WorldWideScience

Sample records for omnitron

  1. The 'model omnitron' proposed experiment

    International Nuclear Information System (INIS)

    Sestero, A.

    1997-05-01

    The Model Omitron is a compact tokamak experiment which is designed by the Fusion Engineering Unit of ENEA and CITIF CONSORTIUM. The building of Model Omitron would allow for full testing of Omitron engineering, and partial testing of Omitron physics -at about 1/20 of the cost that has been estimated for the larger parent machine. In particular, due to the unusually large ohmic power densities (up to 100 times the nominal value in the Frascati FTU experiment), in Model Omitron the radial energy flux is reaching values comparable or higher than envisaged of the larger ignition experiments Omitron, Ignitor and Iter. Consequently, conditions are expected to occur at the plasma border in the scrape-off layer of Model Omitron, which are representative of the quoted larger experiments. Moreover, since all this will occur under ohmic heating alone, one will hopefully be able to derive an energy transport model fo the ohmic heating regime that is valid over a range of plasma parameters (in particular, of the temperature parameter) wider than it was possible before. In the Model Omitron experiment, finally - by reducing the plasma current and/or the toroidal field down to, say, 1/3 or 1/4 of the nominal values -additional topics can be tackled, such as: large safety-factor configurations (of interest for improving confinement), large aspect-ratio configurations (of interest for the investigation of advanced concepts in tokamaks), high beta (with RF heating -also of interest for the investigation of advanced concepts in tokamaks), long pulse discharges (of interest for demonstrating stationary conditions in the current profile)

  2. Loss of an iridium-192 source and therapy misadministration at Indiana Regional Cancer Center, Indiana, Pennsylvania, on November 16, 1992

    International Nuclear Information System (INIS)

    1993-02-01

    On December 1, 1992, the Indiana Regional Cancer Center reported to the US Nuclear Regulatory Commission's (NRC) Region I that they believed a 1.37 E + 11 becquerel (3.7-curie) iridium-192 source from their Omnitron 2000 high dose rate remote brachytherapy afterloader had been found at a biohazard waste transfer station in Carnegie, Pennsylvania. After notifying the NRC, this cancer center, one of several operated by the licensee, Oncology Services Corporation, retrieved the source, and Region I dispatched an inspector and a supervisor to investigate the event. The source was first detected when it triggered radiation alarms at a waste incinerator facility in. Warren, Ohio. The licensee informed the NRC that the source wire had apparently broken during treatment of a patient on November 16, 1992, leaving the source in the patient. On the basis of the seriousness of the incident, the NRC elevated its response to an Incident Investigation. The Incident Investigation Team initiated its investigation on December 3, 1992. The investigation team concluded that the patient received a serious misadministration and died on November 21, 1992, and that over 90 individuals were exposed to radiation from November 16 to December 1, 1992. In a press release dated January 26, 1993, the Indiana County Coroner stated that the cause of death listed in the official autopsy report was ''Acute Radiational Exposure and Consequences Thereof'' An almost identical source wire failure occurred with an afterloader in Pittsburgh, Pennsylvania, on December 7, 1992, but with minimal radiological consequences. This incident was included in the investigation. This report discusses the Omnitron 2000 high dose rate afterloader source-wire failure, the reasons why the failure was not detected by Indiana Regional Cancer Center, the potential consequences to the patient, the estimated radiological doses to workers and the public, and regulatory aspects associated with this incident

  3. High dose rate brachytherapy for the treatment of soft tissue sarcoma of the extremity

    International Nuclear Information System (INIS)

    Speight, J.L.; Streeter, O.E.; Chawla, S.; Menendez, L.E.

    1996-01-01

    Purpose: we examined the role of preoperative neoadjuvant chemoradiation and adjuvant high-dose rate brachytherapy on the management of prognostically unfavorable soft tissue sarcomas of the extremities. Our goal was to examine the effect of high dose rate interstitial brachytherapy (HDR IBT) on reducing the risk of local recurrence following limb-sparing resection, as well as shortening treatment duration. Materials and methods: eleven patients, ranging in age from 31 to 73 years old, with soft tissue sarcoma of the extremity were treated at USC/Norris Comprehensive Cancer Center during 1994 and 1995. All patients had biopsy proven soft tissue sarcoma, and all were suitable candidates for limb-sparing surgery. All lesions were greater than 5cm in size and were primarily high grade. Tumor histologies included malignant fibrous histiocytoma (45%), liposarcoma (18%) and leiomyosarcoma, synovial cell sarcoma and spindle cell sarcoma (36%). Sites of tumor origin were the lower extremity (55%), upper extremity (18%) and buttock (9%), 1 patient (9%) had lesions in both the upper and lower extremity. Patients received HDR IBT following combined chemotherapy and external beam irradiation (EBRT) and en bloc resection of the sarcoma. Neoadjuvant chemotherapy consisted of three to four cycles of either Ifosfamide/Mesna with or without Adriamycin, or Mesna, Adriamycin, Ifosfamide and Dacarbazine. One patient received Cis-platin in addition to Ifos/Adr. A minimum of two cycles of chemotherapy were administered prior to EBRT. Additional cycles of chemotherapy were completed concurrently with EBRT but prior to HDR IBT. Preoperative EBRT doses ranging from 40 to 59.4 Gy were given in daily fractions of 180 to 200cGy. Following en bloc resection, HDR IBT was administered using the Omnitron tm 2000 remote afterloading system. Doses ranging from 13 to 30 Gy were delivered to the surgical tumor bed at depths of 0.5mm to 0.75mm from the radioactive source. Results: median follow-up was