WorldWideScience

Sample records for omnitron

  1. Heavy ion facilities and heavy ion research at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-10-01

    Lawrence Berkeley Laboratory has been heavily involved since 1956 in the construction and adaptation of particle accelerators for the acceleration of heavy ions. At the present time it has the most extensive group of accelerators with heavy-ion capability in the United States: The SuperHILAC, the 88-Inch Cyclotron, and the Bevatron/Bevalac. An extensive heavy-ion program in nuclear and particle physics, in nuclear chemistry, and in the study of biological effects of heavy-ion irradiations has been supported in the past; and the Laboratory has a strong interest in expanding both its capabilities for heavy-ion acceleration and its participation in heavy-ion science. The first heavy-ion accelerator at LBL was the HILAC, which began operation in 1957. A vigorous program of research with ion beams of masses 4 through 40 began at that time and continued until the machine was shut down for modifications in February 1971. At that time, a grant of $3 M had been received from the AEC for a total reconstruction of the HILAC, to turn it into an upgraded accelerator, the SuperHILAC. This new machine is designed for the acceleration of all ions through uranium to an energy of 8.5 MeV/u. The SuperHILAC is equipped with two injectors. The lower energy injector, a 750-kV Cockcroft-Walton machine, was put into service in late 1972 for acceleration of ions up through {sup 40}Ar. By spring of 1973, operation of the SuperHILAC with this injector exceeded the performance of the original HILAC. The second injector, a 2.5-MV Dynamitron, was originally designed for the Omnitron project and built with $1 M of Omnitron R and D funds. Commissioning of this injector began in 1973 and proceeded to the point where nanoampere beams of krypton were available for a series of research studies in May and June. The first publishable new results with beams heavier than {sup 40}Ar were obtained at that time. Debugging and injector improvement projects will continue in FY 74.