 32Dcl3 myeloid cell line. To determine the effect of deleting the enhancer in vivo, we now characterize C57BL/6 mice in which loxP sites flank a 688 bp DNA segment containing the enhancer. CMV-Cre mediated germline deletion resulted in diminution of the expected number of viable Enh(f/f);CMV-Cre offspring, with 28-fold reduction in marrow Cebpa mRNA but normal levels in liver, lung, adipose, intestine, muscle, and kidney. Cre-transduction of lineage-negative marrow cells in vitro reduced Cebpa mRNA 12-fold, with impairment of granulocytic maturation, morphologic blast accumulation, and IL-3 dependent myeloid colony replating for >12 generations. Exposure of Enh(f/f);Mx1-Cre mice to pIpC led to 14-fold reduction of Cebpa mRNA in GMP or CMP, 30-fold reduction in LSK, and deletion and confirmed marrow-intrinsic impairment of granulopoiesis and B cell generation with LSK and monocyte lineage expansion. These findings demonstrate a critical role for the +37 kb Cebpa enhancer for hematopoietic-specific Cebpa expression, with enhancer deletion leading to impaired myelopoiesis and potentially preleukemic progenitor expansion. PMID:26937964

  3. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation.

    Science.gov (United States)

    Du, Yu; Xie, Guizhen; Yang, Chunfa; Fang, Baishan; Chen, Hongwen

    2014-06-01

    pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  4. A novel frameshift deletion in the albumin gene causes analbuminemia in a young Turkish woman.

    Science.gov (United States)

    Dagnino, Monica; Caridi, Gianluca; Aydin, Zeki; Ozturk, Savas; Karaali, Zeynep; Kazancioglu, Rumeyza; Cefle, Kivanc; Gursu, Meltem; Campagnoli, Monica; Galliano, Monica; Minchiotti, Lorenzo

    2010-11-11

    Analbuminemia is a rare autosomal recessive disorder manifested by the absence, or severe reduction, of circulating serum albumin. The analbuminemic trait was diagnosed in a young Turkish woman on the basis of her clinical symptoms (bilateral lower limb edema) and biochemical findings (minimal albumin amount and variable increases in other protein fractions). Total DNA from the analbuminemic proband and her parents was PCR-amplified using oligonucleotide primers designed to amplify the 14 exons of the albumin gene (ALB) and the flanking intron regions. The products were screened for mutations by single-strand conformation polymorphism (SSCP) and heteroduplex analyses (HA). HA allowed the identification of the mutation site in exon 12. Direct DNA sequencing of this abnormal fragment revealed that the analbuminemic trait was caused by a homozygous CA deletion at nucleotide positions c. 1614-1615 in the codons for Cys538 and Thr539. The subsequent frameshift should give rise to a putative truncated albumin variant in which the sequence Cys(538)-Thr-Leu-Ser has been changed to Cys(538)-Thr-Phe-Stop. The parents were heterozygous for the same mutation. Gel-based mutation detection and DNA sequencing substantiate the clinical diagnosis of congenital analbuminemia in our patient and show that the condition is caused by a novel mutation within the ALB gene. These results contribute to shed light on the molecular basis of this rare condition. 2010 Elsevier B.V. All rights reserved.

  5. Deletion of an X-inactivation boundary disrupts adjacent gene silencing.

    Directory of Open Access Journals (Sweden)

    Lindsay M Horvath

    2013-11-01

    Full Text Available In mammalian females, genes on one X are largely silenced by X-chromosome inactivation (XCI, although some "escape" XCI and are expressed from both Xs. Escapees can closely juxtapose X-inactivated genes and provide a tractable model for assessing boundary function at epigenetically regulated loci. To delimit sequences at an XCI boundary, we examined female mouse embryonic stem cells carrying X-linked BAC transgenes derived from an endogenous escape locus. Previously we determined that large BACs carrying escapee Kdm5c and flanking X-inactivated transcripts are properly regulated. Here we identify two lines with truncated BACs that partially and completely delete the distal Kdm5c XCI boundary. This boundary is not required for escape, since despite integrating into regions that are normally X inactivated, transgenic Kdm5c escapes XCI, as determined by RNA FISH and by structurally adopting an active conformation that facilitates long-range preferential association with other escapees. Yet, XCI regulation is disrupted in the transgene fully lacking the distal boundary; integration site genes up to 350 kb downstream of the transgene now inappropriately escape XCI. Altogether, these results reveal two genetically separable XCI regulatory activities at Kdm5c. XCI escape is driven by a dominant element(s retained in the shortest transgene that therefore lies within or upstream of the Kdm5c locus. Additionally, the distal XCI boundary normally plays an essential role in preventing nearby genes from escaping XCI.

  6. Site selection

    CERN Multimedia

    CERN PhotoLab

    1968-01-01

    To help resolve the problem of site selection for the proposed 300 GeV machine, the Council selected "three wise men" (left to right, J H Bannier of the Netherlands, A Chavanne of Switzerland and L K Boggild of Denmark).

  7. Site Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Noynaert, L.; Bruggeman, A.; Cornelissen, R.; Massaut, V.; Rahier, A

    2001-04-01

    The objectives, the programme, and the achievements of the Site Restoration Department of SCK-CEN in 2000 are summarised. Main activities include the decommissioning of the BR3 PWR-reactor as well as other clean-up activities, projects on waste minimisation and activities related to the management of decommissioning projects. The department provides consultancy and services to external organisations.

  8. Site Restoration

    International Nuclear Information System (INIS)

    Noynaert, L.; Bruggeman, A.; Cornelissen, R.; Massaut, V.; Rahier, A.

    2001-01-01

    The objectives, the programme, and the achievements of the Site Restoration Department of SCK-CEN in 2000 are summarised. Main activities include the decommissioning of the BR3 PWR-reactor as well as other clean-up activities, projects on waste minimisation and activities related to the management of decommissioning projects. The department provides consultancy and services to external organisations

  9. Conditional IL-2 gene deletion: consequences for T cell proliferation

    Directory of Open Access Journals (Sweden)

    Kendall A Smith

    2012-05-01

    Full Text Available To explore the role of interleukin-2 (IL-2 in T cell proliferation, and to circumvent the IL-2 deficiency autoimmune syndrome of conventional il2 gene deletion, mice were created to allow conditional il2 gene deletion when treated with the estrogen analogue, tamoxifen (TAM as adults. Splenocytes from four different mouse strains, C57Bl/6 wild type (WT, conventional IL-2 (-/-, TAM-treated Cre recombinase negative (Cre-/IL2fl/fl, and Cre+/IL-2fl/fl (Cre+, were activated with anti-CD3 and anti-CD28, and monitored for CD4+ and CD8+ T cell lymphocyte blastogenesis, aerobic glycolysis, BrdU incorporation into newly synthesized DNA, and CFSE dye dilution to monitor cell division. IL-2 production was monitored by quantitative ELISA and multiple additional cytokines were monitored by protein-bead arrays. Splenocytes from conventional IL-2 (-/- and TAM-treated Cre+ mice resulted in undetectable IL-2 production, so that both strains were IL-2 deficient. As monitored by flow cytometry, activated CD4+ and CD8+ T cells from WT, Cre+ and Cre- mice all underwent blastogenesis, whereas far fewer cells from conventional IL-2 (-/- mice did so. By comparison, only cells from IL-2 sufficient WT and Cre- switched to aerobic glycolysis as evidenced by a drop in media pH. Blastogenesis was mirrored by BrdU incorporation and CFSE dye dilution by CD4+ and CD8+ T cells from WT, Cre+ and Cre- mice, which were all equivalent, while proliferation of cells from conventional IL-2 (-/- mice was compromised. Splenocytes from IL-2 deficient conventional IL-2 (-/- mice produced low or undetectable other γc-chain cytokines (IL-4, IL-7, IL-9, IL-13, IL-15, and IL-21, whereas production of these γc-chain cytokines from IL-2-deficient conditional IL-2 (-/- Cre+ mice were comparable with WT and Cre- mice. These results indicate that CD4+ and CD8+ T cell blastogenesis cannot be attributable to IL-2 alone, but a switch to aerobic glycolysis is attributable to IL-2, and proliferation

  10. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae.

    Science.gov (United States)

    Oud, Bart; Flores, Carmen-Lisset; Gancedo, Carlos; Zhang, Xiuying; Trueheart, Joshua; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius J A

    2012-09-15

    Pyruvate-decarboxylase negative (Pdc⁻) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc⁻S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc⁻ strains cannot grow on high glucose concentrations and require C₂-compounds (ethanol or acetate) for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. Genetic analysis of a Pdc⁻ strain previously evolved to overcome these deficiencies revealed a 225 p in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc⁻ strain enabled growth on 20 g l⁻¹ glucose and 0.3% (v/v) ethanol at a maximum specific growth rate (0.24 h⁻¹) similar to that of the evolved Pdc⁻ strain (0.23 h⁻¹). Furthermore, the reverse engineered Pdc⁻ strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h⁻¹) than the evolved strain (0.20 h⁻¹). The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc⁻S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc⁻ strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C₂-compound auxotrophy. In this study we have discovered and characterised a

  11. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Oud Bart

    2012-09-01

    Full Text Available Abstract Background Pyruvate-decarboxylase negative (Pdc- strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc- strains cannot grow on high glucose concentrations and require C2-compounds (ethanol or acetate for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. Results Genetic analysis of a Pdc- strain previously evolved to overcome these deficiencies revealed a 225bp in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc- strain enabled growth on 20 g l-1 glucose and 0.3% (v/v ethanol at a maximum specific growth rate (0.24 h-1 similar to that of the evolved Pdc- strain (0.23 h-1. Furthermore, the reverse engineered Pdc- strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h-1 than the evolved strain (0.20 h-1. The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc-S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc- strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C2-compound auxotrophy. Conclusions In this study we have discovered and

  12. Deletion of Pr130 Interrupts Cardiac Development in Zebrafish

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2016-11-01

    Full Text Available Protein phosphatase 2 regulatory subunit B, alpha (PPP2R3A, a regulatory subunit of protein phosphatase 2A (PP2A, is a major serine/threonine phosphatase that regulates crucial function in development and growth. Previous research has implied that PPP2R3A was involved in heart failure, and PR130, the largest transcription of PPP2R3A, functioning in the calcium release of sarcoplasmic reticulum (SR, plays an important role in the excitation-contraction (EC coupling. To obtain a better understanding of PR130 functions in myocardium and cardiac development, two pr130-deletion zebrafish lines were generated using clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated proteins (Cas system. Pr130-knockout zebrafish exhibited cardiac looping defects and decreased cardiac function (decreased fractional area and fractional shortening. Hematoxylin and eosin (H&E staining demonstrated reduced cardiomyocytes. Subsequent transmission electron microscopy revealed that the bright and dark bands were narrowed and blurred, the Z- and M-lines were fogged, and the gaps between longitudinal myocardial fibers were increased. Additionally, increased apoptosis was observed in cardiomyocyte in pr130-knockout zebrafish compared to wild-type (WT. Taken together, our results suggest that pr130 is required for normal myocardium formation and efficient cardiac contractile function.

  13. Remote Wiping and Secure Deletion on Mobile Devices: A Review.

    Science.gov (United States)

    Leom, Ming Di; Choo, Kim-Kwang Raymond; Hunt, Ray

    2016-11-01

    Mobile devices have become ubiquitous in almost every sector of both private and commercial endeavors. As a result of such widespread use in everyday life, many users knowingly and unknowingly save significant amounts of personal and/or commercial data on these mobile devices. Thus, loss of mobile devices through accident or theft can expose users-and their businesses-to significant personal and corporate cost. To mitigate this data leakage issue, remote wiping features have been introduced to modern mobile devices. Given the destructive nature of such a feature, however, it may be subject to criminal exploitation (e.g., a criminal exploiting one or more vulnerabilities to issue a remote wiping command to the victim's device). To obtain a better understanding of remote wiping, we survey the literature, focusing on existing approaches to secure flash storage deletion and provide a critical analysis and comparison of a variety of published research in this area. In support of our analysis, we further provide prototype experimental results for three Android devices, thus providing both a theoretical and applied focus to this article as well as providing directions for further research. © 2016 American Academy of Forensic Sciences.

  14. SLUG (SNAI2) deletions in patients with Waardenburg disease.

    Science.gov (United States)

    Sánchez-Martín, Manuel; Rodríguez-García, Arancha; Pérez-Losada, Jesús; Sagrera, Ana; Read, Andrew P; Sánchez-García, Isidro

    2002-12-01

    Waardenburg syndrome (WS; deafness with pigmentary abnormalities) is a congenital disorder caused by defective function of the embryonic neural crest. Depending on additional symptoms, WS is classified into four types: WS1, WS2, WS3 and WS4. WS1 and WS3 are caused by mutations in PAX3, whereas WS2 is heterogenous, being caused by mutations in the microphthalmia (MITF) gene in some but not all affected families. The identification of Slugh, a zinc-finger transcription factor expressed in migratory neural crest cells, as the gene responsible for pigmentary disturbances in mice prompted us to analyse the role of its human homologue SLUG in neural crest defects. Here we show that two unrelated patients with WS2 have homozygous deletions in SLUG which result in absence of the SLUG product. We further show that Mitf is present in Slug-deficient cells and transactivates the SLUG promoter, and that Slugh and Kit genetically interact in vivo. Our findings further define the locus heterogeneity of WS2 and point to an essential role of SLUG in the development of neural crest-derived human cell lineages: its absence causes the auditory-pigmentary symptoms in at least some individuals with WS2.

  15. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of apobec

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Bhattacharya, Tanmoy [Los Alamos National Laboratory; Giorgi, Elena [Los Alamos National Laboratory; Gaschen, B [Los Alamos National Laboratory; Daniels, M [Los Alamos National Laboratory

    2009-01-01

    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, represent adaptation for rapid growth in a newly infected host, or reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV -I env coding sequences in 81 very early B SUbtype infections previously shown to have resulted from transmission or expansion of single viruses (n=78) or two closely related viruses (n=3). In these cases the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 envand identified a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either (i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or (ii) in a nucleotide context indicative of APOBEC mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was both embedded in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp4l. We also examined the distribution, extent, and sequence context of insertions and deletions and provide evidence that the length

  16. Association of BIM Deletion Polymorphism and BIM-γ RNA Expression in NSCLC with EGFR Mutation.

    Science.gov (United States)

    Isobe, Kazutoshi; Kakimoto, Atsushi; Mikami, Tetsuo; Kaburaki, Kyohei; Kobayashi, Hiroshi; Yoshizawa, Takahiro; Makino, Takashi; Otsuka, Hajime; Sano, G O; Sugino, Keishi; Sakamoto, Susumu; Takai, Yujiro; Tochigi, Naobumi; Iyoda, Akira; Homma, Sakae

    This pilot study assessed the association of BIM deletion polymorphism and BIM RNA isoform in patients with EGFR-positive non-small cell lung cancer (NSCLC). The study included 33 patients with EGFR-positive NSCLC treated with gefitinib. BIM deletion polymorphism and BIM RNA isoform (EL/L/S/γ) were determined by polymerase chain reaction (PCR). BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism inside tumors (p=0.038) and around tumors (p=0.0024). Relative BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism (p=0.0017). Patients with BIM-γ had significantly shorter progression-free survival than those without BIM-γ (median: 304 vs. 732 days; p=0.023). Expression of BIM-γ mRNA and BIM deletion polymorphism were strongly associated. BIM-γ overexpression may have a role in apoptosis related to EGFR-tyrosine kinase inhibitor. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  17. Microarray-based ultra-high resolution discovery of genomic deletion mutations

    Science.gov (United States)

    2014-01-01

    Background Oligonucleotide microarray-based comparative genomic hybridization (CGH) offers an attractive possible route for the rapid and cost-effective genome-wide discovery of deletion mutations. CGH typically involves comparison of the hybridization intensities of genomic DNA samples with microarray chip representations of entire genomes, and has widespread potential application in experimental research and medical diagnostics. However, the power to detect small deletions is low. Results Here we use a graduated series of Arabidopsis thaliana genomic deletion mutations (of sizes ranging from 4 bp to ~5 kb) to optimize CGH-based genomic deletion detection. We show that the power to detect smaller deletions (4, 28 and 104 bp) depends upon oligonucleotide density (essentially the number of genome-representative oligonucleotides on the microarray chip), and determine the oligonucleotide spacings necessary to guarantee detection of deletions of specified size. Conclusions Our findings will enhance a wide range of research and clinical applications, and in particular will aid in the discovery of genomic deletions in the absence of a priori knowledge of their existence. PMID:24655320

  18. Exploration of methods to localize DNA sequences missing from c-locus deletions

    International Nuclear Information System (INIS)

    Albritton, L.M.; Russell, L.B.; Montgomery, C.S.

    1987-01-01

    The authors have earlier characterized a large number of radiation-induced mutations at the c locus (on Chromosome 7) through genetic analysis, including extensive complementation tests. Based on this work, they have postulated that many of these mutations are deletions of various lengths, overlapping at c (the marker used in the mutation-rate experiments that generated the mutants). It was possible to apportion these deletions among 13 complementation groups and to fit them to a linear map of 8 functional units. Collectively, the deletions extend from a point between tp and c to one between sh-1 and Hbb, i.e., a genetic distance of from 6 to 10 cM, corresponding to at least 10 4 Kb of DNA. This year, the authors completed a pilot study designed to explore methods for finding DNA sequences that map to the region covered by the various c-deletions. The general plan was to probe DNA with clones derived from Chromosome-7-enriched libraries or with sequences known (or suspected) to reside in Chromosome 7. Three methods were explored for deriving the c-region-deficient DNA: (a) from mouse-hamster somatic-cell hydrids retaining a deleted mouse Chromosome 7, but no homologue; (b) from F 1 hybrids of M. musculus domesticus (carrying a c-locus deletion) by M. spretus; and (c) from F 1 hybrids of M. domesticus stocks carrying complementing deletions

  19. Dual entanglement measures based on no local cloning and no local deleting

    International Nuclear Information System (INIS)

    Horodecki, Michal; Sen, Aditi; Sen, Ujjwal

    2004-01-01

    The impossibility of cloning and deleting of unknown states constitute important restrictions on processing of information in the quantum world. On the other hand, a known quantum state can always be cloned or deleted. However, if we restrict the class of allowed operations, there will arise restrictions on the ability of cloning and deleting machines. We have shown that cloning and deleting of known states is in general not possible by local operations. This impossibility hints at quantum correlation in the state. We propose dual measures of quantum correlation based on the dual restrictions of no local cloning and no local deleting. The measures are relative entropy distances of the desired states in a (generally impossible) perfect local cloning or local deleting process from the best approximate state that is actually obtained by imperfect local cloning or deleting machines. Just like the dual measures of entanglement cost and distillable entanglement, the proposed measures are based on important processes in quantum information. We discuss their properties. For the case of pure states, estimations of these two measures are also provided. Interestingly, the entanglement of cloning for a maximally entangled state of two two-level systems is not unity

  20. Analysis of Dystrophin Gene Deletions by Multiplex PCR in Moroccan Patients

    Directory of Open Access Journals (Sweden)

    Aziza Sbiti

    2002-01-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD and BMD are X-linked diseases resulting from a defect in the dystrophin gene located on Xp21. DMD is the most frequent neuromuscular disease in humans (1/3500 male newborn. Deletions in the dystrophin gene represent 65% of mutations in DMD/BMD patients. We have analyzed DNA from 72 Moroccan patients with DMD/BMD using the multiplex polymerase chain reaction (PCR to screen for exon deletions within the dystrophin gene, and to estimate the frequency of these abnormalities. We found dystrophin gene deletions in 37 cases. Therefore the frequency in Moroccan DMD/BMD patients is about 51.3%. All deletions were clustered in the two known hot-spots regions, and in 81% of cases deletions were detected in the region from exon 43 to exon 52. These findings are comparable to those reported in other studies. It is important to note that in our population, we can first search for deletions of DMD gene in the most frequently deleted exons determined by this study. This may facilitate the molecular diagnosis of DMD and BMD in our country.

  1. Spectrum of phenotypic anomalies in four families with deletion of the SHOX enhancer region.

    Science.gov (United States)

    Gatta, Valentina; Palka, Chiara; Chiavaroli, Valentina; Franchi, Sara; Cannataro, Giovanni; Savastano, Massimo; Cotroneo, Antonio Raffaele; Chiarelli, Francesco; Mohn, Angelika; Stuppia, Liborio

    2014-07-23

    SHOX alterations have been reported in 67% of patients affected by Léri-Weill dyschondrosteosis (LWD), with a larger prevalence of gene deletions than point mutations. It has been recently demonstrated that these deletions can involve the SHOX enhancer region, rather that the coding region, with variable phenotype of the affected patients.Here, we report a SHOX gene analysis carried out by MLPA in 14 LWD patients from 4 families with variable phenotype. All patients presented a SHOX enhancer deletion. In particular, a patient with a severe bilateral Madelung deformity without short stature showed a homozygous alteration identical to the recently described 47.5 kb PAR1 deletion. Moreover, we identified, for the first time, in three related patients with a severe bilateral Madelung deformity, a smaller deletion than the 47.5 kb PAR1 deletion encompassing the same enhancer region (ECR1/CNE7). Data reported in this study provide new information about the spectrum of phenotypic alterations showed by LWD patients with different deletions of the SHOX enhancer region.

  2. Clinical and molecuar characterization of Brazilian patients with growth hormone gene deletions

    Directory of Open Access Journals (Sweden)

    I.J.P. Arnhold

    1998-04-01

    Full Text Available Genomic DNA from 23 patients with isolated growth hormone (GH deficiency (12 males and 11 females: heights -4.9 ± 1.4 SDS was screened for GH gene deletions by restriction endonuclease analysis of polymerase chain reaction amplification products. Three unrelated patients had typical features of severe GH deficiency and deletions (6.7 kb in two and 7.6 kb in one of the GH gene. The two patients with 6.7-kb deletions developed growth-attenuating anti-GH antibodies whereas the patient with the 7.6-kb deletion continued to grow with GH replacement therapy. Our finding that 3/23 (~13% Brazilian subjects had GH gene deletions agrees with previous studies of severe isolated GH deficiency subjects in other populations. Two of three subjects (67% with deletions developed blocking antibodies despite administration of exogenous GH at low doses. Interestingly, only 1/10 of cases with affected relatives or parental consanguinity had GH-1 gene deletions

  3. The role of mitochondrial DNA large deletion for the development of presbycusis in Fischer 344 rats.

    Science.gov (United States)

    Yin, Shankai; Yu, Zhiping; Sockalingam, Ravi; Bance, Manohar; Sun, Genlou; Wang, Jian

    2007-09-01

    Age-related hearing loss, or presbycusis, has been associated with large-scale mitochondrial DNA (mtDNA) deletion in previous studies. However, the role of this mtDNA damage in presbycusis is still not clear because the deletion in inner ears has not been measured quantitatively and analyzed in parallel with the time course of presbycusis. In the present study, the deletion was quantified using quantitative real-time PCR (qRT-PCR) in male Fischer 344 rats of different ages. It was found that the deletion increased quickly during young adulthood and reached over 60% at 6 months of age. However, a significant hearing loss was not seen until after 12 months of age. The results suggest that the existence of the deletion per se does not necessarily imply cochlear damage, but rather a critical level of the accumulated deletion seems to precede the hearing loss. The long delay may indicate the involvement of mechanisms other than mtDNA deletion in the development of presbycusis.

  4. Sequence characterisation of deletion breakpoints in the dystrophin gene by PCR

    Energy Technology Data Exchange (ETDEWEB)

    Abbs, S.; Sandhu, S.; Bobrow, M. [Guy`s Hospital, London (United Kingdom)

    1994-09-01

    Partial deletions of the dystrophin gene account for 65% of cases of Duchenne muscular dystrophy. A high proportion of these structural changes are generated by new mutational events, and lie predominantly within two `hotspot` regions, yet the underlying reasons for this are not known. We are characterizing and sequencing the regions surrounding deletion breakpoints in order to: (i) investigate the mechanisms of deletion mutation, and (ii) enable the design of PCR assays to specifically amplify mutant and normal sequences, allowing us to search for the presence of somatic mosaicism in appropriate family members. Using this approach we have been able to demonstrate the presence of somatic mosaicism in a maternal grandfather of a DMD-affected male, deleted for exons 49-50. Three deletions, namely of exons 48-49, 49-50, and 50, have been characterized using a PCR approach that avoids any cloning procedures. Breakpoints were initially localized to within regions of a few kilobases using Southern blot restriction analyses with exon-specific probes and PCR amplification of exonic and intronic loci. Sequencing was performed directly on PCR products: (i) mutant sequences were obtained from long-range or inverse-PCR across the deletion junction fragments, and (ii) normal sequences were obtained from the products of standard PCR, vectorette PCR, or inverse-PCR performed on YACs. Further characterization of intronic sequences will allow us to amplify and sequence across other deletion breakpoints and increase our knowledge of the mechanisms of mutation in the dystophin gene.

  5. Partial USH2A deletions contribute to Usher syndrome in Denmark.

    Science.gov (United States)

    Dad, Shzeena; Rendtorff, Nanna D; Kann, Erik; Albrechtsen, Anders; Mehrjouy, Mana M; Bak, Mads; Tommerup, Niels; Tranebjærg, Lisbeth; Rosenberg, Thomas; Jensen, Hanne; Møller, Lisbeth B

    2015-12-01

    Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment, progressive visual loss owing to retinitis pigmentosa and in some cases vestibular dysfunction. Usher syndrome is divided into three subtypes, USH1, USH2 and USH3. Twelve loci and eleven genes have so far been identified. Duplications and deletions in PCDH15 and USH2A that lead to USH1 and USH2, respectively, have previously been identified in patients from United Kingdom, Spain and Italy. In this study, we investigate the proportion of exon deletions and duplications in PCDH15 and USH2A in 20 USH1 and 30 USH2 patients from Denmark using multiplex ligation-dependent probe amplification (MLPA). Two heterozygous deletions were identified in USH2A, but no deletions or duplications were identified in PCDH15. Next-generation mate-pair sequencing was used to identify the exact breakpoints of the two deletions identified in USH2A. Our results suggest that USH2 is caused by USH2A exon deletions in a small fraction of the patients, whereas deletions or duplications in PCDH15 might be rare in Danish Usher patients.

  6. A novel 3q29 deletion associated with autism, intellectual disability, psychiatric disorders, and obesity.

    Science.gov (United States)

    Biamino, Elisa; Di Gregorio, Eleonora; Belligni, Elga Fabia; Keller, Roberto; Riberi, Evelise; Gandione, Marina; Calcia, Alessandro; Mancini, Cecilia; Giorgio, Elisa; Cavalieri, Simona; Pappi, Patrizia; Talarico, Flavia; Fea, Antonio M; De Rubeis, Silvia; Cirillo Silengo, Margherita; Ferrero, Giovanni Battista; Brusco, Alfredo

    2016-03-01

    Copy number variation (CNV) has been associated with a variety of neuropsychiatric disorders, including intellectual disability/developmental delay (ID/DD), autism spectrum disorder (ASD), and schizophrenia (SCZ). Often, individuals carrying the same pathogenic CNV display high clinical variability. By array-CGH analysis, we identified a novel familial 3q29 deletion (1.36 Mb), centromeric to the 3q29 deletion region, which manifests with variable expressivity. The deletion was identified in a 3-year-old girl diagnosed with ID/DD and autism and segregated in six family members, all affected by severe psychiatric disorders including schizophrenia, major depression, anxiety disorder, and personality disorder. All individuals carrying the deletion were overweight or obese, and anomalies compatible with optic atrophy were observed in three out of four cases examined. Amongst the 10 genes encompassed by the deletion, the haploinsufficiency of Optic Atrophy 1 (OPA1), associated with autosomal dominant optic atrophy, is likely responsible for the ophthalmological anomalies. We hypothesize that the haploinsufficiency of ATPase type 13A4 (ATP13A4) and/or Hairy/Enhancer of Split Drosophila homolog 1 (HES1) contribute to the neuropsychiatric phenotype, while HES1 deletion might underlie the overweight/obesity. In conclusion, we propose a novel contiguous gene syndrome due to a proximal 3q29 deletion variably associated with autism, ID/DD, psychiatric traits and overweight/obesity. © 2015 Wiley Periodicals, Inc.

  7. The infinite sites model of genome evolution.

    Science.gov (United States)

    Ma, Jian; Ratan, Aakrosh; Raney, Brian J; Suh, Bernard B; Miller, Webb; Haussler, David

    2008-09-23

    We formalize the problem of recovering the evolutionary history of a set of genomes that are related to an unseen common ancestor genome by operations of speciation, deletion, insertion, duplication, and rearrangement of segments of bases. The problem is examined in the limit as the number of bases in each genome goes to infinity. In this limit, the chromosomes are represented by continuous circles or line segments. For such an infinite-sites model, we present a polynomial-time algorithm to find the most parsimonious evolutionary history of any set of related present-day genomes.

  8. Selection of Mycoplasma hominis PG21 deletion mutants by cultivation in the presence of monoclonal antibody 552

    DEFF Research Database (Denmark)

    Jensen, L T; Ladefoged, S; Birkelund, S

    1995-01-01

    characterized. The mutants showed deletions of a various number of repeats. The deletions were accompanied by a decrease in size of the proteins. With increasing size of deletions, agglutination and growth inhibition by MAb 552 became less pronounced. Spontaneous aggregation of the mutant M. hominis cells...

  9. Construction and characterization of a glycoprotein E deletion mutant of bovine herpesvirus type 1.2 strain isolated in Brazil

    NARCIS (Netherlands)

    Franco, A.C.; Rijsewijk, F.A.M.; Flores, E.F.; Weiblen, R.; Roehe, P.M.

    2002-01-01

    This paper describes the construction and characterization of a Brazilian strain of bovine herpesvirus type 1.2a (BoHV-1.2a) with a deletion of the glycoprotein E (gE) gene. The deletion was introduced by co-transfection of a deletion fragment containing the 5´and 3´gE flanking regions and genomic

  10. A 3-base pair deletion, c.9711_9713del, in DMD results in intellectual disability without muscular dystrophy

    NARCIS (Netherlands)

    Brouwer, A.P.M. de; Nabuurs, S.B.; Verhaart, I.E.; Oudakker, A.R.; Hordijk, R.; Yntema, H.G.; Hordijk-Hos, J.M.; Voesenek, K.E.; Vries, B. de; Essen, T. van; Chen, W.; Hu, H; Chelly, J.; Dunnen, J.T. den; Kalscheuer, V.M.M.; Aartsma-Rus, A.M.; Hamel, B.C.J.; Bokhoven, H. van; Kleefstra, T.

    2014-01-01

    We have identified a deletion of 3 base pairs in the dystrophin gene (DMD), c.9711_9713del, in a family with nonspecific X-linked intellectual disability (ID) by sequencing of the exons of 86 known X-linked ID genes. This in-frame deletion results in the deletion of a single-amino-acid residue,

  11. Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Directory of Open Access Journals (Sweden)

    Ritch Robert

    2004-06-01

    Full Text Available Abstract Background Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. Methods We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. Results Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1 probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. Conclusions Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss.

  12. Novel 31.2 kb α0 Deletion in a Palestinian Family with α-Thalassemia

    DEFF Research Database (Denmark)

    Brieghel, Christian; Birgens, Henrik; Frederiksen, Henrik

    2015-01-01

    A previously unknown α(0) deletion, designated - -(DANE), was found in three generations of a Danish family of Palestinian origin. Six patients were heterozygous and three patients had deletional Hb H (β4) disease with a compound heterozygosity for the common -α(3.7) (rightward) deletion. Multipl...

  13. Correlation between chromosome 9p21 locus deletion and prognosis in clinically localized prostate cancer.

    Science.gov (United States)

    Barros, Érika Aparecida Felix de; Pontes-Junior, José; Reis, Sabrina Thalita; Lima, Amanda Eunice Ramos; Souza, Isida C; Salgueiro, Jose Lucas; Fontes, Douglas; Dellê, Humberto; Coelho, Rafael Ferreira; Viana, Nayara Izabel; Leite, Kátia Ramos Moreira; Nahas, William C; Srougi, Miguel

    2017-05-04

    Some studies have reported that deletions at chromosome arm 9p occur frequently and represent a critical step in carcinogenesis of some neoplasms. Our aim was to evaluate the deletion of locus 9p21 and chromosomes 3, 7 and 17 in localized prostate cancer (PC) and correlate these alterations with prognostic factors and biochemical recurrence after surgery. We retrospectively evaluated surgical specimens from 111 patients with localized PC who underwent radical prostatectomy. Biochemical recurrence was defined as a prostate-specific antigen (PSA) >0.2 ng/mL and the mean postoperative follow-up was 123 months. The deletions were evaluated using fluorescence in situ hybridization with centromeric and locus-specific probes in a tissue microarray containing 2 samples from each patient. We correlated the occurrence of any deletion with pathological stage, Gleason score, ISUP grade group, PSA and biochemical recurrence. We observed a loss of any probe in only 8 patients (7.2%). The most common deletion was the loss of locus 9p21, which occurred in 6.4% of cases. Deletions of chromosomes 3, 7 and 17 were observed in 2.3%, 1.2% and 1.8% patients, respectively. There was no correlation between chromosome loss and Gleason score, ISUP, PSA or stage. Biochemical recurrence occurred in 83% cases involving 9p21 deletions. Loss of 9p21 locus was significantly associated with time to recurrence (p = 0.038). We found low rates of deletion in chromosomes 3, 7 and 17 and 9p21 locus. We observed that 9p21 locus deletion was associated with worse prognosis in localized PC treated by radical prostatectomy.

  14. Thorough analysis of unorthodox ABO deletions called by the 1000 Genomes project.

    Science.gov (United States)

    Möller, M; Hellberg, Å; Olsson, M L

    2018-02-01

    ABO remains the clinically most important blood group system, but despite earlier extensive research, significant findings are still being made. The vast majority of catalogued ABO null alleles are based on the c.261delG polymorphism. Apart from c.802G>A, other mechanisms for O alleles are rare. While analysing the data set from the 1000 Genomes (1000G) project, we encountered two previously uncharacterized deletions, which needed further exploration. The Erythrogene database, complemented with bioinformatics software, was used to analyse ABO in 2504 individuals from 1000G. DNA samples from selected 1000G donors and African blood donors were examined by allele-specific PCR and Sanger sequencing to characterize predicted deletions. A 5821-bp deletion encompassing exons 5-7 was called in twenty 1000G individuals, predominantly Africans. This allele was confirmed and its exact deletion point defined by bioinformatic analyses and in vitro experiments. A PCR assay was developed, and screening of African samples revealed three donors heterozygous for this deletion, which was thereby phenotypically established as an O allele. Analysis of upstream genetic markers indicated an ancestral origin from ABO*O.01.02. We estimate this deletion as the 3rd most common mechanism behind O alleles. A 24-bp deletion was called in nine individuals and showed greater diversity regarding ethnic distribution and allelic background. It could neither be confirmed by in silico nor in vitro experiments. A previously uncharacterized ABO deletion among Africans was comprehensively mapped and a genotyping strategy devised. The false prediction of another deletion emphasizes the need for cautious interpretation of NGS data and calls for strict validation routines. © 2017 International Society of Blood Transfusion.

  15. The frequency of previously undetectable deletions involving 3' Exons of the PMS2 gene.

    Science.gov (United States)

    Vaughn, Cecily P; Baker, Christine L; Samowitz, Wade S; Swensen, Jeffrey J

    2013-01-01

    Lynch syndrome is characterized by mutations in one of four mismatch repair genes, MLH1, MSH2, MSH6, or PMS2. Clinical mutation analysis of these genes includes sequencing of exonic regions and deletion/duplication analysis. However, detection of deletions and duplications in PMS2 has previously been confined to Exons 1-11 due to gene conversion between PMS2 and the pseudogene PMS2CL in the remaining 3' exons (Exons 12-15). We have recently described an MLPA-based method that permits detection of deletions of PMS2 Exons 12-15; however, the frequency of such deletions has not yet been determined. To address this question, we tested for 3' deletions in 58 samples that were reported to be negative for PMS2 mutations using previously available methods. All samples were from individuals whose tumors exhibited loss of PMS2 immunohistochemical staining without concomitant loss of MLH1 immunostaining. We identified seven samples in this cohort with deletions in the 3' region of PMS2, including three previously reported samples with deletions of Exons 13-15 (two samples) and Exons 14-15. Also detected were deletions of Exons 12-15, Exon 13, and Exon 14 (two samples). Breakpoint analysis of the intragenic deletions suggests they occurred through Alu-mediated recombination. Our results indicate that ∼12% of samples suspected of harboring a PMS2 mutation based on immunohistochemical staining, for which mutations have not yet been identified, would benefit from testing using the new methodology. Copyright © 2012 Wiley Periodicals, Inc.

  16. Novel features of 3q29 deletion syndrome: Results from the 3q29 registry

    Science.gov (United States)

    Glassford, Megan R.; Rosenfeld, Jill A.; Freedman, Alexa A.; Zwick, Michael E.

    2016-01-01

    3q29 deletion syndrome is caused by a recurrent, typically de novo heterozygous 1.6 Mb deletion, but because incidence of the deletion is rare (1 in 30,000 births) the phenotype is not well described. To characterize the range of phenotypic manifestations associated with 3q29 deletion syndrome, we have developed an online registry (3q29deletion.org) for ascertainment of study subjects and phenotypic data collection via Internet‐based survey instruments. We report here on data collected during the first 18 months of registry operation, from 44 patients. This is the largest cohort of 3q29 deletion carriers ever assembled and surveyed in a systematic way. Our data reveal that 28% of registry participants report neuropsychiatric phenotypes, including anxiety disorder, panic attacks, depression, bipolar disorder, and schizophrenia. Other novel findings include a high prevalence (64%) of feeding problems in infancy and reduced weight at birth for 3q29 deletion carriers (average reduction 13.9 oz (394 g), adjusted for gestational age and sex, P = 6.5e‐07). We further report on the frequency of heart defects, autism, recurrent ear infections, gastrointestinal phenotypes, and dental phenotypes, among others. We also report on the expected timing of delayed developmental milestones. This is the most comprehensive description of the 3q29 deletion phenotype to date. These results are clinically actionable toward improving patient care for 3q29 deletion carriers, and can guide the expectations of physicians and parents. These data also demonstrate the value of patient‐reported outcomes to reveal the full phenotypic spectrum of rare genomic disorders. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc. PMID:26738761

  17. A persistent mitochondrial deletion reduces fitness and sperm performance in heteroplasmic populations of C. elegans

    Directory of Open Access Journals (Sweden)

    Chin Kara

    2007-03-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA mutations are of increasing interest due to their involvement in aging, disease, fertility, and their role in the evolution of the mitochondrial genome. The presence of reactive oxygen species and the near lack of repair mechanisms cause mtDNA to mutate at a faster rate than nuclear DNA, and mtDNA deletions are not uncommon in the tissues of individuals, although germ-line mtDNA is largely lesion-free. Large-scale deletions in mtDNA may disrupt multiple genes, and curiously, some large-scale deletions persist over many generations in a heteroplasmic state. Here we examine the phenotypic effects of one such deletion, uaDf5, in Caenorhabditis elegans (C. elegans. Our study investigates the phenotypic effects of this 3 kbp deletion. Results The proportion of uaDf5 chromosomes in worms was highly heritable, although uaDf5 content varied from worm to worm and within tissues of individual worms. We also found an impact of the uaDf5 deletion on metabolism. The deletion significantly reduced egg laying rate, defecation rate, and lifespan. Examination of sperm bearing the uaDf5 deletion revealed that sperm crawled more slowly, both in vitro and in vivo. Conclusion Worms harboring uaDf5 are at a selective disadvantage compared to worms with wild-type mtDNA. These effects should lead to the rapid extinction of the deleted chromosome, but it persists indefinitely. We discuss both the implications of this phenomenon and the possible causes of a shortened lifespan for uaDf5 mutant worms.

  18. Genetics Home Reference: 22q11.2 deletion syndrome

    Science.gov (United States)

    ... Acad Child Adolesc Psychiatry. 2006 Sep;45(9):1104-13. Citation on PubMed Yagi H, Furutani Y, ... professional . About Selection Criteria for Links Data Files & API Site Map Subscribe Customer Support USA.gov Copyright ...

  19. Schizophrenia with the 22q11.2 deletion and additional genetic defects: case history.

    Science.gov (United States)

    Toyosima, M; Maekawa, M; Toyota, T; Iwayama, Y; Arai, M; Ichikawa, T; Miyashita, M; Arinami, T; Itokawa, M; Yoshikawa, T

    2011-09-01

    The 22q11.2 deletion is the most prominent known genetic risk factor for schizophrenia, but its penetrance is at most approximately 50% suggesting that additional risk factors are required for disease progression. We examined a woman with schizophrenia with this deletion for such risk factors. She had high plasma pentosidine levels ('carbonyl stress') and a frameshift mutation in the responsible gene, GLO1. She also had a constant exotropia, so we examined the PHOX2B gene associated with both schizophrenia and strabismus, and detected a 5-alanine deletion. We propose that the combination of these genetic defects may have exceeded the threshold for the manifestation of schizophrenia.

  20. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    Science.gov (United States)

    Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A

    1996-11-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  1. Do mtDNA Deletions Play a Role in the Development of Nasal Polyposis?

    Directory of Open Access Journals (Sweden)

    Arzu Tatar

    2014-04-01

    Full Text Available Objective:Nasal polyposis (NP is an inflammatory disease of the nasal mucosa and paranasal sinuses. Mitochondria are the cellular organelles which produce cellular energy by Oxidative Phosphorylation (OXPHOS, and they have own inheritance material, mtDNA. mtDNA is affected by reactive oxygen samples (ROS which are produced by both OXPHOS and the inflammatory process. The aim of this study was to investigate the 4977 bp and 7400 bp deletions of mtDNA in nasal polyposis tissue, and to indicate the possible association of mtDNA deletions with NP. Methods:Thirty-three patients, aged 15 to 65 years, with nasal polyposis were selected to be assessed for mitochondrial DNA deletions. The patients with possible mtDNA mutations due to mitochondrial disease, being treated with radiotherapy, of advanced age, with a familiar history, aspirin hypersensitivity, or a history of asthma, were excluded. Polyp excision surgery was applied to the treatment of the NP, and after histopathological diagnosis 1x1 cm of polyp tissue samples were used to isolate mtDNA. The 4977 bp and 7400 bp deletion regions, and two control regions of mtDNA were assessed by using four pairs of primers. DNA extractions from the NP tissues and peripheral blood samples of the patients were made, and then Polymerase Chain Reactions (PCR were made. PCR products were separated in 2% agarose gel.Results:No patient had either the 4977 bp deletion or the 7400 bp deletion in their NP tissue, and neither were these deletions evident in their peripheral blood. Two control sequences, one of them from a non-deleted region, and the other from a possible deletion region, were detected in the NP tissues and peripheral blood of all the patients.Conclusions:We had anticipated that some mtDNA deletion might have occurred in NP tissue due to the increased ROS levels caused by chronic inflammation, but we did not detect any deletion. Probably, the duration of inflammation in NP is insufficient to form mt

  2. ErasuCrypto: A Light-weight Secure Data Deletion Scheme for Solid State Drives

    Directory of Open Access Journals (Sweden)

    Liu Chen

    2017-01-01

    Full Text Available Securely deleting invalid data from secondary storage is critical to protect users’ data privacy against unauthorized accesses. However, secure deletion is very costly for solid state drives (SSDs, which unlike hard disks do not support in-place update. When applied to SSDs, both erasure-based and cryptography-based secure deletion methods inevitably incur large amount of valid data migrations and/or block erasures, which not only introduce extra latency and energy consumption, but also harm SSD lifetime.

  3. Occurrence of two different intragenic deletions in two male relatives affected with Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mostacciuolo, M.L.; Miorin, M.; Vitiello, L.; Rampazzo, A.; Fanin, M.; Angelini, C.; Danieli, G.A. [Univ. of Padua (Italy)

    1994-03-01

    The occurrence of 2 different intragenic deletions (exons 10-44 and exon 45, respectively) is reported in 2 male relatives affected with Duchenne muscular dystrophy, both showing the same haplotype for DNA markers not included in the deleted segment. The 2 different deletions seem to have occurred independently in the same X chromosome. This finding, together with other reports, suggests possibly an increased predisposition to mutations within the DMD locus in some families. Therefore, when dealing with prenatal diagnosis, the investigation on fetal DNA cannot be restricted only to the region in which a mutation was previously identified in the family. 14 refs., 1 fig.

  4. CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles.

    Science.gov (United States)

    Lemos, Brenda R; Kaplan, Adam C; Bae, Ji Eun; Ferrazzoli, Alexander E; Kuo, James; Anand, Ranjith P; Waterman, David P; Haber, James E

    2018-02-27

    Harnessing CRISPR-Cas9 technology provides an unprecedented ability to modify genomic loci via DNA double-strand break (DSB) induction and repair. We analyzed nonhomologous end-joining (NHEJ) repair induced by Cas9 in budding yeast and found that the orientation of binding of Cas9 and its guide RNA (gRNA) profoundly influences the pattern of insertion/deletions (indels) at the site of cleavage. A common indel created by Cas9 is a 1-bp (+1) insertion that appears to result from Cas9 creating a 1-nt 5' overhang that is filled in by a DNA polymerase and ligated. The origin of +1 insertions was investigated by using two gRNAs with PAM sequences located on opposite DNA strands but designed to cleave the same sequence. These templated +1 insertions are dependent on the X-family DNA polymerase, Pol4. Deleting Pol4 also eliminated +2 and +3 insertions, which are biased toward homonucleotide insertions. Using inverted PAM sequences, we also found significant differences in overall NHEJ efficiency and repair profiles, suggesting that the binding of the Cas9:gRNA complex influences subsequent NHEJ processing. As with events induced by the site-specific HO endonuclease, CRISPR-Cas9-mediated NHEJ repair depends on the Ku heterodimer and DNA ligase 4. Cas9 events are highly dependent on the Mre11-Rad50-Xrs2 complex, independent of Mre11's nuclease activity. Inspection of the outcomes of a large number of Cas9 cleavage events in mammalian cells reveals a similar templated origin of +1 insertions in human cells, but also a significant frequency of similarly templated +2 insertions.

  5. Mapping the end points of large deletions affecting the hprt locus in human peripheral blood cells and cell lines

    International Nuclear Information System (INIS)

    Nelson, S.L.; Grosovsky, A.J.; Jones, I.M.; Burkhart-Schultz, K.; Fuscoe, J.C.

    1995-01-01

    We have examined the extent of of HPRT - total gene deletions in three mutant collections: spontaneous and X-ray-induced deletions in TK6 human B lymphoblasts, and HPRT - deletions arising in vivo in T cells. A set of 13 Xq26 STS markers surrounding hprt and spanning approximately 3.3 Mb was used. Each marker used was observed to be missing in at least one of the hprt deletion mutants analyzed. The largest deletion observed encompassed at least 3 Mb. Nine deletions extended outside of the mapped region in the centromeric direction (>1.7 Mb). In contrast, only two telomeric deletions extended to marker 342R (1.26 Mb), and both exhibited slowed or limited cell growth. These data suggest the existence of a gene, within the vicinity of 342R, which establishes the telomeric limit of recoverable deletions. Most (25/41) X-ray-induced total gene deletion mutants exhibited marker loss, but only 1/8 of the spontaneous deletions encompassed any Xq26 markers (P = 0.0187). Furthermore, nearly half (3/8) of the spontaneous 3' total deletion breakpoints were within 14 kb of the hprt coding sequence. In contrast, 40/41 X-ray-induced HPRT - total deletions extended beyond this point (P = 0.011). Although the overall representation of total gene deletions in the in vivo spectrum is low, 4/5 encompass Xq26 markers flanking hprt. This pattern differs significantly from spontaneous HPRT - large deletions occurring in vitro (P = 0.032) but resembles the spectrum of X-ray-induced deletions. 24 refs., 6 figs., 1 tab

  6. Discrimination of Deletion and Duplication Subtypes of the Deleted in Azoospermia Gene Family in the Context of Frequent Interloci Gene Conversion

    Science.gov (United States)

    Vaszkó, Tibor; Papp, János; Krausz, Csilla; Casamonti, Elena; Géczi, Lajos; Olah, Edith

    2016-01-01

    Due to its palindromic setup, AZFc (Azoospermia Factor c) region of chromosome Y is one of the most unstable regions of the human genome. It contains eight gene families expressed mainly in the testes. Several types of rearrangement resulting in changes in the cumulative copy number of the gene families were reported to be associated with diseases such as male infertility and testicular germ cell tumors. The best studied AZFc rearrangement is gr/gr deletion. Its carriers show widespread phenotypic variation from azoospermia to normospermia. This phenomenon was initially attributed to different gr/gr subtypes that would eliminate distinct members of the affected gene families. However, studies conducted to confirm this hypothesis have brought controversial results, perhaps, in part, due to the shortcomings of the utilized subtyping methodology. This proof-of-concept paper is meant to introduce here a novel method aimed at subtyping AZFc rearrangements. It is able to differentiate the partial deletion and partial duplication subtypes of the Deleted in Azoospermia (DAZ) gene family. The keystone of the method is the determination of the copy number of the gene family member-specific variant(s) in a series of sequence family variant (SFV) positions. Most importantly, we present a novel approach for the correct interpretation of the variant copy number data to determine the copy number of the individual DAZ family members in the context of frequent interloci gene conversion.Besides DAZ1/DAZ2 and DAZ3/DAZ4 deletions, not yet described rearrangements such as DAZ2/DAZ4 deletion and three duplication subtypes were also found by the utilization of the novel approach. A striking feature is the extremely high concordance among the individual data pointing to a certain type of rearrangement. In addition to being able to identify DAZ deletion subtypes more reliably than the methods used previously, this approach is the first that can discriminate DAZ duplication subtypes as well

  7. Identification of a new DPY19L2 mutation and a better definition of DPY19L2 deletion breakpoints leading to globozoospermia.

    Science.gov (United States)

    Ghédir, Houda; Ibala-Romdhane, Samira; Okutman, Ozlem; Viot, Géraldine; Saad, Ali; Viville, Stéphane

    2016-01-01

    The purpose of this study was to analyze DPY19L2 sequence variants to investigate the mechanism leading to the entire DPY19L2 deletion in a large cohort of infertile globozoospermic patients. An improved analysis of the DPY19L2 deletion breakpoints (BPs) allowed us to identify two BPs located in a small 1 kb region and to more precisely localize the BPs reported previously. Three genes [spermatogenesis associated 16 (SPATA16), protein interacting with PRKCA (PICK1) and DPY19L2] were previously correlated with globozoospermia, but a homozygous deletion of the entire DPY19L2 was identified as the most frequent alteration causing this phenotype. In addition, several point mutations in this gene were reported. In previous work, we have identified nine BPs for the DPY19L2 deletion clustered in two hotspot regions, while others reported a total of five BPs. We screened for the DPY19L2 deletion and for mutations in the DPY19L2, SPATA16 and PICK1 genes in a cohort of 21 Tunisian globozoospermic patients. In order to characterize the DPY19L2 deletion BPs, we sequenced a 2 kb fragment on low copy repeat (LCR) 1 and LCR2 in Tunisian fertile controls to distinguish between single-nucleotide polymorphisms (SNPs) and LCR-specific markers. Molecular analyses performed on 18 genetically independent individuals showed that 11 (61.1%) were homozygous for the DPY19L2 deletion, 2 (11.1%) were homozygous for the non-synonymous mutation (p.R298C) in exon 8, 1 patient (5.6%) was homozygous for a new splice-site mutation at the junction exon-intron 16 [c.1579_1580+4delAGGTAAinsTCAT] and no DPY19L2, SPATA16 or PICK1 mutations were identified for 4 patients (22.2%). By defining 15 specific LCR markers, we characterized 2 BPs for the DPY19L2 deletion in 11 patients showing the homozygous deletion. Using 20 non-LCR-specific SNPs, we identified 8 distinct haplotypes. A limitation of this study is the small number of patients owing to the rarity of this form of male infertility. Our data showed

  8. Protein kinase Cα deletion causes hypotension and decreased vascular contractility.

    Science.gov (United States)

    Wynne, Brandi M; McCarthy, Cameron G; Szasz, Theodora; Molina, Patrick A; Chapman, Arlene B; Webb, R Clinton; Klein, Janet D; Hoover, Robert S

    2018-03-01

    Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.

  9. Quantification of the mitochondrial DNA common deletion in presbycusis.

    Science.gov (United States)

    Markaryan, Adam; Nelson, Erik G; Hinojosa, Raul

    2009-06-01

    This study was conducted to evaluate the association between the mitochondrial DNA (mtDNA) common deletion (CD) level in cochlear tissue and the severity of hearing loss in individuals with presbycusis. Nineteen individuals with presbycusis, ranging from 60 to 87 years of age, who met strict audiometric criteria were compared with four age frequency-matched normal hearing controls ranging from 51 to 76 years of age. Five additional normal hearing individuals, ranging from 9 to 50 years of age, were also studied. A duplex real time polymerase chain reaction assay was used to quantify the mtDNA in archival cochlear tissue samples. Linear regression models were used for comparison of the CD level between groups. The presbycusis group had a mean CD level of 32% with a standard deviation of 14%, and the normal hearing age matched control group had a mean CD level of 12% with a standard deviation of 2%. This difference in CD levels reached statistical significance (P = .011) and remained significant after adjusting for any differences in age between the two groups (age-adjusted P = .007). Furthermore, there was evidence for a significant association between the CD level and the severity of hearing loss based on audiometric thresholds at 8 kHz (r = 0.44, P = .034; age-adjusted partial correlation = 0.55, P = .007). For the first time, to our knowledge, these results demonstrate a relationship between quantitatively measured levels of the CD in human cochlear tissue and the severity of hearing loss in individuals with presbycusis. Laryngoscope, 2009.

  10. Association between the CCR5 32-bp deletion allele and late onset of schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, H.B.; Timm, S.; Wang, A.G.

    2006-01-01

    OBJECTIVE: The 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well. METHOD: The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission...... to a psychiatric hospital department served as a measure of disease onset. RESULTS: Patients and comparison subjects differed marginally in their genotype distribution, with a slightly higher frequency of the deletion allele seen in the patients. The authors found the deletion allele to be associated with higher......-onset schizophrenia) and healthy subjects differed significantly. This was reflected in an increased frequency of the deletion allele in the patient subgroup. Patients with ages at first admission below and above 40 years significantly differed in distribution of genotypes and alleles, with an overrepresentation...

  11. DELETION AND 5'CPG ISLAND METHYLATION OF p15 GENE IN BRAIN GLIOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the abnormality of p15 gene in brain glioma and the correlation of it with occurrence or malignant progression of brain glioma. Methods: Deletion and 5'CPG island methylation of p15 gene were detected by the methods of PCR and PCR-based methylation in 56 cases of brain glioma. Results: Out of 43 cases of high grade glioma, 14 cases were found to have homozygous deletion of p15E1, while none of the 13 cases of low grade glioma was found to have deletion of p15E1 (P<0.05). Methylation of 5'CPG Island of p15 gene was found only in four cases of glioma. Conclusion: Abnormality of p15 gene may involved in the occurrence and malignant progression of brain glioma. Homozygous deletion of gene is the major mechanism of inactivation for p15 gene in brain glioma.

  12. Acquired retinal pigmentary degeneration in a child with 13q deletion syndrome.

    Science.gov (United States)

    Aguilera, Zenia P; Belin, Peter J; Cavuoto, Kara M; Jayakar, Parul; McKeown, Craig A

    2015-10-01

    Orbeli syndrome, or 13q deletion syndrome, is a rare condition caused by a distal deletion in the long arm of chromosome 13. The syndrome is characterized by severe physical malformations and developmental delays and has been associated with numerous ocular manifestations. We report the case of a 10-year-old boy with 13q deletion syndrome, who was evaluated for impaired vision and found to have bilateral retinal pigmentary changes resembling those seen in retinitis pigmentosa. There has only been one other case of retinal pigment variation in association with 13q deletion syndrome; however, this represents the first case of bilateral symmetric retinal pigmentary changes with corresponding rod and cone dysfunction on electroretinography. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  13. Retention or deletion of personality disorder diagnoses for DSM-5: an expert consensus approach.

    Science.gov (United States)

    Mullins-Sweatt, Stephanie N; Bernstein, David P; Widiger, Thomas A

    2012-10-01

    One of the official proposals for the fifth edition of the American Psychiatric Association's (APA) diagnostic manual (DSM-5) is to delete half of the existing personality disorders (i.e., dependent, histrionic, narcissistic, paranoid, and schizoid). Within the APA guidelines for DSM-5 decisions, it is stated that there should be expert consensus agreement for the deletion of a diagnostic category. Additionally, categories to be deleted should have low clinical utility and/or minimal evidence for validity. The current study surveyed members of two personality disorder associations (n = 146) with respect to the utility, validity, and status of each DSM-IV-TR personality disorder diagnosis. Findings indicated that the proposal to delete five of the personality disorders lacks consensus support within the personality disorder community.

  14. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  15. Recurrent deletion of ZNF630 at Xp11.23 is not associated with mental retardation

    DEFF Research Database (Denmark)

    Lugtenberg, Dorien; Zangrande-Vieira, Luiz; Kirchhoff, Maria

    2010-01-01

    that the deletions resulted from non-allelic homologous recombination. In 2,121 healthy male controls, 10 ZNF630 deletions were identified. In total, there was a 1.6-fold higher frequency of this deletion in males with mental retardation as compared to controls, but this increase was not statistically significant (P......ZNF630 is a member of the primate-specific Xp11 zinc finger gene cluster that consists of six closely related genes, of which ZNF41, ZNF81, and ZNF674 have been shown to be involved in mental retardation. This suggests that mutations of ZNF630 might influence cognitive function. Here, we detected...... 12 ZNF630 deletions in a total of 1,562 male patients with mental retardation from Brazil, USA, Australia, and Europe. The breakpoints were analyzed in 10 families, and in all cases they were located within two segmental duplications that share more than 99% sequence identity, indicating...

  16. A novel 5-bp deletion in Clarin 1 in a family with Usher syndrome.

    Science.gov (United States)

    Akoury, Elie; El Zir, Elie; Mansour, Ahmad; Mégarbané, André; Majewski, Jacek; Slim, Rima

    2011-11-01

    To identify the genetic defect in a Lebanese family with two sibs diagnosed with Usher Syndrome. Exome capture and sequencing were performed on DNA from one affected member using Agilent in solution bead capture, followed by Illumina sequencing. This analysis revealed the presence of a novel homozygous 5-bp deletion, in Clarin 1 (CLRN1), a known gene responsible for Usher syndrome type III. The deletion is inherited from both parents and segregates with the disease phenotype in the family. The 5-bp deletion, c.301_305delGTCAT, p.Val101SerfsX27, is predicted to result in a frameshift and protein truncation after 27 amino acids. Sequencing all the coding regions of the CLRN1 gene in the proband did not reveal any other mutation or variant. Here we describe a novel deletion in CLRN1. Our data support previously reported intra familial variability in the clinical features of Usher syndrome type I and III.

  17. Influence of deleting some of the inputs and outputs on efficiency status of units in DEA

    Directory of Open Access Journals (Sweden)

    Abbas ali Noora

    2013-06-01

    Full Text Available One of the important issues in data envelopment analysis (DEA is sensitivity analysis. This study discusses about deleting some of the inputs and outputs and investigates the influence of it on efficiency status of Decision Making Units (DMUs. To this end some models are presented for recognizing this influence on efficient DMUs. Model 2 (Model 3 in section 3 investigates the influence of deleting i(th input (r(th output on an efficient DMU. Thereafter these models are improved for deleting multiple inputs and outputs. Furthermore, a model is presented for recognizing the maximum number of inputs and (or outputs from among specified inputs and outputs which can be deleted, whereas an efficient DMU preserves its efficiency. Finally, the presented models are utilized for a set of DMUs and the results are reported.

  18. Deletion analysis of susy-sl promoter for the identification of optimal promoter sequence

    International Nuclear Information System (INIS)

    Bacha, S.; Khatoon, A.; Asif, M.; Bshir, A.

    2015-01-01

    The promoter region of sucrose synthase (susy-Sl) was identified and isolated from tomato. The 5? deletion analysis was carried out for the identification of minimum optimal promoter. Transgenic lines of Arabidopsis thaliana were developed by floral dip method incorporating various promoter deletion cassettes controlling GUS reporter gene. GUS assay of transgenic tissues indicated that full length susy-Sl promoter and its deletion mutants were constitutively expressed in vegetative and floral tissues of A. thaliana. The expression was observed in roots, shoots and flowers of A. thaliana. Analysis of 5? deletion series of susy-Sl promoter showed that a minimum of 679 bp fragment of the promoter was sufficient to drive expression of GUS reporter gene in the major tissues of transgenic A. thaliana. (author)

  19. A novel nine base deletion mutation in NADH-cytochrome b5 reductase gene in an Indian family with recessive congenital methemoglobinemia-type-II

    Directory of Open Access Journals (Sweden)

    Prashant Warang

    2015-12-01

    Full Text Available Recessive hereditary methemoglobinemia (RCM associated with severe neurological abnormalities is a very rare disorder caused by NADH- cytochrome b5 reductase (cb5r deficiency (Type II. We report a case of 11 month old male child who had severe mental retardation, microcephaly and gross global developmental delay with methemoglobin level of 61.1%. The diagnosis of NADH-CYB5R3 deficiency was made by the demonstration of significantly reduced NADH-CYB5R3 activity in the patient and intermediate enzyme activity in both the parents. Mutation analysis of the CYB5R gene revealed a novel nine nucleotide deletion in exon 6 leading to the elimination of 3 amino acid residues (Lys173, Ser174 and Val 175. To confirm that this mutation was not an artifact, we performed PCR-RFLP analysis using the restriction enzyme Drd I. As the normal sequence has a restriction recognition site for Drd I which was eliminated by the deletion, a single band of 603-bp was seen in the presence of the homozygous mutation. Molecular modeling analysis showed a significant effect of these 3 amino acids deletion on the protein structure and stability leading to a severe clinical presentation. A novel homozygous 9 nucleotide deletion (p.K173–p.V175del3 is shown to be segregated with the disease in this family. Knowing the profile of mutations would allow us to offer prenatal diagnosis in families with severe neurological disorders associated with RCM — Type II.

  20. A Naturally Occurring Deletion in FliE from Salmonella enterica Serovar Dublin Results in an Aflagellate Phenotype and Defective Proinflammatory Properties.

    Science.gov (United States)

    Sasías, Sebastián; Martínez-Sanguiné, Adriana; Betancor, Laura; Martínez, Arací; D'Alessandro, Bruno; Iriarte, Andrés; Chabalgoity, José A; Yim, Lucía

    2018-01-01

    Salmonella enterica serovar Dublin is adapted to cattle but is able to infect humans with high invasiveness. An acute inflammatory response at the intestine helps to prevent Salmonella dissemination to systemic sites. Flagella contribute to this response by providing motility and FliC-mediated signaling through pattern recognition receptors. In a previous work, we reported a high frequency (11 out of 25) of S Dublin isolates lacking flagella in a collection obtained from humans and cattle. The aflagellate strains were impaired in their proinflammatory properties in vitro and in vivo The aim of this work was to elucidate the underlying cause of the absence of flagella in S Dublin isolates. We report here that class 3 flagellar genes are repressed in the human aflagellate isolates, due to impaired secretion of FliA anti-sigma factor FlgM. This phenotype is due to an in-frame 42-nucleotide deletion in the fliE gene, which codes for a protein located in the flagellar basal body. The deletion is predicted to produce a protein lacking amino acids 18 to 31. The aflagellate phenotype was highly stable; revertants were obtained only when fliA was artificially overexpressed combined with several successive passages in motility agar. DNA sequence analysis revealed that motile revertants resulted from duplications of DNA sequences in fliE adjacent to the deleted region. These duplications produced a FliE protein of similar length to the wild type and demonstrate that amino acids 18 to 31 of FliE are not essential. The same deletion was detected in S Dublin isolates obtained from cattle, indicating that this mutation circulates in nature. Copyright © 2017 American Society for Microbiology.

  1. Malan syndrome: Sotos-like overgrowth with de novo NFIX sequence variants and deletions in six new patients and a review of the literature.

    Science.gov (United States)

    Klaassens, Merel; Morrogh, Deborah; Rosser, Elisabeth M; Jaffer, Fatima; Vreeburg, Maaike; Bok, Levinus A; Segboer, Tim; van Belzen, Martine; Quinlivan, Ros M; Kumar, Ajith; Hurst, Jane A; Scott, Richard H

    2015-05-01

    De novo monoallelic variants in NFIX cause two distinct syndromes. Whole gene deletions, nonsense variants and missense variants affecting the DNA-binding domain have been seen in association with a Sotos-like phenotype that we propose is referred to as Malan syndrome. Frameshift and splice-site variants thought to avoid nonsense-mediated RNA decay have been seen in Marshall-Smith syndrome. We report six additional patients with Malan syndrome and de novo NFIX deletions or sequence variants and review the 20 patients now reported. The phenotype is characterised by moderate postnatal overgrowth and macrocephaly. Median height and head circumference in childhood are 2.0 and 2.3 standard deviations (SD) above the mean, respectively. There is overlap of the facial phenotype with NSD1-positive Sotos syndrome in some cases including a prominent forehead, high anterior hairline, downslanting palpebral fissures and prominent chin. Neonatal feeding difficulties and/or hypotonia have been reported in 30% of patients. Developmental delay/learning disability have been reported in all cases and are typically moderate. Ocular phenotypes are common, including strabismus (65%), nystagmus (25% ) and optic disc pallor/hypoplasia (25%). Other recurrent features include pectus excavatum (40%) and scoliosis (25%). Eight reported patients have a deletion also encompassing CACNA1A, haploinsufficiency of which causes episodic ataxia type 2 or familial hemiplegic migraine. One previous case had episodic ataxia and one case we report has had cyclical vomiting responsive to pizotifen. In individuals with this contiguous gene deletion syndrome, awareness of possible later neurological manifestations is important, although their penetrance is not yet clear.

  2. Familial isolated primary hyperparathyroidism/hyperparathyroidism-jaw tumour syndrome caused by germline gross deletion or point mutations of CDC73 gene in Chinese.

    Science.gov (United States)

    Kong, Jing; Wang, Ou; Nie, Min; Shi, Jie; Hu, Yingying; Jiang, Yan; Li, Mei; Xia, Weibo; Meng, Xunwu; Xing, Xiaoping

    2014-08-01

    Hyperparathyroidism-jaw tumour syndrome (HPT-JT) and familial isolated primary hyperparathyroidism (FIHP) are two subtypes of familial primary hyperparathyroidism, which are rarely reported in Chinese population. Here, we reported three FIHP families and one HPT-JT family with long-term follow-up and genetic analysis. A total of 22 patients, from four FIHP/HPT-JT families of Chinese descent, were recruited and genomic DNA was extracted from their peripheral blood lymphocytes. Direct sequencing for MEN1, CDC73, CASR gene was conducted. Reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR) were used to study the effect of splice site mutations and gross deletion mutations. Immunohistochemistry was performed to analyse parafibromin expression in parathyroid tumours. Genotype-phenotype correlations were assessed through clinical characteristics and long-term follow-up data. Genetic analysis revealed four CDC73 germline mutations that were responsible for the four kindreds, including two novel point mutation (c.157 G>T and IVS3+1 G>A), one recurrent point mutation (c.664 C>T) and one deletion mutation (c.307+?_513-?del exons 4, 5, 6). RT-PCR confirmed that IVS3+1 G>A generated an aberrant transcript with exon3 deletion. Immunohistochemical analysis demonstrated reduced nuclear parafibromin expression in tumours supporting the pathogenic effects of these mutations. This study supplies information on mutations and phenotypes of HPT-JT/FIHP syndrome in Chinese. Screening for gross deletion and point mutations of the CDC73 gene is necessary in susceptible subjects. © 2014 John Wiley & Sons Ltd.

  3. Prevalence and Nature of Hearing Loss in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Van Eynde, Charlotte; Swillen, Ann; Lambeens, Elien; Verhaert, Nicolas; Desloovere, Christian; Luts, Heleen; Vander Poorten, Vincent; Devriendt, Koenraad; Hens, Greet

    2016-01-01

    Purpose: The purpose of this study was to clarify the prevalence, type, severity, and age-dependency of hearing loss in 22q11.2 deletion syndrome. Method: Extensive audiological measurements were conducted in 40 persons with proven 22q11.2 deletion (aged 6-36 years). Besides air and bone conduction thresholds in the frequency range between 0.125…

  4. DNA amplification of a further exon of Duchenne muscular dystrophy locus increase possibilities for deletion screening

    Energy Technology Data Exchange (ETDEWEB)

    Speer, A.; Rosenthal, A.; Billwitz, H.; Hanke, R.; Forrest, S.M; Love, D.; Davies, K.E.; Coutelle, C. (John Radcliffe Hospital, Oxford (England))

    1989-06-26

    The data of Chamberlain et al allow the detection of 76% of deletions in the region Cf56A/Cf23a identified by hybridization in their patients. The authors have generated two oligonucleotides allowing the amplification of a further exon which is included in the 3.4 kb hybridization of fragment of Cf56a. This exon is deleted in about 10% of their patients.

  5. An Fgf8 Mouse Mutant Phenocopies Human 22q11 Deletion Syndrome

    OpenAIRE

    Frank, Deborah U.; Fotheringham, Lori K.; Brewer, Judson A.; Muglia, Louis J.; Tristani-Firouzi, Martin; Capecchi, Mario R.; Moon, Anne M.

    2002-01-01

    Deletion of chromosome 22q11, the most common microdeletion detected in humans, is associated with a life-threatening array of birth defects. Although 90% of affected individuals share the same three megabase deletion, their phenotype is highly variable and includes craniofacial and cardiovascular anomalies, hypoplasia or aplasia of the thymus with associated deficiency of T cells, hypocalcemia with hypoplasia or aplasia of the parathyroids, and a variety of central nervous system abnormaliti...

  6. ABCA7 frameshift deletion associated with Alzheimer disease in African Americans

    Science.gov (United States)

    Cukier, Holly N.; Kunkle, Brian W.; Vardarajan, Badri N.; Rolati, Sophie; Hamilton-Nelson, Kara L.; Kohli, Martin A.; Whitehead, Patrice L.; Dombroski, Beth A.; Van Booven, Derek; Lang, Rosalyn; Dykxhoorn, Derek M.; Farrer, Lindsay A.; Cuccaro, Michael L.; Vance, Jeffery M.; Gilbert, John R.; Beecham, Gary W.; Martin, Eden R.; Carney, Regina M.; Mayeux, Richard; Schellenberg, Gerard D.; Byrd, Goldie S.; Haines, Jonathan L.

    2016-01-01

    Objective: To identify a causative variant(s) that may contribute to Alzheimer disease (AD) in African Americans (AA) in the ATP-binding cassette, subfamily A (ABC1), member 7 (ABCA7) gene, a known risk factor for late-onset AD. Methods: Custom capture sequencing was performed on ∼150 kb encompassing ABCA7 in 40 AA cases and 37 AA controls carrying the AA risk allele (rs115550680). Association testing was performed for an ABCA7 deletion identified in large AA data sets (discovery n = 1,068; replication n = 1,749) and whole exome sequencing of Caribbean Hispanic (CH) AD families. Results: A 44-base pair deletion (rs142076058) was identified in all 77 risk genotype carriers, which shows that the deletion is in high linkage disequilibrium with the risk allele. The deletion was assessed in a large data set (531 cases and 527 controls) and, after adjustments for age, sex, and APOE status, was significantly associated with disease (p = 0.0002, odds ratio [OR] = 2.13 [95% confidence interval (CI): 1.42–3.20]). An independent data set replicated the association (447 cases and 880 controls, p = 0.0117, OR = 1.65 [95% CI: 1.12–2.44]), and joint analysis increased the significance (p = 1.414 × 10−5, OR = 1.81 [95% CI: 1.38–2.37]). The deletion is common in AA cases (15.2%) and AA controls (9.74%), but in only 0.12% of our non-Hispanic white cohort. Whole exome sequencing of multiplex, CH families identified the deletion cosegregating with disease in a large sibship. The deleted allele produces a stable, detectable RNA strand and is predicted to result in a frameshift mutation (p.Arg578Alafs) that could interfere with protein function. Conclusions: This common ABCA7 deletion could represent an ethnic-specific pathogenic alteration in AD. PMID:27231719

  7. Norrie disease resulting from a gene deletion: clinical features and DNA studies.

    OpenAIRE

    Donnai, D; Mountford, R C; Read, A P

    1988-01-01

    We describe a family in which two boys with Norrie disease have a deletion of the DXS7 locus. The deletion does not extend as far distally as the OTC or DXS84 loci. A full clinical description of the patients is given to help establish the range of manifestations of Norrie disease. There is no evidence of any other X linked disease in our patients.

  8. Norrie disease resulting from a gene deletion: clinical features and DNA studies.

    Science.gov (United States)

    Donnai, D; Mountford, R C; Read, A P

    1988-02-01

    We describe a family in which two boys with Norrie disease have a deletion of the DXS7 locus. The deletion does not extend as far distally as the OTC or DXS84 loci. A full clinical description of the patients is given to help establish the range of manifestations of Norrie disease. There is no evidence of any other X linked disease in our patients.

  9. Deletion analysis of SMN1 and NAIP genes in southern Chinese children with spinal muscular atrophy

    Institute of Scientific and Technical Information of China (English)

    Yu-hua LIANG; Xiao-ling CHEN; Zhong-sheng YU; Chun-yue CHEN; Sheng BI; Lian-gen MAO; Bo-lin ZHOU; Xian-ning ZHANG

    2009-01-01

    Spinal muscular atrophy (SMA) is a disorder characterized by degeneration of lower motor neurons and occasionally bulbar motor neurons leading to progressive limb and trunk paralysis as well as muscular atrophy. Three types of SMA are rec-ognized depending on the age of onset, the maximum muscular activity achieved, and survivorship: SMA1, SMA2, and SMA3. The survival of motor neuron (SMN) gene has been identified as an SMA determining gene, whereas the neuronal apoptosis inhibitory protein (NAIP) gene is considered to be a modifying factor of the severity of SMA. The main objective of this study was to analyze the deletion of SMN1 and NAIP genes in southern Chinese children with SMA. Here, polymerase chain reaction (PCR) combined with restriction fragment length polymorphism (RFLP) was performed to detect the deletion of both exon 7 and exon 8 of SMNI and exon 5 of NAIP in 62 southern Chinese children with strongly suspected clinical symptoms of SMA. All the 32 SMAI patients and 76% (13/17) of SMA2 patients showed homozygous deletions for exon 7 and exon 8, and all the 13 SMA3 patients showed single deletion of SMN1 exon 7 along with 24% (4/17) of SMA2 patients. Eleven out of 32 (34%) SMA1 patients showed NAIP deletion, and none of SMA2 and SMA3 patients was found to have NAIP deletion. The findings of homozygous deletions of exon 7 and/or exon 8 of SMN1 gene confirmed the diagnosis of SMA, and suggested that the deletion of SMN1 exon 7 is a major cause of SMA in southern Chinese children, and that the NA1P gene may be a modifying factor for disease severity of SMA 1. The molecular diagnosis system based on PCR-RFLP analysis can conveniently be applied in the clinical testing, genetic counseling, prenatal diagnosis and preimplantation genetic diagnosis of SMA.

  10. Detection of 1p36 deletion by clinical exome-first diagnostic approach.

    Science.gov (United States)

    Watanabe, Miki; Hayabuchi, Yasunobu; Ono, Akemi; Naruto, Takuya; Horikawa, Hideaki; Kohmoto, Tomohiro; Masuda, Kiyoshi; Nakagawa, Ryuji; Ito, Hiromichi; Kagami, Shoji; Imoto, Issei

    2016-01-01

    Although chromosome 1p36 deletion syndrome is considered clinically recognizable based on characteristic features, the clinical manifestations of patients during infancy are often not consistent with those observed later in life. We report a 4-month-old girl who showed multiple congenital anomalies and developmental delay, but no clinical signs of syndromic disease caused by a terminal deletion in 1p36.32-p36.33 that was first identified by targeted-exome sequencing for molecular diagnosis.

  11. The E7-associated cell-surface antigen: a marker for the 11p13 chromosomal deletion associated with aniridia-Wilms tumor.

    OpenAIRE

    Scoggin, C H; Fisher, J H; Shoemaker, S A; Morse, H; Leigh, T; Riccardi, V M

    1985-01-01

    Unbalanced interstitial deletions of the p13 region of human chromosome 11 have been associated with congenital hypoplasia or aplasia of the iris, mental retardation, ambiguous genitalia, and predisposition to Wilms tumor of the kidney. Utilizing somatic cell hybrids containing either the normal or abnormal chromosome 11 from a child with Wilms tumor and aniridia, we previously mapped the E7 cell-surface antigen to the 11p1300-to-11p15.1 region. To localize even further the site of this antig...

  12. Site Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Noynaert, L.; Bruggeman, A.; Cornelissen, R.; Massaut, V.; Rahier, A

    2002-04-01

    The objectives, the programme, and the achievements of SCK-CEN's Site Restoration Department for 2001 are described. Main activities include the decommissioning of the BR3 PWR-reactor as well as other clean-up activities, projects on waste minimisation and the management of spent fuel and the flow of dismantled materials and the recycling of materials from decommissioning activities based on the smelting of metallic materials in specialised foundries. The department provides consultancy and services to external organisations and performs R and D on new techniques including processes for the treatment of various waste components including the reprocessing of spent fuel, the treatment of tritium, the treatment of liquid alkali metals into cabonates through oxidation, the treatment of radioactive organic waste and the reconditioning of bituminised waste products.

  13. Mitochondrial common deletion is elevated in blood of breast cancer patients mediated by oxidative stress.

    Science.gov (United States)

    Nie, Hezhongrong; Chen, Guorong; He, Jing; Zhang, Fengjiao; Li, Ming; Wang, Qiufeng; Zhou, Huaibin; Lyu, Jianxin; Bai, Yidong

    2016-01-01

    The 4977 bp common deletion is one of the most frequently observed mitochondrial DNA (mtDNA) mutations in human tissues and has been implicated in various human cancer types. It is generally believed that continuous generation of intracellular reactive oxygen species (ROS) during oxidative phosphorylation (OXPHOS) is a major underlying mechanism for generation of such mtDNA deletions while antioxidant systems, including Manganese superoxide dismutase (MnSOD), mitigating the deleterious effects of ROS. However, the clinical significance of this common deletion remains to be explored. A comprehensive investigation on occurrence and accumulation of the common deletion and mtDNA copy number was carried out in breast carcinoma (BC) patients, benign breast disease (BBD) patients and age-matched healthy donors in our study. Meanwhile, the representative oxidative (ROS production, mtDNA and lipid oxidative damage) and anti-oxidative features (MnSOD expression level and variation) in blood samples from these groups were also analyzed. We found that the mtDNA common deletion is much more likely to be detected in BC patients at relatively high levels while the mtDNA content is lower. This alteration has been associated with a higher MnSOD level and higher oxidative damages in both BC and BBD patients. Our results indicate that the mtDNA common deletion in blood may serve a biomarker for the breast cancer. Copyright © 2015 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  14. Molecular evidence for the induction of large interstitial deletions on mouse chromosome 8 by ionizing radiation

    International Nuclear Information System (INIS)

    Turker, Mitchell S.; Pieretti, Maura; Kumar, Sudha

    1997-01-01

    The P19H22 mouse embryonal carcinoma cell line is characterized by a hemizygous deficiency for the chromosome 8 encoded aprt (adenine phosphoribosyltransferase) gene and heterozygosity for many chromosome 8 loci. We have previously demonstrated that this cell line is suitable for mutational studies because it is permissive of events ranging in size from base-pair substitutions at the aprt locus to apparent loss of chromosome 8. Large mutational events, defined by loss of the remaining aprt allele, were found to predominate in spontaneous mutants and those induced by ionizing radiation. In this study we have used a PCR based assay to screen for loss of heterozygosity at microsatellite loci both proximal and distal to aprt in 137 Cs-induced and spontaneous aprt mutants. This approach allowed us to distinguish apparent interstitial deletional events from apparent recombinational events. Significantly, 32.5% (26 of 80) of the mutational events induced by 137 Cs appeared to be interstitial deletions as compared with 7.7% (6 of 78) in the spontaneous group. This difference was statistically significant (p 137 Cs caused a significant number of deletion mutations. Most 137 Cs-induced interstitial deletions were larger than 6 cM, whereas none of the spontaneous deletions were larger than 6 cM. These results provide further support for the notion that ionizing radiation induces deletion mutations and validate the use of the P19H22 cell line for the study of events induced by ionizing radiation

  15. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-01-01

    From 1971--1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF 1 mice irradiated with 60 Co γ-rays or JANUS fission-spectrum neutrons. Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice were analyzed for mRb deletions. In all normal mouse tissues studies all six mRb exon fragments were present on Southern blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, 1 of 6 tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  16. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway.

    Science.gov (United States)

    Saveliev, S V; Cox, M M

    1996-01-01

    We provide a molecular description of key intermediates in the deletion of two internal eliminated sequences (IES elements), the M and R regions, during macronuclear development in Tetrahymena thermophila. Using a variety of PCR-based methods in vivo, double-strand breaks are detected that are generated by hydrolytic cleavage and correspond closely to the observed chromosomal junctions left behind in the macronuclei. The breaks exhibit a temporal and structural relationship to the deletion reaction that provides strong evidence that they are intermediates in the deletion pathway. Breaks in the individual strands are staggered by 4 bp, producing a four nucleotide 5' extension. Evidence is presented that breaks do not occur simultaneously at both ends. The results are most consistent with a deletion mechanism featuring initiation by double-strand cleavage at one end of the deleted element, followed by transesterification to generate the macronuclear junction on one DNA strand. An adenosine residue is found at all the nucleophilic 3' ends used in the postulated transesterification step. Evidence for the transesterification step is provided by detection of a 3' hydroxyl that would be liberated by such a step at a deletion boundary where no other DNA strand ends are detected. Images PMID:8654384

  17. Large-scale deletions of the ABCA1 gene in patients with hypoalphalipoproteinemia.

    Science.gov (United States)

    Dron, Jacqueline S; Wang, Jian; Berberich, Amanda J; Iacocca, Michael A; Cao, Henian; Yang, Ping; Knoll, Joan; Tremblay, Karine; Brisson, Diane; Netzer, Christian; Gouni-Berthold, Ioanna; Gaudet, Daniel; Hegele, Robert A

    2018-06-04

    Copy-number variations (CNVs) have been studied in the context of familial hypercholesterolemia but have not yet been evaluated in patients with extremes of high-density lipoprotein (HDL) cholesterol levels. We evaluated targeted next-generation sequencing data from patients with very low HDL cholesterol (i.e. hypoalphalipoproteinemia) using the VarSeq-CNV caller algorithm to screen for CNVs disrupting the ABCA1, LCAT or APOA1 genes. In four individuals, we found three unique deletions in ABCA1: a heterozygous deletion of exon 4, a heterozygous deletion spanning exons 8 to 31, and a heterozygous deletion of the entire ABCA1 gene. Breakpoints were identified using Sanger sequencing, and the full-gene deletion was also confirmed using exome sequencing and the Affymetrix CytoScanTM HD Array. Before now, large-scale deletions in candidate HDL genes have not been associated with hypoalphalipoproteinemia; our findings indicate that CNVs in ABCA1 may be a previously unappreciated genetic determinant of low HDL cholesterol levels. By coupling bioinformatic analyses with next-generation sequencing data, we can successfully assess the spectrum of genetic determinants of many dyslipidemias, now including hypoalphalipoproteinemia. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  18. [Mitochondrial DNA4568 deletions in guinea-pig associated with presbycusis].

    Science.gov (United States)

    Wei, Xue-mei; Yang, Yuan; Liang, Chuang-yu; Zheng, Zhong

    2006-12-01

    To determine weather or not the mtDNA(4568) deletions in guinea-pig contribute to the development of presbycusis. Forty-four guinea-pigs were divided into 2 groups: group A (young control group, normal hearing, 22 guineas) and group B (aged group). The group B was subdivided into group B(1) (old normal hearing, 6 guineas) and group B(2) (old hearing loss, 16 guineas). First the guineas were tested by auditory brainstem response (ABR), and then the Cortis's tissues, auditory nerve tissues, brain and blood were harvested and the total DNA was extracted. The mtDNA(4568) deletion was analyzed by PCR. Hearing loss was occurred with age. The mtDNA(4568) deletion incidence of aged group in all tissues was significant higher than that of young control group (Ppresbycusis (B(2) group) were significant higher than that of aged normal hearing group (B(1) group) (Ppresbycusis and aged normal hearing group (P> 0.05). mtDNA(4568) deletion of guinea-pig possibly contributes to aging and mtDNA(4568) deletion in Cortis's and auditory nerve tissues of guinea-pig may be associated with presbycusis. There is no enough evidence to prove that the mtDNA(4568) deletions in brain and blood are related with presbycusis.

  19. Haploid deletion strains of Saccharomyces cerevisiae that determine survival during space flight

    Science.gov (United States)

    Johanson, Kelly; Allen, Patricia L.; Gonzalez-Villalobos, Romer A.; Nesbit, Jacqueline; Nickerson, Cheryl A.; Höner zu Bentrup, Kerstin; Wilson, James W.; Ramamurthy, Rajee; D'Elia, Riccardo; Muse, Kenneth E.; Hammond, Jeffrey; Freeman, Jake; Stodieck, Louis S.; Hammond, Timothy G.

    2007-02-01

    This study identifies genes that determine survival during a space flight, using the model eukaryotic organism, Saccharomyces cerevisiae. Select strains of a haploid yeast deletion series grew during storage in distilled water in space, but not in ground based static or clinorotation controls. The survival advantages in space in distilled water include a 133-fold advantage for the deletion of PEX19, a chaperone and import receptor for newly- synthesized class I peroxisomal membrane proteins, to 77-40 fold for deletion strains lacking elements of aerobic respiration, isocitrate metabolism, and mitochondrial electron transport. Following automated addition of rich growth media, the space flight was associated with a marked survival advantage of strains with deletions in catalytically active genes including hydrolases, oxidoreductases and transferases. When compared to static controls, space flight was associated with a marked survival disadvantage of deletion strains lacking transporter, antioxidant and catalytic activity. This study identifies yeast deletion strains with a survival advantage during storage in distilled water and space flight, and amplifies our understanding of the genes critical for survival in space.

  20. Mochovce site

    International Nuclear Information System (INIS)

    1997-01-01

    In Mochovce site the construction of four units of WWER 440 NPP with V-213 type of reactor is being carried out. The financing of Mochovce units completion was resolved in April 1996. The completion work commenced at the construction site under leadership of SKODA Prague, the general supplier. The completion work on building part and tests of constructional electric distributions and lightning constructors started. The revisions in technological part were finished, and final protocols from revisions are the basis for starting of completion work. The assembly of transport container anchorage,ventilation system in hermetic areas and hermetic coverage of pools for stored spent nuclear fuel is being carried out. The pre-completion tests of instrumentation and control of ventilation systems, individual dosimetric control in medical station, and tests of nuclear programme according to commissioning and assembling work schedule at the equipment for physical protection of the NPP area started. Inspection activities at Mochovce were performed in accordance with inspection plan for 1996. Evaluation of routine inspections was performed by means of quarterly protocols. Main findings from the inspections performed in Mochovce were in the following areas: (a) deficiencies in the knowledge of the respective regulation and conditions from the Resolution of the state regulatory body, concerning selected employees; (b) training of the selected employees; (c) aim of the measures imposes by inspectors is to eliminate deficiencies in preparation of programmes for pre-completion and completion testing. NRA SR assessment activities at Mochovce NPP were focused mainly on approving and inspecting of design modification to approving programmes for pre-completion and completion testing of system s and equipment and on approving quality assurance programmes. The suggestions of international missions, which reviewed Mochovce safety in the years, were taken into consideration in the programme

  1. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes.

    Science.gov (United States)

    Heinzen, Erin L; Radtke, Rodney A; Urban, Thomas J; Cavalleri, Gianpiero L; Depondt, Chantal; Need, Anna C; Walley, Nicole M; Nicoletti, Paola; Ge, Dongliang; Catarino, Claudia B; Duncan, John S; Kasperaviciūte, Dalia; Tate, Sarah K; Caboclo, Luis O; Sander, Josemir W; Clayton, Lisa; Linney, Kristen N; Shianna, Kevin V; Gumbs, Curtis E; Smith, Jason; Cronin, Kenneth D; Maia, Jessica M; Doherty, Colin P; Pandolfo, Massimo; Leppert, David; Middleton, Lefkos T; Gibson, Rachel A; Johnson, Michael R; Matthews, Paul M; Hosford, David; Kälviäinen, Reetta; Eriksson, Kai; Kantanen, Anne-Mari; Dorn, Thomas; Hansen, Jörg; Krämer, Günter; Steinhoff, Bernhard J; Wieser, Heinz-Gregor; Zumsteg, Dominik; Ortega, Marcos; Wood, Nicholas W; Huxley-Jones, Julie; Mikati, Mohamad; Gallentine, William B; Husain, Aatif M; Buckley, Patrick G; Stallings, Ray L; Podgoreanu, Mihai V; Delanty, Norman; Sisodiya, Sanjay M; Goldstein, David B

    2010-05-14

    Deletions at 16p13.11 are associated with schizophrenia, mental retardation, and most recently idiopathic generalized epilepsy. To evaluate the role of 16p13.11 deletions, as well as other structural variation, in epilepsy disorders, we used genome-wide screens to identify copy number variation in 3812 patients with a diverse spectrum of epilepsy syndromes and in 1299 neurologically-normal controls. Large deletions (> 100 kb) at 16p13.11 were observed in 23 patients, whereas no control had a deletion greater than 16 kb. Patients, even those with identically sized 16p13.11 deletions, presented with highly variable epilepsy phenotypes. For a subset of patients with a 16p13.11 deletion, we show a consistent reduction of expression for included genes, suggesting that haploinsufficiency might contribute to pathogenicity. We also investigated another possible mechanism of pathogenicity by using hybridization-based capture and next-generation sequencing of the homologous chromosome for ten 16p13.11-deletion patients to look for unmasked recessive mutations. Follow-up genotyping of suggestive polymorphisms failed to identify any convincing recessive-acting mutations in the homologous interval corresponding to the deletion. The observation that two of the 16p13.11 deletions were larger than 2 Mb in size led us to screen for other large deletions. We found 12 additional genomic regions harboring deletions > 2 Mb in epilepsy patients, and none in controls. Additional evaluation is needed to characterize the role of these exceedingly large, non-locus-specific deletions in epilepsy. Collectively, these data implicate 16p13.11 and possibly other large deletions as risk factors for a wide range of epilepsy disorders, and they appear to point toward haploinsufficiency as a contributor to the pathogenicity of deletions. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Molecular dynamics simulations of outer-membrane protease T from E. coli based on a hybrid coarse-grained/atomistic potential

    International Nuclear Information System (INIS)

    Neri, Marilisa; Anselmi, Claudio; Carnevale, Vincenzo; Vargiu, Attilio V; Carloni, Paolo

    2006-01-01

    Outer-membrane proteases T (OmpT) are membrane enzymes used for defense by Gram-negative bacteria. Here we use hybrid molecular mechanics/coarse-grained simulations to investigate the role of large-scale motions of OmpT from Escherichia coli for its function. In this approach, the enzyme active site is treated at the all-atom level, whilst the rest of the protein is described at the coarse-grained level. Our calculations agree well with previously reported all-atom molecular dynamics simulations, suggesting that this approach is well suitable to investigate membrane proteins. In addition, our findings suggest that OmpT large-scale conformational fluctuations might play a role for its biological function, as found for another protease class, the aspartyl proteases

  3. Subthreshold Psychosis in 22q11.2 Deletion Syndrome: Multisite Naturalistic Study.

    Science.gov (United States)

    Weisman, Omri; Guri, Yael; Gur, Raquel E; McDonald-McGinn, Donna M; Calkins, Monica E; Tang, Sunny X; Emanuel, Beverly; Zackai, Elaine H; Eliez, Stephan; Schneider, Maude; Schaer, Marie; Kates, Wendy R; Antshel, Kevin M; Fremont, Wanda; Shashi, Vandana; Hooper, Stephen R; Armando, Marco; Vicari, Stefano; Pontillo, Maria; Kushan, Leila; Jalbrzikowski, Maria; Bearden, Carrie E; Cubells, Joseph F; Ousley, Opal Y; Walker, Elaine F; Simon, Tony J; Stoddard, Joel; Niendam, Tara A; van den Bree, Marianne B M; Gothelf, Doron

    2017-09-01

    Nearly one-third of individuals with 22q11.2 deletion syndrome (22q11.2DS) develop a psychotic disorder during life, most of them by early adulthood. Importantly, a full-blown psychotic episode is usually preceded by subthreshold symptoms. In the current study, 760 participants (aged 6-55 years) with a confirmed hemizygous 22q11.2 microdeletion have been recruited through 10 medical sites worldwide, as part of an international research consortium. Of them, 692 were nonpsychotic and with complete measurement data. Subthreshold psychotic symptoms were assessed using the Structured Interview for Prodromal Syndromes (SIPS). Nearly one-third of participants met criteria for positive subthreshold psychotic symptoms (32.8%), less than 1% qualified for acute positive subthreshold symptoms, and almost a quarter met criteria for negative/disorganized subthreshold symptoms (21.7%). Adolescents and young adults (13-25 years) showed the highest rates of subthreshold psychotic symptoms. Additionally, higher rates of anxiety disorders and attention deficit/hyperactivity disorder (ADHD) were found among the study participants with subthreshold psychotic symptoms compared to those without. Full-scale IQ, verbal IQ, and global functioning (GAF) scores were negatively associated with participants' subthreshold psychotic symptoms. This study represents the most comprehensive analysis reported to date on subthreshold psychosis in 22q11.2DS. Novel findings include age-related changes in subthreshold psychotic symptoms and evidence that cognitive deficits are associated with subthreshold psychosis in this population. Future studies should longitudinally follow these symptoms to detect whether and how early identification and treatment of these manifestations can improve long-term outcomes in those that eventually develop a psychotic disorder. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For

  4. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes.

    Science.gov (United States)

    Dorin, Julia R

    2015-01-01

    β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.

  5. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes

    Directory of Open Access Journals (Sweden)

    Julia R Dorin

    2015-01-01

    Full Text Available β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.

  6. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission.

    Directory of Open Access Journals (Sweden)

    Kendall R Walker

    Full Text Available Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3 is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1, which is required for production of the Alzheimer's disease (AD-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC. Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates.

  7. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission.

    Science.gov (United States)

    Walker, Kendall R; Modgil, Amit; Albrecht, David; Lomoio, Selene; Haydon, Philip G; Moss, Stephen J; Tesco, Giuseppina

    2016-01-01

    Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1), which is required for production of the Alzheimer's disease (AD)-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC). Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates.

  8. Deletional rearrangement in the human T-cell receptor α-chain locus

    International Nuclear Information System (INIS)

    de Villartay, J.P.; Lewis, D.; Hockett, R.; Waldmann, T.A.; Korsmeyer, S.J.; Cohen, D.I.

    1987-01-01

    The antigen-specific receptor on the surface of mature T lymphocytes is a heterodimer consisting of polypeptides termed α and β. In the course of characterizing human T-cell tumors with an immature (CD4 - , CD8 - ) surface phenotype, the authors detected a 2-kilobase α-related transcript. Analysis of cDNA clones corresponding to this transcript established that a genetic element (which they call TEA, for T early α) located between the α-chain variable- and joining-region genes had been spliced to the α constant region. The TEA transcript is present early in thymocyte ontogeny, and its expression declines during T-cell maturation. More important, the TEA area functions as an active site for rearrangement within the α gene locus. Blot hybridization of restriction enzyme-digested DNA with a TEA probe revealed a narrowly limited pattern of rearrangement in polyclonal thymic DNA, surprisingly different from the pattern expected for the mature α gene with its complex diversity. These DNA blots also showed that TEA is generally present in the germ-line configuration in cells expressing the γδ heterodimeric receptor and is deleted from mature (αβ-expressing) T-lymphocyte tumors and lines. Moreover, the TEA transcript lacked a long open reading frame for protein but instead possessed multiple copies of a repetitive element resembling those utilized in the heavy-chain class switch of the immunoglobulin genes. The temporal nature of the rearrangements and expression detected by TEA suggests that this recombination could mediate a transition between immature (γδ-expressing) T cells and mature (αβ-expressing) T cells

  9. Gene expression patterns of chicken neuregulin 3 in association with copy number variation and frameshift deletion.

    Science.gov (United States)

    Abe, Hideaki; Aoya, Daiki; Takeuchi, Hiro-Aki; Inoue-Murayama, Miho

    2017-07-21

    Neuregulin 3 (NRG3) plays a key role in central nervous system development and is a strong candidate for human mental disorders. Thus, genetic variation in NRG3 may have some impact on a variety of phenotypes in non-mammalian vertebrates. Recently, genome-wide screening for short insertions and deletions in chicken (Gallus gallus) genomes has provided useful information about structural variation in functionally important genes. NRG3 is one such gene that has a putative frameshift deletion in exon 2, resulting in premature termination of translation. Our aims were to characterize the structure of chicken NRG3 and to compare expression patterns between NRG3 isoforms. Depending on the presence or absence of the 2-bp deletion in chicken NRG3, 3 breeds (red junglefowl [RJF], Boris Brown [BB], and Hinai-jidori [HJ]) were genotyped using flanking primers. In the commercial breeds (BB and HJ), approximately 45% of individuals had at least one exon 2 allele with the 2-bp deletion, whereas there was no deletion allele in RJF. The lack of a homozygous mutant indicated the existence of duplicated NRG3 segments in the chicken genome. Indeed, highly conserved elements consisting of exon 1, intron 1, exon 2, and part of intron 2 were found in the reference RJF genome, and quantitative PCR detected copy number variation (CNV) between breeds as well as between individuals. The copy number of conserved elements was significantly higher in chicks harboring the 2-bp deletion in exon 2. We identified 7 novel transcript variants using total mRNA isolated from the amygdala. Novel isoforms were found to lack the exon 2 cassette, which probably harbored the premature termination codon. The relative transcription levels of the newly identified isoforms were almost the same between chick groups with and without the 2-bp deletion, while chicks with the deletion showed significant suppression of the expression of previously reported isoforms. A putative frameshift deletion and CNV in chicken

  10. Prognostic impact of IKZF1 deletion in adults with common B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Yao, Qiu-Mei; Liu, Kai-Yan; Gale, Robert Peter; Jiang, Bin; Liu, Yan-Rong; Jiang, Qian; Jiang, Hao; Zhang, Xiao-Hui; Zhang, Mei-Jie; Chen, Shan-Shan; Huang, Xiao-Jun; Xu, Lan-Ping; Ruan, Guo-Rui

    2016-04-11

    Interrogate the impact of IKZF1 deletion on therapy-outcomes of adults with common B-cell acute lymphoblastic leukemia. One hundred sixty-five consecutive adults with common B-cell ALL were tested for IKZF1 deletion and for BCR/ABL. Deletions in IKZF1 were detected using multiplex RQ-PCR, multiplex fluorescent PCR, sequence analysis and multiplex ligation-dependent probe amplification (MLPA). BCR/ABL was detected using RQ-PCR. All subjects received chemotherapy and some also received an allotransplant and tyrosine kinase-inhibitors. Multivariate analyses were done to identify associations between IKZF1 deletion and other variables on non-relapse mortality (NRM), cumulative incidence of relapse (CIR), leukemia-free survival (LFS) and survival. Amongst subjects achieving complete remission those with IKZF1 deletion had similar 5-year non-relapse mortality (NRM) (11% [2-20%] vs. 16% [4-28%]; P = 0.736), a higher 5-year cumulative incidence of relapse (CIR) (55% [35-76%] vs. 25% [12-38%]; P = 0.004), and worse 5-year leukemia-free survival (LFS) (33% [16-52%] vs. 59% [42-73%]; P = 0.012) and survival (48% [33-62%] vs. 75% [57-86%]; P = 0.002). In multivariate analyses IKZF1 deletion was associated with an increased relapse (relative risk [RR] =2.7, [1.4-5.2]; P = 0.002), a higher risk of treatment-failure (inverse of LFS; RR = 2.1, [1.2-3.6]; P = 0.007) and a higher risk of death (RR = 2.8, [1.5-5.5]; P = 0.002). The adverse impact of IKZF1 deletion on outcomes was stronger in subjects without vs. with BCR-ABL1 and in subjects receiving chemotherapy-only vs. an allotransplant. IKZF1 deletion was independently-associated with a higher relapse risk and worse LFS and survival in adults with common B-cell ALL after adjusting for other prognostic variables and differences in therapies. These data suggest IKZF1 deletion may be a useful prognostic variable in adults with common B-cell ALL, especially in persons without BCR-ABL1 and those receiving chemotherapy

  11. IKZF1 DELETIONS ARE INDEPENDENT PROGNOSTIC FACTOR IN PEDIATRIC B-CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    G. A. Tsaur

    2016-01-01

    Full Text Available We assessed the prognostic significance of IKZF1 gene deletions in 141 pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL  on Russian multicenter trial in pediatric clinics of Ekaterinburg and Orenburg. IKZF1 deletions were estimated by multiplex ligation-dependent probe amplification. IKZF1 deletions were revealed in 15 (10.6 % patients. IKZF1 deletions were associated with age older than 10 years (p = 0.007, initial white blood cell count higher than 30 × 109/l (p = 0.003, t(9;22(q34.q11 (p = 0.003 and delayed blast clearance: М3 status of bone marrow at day 15 of remission induction (p = 0.003, lack of hematological remission at day 36 (p < 0.001 and high levels of minimal residual disease at days 15, 36 and 85 (p = 0.014; p < 0.001; p = 0.001 correspondingly. Patients with IKZF1 deletions had significantly lower event-free survival (EFS (0.30 ± 0.15 vs 0.89 ± 0.03; p < 0.001 and overall survival (OS (0.44 ± 0.19 vs 0.93 ± 0.02; p < 0.001, while cumulative incidence of relapse was higher (0.67 ± 0.18 vs 0.07 ± 0.02; p < 0.001. In the multivariate analysis IKZF1 deletions were associated with decreased EFS (hazard ratio (HR 4.755; 95 % confidence interval (CI 1.856–12.185; p = 0.001, and OS (HR 4.208; 95 % CI 1.322–13.393; p = 0.015, but increased relapse risk (HR 9,083; 95 % CI 3.119–26.451; p < 0.001. IKZF1 deletions retained their prognostic significance in the intermediate risk group patients (p < 0.001, but not in standard or high-risk groups. Majority of IKZF1 deletions – 12 (80 % of 15 – were revealed in the “B-other” group (n = 83. In this cohort of patients IKZF1 deletions led to inferior EFS (HR 6.172; 95 % CI 1.834–20.767; p = 0.003 and higher relapse rate (HR 16.303; 95 % CI 3.324–79.965; p = 0.015. Thus, our results showed that IKZF1 deletions are independent risk factor in BCP-ALL patients.

  12. Interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q

    International Nuclear Information System (INIS)

    Le Beau, M.M.; Epstein, N.D.; O'Brien, S.J.; Nienhuis, A.W.; Yang, Y.C.; Clark, S.C.; Rowley, J.D.

    1987-01-01

    The gene IL-3 encodes interleukin 3, a hematopoietic colony-stimulating factor (CSF) that is capable of supporting the proliferation of a broad range of hematopoietic cell types. By using somatic cell hybrids and in situ chromosomal hybridization, the authors localized this gene to human chromosome 5 at bands q23-31, a chromosomal region that is frequently deleted [del(5q)] in patients with myeloid disorders. By in situ hybridization, IL-3 was found to be deleted in the 5q-chromosome of one patient with refractory anemia who had a del(5)(q15q33.3), of three patients with refractory anemia (two patients) or acute nonlymphocytic leukemia (ANLL) de novo who had a similar distal breakpoint [del(5)(q13q33.3)], and of a fifth patient, with therapy-related ANLL, who had a similar distal breakpoint in band q33[del(5)(q14q33.3)]. Southern blot analysis of somatic cell hybrids retaining the normal or the deleted chromosome 5 from two patients with the refractory anemia 5q- syndrome indicated that IL-3 sequences were absent from the hybrids retaining the deleted chromosome 5 but not from hybrids that had a cytologically normal chromosome 5. Thus, a small segment of chromosome 5 contains IL-3, GM-CSF, CSF-1, and FMS. The findings and earlier results indicating that GM-CSF, CSF-1, and FMS were deleted in the 5q- chromosome, suggest that loss of IL-3 or of other CSF genes may play an important role in the pathogenesis of hematologic disorders associated with a del(5q)

  13. Detection of the deletion on Yp11.2 in a Chinese population.

    Science.gov (United States)

    Chen, Wenjing; Wu, Weiwei; Cheng, Jianding; Zhang, Yinming; Chen, Yong; Sun, Hongyu

    2014-01-01

    Sex determination tests based on Amelogenin gene as part of commercial PCR multiplex reaction kits have been widely applied in forensic DNA analysis. Mutations that cause dropout of Y chromosomal Amelogenin gene (AMELY) could lead to errors in gender determination and mixture interpretation. To infer the mechanism and estimate the dropout frequency of AMELY and adjacent Y-STRs, we studied 3 samples with AMELY dropout combined with DYS458 and/or DYS456 and 37 samples with DYS456 dropout. DYS456, DYS458 and AMELY are located in the Yp11.2 region. The singleplex amplification system showed the null alleles could be caused by fragment deletion in Yp11.2 rather than a point mutation in the primer binding region. After detection of the 17 Y-STR and 77 STS markers, the deletion map showed different patterns. The DYS456-AMELY-DYS458 deletion pattern was the largest, breaking from 3.60 Mb to 8.29 Mb in the Y chromosome, and the overall frequency was 0.0077%. The AMELY-DYS458 deletion pattern was broke from 6.74 Mb to 9.17 Mb, with a 0.0155% frequency. The DYS456 negative pattern was concentrated in two main deletion regions, with a 0.8220% frequency. The frequency of all negative pattern was 0.0155%. All the AMELY-DYS458 and DYS456-AMELY-DYS458, and 92% of the DYS456 deletion patterns belonged to Hg O3, the rest belonged to Hg Q. The DYS456 deletion pattern was first reported in Chinese population. The current and previous findings suggest additional gender test for ambiguous sex determination may be required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Utilization of deletion bins to anchor and order sequences along the wheat 7B chromosome.

    Science.gov (United States)

    Belova, Tatiana; Grønvold, Lars; Kumar, Ajay; Kianian, Shahryar; He, Xinyao; Lillemo, Morten; Springer, Nathan M; Lien, Sigbjørn; Olsen, Odd-Arne; Sandve, Simen R

    2014-09-01

    A total of 3,671 sequence contigs and scaffolds were mapped to deletion bins on wheat chromosome 7B providing a foundation for developing high-resolution integrated physical map for this chromosome. Bread wheat (Triticum aestivum L.) has a large, complex and highly repetitive genome which is challenging to assemble into high quality pseudo-chromosomes. As part of the international effort to sequence the hexaploid bread wheat genome by the international wheat genome sequencing consortium (IWGSC) we are focused on assembling a reference sequence for chromosome 7B. The successful completion of the reference chromosome sequence is highly dependent on the integration of genetic and physical maps. To aid the integration of these two types of maps, we have constructed a high-density deletion bin map of chromosome 7B. Using the 270 K Nimblegen comparative genomic hybridization (CGH) array on a set of cv. Chinese spring deletion lines, a total of 3,671 sequence contigs and scaffolds (~7.8 % of chromosome 7B physical length) were mapped into nine deletion bins. Our method of genotyping deletions on chromosome 7B relied on a model-based clustering algorithm (Mclust) to accurately predict the presence or absence of a given genomic sequence in a deletion line. The bin mapping results were validated using three different approaches, viz. (a) PCR-based amplification of randomly selected bin mapped sequences (b) comparison with previously mapped ESTs and (c) comparison with a 7B genetic map developed in the present study. Validation of the bin mapping results suggested a high accuracy of the assignment of 7B sequence contigs and scaffolds to the 7B deletion bins.

  15. Deletion at the GCNT2 Locus Causes Autosomal Recessive Congenital Cataracts.

    Science.gov (United States)

    Irum, Bushra; Khan, Shahid Y; Ali, Muhammad; Daud, Muhammad; Kabir, Firoz; Rauf, Bushra; Fatima, Fareeha; Iqbal, Hira; Khan, Arif O; Al Obaisi, Saif; Naeem, Muhammad Asif; Nasir, Idrees A; Khan, Shaheen N; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Eghrari, Allen O; Riazuddin, S Amer

    2016-01-01

    The aim of this study is to identify the molecular basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous pedigree. All participating individuals underwent a detailed ophthalmic examination. Each patient's medical history, particularly of cataracts and other ocular abnormalities, was compiled from available medical records and interviews with family elders. Blood samples were donated by all participating family members and used to extract genomic DNA. Genetic analysis was performed to rule out linkage to known arCC loci and genes. Whole-exome sequencing libraries were prepared and paired-end sequenced. A large deletion was found that segregated with arCC in the family, and chromosome walking was conducted to estimate the proximal and distal boundaries of the deletion mutation. Exclusion and linkage analysis suggested linkage to a region of chromosome 6p24 harboring GCNT2 (glucosaminyl (N-acetyl) transferase 2) with a two-point logarithm of odds score of 5.78. PCR amplifications of the coding exons of GCNT2 failed in individuals with arCC, and whole-exome data analysis revealed a large deletion on chromosome 6p in the region harboring GCNT2. Chromosomal walking using multiple primer pairs delineated the extent of the deletion to approximately 190 kb. Interestingly, a failure to amplify a junctional fragment of the deletion break strongly suggests an insertion in addition to the large deletion. Here, we report a novel insertion/deletion mutation at the GCNT2 locus that is responsible for congenital cataracts in a large consanguineous family.

  16. DELISHUS: an efficient and exact algorithm for genome-wide detection of deletion polymorphism in autism

    Science.gov (United States)

    Aguiar, Derek; Halldórsson, Bjarni V.; Morrow, Eric M.; Istrail, Sorin

    2012-01-01

    Motivation: The understanding of the genetic determinants of complex disease is undergoing a paradigm shift. Genetic heterogeneity of rare mutations with deleterious effects is more commonly being viewed as a major component of disease. Autism is an excellent example where research is active in identifying matches between the phenotypic and genomic heterogeneities. A considerable portion of autism appears to be correlated with copy number variation, which is not directly probed by single nucleotide polymorphism (SNP) array or sequencing technologies. Identifying the genetic heterogeneity of small deletions remains a major unresolved computational problem partly due to the inability of algorithms to detect them. Results: In this article, we present an algorithmic framework, which we term DELISHUS, that implements three exact algorithms for inferring regions of hemizygosity containing genomic deletions of all sizes and frequencies in SNP genotype data. We implement an efficient backtracking algorithm—that processes a 1 billion entry genome-wide association study SNP matrix in a few minutes—to compute all inherited deletions in a dataset. We further extend our model to give an efficient algorithm for detecting de novo deletions. Finally, given a set of called deletions, we also give a polynomial time algorithm for computing the critical regions of recurrent deletions. DELISHUS achieves significantly lower false-positive rates and higher power than previously published algorithms partly because it considers all individuals in the sample simultaneously. DELISHUS may be applied to SNP array or sequencing data to identify the deletion spectrum for family-based association studies. Availability: DELISHUS is available at http://www.brown.edu/Research/Istrail_Lab/. Contact: Eric_Morrow@brown.edu and Sorin_Istrail@brown.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22689755

  17. Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Schrijver Iris

    2001-10-01

    Full Text Available Abstract Background Mutations in the fibrillin -1 gene (FBN1 cause Marfan syndrome (MFS, an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. Methods We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons Results Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5th LTBP (8-cysteine domain and the adjacent 25th calcium-binding EGF-like (6-cysteine domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. Conclusions Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly.

  18. Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders.

    Science.gov (United States)

    Frahry, Matthew Blake; Sun, Cheng; Chong, Rebecca A; Mueller, Rachel Lockridge

    2015-02-01

    Across the tree of life, species vary dramatically in nuclear genome size. Mutations that add or remove sequences from genomes-insertions or deletions, or indels-are the ultimate source of this variation. Differences in the tempo and mode of insertion and deletion across taxa have been proposed to contribute to evolutionary diversity in genome size. Among vertebrates, most of the largest genomes are found within the salamanders, an amphibian clade with genome sizes ranging from ~14 to ~120 Gb. Salamander genomes have been shown to experience slower rates of DNA loss through small (i.e., genomes. However, no studies have addressed DNA loss from salamander genomes resulting from larger deletions. Here, we focus on one type of large deletion-ectopic-recombination-mediated removal of LTR retrotransposon sequences. In ectopic recombination, double-strand breaks are repaired using a "wrong" (i.e., ectopic, or non-allelic) template sequence-typically another locus of similar sequence. When breaks occur within the LTR portions of LTR retrotransposons, ectopic-recombination-mediated repair can produce deletions that remove the internal transposon sequence and the equivalent of one of the two LTR sequences. These deletions leave a signature in the genome-a solo LTR sequence. We compared levels of solo LTRs in the genomes of four salamander species with levels present in five vertebrates with smaller genomes. Our results demonstrate that salamanders have low levels of solo LTRs, suggesting that ectopic-recombination-mediated deletion of LTR retrotransposons occurs more slowly than in other vertebrates with smaller genomes.

  19. The first Dutch SDHB founder deletion in paraganglioma – pheochromocytoma patients

    Directory of Open Access Journals (Sweden)

    Devilee Peter

    2009-04-01

    Full Text Available Abstract Background Germline mutations of the tumor suppressor genes SDHB, SDHC and SDHD play a major role in hereditary paraganglioma and pheochromocytoma. These three genes encode subunits of succinate dehydrogenase (SDH, the mitochondrial tricarboxylic acid cycle enzyme and complex II component of the electron transport chain. The majority of variants of the SDH genes are missense and nonsense mutations. To date few large deletions of the SDH genes have been described. Methods We carried out gene deletion scanning using MLPA in 126 patients negative for point mutations in the SDH genes. We then proceeded to the molecular characterization of deletions, mapping breakpoints in each patient and used haplotype analysis to determine whether the deletions are due to a mutation hotspot or if a common haplotype indicated a single founder mutation. Results A novel deletion of exon 3 of the SDHB gene was identified in nine apparently unrelated Dutch patients. An identical 7905 bp deletion, c.201-4429_287-933del, was found in all patients, resulting in a frameshift and a predicted truncated protein, p.Cys68HisfsX21. Haplotype analysis demonstrated a common haplotype at the SDHB locus. Index patients presented with pheochromocytoma, extra-adrenal PGL and HN-PGL. A lack of family history was seen in seven of the nine cases. Conclusion The identical exon 3 deletions and common haplotype in nine patients indicates that this mutation is the first Dutch SDHB founder mutation. The predominantly non-familial presentation of these patients strongly suggests reduced penetrance. In this small series HN-PGL occurs as frequently as pheochromocytoma and extra-adrenal PGL.

  20. The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella tularensis dsbA Deletion Mutant

    Directory of Open Access Journals (Sweden)

    Ivona Pavkova

    2017-12-01

    Full Text Available The DsbA homolog of Francisella tularensis was previously demonstrated to be required for intracellular replication and animal death. Disruption of the dsbA gene leads to a pleiotropic phenotype that could indirectly affect a number of different cellular pathways. To reveal the broad effects of DsbA, we compared fractions enriched in membrane proteins of the wild-type FSC200 strain with the dsbA deletion strain using a SILAC-based quantitative proteomic analysis. This analysis enabled identification of 63 proteins with significantly altered amounts in the dsbA mutant strain compared to the wild-type strain. These proteins comprise a quite heterogeneous group including hypothetical proteins, proteins associated with membrane structures, and potential secreted proteins. Many of them are known to be associated with F. tularensis virulence. Several proteins were selected for further studies focused on their potential role in tularemia's pathogenesis. Of them, only the gene encoding glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolytic pathway, was found to be important for full virulence manifestations both in vivo and in vitro. We next created a viable mutant strain with deleted gapA gene and analyzed its phenotype. The gapA mutant is characterized by reduced virulence in mice, defective replication inside macrophages, and its ability to induce a protective immune response against systemic challenge with parental wild-type strain. We also demonstrate the multiple localization sites of this protein: In addition to within the cytosol, it was found on the cell surface, outside the cells, and in the culture medium. Recombinant GapA was successfully obtained, and it was shown that it binds host extracellular serum proteins like plasminogen, fibrinogen, and fibronectin.

  1. An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome.

    Science.gov (United States)

    Hay, Elizabeth Anne; Khalaf, Abdulla Razak; Marini, Pietro; Brown, Andrew; Heath, Karyn; Sheppard, Darrin; MacKenzie, Alasdair

    2017-08-01

    We have successfully used comparative genomics to identify putative regulatory elements within the human genome that contribute to the tissue specific expression of neuropeptides such as galanin and receptors such as CB1. However, a previous inability to rapidly delete these elements from the mouse genome has prevented optimal assessment of their function in-vivo. This has been solved using CAS9/CRISPR genome editing technology which uses a bacterial endonuclease called CAS9 that, in combination with specifically designed guide RNA (gRNA) molecules, cuts specific regions of the mouse genome. However, reports of "off target" effects, whereby the CAS9 endonuclease is able to cut sites other than those targeted, limits the appeal of this technology. We used cytoplasmic microinjection of gRNA and CAS9 mRNA into 1-cell mouse embryos to rapidly generate enhancer knockout mouse lines. The current study describes our analysis of the genomes of these enhancer knockout lines to detect possible off-target effects. Bioinformatic analysis was used to identify the most likely putative off-target sites and to design PCR primers that would amplify these sequences from genomic DNA of founder enhancer deletion mouse lines. Amplified DNA was then sequenced and blasted against the mouse genome sequence to detect off-target effects. Using this approach we were unable to detect any evidence of off-target effects in the genomes of three founder lines using any of the four gRNAs used in the analysis. This study suggests that the problem of off-target effects in transgenic mice have been exaggerated and that CAS9/CRISPR represents a highly effective and accurate method of deleting putative neuropeptide gene enhancer sequences from the mouse genome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Deletion in the first cysteine-rich repeat of low density lipoprotein receptor impairs its transport but not lipoprotein binding in fibroblasts from a subject with familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Leitersdorf, E.; Hobbs, H.H.; Fourie, A.M.; Jacobs, M.; Van Der Westhuyzen, D.R.; Coetzee, G.A.

    1988-01-01

    The ligand-binding domain of the low density lipoprotein (LDL) receptor is composed of seven cysteine-rich repeats, each ∼ 40 amino acids long. Previous studies showed that if the first repeat of the ligand-binding domain (encoded by exon 2) is deleted, the receptor fails to bind an anti-LDL receptor monoclonal antibody (IgG-C7) but continues to bind LDL with high affinity. Cultured fibroblasts from a Black South African Xhosa patient (TT) with the clinical syndrome of homozygous familial hypercholesterolemia demonstrated high-affinity cell-surface binding of 125 I-labeled LDL but not 125 I-labeled IgG-C7. previous haplotype analysis, using 10 restriction fragment length polymorphic sites, suggested that the patient inherited two identical LDL receptor alleles. The polymerase chain reaction technique was used to selectively amplify exon 2 of the LDL receptor gene from this patient. Sequence analysis of the amplified fragment disclosed a deletion of six base pairs that removes two amino acids, aspartic acid and glycine, from the first cysteine-rich ligand binding repeat. The mutation creates a new Pst I restriction site that can be used to detect the deletion. The existence of this mutant allele confirms that the epitope of IgG-C7 is located in the first cysteine-rich repeat and that this repeat is not necessary for LDL binding. The mutant gene produced a normally sized 120-kilodalton LDL receptor precursor protein that matured to the 160-kilodalton form at less than one-fourth the normal rate

  3. A theory that may explain the Hayflick limit--a means to delete one copy of a repeating sequence during each cell cycle in certain human cells such as fibroblasts.

    Science.gov (United States)

    Naveilhan, P; Baudet, C; Jabbour, W; Wion, D

    1994-09-01

    A model that may explain the limited division potential of certain cells such as human fibroblasts in culture is presented. The central postulate of this theory is that there exists, prior to certain key exons that code for materials needed for cell division, a unique sequence of specific repeating segments of DNA. One copy of such repeating segments is deleted during each cell cycle in cells that are not protected from such deletion through methylation of their cytosine residues. According to this theory, the means through which such repeated sequences are removed, one per cycle, is through the sequential action of enzymes that act much as bacterial restriction enzymes do--namely to produce scissions in both strands of DNA in areas that correspond to the DNA base sequence recognition specificities of such enzymes. After the first scission early in a replicative cycle, that enzyme becomes inhibited, but the cleavage of the first site exposes the closest site in the repetitive element to the action of a second restriction enzyme after which that enzyme also becomes inhibited. Then repair occurs, regenerating the original first site. Through this sequential activation and inhibition of two different restriction enzymes, only one copy of the repeating sequence is deleted during each cell cycle. In effect, the repeating sequence operates as a precise counter of the numbers of cell doubling that have occurred since the cells involved differentiated during development.

  4. Deletions induced by gamma rays in the genome of Escherichia coli

    International Nuclear Information System (INIS)

    Raha, Manidipa; Hutchinson, Franklin

    1991-01-01

    An Escherichia coli lysogen was constructed with a lambda phage bearing a lacZ gene surrounded by about 100 x 10 3 base-pairs of dispensable DNA. The lacZ mutants induced by gamma rays in this lysogen were more than 10% large deletions, ranging in size from 0.6 x 10 -3 to 70 x 10 3 base-pairs. These deletions were centered, not on lacZ, but on a ColE1 origin of DNA replication located 1.2 x 10 3 bases downstream from lacZ, suggesting that this origin of replication was involved in the process by which deletions were formed. In agreement with this hypothesis, a lysogen of the same phage without the ColE1 origin showed a very much lower percentage of radiation-induced deletions, as did a second lysogen of a lambda phage without any known plasmid origin of replication. Indirect evidence is presented for radiation-induced deletions centered on the lambda origin of DNA replication in a lysogen. (author)

  5. Screening of Dystrophin Gene Deletions in Egyptian Patients with DMD/BMD Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Laila K. Effat

    2000-01-01

    Full Text Available Duchenne muscular dystrophy (DMD and Becker muscular dystrophy (BMD are allelic disorders caused by mutations within the dystrophin gene. Our study has identified 100 Egyptian families collected from the Human Genetics Clinic, National Research Center, Cairo. All cases were subjected to complete clinical evaluation pedigree analysis, electromyography studies, estimation of serum creatine phosphokinase enzyme (CPK levels and DNA analysis. Multiplex PCR using 18 pairs of specific primers were used for screening of deletion mutations within the dystrophin gene. A frequency of 55% among the families. Sixty per cent of detected deletions involved multiple exons spanning the major or the minor hot spot of the dystrophin gene. The remainder 40% which mainly involved exon 45. Comparing these findings with frequencies of other countries it was found that our figures fall within the reported range of 40%– for deletions. The distribution of deletions in our study and other different studies was variable and specific ethnic differences do not apparently account for specific deletions. In addition this study concluded that employment of the 18 exon analysis is a cost effective and a highly accurate (97% to launch a nationwide program.

  6. Large deletions play a minor but essential role in congenital coagulation factor VII and X deficiencies.

    Science.gov (United States)

    Rath, M; Najm, J; Sirb, H; Kentouche, K; Dufke, A; Pauli, S; Hackmann, K; Liehr, T; Hübner, C A; Felbor, U

    2015-01-01

    Congenital factor VII (FVII) and factor X (FX) deficiencies belong to the group of rare bleeding disorders which may occur in separate or combined forms since both the F7 and F10 genes are located in close proximity on the distal long arm of chromosome 13 (13q34). We here present data of 192 consecutive index cases with FVII and/or FX deficiency. 10 novel and 53 recurrent sequence alterations were identified in the F7 gene and 5 novel as well as 11 recurrent in the F10 gene including one homozygous 4.35 kb deletion within F7 (c.64+430_131-6delinsTCGTAA) and three large heterozygous deletions involving both the F7 and F10 genes. One of the latter proved to be cytogenetically visible as a chromosome 13q34 deletion and associated with agenesis of the corpus callosum and psychomotor retardation. Large deletions play a minor but essential role in the mutational spectrum of the F7 and F10 genes. Copy number analyses (e. g. MLPA) should be considered if sequencing cannot clarify the underlying reason of an observed coagulopathy. Of note, in cases of combined FVII/FX deficiency, a deletion of the two contiguous genes might be part of a larger chromosomal rearrangement.

  7. Avoidance of pseudogene interference in the detection of 3' deletions in PMS2.

    Science.gov (United States)

    Vaughn, Cecily P; Hart, Kimberly J; Samowitz, Wade S; Swensen, Jeffrey J

    2011-09-01

    Lynch syndrome is characterized by mutations in the mismatch repair genes MLH1, MSH2, MSH6, and PMS2. In PMS2, detection of mutations is confounded by numerous pseudogenes. Detection of 3' deletions is particularly complicated by the pseudogene PMS2CL, which has strong similarity to PMS2 exons 9 and 11-15, due to extensive gene conversion. A newly designed multiplex ligation-dependent probe amplification (MLPA) kit incorporates probes for variants found in both PMS2 and PMS2CL. This provides detection of deletions, but does not allow localization of deletions to the gene or pseudogene. To address this, we have developed a methodology incorporating reference samples with known copy numbers of variants, and paired MLPA results with sequencing of PMS2 and PMS2CL. We tested a subset of clinically indicated samples for which mutations were either unidentified or not fully characterized using existing methods. We identified eight unrelated patients with deletions encompassing exons 9-15, 11-15, 13-15, 14-15, and 15. By incorporating specific, characterized reference samples and sequencing the gene and pseudogene it is possible to identify deletions in this region of PMS2 and provide clinically relevant results. This methodology represents a significant advance in the diagnosis of patients with Lynch syndrome caused by PMS2 mutations. © 2011 Wiley-Liss, Inc.

  8. Deletions in the fifth alpha helix of HIV-1 matrix block virus release

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Chen, Han [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, You [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Nebraska Center for Virology, Lincoln, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Nebraska Center for Virology, Lincoln, NE (United States)

    2014-11-15

    The matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1–α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MA∆96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MA∆96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. - Highlights: • Deletions were identified in the C-terminus of matrix that block virus release. • These deletion mutants still multimerized and associated with membranes. • TEM showed the mutant particles were tethered to the cell surface. • Amino acid mutagenesis of the region did not affect release. • The data suggests that disruption of matrix structure blocks virus release.

  9. Genomic clones of bovine parvovirus: Construction and effect of deletions and terminal sequence inversions on infectivity

    International Nuclear Information System (INIS)

    Shull, B.C.; Chen, K.C.; Lederman, M.; Stout, E.R.; Bates, R.C.

    1988-01-01

    Genomic clones of the autonomous parvovirus bovine parvovirus (BPV) were constructed by blunt-end ligation of reannealed virion plus and minus DNA strands into the plasmid pUC8. These clones were stable during propagation in Escherichia coli JM107. All clones tested were found to be infectious by the criteria of plaque titer and progressive cytophathic effect after transfection into bovine fetal lung cells. Sequencing of the recombinant plasmids demonstrated that all of the BPV inserts had left-end (3')-terminal deletions of up to 34 bases. Defective genomes could also be detected in the progeny DNA even though the infection was initiated with homogeneous, cloned DNA. Full-length genomic clones with 3' flip and 3' flop conformations were constructed and were found to have equal infectivity. Expression of capsid proteins from tranfected genomes was demonstrated by hemagglutination, indirect immunofluorescence, and immunoprecipitation of [ 35 S]methionine-labeled cell lysates. Use of appropriate antiserum for immunoprecipitation showed the synthesis of BPV capsid and noncapsid proteins after transfection. Independently, a series of genomic clones with increasingly larger 3'-terminal deletions was prepared from separately subcloned 3'-terminal fragments. Transfection of these clones into bovine fetal lung cells revealed that deletions of up to 34 bases at the 3' end lowered but did not abolish infectivity, while deletions of greater than 52 bases were lethal. End-label analysis showed that the 34-base deletion was repaired to wild-type length in the progeny virus

  10. [Changes of biological behavioral of E. coli K1 after ppk1 gene deletion].

    Science.gov (United States)

    Peng, Liang; Pan, Jiayun; Luo, Su; Yang, Zhenghui; Huang, Mufang; Cao, Hong

    2014-06-01

    To study the changes in biological behaviors of meningitis E. coli K1 strain E44 after deletion of polyphosphate kinase 1 (ppk1) gene and explore the role of ppk1 in the pathogenesis of E. coli K1-induced meningitis. The wild-type strain E. coli K1 and ppk1 deletion mutant were exposed to heat at 56 degrees celsius; for 6 min, and their survival rates were determined. The adhesion and invasion of the bacteria to human brain microvascular endothelial cells (HBMECs) were observed using electron microscopy and quantitative tests. HBMECs were co-incubated with wild-type strain or ppk1 deletion mutant, and the cytoskeleton rearrangement was observed under laser scanning confocal microscope. The survival rate of the ppk1 deletion mutant was significantly lower than that of the wild-type strain after heat exposure. The ppk1 deletion mutant also showed lowered cell adhesion and invasion abilities and weakened ability to induce cytoskeleton rearrangement in HBMECs. ppk1 gene is important for E.coli K1 for heat resistance, cell adhesion and invasion, and for inducing cytoskeletal rearrangement in HBMECs.

  11. Deletions in the fifth alpha helix of HIV-1 matrix block virus release

    International Nuclear Information System (INIS)

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J.; Chen, Han; Zhou, You; Belshan, Michael

    2014-01-01

    The matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1–α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MA∆96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MA∆96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. - Highlights: • Deletions were identified in the C-terminus of matrix that block virus release. • These deletion mutants still multimerized and associated with membranes. • TEM showed the mutant particles were tethered to the cell surface. • Amino acid mutagenesis of the region did not affect release. • The data suggests that disruption of matrix structure blocks virus release

  12. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    International Nuclear Information System (INIS)

    Sparger, Ellen E.; Dubie, Robert A.; Shacklett, Barbara L.; Cole, Kelly S.; Chang, W.L.; Luciw, Paul A.

    2008-01-01

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-γ enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus

  13. Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis.

    Science.gov (United States)

    Rachinger, Michael; Bauch, Melanie; Strittmatter, Axel; Bongaerts, Johannes; Evers, Stefan; Maurer, Karl-Heinz; Daniel, Rolf; Liebl, Wolfgang; Liesegang, Heiko; Ehrenreich, Armin

    2013-09-20

    Conjugative shuttle vectors of the pKVM series, based on an IncP transfer origin and the pMAD vector with a temperature sensitive replication were constructed to establish a markerless gene deletion protocol for Bacilli without natural competence such as the exoenzyme producer Bacillus licheniformis. The pKVM plasmids can be conjugated to strains of B. licheniformis and B. subtilis. For chromosomal gene deletion, regions flanking the target gene are fused and cloned in a pKVM vector prior to conjugative transfer from Escherichia coli to B. licheniformis. Appropriate markers on the vector backbone allow for the identification of the integration at the target locus and thereafter the vector excision, both events taking place via homologous recombination. The functionality of the deletion system was demonstrated with B. licheniformis by a markerless 939 bp in-frame deletion of the yqfD gene and the deletion of a 31 kbp genomic segment carrying a PBSX-like prophage. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Neonatal hypocalcemia, neonatal seizures, and intellectual disability in 22q11.2 deletion syndrome

    Science.gov (United States)

    Cheung, Evelyn Ning Man; George, Susan R.; Andrade, Danielle M.; Chow, Eva W. C.; Silversides, Candice K.; Bassett, Anne S.

    2015-01-01

    Purpose Hypocalcemia is a common endocrinological condition in 22q11.2 deletion syndrome. Neonatal hypocalcemia may affect neurodevelopment. We hypothesized that neonatal hypocalcemia would be associated with rare, more severe forms of intellectual disability in 22q11.2 deletion syndrome. Methods We used a logistic regression model to investigate potential predictors of intellectual disability severity, including neonatal hypocalcemia, neonatal seizures, and complex congenital heart disease, e.g., interrupted aortic arch, in 149 adults with 22q11.2 deletion syndrome. Ten subjects had moderate-to-severe intellectual disability. Results The model was highly significant (P < 0.0001), showing neonatal seizures (P = 0.0018) and neonatal hypocalcemia (P = 0.047) to be significant predictors of a more severe level of intellectual disability. Neonatal seizures were significantly associated with neonatal hypocalcemia in the entire sample (P < 0.0001), regardless of intellectual level. There was no evidence for the association of moderate- to-severe intellectual disability with other factors such as major structural brain malformations in this sample. Conclusion The results suggest that neonatal seizures may increase the risk for more severe intellectual deficits in 22q11.2 deletion syndrome, likely mediated by neonatal hypocalcemia. Neonatal hypocalcemia often remains unrecognized until the postseizure period, when damage to neurons may already have occurred. These findings support the importance of early recognition and treatment of neonatal hypocalcemia and potentially neonatal screening for 22q11.2 deletions. PMID:23765047

  15. Genomic Deletion at 10q23 in Prostate Cancer: More Than PTEN Loss?

    Directory of Open Access Journals (Sweden)

    Raghavendra Tejo Karthik Poluri

    2018-06-01

    Full Text Available The PTEN gene encodes for the phosphatase and tensin homolog; it is a tumor suppressor gene that is among the most frequently inactivated genes throughout the human cancer spectrum. The most recent sequencing approaches have allowed the identification of PTEN genomic alterations, including deletion, mutation, or rearrangement in about 50% of prostate cancer (PCa cases. It appears that mechanisms leading to PTEN inactivation are cancer-specific, comprising gene mutations, small insertions/deletions, copy number alterations (CNAs, promoter hypermethylation, and RNA interference. The examination of publicly available results from deep-sequencing studies of various cancers showed that PCa appears to be the only cancer in which PTEN is lost mostly through CNA. Instead of inactivating mutations, which are seen in other cancers, deletion of the 10q23 locus is the most common form of PTEN inactivation in PCa. By investigating the minimal deleted region at 10q23, several other genes appear to be lost simultaneously with PTEN. Expression data indicate that, like PTEN, these genes are also downregulated upon loss of 10q23. These analyses raise the possibility that 10q23 is lost upon selective pressure not only to inactivate PTEN but also to impair the expression of surrounding genes. As such, several genes from this deleted region, which represents about 500 kb, may also act as tumor suppressors in PCa, requiring further studies on their respective functions in that context.

  16. Clinical and molecular consequences of exon 78 deletion in DMD gene.

    Science.gov (United States)

    Traverso, Monica; Assereto, Stefania; Baratto, Serena; Iacomino, Michele; Pedemonte, Marina; Diana, Maria Cristina; Ferretti, Marta; Broda, Paolo; Minetti, Carlo; Gazzerro, Elisabetta; Madia, Francesca; Bruno, Claudio; Zara, Federico; Fiorillo, Chiara

    2018-03-19

    We present a 13-year-old patient with persistent increase of serum Creatine Kinase (CK) and myalgia after exertion. Skeletal muscle biopsy showed marked reduction of dystrophin expression leading to genetic analysis of DMD gene by MLPA, which detected a single deletion of exon 78. To the best of our knowledge, DMD exon 78 deletion has never been described in literature and, according to prediction, it should lead to loss of reading frame in the dystrophin gene. To further assess the actual effect of exon 78 deletion, we analysed cDNA from muscle mRNA. This analysis confirmed the absence of 32 bp of exon 78. Exclusion of exon 78 changes the open reading frame of exon 79 and generate a downstream stop codon, producing a dystrophin protein of 3703 amino acids instead of 3685 amino acids. Albeit loss of reading frame usually leads to protein degradation and severe phenotype, in this case, we demonstrated that deletion of DMD exon 78 can be associated with a functional protein able to bind DGC complex and a very mild phenotype. This study adds a novel deletion in DMD gene in human and helps to define the compliance between maintaining/disrupting the reading frame and clinical form of the disease.

  17. Polymerase chain reaction detection of retinoblastoma gene deletions in paraffin-embedded mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1991-01-01

    A Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene using microtomed sections from paraffin-embedded radiation-induced and spontaneous tumors as the DNA source. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments relative to control PCR products on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death. Spontaneous tumors as well as those from irradiated mice (569 cGy of 60 Co γ rays or 60 cGy of JANUS neutrons) were analyzed. Tumors in six neutron-irradiated mice also had no mRb deletions. However, one of six tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  18. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Directory of Open Access Journals (Sweden)

    Guocai Li

    Full Text Available Neisseria gonorrhoeae (N. gonorrhoeae outer membrane protein reduction modifiable protein (Rmp has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  19. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    Directory of Open Access Journals (Sweden)

    Erin A Gutilla

    2016-01-01

    Full Text Available The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown ofPTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable.

  20. Boyer-Moore Algorithm in Retrieving Deleted Short Message Service in Android Platform

    Science.gov (United States)

    Rahmat, R. F.; Prayoga, D. F.; Gunawan, D.; Sitompul, O. S.

    2018-02-01

    Short message service (SMS) can be used as digital evidence of disclosure of crime because it can strengthen the charges against the offenders. Criminals use various ways to destroy the evidence, including by deleting SMS. On the Android OS, SMS is stored in a SQLite database file. Deletion of SMS data is not followed by bit deletion in memory so that it is possible to rediscover the deleted SMS. Based on this case, the mobile forensic needs to be done to rediscover the short message service. The proposed method in this study is Boyer-Moore algorithm for searching string matching. An auto finds feature is designed to rediscover the short message service by searching using a particular pattern to rematch a text with the result of the hex value conversion in the database file. The system will redisplay the message for each of a match. From all the testing results, the proposed method has quite a high accuracy in rediscovering the short message service using the used dataset. The search results to rediscover the deleted SMS depend on the possibility of overwriting process and the vacuum procedure on the database file.

  1. Expanding the clinical spectrum of chromosome 15q26 terminal deletions associated with IGF-1 resistance.

    Science.gov (United States)

    O'Riordan, Aisling M; McGrath, Niamh; Sharif, Farhana; Murphy, Nuala P; Franklin, Orla; Lynch, Sally Ann; O'Grady, Michael J

    2017-01-01

    Haploinsufficiency of the insulin-like growth factor-1 receptor (IGF1R) gene on chromosome 15q26.3 is associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. Terminal deletions of chromosome 15q26 arising more proximally may also be associated with congenital heart disease, epilepsy, diaphragmatic hernia and renal anomalies. We report three additional cases of 15q26 terminal deletions with novel features which may further expand the spectrum of this rarely reported contiguous gene syndrome. Phenotypic features including neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been reported previously. Similarly, laboratory features of insulin-like growth factor 1 (IGF-1) resistance are described, including markedly elevated IGF-1 of up to +4.7 SDS. In one patient, the elevated IGF-1 declined over time and this coincided with a period of spontaneous growth acceleration. Deletions of 15q26 are a potential risk factor for aortic root dilatation, neonatal lymphedema and aplasia cutis in addition to causing growth restriction. What is Known: • Terminal deletions of chromosome 15q26 are associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. What is New: • Neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been previously described in 15q26 terminal deletions and may represent novel features. • IGF-1 levels may be increased up to 4.7 SDS.

  2. RBPJ is disrupted in a case of proximal 4p deletion syndrome with epilepsy.

    Science.gov (United States)

    Nakayama, Tojo; Saitsu, Hirotomo; Endo, Wakaba; Kikuchi, Atsuo; Uematsu, Mitsugu; Haginoya, Kazuhiro; Hino-fukuyo, Naomi; Kobayashi, Tomoko; Iwasaki, Masaki; Tominaga, Teiji; Kure, Shigeo; Matsumoto, Naomichi

    2014-06-01

    Proximal 4p deletion syndrome is characterized clinically by mental retardation, minor dysmorphic facial features, and is occasionally complicated with epilepsy. More than 20 cases of proximal 4p deletion syndrome have been reported, but the causative gene(s) remain elusive. We describe here a 2-year-old female patient with a common manifestation of proximal 4p deletion syndrome and infantile epileptic encephalopathy possessing a de novo balanced translocation t(4;13)(p15.2;q12.13). The patient was diagnosed as infantile spasms at 9 months of age. She presented with dysmorphic facial features and global developmental delay, compatible with proximal 4p deletion syndrome. Using fluorescence in situ hybridization, we determined the translocation breakpoint at 4p15.2 to be within RBPJ. RBPJ is a transcription factor in the Notch/RBPJ signaling pathway, playing a crucial role in the developing human brain, and particularly telencephalon development. Our findings, combined with those of previous studies, strongly suggest that RBPJ is causative for proximal 4p deletion syndrome and epilepsy in this case. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia.

    Science.gov (United States)

    Tischkowitz, M D; Morgan, N V; Grimwade, D; Eddy, C; Ball, S; Vorechovsky, I; Langabeer, S; Stöger, R; Hodgson, S V; Mathew, C G

    2004-03-01

    Fanconi anemia (FA) is an autosomal recessive chromosomal instability disorder caused by mutations in one of seven known genes (FANCA,C,D2,E,F,G and BRCA2). Mutations in the FANCA gene are the most prevalent, accounting for two-thirds of FA cases. Affected individuals have greatly increased risks of acute myeloid leukemia (AML). This raises the question as to whether inherited or acquired mutations in FA genes might be involved in the development of sporadic AML. Quantitative fluorescent PCR was used to screen archival DNA from sporadic AML cases for FANCA deletions, which account for 40% of FANCA mutations in FA homozygotes. Four heterozygous deletions were found in 101 samples screened, which is 35-fold higher than the expected population frequency for germline FANCA deletions (PFANCA in the AML samples with FANCA deletions did not detect mutations in the second allele and there was no evidence of epigenetic silencing by hypermethylation. However, real-time quantitative PCR analysis in these samples showed reduced expression of FANCA compared to nondeleted AML samples and to controls. These findings suggest that gene deletions and reduced expression of FANCA may be involved in the promotion of genetic instability in a subset of cases of sporadic AML.

  4. Updating the profile of C-terminal MECP2 deletions in Rett syndrome

    Science.gov (United States)

    Bebbington, A; Percy, A; Christodoulou, J; Ravine, D; Ho, G; Jacoby, P; Anderson, A; Pineda, M; Ben Zeev, B; Bahi-Buisson, N; Smeets, E; Leonard, H

    2014-01-01

    Objectives This study aimed to compare the phenotype of Rett syndrome cases with C-terminal deletions to that of cases with different MECP2 mutations and to examine the phenotypic variation within C-terminal deletions. Methods Cases were selected from InterRett, an international database and from the population-based Australian Rett Syndrome Database. Cases (n=832) were included if they had a pathogenic MECP2 mutation in which the nature of the amino acid change was known. Three severity scale systems were used, and individual aspects of the phenotype were also compared. Results Lower severity was associated with C-terminal deletions (n=79) compared to all other MECP2 mutations (e.g. Pineda scale C-terminals mean 15.0 (95% CI 14.0–16.0) vs 16.2 (15.9–16.5). Cases with C-terminal deletions were more likely to have a normal head circumference (odds ratio 3.22, 95% CI 1.53 – 6.79) and weight (odds ratio 2.97, 95% CI 1.25–5.76). Onset of stereotypies tended to be later (median age 2.5 years vs 2 years, pmiddle of the range. In terms of individual aspects of phenotype growth and ability to ambulate appear to be particular strengths. By pooling data internationally this study has achieved the case numbers to provide a phenotypic profile of C-terminal deletions in Rett syndrome. PMID:19914908

  5. A macaque's-eye view of human insertions and deletions: differences in mechanisms.

    Directory of Open Access Journals (Sweden)

    Erika M Kvikstad

    2007-09-01

    Full Text Available Insertions and deletions (indels cause numerous genetic diseases and lead to pronounced evolutionary differences among genomes. The macaque sequences provide an opportunity to gain insights into the mechanisms generating these mutations on a genome-wide scale by establishing the polarity of indels occurring in the human lineage since its divergence from the chimpanzee. Here we apply novel regression techniques and multiscale analyses to demonstrate an extensive regional indel rate variation stemming from local fluctuations in divergence, GC content, male and female recombination rates, proximity to telomeres, and other genomic factors. We find that both replication and, surprisingly, recombination are significantly associated with the occurrence of small indels. Intriguingly, the relative inputs of replication versus recombination differ between insertions and deletions, thus the two types of mutations are likely guided in part by distinct mechanisms. Namely, insertions are more strongly associated with factors linked to recombination, while deletions are mostly associated with replication-related features. Indel as a term misleadingly groups the two types of mutations together by their effect on a sequence alignment. However, here we establish that the correct identification of a small gap as an insertion or a deletion (by use of an outgroup is crucial to determining its mechanism of origin. In addition to providing novel insights into insertion and deletion mutagenesis, these results will assist in gap penalty modeling and eventually lead to more reliable genomic alignments.

  6. Duchenne muscular dystrophy in a female with compound heterozygous contiguous exon deletions.

    Science.gov (United States)

    Takeshita, Eri; Minami, Narihiro; Minami, Kumiko; Suzuki, Mikiya; Awashima, Takeya; Ishiyama, Akihiko; Komaki, Hirofumi; Nishino, Ichizo; Sasaki, Masayuki

    2017-06-01

    Females with Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) mutations rarely exhibit clinical symptoms from childhood, although potential mechanisms for symptoms associated with DMD and BMD in females have been reported. We report the case of a female DMD patient with a clinical course indistinguishable from that of a male DMD patient, and who possessed compound heterozygous contiguous exon deletions in the dystrophin gene. She exhibited Gowers' sign, calf muscle hypertrophy, and a high serum creatine kinase level at 2 years. Her muscle pathology showed most of the fibers were negative for dystrophin immunohistochemical staining. She lost ambulation at 11 years. Multiplex ligation-dependent probe amplification analysis of this gene detected one copy of exons 48-53; she was found to be a BMD carrier with an in-frame deletion. Messenger RNA from her muscle demonstrated out-of-frame deletions of exons 48-50 and 51-53 occurring on separate alleles. Genomic DNA from her lymphocytes demonstrated the accurate deletion region on each allele. To our knowledge, this is the first report on a female patient possessing compound heterozygous contiguous exon deletions in the dystrophin gene, leading to DMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. CDC73 intragenic deletion in familial primary hyperparathyroidism associated with parathyroid carcinoma.

    Science.gov (United States)

    Korpi-Hyövälti, Eeva; Cranston, Treena; Ryhänen, Eeva; Arola, Johanna; Aittomäki, Kristiina; Sane, Timo; Thakker, Rajesh V; Schalin-Jäntti, Camilla

    2014-09-01

    CDC73 mutations frequently underlie the hyperparathyroidism-jaw tumor syndrome, familial isolated hyperparathyroidism (FIHP), and parathyroid carcinoma. It has also been suggested that CDC73 deletion analysis should be performed in those patients without CDC73 mutations. To investigate for CDC73 deletion in a family with FIHP previously reported not to have CDC73 mutations. Eleven members (six affected with primary hyperparathyroidism and five unaffected) were ascertained from the family, and multiplex ligation-dependent probe amplification was performed to detect CDC73 deletion using leukocyte DNA. A previously unreported deletion of CDC73 involving exons 1-10 was detected in five affected members and two unaffected members who were 26 and 39 years of age. Two affected members had parathyroid carcinomas at the ages of 18 and 32 years, and they had Ki-67 proliferation indices of 5 and 14.5% and did not express parafibromin, encoded by CDC73. Primary hyperparathyroidism in the other affected members was due to adenomas and atypical adenomas, and none had jaw tumors. Two affected members had thoracic aortic aneurysms, which in one member occurred with parathyroid carcinoma and renal cysts. A previously unreported intragenic deletion of exons 1 to 10 of CDC73 was detected in a three-generation family with FIHP, due to adenomas, atypical adenomas, and parathyroid carcinomas. In addition, two affected males had thoracic aortic aneurysms, which may represent another associated clinical feature of this disorder.

  8. Osteopathia striata congenita with cranial sclerosis and intellectual disability due to contiguous gene deletions involving the WTX locus

    DEFF Research Database (Denmark)

    Holman, Sk; Morgan, T; Baujat, G

    2013-01-01

    Osteopathia striata congenita with cranial sclerosis (OSCS) is a skeletal dysplasia caused by germline deletions of or truncating point mutations in the X-linked gene WTX (FAM123B, AMER1). Females present with longitudinal striations of sclerotic bone along the long axis of long bones and cranial...... sclerosis, with a high prevalence of cleft palate and hearing loss. Intellectual disability or neurodevelopmental delay is not observed in females with point mutations in WTX leading to OSCS. One female has been described with a deletion spanning multiple neighbouring genes suggesting that deletion of some...... neighbouring loci may result in abnormal neurodevelopment. In this cohort of 13 females with OSCS resulting from deletions of WTX, a relationship is observed where deletion of ARHGEF9 and/or MTMR8 in conjunction with WTX results in an additional neurodevelopmental phenotype whereas deletion of ASB12 along...

  9. MAOA/B deletion syndrome in male siblings with severe developmental delay and sudden loss of muscle tonus.

    Science.gov (United States)

    Saito, Mari; Yamagata, Takanori; Matsumoto, Ayumi; Shiba, Yusuke; Nagashima, Masako; Taniguchi, Shuhei; Jimbo, Eriko; Momoi, Mariko Y

    2014-01-01

    Deletion of the monoamine oxidase (MAO)-A and MAO-B was detected in two male siblings and in their mother. The approximately 800-kb deletion, extending from about 43.0MB to 43.8MB, was detected by array comparative genomic hybridization analysis. The MAOA and MAOB genes were included in the deletion, but the adjacent Norrie disease gene, NDP, was not deleted. The boys had short stature, hypotonia, severe developmental delays, episodes of sudden loss of muscle tone, exiting behavior, lip-smacking and autistic features. The serotonin levels in their cerebrospinal fluid were extremely elevated. Another set of siblings with this deletion was reported previously. We propose recognition of MAOA/B deletion syndrome as a distinct disorder. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  10. Prediction of radiosensitivity of human tumor cell lines in vitro by determining 4977bp deletion in mitochondrial DNA

    International Nuclear Information System (INIS)

    Rong Qinglin; Cao Yongzhen; Zhang Yaowen; Zhao Xinran; Wang Qin; Li Jin; Liu Qiang

    2008-01-01

    Objective: To evaluate the possibility of predicting the radiosensitivity of tumor cell lines using the assay of the mtDNA4977bp deletion. Methods: The mtDNA4977bp deletion of HepG 2 cells and PC-3 cells were detected by nested PCR after irradiated by various doses of x-ray. Results: The radiation-induced mtDNA4977bp deletion of the tumor cell lines of HepG 2 and PC-3 were detected after irradiated. There was a dose dependent in the mtDNA4977bp deletion of two tumor cell lines. The deletion rate of HepG 2 was higher significantly than that of PC-3 at each point of radiation dose (P 2 was higher than that of PC-3. Conclusion: The assay of the mtDNA4977bp deletion may be an approach to predict the radiosensitivity of tumor cells. (authors)

  11. Ire1 mediated mRNA splicing in a C-terminus deletion mutant of Drosophila Xbp1.

    Directory of Open Access Journals (Sweden)

    Dina S Coelho

    Full Text Available The Unfolded Protein Response is a homeostatic mechanism that permits eukaryotic cells to cope with Endoplasmic Reticulum (ER stress caused by excessive accumulation of misfolded proteins in the ER lumen. The more conserved branch of the UPR relies on an ER transmembrane enzyme, Ire1, which, upon ER stress, promotes the unconventional splicing of a small intron from the mRNA encoding the transcription factor Xbp1. In mammals, two specific regions (the hydrophobic region 2--HR2--and the C-terminal translational pausing site present in the Xbp1unspliced protein mediate the recruitment of the Xbp1 mRNA-ribosome-nascent chain complex to the ER membrane, so that Xbp1 mRNA can be spliced by Ire1. Here, we generated a Drosophila Xbp1 deletion mutant (Excision101 lacking both HR2 and C-terminal region, but not the Ire1 splicing site. We show that Ire1-dependent splicing of Xbp1 mRNA is reduced, but not abolished in Excision101. Our results suggest the existence of additional mechanisms for ER membrane targeting of Xbp1 mRNA that are independent of the C-terminal domain of Drosophila Xbp1unspliced.

  12. Three types of preS1 start codon deletion variants in the natural course of chronic hepatitis B infection.

    Science.gov (United States)

    Choe, Won Hyeok; Kim, Hong; Lee, So-Young; Choi, Yu-Min; Kwon, So Young; Moon, Hee Won; Hur, Mina; Kim, Bum-Joon

    2017-12-12

    Naturally occurring hepatitis B virus variants carrying a deletion in the preS1 start codon region may evolve during long-lasting virus-host interactions in chronic hepatitis B (CHB). The aim of this study was to determine the immune phase-specific prevalent patterns of preS1 start codon deletion variants and related factors during the natural course of CHB. A total of 399 CHB patients were enrolled. Genotypic analysis of three different preS1 start codon deletion variants (classified by deletion size: 15-base pair [bp], 18-bp, and 21-bp deletion variants) was performed. PreS1 start codon deletion variants were detected in 155 of 399 patients (38.8%). The predominant variant was a 15-bp deletion in the immune-tolerance phase (18/50, 36%) and an 18-bp deletion in the immune-clearance phase (69/183, 37.7%). A 21-bp deletion was the predominant variant in the low replicative phase (3/25, 12.0%) and reactivated hepatitis Be antigen (HBeAg)-negative phase (22/141, 15.6%). The 15-bp and 18-bp deletion variants were more frequently found in HBeAg-positive patients (P start codon deletion variants changes according to the immune phases of CHB infection, and each variant type is associated with different clinical parameters. PreS1 start codon deletion variants might interact with the host immune response differently according to their variant types. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  13. Interstitial deletion of 5q33.3q35.1 in a boy with severe mental retardation

    OpenAIRE

    Lee, Jin Hwan; Kim, Hyo Jeong; Yoon, Jung Min; Cheon, Eun Jung; Lim, Jae Woo; Ko, Kyong Og; Lee, Gyung Min

    2016-01-01

    Constitutional interstitial deletions of the long arm of chromosome 5 (5q) are quite rare, and the corresponding phenotype is not yet clearly delineated. Severe mental retardation has been described in most patients who present 5q deletions. Specifically, the interstitial deletion of chromosome 5q33.3q35.1, an extremely rare chromosomal aberration, is characterized by mental retardation, developmental delay, and facial dysmorphism. Although the severity of mental retardation varies across cas...

  14. Myeloablation-associated deletion of ORF4 in a human coronavirus 229E infection.

    Science.gov (United States)

    Greninger, Alexander L; Pepper, Gregory; Shean, Ryan C; Cent, Anne; Palileo, Isabel; Kuypers, Jane M; Schiffer, Joshua T; Jerome, Keith R

    2017-01-01

    We describe metagenomic next-generation sequencing (mNGS) of a human coronavirus 229E from a patient with AML and persistent upper respiratory symptoms, who underwent hematopoietic cell transplantation (HCT). mNGS revealed a 548-nucleotide deletion, which comprised the near entirety of the ORF4 gene, and no minor allele variants were detected to suggest a mixed infection. As part of her pre-HCT conditioning regimen, the patient received myeloablative treatment with cyclophosphamide and 12 Gy total body irradiation. Iterative sequencing and RT-PCR confirmation of four respiratory samples over the 4-week peritransplant period revealed that the pre-conditioning strain contained an intact ORF4 gene, while the deletion strain appeared just after conditioning and persisted over a 2.5-week period. This sequence represents one of the largest genomic deletions detected in a human RNA virus and describes large-scale viral mutation associated with myeloablation for HCT.

  15. Allelic deletions of cell growth regulators during progression of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, H; von der Maase, H; Christensen, M

    2000-01-01

    Cell growth regulators include proteins of the p53 pathway encoded by the genes CDKN2A (p16, p14arf), MDM2, TP53, and CDKN1A (p21) as well as proteins encoded by genes like RB1, E2F, and MYCL. In the present study we investigated allelic deletions of all these genes in each recurrent bladder tumor...... difference in the numbers of gene loci hit by deletions muscle-invasive versus noninvasive tumors (P = 0.0000002), with the genes most often hit by deletions in muscle-invasive tumors being TP53, RB1, and MYCL. A number of novel findings were made. Losses of MYCL and RB1 alleles were more pronounced...... that a characteristic difference between recurrent noninvasive and recurrent progressing bladder tumors is loss of cell cycle-regulatory genes in the latter group....

  16. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  17. Double gene deletion reveals the lack of cooperation between PPARα and PPARβ in skeletal muscle

    International Nuclear Information System (INIS)

    Bedu, E.; Desplanches, D.; Pequignot, J.; Bordier, B.; Desvergne, B.

    2007-01-01

    The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPARα and PPARβ isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPARα-/-, PPARβ-/-, and double PPARα-/- β-/- mice. Heart and soleus muscle analyses show that the deletion of PPARα induces a decrease of the HAD activity (β-oxidation) while soleus contractile phenotype remains unchanged. A PPARβ deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPARβ and PPARα functions since double gene deletion PPARα-PPARβ mostly reproduces the null PPARα-mediated reduced β-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPARβ is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPARα in PPARα null mice

  18. Molecular analysis of the Duchenne muscular dystrophy gene in Spanish individuals: Deletion detection and familial diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Patino, A.; Garcia-Delgado, M.; Narbona, J. [Univ. of Navarra, Pamplona (Spain)

    1995-11-06

    Deletion studies were performed in 26 Duchenne muscular dystrophy (DMD) patients through amplification of nine different exons by multiplex polymerase chain reaction (PCR). DNA from paraffin-embedded muscle biopsies was analyzed in 12 of the 26 patients studied. Optimization of this technique is of great utility because it enables analysis of material stored in pathology archives. PCR deletion detection, useful in DMD-affected boys, is problematic in determining the carrier state in female relatives. For this reason, to perform familial linkage diagnosis, we made use of a dinucleotide repeat polymorphism (STRP, or short tandem repeat polymorphism) located in intron 49 of the gene. We designed a new pair of primers that enabled the detection of 22 different alleles in relatives in the 14 DMD families studied. The use of this marker allowed familial diagnosis in 11 of the 14 DMD families and detection of de novo deletions in 3 of the probands. 8 refs., 5 figs., 2 tabs.

  19. Deletion analysis of male sterility effects of t-haplotypes in the mouse.

    Science.gov (United States)

    Bennett, D; Artzt, K

    1990-01-01

    We present data on the effects of three chromosome 17 deletions on transmission ratio distortion (TRD) and sterility of several t-haplotypes. All three deletions have similar effects on male TRD: that is, Tdel/tcomplete genotypes all transmit their t-haplotype in very high proportion. However, each deletion has different effects on sterility of heterozygous males, with TOr/t being fertile, Thp/t less fertile, and TOrl/t still less fertile. These data suggest that wild-type genes on chromosomes homologous to t-haplotypes can be important regulators of both TRD and fertility in males, and that the wild-type genes concerned with TRD and fertility are at least to some extent different. The data also provide a rough map of the positions of these genes.

  20. An extensive deletion causing overproduction of yeast iso-2-cytochrome c

    International Nuclear Information System (INIS)

    McKnight, G.L.; Cardillo, T.S.; Sherman, F.

    1981-01-01

    CYC7-H3 is a cis-dominant regulatory mutation that causes a 20-fold overproduction of yeast iso-2-cytochrome c. The CYC7-H3 mutation is an approximately 5 kb deletion with one breakpoint located in the 5' noncoding region of the CYC7 gene, approximately 200 base from the ATG initiation codon. The deletion apparently fuses a new regulatory region to the structural portion of the CYC7 locus. The CYC7-H3 deletion encompasses the RAD23 locus, which controls UV sensitivity and the ANP1 locus, which controls osmotic sensitivity. The gene cluster CYC7-RAD23-ANP1 displays striking similarity to the gene cluster CYC1-OSM1-RAD7, which controls, respectively, iso-1-cytochrome c, osmotic sensitivity and UV sensitivity. We suggest that these gene clusters are related by an ancient transpositional event

  1. Periventricular heterotopia in a boy with interstitial deletion of chromosome 4p.

    Science.gov (United States)

    Gawlik-Kuklinska, Katarzyna; Wierzba, Jolanta; Wozniak, Agnieszka; Iliszko, Mariola; Debiec-Rychter, Maria; Dubaniewicz-Wybieralska, Miroslawa; Limon, Janusz

    2008-01-01

    We report on a 4-year-old boy with a proximal interstitial deletion in the short arm of chromosome 4p with the karyotype 46,XY,del(4)(p14p15.32),inv(9)(p13q13). For a precise delineation of the deleted region, an array-based comparative genomic hybridization (a-CGH) analysis was performed. The proband's phenotype and cytogenetic findings are compared with previously reported cases with proximal 4p deletion syndrome. The syndrome is associated with normal growth, varying degrees of mental retardation, characteristic facial appearance and minor dysmorphic features. Additionally, our patient developed a seizure disorder due to abnormal neuronal migration, i.e., periventricular heterotopia.

  2. Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data

    KAUST Repository

    Allam, Amin

    2015-07-14

    Motivation: Next-generation sequencing generates large amounts of data affected by errors in the form of substitutions, insertions or deletions of bases. Error correction based on the high-coverage information, typically improves de novo assembly. Most existing tools can correct substitution errors only; some support insertions and deletions, but accuracy in many cases is low. Results: We present Karect, a novel error correction technique based on multiple alignment. Our approach supports substitution, insertion and deletion errors. It can handle non-uniform coverage as well as moderately covered areas of the sequenced genome. Experiments with data from Illumina, 454 FLX and Ion Torrent sequencing machines demonstrate that Karect is more accurate than previous methods, both in terms of correcting individual-bases errors (up to 10% increase in accuracy gain) and post de novo assembly quality (up to 10% increase in NGA50). We also introduce an improved framework for evaluating the quality of error correction.

  3. Exonal deletion of SLC24A4 causes hypomaturation amelogenesis imperfecta.

    Science.gov (United States)

    Seymen, F; Lee, K-E; Tran Le, C G; Yildirim, M; Gencay, K; Lee, Z H; Kim, J-W

    2014-04-01

    Amelogenesis imperfecta is a heterogeneous group of genetic conditions affecting enamel formation. Recently, mutations in solute carrier family 24 member 4 (SLC24A4) have been identified to cause autosomal recessive hypomaturation amelogenesis imperfecta. We recruited a consanguineous family with hypomaturation amelogenesis imperfecta with generalized brown discoloration. Sequencing of the candidate genes identified a 10-kb deletion, including exons 15, 16, and most of the last exon of the SLC24A4 gene. Interestingly, this deletion was caused by homologous recombination between two 354-bp-long homologous sequences located in intron 14 and the 3' UTR. This is the first report of exonal deletion in SLC24A4 providing confirmatory evidence that the function of SLC24A4 in calcium transport has a crucial role in the maturation stage of amelogenesis.

  4. Anterior Pituitary Aplasia in an Infant with Ring Chromosome 18p Deletion

    Directory of Open Access Journals (Sweden)

    Edward J. Bellfield

    2016-01-01

    Full Text Available We present the first reported case of an infant with 18p deletion syndrome with anterior pituitary aplasia secondary to a ring chromosome. Endocrine workup soon after birth was reassuring; however, repeat testing months later confirmed central hypopituitarism. While MRI reading initially indicated no midline defects, subsequent review of the images confirmed anterior pituitary aplasia with ectopic posterior pituitary. This case demonstrates how deletion of genetic material, even if resulting in a chromosomal ring, still results in a severe syndromic phenotype. Furthermore, it demonstrates the necessity of close follow-up in the first year of life for children with 18p deletion syndrome and emphasizes the need to verify radiology impressions if there is any doubt as to the radiologic findings.

  5. Differential DNA methylation at birth associated with mental disorder in individuals with 22q11.2 deletion syndrome

    DEFF Research Database (Denmark)

    Starnawska, A; Hansen, C S; Sparsø, T

    2017-01-01

    Individuals with 22q11.2 deletion syndrome (DS) have an increased risk of comorbid mental disorders including schizophrenia, attention deficit hyperactivity disorder, depression, as well as intellectual disability. Although most 22q11.2 deletion carriers have the long 3-Mb form of the hemizygous...... deletion, there remains a large variation in the development and progression of psychiatric disorders, which suggests that alternative factors contribute to the pathogenesis. In this study we investigated whether neonatal DNA methylation signatures in individuals with the 22q11.2 deletion associate...

  6. The mitochondrial DNA 4,977-bp deletion and its implication in copy number alteration in colorectal cancer

    Science.gov (United States)

    2011-01-01

    Background Qualitative and quantitative changes in human mitochondrial DNA (mtDNA) have been implicated in various cancer types. A 4,977 bp deletion in the major arch of the mitochondrial genome is one of the most common mutations associated with a variety of human diseases and aging. Methods We conducted a comprehensive study on clinical features and mtDNA of 104 colorectal cancer patients in the Wenzhou area of China. In particular, using a quantitative real time PCR method, we analyzed the 4,977 bp deletion and mtDNA content in tumor tissues and paired non-tumor areas from these patients. Results We found that the 4,977 bp deletion was more likely to be present in patients of younger age (≤65 years, p = 0.027). In patients with the 4,977 bp deletion, the deletion level decreased as the cancer stage advanced (p = 0.031). Moreover, mtDNA copy number in tumor tissues of patients with this deletion increased, both compared with that in adjacent non-tumor tissues and with in tumors of patients without the deletion. Such mtDNA content increase correlated with the levels of the 4,977 bp deletion and with cancer stage (p deletion may play a role in the early stage of colorectal cancer, and it is also implicated in alteration of mtDNA content in cancer cells. PMID:21232124

  7. The relationship of the factor V Leiden mutation or the deletion-deletion polymorphism of the angiotensin converting enzyme to postoperative thromboembolic events following total joint arthroplasty

    Directory of Open Access Journals (Sweden)

    Fang Carrie

    2001-04-01

    Full Text Available Abstract Background Although all patients undergoing total joint arthroplasty are subjected to similar risk factors that predispose to thromboembolism, only a subset of patients develop this complication. The objective of this study was to determine whether a specific genetic profile is associated with a higher risk of developing a postoperative thromboembolic complication. Specifically, we examined if the Factor V Leiden (FVL mutation or the deletion polymorphism of the angiotensin-converting enzyme (ACE gene increased a patient's risk for postoperative thromboembolic events. The FVL mutation has been associated with an increased risk of idiopathic thromboembolism and the deletion polymorphism of the ACE gene has been associated with increased vascular tone, attenuated fibrinolysis and increased platelet aggregation. Methods The presence of these genetic profiles was determined for 38 patients who had a postoperative symptomatic pulmonary embolus or proximal deep venous thrombosis and 241 control patients without thrombosis using molecular biological techniques. Results The Factor V Leiden mutation was present in none of the 38 experimental patients and in 3% or 8 of the 241 controls (p = 0.26. Similarly there was no difference detected in the distribution of polymorphisms for the ACE gene with the deletion-deletion genotype present in 36% or 13 of the 38 experimental patients and in 31% or 74 of the 241 controls (p = 0.32. Conclusions Our results suggest that neither of these potentially hypercoaguable states are associated with an increased risk of symptomatic thromboembolic events following total hip or knee arthroplasty in patients receiving pharmacological thromboprophylaxis.

  8. Effect of gamma rays at the dihydrofolate reductase locus: deletions and inversions

    International Nuclear Information System (INIS)

    Urlaub, G.; Mitchell, P.J.; Kas, E.; Chasin, L.A.; Funanage, V.L.; Myoda, T.T.; Hamlin, J.

    1986-01-01

    A series 11 gamma-ray-induced mutants at the dihydrofolate reductase (dhfr) locus in Chinese hamster ovary cells has been examined for the types of DNA sequence change brought about by this form of ionizing radiation. All 11 mutants were found to have suffered major structural changes affecting the dhfr gene. In eight of the mutants, all or part of the dhfr gene has been deleted. The extent of these deletions was examined in seven of these mutants and, for comparison, in two deletion mutants that were induced by UV irradiation. For this purpose, probes from an overlapping set of cosmids that span 210 kb of DNA in this region were used. Three of seven gamma-ray-induced mutants and one UV-induced mutant were shown to have deleted the entire 210-kb region. In the remaining mutants, endpoints ranging from within the dhfr gene to 100 kb downstream were observed. No upstream endpoints were detected, so that an upper limit on the size of these large deletions could not be assigned. Three of the 11 gamma-ray-induced mutants contained an interruption in the dhfr gene without any detectable loss of sequence. Restriction analysis of these interrupted mutants showed that at least 8-14 kb of foreign DNA sequence became joined to the gene at the point of disruption. Cytogenetic analysis of these mutants showed that in two cases an inversion of the banding pattern on chromosome Z-2 had taken place. The inverted dhfr mutants contain very low amounts of dhfr RNA sequences, and the 5' end of an inversion mutant gene exhibits the same pattern of DNA methylation and DNase I-hypersensitivity as the wild-type gene. Our results suggest that ionizing radiation causes primarily, if not exclusively, large deletions and inversions in mammalian cells

  9. 22q11.2 Deletion syndrome is associated with perioperative outcome in tetralogy of Fallot.

    Science.gov (United States)

    Mercer-Rosa, Laura; Pinto, Nelangi; Yang, Wei; Tanel, Ronn; Goldmuntz, Elizabeth

    2013-10-01

    We sought to investigate the impact of 22q11.2 deletion on perioperative outcome in tetralogy of Fallot. We conducted a retrospective review of patients with tetralogy of Fallot who underwent complete surgical reconstruction at The Children's Hospital of Philadelphia between 1995 and 2006. Inclusion criteria included diagnosis of tetralogy of Fallot and known genotype. Fisher exact and Mann-Whitney tests were used for categoric and continuous variables, respectively. Regression analysis was used to determine whether deletion status predicts outcome. We studied 208 subjects with tetralogy of Fallot, 164 (79%) without and 44 (20%) with 22q11.2 deletion syndrome. There were no differences in sex, race, gestational age, age at diagnosis, admission weight, and duration of mechanical ventilation. Presenting anatomy, survival, complications and reoperations were also comparable between patients with and without 22q11.2 deletion syndrome. Those with 22q11.2 deletion syndrome had more aortopulmonary shunts preceding complete surgical repair (21% vs 7%, P = .02). This association was present after adjustment for presenting anatomy (stenosis, atresia, or absence of pulmonary valve and common atrioventricular canal) and surgical era. In addition, those with 22q11.2 deletion syndrome had longer cardiopulmonary bypass time (84 vs 72 minutes, P = .02) and duration of intensive care (6 vs 4 days, P = .007). Genotype affects early operative outcomes in tetralogy of Fallot resulting, in particular, in longer duration of intensive care. Future studies are required to determine factors contributing to such differences in this susceptible population. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  10. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-01-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF 1 mice irradiated with 60 Co γ rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of 60 Co γ rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  11. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus.

    Science.gov (United States)

    Lee, Soo Min; Baik, Jasmine; Nguyen, Dara; Nguyen, Victoria; Liu, Shiwei; Hu, Zhaoyang; Abbott, Geoffrey W

    2017-06-01

    Type 2 diabetes mellitus (T2DM) represents a rapidly increasing threat to global public health. T2DM arises largely from obesity, poor diet, and lack of exercise, but it also involves genetic predisposition. Here we report that the KCNE2 potassium channel transmembrane regulatory subunit is expressed in human and mouse pancreatic β cells. Kcne2 deletion in mice impaired glucose tolerance as early as 5 wk of age in pups fed a Western diet, ultimately causing diabetes. In adult mice fed normal chow, skeletal muscle expression of insulin receptor β and insulin receptor substrate 1 were down-regulated 2-fold by Kcne2 deletion, characteristic of T2DM. Kcne2 deletion also caused extensive pancreatic transcriptome changes consistent with facets of T2DM, including endoplasmic reticulum stress, inflammation, and hyperproliferation. Kcne2 deletion impaired β-cell insulin secretion in vitro up to 8-fold and diminished β-cell peak outward K + current at positive membrane potentials, but also left-shifted its voltage dependence and slowed inactivation. Interestingly, we also observed an aging-dependent reduction in β-cell outward currents in both Kcne2 +/+ and Kcne2 - / - mice. Our results demonstrate that KCNE2 is required for normal β-cell electrical activity and insulin secretion, and that Kcne2 deletion causes T2DM. KCNE2 may regulate multiple K + channels in β cells, including the T2DM-linked KCNQ1 potassium channel α subunit.-Lee, S. M., Baik, J., Nguyen, D., Nguyen, V., Liu, S., Hu, Z., Abbott, G. W. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus. © FASEB.

  12. Association between F508 deletion in CFTR and chronic pancreatitis risk.

    Science.gov (United States)

    Zhao, Dong; Xu, Yanzhen; Li, Jiatong; Fu, Shien; Xiao, Feifan; Song, Xiaowei; Xie, Zhibin; Jiang, Min; He, Yan; Liu, Chengwu; Wen, Qiongxian; Yang, Xiaoli

    2017-09-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) has been reported to influence individual susceptibility to chronic pancreatitis (CP), but the results of previous studies are controversial. We performed a study to demonstrate the relationship between CFTR and CP. We searched PubMed, Scopus, and Embase for studies of patients with CP. Seven studies from 1995 to 2016 were identified, and included 64,832 patients. Pooled prevalence and 95% confidence intervals (CIs) were calculated. F508 deletion in CFTR was significantly positively associated with CP risk in the overall analysis (odds ratio [OR]=3.20, 95% CI: 2.30-4.44, I 2 =31.7%). In subgroup analysis stratified by ethnicity, F508 deletion was significantly associated with CP risk in Indian populations, using a fixed effects model (ORs=5.45, 95% CI: 2.52-11.79, I 2 =0.0%), and in non-Indian populations, using a random effects model (ORs=3.59, 95% CI: 1.73-7.48, I 2 =60.9%). At the same time, we found that Indians with F508 deletion had much higher CP prevalence than non-Indians. Interestingly, F508 deletion was also associated with CP and idiopathic CP risk in subgroup analysis stratified by aeitiology, using the fixed effects model. Based on current evidence, F508 deletion is a risk factor for CP, and Indians with F508 deletion have much higher CP morbidity. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  13. Radiosensitivity evaluation of Human tumor cell lines by detecting 4977bp deletion in mitochondrial DNA

    International Nuclear Information System (INIS)

    Zhang Yipei

    2009-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using the assay of mtDNA4977bp deletion. Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction(SF), the ratio of mtDNA4977bp deletion and DNA damage were detected by MTT assay and nested PCR technique respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4and 8Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. PCR method:The differences on mtDNA 4977bp deletion in mitochondrial DNA among HepG 2 , EC-9706 and MCF-7 were not significant after 1Gy and 4Gy γ-ray irradiation. The ratio of 4977bp deletion in mitochondrial DNA of HepG 2 and EC-9706 increased while that of MCF-7 decreased after 8Gy irradiation. The ratio of mtDNA 4977bp deletion of HepG 2 and EC-9706 was higher significantly than that of MCF-7, which implies that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF -7. Conclusion: As a new biological marker, mtDNA4977bp deletion may be hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  14. Contaminated Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Sites contaminated by hazardous materials or wastes. These sites are those administered by the Contaminated Sites Section of Iowa DNR. Many are sites which are...

  15. 22q11.2 deletion carriers and schizophrenia-associated novel variants.

    Science.gov (United States)

    Balan, S; Iwayama, Y; Toyota, T; Toyoshima, M; Maekawa, M; Yoshikawa, T

    2014-01-01

    The penetrance of schizophrenia risk in carriers of the 22q11.2 deletion is high but incomplete, suggesting the possibility of additional genetic defects. We performed whole exome sequencing on two individuals with 22q11.2 deletion, one with schizophrenia and the other who was psychosis-free. The results revealed novel genetic variants related to neuronal function exclusively in the person with schizophrenia (frameshift: KAT8, APOH and SNX31; nonsense: EFCAB11 and CLVS2). This study paves the way towards a more complete understanding of variant dose and genetic architecture in schizophrenia.

  16. Frontonasal malformation with tetralogy of Fallot associated with a submicroscopic deletion of 22q11

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, R.F. [South Texas Genetics Center, San Antonio, TX (United States); Payne, R.M. [Central Texas Genetics Center, Austin, TX (United States)

    1997-03-31

    We report on a 14-month-old girl with bifid nasal tip and tetralogy of Fallot. Several similar patients have been described with CNS or eye abnormalities. Chromosome analysis with FISH, using Oncor DiGeorge probes, confirmed a submicroscopic deletion of 22q11. Many patients with Shprintzen (velo-cardio-facial) syndrome have a similar deletion with conotruncal cardiac defects and an abnormal nasal shape, suggesting that a gene in this area, possibly affecting neural crest cells, influences facial and other midline development. 13 refs., 1 fig.

  17. Altered auditory processing and effective connectivity in 22q11.2 deletion syndrome

    DEFF Research Database (Denmark)

    Larsen, Kit Melissa; Mørup, Morten; Birknow, Michelle Rosgaard

    2018-01-01

    . Mismatch negativity (MMN), a brain marker of change detection, is reduced in people with schizophrenia compared to healthy controls. Using dynamic causal modelling (DCM), previous studies showed that top-down effective connectivity linking the frontal and temporal cortex is reduced in schizophrenia......11.2 deletion carriers. DCM showed reduced intrinsic connection within right primary auditory cortex as well as in the top-down, connection from the right inferior frontal gyrus to right superior temporal gyrus for 22q11.2 deletion carriers although not surviving correction for multiple comparison...

  18. Induction of DNA deletions after UV-light irradiation in yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stepanova, A.N.; Koltovaya, N.A.

    2008-01-01

    We study mutagenic action of such a damaging agent as UV light, which can lead to DNA double-strand breaks (DSB). DNA deletions and gross rearrangements occur in process of DSB repair. We show that UV light induces deletion and rearrangement very efficiently. Analysis of efficacy of different types of repair shows that cell tries to repair DSBs with a combination of both homologous recombination (HR) and nonhomologous end joining (NHEJ) if available and that DSB repair by HR is more effective than by NHEJ in growing culture of haploid yeast

  19. Exon Deletion Pattern in Duchene Muscular Dystrophy in North West of Iran

    OpenAIRE

    BARZEGAR, Mohammad; HABIBI, Parinaz; BONYADY, Mortaza; TOPCHIZADEH, Vahideh; SHIVA, Shadi

    2015-01-01

    How to Cite This Article: Barzegar M, Habibi P, Bonyady M, Topchizadeh V, Shiva Sh. Exon Deletion Pattern in Duchene Muscular Dystrophy in North West of Iran. Iran J Child Neurol. 2015 Winter; 9(1): 42-48.AbstractObjectiveDuchene and Becker Muscular Dystrophy (DMD/ BMD) are x-linked disorders that both are the result of heterogeneous mutations in the dystrophin gene. The frequency and distribution of dystrophin gene deletions in DMD/ BMD patients show different patterns among different popula...

  20. Sensitivity to Lovastatin of Saccharomyces cerevisiae Strains Deleted for Pleiotropic Drug Resistance (PDR) Genes

    DEFF Research Database (Denmark)

    Formenti, Luca Riccardo; Kielland-Brandt, Morten

    2011-01-01

    The use of statins is well established in human therapy, and model organisms such as Saccharomyces cerevisiae are commonly used in studies of drug action at molecular and cellular levels. The investigation of the resistance mechanisms towards statins may suggest new approaches to improve therapy...... based on the use of statins. We investigated the susceptibility to lovastatin of S. cerevisiae strains deleted for PDR genes, responsible for exporting hydrophobic and amphi-philic drugs, such as lovastatin. Strains deleted for the genes tested, PDR1, PDR3, PDR5 and SNQ2, exhibited remarkably different...

  1. A heterozygous 21-bp deletion in CAPN3 causes dominantly inherited limb girdle muscular dystrophy

    DEFF Research Database (Denmark)

    Vissing, John; Barresi, Rita; Witting, Nanna

    2016-01-01

    screening. In this investigation, we report 37 individuals (age range: 21-85 years, 21 females and 16 males) from 10 families in whom only one mutation in CAPN3 could be identified; a 21-bp, in-frame deletion (c.643_663del21). This mutation co-segregated with evidence of muscle disease and autosomal...... not affect mRNA maturation. Calpain 3 expression in muscle, assessed by western blot, was below 15% of normal levels in the nine mutation carriers in whom this could be tested. Haplotype analysis in four families from three different countries suggests that the 21-bp deletion is a founder mutation...

  2. VIP Gene Deletion in Mice Causes Cardiomyopathy Associated with Upregulation of Heart Failure Genes

    Energy Technology Data Exchange (ETDEWEB)

    Szema, Anthony M.; Hamidi, Sayyed A.; Smith, S. David; Benveniste, Helene; Katare, Rajesh Gopalrao

    2013-05-20

    Vasoactive Intestinal Peptide (VIP), a pulmonary vasodilator and inhibitor of vascular smooth muscle proliferation, is absent in pulmonary arteries of patients with idiopathic pulmonary arterial hypertension (PAH). We previously determined that targeted deletion of the VIP gene in mice leads to PAH with pulmonary vascular remodeling and right ventricular (RV) dilatation. Whether the left ventricle is also affected by VIP gene deletion is unknown. In the current study, we examined if VIP knockout mice (VIP-/-) develop both right (RV) and left ventricular (LV) cardiomyopathy, manifested by LV dilatation and systolic dysfunction, as well as overexpression of genes conducive to heart failure.

  3. Altered Na+ transport after an intracellular alpha-subunit deletion reveals strict external sequential release of Na+ from the Na/K pump.

    Science.gov (United States)

    Yaragatupalli, Siddhartha; Olivera, J Fernando; Gatto, Craig; Artigas, Pablo

    2009-09-08

    The Na/K pump actively exports 3 Na(+) in exchange for 2 K(+) across the plasmalemma of animal cells. As in other P-type ATPases, pump function is more effective when the relative affinity for transported ions is altered as the ion binding sites alternate between opposite sides of the membrane. Deletion of the five C-terminal residues from the alpha-subunit diminishes internal Na(+) (Na(i)(+)) affinity approximately 25-fold [Morth et al. (2007) Nature 450:1043-1049]. Because external Na(+) (Na(o)(+)) binding is voltage-dependent, we studied the reactions involving this process by using two-electrode and inside-out patch voltage clamp in normal and truncated (DeltaKESYY) Xenopus-alpha1 pumps expressed in oocytes. We observed that DeltaKESYY (i) decreased both Na(o)(+) and Na(i)(+) apparent affinities in the absence of K(o)(+), and (ii) did not affect apparent Na(o)(+) affinity at high K(o)(+). These results support a model of strict sequential external release of Na(+) ions, where the Na(+)-exclusive site releases Na(+) before the sites shared with K(+) and the DeltaKESYY deletion only reduces Na(o)(+) affinity at the shared sites. Moreover, at nonsaturating K(o)(+), DeltaKESYY induced an inward flow of Na(+) through Na/K pumps at negative potentials. Guanidinium(+) can also permeate truncated pumps, whereas N-methyl-D-glucamine cannot. Because guanidinium(o)(+) can also traverse normal Na/K pumps in the absence of both Na(o)(+) and K(o)(+) and can also inhibit Na/K pump currents in a Na(+)-like voltage-dependent manner, we conclude that the normal pathway transited by the first externally released Na(+) is large enough to accommodate guanidinium(+).

  4. Molecular Modeling of the Major DNA Adduct Formed from Food Mutagen Ochratoxin A in NarI Two-Base Deletion Duplexes: Impact of Sequence Context and Adduct Ionization on Conformational Preference and Mutagenicity.

    Science.gov (United States)

    Kathuria, Preetleen; Sharma, Purshotam; Manderville, Richard A; Wetmore, Stacey D

    2017-08-21

    Exposure to ochratoxin A (OTA), a possible human carcinogen, leads to many different DNA mutations. As a first step toward understanding the structural basis of OTA-induced mutagenicity, the present work uses a robust computational approach and a slipped mutagenic intermediate model previously studied for C 8 -dG aromatic amine adducts to analyze the conformational features of postreplication two-base deletion DNA duplexes containing OT-dG, the major OTA lesion at the C 8 position of guanine. Specifically, a total of 960 ns of molecular dynamics simulations (excluding trial simulations) were carried out on four OT-dG ionization states in three sequence contexts within oligomers containing the NarI recognition sequence, a known hotspot for deletion mutations induced by related adducts formed from known carcinogens. Our results indicate that the structural properties and relative stability of the competing "major groove" and "stacked" conformations of OTA adducted two-base deletion duplexes depend on both the OTA ionization state and the sequence context, mainly due to conformation-dependent deviations in discrete local (hydrogen-bonding and stacking) interactions at the lesion site, as well as DNA bending. When the structural characteristics of the OT-dG adducted two-base deletion duplexes are compared to those associated with previously studied C 8 -dG adducts, a greater understanding of the effects of the nucleobase-carcinogen linkage, and size of the carcinogenic moiety on the conformational preferences of damaged DNA is obtained. Most importantly, our work predicts key structural features for OT-dG-adducted deletion DNA duplexes, which in turn allow us to develop hypotheses regarding OT-dG replication outcomes. Thus, our computational results are valuable for the design and interpretation of future biochemical studies on the potentially carcinogenic OT-dG lesion.

  5. The role of the lysyl binding site of tissue-type plasminogen activator in the interaction with a forming fibrin clot

    NARCIS (Netherlands)

    Bakker, A.H.F.; Weening-Verhoeff, E.J.D.; Verheijen, J.H.

    1995-01-01

    To describe the role of the lysyl binding site in the interaction of tissue-type plasminogen activator (t-PA, FGK1K2P) with a forming fibrin clot, we performed binding experiments with domain deletion mutants GK1K2P, K2P, and the corresponding point mutants lacking the lysyl binding site in the

  6. Multi-species sequence comparison reveals dynamic evolution of the elastin gene that has involved purifying selection and lineage-specific insertions/deletions

    Directory of Open Access Journals (Sweden)

    Green Eric D

    2004-05-01

    Full Text Available Abstract Background The elastin gene (ELN is implicated as a factor in both supravalvular aortic stenosis (SVAS and Williams Beuren Syndrome (WBS, two diseases involving pronounced complications in mental or physical development. Although the complete spectrum of functional roles of the processed gene product remains to be established, these roles are inferred to be analogous in human and mouse. This view is supported by genomic sequence comparison, in which there are no large-scale differences in the ~1.8 Mb sequence block encompassing the common region deleted in WBS, with the exception of an overall reversed physical orientation between human and mouse. Results Conserved synteny around ELN does not translate to a high level of conservation in the gene itself. In fact, ELN orthologs in mammals show more sequence divergence than expected for a gene with a critical role in development. The pattern of divergence is non-conventional due to an unusually high ratio of gaps to substitutions. Specifically, multi-sequence alignments of eight mammalian sequences reveal numerous non-aligning regions caused by species-specific insertions and deletions, in spite of the fact that the vast majority of aligning sites appear to be conserved and undergoing purifying selection. Conclusions The pattern of lineage-specific, in-frame insertions/deletions in the coding exons of ELN orthologous genes is unusual and has led to unique features of the gene in each lineage. These differences may indicate that the gene has a slightly different functional mechanism in mammalian lineages, or that the corresponding regions are functionally inert. Identified regions that undergo purifying selection reflect a functional importance associated with evolutionary pressure to retain those features.

  7. Identification of the heart as the critical site of adenosine mediated embryo protection

    Directory of Open Access Journals (Sweden)

    Greene Robert W

    2010-05-01

    Full Text Available Abstract Background Our understanding of the mechanisms that protect the developing embryo from intrauterine stress is limited. Recently, adenosine has been demonstrated to play a critical role in protecting the embryo against hypoxia via adenosine A1 receptors (A1ARs, which are expressed in the heart, nervous system, and other sites during development. However, the sites of A1AR action that mediate embryo protection are not known. To determine if the heart is a key site of adenosine-mediated embryo protection, A1ARs were selectively deleted in the embryonic heart using a Cre-LoxP system in which the alpha-myosin heavy chain promoter drives Cre-recombinase expression and excision of the A1AR gene from cardiomyocytes. Results With increasing exposure of maternal hypoxia (10% O2 from 48-96 hours beginning at embryonic day (E 8.5, embryo viability decreased in the cardiac-A1AR deleted embryos. 48 hours of hypoxia reduced embryonic viability by 49% in embryos exposed from E10.5-12.5 but no effect on viability was observed in younger embryos exposed to hypoxia from E8.5-10.5. After 72 hours of hypoxia, 57.8% of the cardiac-A1AR deleted embryos were either dead or re-absorbed compared to 13.7% of control littermates and after 96 hours 81.6% of cardiac-A1AR deleted embryos were dead or re-absorbed. After 72 hours of hypoxia, cardiac size was reduced significantly more in the cardiac-A1AR deleted hearts compared to controls. Gene expression analysis revealed clusters of genes that are regulated by both hypoxia and A1AR expression. Conclusions These data identify the embryonic heart as the critical site where adenosine acts to protect the embryo against hypoxia. As such these studies identify a previously unrecognized mechanism of embryo protection.

  8. Relationship between the functional exon 3 deleted growth hormone receptor polymorphism and symptomatic osteoarthritis in women

    NARCIS (Netherlands)

    Claessen, K. M. J. A.; Kloppenburg, M.; Kroon, H. M.; Bijsterbosch, J.; Pereira, A. M.; Romijn, J. A.; van der Straaten, T.; Nelissen, R. G. H. H.; Hofman, A.; Uitterlinden, A. G.; Duijnisveld, B. J.; Lakenberg, N.; Beekman, M.; van Meurs, J. B.; Slagboom, P. E.; Biermasz, N. R.; Meulenbelt, I.

    2014-01-01

    Background Several studies suggest a role of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in the pathophysiology of primary osteoarthritis (OA). A common polymorphism of the GH receptor (exon 3 deletion, d3-GHR) is associated with increased GH/IGF-1 activity. Objective To study

  9. The exon-3 deleted growth hormone receptor polymorphism predisposes to long-term complications of acromegaly

    NARCIS (Netherlands)

    Wassenaar, M. J. E.; Biermasz, N. R.; Pereira, A. M.; van der Klaauw, A. A.; Smit, J. W. A.; Roelfsema, F.; van der Straaten, T.; Cazemier, M.; Hommes, D. W.; Kroon, H. M.; Kloppenburg, M.; Guchelaar, H.-J.; Romijn, J. A.

    2009-01-01

    The aim of the study was to evaluate the impact of the genomic deletion of exon 3 of the GH receptor (d3GHR) on long-term clinical outcome of acromegaly in a well-characterized cohort of patients with long-term remission of acromegaly. We conducted a cross-sectional study. The presence of the d3GHR

  10. Deletion of short arm of chromosome 18, Del(18p syndrome

    Directory of Open Access Journals (Sweden)

    Prashant Babaji

    2014-01-01

    Full Text Available Deletion of the short arm of chromosome 18 is a rare syndrome clinically presenting with variable mental retardation, growth retardation, low height, pectus excavatum, craniofacial malformations including long ear, ptosis, microcephaly and short neck. This case report presents with characteristic features along with rare feature of single nostril.

  11. Association of the UCP2 45-bp insertion/deletion polymorphism with ...

    African Journals Online (AJOL)

    Uncoupling protein-2 (UCP2) regulates insulin secretion and may play an important role in linking obesity to diabetes type 2 (T2D) that represents a major public health problem in Saudi Arabia. The present study aimed to evaluate the association between the 45-bp insertion/deletion (ins/del) in 3'UTR exon 8 within the ...

  12. Deletion of 1p36 as a primary chromosomal aberration in intestinal tumorigenesis

    DEFF Research Database (Denmark)

    Bardi, G; Pandis, N; Fenger, C

    1993-01-01

    rearrangements were found that led to loss of genetic material from 1p. In three of the cases, the deletion was restricted to the 1p36 band; the rest had lost larger 1p segments. The rearrangement of chromosome 1 was the sole karyotypic anomaly in three adenomas, all with mild or moderate dysplasia...

  13. Subtypes in 22q11.2 Deletion Syndrome Associated with Behaviour and Neurofacial Morphology

    Science.gov (United States)

    Sinderberry, Brooke; Brown, Scott; Hammond, Peter; Stevens, Angela F.; Schall, Ulrich; Murphy, Declan G. M.; Murphy, Kieran C.; Campbell, Linda E.

    2013-01-01

    22q11.2 deletion syndrome (22q11DS) has a complex phenotype with more than 180 characteristics, including cardiac anomalies, cleft palate, intellectual disabilities, a typical facial morphology, and mental health problems. However, the variable phenotype makes it difficult to predict clinical outcome, such as the high prevalence of psychosis among…

  14. A Nonverbal Phoneme Deletion Task Administered in a Dynamic Assessment Format

    Science.gov (United States)

    Gillam, Sandra Laing; Fargo, Jamison; Foley, Beth; Olszewski, Abbie

    2011-01-01

    Purpose: The purpose of the project was to design a nonverbal dynamic assessment of phoneme deletion that may prove useful with individuals who demonstrate complex communication needs (CCN) and are unable to communicate using natural speech or who present with moderate-severe speech impairments. Method: A nonverbal dynamic assessment of phoneme…

  15. Base substitutions, frameshifts, and small deletions constitute ionizing radiation-induced point mutations in mammalian cells

    International Nuclear Information System (INIS)

    Grosovsky, A.J.; de Boer, J.G.; de Jong, P.J.; Drobetsky, E.A.; Glickman, B.W.

    1988-01-01

    The relative role of point mutations and large genomic rearrangements in ionizing radiation-induced mutagenesis has been an issue of long-standing interest. Recent studies using Southern blotting analysis permit the partitioning of ionizing radiation-induced mutagenesis in mammalian cells into detectable deletions and major genomic rearrangements and into point mutations. The molecular nature of these point mutations has been left unresolved; they may include base substitutions as well as small deletions, insertions, and frame-shifts below the level of resolution of Southern blotting analysis. In this investigation, we have characterized a collection of ionizing radiation-induced point mutations at the endogenous adenine phosphoribosyltransferase (aprt) locus of Chinese hamster ovary cells at the DNA sequence level. Base substitutions represented approximately equal to 2/3 of the point mutations analyzed. Although the collection of mutants is relatively small, every possible type of base substitution event has been recovered. These mutations are well distributed throughout the coding sequence with only one multiple occurrence. Small deletions represented the remainder of characterized mutants; no insertions have been observed. Sequence-directed mechanisms mediated by direct repeats could account for some of the observed deletions, while others appear to be directly attributable to radiation-induced strand breakage

  16. Supporting Children with Genetic Syndromes in the Classroom: The Example of 22q Deletion Syndrome

    Science.gov (United States)

    Reilly, Colin; Stedman, Lindsey

    2013-01-01

    An increasing number of children are likely to have a known genetic cause for their special educational needs. One such genetic condition is 22q11.2 deletion syndrome (22qDS), a genetic syndrome associated with early speech and language difficulties, global and specific cognitive impairments, difficulties with attention and difficulties with…

  17. A recombinant E1-deleted porcine adenovirus-3 as an expression vector

    International Nuclear Information System (INIS)

    Zakhartchouk, Alexander; Zhou Yan; Tikoo, Suresh Kumar

    2003-01-01

    Replication-defective E1-deleted porcine adenoviruses (PAVs) are attractive vectors for vaccination. As a prerequisite for generating PAV-3 vectors containing complete deletion of E1, we transfected VIDO R1 cells (fetal porcine retina cells transformed with E1 region of human adenovirus 5) with a construct containing PAV-3 E1B large coding sequences under the control of HCMV promoter. A cell line named VR1BL could be isolated that expressed E1B large of PAV-3 and also complemented PAV214 (E1A+E1B small deleted). The VR1BL cells could be efficiently transfected with DNA and allowed the rescue and propagation of recombinant PAV507 containing a triple stop codon inserted in the E1B large coding sequence. In addition, recombinant PAV227 containing complete deletion of E1 (E1A+E1B small + E1B large ) could be successfully rescued using VR1BL cell line. Recombinant PAV227 replicated as efficiently as wild-type in VR1BL cells but not in VIDO R1 cells, suggesting that E1B large was essential for replication of PAV-3. Next, we constructed recombinant PAV219 by inserting green fluorescent (GFP) protein gene flanked by a promoter and a poly(A) in the E1 region of the PAV227 genome. We demonstrated that PAV219 was able to transduce and direct expression of GFP in some human cell lines

  18. A girl with cutaneous hyperpigmentation, cafe au lait spots and ring chromosome 15 without significant deletion.

    NARCIS (Netherlands)

    Morava, E.; Bartsch, O.; Czako, M.; Frensel, A.; Karteszi, J.; Kosztolanyi, G.Y.

    2003-01-01

    Ring chromosome 15 [r(15)] syndrome is characterised by specific facial features, cafe au lait spots, failure to thrive, mental retardation and typically with a terminal deletion of the long arm of chromosome 15. We report a 2.5 year old girl showing normal growth and development, large

  19. Exon-disrupting deletions of NRXN1 in idiopathic generalized epilepsy

    DEFF Research Database (Denmark)

    Møller, Rikke S; Weber, Yvonne G; Klitten, Laura L

    2013-01-01

    Neurexins are neuronal adhesion molecules located in the presynaptic terminal, where they interact with postsynaptic neuroligins to form a transsynaptic complex required for efficient neurotransmission in the brain. Recently, deletions and point mutations of the neurexin 1 (NRXN1) gene have been ...

  20. Genomic deletions in OPA1 in Danish patients with autosomal dominant optic atrophy

    DEFF Research Database (Denmark)

    Almind, Gitte J; Grønskov, Karen; Milea, Dan

    2011-01-01

    Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy. Mutations in OPA1 located at chromosome 3q28 are the predominant cause for ADOA explaining between 32 and 89% of cases. Although deletions of OPA1 were recently reported...