WorldWideScience

Sample records for olive mill effluent

  1. Modelling anaerobic codigestion of manure with olive oil mill effluent

    Angelidaki, I.; Ellegaard, L.; Ahring, B.K.

    1997-01-01

    A mathematical model describing the combined anaerobic degradation of complex organic material, such as manure, and a lipid containing additive, such as olive oil mill effluents, has been developed based on a model previously described (Angelidaki et al. 1993). The model has been used to simulate...... anaerobic codigestion of cattle manure together with olive oil mill effluent (OME) and the simulations were compared with experimental data. Simulation data indicated that lack of ammonia, needed as nitrogen source for synthesis of bacterial biomass and as an important pH buffer, could be responsible...

  2. Enhancement of biogas production from olive mill effluent (OME) by co-digestion

    Azbar, Nuri; Keskin, Tugba; Yuruyen, Aysegul [Bioengineering Department, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2008-12-15

    The olive oil has a healthy image during its consumption due to its oleic acid content, which may prevent some human diseases. Ironically, by-products of olive mill production such as olive mill effluent (OME) and olive cake pose a serious environmental risk where it is produced. In this study, feasibility of using some agro-industrial residue streams such as cheese whey (CW) and laying hen litter (LHL) in order to enhance the methane production of OME was investigated. For this purpose, biochemical methane potential (BMP) assay was carried out for both raw OME alone and OME mixed with varying amount of other substrates such as LHL and CW in the serum bottles, respectively. Corresponding methane production values for various mixtures of the organic residue streams used in this study were determined. It was demonstrated that co-digestion of OME with LHL significantly enhanced the biodegradability of OME which was too low if it was digested alone. Over 90% increase in biogas production was obtained when digesting OME with LHL. The biogas production increased only 22%, when CW was used for the same purpose. It was demonstrated that the biodegradability of OME could be significantly enhanced by co-digestion and thereby integrated management of OME using anaerobic degradation could be proposed as an economically viable and ecologically acceptable solution for the safe disposal of OME. (author)

  3. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors

    Angelidaki, Irini; Ahring, Birgitte Kiær; Deng, H.

    2002-01-01

    Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process....... Furthermore, it was found that methane productions rates during digestion of either swine manure alone or OME alone were much lower than the rates achieved when OME and manure were digested together. Admixing OME with manure at a concentration of 5 to 10% OME resulted in the highest methane production rates....... Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed...

  4. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis

    Martinez-Garcia, Gregorio [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom); Johnson, Anbu Clemensis, E-mail: acj265@yahoo.com [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Jejawi, Perlis (Malaysia); Bachmann, Robert T. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, 1988 Vendor City, 7800 Taboh Naning, Alor Gajah, Melaka (Malaysia); Williams, Ceri J. [Yorkshire-Forward, Victoria House, Victoria Place, LS11 5AE Leeds (United Kingdom); Burgoyne, Andrea; Edyvean, Robert G.J. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)

    2009-05-30

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 deg. C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20 L fixed-bed reactor at 37 deg. C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m{sup -3} day{sup -1} during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L{sub biogas}L{sub reactor}{sup -1}day{sup -1}, respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  5. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis

    Martinez-Garcia, Gregorio; Johnson, Anbu Clemensis; Bachmann, Robert T.; Williams, Ceri J.; Burgoyne, Andrea; Edyvean, Robert G.J.

    2009-01-01

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 deg. C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20 L fixed-bed reactor at 37 deg. C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m -3 day -1 during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L biogas L reactor -1 day -1 , respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  6. Sustainable technologies for olive mill wastewater management (abstract)

    The California olive oil industry produces more than 600 million gallons of wastewater each year. Olive mill wastewater (OMWW) is considered a highly polluting effluent due to its high organic load and resistance to biological degradation. A current trend in OMWW management is to not only decrease e...

  7. Regarding the rejection performance of a polymeric reverse osmosis membrane for the final purification of two-phase olive mill effluents previously treated by an advanced oxidation process

    Ochando-Pulido, J.M.; Martínez-Férez, A.

    2017-01-01

    In previous works on olive mill wastewater (OMW), secondary advanced oxidation treatment solved the problem related to the presence of phenolic compounds and considerable chemical oxygen demand. However, the effluent presented a significant salinity after this treatment. In this work, an adequate operation of a reverse osmosis (RO) membrane is addressed to ensure constant performance over a long period of time. In this paper, the effect of the operating parameters on the dynamic membrane rejection performance towards the target species was examined and discussed. Rejection efficiencies of all species were observed to follow a similar pattern, which consisted of slight initial improvement that further decreased over time. Rejection of both divalent ions remained constant at over 99% regardless of the operating conditions. Rejections were noticed to follow the order SO42−> Cl−> NO3− and Ca2+> Mg2+> K+> Na+, as a rule. Divalent species were moderately more highly rejected than monovalent ones, in accordance with their higher charge and molecular size, and sulfate anions were consistently rejected by over 99%. Finally, the RO membrane exiting treated effluent was depleted of the high electro conductivity initially present (above 97% rejection), permitting its re-use as good quality irrigation water (below 1 mS/cm). [es

  8. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  9. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors.

    Martini, Elisabetta; Merola, Giovanni; Tomassetti, Mauro; Campanella, Luigi

    2015-02-15

    New immunosensors working in organic solvent mixtures (OPIEs) for the analysis of traces of different pesticides (triazinic, organophosphates and chlorurates) present in hydrophobic matrices such as olive oil were developed and tested. A Clark electrode was used as transducer and peroxidase enzyme as marker. The competitive process took place in a chloroform-hexane 50% (V/V) mixture, while the subsequent enzymatic final measurement was performed in decane and using tert-butylhydroperoxide as substrate of the enzymatic reaction. A linear response of between about 10nM and 5.0μM was usually obtained in the presence of olive oil. Recovery tests were carried out in commercial or artisanal extra virgin olive oil. Traces of pesticides were also checked in the oily matrix, in pomace and mill wastewaters from an industrial oil mill. Immunosensors show good selectivity and satisfactory precision and recovery tests performed in olive oil gave excellent results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The postharvest of mill olives

    Yousfi, Khaled

    2006-03-01

    Full Text Available The greatest deterioration of olive oil is due to poor handling of the olives during the time between harvesting and processing. Storage of olive fruits is carried out by simple heaping in fruit piles, waiting their processing. These fruits develop all kinds of degenerative processes in a short period of time. Oils obtained from them show characteristics hydrolytic and oxidative deteriorations confirmed by their high acidity values, peroxide value or ultraviolet absorbance at 232 and 270 nm. To avoid this situation, the industry is currently reducing the interval between harvesting and processing, through an increase in milling capacity. However, the equipment necessary for preventing the accumulation of fruit in January would be unnecessary for the rest of the season. In this chapter, refrigeration of the olive fruits, or the use of physical treatments, to allow the processing of unripe fruits, are analysed as possible alternatives.El mayor deterioro del aceite de oliva es debido a la inadecuada manipulación de las aceitunas durante el tiempo que media entre su cosecha y su procesado. El almacenamiento de las aceitunas se lleva acabo mediante el simple amontonamiento del fruto, esperando su procesamiento. Estos frutos desarrollan toda clase de procesos degenerativos en un corto periodo de tiempo. Los aceites obtenidos a partir de estos frutos exhiben deterioros hidrolíticos y oxidativos característicos, confirmados por sus valores altos de acidez, de índice de peróxidos o de absorbancia en la región ultravioleta a 232 y 270 nm. Para evitar esta situación, la industria intenta reducir al máximo el intervalo entre la cosecha y el procesado del fruto, mediante un aumento de la capacidad de molturación. Sin embargo, el equipo necesario para prevenir la acumulación de fruto en Enero no se precisa para el resto de la campaña. En este capítulo, la refrigeración de las aceitunas o el uso de tratamientos físicos, que permiten el procesado

  11. Catalytic pyrolysis of olive mill wastewater sludge

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  12. Soil amendement with olive mill wastewater: impact of storage before spreading

    Kachouri, S.; Ayed, L.; Assas, N.; Marouani, L.; Macarie, H.; Hamdi, M.

    2009-01-01

    The olive oil production performed by the traditional three-phase process generates considerable amounts of olive mill wastewater (OMW) that is a liquid effluent, red to dark coloured depending on its level of oxidation. OMW is well known for the ecological problems it causes owing to the highly toxic polyphenolic compounds it contains. (Author)

  13. A Novel Photocatalyst with Ferromagnetic Core Used for the Treatment of Olive Oil Mill Effluents from Two-Phase Production Process

    Javier Miguel Ochando-Pulido

    2013-01-01

    Full Text Available Photocatalytic degradation of olive oil mill wastewater from two-phase continuous centrifugation process was studied. A novel photocatalyst with ferromagnetic properties was characterized and investigated. The degradation capacity of the photocatalytic process of olive oil washing wastewater (OMW and mixture of olives and olive oil (1 v/v washing wastewaters (MOMW was demonstrated. At lab-scale, the %COD removal and residence time (τ for MOMW and OMW were 58.4% (τ=2 h and 21.4% (τ=3 h, respectively. On the other hand, at pilot scale, 23.4% CODremoval, 19.2% total phenolsremoval, and 28.1% total suspended solidsremoval were registered at the end of the UV/TiO2 process for OMW, whereas 58.3% CODremoval, 27.5% total phenolsremoval, and 25.0% total suspended solidsremoval for MOMW. Also, before the UV/TiO2 reaction, a pH-T flocculation operation as pretreatment was realized. The overall efficiency of the treatment process for MOMW was up to 91% of CODremoval, in contrast with 33.2% of CODremoval for OMW.

  14. Solar drying in greenhouse of mixture of olive mill wastewater and olive cake in Morocco

    Lakhytar, H.; Ismaili-Alaoui, M.; Perraud-Gaime, L.; Macarie, H.; Roussos, S.

    2009-01-01

    Morocco is a country which produces olive oil extensively and this industry within the country is currently under huge expansion. This particular industry, which is usually realized with triphasic processes using the technique of pressing, generates tons of wastes: olive mill wastewater (OMWW) (liquid waste) and olive cake (solid waste). (Author)

  15. Treatment of Olive Mill Wastewater with Constructed Wetlands

    Andreas N. Angelakis

    2012-03-01

    Full Text Available The objective of this study was to investigate the application of constructed wetlands as a mean to manage olive mill wastewater (OMW. Two free water surface (FWS constructed wetlands, one without (CW1 and one with effluent recirculation (CW2, were operated for a two-year period with diluted OMW (1:10 and evaluated in terms of the removal of COD, TSS, TKN, NH4+-N, NO3−-N, TP and total phenols. The organic loading rate of CWs was adjusted to 925 kg BOD/ha·d. In CW1 the removal efficiency averaged 80%, 83%, 78%, 80%, and 74% for COD, TSS, TKN, TP, and total phenols, respectively, during the operation period. Effluent recirculation further improved the treatment efficiency which approached 90%, 98%, 87%, 85%, and 87% for COD, TSS, TKN, TP, and total phenols, respectively. Constructed wetlands also showed high removal efficiency for NH4+-N. Nitrate concentration maintained low in both CWs basins, probably due to the prevalence of high denitrification rates that efficiently removed the NO3--N produced by NH4+-N oxidation. Despite the increased removal percentages, pollutant concentration in effluent exceeded the allowable limits for discharge in water bodies, suggesting that additional practices, including enhanced pre-application treatment and/or higher dilution rates, are required to make this practice effective for OMW management.

  16. Treatment and valorization of olive mill wastewaters

    Nabila Slimani Alaoui

    2016-04-01

    Full Text Available This study aims to evaluate the effectiveness of the physicochemical process with lime and ferric chloride in removing the pollution generated by the olive mill wastewaters (OMW .The characterization of the samples has shown that they are acidic, with a black color and a strong organic load due to the presence of phenolic compounds. The combination of the lime and the ferric chloride allows the removal of 87% of the total suspended solid (TSs, 58% of chemical oxygen demand (COD and 75% of Phenolic compounds. After purification the treated OMW were valorised as wash water or used for irrigation of green spaces and the generated sludge were dried and used to combustion. 

  17. Airborne effluent control at uranium mills

    Sears, M.B.

    1976-01-01

    The Oak Ridge National Laboratory has made an engineering cost--environmental benefit study of radioactive waste treatment systems for decreasing the amount of radioactive materials released from uranium ore processing mills. This paper summarizes the results of the study which pertain to the control and/or abatement of airborne radioactive materials from the mill processes. The tailings area is not included. Present practices in the uranium milling industry, with particular emphasis on effluent control and waste management, have been surveyed. A questionnaire was distributed to each active mill in the United States. Replies were received from about 75 percent of the mill operators. Visits were made to six operating uranium mills that were selected because they represented the different processes in use today and the newest, most modern in mill designs. Discussions were held with members of the Region IV Office of NRC and the Grand Junction Office of ERDA. Nuclear Science Abstracts, as well as other sources, were searched for literature pertinent to uranium mill processes, effluent control, and waste management

  18. A review on the use of membrane technology and fouling control for olive mill wastewater treatment.

    Pulido, Javier Miguel Ochando

    2016-09-01

    Olive mill effluents (OME) by-produced have significantly increased in the last decades as a result of the boost of the olive oil agro-industrial sector and due to the conversion into continuous operation centrifugation technologies. In these effluents, the presence of phytotoxic recalcitrant pollutants makes them resistant to biological degradation and thus inhibits the efficiency of biological and conventional processes. Many reclamation treatments as well as integrated processes for OME have already been proposed and developed but not led to completely satisfactory and cost-effective results. Olive oil industries in its current status, typically small mills dispersed, cannot afford such high treatment costs. Furthermore, conventional treatments are not able to abate the significant dissolved monovalent and divalent ions concentration present in OME. Within this framework, membrane technology offers high efficiency and moderate investment and maintenance expenses. Wastewater treatment by membrane technologies is growing in the recent years. This trend is owed to the fact of the availability of new membrane materials, membrane designs, membrane module concepts and general know-how, which have promoted credibility among investors. However, fouling reduces the membrane performances in time and leads to premature substitution of the membrane modules, and this is a problem of cost efficiency since wastewater treatment must imply low operating costs. Appropriate fouling inhibition methods should assure this result, thus making membrane processes for wastewater stream treatment both technically and economically feasible. In this paper, the treatment of the effluents by-produced in olive mills, generally called olive mill wastewaters, will be addressed. Within this context, the state of the art of the different pretreatments and integral membrane processes proposed up to today will be gathered and discussed, with an insight in the problem of fouling. Copyright © 2015

  19. Assessment of the Genotoxicity of olive mill waste water (OMWW) with the Vicia faba Micronucleus test

    El Hajjouji, H.; Pinelli, E.; Revel, J. C.; Hafidi, M.

    2009-01-01

    Olive mill waste water (OMW) can cause serious environmental hazards in olive producing countries, especially around the Mediterranean basin. In Morocco, olive mills are noe of the foremost polluters: the volume of OMW produced annually is estimated at 250 000 m 3 during the season of production. the present study concerns the genotoxicity of OMW generated in mills producing olive oil in Morocco. (Author)

  20. Does wastewater from olive mills induce toxicity and water repellency in soil?

    Peikert, B.; Bandow, N.; Schaumann, G. E.

    2012-04-01

    Olive oil mill wastewater is the effluent generated by the olive oil extraction process. It is the main waste product of this industry mainly being produced in the Mediterranean Basin. Because proper treatment options are rare it is often disposed into the environment, e.g. fields or wadies. Due to its high concentration of fatty acids and phytotoxic phenolic compounds and its high chemical and biological oxygen demand, olive oil mill wastewater becomes a serious environmental problem. In this screening study we investigated long-term effects of olive oil mill wastewater application on soil properties in several locations in the West Bank and Israel. We determined wettability via water drop penetration time and the contact angle as well as general soil properties including pH, EC, carbon content, and we conducted thermogravimetrical analyses in order to characterize the impact of the waste water on the quality of soil organic matter. Our results show that application of olive oil mill wastewater has various effects. We determined contact angles between 110 and 120° and water drop penetration times up to 1367 s indicating significant reduction in wettability. Furthermore, soil carbon and nitrogen content and water extractable organic matter increased as well as electric conductivity, which could be pointed out as a fertilizing effect. In contrast soil pH was significantly reduced. Conducting thermal analyses we observed an increase in the labile and refractory carbon fraction. Probably first one is responsible for induced water repellency. As a consequence the reduced wettability negatively affects soil quality. It would therefore be promising to minimize the hydrophobizing impacts without losing fertilizing effects of the olive oil mill wastewater.

  1. Electrochemical treatment of olive oil mill wastewater

    Longhi, P.; Fiori, G [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry; Vodopivec, B. [Milan Univ. Bicocca, Milan (Italy). Dept. of Biotechnologies and Biosciences

    2001-04-01

    The possibility of oxidizing at a PbO{sub 2} anode the phenols and polyphenols, present in the olive oil mill wastewater, has been studied as a pre-treatment for the submission of such wastewater to the traditional biological treatments. The results obtained operating at current densities ranging 500 to 2000 A/m{sup 2} show that it is possible to reduce the concentration of the phenolic components, which interfere with the biological treatments, down to low values without decreasing too much the total organic content of the wastewater. [Italian] E' stata studiata la possibilita' di ossidare anodicamente i componenti fenolici delle acque reflue di frantoio, quale pretrattamento delle stesse prima del loro invio ai processi di trattamento biologico. I risultati ottenuti impiegando PbO{sub 2} quale materiale anodico e operando con densita' di corrente comprese tra 500 e 2000 A/m{sup 2} mostrano come sia possibile eliminare, o almeno diminuire sino a concentrazioni accettabili, dalle acque di frantoio i fenoli e i polifenoli, che interferiscono con i normali trattamenti biologici, senza diminuire eccessivamente il carico organico totale.

  2. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus.

    Koutrotsios, Georgios; Larou, Evangelia; Mountzouris, Konstantinos C; Zervakis, Georgios I

    2016-09-01

    Environmentally acceptable disposal of olive cultivation residues (e.g., olive prunings; olive pruning residues (OLPR)) and olive mill wastes is of paramount importance since they are generated in huge quantities within a short time. Moreover, olive mill wastewater (OMW) or sludge-like effluents ("alperujo"; two-phase olive mill waste (TPOMW)) are highly biotoxic. Hericium erinaceus is a white-rot fungus which produces choice edible mushrooms on substrates rich in lignocellulosics, and its suitability for the treatment of olive by-products was examined for the first time. Fungal growth resulted in a notable reduction of OMW's pollution parameters (i.e., 65 % decolorization, 47 % total phenolic reduction, and 52 % phytotoxicity decrease) and correlated with laccase and manganese peroxidase activities. Solid-state fermentation of various mixtures of OLPR, TPOMW, and beech sawdust (control) by H. erinaceus qualified OLPR in subsequent cultivation experiments, where it exhibited high mushroom yields and biological efficiency (31 %). Analyses of proximate composition and bioactive compound content revealed that mushrooms deriving from OLPR substrates showed significantly higher crude fat, total glucan, β-glucan, total phenolics, and ferric-reducing antioxidant potential values than the control. H. erinaceus demonstrated the potential to detoxify OMW and bioconvert OLPR into high-quality biomass, and hence, this fungus could be successfully exploited for the treatment of such by-products.

  3. Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20255 and Pseudomonas putida

    De Felice, B.; Pontecorvo, G.; Carfagna, M. [Univ. of Naples, Caserta (Italy). Inst. of Biology

    1997-12-31

    Waste water from olive oil processing may cause severe pollution in the Mediterranean area, since they have a high level of chemical oxygen demand (COD) (100-200 g/l) and contain other organic and inorganic compounds. In all olive oil producing countries, the reduction of pollution in olive oil mill waste waters at reasonable costs and using techniques suitable for most industrial applications is an unsolved problem. For this paper, the yeast Yarrowia lipolytica ATCC 20255 was grown on waste waters from an olive oil mill in a 3.5 l fermenter under batch culture conditions. The results showed that the yeast was capable of reducing the COD value by 80% in 24 h. In this way, a useful biomass of 22.45 g/l as single cell protein (SCP) and enzyme lipase were produced. During this process, most of the organic and inorganic substances were consumed, only aromatic pollutants were still present in the fermentation effluents. Therefore, we used a phenol degrader, namely Pseudomonas putida, to reduce phenolic compounds in the fermentation effluents after removing Yarrowia lipolytica cells. P. putida was effective in reducing phenols in only 12 h. (orig.)

  4. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites

    Rytwo, Giora, E-mail: rytwo@telhai.ac.il [Tel Hai College, Dept. of Environmental Sciences, Upper Galilee 12210 (Israel); Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel); Lavi, Roy; Rytwo, Yuval; Monchase, Hila [Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel); Dultz, Stefan [Institute of Soil Science, Leibniz University Hannover, Herrenhaeuser Str. 2, D-30419 Hannover (Germany); Koenig, Tom N. [Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel)

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6 h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Highlights: Black-Right-Pointing-Pointer Nanocomposites yielded clarification of olive mill (OMW) and winery effluents (WW). Black-Right-Pointing-Pointer In smectite based nanocomposites intercalation of the polymer was measured. Black-Right-Pointing-Pointer In sepiolite based nanocomposites no changes in the spacing were observed. Black-Right-Pointing-Pointer Colloidal neutralization is the main clarification process in WW but not in OMW. Black-Right-Pointing-Pointer Several cycles of

  5. Clarification of olive mill and winery wastewater by means of clay–polymer nanocomposites

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N.

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6 h: coagulation—neutralizing the colloids, flocculation—aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay–polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Highlights: ► Nanocomposites yielded clarification of olive mill (OMW) and winery effluents (WW). ► In smectite based nanocomposites intercalation of the polymer was measured. ► In sepiolite based nanocomposites no changes in the spacing were observed. ► Colloidal neutralization is the main clarification process in WW but not in OMW. ► Several cycles of effluents might be added to an initial dose of nanocomposites.

  6. Disposal of olive mill wastewater with DC arc plasma method.

    Ibrahimoglu, Beycan; Yilmazoglu, M Zeki

    2018-07-01

    Olive mill wastewater is an industrial waste, generated as a byproduct of olive oil production process and generally contains components such as organic matter, suspended solids, oil, and grease. Although various methods have been developed to achieve the disposal of this industrial wastewater, due to the low cost, the most common disposal application is the passive storage in the lagoons. The main objective of this study is to reduce pollution parameters in olive mill wastewater and draw water to discharge limits by using plasma technology. Plasma-assisted disposal of olive mill wastewater method could be an alternative disposal technique when considering potential utilization of treated water in agricultural areas and economic value of flammable plasma gas which is the byproduct of disposal process. According to the experimental results, the rates of COD (chemical oxygen demand) and BOD (biological oxygen demand) of olive mill wastewater are decreased by 94.42% and 95.37%, respectively. The dissolved oxygen amount is increased from 0.36 to 6.97 mg/l. In addition, plasma gas with high H 2 content and treated water that can be used in agricultural areas for irrigation are obtained from non-dischargeable wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Electrocoagulation of Palm Oil Mill Effluent

    Agustin, Melissa B.; Sengpracha, Waya P.; Phutdhawong, Weerachai

    2008-01-01

    Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537

  8. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites.

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities

    Saleh Abu-Lafi

    2017-01-01

    Full Text Available The production of olive oil generates massive quantities of by-product called olive mill wastewater (OMWW. The uncontrolled disposal of OMWW poses serious environmental problems. The OMWW effluent is rich in several polyphenolic compounds. Liquid-liquid extraction of OMWW using ethyl acetate solvent was used to enrich phenolic compounds under investigation. Total phenolic and flavonoid content and antioxidant activity of the extract were determined. HPLC coupled to photodiode array (PDA detector was used to analyze the main three phenolic compounds of OMWW, namely, hydroxytyrosol, tyrosol, and oleuropein. The antimicrobial activity of the extract was also investigated. Additionally, the OMWW extract was used as natural preservative and antioxidants for olive oil. Results showed that OMWW is very rich in phenolic compounds and has strong antioxidant activity. HPLC analysis showed that the extract contains mainly hydroxytyrosol and tyrosol but no oleuropein. The OMWW extract showed also positive activities as antibacterial (gram positive and gram negative and antifungal as well as activities against yeast. The addition of OMWW extract to olive oil samples has an effect on the stability of olive oil as reflected by its acid value, peroxide value, K232 and K270, and total phenolic content.

  10. Treatment of Olive Mill Wastewater and the Use of Polyphenols Obtained After Treatment

    Semih Otles

    2012-04-01

    Full Text Available Olive mill wastes are signicant environmental problem especially in Mediterranean areas where they are generated in huge quantities in a short period of time. They are phytotoxic materials because of their high phenol, lipid and organic acid concentrations, but these wastes also contain valuable resources that could be recycled such as a large proportion of organic matter and a wide range of nutrients. The effluent from olive oil mills contains a large amount of polyphenols that have antioxidant properties. The market value of these antioxidants is high and they are commonly used in the food, cosmetics, pharmaceutics and chemical industries. For the management of olive mill wastewater (OMW and other olive residues, various treatment methods can be used. Many scientists work on more efficient and cheaper treatment alternatives. Due to the great variety of compounds in the waste, several technologies to remove the harmful compounds for the environment should be used single or together. Some of the most used OMW treatments are drying / evaporation, forced evaporation, thermal treatment, centrifugation-ultraltration, electrocoagulation, composting, lagooning, adsorption, powdered activated carbon, filtration, sand filtration, membrane filtration, ultrafiltration, precipitation / flocculation, distillation, electrolysis, co-composting, advanced oxidation processes (AOPs such as ozonation, hydrogen peroxide / ferrous iron oxidation (the so-called Fentons reagent. Several OMW treatment technologies have been developed aiming at the removal of the main toxic organic compounds. A lot of factors must be considered to choose the treatment methods among them the investment, required area, specic training of the workers, noise and odour emissions and seasonality of production.

  11. Long-Term Effects of Olive oil Mill wastewater spreading on soil and olive trees

    Ben rouina, B.; Ben Ahmed, C.; Boukhris, M.

    2009-07-01

    The olive oil extraction process produces huge amounts of liquid waste called olive mill waste water (OMWW). Large amounts of OMWW (30 million m{sup 3}) are produced in the Mediterranean regions that accounts for 95% of the total olive oil production worldwide. In Tunisia, OMWW constitutes a serious environmental problem due to the features associated with this type of agro-waste and to its diverse organic load which may reach values as high as 100 g/L and is mained with this type of agro-waste and to its diverse organic load which may reach values as high as 100 g/L is mainly due to sugars. lipids, phenols, and tannins. (Author)

  12. Long-Term Effects of Olive oil Mill wastewater spreading on soil and olive trees

    Ben rouina, B.; Ben Ahmed, C.; Boukhris, M.

    2009-01-01

    The olive oil extraction process produces huge amounts of liquid waste called olive mill waste water (OMWW). Large amounts of OMWW (30 million m 3 ) are produced in the Mediterranean regions that accounts for 95% of the total olive oil production worldwide. In Tunisia, OMWW constitutes a serious environmental problem due to the features associated with this type of agro-waste and to its diverse organic load which may reach values as high as 100 g/L and is mained with this type of agro-waste and to its diverse organic load which may reach values as high as 100 g/L is mainly due to sugars. lipids, phenols, and tannins. (Author)

  13. Effects of Cassava Mill Effluent on Some Chemical and Micro ...

    user

    KEY WORDS: Cassava Mill Effluent, Soil Pollution, Soil Properties, Bacteria, Fungi. INTRODUCTION .... The hydrocarbon utilizing bacteria (HUB) were Bacillus substilis and ..... fermentative hydrogen production: A Review Int. J. Hydrogen ...

  14. Biodegradation Potentials of Cassava Mill Effluent (CME) by ...

    ADOWIE PERE

    ABSTRACT: The indiscriminate discharge of Cassava mill effluent pose serious ... The study has shown that microbial isolates have the potentials of reducing pollution effect thereby ..... villages in Portharcourt, Rivers State Nigeria. J. Appl. Sci.

  15. Impact of repeated two-phase olive mill waste application on phosphorus fractionation in a degraded olive grove soil

    Lopez-Pineiro, A.; Albarran, A.; Flores, S.; Rato, J. M.; Munoz, A.; Cabrera, D.; Pena, D.; Fernandez, S.

    2009-01-01

    Loss of organic matter is one of the main forms of soil degradation in Mediterranean agricultural soils, and external sources of organic matter are required to improve soil properties. the two-phase centrifugation system in the olive-oil extraction industry produces a large amount of olive mill waste sludge (TPOMW) which can be used to add organic C to degraded soils. (Author)

  16. Treatment technologies of liquid and solid wastes from two-phase olive oil mills

    Borja Padilla, Rafael; Raposo Bejines, Francisco; Rincón, Bárbara

    2006-01-01

    Over the last 10 years the manufacture of olive oil has undergone important evolutionary changes in the equipment used for the separation of olive oil from the remaining components. The latest development has been the introduction of a two-phase centrifugation process in which a horizontally-mounted centrifuge is used for a primary separation of the olive oil fraction from the vegetable solid material and vegetation water. Therefore, the new two-phase olive oil mills produce three ident...

  17. Treatment technologies of liquid and solid wastes from two-phase olive oil mills

    Rincón, Bárbara; Raposo, Francisco; Borja, Rafael

    2006-01-01

    Over the last 10 years the manufacture of olive oil has undergone important evolutionary changes in the equipment used for the separation of olive oil from the remaining components. The latest development has been the introduction of a two-phase centrifugation process in which a horizontally-mounted centrifuge is used for a primary separation of the olive oil fraction from the vegetable solid material and vegetation water. Therefore, the new two-phase olive oil mills produce three identifiabl...

  18. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.

  19. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater.

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification.

  20. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    Reda Elkacmi

    2016-01-01

    Full Text Available The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country’s climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification.

  1. Mathematical modeling of olive mill waste composting process.

    Vasiliadou, Ioanna A; Muktadirul Bari Chowdhury, Abu Khayer Md; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Pavlou, Stavros; Vayenas, Dimitrios V

    2015-09-01

    The present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes. First-order kinetics were used to describe the hydrolysis of insoluble organic matter, followed by formation of biomass. Microbial biomass growth was modeled with a double-substrate limitation by hydrolyzed available organic substrate and oxygen using Monod kinetics. The inhibitory factors of temperature and moisture content were included in the system. The production and consumption of nitrogen and phosphorous were also included in the model. In order to evaluate the kinetic parameters, and to validate the model, six pilot-scale composting experiments in controlled laboratory conditions were used. Low values of hydrolysis rates were observed (0.002841/d) coinciding with the high cellulose and lignin content of the composting materials used. Model simulations were in good agreement with the experimental results. Sensitivity analysis was performed and the modeling efficiency was determined to further evaluate the model predictions. Results revealed that oxygen simulations were more sensitive on the input parameters of the model compared to those of water, temperature and insoluble organic matter. Finally, the Nash and Sutcliff index (E), showed that the experimental data of insoluble organic matter (E>0.909) and temperature (E>0.678) were better simulated than those of water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Synthetic olive mill wastewater treatment by Fenton's process in batch and continuous reactors operation.

    Esteves, Bruno M; Rodrigues, Carmen S D; Madeira, Luís M

    2017-11-04

    Degradation of total phenol (TPh) and organic matter, (expressed as total organic carbon TOC), of a simulated olive mill wastewater was evaluated by the Fenton oxidation process under batch and continuous mode conditions. A mixture of six phenolic acids usually found in these agro-industrial wastewaters was used for this purpose. The study focused on the optimization of key operational parameters of the Fenton process in a batch reactor, namely Fe 2+ dosage, hydrogen peroxide concentration, pH, and reaction temperature. On the assessment of the process efficiency, > 99% of TPh and > 56% of TOC removal were attained when [Fe 2+ ] = 100 ppm, [H 2 O 2 ] = 2.0 g/L, T = 30 °C, and initial pH = 5.0, after 300 min of reaction. Under those operational conditions, experiments on a continuous stirred-tank reactor (CSTR) were performed for different space-time values (τ). TOC and TPh removals of 47.5 and 96.9%, respectively, were reached at steady-state (for τ = 120 min). High removal of COD (> 75%) and BOD 5 (> 70%) was achieved for both batch and CSTR optimum conditions; analysis of the BOD 5 /COD ratio also revealed an increase in the effluent's biodegradability. Despite the high removal of lumped parameters, the treated effluent did not met the Portuguese legal limits for direct discharge of wastewaters into water bodies, which indicates that coupled chemical-biological process may be the best solution for real olive mill wastewater treatment.

  3. EVALUATION OF THE MICROCLIMATE DURING OLIVE OIL EXTRACTION OPERATIONS INSIDE OLIVE MILLS

    Vittorio Panaro

    2007-06-01

    Full Text Available Some oil mills, among the most representative in the Puglia Region in terms of quality and productivity have been considered, and the temperature and humidity of the environment and the sensations of temperature felt by the workers were registered inside them during the process of oil extraction. Subsequently, a numerical code in MATLAB language was created, able to calculate the PMV and PPD and a study was carried out of the conditions of global comfort in the environment during the oil extraction process. The results of the surveys carried out in the mills show the importance of microclimate risk analysis in these workplaces, since the instrumental surveys and the calculations have shown that climatic conditions are not comfortable in the olive storage bays. On the other hand, the data from the oil extraction areas shows an acceptable condition of thermal well-being.

  4. Impact analysis of palm oil mill effluent on the aerobic bacterial ...

    AJB SERVER

    2007-01-18

    Jan 18, 2007 ... Key words: Palm oil mill effluent, total aerobic bacteria, ammonium oxidizers. INTRODUCTION ... bacteria help in the degradation of macromolecules from plant and animal .... Anaerobic digestion of palm oil mill effluent.

  5. Olive mill wastewater treatment in Jordan: A Review

    Bawab, Abeer Al; Ghannam, Noor; Abu-Mallouh, Saida; Bozeya, Ayat; Abu-Zurayk, Rund A.; Al-Ajlouni, Yazan A.; Alshawawreh, Fida'a.; Odeh, Fadwa; Abu-Dalo, Muna A.

    2018-02-01

    The environmental impact of olive mill wastewater (OMW) pollution is a public concern. OMW contains high levels of phenols, organic compounds, chemical oxygen demand (COD), biological oxygen demand (BOD), microorganisms, nutrients, and toxic compounds. The treatment of OMW has been investigated by many researchers in the Mediterranean region, using several treatment techniques to remove contaminants from OMW. These techniques include chemical, biological, physiochemical, and biophysical techniques. Surfactants and some adsorbents were used in chemical techniques, anaerobic and aerobic in biological techniques, while the combined treatment methods used Electroosmosis, ozonation and electrocoagulation processes as physiochemical methods, and ultrasonic irradiation combined with aerobic biodegradation as biophysical method. The effects of OMW, whether treated or untreated, have been evaluated on both plants’ growth and soil properties. The treatment methods as well as the environmental impact of OMW in Jordan were summarized in this review.

  6. Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities

    Inass Leouifoudi

    2015-01-01

    Full Text Available Natural polyphenols extracts have been usually associated with great bioactive properties. In this work, we investigated in vitro antioxidant and antimicrobial potential of the phenolic olive mill wastewater extracts (OWWE and the olive cake extracts (OCE. Using the Folin Ciocalteux method, OWWE contained higher total phenol content compared to OCE (8.90±0.728 g/L versus 0.95±0.017 mg/g. The phenolic compounds identification was carried out with a performance liquid chromatograph coupled to tandem mass spectrometry equipment (HPLC-ESI-MS. With this method, a list of polyphenols from OWWE and OCE was obtained. The antioxidant activity was measured in aqueous (DPPH and emulsion (BCBT systems. Using the DPPH assay, the results show that OWWE was more active than OCE and interestingly the extracts originating from mountainous areas were more active than those produced from plain areas (EC50=12.1±5.6 μg/mL; EC50=157.7±34.9 μg/mL, resp.. However, when the antioxidant activity was reversed in the BCBT, OCE produced from plain area was more potent than mountainous OCE. Testing by the gel diffusion assay, all the tested extracts have showed significant spectrum antibacterial activity against Staphylococcus aureus, whereas the biophenols extracts showed more limited activity against Escherichia coli and Streptococcus faecalis.

  7. Multiple Biological Effects of Olive Oil By-products such as Leaves, Stems, Flowers, Olive Milled Waste, Fruit Pulp, and Seeds of the Olive Plant on Skin.

    Kishikawa, Asuka; Ashour, Ahmed; Zhu, Qinchang; Yasuda, Midori; Ishikawa, Hiroya; Shimizu, Kuniyoshi

    2015-06-01

    As olive oil production increases, so does the amount of olive oil by-products, which can cause environmental problems. Thus, new ways to utilize the by-products are needed. In the present study, five bioactive characteristics of olive oil by-products were assessed, namely their antioxidant, anti-bacterial, anti-melanogenesis, anti-allergic, and collagen-production-promoting activities. First, the extracts of leaves (May and October), stems (May and October), flowers, olive milled waste, fruit pulp and seeds were prepared using two safe solvents, ethanol and water. According to HPLC and LC/MS analysis and Folin-Ciocalteu assay, the ethanol extracts of the leaves (May and October), stems (May and October) and flowers contained oleuropein, and the ethanol extract of the stems showed the highest total phenol content. Oleuropein may contribute to the antioxidant and anti-melanogenesis activities of the leaves, stems, and flowers. However, other active compounds or synergistic effects present in the ethanol extracts are also likely to contribute to the anti-bacterial activity of the leaves and flowers, the anti-melanogenesis activity of some parts, the anti-allergic activity of olive milled waste, and the collagen-production-promoting activity of the leaves, stems, olive milled waste and fruit pulp. This study provides evidence that the by-products of olive oil have the potential to be further developed and used in the skin care industry. Copyright © 2015 John Wiley & Sons, Ltd.

  8. IMPACT OF PALM OIL MILL EFFLUENT ON THE ACTIVITIES OF ...

    PUBLICATIONS1

    This study was carried out to evaluate the effect of palm oil mill effluent (POME) on some anti ... In Nigeria, palm oil production ... crude palm oil produced, 5-7.5 tonnes of water ... inter group comparison using least significant .... York, U.S.A. pp.

  9. Biodegradation Potentials of Cassava Mill Effluent (CME) by ...

    Bacillus, Pseudomonas, Aspergillus and Penicillium species which had the highest turbidity were used for bioremediation studies. The consortium of microorganisms demonstrated the highest efficacy. Bioremediation of cassava mill effluent by these microorganisms was manifested in the reduction of biological oxygen ...

  10. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    Koutrotsios, Georgios; Zervakis, Georgios I.

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  11. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification

    Javier Miguel Ochando-Pulido

    2015-09-01

    Full Text Available Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these highly polluted effluents. In the present work, a review on the actual state of the art concerning the treatment and disposal of OMW by membranes is addressed, comprising microfiltration (MF, ultrafiltration (UF, nanofiltration (NF, and reverse osmosis (RO, as well as membrane bioreactors (MBR and non-conventional membrane processes such as vacuum distillation (VD, osmotic distillation (OD and forward osmosis (FO. Membrane processes are becoming extensively used to replace many conventional processes in the purification of water and groundwater as well as in the reclamation of wastewater streams of very diverse sources, such as those generated by agro-industrial activities. Moreover, a brief insight into inhibition and control of fouling by properly-tailored pretreatment processes upstream the membrane operation and the use of the critical and threshold flux theories is provided.

  12. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    Yahiaoui, O.; Lounici, Hakim; Abdi, Nadia; Drouiche, Nadjib; Ghaffour, NorEddine; Pauss, André ; Mameri, Nabil

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER

  13. Microbiological effects of olive mill waste addition to substrates for Pleurotus pulmonarius cultivation

    Soler-Rivas, C.; Garcia-Rosado, A.; Polonia, I.; Junca-Blanch, G.; Marin, F.R.; Wichers, H.J.

    2006-01-01

    When olive mill wastes (OMWs) and vegetation waters (VWs) obtained during the manufacture of olive oil were added as substrate supplements for the cultivation of Pleurotus pulmonarius the material modified growth of the mushroom and the endemic microbiota of the substrate, in particular the

  14. Integrating Fenton's process and ion exchange for olive mill wastewater treatment and iron recovery.

    Reis, Patrícia M; Martins, Pedro J M; Martins, Rui C; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2018-02-01

    A novel integrated methodology involving Fenton's process followed by ion exchange (IE) was proposed for the treatment of olive mill wastewater. Fenton's process was optimized and it was able to remove up to 81% of chemical oxygen demand when pH 3.5, reaction time 1 h, [Fe 2+ ] = 50 mg L -1 and [Fe 2+ ]/[H 2 O 2 ] = 0.002 were applied. In spite of the potential of this treatment approach, final iron removal from the liquid typically entails pH increase and iron sludge production. The integration of an IE procedure using Lewatit TP 207 resin was found to be able to overcome this important environmental shortcoming. The resin showed higher affinity toward Fe 3+ than to Fe 2+ . However, the iron removal efficiency of an effluent coming from Fenton's was independent of the type of the initial iron used in the process. The presence of organic matter had no significant effect over the resin iron removal efficiency. Even if some efficiency decrease was observed when a high initial iron load was applied, the adsorbent mass quantity can be easily adapted to reach the desired iron removal. The use of IE is an interesting industrial approach able to surpass Fenton's peroxidation drawback and will surely boost its full-scale application in the treatment of bio-refractory effluents.

  15. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    El-Gohary, F.A.; Badawy, M.I.; El-Khateeb, M.A.; El-Kalliny, A.S.

    2009-01-01

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H 2 O 2 dose, Fe +2 , COD:H 2 O 2 ratio and Fe +2 :H 2 O 2 ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l -1 for ρ-hydroxy-benzaldhyde to 3.273 mg l -1 for cinnamic acid

  16. Olive mill wastewater stabilization in open-air ponds: impact on clay-sandy soil.

    Jarboui, Raja; Sellami, Fatma; Kharroubi, Adel; Gharsallah, Néji; Ammar, Emna

    2008-11-01

    The aim of this work was to study the natural biodegradation of the stored olive mill wastewater (OMW) in ponds and the infiltration as well as the impact on soil of the effluent in the evaporation pond used for the storage over the past eight years. For this, two approaches were considered. First, a laboratory-scale column was used for the infiltration of OMW through soil (clay and sand) to predict the effect of the clayey soil in reducing OMW pollution. Second, the ponds including the effluent annually stored and having this clayey structure were investigated. At the laboratory-scale, a modification of OMW contents was noticed, with the elimination of 95% of total suspended solids (TSS), 60% of chemical oxygen demand (COD), 40% of total organic carbon (TOC), 50% of total P, 50% of phenols and 40% of minerals (K+, Mg++ and Na+). The experimented soil was able to restrain the considerable effects of OMW pollution. In the ponds, the granulometric characteristics, the physico-chemical and the biological parameters of the soil profile from the contaminated pond were compared to those of a control soil, located near the contaminated pond. Property modifications of the contaminated soil were noted, especially pH, electrical conductivity, COD and microflora. These changes can be explained by the infiltration of OMW constituents, which were noticed in the soil layers, especially phenolic compounds that have a negative effect on the ground water.

  17. Land Application-Based Olive Mill Wastewater Μanagement

    Iosif Kapellakis

    2015-01-01

    Full Text Available Land application of olive mill wastewater (OMW is considered a promising low-cost practice for olive-oil producing countries. The objectives of this work were to investigate: (i OMW treatment potential of a land treatment system (LTS, planted with a E. camaldulensis species, regarding N, P, C, and phenols; (ii the effects of OMW on chemical properties of soil and soil solution characteristics; and (iii the performance of E. camaldulensis in terms of biomass production and N and P recovery. E. camaldulensis received OMW for two growing seasons at rates based on maximum organic loading. These rates were almost equivalent to the reference evapotranspiration of the area. Soil solution and soil samples were collected from three different depths (15, 30 and 60 cm at specified time intervals. -Also, samples of plant tissues were collected at the end of application periods. OMW land application resulted in significant reduction in inorganic and organic constituents of OMW. At 15 cm of soil profile, the average removal of COD, TKN, NH4+-N, TP, In-P, and total phenols approached 93%, 86%, 70%, 86%, 82%, and 85%, respectively, while an increase in soil depth (30 and 60 cm did not improve significantly treatment efficiency. Furthermore, OMW increased soil organic matter (SOM, total kjeldahl nitrogen (TKN, and available P, particularly in the upper soil layer. In contrast, low inorganic N content was observed in the soil throughout the study period caused probably by increased competition among soil microorganisms induced by the organic substrate supply and high C/N ratio. Also, electrical conductivity (EC and SAR increased by OMW addition, but at levels that may do not pose severe risk for soil texture. Enhancement of soil fertility due to OMW application sustained eucalyptus trees and provided remarkable biomass yield. In conclusion, land application of OMW has a great potential for organic matter and phenol assimilation and can be effectively used for OMW

  18. Pesticide interactions with soils affected by olive oil mill wastewater

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  19. An automated medium scale prototype for anaerobic co-digestion of olive mill wastewater

    B. Bernardi

    2017-12-01

    Full Text Available Olive oil production constitutes one of the most important agro-industrial business for Mediterranean countries, where 97% of the international production is focused. Such an activity, mainly carried out through three phase olive oil mill plants, generates huge amounts of solid and liquid by-products further than olive oil. Physico-chemical features of these by-products depend on various factors such as soil and climatic conditions, agricultural practices and processing. As currently carried out, the disposal of these by-products may lead to numerous problems taking into account management, economic and particularly environmental aspects. Indeed, olive mill wastewater is not easily biodegradable due to its high chemical and biochemical oxygen demand, its high content in phenolic compounds, high ratio C/N and low pH, leading consequently to soil and water source pollution. Considering, the above-mentioned statements, olive mill waste disposal constitutes nowadays a challenge for oil industry stakeholders. It becomes necessary to look for alternative solutions in order to overcome environmental problems and ensure the sustainability of oil industry. Anaerobic co-digestion of olive mill wastewater with other agro-industrial matrices could be one of these solutions; since it offers the possibility to produce green energy and break down toxicological compounds contained in these wastewater for a better disposal of the digested matrices as soil conditioner. In this contest, this note reports the functioning principle of an automated medium scale plant for anaerobic co-digestion of olive mill wastewater. Keywords: Medium scale prototype, Olive mill wastewater (OMWW, Anaerobic co-digestion (AcoD, Automatic process

  20. Treatment technologies of liquid and solid wastes from two-phase olive oil mills

    Rincón, Bárbara

    2006-03-01

    Full Text Available Over the last 10 years the manufacture of olive oil has undergone important evolutionary changes in the equipment used for the separation of olive oil from the remaining components. The latest development has been the introduction of a two-phase centrifugation process in which a horizontally-mounted centrifuge is used for a primary separation of the olive oil fraction from the vegetable solid material and vegetation water. Therefore, the new two-phase olive oil mills produce three identifiable and separate waste streams. These are: 1 the wash waters from the initial cleansing of the fruit; 2 the wash waters from the secondary centrifuge and 3 the aqueous solid residues from the primary centrifugation. As well as offering process advantages they also reduce the water consumption of the mill. The introduction of this technology was carried out in 90% of Spanish olive oil factories. Therefore, the new twophase olive mill effluents (TPOME are made up of the mixture of effluents (1 and (2, the total volume of TPOME generated being around 0.25 l/kg of olives processed. In addition, the solid residue (two-phase olive pomace, TPOP has a high organic matter concentration giving an elevated polluting load and it cannot be easily handled by traditional technology which deals with the conventional three-phase olive cake.So, this paper aims to report the main features and characteristics of TPOME, and of TPOP, as compared to the classical olive mill wastewater (OMW and olive cake derived from the three-phase manufacturing process. The advantages and disadvantages of the two-phase decanting process will be summarized. Among the treatments reported for TPOME, aerobic processes in completely mixed and activated sludge reactor showed high COD removal efficiencies. Kinetic constants of the aerobic processes were also compared at different operational conditions. The report also includes the following findings: assays of anaerobic digestion of wastewaters from the

  1. Synergistic Antibacterial Effects of Polyphenolic Compounds from Olive Mill Wastewater

    Ahmed Tafesh

    2011-01-01

    Full Text Available Polyphenols or phenolic compounds are groups of secondary metabolites widely distributed in plants and found in olive mill wastewater (OMW. Phenolic compounds as well as OMW extracts were evaluated in vitro for their antimicrobial activity against Gram-positive (Streptococcus pyogenes and Staphylococcus aureus and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae. Most of the tested phenols were not effective against the four bacterial strains when tested as single compounds at concentrations of up to 1000 μg mL−1. Hydroxytyrosol at 400 μg mL−1 caused complete growth inhibition of the four strains. Gallic acid was effective at 200, and 400 μg mL−1 against S. aureus, and S. pyogenes, respectively, but not against the gram negative bacteria. An OMW fraction called AntiSolvent was obtained after the addition of ethanol to the crude OMW. HPLC analysis of AntiSolvent fraction revealed that this fraction contains mainly hydroxytyrosol (10.3%, verbascoside (7.4%, and tyrosol (2.6%. The combinations of AntiSolvent/gallic acid were tested using the low minimal inhibitory concentrations which revealed that 50/100–100/100 μg mL−1 caused complete growth inhibition of the four strains. These results suggest that OMW specific fractions augmented with natural phenolic ingredients may be utilized as a source of bioactive compounds to control pathogenic bacteria.

  2. In vitro fermentation of olive oil mill wastewaters using sheep rumen liquor as inoculum: Olive mill wastewaters an alternative for ruminant's nutrition

    Moufida Aggoun

    2014-12-01

    Full Text Available Olive oil mill wastewaters (OMWW are the main liquid effluents generated by the olive oil production industry. This liquid, considered pollutant and toxic, is characterised by its high content of organic matter including mainly sugars and fats, and phenols compounds, which can be used in ruminants feeding. The purpose of this study is to valorise this agricultural by-product in ruminant feeding by estimation its in vitro degradability in presence of ovine ruminale microbiota comparatively to vetch-oat hay, using in vitro gas production technique coupled with NH3-N and protozoa measurements. Cumulative gas production was recorded at 3, 6, 9, 24, 48, 72 and 96 hours of incubation. The determination of gazes produced (carbon dioxide and methane was recorded at 6, 9, 24, 48 and 96 hours. However, Ammonia and protozoa number were recorded after 24 hours of incubation. Fermentation profile was fitted to the exponential model y = a + b (1 – e-kt. The OMWW are characterized by their high sugars content (39.91% and their low content in ash (1.99% and crude protein (2.70%. This by-product is also characterized by its high concentration in total phenols (7.2% and tannins (4.5%. However, they contain a very small amount of condensed tannins (0.89%. Comparatively to vetch-oat hay, OMWW produced low amount of gas (-23.6 units. Furthermore, its in vitro fermentation generates low volume of methane (9.83%, V/V, suggesting that the OMWW nature enhanced the efficiency of ruminale microbiota towards microbial biomass production and inhibition of ruminale methanogenesis pathway. This result is reinforced by the reduction of ammonia production (-0.35 units and protozoa proliferation (-1 unit comparatively to vetch-oat hay. The anaerobic biodegradation of OMWW reveal their significant use by the rumen microbiota, allowing us to strongly recommend its use as a supplement in feed ruminant. In addition, it allows considering using this residue as a feed additive in

  3. Olive oil mill wastewater for remediation of slag contaminated soil.

    Ferrara, Luciano; Panzella, Lucia; Napolitano, Alessandra; Giudicianni, Italo; d'Ischia, Marco; Arienzo, Michele

    2013-12-01

    Two olive mill wastewaters (OMW) samples, OMWa and OMWb, containing different polyphenolic loads were used for decontaminating an unauthorized dump site in the Campania region, south Italy. In a bench-scale experiment, OMWa at pH 6.0 (OMWapH6.0) and 4.7 (OMWapH4.7), OMWb at pH 4.7 (OMWbpH4.7) and OMWa free of the polyphenolic moiety polyphenol-free OMWa (PF-OMWa) were added to the soil for a 96 h contact time. At 96 h, OMWapH4.7 was more effective than OMWapH6.0, with Cd, Cu, Pb and Zn removal percentages of 30.7-68.1. Cd and Pb levels were 6.0 and 915 mg kg(-1), respectively, decreasing below the regulatory limits for industrial and commercial areas (15.0 and 1 × 10(3) mg kg(-1), respectively). A threefold decrease in Zn levels was also observed from 13.5 × 10(3) to 4.3 × 10(3) mg kg(-1). The metal removal efficiency of PF-OMWa dropped from 30.7 % to 15.6 % for Cd and from 37.9 % to 1.3 % for Pb. OMWbpH4.7 at 96 h was more efficient than OMWapH4.7, with mean removal percentages of 32.5 versus 7.8, respectively.

  4. SBR treatment of olive mill wastewaters: dilution or pre-treatment?

    Farabegoli, G; Chiavola, A; Rolle, E

    2012-01-01

    The olive-oil extraction industry is an economically important activity for many countries of the Mediterranean Sea area, with Spain, Greece and Italy being the major producers. This activity, however, may represent a serious environmental problem due to the discharge of highly polluted effluents, usually referred to as 'olive mill wastewaters' (OMWs). They are characterized by high values of chemical oxygen demand (COD) (80-300 g/L), lipids, total polyphenols (TPP), tannins and other substances difficult to degrade. An adequate treatment before discharging is therefore required to reduce the pollutant load. The aim of the present paper was to evaluate performances of a biological process in a sequencing batch reactor (SBR) fed with pre-treated OMWs. Pre-treatment consisted of a combined acid cracking (AC) and granular activated carbon (GAC) adsorption process. The efficiency of the system was compared with that of an identical SBR fed with the raw wastewater only diluted. Combined AC and GAC adsorption was chosen to be used prior to the following biological process due to its capability of providing high removal efficiencies of COD and TPP and also appreciable improvement of biodegradability. Comparing results obtained with different influents showed that best performances of the SBR were obtained by feeding it with raw diluted OMWs (dOMWs) and at the lowest dilution ratio (1:25): in this case, the removal efficiencies were 90 and 76%, as average, for COD and TPP, respectively. Feeding the SBR with either the pre-treated or the raw dOMWs at 1:50 gave very similar values of COD reduction (74%); however, an improvement of the TPP removal was observed in the former case.

  5. Optimizing Degradation of Olive Oil Mill Waste Water Using Paecilomyces variotii

    Khatab, O.K.; El-Nasr, A.A.; Hassan, A.A.; Abdel El- Aziz, A.B.; Zaki, G.H.

    2013-01-01

    Twenty six microbial isolates (ten fungal, nine yeast and seven bacterial isolates) were isolated from the Olive Oil Mill Waste Water (OOMW) which was extracted from effluent of olive oil industry factory. All isolates were tested for its growth on media containing 10% OOMW as sole carbon source. It was found that (three fungal, two yeast and two bacterial isolates) had the ability to grow on this concentration. These isolates were identified as Paecilomyces variotii, Ascopus stercoraris, Aspergillus terrus, Yarowia lipolytica, Candida tropicalis, Lactobacillus curvatus and Bacillus brevis. The identified isolates were tested for the biodegradation of phenolic compounds at high concentration of OOMW (25%). Paecilomyces variotii was the best isolate as it degraded 10.40 % of the phenolic compounds. The maximum degradation of phenolic compounds and chemical oxygen demand (COD) decrease percentage was (68.14 and 59.12, respectively) obtained at 50% dilution of OOMW for 12 days at 37±1 degree C, ph 6, supplement the degradation media with 150 mg/l sucrose, 2.5 g/l yeast extract and 0.070 mmol/l CuSO 4 concentration in aerobic conditions with aeration rate 4:1 (v air: v media), shaking at 150 rpm and 6 g/l inoculums size. In addition, 0.25 kGy was the best dose as it led to increase the phenolic compounds biodegradation percent 8.7% than the optimum conditions previously mentioned. Finally, the bio treated OOMW was lower toxicity to environment than untreated one.

  6. Techno-Economic Performance Evaluation for Olive Mills Powered by Grid-Connected Photovoltaic Systems

    Rabaza, Ovidio; Contreras-Montes, José; García-Ruiz, María; Delgado-Ramos, Fernando; Gómez-Lorente, Daniel

    2015-01-01

    In recent years, due to the rise in petroleum prices and greenhouse gas emissions, renewable energy has been recommended as a power source for different types of facilities. For the period 2010 to 2020 the European Commission has established three key objectives related to climatic change and energy sustainability, such as reductions of CO2 emissions, increases in the use of renewable energy, and improvements in energy efficiency. A key industry is olive oil production in olive mills, where t...

  7. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification

    Ochando-Pulido, Javier Miguel; Martinez-Ferez, Antonio

    2015-01-01

    Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW) have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these h...

  8. Extracellular laccase production and phenolic degradation by an olive mill wastewater isolate

    R. Kumar

    2018-03-01

    Full Text Available Olive mill wastewater (OMWW presents a challenge to the control of effluents due to the presence of a high organic load, antimicrobial agents (monomeric-polymeric phenols, volatile acids, polyalcohols, and tannins, salinity and acidity. In this study, the production of extracellular laccase, monomeric or polymeric phenol, from an OMWW isolate based on its ability to biodegrade phenols and gallic acid as a model of phenolic compounds in OMWW was investigated. Phylogenetic analysis of the 16S RNA gene sequences identified the bacterial isolate (Acinetobacter REY as being closest to Acinetobacter pittii. This isolate exhibited a constitutive production of extracellular laccase with an activity of 1.5 and 1.3 U ml/L when supplemented with the inducers CuSO4 and CuSO4+phenols, respectively. Batch experiments containing minimal media supplemented with phenols or gallic acid as the sole carbon and energy source were performed in order to characterize their phenolic biodegradability. Acinetobacter REY was capable of biodegrading up to 200 mg/L of phenols and gallic acid both after 10 h and 72 h, respectively.

  9. Water balance modelling of a uranium mill effluent management system

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  10. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.

    Oz, Nilgun Ayman; Uzun, Alev Cagla

    2015-01-01

    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (pbiogas and methane compared with the untreated one (control reactor). The

  11. Olive mill wastewater characteristics: modelling and statistical analysis

    Martins-Dias, Susete

    2004-09-01

    Full Text Available A synthesis of the work carried out on Olive Mill Wastewater (OMW characterisation is given, covering articles published over the last 50 years. Data on OMW characterisation found in the literature are summarised and correlations between them and with phenolic compounds content are sought. This permits the characteristics of an OMW to be estimated from one simple measurement: the phenolic compounds concentration. A model based on OMW characterisations accounting 6 countries was developed along with a model for Portuguese OMW. The statistical analysis of the correlations obtained indicates that Chemical Oxygen Demand of a given OMW is a second-degree polynomial function of its phenolic compounds concentration. Tests to evaluate the regressions significance were carried out, based on multivariable ANOVA analysis, on visual standardised residuals distribution and their means for confidence levels of 95 and 99 %, validating clearly these models. This modelling work will help in the future planning, operation and monitoring of an OMW treatment plant.Presentamos una síntesis de los trabajos realizados en los últimos 50 años relacionados con la caracterización del alpechín. Realizamos una recopilación de los datos publicados, buscando correlaciones entre los datos relativos al alpechín y los compuestos fenólicos. Esto permite la determinación de las características del alpechín a partir de una sola medida: La concentración de compuestos fenólicos. Proponemos dos modelos, uno basado en datos relativos a seis países y un segundo aplicado únicamente a Portugal. El análisis estadístico de las correlaciones obtenidas indica que la demanda química de oxígeno de un determinado alpechín es una función polinómica de segundo grado de su concentración de compuestos fenólicos. Se comprobó la significancia de esta correlación mediante la aplicación del análisis multivariable ANOVA, y además se evaluó la distribución de residuos y sus

  12. Dietary Administration of Olive Mill Wastewater Extract Reduces Campylobacter spp. Prevalence in Broiler Chickens

    Raffaella Branciari

    2016-08-01

    Full Text Available Food wastes are sources of compounds that can be used as natural additives in the food and feed industry. The olive oil industry produces two main wastes: aqueous waste (olive mill wastewater and solid waste (pomace or olive cake. These by-products are rich in phenols, which are antioxidant and antimicrobial compounds able to inhibit or delay the growth of several bacteria in vitro. The dietary effect of both olive mill wastewater polyphenolic extract (OMWPE and dehydrated olive cake (DOC on the prevalence of Campylobacter spp. in broiler chickens was investigated. A commercial basal diet was supplemented with either OMWPE- or DOC-enriched maize at two dosages (low: 16%; high: 33%. The prevalence of Campylobacter spp. shedding was evaluated at 21, 35, and 49 days of age. The prevalence of Campylobacter spp. differed among groups only at 49 days of age. Both OMWPE groups showed a lower (p < 0.05 prevalence compared to the control group. The odds ratio evaluation showed that the higher dose of OMWPE reduced the possibility of shedding 11-fold compared to the control group (p < 0.001. These results highlight the potential use of olive by-products against Campylobacter spp. in poultry.

  13. Organic matter transformation and detoxification in dry olive mill residue by the saprophytic fungus Paecilomyces farinosus

    Sampedro, I.; Cajthaml, Tomáš; Marinari, S.; Petruccioli, M.; Grego, S.; D´Annibale, A.

    2009-01-01

    Roč. 44, č. 2 (2009), s. 216-225 ISSN 1359-5113 R&D Projects: GA MŠk LC06066; GA MŠk 2B06156 Institutional research plan: CEZ:AV0Z50200510 Keywords : Dry olive mill residue * Phenols * Paecilomyces farinosus Subject RIV: EE - Microbiology, Virology Impact factor: 2.444, year: 2009

  14. Influence of olive oil mill waste amendment on fate of oxyfluorfen in Southern Spain soils

    The influence of olive oil mill waste (OOMW) amendment on soil processes affecting the herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl-3-ethoxy-4-nitrophenyl ether) in two soils (P2 and SJ) was assessed under laboratory conditions. The soils used were from two diverse locations in Guadalqui...

  15. Short-term impact of dry olive mill residue addition to soil on the resident microbiota

    Sampedro, I.; Giubilei, M. A.; Cajthaml, Tomáš; Federici, E.; Federici, F.; Petruccioli, M.; D´Annibale, A.

    2009-01-01

    Roč. 100, č. 23 (2009), s. 6098-6106 ISSN 0960-8524 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : Dry olive mill residue * Microbial community profiling * Toxicity Subject RIV: EE - Microbiology, Virology Impact factor: 4.253, year: 2009

  16. Phenolic compounds removal from mimosa tannin model water and olive mill wastewater by energy-efficient electrocoagulation process

    Marijana Kraljić Roković

    2014-12-01

    Full Text Available The objective of this work was to study the influence of NaCl concentration, time, and current density on the removal efficiency of phenolic compounds by electrocoagulation process, as well as to compare the specific energy consumption (SEC of these processes under different experimental conditions. Electrocoagulation was carried out on two different samples of water: model water of mimosa tannin and olive mill wastewater (OMW. Low carbon steel electrodes were used in the experiments. The properties of the treated effluent were determined using UV/Vis spectroscopy and by measuring total organic carbon (TOC. Percentage of removal increased with time, current density, and NaCl concentration. SEC value increased with increased time and current density but it was decreased significantly by NaCl additions (0-29 g L-1. It was found that electro­coagulation treatment of effluents containing phenolic compounds involves complex formation between ferrous/ferric and phenolic compounds present in treated effluent, which has significant impact on the efficiency of the process.

  17. Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.

    Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

    2013-10-15

    The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700 m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ≤4.0 €/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Olive oil enriched in lycopene from tomato by-product through a co-milling process.

    Bendini, Alessandra; Di Lecce, Giuseppe; Valli, Enrico; Barbieri, Sara; Tesini, Federica; Toschi, Tullia Gallina

    2015-01-01

    The aim of this investigation was to produce an olive oil (OO) naturally enriched with antioxidants, recovering carotenoids, in particular lycopene, using an industrial by-product of tomato seeds and skin. For this purpose, a technological process in a low-scale industrial plant to co-mill olives and tomato by-product in de-frosted or freeze-dried forms was applied and studied with respect to control samples. Preliminary results obtained from two different experiments were carried out by 40 kg of cultivar Correggiolo olives and 60 kg of olive blends from different cultivars. In both the experiments, the co-milling showed significant enrichment in carotenoids, especially in lycopene (mean values of 5.4 and 7.2 mg/kg oil from defrosted and freeze-dried by-products, respectively). The experimental results demonstrated the possibility to obtain a new functional food naturally enriched in antioxidant compounds, which might be marketed as "OO dressing enriched in lycopene" or "condiment produced using olives and tomato by-product".

  19. Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status.

    Karaouzas, Ioannis; Skoulikidis, Nikolaos T; Giannakou, Urania; Albanis, Triantafyllos A

    2011-12-01

    Olive mill wastewater (OMW) is one of the major and most challenging organic pollutants in olive oil production countries. However, the knowledge about the in-situ effects of olive mill wastewaters to lotic ecosystems and their benthic organisms is very limited. To resolve this, eight sampling sites were selected upstream and downstream the outflow of several olive mills to assess the spatial and temporal effects of OMW to stream macroinvertebrates and to ecological status of stream ecosystems. Biotic (macroinvertebrates) and abiotic (physicochemical, hydromorphological) data were monitored for two years thus following the biennial cycle of olive growth and production and hydrological variation (drought-wet years). The results of this study revealed the spatial and temporal structural deterioration of the aquatic community due to OMW pollution with consequent reduction of the river capacity for reducing the effects of polluting substances through internal mechanisms of self-purification. OMW, even highly diluted, had dramatic impacts on the aquatic fauna and to the ecological status of the receiving stream ecosystems. The organic load of the wastewater expressed as BOD(5), COD and TSS, substrate contamination (sewage bacteria) and distance from the mill outlet, were the most important factors affecting macroinvertebrate assemblages while the typology (i.e. slope, altitude) and hydrology of the stream site (i.e. mountainous-lowland) and the intensity and volume of the wastewater were the most important determinants of self-purification processes. As OMW are usually being discharged in small size streams that are not considered in the Water Framework Directive 2000/60/EC, there is a need for including such systems into monitoring and assessment schemes as they may significantly contribute to the pollution load of the river basin. Furthermore, guidelines to manage these wastes through technologies that minimise their environmental impact and lead to a sustainable use

  20. Application of nanofiltration to the treatment of uranium mill effluents

    Macnaughton, S.J.; McCulloch, J.K.; Marshall, K.; Ring, R.J.

    2002-01-01

    Nanofiltration is widely used in water treatment due to the lower energy requirements and higher yields than reverse osmosis. Separation characteristics are dependent on both the molecular size and charge of the dissolved species in the feed solution as well as membrane properties. In this investigation the potential of nanofiltration to remove dissolved species from uranium mill effluent has been studied. The background behind the application is discussed and the results of the first testwork programme are presented. An initial screening of seventeen commercially available membranes was completed and it was found that uranium rejections of greater than 75% were consistently achieved. Selected membranes also showed potential for the separation of radium, sulfate and manganese. (author)

  1. Degradation of olive mill wastewater by the induced extracellular ligninolytic enzymes of two wood-rot fungi.

    Zerva, Anastasia; Zervakis, Georgios I; Christakopoulos, Paul; Topakas, Evangelos

    2017-12-01

    Olive mill wastewater (OMWW) is a major problem in olive oil - producing countries, due to its high organic load and concentration in phenols that are toxic for marine life, plants and soil microorganisms. In the present study, two mushroom species were tested in regard to their OMWW's oxidative capacity, Pleurotus citrinopileatus LGAM 28684 and Irpex lacteus LGAM 238. OMWW (25% v/v) degradation was investigated for several culture conditions, namely pH, agitation speed, nitrogen-based supplements and their concentration. The selected values were pH 6, agitation rate 150 rpm, 30 g L -1 corn steep liquor as nitrogen source for P. citrinopileatus and 20 g L -1 diammonium tartrate for I. lacteus. The two strains performed well in cultures supplemented with OMWW, generating very high titers of oxidative enzymes and achieving more than 90% color and phenols reduction within a 24 days cultivation period. In addition, the amount of glucans present in the fungal biomass was assessed. Hence, P. citrinopileatus and I. lacteus appear as potent degraders of OMWW with the ability to use the effluent as a substrate for the production of biotechnologically important enzymes and valuable fungal glucans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Molecular microbial and chemical investigation of the bioremediation of two-phase olive mill waste using laboratory-scale bioreactors.

    Morillo, J A; Aguilera, M; Antízar-Ladislao, B; Fuentes, S; Ramos-Cormenzana, A; Russell, N J; Monteoliva-Sánchez, M

    2008-05-01

    Two-phase olive mill waste (TPOMW) is a semisolid effluent that is rich in contaminating polyphenols and is produced in large amounts by the industry of olive oil production. Laboratory-scale bioreactors were used to investigate the biodegradation of TPOMW by its indigenous microbiota. The effect of nutrient addition (inorganic N and P) and aeration of the bioreactors was studied. Microbial changes were investigated by PCR-temperature time gradient electrophoresis (TTGE) and following the dynamics of polar lipid fatty acids (PLFA). The greatest decrease in the polyphenolic and organic matter contents of bioreactors was concomitant with an increase in the PLFA fungal/bacterial ratio. Amplicon sequences of nuclear ribosomal internal transcribed spacer region (ITS) and 16S rDNA allowed identification of fungal and bacterial types, respectively, by comparative DNA sequence analyses. Predominant fungi identified included members of the genera Penicillium, Candida, Geotrichum, Pichia, Cladosporium, and Aschochyta. A total of 14 bacterial genera were detected, with a dominance of organisms that have previously been associated with plant material. Overall, this work highlights that indigenous microbiota within the bioreactors through stimulation of the fungal fraction, is able to degrade the polyphenolic content without the inoculation of specific microorganisms.

  3. The possibility of palm oil mill effluent for biogas production

    EDWI MAHAJOENO

    2008-01-01

    Full Text Available The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Indonesia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil (Elaeis guiinensis Jacq.. The aims of the research were to (i characterize palm oil mill effluent which will be used as source of biogas production, (ii know the biotic and abiotic factors which effect POME substrate for biogas production by anaerobic digestion in bulk system. The results show that POME sludge generated from PT Pinago Utama mill is viscous, brown or grey and has an average total solid (TS content of, 26.5-45.4, BOD is 23.5-29.3, COD is 49.0-63.6 and SS is 17.1-35.9 g/L, respectively. This substrate is a potential source of environmental pollutants. The biotic factors were kind and concentration of the inoculums, i.e. seed sludge of anaerobic lagoon II and 20% (w/v respectively. Both physical and chemical factors such as pre-treated POME pH, pH neutralizer matter Ca (OH2, temperature ≥40oC, agitation effect to increase biogas production, but in both coagulant concentration, FeCl2 were not.

  4. Effect of olive mill waste (OMW) supplementation to Oyster mushrooms substrates on the cultivation parameters and fruiting bodies quality

    Ruiz-Rodriguez, A.; Soler-Rivas, C.; Polonia, I.; Wichers, H.J.

    2010-01-01

    Seven Oyster mushroom strains were cultivated in wheat straw (WS) bags supplemented with 0 up to 90% olive mill waste (OMW), a solid residue obtained from a two-phases olive oil production system. All mushroom strains could grow but high OMW concentrations resulted in a significant yield, biological

  5. A process for the treatment of olive mill waste waters by immobilized cells.

    ElYachioui, M.

    2005-06-01

    Full Text Available Mould strains were immobilized on sawdust from woods as a solid material for the treatment of Olive Mill Waste (OMW waters. Assays were carried out in flasks. The treatment process was monitored by physico-chemical determinations including pH, polyphenols and COD, which were followed up during the incubation time. In parallel the chemical inhibitory activity of OMW was confirmed biologically by the determination of some microorganisms in the medium including the plate count, yeasts and lactic acid bacteria. Results indicated that the polyphenol degradation level was 87 %. The COD was also reduced by 60 %. The pH of the effluent increased from 4.5 to 6.6. The microbial profiles showed their best growth during the treatment period indicating a removal of the inhibitory activities from the OMW waters. The growth patterns of all microorganism groups were similar and could reach high levels in the effluent.Cepas de moho fueron inmovilizadas sobre serrín de madera como material sólido para el tratamiento de aguas residuales de un molino de aceituna (OMW. Los ensayos se realizaron en matraces. El proceso de tratamiento se monitorizó mediante determinaciones físico-químicas incluyendo pH, polifenoles y DQO, que también se analizaron durante el tiempo de incubación. En paralelo, la actividad inhibidora química de las OMW se confirma biológicamente mediante su efecto sobre algunos microorganismos incluyendo levaduras y bactérias ácido lácticas. Los resultados indicaron que los polifenoles se degradan hasta un nivel del 87 %. La DQO se redujo también al 60 %. El pH del efluente aumentó de 4.5 a 6.6. Los perfiles microbiológicos mostraron un mejor crecimiento a medida que avanzaba el tratamiento indicando una supresión de las actividades inhibidoras de las aguas (OMW. El comportamiento del crecimiento de todos los grupos de microorganismos fue similar y puede alcanzar altos niveles en el efluente

  6. Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater

    Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.

    2012-04-01

    In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the

  7. Effect of hydraulic retention time on biohydrogen and volatile fatty acids production during acidogenic digestion of dephenolized olive mill wastewaters

    Scoma, Alberto; Bertin, Lorenzo; Fava, Fabio

    2013-01-01

    The influence of Hydraulic Retention Time (HRT) on the performances of a recently developed biotechnological anaerobic acidogenic process fed with dephenolized Olive Mill Wastewater (OMW) was investigated. The study was carried out under mesophilic conditions in Packed Bed Biofilm Reactors (PBBRs), filled with ceramic cubes and inoculated with a characterized and acclimated acidogenic microbial consortium. The PBBRs were fed with a HRT of 7, 5, 3 or 1 day, which corresponded to Organic Loading Rates (OLRs) of about 5.5, 7.8, 12.9 and 38.8 g L −1 d −1 , respectively. A significant production of a H 2 -rich biogas was observed when shorter HRTs were applied: in particular, H 2 relative amount and productivity increased from 3% to 32% and from 0.20 to 6.10 dm 3 m −3 h −1 , respectively, by decreasing the HRT from 7 to 1 day. On the contrary, shorter HRTs turned into a lower accumulation of Volatile Fatty Acids (VFAs), whose highest amounts were found with HRTs of 7 and 5 days (about 18.4 and 19.7 g L −1 COD equivalents, respectively). The highest conversion yield of COD into VFAs (36%) was obtained with a HRT of 5 days, when VFAs represented about 78% of the effluent COD. HRT also influenced the composition of the VFA mixture: acetic, propionic and butyric acid were the most prominent VFAs, being their relative amounts higher when PBBRs were operated with shorter HRTs (up to 19, 12 and 42% of the whole mixture, respectively, when HRT was 1 day). -- Highlights: ► HRT affects the acidogenic digestion of dephenolized olive mill wastewater. ► A significant production of bioH 2 can be coupled to that of volatile fatty acids. ► Higher H 2 and lower VFA productions were obtained by shortening the HRT

  8. Removal of contaminants in a paper mill effluent by Azolla caroliniana

    D. Sivakumar

    2015-09-01

    Full Text Available This study was focused on removal of various parameters in paper mill effluent using a method called bioremediation by Azolla caroliniana.  The experimental investigations have been carried out using Azolla caroliniana for conducting the sorption study with various dilution ratios (2, 4, 6, 8, and 10, pH (3, 4, 5, 6, 7, 8 and 9 and biomass (200, 400, 600, 800 and 1000 g. The maximum removal percentage of TDS, BOD and COD in a paper mill effluent was obtained at the optimum dilution ratio of 6, pH of 8 and biomass of 800 g. The results of this study indicated that the maximum removal percentage of TDS, BOD and COD in a paper mill effluent was 82.3 %, 88.6 % and 79.1 % respectively.  Also, the study focused on uptake of TDS, BOD and COD in paper mill effluent by Azolla caroliniana through bioaccumulation factor and translocation factor. The results of bioaccumulation factor revealed that TDS, BOD and COD in paper mill effluent were adsorbed by Azolla caroliniana.  The results of translocation factor revealed that the roots of Azolla caroliniana translocate the TDS, BOD and COD in a paper mill effluent to the shoots of Azolla caroliniana. From the results, this study concluded that bioremediation by Azolla caroliniana could be effectively used for removing TDS, BOD and COD in a paper mill effluent. This study also suggested that Azolla caroliniana may be used for removing various contaminants, not only from paper mill effluent, but also from any other industrial effluents.

  9. Techno-Economic Performance Evaluation for Olive Mills Powered by Grid-Connected Photovoltaic Systems

    Ovidio Rabaza

    2015-10-01

    Full Text Available In recent years, due to the rise in petroleum prices and greenhouse gas emissions, renewable energy has been recommended as a power source for different types of facilities. For the period 2010 to 2020 the European Commission has established three key objectives related to climatic change and energy sustainability, such as reductions of CO2 emissions, increases in the use of renewable energy, and improvements in energy efficiency. A key industry is olive oil production in olive mills, where there is a great opportunity to reduce electricity consumption, increase additional profits related to the reduction of technologies that are harmful to the environment, and to cut back maintenance costs. For this reason, a feasibility study of grid-connected photovoltaics (PV systems has been carried out for different types of olive mills in Andalusia (southern Spain. This region is highly energy dependent, but has an abundance of “green” resources to be exploited. The results of this study contemplate a reduction in spending on electrical power of between 2% and 37%, and an increase in the use of renewable energy of between 2% and 26%. These results are according to the self-consumption or net metering policy and the production capacity of olive oil.

  10. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    El-Gohary, F.A.; Badawy, M.I. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt); El-Khateeb, M.A. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt)], E-mail: elkhateebcairo@yahoo.com; El-Kalliny, A.S. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt)

    2009-03-15

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H{sub 2}O{sub 2} dose, Fe{sup +2}, COD:H{sub 2}O{sub 2} ratio and Fe{sup +2}:H{sub 2}O{sub 2} ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l{sup -1} for {rho}-hydroxy-benzaldhyde to 3.273 mg l{sup -1} for cinnamic acid.

  11. Codigestion of olive oil mill wastewaters with manure, household waste or sewage sludge

    Angelidaki, I.; Ahring, B.K.

    1997-01-01

    Combined anaerobic digestion of oil mill effluent (OME) together with manure, household waste (HHW) or sewage sludge was investigated. In batch experiments it was shown that OME could be degraded into biogas when codigested with manure. In codigestion with HHW or sewage sludge, OME dilution...

  12. Spray drying of a phenolic-rich membrane filtration fraction of olive mill wastewater: Optimization and dried product quality

    Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...

  13. Hydrogen production from palm oil mill effluent by fermentation

    Tanisho, S.; Shimazaki, T. [Yokohama National Univ., Shigeharu TANISHO and Tsuruyo SHIMAZAKI, Yokohama (Japan)

    2003-09-01

    Hydrogen production by fermentation was examined by using palm oil mill effluent. Clostridium butyricum produced more than 2.2 NL of hydrogen from 1 L of raw POME at pH 5.0, and Enterobacter aerogenes produced ca. 1.9 NL at pH 6.0. While from the culture liquid added 1% of peptone on the raw POME, C. butyricum produced more than 3.3 NL and also E. aerogenes 3.4 NL at pH 6.0 and 5.0, respectively. In this manner, the addition of nitrogen source to the POME liquid exerted an influence on the volume of hydrogen production. Since Aspergillus niger has ability to produce cellulase, co-cultivation of C.butyricum with A. niger was tried to utilize celluloses in the POME. Against our expectations, however, the results were lower productivities than pure cultivation's. We analyzed the components of POME by liquid chromatography and capillary electrophoresis before and after cultivation. The main substrate for hydrogen production was found to be glycerol. (authors)

  14. The importance of pretreatment tailoring on the performance of ultrafiltration membranes to treat two-phase olive mill wastewater

    Ochando Pulido, J. M.

    2015-03-01

    Full Text Available In this work, the performance of an ultrafiltration (UF membrane in the treatment of the effluents by-produced by olive mills is addressed by applying different pretreatments on the raw effluents. By conducting a photo-catalytic process (UV/TiO2 PC after pH-temperature flocculation (pH-T F higher threshold flux values were observed for all feed stocks than by applying solely the pH-T F process, with an 18.8–34.2% increment. In addition, the performance of the UF membrane was also improved in terms of rejection efficiency, such that higher rejection values were yielded by the membrane for the organic pollutants (RCOD by 48.5 vs. 39.9% and 53.4 vs. 42.0%. The UF membrane performance was also improved in terms of the volume feed recovery factor (VFR, achieving up to 88.2 vs. 87.2% and 90.7 vs. 89.3%. Results in the same line were also observed when the highly polluted olives oil washing wastewater raw stream was previously mixed with the effluent stream coming from the washing of the olives. This permits the UF to permeate, achieving the standard limits to reuse the purified effluent for irrigation purposes (COD values below 1000 mg·L−1, which makes the treatment process cost-effective and results in making the olive oil production process environmentally friendly.En este estudio se aborda el rendimiento de una membrana de ultrafiltración (UF para el tratamiento de los efluentes generados por la industria oleícola, mediante la aplicación de distintos pretratamientos. Tras aplicar un proceso fotocatalítico (UV/TiO2 PC después de una floculación pH-temperatura (pH-T F se observaron flujos límite para todos los efluentes mayores que tras la aplicación únicamente del proceso pH-T F, con incrementos del 18.8–34.2 %. Además, el rendimiento de la membrana de UF mejoró en términos de eficiencia de rechazo, con mayores valores de rechazo respecto de los contaminantes orgánicos (RCOD, 48.5 vs. 39.9 % y 53.4 vs. 42.0 %. El rendimiento de

  15. Effects of seasonal olive mill wastewater applications on hydrological and biological soil properties in an olive orchard in Israel

    Steinmetz, Zacharias; Kurtz, Markus; Peikert, Benjamin; Zipori, Isaac; Dag, Arnon; Schaumann, Gabriele E.

    2014-05-01

    During olive oil production in Mediterranean countries, large amounts of olive mill wastewater (OMW) are generated within a short period of time. OMW has a high nutrient content and could serve as fertilizer when applied on land. However, its fatty and phenolic constituents have adverse effects on hydrological and biological soil properties. It is still unknown how seasonal fluctuations in temperature and precipitation influence the fate and effect of OMW components on soil in a long-term perspective. An appropriate application season could mitigate negative consequences of OMW while preserving its beneficial effects. In order to investigate this, 14 L OMW m-2 were applied to different plots of an olive orchard in Gilat, Israel, in winter, spring, and summer, respectively. Hydrological soil properties (water drop penetration time, hydraulic conductivity, dynamic contact angle), physicochemical parameters (pH, EC, soluble ions, phenolic compounds, organic matter), and biological degradation (bait-lamina test) were measured to assess the soil state after OMW application. After one rainy season following OMW application, the soil quality of summer treatments significantly decreased compared to the control. This was particularly apparent in a ten-fold higher soil water repellency, a three-times lower biodegradation performance, and a four-fold higher content of phenolic compounds. 1.5 years after the last OMW application, the soil properties of winter treatments were comparable to the control, which suggests a certain recovery potential of the soil. Spring treatments resulted in an intermediate response compared to summer and winter treatments, but without any precipitation following OMW application. Strongest OMW effects were found in the top soil layers. Further research is needed to quantify the effect of spring treatments as well as to gain further insight into leaching effects, the composition of organic OMW constituents, and the kinetics of their degradation in

  16. Colour removal from magnesium bisulphite pulp and paper mill effluent using lignite adsorption and salt coagulation

    Yuliani, Galuh

    2017-01-01

    The removal of colour, organics and phosphorus from pulp and paper mill effluent and the development of colour of the wastewater were investigated. These contaminants are considered to be the most important due to their resistance over common treatment applied by the mill. Two approaches, adsorption and coagulation, were chosen for investigation of the removal of colour, organics and phosphorus from aqueous discharges of a bisulphite pulp and paper mill. Additionally, the colour generatio...

  17. Use and treatment of olive mill wastewater: current situation and prospects in Spain

    Fiestas Ros de Ursinos, J. A.

    1992-04-01

    Full Text Available The characteristics of olive mill wastewater are set out the viewpoint of their pollutant capacity and the problems arising from their tipping in olive-growing areas. The national administration's solutions for preventing pollutions of surface waters are also stated. Special detail is given to the action taken within a research and development program financed by the Spanish Government and the EEC through the Commission MEDSPA 89 for the technical-economic evaluation of different systems for eliminating and treating olive mill wastewater, in order to determine the feasibility of their introduction at industrial level. At the same time the systems currently under evaluation are described: - Intensification of natural evaporation from olive mill wastewater stored in ponds (two systems. - Physical processes using forced evaporation to eliminate the olive mill wastewater, followed by aerobic biological processes or systems of ultrafiltration and inverse osmosis for final treatment of the condensate (two systems. - Application of physico-chemical processes to eliminate the greater part of the organic components of the olive mill wastewaters and the use of aerobic biological processes or systems of ultrafiltration and inverse osmosis for final treatment of the clarified fraction (three systems. - Biological process for the complete treatment of the olive mill wastewaters by the successive application of processes: bioconversion, biomethanisation, aerobic treatment, and physico-chemical treatment. Treatment yields of the order of 99,6% are achieved, at the same time obtaining by-products of commercial interest (one system.

    Las características de los alpechines se establecen desde el punto de vista de su capacidad contaminante y de los problemas típicos que surgen en las zonas de cultivo del olivo. También están descritas las soluciones de la administración del Estado para la prevención de la contaminación de aguas de superficie

  18. Review of the Drying Kinetics of Olive Oil Mill Wastes: Biomass Recovery

    Francisco J. Gómez-de la Cruz

    2015-06-01

    Full Text Available The drying kinetics of olive oil mill wastes was analyzed based on experiments carried out by various researchers utilizing different drying systems. A critical review of the literature was done, and mathematical models of drying curves proposed by investigators were evaluated. A comparison between the best mathematical models of fit in the drying curves used in past experiments and a two-term Gaussian model was performed. This model improved all the results of fit in each experiment. Drying rates and drying stages were obtained and discussed. An average drying rate for each experiment from the two-term Gaussian model was calculated. This value allowed for visualizing and comparing the average speed of evaporated water in each experiment for the different dryers. Finally, and after having verified that almost all drying occurs mainly by a diffusion phenomenon, an analysis on the effective moisture diffusivity and activation energy values was performed. The results indicated that there was no dependency of these quantities on independent variables such as the drying air temperature, the drying air velocity, and the sample thickness. It follows that drying of olive oil mill wastes is a very complex physical process that depends heavily on aspects such as pieces of pit, pulp, skin, vegetation water, olive oil content, sugars and organics compounds of different nature.

  19. Integrative approach for utilization of olive mill wastewater and lebna's whey for ethanol production

    Ibrahim, M A; Hayek, B O; Al-Hmoud, N; Al-Gogazeh, L

    2009-09-15

    The industry of olive oil extraction in Jordan involves an intensive consumption of water and generates large quantities of olive mill wastewater (OMW). This wastewater has a high pollution risk with biological oxygen demand (BOD). The organic fraction of OMW includes sugars, tannins, polyphenols, polyalcohols, pectins and lipids. The presence of remarkable amounts of aromatic compounds in OMW is responsible for its phytotoxic and antimicrobial effects. The environmental problems and potential hazards caused by OMW had led olive oil producing countries to limit their discharge and to propose and develop new technologies for OMW treatments, such as physicochemical and biological treatments. In the present investigation lebna's whey a local byproduct of widely consumed local yogurt was used with OMW for ethanol production. The obtained results showed that the proteins of lebna's whey can remove substantial amounts of aromatic compounds present in OMW. This was reflected on the reduction of the intensity of black color of OMW and removal of 37% polyphenols. Moreover, the production of ethanol was ascertained in fermentation media composed of whey and in presence of various concentrations of OMW up to 20% OMW. The obtained results showed the possibility to develop a process for improvement and enhancement of ethanol production from whey and olive oil waste in mixed yeast cultures. (au)

  20. Residual Sorption and leaching of the herbicide diuron following de-oiled two-phase olive mill waste addition to soil

    Lopez-Pineiro, A.; Albarran, A.; Cabrera, D.; Rato, J. M.; Munoz, A.; Flores, S.

    2009-07-01

    The residual sorption, desorption, degradation, and leaching of the herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) a herbicide widely used in olive groves, was studied following the addition to soils of de oiled two-phase olive mill waste (DTPOMW). Field experiments were conducted on an olive grove soil amended over seven years with DTPOMW. (Author)

  1. Residual Sorption and leaching of the herbicide diuron following de-oiled two-phase olive mill waste addition to soil

    Lopez-Pineiro, A.; Albarran, A.; Cabrera, D.; Rato, J. M.; Munoz, A.; Flores, S.

    2009-01-01

    The residual sorption, desorption, degradation, and leaching of the herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) a herbicide widely used in olive groves, was studied following the addition to soils of de oiled two-phase olive mill waste (DTPOMW). Field experiments were conducted on an olive grove soil amended over seven years with DTPOMW. (Author)

  2. Evolution of the stability parameters composting two-phase olive mill waste with grape marc and vine branches

    Garcia-Gallego, A.; Lopez-Pineiro, A.; Albarran, A.; Rato, J. M.; Barreto, C.; Cabrera, D.; Prieto, M. H.; Munoz, A.; Almendro, J. P.

    2009-01-01

    Modern olive-oil extraction technology generates a large amount of two-phase olive mill waste (TPOMW) in Mediterranean countries, with composting being a viable alternative to the traditional disposal of these residues. Vine branches and grape marc also constitute abundant organic residues in these countries. TPOMW was composted with vine branches and grape mar as bulking agents for use as organic amendment. (Author)

  3. Impact of industrial hammer mill rotor speed on extraction efficiency and quality of extra virgin olive oil.

    Polari, Juan J; Garcí-Aguirre, David; Olmo-García, Lucía; Carrasco-Pancorbo, Alegría; Wang, Selina C

    2018-03-01

    Crushing is a key step during olive oil extraction. Among commercial crushers, the hammer mill is the most widely used due to its robustness and high throughput. In the present work, the impact of hammer mill rotor speed on extraction yield and overall quality of super-high-density Arbosana olive oils were assessed in an industrial facility. Our results show that increasing the rotor speed from 2400rpm to 3600rpm led to a rise in oil yield of 1.2%, while conserving quality parameters. Sensory analysis showed more pungency with increased rotation speed, while others attributes were unaffected. Volatile compounds showed little variation with the differences in crusher speed; however, total phenols content, two relevant secoiridoids, and triterpenoids levels increased with rotor speed. Hammer mill rotor speed is a processing variable that can be tuned to increase the extraction efficiency and modulate the chemical composition of extra virgin olive oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout.

    Orrego, Rodrigo; Guchardi, John; Hernandez, Victor; Krause, Rachelle; Roti, Lucia; Armour, Jeffrey; Ganeshakumar, Mathumai; Holdway, Douglas

    2009-01-01

    Endocrine disruption (ED) effects due to pulp and paper mill effluents extracts involving different industrial procedures and effluent treatments (nontreated, primary, and secondary treated) were evaluated using immature triploid rainbow trout in a pulse-exposure toxicity experiment. The protocol involved the use of intraperitoneal injection of mill extracts (solid-phase extraction [SPE]) corrected for individual fish weight and included several laboratory standards (steroidal hormones and phytosterols). Biological endpoints at two different levels of biological organization were analyzed (molecular and individual organism). Results indicated that nonsignificant changes were observed in the individual physiological indices represented by condition factor, liver somatic index, and gonad somatic index during the experiment. Significant induction of liver ethoxyresorufin-O-deethylase activity was observed between different effluent treatments and experimental controls. Significant endocrine-disrupting effects at the reproductive level were observed in all effluent treatments involving significant increments in plasma vitellogenin (VTG) levels. Fish exposed to untreated effluent extracts had significantly higher VTG levels compared to fish exposed to primary and secondary treatment effluent extracts, indicating a decrease of the estrogenic effect due to the effluent treatment. The present study has shown that for the Chilean pulp and paper mill SPE extracts evaluated, an endocrine disruption effect was induced in immature triploid rainbow, reaffirming the significant estrogenic effects demonstrated previously in laboratory and field experiments.

  5. Olive Mill Waste Enhances α-Glucan Content in the Edible Mushroom Pleurotus eryngii

    Sharon Avni

    2017-07-01

    Full Text Available Mushroom polysaccharides are edible polymers that have numerous reported biological functions; the most common effects are attributed to β-glucans. In recent years, it became apparent that the less abundant α-glucans also possess potent effects in various health conditions. Here we explore several Pleurotus species for their total, β and α-glucan content. Pleurotus eryngii was found to have the highest total glucan concentrations and the highest α-glucans proportion. We also found that the stalks (stipe of the fruit body contained higher glucan content then the caps (pileus. Since mushrooms respond markedly to changes in environmental and growth conditions, we developed cultivation methods aiming to increase the levels of α and β-glucans. Using olive mill solid waste (OMSW from three-phase olive mills in the cultivation substrate. We were able to enrich the levels mainly of α-glucans. Maximal total glucan concentrations were enhanced up to twice when the growth substrate contained 80% of OMSW compared to no OMSW. Taking together this study demonstrate that Pleurotus eryngii can serve as a potential rich source of glucans for nutritional and medicinal applications and that glucan content in mushroom fruiting bodies can be further enriched by applying OMSW into the cultivation substrate.

  6. Start-up of a free water surface constructed wetland for treating olive mill wastewater

    Michailides Michail

    2015-01-01

    Full Text Available An olive mill's existing evaporation pond was separated into five cells and transformed into a free water surface constructed wetland. The constructed wetland was used as a post-treatment stage for olive mill wastewater (OMW. Wastewater was previously treated by an aerobic trickling filter. The influent concentrations in the constructed wetland were 27400 mg.L-1, 4800 mg.L-1, 105 mg.L-1 and 770 mg.L-1 for COD, phenols, ortho-phosphate and TKN, respectively. Despite the rather high influent concentrations, the performance of the constructed wetland was very good since after the 60-day start-up operation period it achieved removal rates of about 94%, 95%, 95% and 98% for COD, phenols, ortho-phosphate and TKN, respectively. The major pollutant removal processes can be attributed to both biological processes occurring in the wetland and photo-oxidation. Laboratory-scale experiments with OMW from fifth cell of the wetland revealed that the net contribution of photo-oxidation after 112 hours of simulated solar radiation at 765 W/m2 (i.e. about 38 days of sunlight irradiation was 18% and 31% removal for COD and phenols, respectively. In the constructed wetland, the total removal reached 81% and 86% for COD and phenols, respectively, for the same time period (38 days.

  7. Releases of radioactivity from uranium mills and effluent treatment costs

    Witherspoon, J.P.; Sears, M.B.; Blanco, R.E.

    1977-01-01

    Airborne releases of radioactive materials from uranium milling to the environment consist of ore dust, yellowcake dust, tailings dust, and radon gas while the mill is active. After a mill has ceased operations, tailings may be stabilized to minimize or prevent airborne releases of radioactive particulates. However, radon gas will continue to be released in amounts inversely proportional to the degree of stabilization treatment (and expense). Liquid waste disposal is by evaporation and natural seepage to the ground beneath the tailings impoundment area. The release of radioactive materials (and potential radiation exposures) determines the majority of costs associated with minimizing the environmental impact of uranium milling. Radwaste treatments to reduce estimated radiation doses to individuals to 3 to 5% of those received with current milling practices are equivalent to $0.66 per pounds of U 3 O 8 and 0.032 mill per kWhr of electricity. This cost would cover a high efficiency reverse jet bag filter and high energy venturi scrubbers for dusts, neutralization of liquids, and an asphalt-lined tailings basin with a clay core dam to reduce seepage. In addition, this increased cost would cover stabilization of tailings, after mill closure, with a 1-in. asphalt membrane topped by 2 ft of earth and 0.5 ft of crushed rock to provide protection against future leaching and wind erosion. The cost of reducing the radiological hazards associated with uranium milling to this degree would contribute about 0.4% to the current total cost of nuclear power

  8. Solvent Fermentation From Palm Oil Mill Effluent Using Clostridium acetobutylicum In Oscillatory Flow Bioreactor

    Takriff, M.S.; Masngut, N.; Kadhum, A.A.H.; Kalil, M.S.; Mohammad, A.W.

    2009-01-01

    Acetone-butanol-ethanol (ABE) fermentation from Palm Oil Mill Effluent (POME) by C. acetobutylicum NCIMB 13357 in an oscillatory flow bioreactor was investigated. Experimental works were conducted in a U-shaped stainless steel oscillatory flow bioreactor at oscillation frequency between 0.45-0.78 Hz and a constant amplitude of 12.5 mm. Fermentations were carried out for 72 hr at 35 degree Celsius using palm oil mill effluent and reinforced clostridia medium as a growth medium in batch culture. Result of this investigation showed that POME is a viable media for ABE fermentation and oscillatory flow bioreactor has an excellent potential as an alternative fermentation device. (author)

  9. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment.

  10. Composted versus Raw Olive Mill Waste as Substrates for the Production of Medicinal Mushrooms: An Assessment of Selected Cultivation and Quality Parameters

    Georgios I. Zervakis

    2013-01-01

    Full Text Available Two-phase olive mill waste (TPOMW, “alperujo” is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota, that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120–135% for Pleurotus spp. and 125% for A. cylindracea and productivity in subsequent cultivation experiments on substrates supplemented with 20–40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium. Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  11. Composted versus raw olive mill waste as substrates for the production of medicinal mushrooms: an assessment of selected cultivation and quality parameters.

    Zervakis, Georgios I; Koutrotsios, Georgios; Katsaris, Panagiotis

    2013-01-01

    Two-phase olive mill waste (TPOMW, "alperujo") is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota), that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120-135% for Pleurotus spp. and 125% for A. cylindracea) and productivity in subsequent cultivation experiments on substrates supplemented with 20-40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium). Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  12. Effluent controls and environmental monitoring programs for uranium milling operations

    Maixner, R.D.

    1979-01-01

    Controls will reduce gaseous, particulate, and liquid discharges. Monitoring programs are used to determine effectiveness. The controls and programs discussed are used at Cotter Corporation's Canon City Mill in Colorado. 3 refs

  13. Regarding the rejection performance of a polymeric reverse osmosis membrane for the final purification of two-phase olive mill effluents previously treated by an advanced oxidation process; Sobre la eficiencia del rechazo de una membrana polimérica de ósmosis inversa para la purificación del agua residual de almazara de dos fases, previamente tratada mediante un proceso avanzado de oxidación

    Ochando-Pulido, J.M.; Martínez-Férez, A.

    2017-07-01

    In previous works on olive mill wastewater (OMW), secondary advanced oxidation treatment solved the problem related to the presence of phenolic compounds and considerable chemical oxygen demand. However, the effluent presented a significant salinity after this treatment. In this work, an adequate operation of a reverse osmosis (RO) membrane is addressed to ensure constant performance over a long period of time. In this paper, the effect of the operating parameters on the dynamic membrane rejection performance towards the target species was examined and discussed. Rejection efficiencies of all species were observed to follow a similar pattern, which consisted of slight initial improvement that further decreased over time. Rejection of both divalent ions remained constant at over 99% regardless of the operating conditions. Rejections were noticed to follow the order SO42−> Cl−> NO3− and Ca2+> Mg2+> K+> Na+, as a rule. Divalent species were moderately more highly rejected than monovalent ones, in accordance with their higher charge and molecular size, and sulfate anions were consistently rejected by over 99%. Finally, the RO membrane exiting treated effluent was depleted of the high electro conductivity initially present (above 97% rejection), permitting its re-use as good quality irrigation water (below 1 mS/cm). [Spanish] En trabajos previos con agua residual de almazara, se solucionó el problema en relación a la presencia de compuestos fenólicos y la considerable concentración de material orgánico. Sin embargo, el efluente presentaba una salinidad significativa tras éste. Este trabajo tiene por objetivo estudiar la adecuada operación de una membrana de ósmosis inversa (OI) para asegurar rendimientos constantes por largos períodos de tiempo de operación. Se examina y discute el efecto de los parámetros de operación en el rendimiento dinámico del rechazo de especies diana. Se observó que la eficiencia de rechazo de todas las especies siguió un

  14. IN VITRO ANDROGENIC ACTIVITY OF KRAFT MILL EFFLUENT IS ASSOCIATED WITH MASCULINIZATION OF FEMALE FISH

    In Vitro Androgenic Activity of Kraft Mill Effluent is Associated with Masculinization of Female Fish. Lambright, CS 1 , Parks, LG 1, Orlando, E 2, Guillette, LJ, Jr.2, Ankley, G 3, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville ...

  15. Bioconversion of empty fruit bunches (EFB) and palm oil mill effluent ...

    This study shows the performance of Trichoderma virens as an activator for conversion of empty fruit bunches (EFB) and palm oil mill effluent (POME) into compost. EFB and POME are two abundant wastes produced by oil palm industries which keep accumulating. Since there is no proper way to dispose these wastes, ...

  16. The impact of Palm Oil Mill Effluent (POME) application on the ...

    Palm Oil Mill Effluent (POME) is considered an efficient soil conditioner due to its high organic contents but the presence of phenol compounds limits their widespread use in agriculture. In the present study, POME was subjected to both aerobic and anaerobic decomposition to reduce its organic strength and degrade its ...

  17. Using Py-GC/MS to fingerprint additives associated with paper mill effluent toxicity episodes

    Sithole, Bruce

    2012-10-01

    Full Text Available techniques applicable to mill effluents such as gas chromatography. Py-GC/MS is a powerful analytical technique that can be used to fingerprint these additives. The presence of the additives is confirmed by fingerprint pyrograms of the additives (or...

  18. Effects of palm oil mill effluent (POME) anaerobic sludge from 500 m ...

    In this study, co-composting of pressed-shredded empty fruit bunches (EFB) and palm oil mill effluent (POME) anaerobic sludge from 500 m3 closed anaerobic methane digested tank was carried out. High nitrogen and nutrients content were observed in the POME anaerobic sludge. The sludge was subjected to the ...

  19. Evaluation of full-strength paper mill effluent for electricity generation ...

    In the search for renewable, sustainable and affordable energy sources, microbial fuel cells (MFCs) offer the advantage of a biological oxidation of pollutants to the direct generation of electricity by microorganisms. We thus examined the biodegradability and suitability of unamended paper mill effluent for power production ...

  20. Acute toxicity of cassava mill effluent to the African catfish fingerlings ...

    A bioassay test was performed on the toxic effect of Cassava Mill Effluent to the African Catfish - Heteroclarias Hybrid of Heterobranchus bidorsalis (Male) and Clarias gariepinus (Female). The 96-h LC50 was determined as 50. 12 mgl -1. Exposed fish became darker in colour and showed signs of respiratory distress, ...

  1. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties.

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-03-01

    The present study was carried out to evaluate the impact of the effluents and the solid wastes generated by a giant pulp and paper mill in the northeastern part of India on soil mineralogy of the area. The impacts were monitored by analysis of soil samples from seven sites located in the potential impact zone and a control site where any kind of effluent discharge or solid waste dumping was absent. The soil belonged to medium texture type (sandy clay loam, sandy loam, loamy sand, and silt loam), and the soil aggregate analysis indicated higher levels of organic carbon, pH, electrical conductivity, effective cation exchange capacity, and mean weight diameter at sites receiving effluents and solid wastes from the pulp and paper mill. Depletion in soil silica level and in feldspar and quartz contents and rise in iron and calcium contents at the sites receiving effluents from the pulp and paper mill indicated significant influence on soil mineralogy. The soil contained a mixture of minerals consisting of tectosilicates (with silicate frameworks as in quartz or feldspar), phylosilicates (layered clays like kaolinite, smectite, chlorite, illite, etc.), and carbonates. Absence of pure clay minerals indicated a state of heterogeneous intermediate soil clay transformation. The significance of the mixed mineralogy in relation to the disposal of effluents and dumping of solid wastes is discussed in details.

  2. Electro persulphate oxidation for polishing of biologically treated palm oil mill effluent (POME).

    Bashir, Mohammed J K; Wei, Chong Jia; Aun, Ng Choon; Abu Amr, Salem S

    2017-05-15

    Malaysia alone produces more than 49 million m 3 palm oil mill effluent per year. Biological treated palm oil mill effluent via ponding system often fails to fulfill the regulatory discharge standards. This is due to remaining of non-biodegradable organics in the treated effluent. Thus, the aim of this study was to resolve such issue by using electro persulphate oxidation process, for the first time, as a post treatment of palm oil mill effluent. Central composite design in response surface methodology was used to analyze and optimize the interaction of operational variables (i.e., current density, contact time, initial pH and persulphate dosage) targeted on maximum treatment efficiency. The significance of quadratic model of each response was determined by analysis of variance, where all models indicated sufficient significance with p-value < 0.0001. Optimum operational conditions with 45 mA/cm 2 of current density, 45 min of contact time, pH 4 and 0.892 g of S 2 O 8 2- proved that 77.70% of Chemical Oxygen Demand, 97.96% of colour as well as 99.72% of Suspended Solids removal were achieved. The final pH of 5.88 of the effluent was obtained that fulfilled the limit and suitable for direct discharge to the natural environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Canadian uranium mines and mills evolution of regulatory expectations and requirements for effluent treatment

    LeClair, J.; Ashley, F.

    2006-01-01

    The regulation of uranium mining in Canada has changed over time as our understanding and concern for impacts on both human and non-human biota has evolved. Since the mid-1970s and early 1980s, new uranium mine and mill developments have been the subject of environmental assessments to assess and determine the significance of environmental effects throughout the project life cycle including the post-decommissioning phase. Water treatment systems have subsequently been improved to limit potential effects by reducing the concentration of radiological and non-radiological contaminants in the effluent discharge and the total loadings to the environment. This paper examines current regulatory requirements and expectations and how these impact uranium mining/milling practices. It also reviews current water management and effluent treatment practices and performance. Finally, it examines the issues and challenges for existing effluent treatment systems and identifies factors to be considered in optimizing current facilities and future facility designs. (author)

  4. Oxidant reduction and biodegradability improvement of paper mill effluent by irradiation

    Tiezheng Wang; Waite, T.D.; Kurucz, C.

    1994-01-01

    Paper mill bleach processing wastewaters represent a large input of hazardous compounds to the environment and these compounds are usually non-biodegradable. A preliminary study using a 5000 Ci 60 Co gamma radiation source as a surrogate for electron beam irradiation, potentially an emerging technology for wastewater treatment, to treat a paper mill bleach effluent showed that for an absorbed dose of 800 krads, chemical oxygen demand (COD) was reduced by 13.5% and 5 day biochemical oxygen demand (BOD 5 ) was increased 58.6%. These changes altered the value of COD/BOD 5 from 14 to 5. For the same dose, the absorbable organic halogen (AOX) was reduced 76.2%. These results suggested the possibility of using the electron beam process to detoxify paper mill effluent thereby generating a more biodegradable wastewater. (author)

  5. New tailor-made bio-organoclays for the remediation of olive mill waste water

    Calabrese, Ilaria; Liveri, Maria Liria Turco; Gelardi, Giulia; Merli, Marcello; Sciascia, Luciana; Rytwo, Giora

    2013-01-01

    A systematic study aimed at obtaining new organoclays for the treatment of Olive Mill Waste water (OMW) has been performed. Several organoclays have been prepared by loading different amounts of the biocompatible surfactant Tween20 onto the K10 montmorillonite (MMT). Complementary kinetic and equilibrium studies on the adsorption of the Tween20 onto the MMT have been carried out and the characterization of the new tailor-made bio-materials has been performed by means of the XRD and FT-IR measurements. Finally the prepared bio-organoclays have been successfully applied for the OMW remediation and they proved to be highly effective in decreasing the organic content (OC) to an extent that depends on both the amount of loaded surfactant and the experimental protocols applied

  6. New tailor-made bio-organoclays for the remediation of olive mill waste water

    Calabrese, Ilaria; Gelardi, Giulia; Merli, Marcello; Rytwo, Giora; Sciascia, Luciana; Liria Turco Liveri, Maria

    2013-12-01

    A systematic study aimed at obtaining new organoclays for the treatment of Olive Mill Waste water (OMW) has been performed. Several organoclays have been prepared by loading different amounts of the biocompatible surfactant Tween20 onto the K10 montmorillonite (MMT). Complementary kinetic and equilibrium studies on the adsorption of the Tween20 onto the MMT have been carried out and the characterization of the new tailor-made bio-materials has been performed by means of the XRD and FT-IR measurements. Finally the prepared bio-organoclays have been successfully applied for the OMW remediation and they proved to be highly effective in decreasing the organic content (OC) to an extent that depends on both the amount of loaded surfactant and the experimental protocols applied.

  7. The potential of Pleurotus-treated olive mill solid waste as cattle feed.

    Shabtay, Ariel; Hadar, Yitzhak; Eitam, Harel; Brosh, Arieh; Orlov, Alla; Tadmor, Yaakov; Izhaki, Ido; Kerem, Zohar

    2009-12-01

    The aims of the current study were to follow: (1) the capability of the edible mushroom Pleurotus ostreatus to degrade cell wall components and soluble phenols of the olive mill solid waste (OMSW), and improve it for ruminant nutrition (2) the fate of oil and the lipid-soluble compounds tocopherols, squalene and beta-sitosterol in the fermented OMSW. A significant decrease in oil and lipid-soluble compounds with a concomitant shift in the fatty acid profile and degradation of soluble phenols took place already after 14 d. The utilization of lipids by the fungus shifted the degradation of the structural carbohydrates to a later stage, and significantly reduced the metabolizable energy of the OMSW. We propose that edible fungi with reduced lipase activity would preserve the energy and health promoting ingredients of the oil, and force the fungus to degrade structural carbohydrates, thus improving its digestibility.

  8. Ozone treatment of olive mill wastewater; Tratamiento con ozono de las aguas residuales de almazara

    Beltran de Heredia Alonso, J.; Torregrosa Anton, J.; Garcia Rodriguez, J.; Dominguez Vargas, J. R. [Universidad de Extremadura. Badajoz (Spain)

    2000-07-01

    In the present work, the ozonization of olive mill wastewater has been studied. The evolution process was followed by measuring the chemical oxygen demand, the aromaticity and the contents of phenolic compounds. The aromaticity conversion ranged between 4.85 and 21% chemical oxygen demand degradation varied from 3.25 to 19.4% and the total polyphenolic reduction varied between 6.86 and 43.7%. The ozone consumption in the reduction of each variable was determined, being the average values of 57.2 g COD/mol O{sub 3} 2.9 un. Abs/mol O{sub 2} and 3.3 g poly phen./mol O{sub 3}. Finally, considering a first order kinetic equation with respect to each reactant, the apparent kinetic constants are evaluated for the studied variables. (Author) 19 refs.

  9. Parameters and kinetics of olive mill wastewater dephenolization by immobilized Rhodotorula glutinis cells.

    Bozkoyunlu, Gaye; Takaç, Serpil

    2014-01-01

    Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model.

  10. Membrane filtration of olive mill wastewater and exploitation of its fractions.

    Paraskeva, C A; Papadakis, V G; Kanellopoulou, D G; Koutsoukos, P G; Angelopoulos, K C

    2007-04-01

    Olive mill wastewater (OMW) produced from small units scattered in rural areas of Southern Europe is a major source of pollution of surface and subsurface water. In the present work, a treatment scheme based on physical separation methods is presented. The investigation was carried out using a pilot-plant unit equipped with ultrafiltration, nanofiltration, and reverse osmosis membranes. Approximately 80% of the total volume of wastewater treated by the membrane units was sufficiently cleaned to meet the standards for irrigation water. The concentrated fractions collected in the treatment concentrates were characterized by high organic load and high content of phenolic compounds. The concentrates were tested in hydroponic systems to examine their toxicity towards undesired herbs. The calculations of the cost of the overall process showed that fixed and operational costs could be recovered from the exploitation of OMW byproducts as water for irrigation and/or as bioherbicides.

  11. Reusing pulp and paper mill effluent as a bioresource to produce biohydrogen through ultrasonicated Rhodobacter sphaeroides

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Ng, Boon Junn; Juan, Joon Ching; Md Jahim, Jamaliah

    2016-01-01

    Highlights: • Ultrasonication pretreatment on R. sphaeroides enhanced biohydrogen production. • Pretreatment using amplitude 30% for 10 min gave the highest biohydrogen yield. • Pretreatment using amplitude 45% for 15 min inhibited biohydrogen production. - Abstract: Pulp and paper industry is a water-intensive industry. This industry commonly produces considerable amount of effluent, especially from virgin raw materials processing. The effluent, namely pulp and paper mill effluent has the potential to adversely affect the receiving watercourses. However, the nutrients in the pulp and paper mill effluent could be reused as a substrate in biohydrogen production. In this study, photofermentative biohydrogen production was investigated using Rhodobacter sphaeroides and pulp and paper mill effluent as a substrate. An application of low power ultrasound on R. sphaeroides was predicted to increase photofermentative biohydrogen production but excessive ultrasound effects might inhibit the production due to possible cell disruption. Hence, various ultrasonication duration (5, 10 and 15 min) and amplitude (15%, 30% and 45%) were applied on the bacteria to determine the recommended ultrasonication conditions for improving biohydrogen production. The recommended conditions were operated at ultrasonication amplitude and duration of 30% and 10 min, respectively. A maximum biohydrogen yield of 9.62 mL bioH_2/mL medium was obtained under this condition, which was 66.7% higher than the result obtained using R. sphaeroides without undergoing ultrasonication (control). The light efficiency and cell concentration were increased by 67% and 150%, respectively, using ultrasonication amplitude and duration of 30% and 10 min, respectively as compared to the control. The present results demonstrated that moderate power of ultrasonication applied on R. sphaeroides was an effective method for enhancing photofermentative biohydrogen production using raw pulp and paper mill effluent as a

  12. Gene expression fingerprints of largemouth bass (Micropterus salmoides) exposed to pulp and paper mill effluents.

    Denslow, Nancy D; Kocerha, Jannet; Sepúlveda, Maria S; Gross, Timothy; Holm, Stewart E

    2004-08-18

    Effluents from pulp and paper mills that historically have used elemental chlorine in the bleaching process have been implicated in inhibiting reproduction in fish. Compounds with estrogenic and androgenic binding affinities have been found in these effluents, suggesting that the impairment of reproduction is through an endocrine-related mode of action. To date, a great deal of attention has been paid to phytoestrogens and resin acids that are present in mill process streams as a result of pulping trees. Estrogen and estrogen mimics interact directly with the estrogen receptor and have near immediate effects on gene transcription by turning on the expression of a unique set of genes. Using differential display (DD) RT-PCR, we examined changes in gene expression induced by exposure to paper mill effluents. Largemouth bass were exposed to 0, 10, 20, 40, and 80% paper mill effluent concentrations in large flow-through tanks for varied periods of time including 7, 28 or 56 days. Plasma hormone levels in males and females and plasma vitellogenin (Vtg) in females decreased with dose and time. Measurements of changes in gene expression using DD RT-PCR suggest that the gene expression patterns of male fish do not change much with exposure, except for the induction of a few genes including CYP 1A, a protein that is induced through the action of the Ah receptor in response to dioxin and similar polyaromatic hydrocarbons. However, in the case of females, exposure to these effluents resulted in an up-regulation of CYP 1A that was accompanied by a generalized down-regulation of genes normally expressed during the reproductive season. These antiestrogenic changes are in agreement with previous studies in bass exposed to these effluents, and could result in decreased reproductive success in affected populations.

  13. Bioremediation of olive mill waste water and its use as a bio fertilizer

    Shetaia, Y. M. [Microbiology Department, Ain Shams University, Cario (Egypt); Abd El Kareem, H.; Gomaa, O. M.; Wageeh, L. [Microbiology Department, National Center for Radiation Research and Technology, Cairo (Egypt)

    2012-12-15

    Olive oil mill wastewater (OMW) constitutes a major environmental problem especially for mediterranean countries, where most of the world's olive oil production. Treatment of the OMW is highly demanded due to the hazards of its high chemical oxygen demand (COD), total phenolic content (TP), turbidity and color. In the present study, penicillium chrysogen um was selected as the predominant grown fungus in the presence of phenolic compounds (13 g/l). Bio stimulation was tried to assist, TP removal, decolorization, turbidity and COD reduction before disposal to the environment. Separate addition of glucose and urea resulted in 62% removal of the phenol, while the addition of KH{sub 2}PO{sub 4} resulted in 70% removal with lower effect on both turbidity and coloration. Consecutive use of the filtration prior or post to the bio stimulation revealed that the use 4 kGy enhanced phenolic degradation while the use of filtration post bio stimulation was the most effective treatment for phenolic removal (70%). Turbidity was also decreased from 9.81 to 2.72, and the decolorisation was increased from 28.5% (in control samples) to 77.6% and COD was decreased by only 21%. Analysis of the treated OMW revealed the presence of trace amounts of phenolic compounds, sugars and some minerals, suggesting its potential use as a bio fertilizer. Ocimum basilicum cultivated with the treated OMW showed the highest germination percentage (60%) in comparison with that irrigated with tap water and untreated OMW (50%, 20%) respectively. (Author)

  14. Bioremediation of olive mill waste water and its use as a bio fertilizer

    Shetaia, Y. M.; Abd El Kareem, H.; Gomaa, O. M.; Wageeh, L.

    2012-12-01

    Olive oil mill wastewater (OMW) constitutes a major environmental problem especially for mediterranean countries, where most of the world's olive oil production. Treatment of the OMW is highly demanded due to the hazards of its high chemical oxygen demand (COD), total phenolic content (TP), turbidity and color. In the present study, penicillium chrysogen um was selected as the predominant grown fungus in the presence of phenolic compounds (13 g/l). Bio stimulation was tried to assist, TP removal, decolorization, turbidity and COD reduction before disposal to the environment. Separate addition of glucose and urea resulted in 62% removal of the phenol, while the addition of KH 2 PO 4 resulted in 70% removal with lower effect on both turbidity and coloration. Consecutive use of the filtration prior or post to the bio stimulation revealed that the use 4 kGy enhanced phenolic degradation while the use of filtration post bio stimulation was the most effective treatment for phenolic removal (70%). Turbidity was also decreased from 9.81 to 2.72, and the decolorisation was increased from 28.5% (in control samples) to 77.6% and COD was decreased by only 21%. Analysis of the treated OMW revealed the presence of trace amounts of phenolic compounds, sugars and some minerals, suggesting its potential use as a bio fertilizer. Ocimum basilicum cultivated with the treated OMW showed the highest germination percentage (60%) in comparison with that irrigated with tap water and untreated OMW (50%, 20%) respectively. (Author)

  15. Production of biochar from olive mill solid waste for heavy metal removal.

    Abdelhadi, Samya O; Dosoretz, Carlos G; Rytwo, Giora; Gerchman, Yoram; Azaizeh, Hassan

    2017-11-01

    Commercial activated carbon (CAC) and biochar are useful adsorbents for removing heavy metals (HM) from water, but their production is costly. Biochar production from olive solid waste from two olive cultivars (Picual and Souri) and two oil production process (two- or three-phase) and two temperatures (350 and 450°C) was tested. The biochar yield was 24-35% of the biomass, with a surface area of 1.65-8.12m 2 g -1 , as compared to 1100m 2 g -1 for CAC. Picual residue from the two-phase milling technique, pyrolysed at 350°C, had the best cumulative removal capacity for Cu +2 , Pb +2 , Cd +2 , Ni +2 and Zn +2 with more than 85% compared to other biochar types and CAC. These results suggest that surface area cannot be used as a sole predictor of HM removal capacity. FTIR analysis revealed the presence of different functional groups in the different biochar types, which may be related to the differences in absorbing capacities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater

    Inass Leouifoudi

    2014-06-01

    Full Text Available Olive mill wastewater, hereafter noted as OMWW was tested for its composition in phenolic compounds according to geographical areas of olive tree, i.e. the plain and the mountainous areas of Tadla-Azilal region (central Morocco. Biophenols extraction with ethyl acetate was efficient and the phenolic extract from the mountainous areas had the highest concentration of total phenols' content. Fourier-Transform-Middle Infrared (FT-MIR spectroscopy of the extracts revealed vibration bands corresponding to acid, alcohol and ketone functions. Additionally, HPLC-ESI-MS analyses showed that phenolic alcohols, phenolic acids, flavonoids, secoiridoids and derivatives and lignans represent the most abundant phenolic compounds. Nüzhenide, naringenin and long chain polymeric substances were also detected. Mountainous areas also presented the most effective DPPH scavenging potential compared to plain areas; IC50 values were 11.7 ± 5.6 µg/ml and 30.7 ± 4.4 µg/ml, respectively. OMWW was confirmed as a rich source of natural phenolic antioxidant agents.

  17. Assesing the effect of an olive mill wastewater evaporation pond in Sousse, Tunisia

    S'habou, Rakia; Zairi, Moncef; Kallel, Amjed; Aydi, Abdelwaheb; Ben Dhia, Hamed

    2009-08-01

    Olive oil is a typical and valuable agro-industrial product in Mediterranean countries. In Tunisia, olive mill wastewaters (OMW) reach an amount of about 1,000,000 t year-1 and constitute a serious organic pollution risk because of the high chemical oxygen demand values and the presence of phytotoxic and antibacterial polyphenols. OMW have been generally stored in pond sites to be eliminated by natural evaporation or valorised by spreading on cultivated soils or by composting. Many researches on the interactions of OMW with soils at laboratory scale (columns) have been reported, but less attention have been paid to the effect of OMW on soils at field scale. The aim of this work is to investigate an area used for >15 years as an uncontrolled OMW pond site. The transformations of soil properties and groundwater occurring during OMW storage were characterised by the pH, phenolic contents, electrical conductivity (EC), moisture content and organic contents. The soil samples were taken from two borings and compared to those of a control one located near the pond site. Groundwater samples were taken on the accessible and nearest water wells to the evaporation ponds. The permeable silty and sandy layers in the site support the infiltration of OMW near the evaporation ponds. This infiltration has reached a depth of 6 m at a distance of almost 50 m laterally. The results show that the OMW infiltration in the subsoil has affected the pH, EC, organic content, phenolic compounds and the moisture.

  18. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    Georgios Koutrotsios

    2014-01-01

    Full Text Available Olive mill wastewater (OMW constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent’s decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64% followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW’s phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment.

  19. ASSESSMENT OF IN VITRO ANDROGENIC ACTIVITY IN KRAFT MILL EFFLUENT

    Detection of In Vitro Androgenic Activity in Feedlot Effluent. Lambright, CS 1 , Guillette, LJ, Jr.2, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville FLRecent studies have shown the presence of androgenic activity in water...

  20. Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum mill) depending on growth substrate.

    Ouzounidou, G; Asfi, M; Sotirakis, N; Papadopoulou, P; Gaitis, F

    2008-10-30

    We have studied the changes in the physiology and nutritional quality of Lycopersicon esculentum exposed to olive mill wastewater (OMW) with regard to cultivation in sand and soil. Tomato plant performance decreased with increasing concentration of OMW to both substrates. Root was more sensitive to OMW than the upper parts of the plants, grown either in sand or in soil for 10 days and 3 months, respectively, probably due to the direct OMW toxicity on roots as compared to other parts. Significant restriction on uptake and translocation of nutrients (K, Na, Fe, Ca and Mg) under OMW application was found. The decrease in the photochemical efficiency of PSII photochemistry in the light adapted state and the big decrease in photochemical quenching, indicate that OMW resulted in diminished reoxidation of Q(A)(-) and started to inactivate the reaction centers of PSII. The OMW supply on soil and sand, resulted in leaf water stress and lesser water use efficiency. Plants treated with high OMW concentration, produced fewer but bigger tomatoes as compared to plants treated with lower OMW concentration. Generally, fruit yield and nutritional value was inhibited under OMW application.

  1. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.).

    Rusan, Munir J M; Albalasmeh, Ammar A; Zuraiqi, Said; Bashabsheh, Mohammad

    2015-06-01

    Olive-mill wastewater (OMW) is a by-product effluent of olive oil extraction process that is produced in large amount in the Mediterranean region. OMW is believed to induce phytotoxic effect on organisms including seed germination and plant growth. The objective of this study was to evaluate the impact of untreated and treated OMW with different techniques on seed germination of barley (Hordeum vulgare L.). The following treatments were investigated: (1) tap water (control); (2) OMW treated by aerobic biological technology in a Jacto Reactor (JR); (3) OMW treated by solar fenton oxidation (SFO); (4) OMW treated by microfiltration followed by nanofiltration (MF+NF); (5) OMW treated by microfiltration followed by reverse osmosis (MF+RO) process; (6) diluted OMW with tap water (25 % OMW); (7) diluted OMW with tap water (50 % OMW); (8) diluted OMW with tap water (75 % OMW); and (9) untreated OMW (100 % OMW). A germination test was conducted in an incubator at temperature of 23 (∘)C. In each petri dish, a filter paper was mounted and ten seeds of barley were placed on the filter paper. Five milliliter of water were added to each petri dish. The seed germination was determined by counting the number of germinated seeds to calculate the percentage of germination (G %). Germination rate index (GRI), seed vigor index (SVI), and phytotoxicity index (PI) were also calculated. Then, the dry weights and lengths of the shoots and the roots of the germinated seeds were measured. The results show that 100, 75, and 50 %OMW were very phytotoxic and completely prohibited seed germination. However, phytotoxicity decreased significantly following treatments of OMW with all techniques investigated and by the 25 % OMW dilution, as results of removing the phenols and other phytotoxic organic compounds from the OMW or by diluting it. This was evidenced by relative enhancement of the dry weights and lengths of shoot and root as well as the G %, GRI, SVG, and PI. It was concluded that if

  2. Antioxidant activity of olive oil mill wastewater obtained from different thermal treatments

    Giuffrè, A. M.

    2012-06-01

    Full Text Available In food industry, Olive Oil Mill Wastewater (OOMWW is considered a by-product because of the presence of biostatic compounds with a high polluting rate, in particular phenols. Moreover, during olive oil processing, a large amount of this by-product constitutes an ecological and economical problem for the producers. To reevaluate this by-product, the reuse of this wastewater to obtain useful compounds appears to be very important. In order to purify the wastewater, the development of operations that modify its organic content seems necessary for obtaining of eventual fertilizing agents and/or to recover substances with a high added value such as phenolic compounds, which are currently recognized scientifically as molecules with a high antioxidant activity. A chromatographic analysis of these compounds was conducted to characterize different concentrations of wastewater and the reducing power of the extracts was measured. The thermal treatment of olive oil mill wastewater in a rotary evaporator and in an oven involved an increase in radical scavenging efficiency. These results could be correlated with the possibility of recovering and reusing this type of waste for its antioxidant properties.

    En la industria alimentaria, el alpechín se considera un subproducto debido a la presencia de compuestos bioestáticos, con una alta tasa de contaminación, particularmente los fenoles. Además, durante el procesado de la aceituna, la generación de una gran cantidad de este subproducto supone un problema ecológico y económico para los productores. Es importante la reutilización de este agua de desecho para obtener compuestos útiles. Para purificar el agua de desecho es necesario el desarrollo de operaciones que modifiquen su contenido orgánico, para poder obtener agentes fertilizantes y/o recuperar sustancias con un alto valor añadido como los compuestos fenólicos, que actualmente están reconocidos científicamente como moléculas con una

  3. Time-dependent evolution of olive mill wastewater sludge organic and inorganic components and resident microbiota in multi-pond evaporation system.

    Jarboui, Raja; Chtourou, Mohamed; Azri, Chafai; Gharsallah, Néji; Ammar, Emna

    2010-08-01

    The physico-chemical and microbiological characterizations of olive mill wastewater sludge (OMWS) were investigated in five OMW evaporation ponds of the open-pond system in Sfax (Tunisia), during the olive oil production period in 2004. Time-dependent changes in both physico-chemical parameters and the microbiota were investigated. Mathematical models and principal component analysis (PCA) were used to establish the correlations between the studied parameters. During the effluent time-dependent changes in the ponds, the result of OMWS analysis showed an increase of sludge index (SI), ash content, total solids (TS), volatile solids (VS), ethyl acetate extractive (EAE) and total phosphorus (Total P), as well as microbial flora especially the yeasts and moulds. The SI, TS, VS and Total P changes with time fit a simple linear equation, while EAE, phenols and NH(4)(+) fit a second-degree polynomial model. The PCA analysis exhibited three correlated groups. The first group included temperature, ash content, evaporation, SI, TS, VS, Total P, EAE, yeasts and moulds. The second group was made by bacteria and moisture; and the third group by NH(4)(+), oil and phenol. Such modelling might be of help in the prediction of OMW changes in natural evaporation ponds. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Disposal of olive oil mill wastes in evaporation ponds: effects on soil properties.

    Kavvadias, V; Doula, M K; Komnitsas, K; Liakopoulou, N

    2010-10-15

    The most common practice followed in the Med countries for the management of olive oil mill wastes (OMW) involves disposal in evaporation ponds or direct disposal on soil. So far there is lack of reliable information regarding the long-term effects of OMW application on soils. This study assesses the effects of OMW disposal in evaporation ponds on underlying soil properties in the wider disposal site as well as the impacts of untreated OMW application on agricultural soils. In case of active disposal sites, the carbonate content in most soils was decreased, whereas soil EC, as well as Cl(-), SO(4)(2-), PO(4)(3-), NH(4)(+) and particularly K(+) concentrations were substantially increased. Soil pH was only marginally affected. Phenol, total N, available P and PO(4)(3-) concentrations were considerably higher in the upper soil layers in areas adjacent to the ponds. Available B as well as DTPA extractable Cu, Mn, Zn and Fe increased substantially. Most surface soil parameters exhibited increased values at the inactive site 6 years after mill closure and cease of OMW disposal activities but differences were diminished in deeper layers. It is therefore concluded that long-term uncontrolled disposal of raw OMW on soils may affect soil properties and subsequently enhance the risk for groundwater contamination. 2010 Elsevier B.V. All rights reserved.

  5. Olive

    ... some people. Metabolic syndrome. Metabolic syndrome is a group of conditions such as high blood pressure, excess ... Up to 1 liter per week of extra-virgin olive oil has been used safely as part ...

  6. Traitement de la margine brute d'huile d'olive par distillation suivi de ...

    SARAH

    31 juil. 2014 ... Research on optimization of the distillate and residue are in progress. Keywords: olive oil ... des composés phénoliques de ce distillat avant et après sa ..... Ranalli A. (1991a) the effluent from olive mills: Proposals for re-use ...

  7. A yearly spraying of olive mill wastewater on agricultural soil over six successive years: impact of different application rates on olive production, phenolic compounds, phytotoxicity and microbial counts.

    Magdich, Salwa; Jarboui, Raja; Rouina, Béchir Ben; Boukhris, Makki; Ammar, Emna

    2012-07-15

    Olive mill wastewater (OMW) spraying effects onto olive-tree fields were investigated. Three OMW levels (50, 100 and 200 m(3)ha(-1)year(-1)) were applied over six successive years. Olive-crop yields, phenolic compounds progress, phytotoxicity and microbial counts were studied at different soil depths. Olive yield showed improvements with OMW level applied. Soil polyphenolic content increased progressively in relation to OMW levels in all the investigated layers. However, no significant difference was noted in lowest treatment rate compared to the control field. In the soil upper-layers (0-40 cm), five phenolic compounds were identified over six consecutive years of OMW-spraying. In all the soil-layers, the radish germination index exceeded 85%. However, tomato germination test values decreased with the applied OMW amount. For all treatments, microbial counts increased with OMW quantities and spraying frequency. Matrix correlation showed a strong relationship between soil polyphenol content and microorganisms, and a negative one to tomato germination index. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Investigation of the potential of Cyperus alternifolius in the phytoremediation of palm oil mill effluent

    Sa'at, Siti Kamariah Md; Zaman, Nastaein Qamaruz; Yusoff, Suffian Mohd; Ismail, Hirun Azaman

    2017-10-01

    Phytoremediation is an emerging technology nowadays due to demand in environmental sustainability which requires cost-effective solutions in terms of capital and operational cost. The treatment gain attention due to their potential in wastewater treatment especially in organics, nutrients, and heavy metal removal of domestics, agricultural, and industrial wastewater treatment. Plant functions in phytoremediation make the plant selection as an essential element. The plant should have the ability to tolerate with the toxic effluent and able to uptake the contaminant. Cyperus alternifolius (umbrella grass) was chosen as aquatic plant due to the ability to tolerance in municipal and industrial effluent sources with strong and dense root systems. Thus, the objectives of this study are to determine the potential and effectiveness of Cyperus alternifolius in the palm oil mill effluent treatment especially in the removal of organics (COD), nutrients (NH3-N and TP) and suspended solid. The batch experiment was run using Cyperus alternifolius to determine their potential of aerobic pond effluent for 21 days of treatment. Cyperus alternifolius treatment shows the great removal of COD and TSS with 96% and 91%, respectively at the end of 21 days of treatment. Nutrients removal achieved the maximum removal of 92% NH3-N and 99% TP shows after 11 days of treatment and percentage slowly decrease until the end of 21 days of treatment. Cyperus alternifolius had shown potential in the palm oil mill effluent treatment and can be combined with ponding treatment to enhance to water quality prior discharge.

  9. Technologies for the treatment of effluents from uranium mines, mills and tailings. Proceedings of a technical committee meeting

    2002-06-01

    Effluent treatment is an important aspect of uranium mining and milling operations that continues through decommissioning and site rehabilitation. During the life of a mine, effluent treatment is an integral part of the operation with all effluent either being recycled to the mill or processed through a water treatment plant before being released into the environment. During decommissioning and rehabilitation, effluent treatment must continue either through a water treatment plant of by using passive treatment techniques. Because of the recent closing of several uranium mines or mining districts, particularly in eastern Europe, effluent treatment is becoming an ever increasing concern. Therefore the IAEA convened a technical committee meeting (TCM) so that experts from different countries could discuss information and knowledge on effluent treatment processes and methods. The papers presented at the meeting describe techniques for treatment of effluents from uranium production operations - both past and present. This publication contains ten papers presented at the meeting; each of the papers was indexed separately

  10. Olive mill wastewater sludge from evaporation ponds: evolution of physico-chemical parameters during storage and composting process.

    Abid, N; Aloui, F; Dhouib, A; Sayadi, S

    2006-02-01

    The evolution of analytical parameters of olive mill waste water sludge stored in evaporation ponds was investigated after one year and two years of storage. It was observed that some of the phenolic monomer compounds resisted removal and the fraction of water soluble phenols was only slightly polymerised. Co-composting of the sludge was carried out with yard trimming as bulking agent ratio and poultry manure to balance the C/N. Three turned piles with three proportions of 35%, 65% and 80% of olive mill waste water sludge were prepared. Co-composting of the sludge was possible in all the cases. Best results were obtained, however, at a proportion of 35% which permitted a shorter composting time, a higher degree of nitrification and a higher rate of total phenols decreasing. A high polymerisation of the fraction of water soluble phenols was observed at the end of composting in all the piles.

  11. Effects of Kraft Mill effluent on the sexuality of fishes: An environmental early warning

    Davis, W.P.; Bortone, S.A.

    1992-01-01

    Arrhenoid or masculinized female fish species of the live-bearing family, Poeciliidae, have been observed for over thirteen years in specific southern streams which receive waste effluents from pulping mills. The complex mixture of organic compounds in kraft mill effluent (KME) has inhibited specific identification of causal agent(s). However, microbially degraded phytosterols (e.g. sitosterol or stigmastanol) in experimental exposures induce the same intersexual states that characterize affected female poeciliids sampled from KME streams. KME-polluted streams often exhibit a drastic reduction of fish species diversity and degrees of physiological stress, all of which suggests reduced reproduction in surviving forms. A potential ontogenetic or developmental response is demonstrated in American eels captured in one of these streams as well. The authors examine available information, including laboratory and experimental field exposures, and suggest directions for additional research as well as the need for environmental concern.

  12. Phospholipid fatty acid analysis to monitor the co-composting process of olive oil mill wastes and organic household refuse

    Barje , F.; Amir , S.; Winterton , Peter; Pinelli , Eric; Merlina , Georges; Cegarra , J.; Revel , Jean-Claude; Hafidi , Mohamed

    2008-01-01

    International audience; The co-composting of olive oil mill wastes and household refuse was followed for 5 months. During the thermophilic phase of composting, the aerobic heterotrophic bacteria (AHB) count, showed a significant rise with a slight regression of fungal biomass. In the same way, phospholipid fatty acids PLFAs common in bacteria, showed a significant increase of hydroxyl and branched PLFAs. The evaluation of the ratio of octadecenoic PLFAs to stearic acid (C18:1/C18:0) revealed ...

  13. Effects of pulp and paper mill effluents on reproductive success of largemouth bass.

    Sepúlveda, Maria S; Quinn, Brian P; Denslow, Nancy D; Holm, Stewart E; Gross, Timothy S

    2003-01-01

    This study evaluated the effects of bleached and unbleached kraft mill effluent on reproductive success of largemouth bass (Micropterus salmoides). Bass were exposed to effluent concentrations (0, 10, 20, 40, or 80%) for 28 and 56 d. Parameters measured included hepatosomatic index (HSI) and gonadosomatic index (GSI) and plasma concentrations of 17beta-estradiol (E2), 11-ketotestosterone (11-KT), and vitellogenin (VTG). At the end of the 56-d period, bass were moved to hatchery ponds to evaluate spawning success. Spawning mats with eggs either were brought indoors for evaluation of fecundities, hatchabilities, and egg and fry size (measured at age 3 d), or were left in ponds and fry number and size recorded (average age of 14 d). Effluent exposure was verified by measuring resin acids (isopimaric, abietic. and dehydroabietic acids) in bile. Compared to controls, exposed bass had greater concentrations of resin acids in bile. In general, exposed females had lower concentrations of E2 and VTG (> or = 20% effluent), whereas males had lower concentrations of 11-KT (> or = 20% effluent) and increased E2 (> or = 20% effluent). The HSI values increased in females (> or = 10% effluent), and GSI values decreased in both sexes (> or = 40% effluent). Fecundity, egg size, and hatchability did not differ across treatments, but an increase in the frequency of fry abnormalities and a decrease in fry weights was observed at effluent exposures of 40% and higher. However, results from the pond study, revealed a significant reduction in fry growth and survival (> or = 10%). This decline may have been caused by an increased frequency of deformities, in conjunction with alterations of growth. These changes could have resulted from alterations in egg quality because of failure of parental reproductive systems, from acute embryo toxicity after translocation of contaminants from the mother to the developing embryo, or from both.

  14. Eliminating radium from uranium mill acid effluent with barium chloride-sodium carbonate precipitation

    Xiao Jiayuan

    1998-01-01

    The eliminating radium procedure, barium chloride-sodium carbonate-sand filtering, being used, radium can be eliminated to 3.7 x 10 -2 Bq/L order of magnitude from uranium mill acid effluents which contain 3.7 Bq/L Ra and pH 6∼9 when Ba 2+ is added by 3∼5 mg per litre, Na 2 CO 3 5mg. The radium elimination rate is more than 90%

  15. Treatment and Valorization of Palm Oil Mill Effluent through Production of Food Grade Yeast Biomass

    Joy O. Iwuagwu; J. Obeta Ugwuanyi

    2014-01-01

    Palm oil mill effluent (POME) is high strength wastewater derived from processing of palm fruit. It is generated in large quantities in all oil palm producing nations where it is a strong pollutant amenable to microbial degradation being rich in organic carbon, nitrogen, and minerals. Valorization and treatment of POME with seven yeast isolates was studied under scalable conditions by using POME to produce value-added yeast biomass. POME was used as sole source of carbon and nitrogen and the ...

  16. Physiological changes in largemouth bass exposed to paper mill effluents under laboratory and field conditions

    Sepulveda, M.S.; Gallagher, E.P.; Gross, T.S.

    2004-01-01

    We report here on studies designed to asses the effects of paper mill effluents on non-reproductive functions of free-ranging and captive Florida largemouth bass (Micropterus salmoides floridanus) This was accomplished by conducting an outdoor tank study, in which fish were exposed to well water or to 10%, 20%, 40%, and 80% full strength effluent for 28 or 56 days, and by sampling largemouth bass from sites within the St. Johns River, Florida, upstream and downstream from a paper mill plant. Blood and plasma samples from fish from the tank study and from fish sampled from the ambient sites were analyzed for over 20 variables. We also determined liver and spleen weights and examined them histologically. The most significant finding from the tank study was an increase in the concentration of albumin and hepatosomatic index for bass exposed to ???20% effluents for 56 days. Spleenosomatic index and number of melanomacrophage centers were decreased in bass from effluent-dominated sites (Palatka and Rice Creek), whereas concentrations of calcium, phosphorous, glucose, and creatinine were elevated in fish from these sites, compared to fish from reference streams. Fish from Rice Creek also had fewer red blood cells, and male bass from Palatka had lower concentrations of cholesterol. Plasma concentrations of albumin and hepatic concentrations of glutathione were elevated in males from Palatka, and both females and males from Rice Creek had higher concentrations of globulin. These results indicate a complex pattern of effects of paper mill effluents on several physiological functions. However, despite the myriad of treatment and site-related effects, most physiological parameters fell within normal ranges when compared to reports on largemouth bass and other freshwater species.

  17. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2007-01-01

    Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H 2 O 2 /Fe 2+ ), UV, UV/H 2 O 2 , photo-Fenton (UV/H 2 O 2 /Fe 2+ ), ozonation and peroxone (ozone/H 2 O 2 ) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H 2 O 2 /Fe 2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used

  18. Analysis of sugar mill effluent and its influence on germination and growth of African marigold ( Tagetes erecta L.)

    Vaithiyanathan, Thanapal; Sundaramoorthy, Perumal

    2017-12-01

    Sugar industry is a very important agro-based industry in India and it discharges large amount of effluent into water bodies to create high pollution in water bodies which affects the plants and other living organisms. In the present investigation, the physico-chemical analyses of N. P. K. R. Ramaswamy co-operative sugar mill effluent was determined and impact of different concentrations (control, 10, 25, 50, 75 and 100%) of sugar mill effluent on seed germination behavior of African marigold ( Tagetes erecta L.) was studied. The morphological parameters such as germination percentage, shoot length, root length, fresh weight and dry weight of seedlings, seed vigour index, tolerance index and percentage of phytotoxicity were calculated. The results recorded for the analyses of sugar mill effluent indicated their some parameters such as PH, EC, acidity, TDS, TS, BOD, COD, sulphate, magnesium, nitrogen, zinc, iron, copper, lead, manganese and oil and grease exceeded the permissible limit compared to Tamil Nadu Pollution Control Board (TNPCB) and then germination and growth parameters increased in lower (10%) concentration of sugar mill effluent and this morphological parameters gradually decreased with increasing effluent concentration. The lower (10%) concentration of sugar mill effluent may be used for irrigation purposes.

  19. Effluents from a pulp and paper mill: a skin and health survey of children living in upstream and downstream villages

    Lee, J; Koh, D; Andijani, M; Saw, S; Munoz, C; Chia, S; Wong, M; Hong, C; Ong, C

    2002-01-01

    Objectives: A health survey of three villages (upstream village Rantau Baru and two downstream villages, Sering and Pelalawan) in the vicinity of a pulp and paper mill along the Kampar river in the province of Riau, Indonesia was conducted to find whether exposure to the effluents from the mill was related to skin conditions and ill health.

  20. Fabrication and application of boron doped diamond BDD electrode in olive mill wastewater treatment in Jordan

    Inshad Jum'h

    2017-12-01

    Full Text Available A boron doped diamond (BDD electrode was employed in an electrochemical reactor to oxidize the phenolic content of Jordanian olive mill wastewater. The BDD anode was fabricated using hot filament chemical vapor deposition on niobium and the morphology of the BDD electrode was characterized using an atomic force microscope. Then, electrolysis batch runs were carried out at laboratory scale to test the effect of different process parameters, namely, initial chemical oxygen demand (COD load (72.9, 33.8, and 0.18 g/L, the addition of Na2SO4 as supporting electrolyte, and adding NaCl along with Na2SO4, on the efficiency of the treatment process. The results were reported in terms of COD, color and turbidity removal, and pH variation. The experiments revealed that electrochemical oxidation using BDD significantly reduced the COD by 85% with no supporting electrolytes. It was observed that adding Na2SO4 with NaCl brought the COD removal to higher than 90% after 7 hours of treatment for COD loads of 72.9 and 33.8 g/L, and after 2 hours for a COD load of 0.18 g/L. Likewise, color was completely removed regardless of the initial COD load. The turbidity for samples with 72.9 and 33.8 g/L as COD load reached a minimal value of 2.5 and 1 NTU respectively.

  1. Key process parameters involved in the treatment of olive mill wastewater by membrane bioreactor.

    Jaouad, Y; Villain-Gambier, M; Mandi, L; Marrot, B; Ouazzani, N

    2018-04-18

    The Olive Mill Wastewater (OMWW) biodegradation in an external ceramic membrane bioreactor (MBR) was investigated with a starting acclimation step with a Ultrafiltration (UF) membrane (150 kDa) and no sludge discharge in order to develop a specific biomass adapted to OMWW biodegradation. After acclimation step, UF was replaced by an Microfiltration (MF) membrane (0.1 µm). Sludge Retention Time (SRT) was set around 25 days and Food to Microorganisms ratio (F/M) was fixed at 0.2 kg COD  kg MLVSS -1  d -1 . At stable state, removal of the main phenolic compounds (hydroxytyrosol and tyrosol) and Chemical Oxygen Demand (COD) were successfully reached (95% both). Considered as a predominant fouling factor, but never quantified in MBR treated OMWW, Soluble Microbial Products (SMP) proteins, polysaccharides and humic substances concentrations were determined (80, 110 and 360 mg L -1 respectively). At the same time, fouling was easily managed due to favourable hydraulic conditions of external ceramic MBR. Therefore, OMWW could be efficiently and durably treated by an MF MBR process under adapted operating parameters.

  2. Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens.

    Gerasopoulos, Konstantinos; Stagos, Dimitrios; Kokkas, Stylianos; Petrotos, Konstantinos; Kantas, Dimitrios; Goulas, Panagiotis; Kouretas, Dimitrios

    2015-08-01

    In the present study, a ceramic membrane microfiltration method was used for the separation of two liquid products, the downstream permeate and the upstream retentate, from olive mill wastewater (OMWW). These liquid products were examined for their antioxidant activity by incorporating them into broilers' feed. Twenty four broilers 13 d old were divided into two feeding groups receiving supplementation with OMWW retentate or permeate for 37 d. Blood was drawn at 17, 27 and 37 d, while tissues (muscle, heart, liver) were collected at 37 d. The antioxidant effects were assessed by measuring oxidative stress biomarkers in blood and tissues. The results showed that broilers given feed supplemented with OMWW retentate or permeate had significantly lower protein oxidation and lipid peroxidation levels and higher total antioxidant capacity in plasma and tissues compared to control group. In both OMWW groups, catalase activity in erythrocytes and tissues was significantly increased compared to control group. OMWW retentate administration increased significantly GSH in erythrocytes in broilers with low GSH, although both OMWW products significantly reduced GSH in broilers with high GSH. Thus, it has been demonstrated for the first time that supplementation with OMWW processing residues could be used for enhancing broilers' redox status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation

    Badawy, M.I.; Gohary, F.El. [Water Pollution Research Department, National Research Centre (NRC), Dokki, Cairo 11312 (Egypt); Ghaly, M.Y., E-mail: ghalynrc@yahoo.com [Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), Dokki, Cairo (Egypt); Ali, M.E.M. [Water Pollution Research Department, National Research Centre (NRC), Dokki, Cairo 11312 (Egypt)

    2009-09-30

    Olive mills wastewater (OMW) is characterized by its high organic content and refractory compounds. In this study, an advanced technology for the treatment of the recalcitrant contaminants of OMW has been investigated. The technique used was either photo-Fenton as homogeneous photocatalytic oxidation or UV/semi-conductor catalyst (such as TiO{sub 2}, ZrO{sub 2} and FAZA) as heterogeneous photocatalytic oxidation for treatment of OMW. For both the processes, the effect of irradiation time, amounts of photocatalysts and semi-conductors, and initial concentration of hydrogen peroxide has been studied. At the optimum conditions, photo-Fenton process achieved COD, TOC, lignin (total phenolic compounds) and total suspended solids (TSSs) removal values of 87%, 84%, 97.44% and 98.31%, respectively. The corresponding values for UV/TiO{sub 2} were 68.8%, 67.3%, 40.19% and 48.9%, respectively, after 80 min irradiation time. The biodegradability expressed by BOD{sub 5}/COD ratio for treated wastewater was ranged from 0.66 to 0.8 compared to 0.19 for raw wastewater indicating enhancement of biodegradation.

  4. Fate of Potential Contaminants Due to Disposal of Olive Mill Wastewaters in Unprotected Evaporation Ponds.

    Kavvadias, V; Elaiopoulos, K; Theocharopoulos, Sid; Soupios, P

    2017-03-01

    The disposal of olive mill wastewaters (OMW) in shallow and unprotected evaporation ponds is a common, low-cost management practice, followed in Mediterranean countries. So far, the fate of potential soil pollutants in areas located near evaporation ponds is not adequately documented. This study investigates the extent in which the long-term disposal of OMW in evaporation ponds can affect the soil properties of the area located outside the evaporation pond and assesses the fate of the pollution loads of OMW. Four soil profiles situated outside and around the down slope side of the disposal area were excavated. The results showed considerable changes in concentration of soil phenols at the down-site soil profiles, due to the subsurface transport of the OMW. In addition, excessive concentrations of NH 4 + , PO 4 3- and phenols were recorded in liquid samples taken from inside at the bottom of the soil profiles. It is concluded that unprotected evaporation ponds located in light texture soils pose a serious threat to favour soil and water pollution.

  5. De-oiled two-phase olive mill waste may reduce water contamination by metribuzin.

    Peña, David; López-Piñeiro, Antonio; Albarrán, Ángel; Rato-Nunes, José Manuel; Sánchez-Llerena, Javier; Becerra, Daniel; Ramírez, Manuel

    2016-01-15

    The impact of de-oiled two-phase olive mill waste (DW) on the behavior of metribuzin in Mediterranean agricultural soils is evaluated, and the effects of the transformation of organic matter from this waste under field conditions are assessed. Four soils were selected and amended in the laboratory with DW at the rates of 2.5% and 5%. One of these soils was also amended in the field with 27 and 54 Mg ha(-1) of DW for 9 years. Significant increases in metribuzin sorption were observed in all the amended soils. In the laboratory, the 5% DW application rate increased the t1/2 values of metribuzin from 22.9, 35.8, 29.1, and 20.0 d for the original soils to 59.2, 51.1, 45.7, and 29.4d, respectively. This was attributable mainly to the inhibitory effect of the amendment on microbial activity. However, the addition of DW transformed naturally under field conditions decreased the persistence down to 3.93 d at the greater application rate. Both amendments (fresh and field-aged DW) significantly reduced the amount of metribuzin leached. This study showed that DW amendment may be an effective and sustainable management practice for controlling groundwater contamination by metribuzin. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    Yahiaoui, O.

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER membrane was used as pre-treatment for electrochemical process. The obtained permeate from the ultrafiltration process allowed COD removal efficiency of about 96% from OMW. Obtained permeate with an average COD of about 1.1gdm-3 was treated by electrochemical reactor equipped with a reactor with bipolar iron plate electrodes. The effect of the experimental parameters such as current density, pH, surface electrode/reactor volume ratio and NaCl concentration on COD removal was assessed. The results showed that the optimum COD removal rate was obtained at a current density of 93.3Am-2 and pH ranging from 4.5 to 6.5. At the optimum operational parameters for the experiments, electrocoagulation process could reduce COD from 1.1gdm-3 to 78mgdm-3, allowing direct discharge of the treated OMW as that meets the Algerian wastewater discharge standards (<125mgdm-3). © 2010 Elsevier B.V.

  7. Use of solar distillation for olive mill wastewater drying and recovery of polyphenolic compounds.

    Sklavos, Sotirios; Gatidou, Georgia; Stasinakis, Athanasios S; Haralambopoulos, Dias

    2015-10-01

    Olive mill wastewater (OMW) is characterized by its high organic load and the presence of phenolic compounds. For first time, a solar distillator was used to investigate the simultaneous solar drying of OMW and the recovery of phenolic compounds with antioxidant properties in the distillate. Two experiments were conducted and the role of thermal insulation on the performance of the distiller was studied. The use of insulation resulted to higher temperatures in the distillator (up to 84.3 °C and 78.5 °C at the air and sludge, respectively), shorter period for OMW dewatering (14 days), while it increased the performance of distillator by 26.1%. Chemical characterization of the distillate showed that pH and COD concentration gradually decreased during the experiments, whereas an opposite trend was noticed for conductivity and total phenols concentration. Almost 4% of the total phenols found initially in OMW were transferred to the distillate when an insulated solar distillator was used. Gas chromatographic analysis of collected distillates confirmed the presence of tyrosol in all samples; whereas hydroxytyrosol was found only in fresh collected distillate samples. Further experiments should be conducted to optimize the process and quantify the concentrations of recovered phenolic compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters

    Emma Piacentini

    2016-05-01

    Full Text Available Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively were produced. The release of biophenols was also investigated.

  9. Measuring the Biodegradability of Plastic Polymers in Olive-Mill Waste Compost with an Experimental Apparatus

    Francesco Castellani

    2016-01-01

    Full Text Available The use of biodegradable polymers is spreading in agriculture to replace those materials derived from petroleum, thus reducing the environmental concerns. However, to issue a significant assessment, biodegradation rate must be measured in case-specific standardized conditions. In accordance with ISO 14855-1, we designed and used an experimental apparatus to evaluate the biodegradation rate of three biopolymers based on renewable resources, two poly(ε-caprolactone (PCL composites, and a compatibilized polylactic acid and polybutyrate (PLA/PBAT blend. Biodegradation tests were carried out under composting condition using mature olive-mill waste (OMW compost as inoculum. Carbon dioxide emissions were automatically recorded by infrared gas detectors and also trapped in saturated Ba(OH2 solution and evaluated via a standard titration method to check the results. Some of the samples reached more than 80% biodegradation in less than 20 days. Both the experimental apparatus and the OMW compost showed to be suitable for the cases studied.

  10. Application of biotechnology for treatment of nitrogen compounds in gold mill effluents

    Kapoor, A.; Gould, W.D.; Bedard, P.; Morin, K.

    2004-01-01

    This paper presents the results of a research study that is being conducted by the Mine Effluents Program, Mining and Mineral Science Laboratory (MMSL), Natural Resources Canada aimed at evaluating biotechnology processes for the treatment of nitrogen compounds such as thiocyanide (CNS) and ammonia (NH 4- N) which are present in gold mill effluents. A sequencing batch reactor (SBR) technology, commonly used for the biological treatment of municipal and industrial effluents, was used in this study. In the SBR process, the micro-organisms were able to degrade CNS to NH 4- N and NH 4- N to nitrate (NO 3- N) at operating conditions of two 12 h treatment cycles per day, with pH maintained in the 7.4 to 7.6 range, and at room temperature (approximately 21 o C) and also at 12 o C. The end products of CNS and NH 4- N biological oxidation were NO 3- N and sulphate (SO 4 ) that are relatively non-toxic. Partial removal of NO 3- N was achieved by biological denitrification reactions in the SBR process. The SBR process effluent was measured to be non-toxic to rainbow trout based on the 96 h acute toxicity test. The microbial consortium isolated from the SBR treating a simulated effluent was able to effectively oxidize CNS and NH 4- N to NO 3- N in water samples (under batch conditions) collected at three mine sites located in Quebec, the Northwest Territories, and Yukon. (author)

  11. Low cost biosorbent "banana peel" for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies.

    Achak, M; Hafidi, A; Ouazzani, N; Sayadi, S; Mandi, L

    2009-07-15

    The aim of this work is to determine the potential of application of banana peel as a biosorbent for removing phenolic compounds from olive mill wastewaters. The effect of adsorbent dosage, pH and contact time were investigated. The results showed that the increase in the banana peel dosage from 10 to 30 g/L significantly increased the phenolic compounds adsorption rates from 60 to 88%. Increase in the pH to above neutrality resulted in the increase in the phenolic compounds adsorption capacity. The adsorption process was fast, and it reached equilibrium in 3-h contact time. The Freundlich and Langmuir adsorption models were used for mathematical description of the adsorption equilibrium and it was found that experimental data fitted very well to both Freundlich and Langmuir models. Batch adsorption models, based on the assumption of the pseudo-first-order, pseudo-second-order and intraparticle diffusion mechanism, showed that kinetic data follow closely the pseudo-second-order than the pseudo-first-order and intraparticle diffusion. Desorption studies showed that low pH value was efficient for desorption of phenolic compounds. These results indicate clearly the efficiency of banana peel as a low-cost solution for olive mill wastewaters treatment and give some preliminary elements for the comprehension of the interactions between banana peel as a bioadsorbent and the very polluting compounds from the olive oil industry.

  12. Co-composting of two-phase olive-mill pomace and poultry manure with tomato harvest stalks.

    Sülük, Kemal; Tosun, İsmail; Ekinci, Kamil

    2017-04-01

    In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored. Compost mass and volume changes were determined at the beginning, during remixings, and at the end of composting. While the stabilization period took less time for the mixtures containing a high amount of poultry manure, the mixtures having the high portion of two-phase olive-mill pomace took a longer time due to the structure of olive stone and its lignin content. Dry matter loss (range: 18.1-34.0%.) in the mixtures increased with an increase in the share of poultry manure and tomato stalks in the initial mixture. OM loss (range: 21.7-46.1%) for tomato stalks (measured separately) during composting increased due to an increase in the ratio of poultry manure in the initial mixtures.

  13. Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting.

    Galliou, F; Markakis, N; Fountoulakis, M S; Nikolaidis, N; Manios, T

    2018-05-01

    Olive mill wastewater (OMW) is generated during the production of olive oil. Its disposal is still a major environmental problem in Mediterranean countries, despite the fact that a large number of technologies have been proposed up to date. The present work examines for the first time a novel, simple and low-cost technology for OMW treatment combining solar drying and composting. In the first step, OMW was dried in a chamber inside a solar greenhouse using swine manure as a bulking agent. The mean evaporation rate was found to be 5.2 kg H 2 O/m 2 /d for a drying period of 6 months (February-August). High phenol (75%) and low nitrogen (15%) and carbon (15%) losses were recorded at the end of the solar drying process. The final product after solar drying was rich in nutrients (N: 27.8 g/kg, P: 7.3 g/kg, K: 81.6 g/kg) but still contained significant quantities of phenols (18.4 g/kg). In order to detoxify the final product, a composting process was applied as a second step with or without the use of grape marc as bulking agent. Results showed that the use of grape marc as a bulking agent at a volume ratio of 1:1 achieved a higher compost temperature profile (60 °C) than 2:1 (solar drying product: grape marc) or no use (solar drying product). The end product after the combination of solar drying and composting had the characteristics of an organic fertilizer (57% organic carbon) rich in nutrients (3.5% N, 1% P, 6.5% K) with quite low phenol content (2.9 g/kg). Finally, the use of this product for the cultivation of pepper plants approved its fertility which was found similar with commercial NPK fertilizers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.

    Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S

    2011-01-01

    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Integrative approach for utilization of olive mill wastewater and lebna's whey for ethanol production

    Ibrahim, M.A.; Hayek, B.O.; Al-Hmoud, N.; Al-Gogazeh, L.

    2009-09-15

    The industry of olive oil extraction in Jordan involves an intensive consumption of water and generates large quantities of olive mill wastewater (OMW). This wastewater has a high pollution risk with biological oxygen demand (BOD). The organic fraction of OMW includes sugars, tannins, polyphenols, polyalcohols, pectins and lipids. The presence of remarkable amounts of aromatic compounds in OMW is responsible for its phytotoxic and antimicrobial effects. The environmental problems and potential hazards caused by OMW had led olive oil producing countries to limit their discharge and to propose and develop new technologies for OMW treatments, such as physicochemical and biological treatments. In the present investigation lebna's whey a local byproduct of widely consumed local yogurt was used with OMW for ethanol production. The obtained results showed that the proteins of lebna's whey can remove substantial amounts of aromatic compounds present in OMW. This was reflected on the reduction of the intensity of black color of OMW and removal of 37% polyphenols. Moreover, the production of ethanol was ascertained in fermentation media composed of whey and in presence of various concentrations of OMW up to 20% OMW. The obtained results showed the possibility to develop a process for improvement and enhancement of ethanol production from whey and olive oil waste in mixed yeast cultures. (au)

  16. In situ olive mill residual co-composting for soil organic fertility restoration and by-product sustainable reuse

    Teresa Casacchia

    2012-06-01

    Full Text Available The addition of organic matter in the form of compost improves overall physical, chemical and biological properties of soils but, to be really sustainable, the composting process should be carried out using the by-products available in situ. Two different soils of a Mediterranean olive orchard, one managed traditionally (NAS and the other amended with compost (AS, were investigated in a two-year experiment. Increases in total organic matter, total nitrogen and pH, were detected in AS if compared to NAS. Significant increases in total and specific microbial counts were observed in AS, with a clear amelioration of microbiological soil quality. The results demonstrated that soil amendment using compost deriving from olive mill by-products can be an important agricultural practice for supporting and stimulating soil microorganisms and, at the same time, for re-using these byproducts, so avoiding their negative environmental impact.

  17. A biotechnological valorization and treatment of olive mill waste waters by selected yeast strains

    Mouncif, M.

    1995-12-01

    Full Text Available Olive mill waste waters were diluted to 1/10, supplied with 2% urea and inoculated with yeast strains. 20 yeast strains isolated from Olive Mill Waste (OMW water were screened for their biomass production, GOD reduction and polyphenols bioconversión activities. Pure cultures of yeasts were realized in 100 ml erlen-meyer flasks. 50 ml cultures were used and the flasks were incubated at room temperature (22°G on a shaker. Biomass production, COD (chemical oxygen demand reduction and Polyphenols bioconversión were followed up in the inoculated OMW waters. Results showed that the urea supply improve significantly the biomass production relatively to the control. This reached in some assays 2.06% expressed as g of biomass dry weight per 100 mL of OMW water. Polyphenols removal was estimated to around 50% and the COD was decreased from 54.14 g/Kg to 21.56 g/Kg. This aerobic treatment lead to the biomass production and also to a pretreated efluent by the COD and the removal of the methanization inhibiting polyphenolic compounds.

    Aguas residuales de la molturación de la aceituna se diluyeron en la proporción 1/10, se le añadió un 2% de urea y se inoculó con cepas de levaduras. 20 cepas de levaduras aisladas de aguas residuales de la molturación de la aceituna (OMW se seleccionaron por su producción de biomasa, reducción DQO y actividades de bioconversión de polifenoles. Se llevaron a cabo cultivos puros de levaduras en matraces erlenmeyer de 100 mi. Se tomaron 50 ml de cultivos y los matraces se incubaron a temperatura ambiente (22°C en un agitador. Se siguió la producción de biomasa, la reducción de DQO (demanda química de oxígeno y la bioconversión de polifenoles en las aguas residuales de la aceituna. Los resultados mostraron que el suministro de urea mejoró significativamente la producción de biomasa en relación al control. Esta alcanzó en algunos ensayos el 2.06% expresado como g de peso seco de biomasa por 100 ml de

  18. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Aeribacillus composti sp. nov., a thermophilic bacillus isolated from olive mill pomace compost.

    Finore, Ilaria; Gioiello, Alessia; Leone, Luigi; Orlando, Pierangelo; Romano, Ida; Nicolaus, Barbara; Poli, Annarita

    2017-11-01

    A Gram-stain-positive, aerobic, endospore-forming, thermophilic bacterium, strain N.8 T , was isolated from the curing step of an olive mill pomace compost sample, collected at the Composting Experimental Centre (CESCO, Salerno, Italy). Strain N.8 T , based on 16S rRNA gene sequence similarities, was most closely related to Aeribacillus pallidus strain H12 T (=DSM 3670 T ) (99.8 % similarity value) with a 25 % DNA-DNA relatedness value. Cells were rod-shaped, non-motile and grew optimally at 60 °C and pH 9.0, forming cream colonies. Strain N.8 was able to grow on medium containing up to 9.0 % (w/v) NaCl with an optimum at 6.0 % (w/v) NaCl. The cellular membrane contained MK-7, and C16 : 0 (48.4 %), iso-C17 : 0 (19.4 %) and anteiso-C17 : 0 (14.6 %) were the major cellular fatty acids. The DNA G+C content was 40.5 mol%. Based on phenotypic characteristics, 16S rRNA gene sequences, DNA-DNA hybridization values and chemotaxonomic characteristics, strain N.8 T represents a novel species of the genus Aeribacillus, for which the name Aeribacillus composti sp. nov. is proposed. The type strain is N.8 T (=KCTC 33824 T =JCM 31580 T ).

  20. Assessment of Coriolopsis gallica-treated olive mill wastewater phytotoxicity on tomato plants.

    Daâssi, Dalel; Sellami, Sahar; Frikha, Fakher; Rodriguez-Couto, Susana; Nasri, Moncef; Mechichi, Tahar

    2016-08-01

    The aim of the present study was to evaluate the phytotoxicity of olive mill wastewater (OMW) after being treated by the white-rot fungus Coriolopsis gallica. For this, the effect of irrigation with treated OMW (TOMW) and untreated OMW (UOMW) on tomato plants (Lycopersicon esculentum) for 3 weeks was studied. The control plants were irrigated with distilled water. Agronomic tests were performed in pot experiments in a greenhouse using the randomized complete block (RCB) experimental design. The relative leaf height (RLH), as a morphological parameter, and the content of total phenols in the roots and total chlorophyll [Cha + Chb] and reducing sugars in the leaves, as physiological parameters, were selected as responses of the experimental design. The results obtained showed that [Cha + Chb] in the leaves of tomato growth under TOMW was enhanced by 36.3 and 19.4 % compared to the plant growth under UOMW and to the controls, respectively. Also, reducing sugar concentrations were closed to those of the control plants, ranging from 0.424 to 0.678 g/L for the different dilutions tested. However, the plants irrigated with UOMW showed lower reducing sugar concentrations ranging from 0.042 to 0.297g/L. The optimum RLH (0.537) was observed in the plants irrigated with TOMW diluted at (1:4), this value being higher than that observed in the controls (0.438). Our study proved that the irrigation with TOMW significantly improved tomato growth and photosynthesis activity over those irrigated with UOMW. Optimization of TOMW as a fertilizer was obtained for a dilution of 1:4. From the obtained results, it can be concluded that OMW treated by C. gallica holds potential to be used as a fertilizer for tomato plants. Graphical Abstract ᅟ Please provide a caption for the graphical abstract.The graphical abstract is improved and sent as attachment Please replace it.

  1. Geodiametris: an integrated geoinformatic approach for monitoring land pollution from the disposal of olive oil mill wastes

    Alexakis, Dimitrios D.; Sarris, Apostolos; Papadopoulos, Nikos; Soupios, Pantelis; Doula, Maria; Cavvadias, Victor

    2014-08-01

    The olive-oil industry is one of the most important sectors of agricultural production in Greece, which is the third in olive-oil production country worldwide. Olive oil mill wastes (OOMW) constitute a major factor in pollution in olivegrowing regions and an important problem to be solved for the agricultural industry. The olive-oil mill wastes are normally deposited at tanks, or directly in the soil or even on adjacent torrents, rivers and lakes posing a high risk to the environmental pollution and the community health. GEODIAMETRIS project aspires to develop integrated geoinformatic methodologies for performing monitoring of land pollution from the disposal of OOMW in the island of Crete -Greece. These methodologies integrate GPS surveys, satellite remote sensing and risk assessment analysis in GIS environment, application of in situ and laboratory geophysical methodologies as well as soil and water physicochemical analysis. Concerning project's preliminary results, all the operating OOMW areas located in Crete have been already registered through extensive GPS field campaigns. Their spatial and attribute information has been stored in an integrated GIS database and an overall OOMW spectral signature database has been constructed through the analysis of multi-temporal Landsat-8 OLI satellite images. In addition, a specific OOMW area located in Alikianos village (Chania-Crete) has been selected as one of the main case study areas. Various geophysical methodologies, such as Electrical Resistivity Tomography, Induced Polarization, multifrequency electromagnetic, Self Potential measurements and Ground Penetrating Radar have been already implemented. Soil as well as liquid samples have been collected for performing physico-chemical analysis. The preliminary results have already contributed to the gradual development of an integrated environmental monitoring tool for studying and understanding environmental degradation from the disposal of OOMW.

  2. Performance and emissions of an engine fuelled by biogas of palm oil mill effluent

    Arjuna, J.; Sitorus, T. B.; Ambarita, H.; Abda, S.

    2018-02-01

    This research investigates the performance and emissions of an engine by biogas and gasoline. The experiments use biogas of palm oil mill effluent (POME) with turbocharger at engine loading conditions (100, 200, 300, 400, and 500 Watt). Specific fuel consumption and thermal efficiency are used to compare engine performance, and emission analysis is based on parameters such as carbon monoxide (CO), hydrocarbon (HC), carbon dioxide (CO2) and oxide (O2). The experimental data show that the maximum thermal efficiency when engine use biogas and gasoline is 20.44% and 22.22% respectively. However, there was CO emission reduction significantly when the engine using POME biogas.

  3. Isolation of lipase producing fungi from palm oil Mill effluent (POME dump sites at Nsukka

    Charles Ogugua Nwuche

    2011-02-01

    Full Text Available In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42% and was present in all the samples assayed. Mucor sp. was the least encountered (8.3%.The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL and Aspergillus (6.25 -7.54 u/mL spp. were the highest lipase producers while Mucor (5.72 u/mL was the least.

  4. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor

    I Irvan

    2012-04-01

    Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

  6. Depuration of olive oil mill wastewater by an activated sludge system; Depuracion de alpechin mediante us sistema de fangos activados

    Beltran de Heredia, J.; Torregrosa Anton, J.; Ramos Viscas, M. P.; Garcia Rodriguez, J.; Dominguez Vargas, R. [Universidad de Extremadura. Badajoz (Spain)

    1999-07-01

    In the present work, the degradation of alpechin (olive oil mill wastewaters) have been studied by an activated sludge treatment. The substrate evolution (based on COD and BOD{sub 5}), nitrogen Kjeldahl, phosphorus, biomass, aromaticity and total polyphenolic contents was followed during each experiment. A kinetic study is performed by using the Contois model, which applied to the experimental data, provides the specific kinetic parameters of this model. Moreover, others interesting biological parameters like the cellular yield and the kinetics of endogenous metabolism were determined. (Author) 17 refs.

  7. Olive mill wastewater biodegradation potential of white-rot fungi--Mode of action of fungal culture extracts and effects of ligninolytic enzymes.

    Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Merhautová, Věra; Zervakis, Georgios I

    2015-01-01

    Forty-nine white-rot strains belonging to 38 species of Basidiomycota were evaluated for olive-mill wastewater (OMW) degradation. Almost all fungi caused high total phenolics (>60%) and color (⩽ 70%) reduction, while COD and phytotoxicity decreased to a lesser extent. Culture extracts from selected Agrocybe cylindracea, Inonotus andersonii, Pleurotus ostreatus and Trametes versicolor strains showed non-altered physicochemical and enzymatic activity profiles when applied to raw OMW in the presence or absence of commercial catalase, indicating no interaction of the latter with fungal enzymes and no competition for H2O2. Hydrogen peroxide's addition resulted in drastic OMW's decolorization, with no effect on phenolic content, suggesting that oxidation affects colored components, but not necessarily phenolics. When fungal extracts were heat-treated, no phenolics decrease was observed demonstrating thus their enzymatic rather than physicochemical oxidation. Laccases added to OMW were reversibly inhibited by the effluent's high phenolic load, while peroxidases were stable and active during the entire process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Recovery of iron after Fenton-like secondary treatment of olive mill wastewater by nano-filtration and low-pressure reverse osmosis membranes

    Ochando-Pulido, J.M.; Victor-Ortega, M.D.; Martinez-Ferez, A.

    2016-01-01

    In this work, the performances of novel nano-filtration (NF) and low-pressure reverse osmosis (RO) polymeric membranes were examined with the aim of recovering the iron used as catalyst in former secondary treatment based on the Fenton-like advanced oxidation of olive mill wastewater (OMW). Results highlight that both membranes exhibit a good performance towards the rejection of iron (99.1% for the NF membrane vs. 100% for the low-pressure RO membrane) in the secondary-treated OMW effluent, thus permitting the recovery of iron in the concentrate stream in order to recycle it back into the oxidation reactor to reduce catalyst consumption. Finally, the permeate streams could be re-used for irrigation. Major productivity was observed by the selected NF membrane, about 47.4 L/hm2 upon 9 bar, whereas 30.9 L/hm2 could be yielded with the RO membrane under an operating pressure of 8 bar. Moreover, a sensibly lower fouling index was measured on the NF membrane (0.0072 in contrast with 0.065), which ensures major steady-state performance on this membrane and a longer service lifetime. This also results in lower required membrane area and membrane plant over dimension (4 modules in case of RO operation whereas only 2 modules for NF). [es

  9. Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste

    Foo, K.Y.; Hameed, B.H.

    2010-01-01

    Water scarcity and pollution rank equal to climate change as the most intricate environmental turmoil for the 21st century. Today, the percolation of palm oil mill effluents into the waterways and ecosystems, remain a fastidious concern towards the public health and food chain interference. With the innovation of palm oil residue into a high valuable end commodity, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of palm oil mill effluent industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of palm oil mill effluent in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy. (author)

  10. Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams

    Fitamo, Temesgen Mathewos; Dahl, Olli; Master, Emma

    2016-01-01

    and in combination: total bleaching effluent, alkaline bleaching effluent, kraft evaporator condensate, and chemithermomechanical pulping effluent. The total bleaching effluent, consisting of the chlorine dioxide bleaching and alkaline bleaching effluents, exhibited the highest potential for organic matter...

  11. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms.

    Soleimaninanadegani, Mohammadreza; Manshad, Soheila

    2014-01-01

    This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color.

  12. Culture of the microalga chlorella vulgaris on different proportions of sugar mill effluents

    Khan, A.N.M.A.I.; Islam, M.R.; Habib, M.A.B.; Hossain, M.S.; Miah, M.I.

    2006-01-01

    Chlarella vulgaris was cultured in four different dilutions of sugar mill effluent media (SMEM). Bold's basal medium (BBM) was used as the control under laboratory conditions. Maximum cell growth and chlorophyll-a content were obtained on 10th day of the culture in 50% diluted SMEM, followed by those grown in BBM, and 75, 25 and 100% SMEM at stationary phase. The specific growth rate (mu g/day) of cells and chlorophyll-a of C. vulgaris grown in 50% SMEM varied significantly (p < 0.0 I) from those of C. vulgaris cultured in BBM, followed by other SMEM concentrations. Total biomass of C. vulgaris. cultured in 50% SMEM, was found to be significantly higher (p < 0.0 I) than that of C. vulgaris cultured in BBM, and 25, 75 and 100% SMEM concentrations. Similar trend was also observed in the case of optical density. Cell number and chlorophyll-a of C. vulgaris were highly (p < 0.01) and directly correlated with chlorophyll-a (r2 = 0.991) of C. vulgaris and optical density (r2 = 0.989) for the culture media containing C. vulgaris, respectively. Crude proteins and crude lipids of C. vulgaris. grown in 50% SMEM, were significantly (p < 0.01) higher than those of C. vulgaris cultured in other SMEM concentrations. Due to good growth performance exhibited in the 50% SMEM dilution, the sugar mill effluent may be used for efficient cultivation of C. vulgaris and possibly other micro algae. (author)

  13. Lignin recovery and it effects quality of anaerobic treated palm oil mill effluent (AT-POME)

    Haqi Ibrahim, Abdul; Fahmi Ridwan, Muhammad; Zulzikrami Azner Abidin, Che; Ong, Soon Ann; Shian Wong, Yee; Wazira Azhari, Ayu; Norruhaidawati Ozir, Siti

    2018-03-01

    Lignin is one of the main structural polymers present in plant tissue. It can also be found as an isolated product of the pulp and paper industry. Palm oil mill effluent (POME) has been known as high strength industrial wastewater that is difficult to treat due to its large variety of inorganic and organic contents. The main purpose of this study is to recover soluble lignin from anaerobically treated palm oil mill effluent (AT-POME) and indirectly improves the quality of AT-POME. AT-POME was adjusted to different pH using different type of acids. Response Surface Methodology (RSM) was utilized to obtain the optimum operating parameters as well as to analyse the interaction between them. Model shows that 74.67 % of lignin can be recovered from AT-POME after 5 minutes reaction time using sulfuric acid (H2S04) at pH 5. Hence from the experiment, it was proved that simple pH adjustment could precipitate the soluble lignin from AT-POME.

  14. Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME

    Wong Pui Wah

    2002-11-01

    Full Text Available Treatment of palm oil mill effluent (POME has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water. The proposed treatment will also ensure the industry to meet a more stringent discharge standard in terms of the BOD, COD and nitrogen values. In this study membrane ultrafiltration is used as the tertiary treatment method. Before the actual membrane operation was conducted, the samples were pre-treated using three separate method namely filtration, centrifugation and coagulation. It was found that the combination of filtrationultrafiltration treatment POME produced the best-treated sample quality in terms of pollutant contents elimination, namely % BOD, % COD and % nitrogen removal.

  15. Technical treatment options for the mill effluents of the Los Gigantes Complex

    Asenjo, A.R.

    2002-01-01

    The Mining/Milling Los Gigantes Complex is located in Cordoba Province, about 100 km to the West of the capital city. The uranium mining and milling activities have been carried out during the period between 1980 and 1990. As result of those activities, mine wastes, low grade ore, sludge, heap leach wastes and liquid effluents have been accumulated in the site. At present, the National Atomic Energy Commission of Argentina is developing the Remediation Project of the site. Within the frame of this Project it is necessary to define the liquid effluent treatment methodology of the liquids accumulated in a pond in order to achieve the proper quality to be released to the environment, according with the national and provincial regulations. In this paper several liquid treatment methods are described. These methods were also developed at the lab scale. Among these we can mention hot and cool alcalinization with barium chloride addition and ion exchange resins treatments. Also a pilot scale assay has been done in the site (about 450 m 3 ) in order to verify the obtained lab scale results. Nevertheless that other assays are yet under developing, the obtained results are reported. (author)

  16. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms

    Soleimaninanadegani, Mohammadreza

    2014-01-01

    This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color. PMID:27433516

  17. Biopretreatment of palm oil mill effluent by thermotolerant polymer-producing fungi

    Masao Ukita

    2001-11-01

    Full Text Available Palm oil industry is one of the three major agro-industries in Southern Thailand and generates large quantities of effluent with high organic matter (BOD and COD values of 58,000 and 110,000 mg/l, respectively, total solids and suspended solids (70,000 and 40,000 mg/l, respectively, oil & grease (25,600 mg/l, and has a low pH (4.5. Conventional anaerobic ponding system is normally employed in palm oil mills to treat the effluent. To increase its efficiency, biopretreatment to remove the organic matter and oil & grease by thermotolerant polymer-producing fungi was investigated. The palm oil mill effluent (POME was treated by the two thermotolerant polymer-producing fungi, Rhizopus sp. ST4 and Rhizopus sp. ST29, at 45ºC under aseptic and septic conditions. Rhizopus sp. ST4 gave the same oil & grease removal (84.2% under both conditions but COD removal under septic condition (62.2% was 8.8% higher than that under aseptic condition (53.4%. On the contrary, Rhizopus sp. ST 29 under aseptic condition showed 11% and 25.4% higher oil & grease removal (91.4% and COD removal (66.0% than those under septic condition. Comparison between the two isolates under aseptic condition revealed that Rhizopus sp. ST29 exhibited higher oil & grease removal (91.4% as well as COD removal (66.0% than those of Rhizopus sp. ST4 (84.2% and 53.4%, respectively. Under septic condition, Rhizopus sp. ST4 gave higher oil & grease removal (84.2% and COD removal (62.2% than did Rhizopus sp. ST 29 (80.5 and 40.6%, respectively.

  18. Integrated use of residues from olive mill and winery for lipase production by solid state fermentation with Aspergillus sp.

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2014-02-01

    Two-phase olive mill waste (TPOMW) is presently the major waste produced by the olive mill industry. This waste has potential to be used as substrate for solid state fermentation (SSF) despite of its high concentration of phenolic compounds and low nitrogen content. In this work, it is demonstrated that mixtures of TPOMW with winery wastes support the production of lipase by Aspergillus spp. By agar plate screening, Aspergillus niger MUM 03.58, Aspergillus ibericus MUM 03.49, and Aspergillus uvarum MUM 08.01 were chosen for lipase production by SSF. Plackett-Burman experimental design was employed to evaluate the effect of substrate composition and time on lipase production. The highest amounts of lipase were produced by A. ibericus on a mixture of TPOMW, urea, and exhausted grape mark (EGM). Urea was found to be the most influent factor for the lipase production. Further optimization of lipase production by A. ibericus using a full factorial design (3(2)) conducted to optimal conditions of substrate composition (0.073 g urea/g and 25 % of EGM) achieve 18.67 U/g of lipolytic activity.

  19. Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.

    Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young

    2013-01-01

    The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry.

  20. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.

  1. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment.

    Yacob, Shahrakbah; Ali Hassan, Mohd; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.

  2. The Impact of Olive Mill Wastewater on the Physicochemical and Biological Properties of Soils in Northwest Jordan

    Mohammad Wahsha

    2014-12-01

    Full Text Available Soil contamination may influence negatively soil health, which often limits and sometimes disqualifies soil biodiversity and decreases plant growth. Soil health is the continued capacity of the soil to function as a vital living system, providing essential ecosystem services. Within soils, all bio-geo-chemical processes of the different ecosystem components are combined. These processes are able to sustain biological productivity of soil, to maintain the quality of surrounding air and water environments, as well as to promote plant, animal, and human health. A common criterion to evaluate long term sustainability of ecosystems is to assess the quality of soil. However, the increased concentration and distribution of toxic substances in soils by mismanagement of industrial activities, overuse of agrochemicals and waste disposal are causing worldwide concern. A major environmental concern in the Mediterranean countries is the production of the large quantities of olive oil mill wastewater (OMW produced during olive oil extraction process. OMW inhibits several groups of bacteria and fungal species, thus affecting soil stability. In the present study, we investigated the effect of OMW on the soil physical, chemical characteristics and the microarthropods structure. All soil samples were collected from an olive mill garden in Northwest Jordan. Biological soil quality index (QBS-ar values appeared to decrease with respect to soil pollution by OMW. All investigated parameters were significantly different depending on the levels of OMW contamination in soil. Anthropogenic activities influenced the microarthropod community, altering both quantity and quality of soil chemical and physical structure of the microhabitats. Preliminary data obtained in this study suggest that the application of QBS-ar index could be a useful tool for evaluating surface soils health status.

  3. Chemical characterization and effects on Lepidium sativum of the native and bioremediated components of dry olive mill residue.

    Aranda, E; García-Romera, I; Ocampo, J A; Carbone, V; Mari, A; Malorni, A; Sannino, F; De Martino, A; Capasso, R

    2007-09-01

    Dry olive mill residue (DOR) from the olive oil production by two phase centrifugation system was fractionated by a consecutive continuous solid-liquid extraction obtaining the EAF, PF, MF and WF fractions with ethyl acetate, n-propanol, methanol and water, respectively. The chemical, chromatographic and mass spectrometric analyses showed EAF, PF and MF to be mainly composed of simple phenols, phenolic acids, flavonoids and glycosilated phenols (glycosides of phenols, secoiridoids and flavonoids), whereas WF was mainly consisting of polymerin, the metal organic polymeric mixture previously identified in olive oil mill waste waters and composed of carbohydrates, melanin, proteins and metals (K, Na, Ca, Mg and Fe). The identification in DOR of oleoside, 6'-beta-glucopyranosyl-oleoside and 6'-beta-rhamnopyranosyl-oleoside, and of its organic polymeric component, known as polymerin, are reported for the first time in this paper. The inoculation of the previously mentioned fractions with saprobe fungi Coriolopsis rigida, Pycnoporus cynnabarinus or Trametes versicolor indicated these fungi to be able to metabolize both the phenols and glycosilated phenols, but not polymerin. In correspondence, EAF, PF, MF and WF, which proved to be toxic on Lepidium sativum, decreased their toxicity after incubation with the selected fungi, WF showing to be also able to stimulate the growth of the selected seeds. The phytotoxicity appeared mainly correlated to the monomeric phenols and, to a lesser extent, to the glycosilated phenols, whereas polymerin proved to be non toxic. However, the laccase activity was not associated with the decrease of phytotoxicity. The valorization of DOR as a producer of high added value substances of industrial and agricultural interest in native form and after their bioremediation for a final objective of the total DOR recycling is also discussed.

  4. Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae.

    Izah, Sylvester Chibueze; Bassey, Sunday Etim; Ohimain, Elijah Ige

    2017-10-16

    Cassava is majorly processed into gari by smallholders in Southern Nigeria. During processing, large volume of effluents are produced in the pressing stage of cassava tuber processing. The cassava mill effluents are discharged into the soil directly and it drain into nearby pits, surface water, and canals without treatment. Cassava mill effluents is known to alter the receiving soil and water characteristics and affects the biota in such environments, such as fishes (water), domestic animals, and vegetation (soil). This study investigated the potential of Saccharomyces cerevisiae to be used for the treatment of some physicochemical properties of cassava mill effluents. S. cerevisiae was isolated from palm wine and identified based on conventional microbiological techniques, viz. morphological, cultural, and physiological/biochemical characteristics. The S. cerevisiae was inoculated into sterile cassava mill effluents and incubated for 15 days. Triplicate samples were withdrawn from the setup after the fifth day of treatment. Portable equipment was used to analyze the in-situ parameters, viz. total dissolved solids (TDS), pH, dissolved oxygen (DO), conductivity, salinity, and turbidity. Anions (nitrate, sulphate, and phosphate) and chemical oxygen demand (COD) were analyzed using spectrophotometric and open reflux methods respectively. Results showed a decline of 37.62%, 22.96%, 29.63%, 20.49%, 21.44%, 1.70%, 53.48%, 68.00%, 100%, and 74.48% in pH, conductivity, DO, TDS, salinity, sulphate, nitrate, phosphate, and COD levels respectively, and elevation of 17.17% by turbidity. The study showed that S. cerevisiae could be used for the treatment of cassava mill effluents prior to being discharged into the environment so as to reduce the pollution or contamination and toxicity levels.

  5. Characterisation of olive fruit for the milling process by using visible/near infrared spectroscopy

    Roberto Beghi

    2013-10-01

    Full Text Available Increasing consumption of olive oil and table olives has recently determined an expansion of olive tree cultivation in the world. This trend is supported by the documented nutritional value of the Mediterranean diet. The aim of this work was to test a portable visible/ near infrared (vis/NIR system (400-1000 nm for the analysis of physical-chemical parameters, such as olive soluble solid content (SSC and texture before the olive oil extraction process. The final goal is to provide the sector with post-harvest methods and sorting systems for a quick evaluation of important properties of olive fruit. In the present study, a total of 109 olives for oil production were analysed. Olive spectra registered with the optical device and values obtained with destructive analysis in the laboratory were analysed. Specific statistical models were elaborated to study correlations between optical and laboratory analysis, and to evaluate predictions of reference parameters obtained through the analysis of the visible-near infrared range. Statistical models were processed using chemometric techniques to extract maximum data information. Principal component analysis (PCA was performed on vis/NIR spectra to examine sample groupings and identify outliers, while partial least square (PLS regression algorithm was used to correlate samples spectra and physical- chemical properties. Results are encouraging. PCA showed a significant sample grouping among different ranges of SSC and texture. PLS models gave fairly good predictive capabilities in validation for SSC (R2=0.67 and RMSECV%=7.5% and texture (R2=0.68 and RMSECV%=8.2%.

  6. Exposure to Paper Mill Effluent at a Site in North Central Florida Elicits Molecular-Level Changes in Gene Expression Indicative of Progesterone and Androgen Exposure

    Brockmeier, Erica K.; Jayasinghe, B. Sumith; Pine, William E.; Wilkinson, Krystan A.; Denslow, Nancy D.

    2014-01-01

    Endocrine disrupting compounds (EDCs) are chemicals that negatively impact endocrine system function, with effluent from paper mills one example of this class of chemicals. In Florida, female Eastern mosquitofish (Gambusia holbrooki) have been observed with male secondary sexual characteristics at three paper mill-impacted sites, indicative of EDC exposure, and are still found at one site on the Fenholloway River. The potential impacts that paper mill effluent exposure has on the G. holbrooki...

  7. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk

    Troise, A.D.; Fiore, A.; Colantuono, A.; Kokkinidou, S.; Peterson, D.G.; Fogliano, V.

    2014-01-01

    Thermal processing and Maillard reaction (MR) affect the nutritional and sensorial qualities of milk. In this paper an olive mill wastewater phenolic powder (OMW) was tested as a functional ingredient for inhibiting MR development in ultrahigh-temperature (UHT)-treated milk. OMW was added to milk at

  8. Pilot scale hybrid processes for olive mill wastewater treatment, energy production and water reuse: comparison between fungal and electro-coagulation pre-treatments

    Sayadi, S.

    2009-01-01

    Olive oil mill wastewaters (OMW) cause disposal problems because they contain powerful pollutants such as phenolic compounds. Complete biodegradation or removal of these compounds is hardly achieved by a single treatment method. In this work, we investigated 2 integrated technologies for the treatment of the recalcitrant contaminants of OMW, allowing water recovery and reuse for agricultural purposes. (Author)

  9. Pilot scale hybrid processes for olive mill wastewater treatment, energy production and water reuse: comparison between fungal and electro-coagulation pre-treatments

    Sayadi, S.

    2009-07-01

    Olive oil mill wastewaters (OMW) cause disposal problems because they contain powerful pollutants such as phenolic compounds. Complete biodegradation or removal of these compounds is hardly achieved by a single treatment method. In this work, we investigated 2 integrated technologies for the treatment of the recalcitrant contaminants of OMW, allowing water recovery and reuse for agricultural purposes. (Author)

  10. Removal of pollutants from pulp and paper mill effluent by anaerobic and aerobic treatment in pilot scale bioreactor

    Singh, P.; Katiyar, D.; Gupta, M.

    2011-01-01

    Pilot-scale anaerobic and aerobic treatment in a two-step bioreactor was performed for the removal of pollutants from pulp and paper mill effluent. After seven days of anaerobic treatment, colour (45%), lignin (60%), COD (26%) and adsorbable organic halogen (AOX) (20%) were reduced. The anaerobic......Pilot-scale anaerobic and aerobic treatment in a two-step bioreactor was performed for the removal of pollutants from pulp and paper mill effluent. After seven days of anaerobic treatment, colour (45%), lignin (60%), COD (26%) and adsorbable organic halogen (AOX) (20%) were reduced....... The anaerobically treated effluent was then treated in a bioreactor in the presence of a fungal strain (Aspergillus fumigatus) or a bacterial strain (Pseudomonas ovalis). The results of this study indicated a reduction in colour (76% and 56%), lignin (78% and 68%), COD (85% and 78%) and AOX (70% and 82...

  11. Acclimatization Study for Biohydrogen Production from Palm Oil Mill Effluent (POME) in Continuous-flow System

    Idris, N.; Lutpi, N. A.; Wong, Y. S.; Tengku Izhar, T. N.

    2018-03-01

    This research aims to study the acclimatization phase for biohydrogen production from palm oil mill effluent (POME) by adapting the microorganism to the new environment in continuous-flow system of thermophilic bioreactor. The thermophilic fermentation was continuously loaded with 0.4 L/day of raw POME for 35 days to acclimatize the microorganism until a steady state of biohydrogen production was obtained. The significance effect of acclimatization phase on parameter such as pH, microbial growth, chemical oxygen demand (COD), and alkalinity were also studied besides the production of biogas. This study had found that the thermophilic bioreactor reach its steady state with 1960 mL/d of biogas produced, which consist of 894 ppm of hydrogen composition.

  12. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.

    Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

    2007-06-25

    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).

  13. Repercussions agronomiques de l'epandage d'effluents et dechets de moulins a huile d'olive

    Morisot, Alain; Tournier, Jean Paul

    1986-01-01

    Les répercussions agronomiques de l’épandage d’effluents (ou margines) de moulins à huile d’olive sont étudiées au moyen de cultures de ray-grass en pots sous serre et de tests d’incubation sur l’azote minéral. L’épandage de 40 mm (40 l/m2) de margines sur une plantation de ray-grass diminue le rendement moyen de 45 p. 100 par rapport à celui de la culture de référence. La production de matière sèche des ray-grass semés immédiatement après l’épandage (doses de 40 et 80 mm) est égale au t...

  14. Palm Oil Mill Effluent Treatment Through Combined Process Adsorption and Membrane Filtration

    Muhammad Said

    2016-08-01

    Full Text Available The growth in palm oil production also leads to an Increase in the production of palm oil mill effluent (POME. Nowadays, POME was treated using an open lagoon but this method is ineffectiveness in complying with the standards for water disposal. Therefore, efficient and cohesive treatment system is highly desired to ensure the final discharge of the treated water meets the effluent discharge standards. Initially, the POME was treated through adsorption, followed by UF membranes roomates were intended to reduce COD, TSS and turbidity up to 88%, 99%, and 98%, while the final treatment of RO membranes can reduce BOD, COD and color up to 92%, 98% and 99%. To determine the optimum condition of the RO membrane, response surface methodology (RSM was used. The results showed there was correlation between all key variables. POME concentration, trans-membrane pressure, pH and time would give significant effects in reducing the parameters in POME treatment with the optimum condition of 15.77% for POME concentration, 3.73 for pH, 0.5 bar trans-membrane pressure and 5 hours for filtration time. To predict COD removal, the results were analyzed by applying the artificial neural network (ANN to derive a mathematical model.

  15. Integration of biological method and membrane technology in treating palm oil mill effluent

    ZHANG Yejian; YAN Li; QIAO Xiangli; CHI Lina; NIU Xiangjun; MEI Zhijian; ZHANG Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.

  16. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Jin Wang

    2015-01-01

    Full Text Available Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF; average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  17. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  18. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  19. Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process

    Ahmad A.L.

    2015-12-01

    Full Text Available This research emphasizes eloquently on membrane technology for treatment of palm oil mill effluent (POME as it is the Malaysia’s largest and most important agro based industry. Findings established significant quality improvement with an efficient recovery of water from palm oil mill via innovative membrane application. Conventional bio-methods, whilst adhering to the Department of Environment’s (DOE discharge regulations, produces brownish liquid which pales in comparison to the crystal clear water obtained through membrane treatment. The pre-treatment process consists of coagulation-flocculation using green environmental coagulant bases such as Moringa oleifera (MO seeds. The ultrafiltration polyvinylidene difluoride (PVDF and thin film composite (TFC reverse osmosis were vital for the membrane processes. The system gave 99% suspended solids reduction in suspended solid and 78% of water present was successfully recovered. This technology guarantees water recovery with drinking water quality; meeting the US Environmental Protection Agency (USEPA standard or could be recycled into the plant with sludge utilization for palm oil estates, thus enabling the concept of zero discharge to be executed in the industries. In addition, green and healthy antioxidants such as oil and beta-carotene can be recovered from POME further demonstrate. Silica gel showed better performance in separation of carotenes from oil at temperature 40°C using adsorption chromatography with 1154.55 ppm. The attractiveness of this technology, enabling the utilization of reuse of agricultural waste into potentially value added products.

  20. Ecotoxicological studies with newly hatched larvae of Concholepas concholepas (Mollusca, Gastropoda): bioassay with secondary-treated kraft pulp mill effluents.

    Manríquez, Patricio H; Llanos-Rivera, Alejandra; Galaz, Sylvana; Camaño, Andrés

    2013-12-01

    The Chilean abalone or "loco" (Concholepas concholepas, Bruguière 1789) represent the most economically important marine recourse exploited from inner inshore Management and Exploitation Areas for Benthic Resources along the Chilean coast. In this study, newly-hatched larvae of C. concholepas were investigated as a potential model species for marine ecotoxicological studies. The study developed a behavioral standard protocol for assessing the impact that kraft pulp mill effluents after secondary treatment have on C. concholepas larvae. Under controlled laboratory conditions, newly-hatched larvae were exposed to a series of different concentrations of kraft pulp mill effluents with secondary treatment (Pinus spp. and Eucalyptus spp.), potassium dichromate as standard reference toxicant and effluent-free control conditions. Regardless of the type of effluent the results indicated that diluted kraft pulp effluent with secondary treatment had reduced effect on larval survival. Low larval survivals were only recorded when they were exposed to high concentrations of the reference toxicant. This suggests that C. concholepas larval bioassay is a simple method for monitoring the effects of kraft pulp mill effluents with secondary treatment discharged into the sea. The results indicated that dilution of ca. 1% of the effluent with an elemental chlorine free (ECF) secondary treatment is appropriate for achieving low larval mortalities, such as those obtained under control conditions with filtered seawater, and to minimize their impact on early ontogenetic stages of marine invertebrates such as newly-hatched larvae of C. concholepas. The methodological aspects of toxicological testing and behavioral responses described here with newly-hatched larvae of C. concholepas can be used to evaluate in the future the potential effects of other stressful conditions as other pollutants or changes in seawater pH associated with ocean acidification. © 2013 Elsevier Inc. All rights

  1. Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure

    Gelegenis, John; Georgakakis, Dimitris; Angelidaki, Irini; Christopoulou, Nicholetta; Goumenaki, Maria

    2007-01-01

    Optimization of biogas production from olive-mill wastewater (OMW) was attempted by codigesting with diluted poultry-manure (DPM) at mesophilic conditions. A series of laboratory experiments were performed in continuously-operating reactors, fed with mixtures of OMW and DPM at various concentrations. It was concluded that codigestion of OMW with DPM is possible without any dilution of OMW or addition of any chemicals. Biogas production was slightly higher when OMW was added to DPM up to a critical concentration (about 40%, expressed as contribution of OMW to the volatile solids of the mixture), after which production is decreased. The results were further verified by scaling up to a continuously-operating pilot-plant reactor digesting DPM, and confirmed that no negative impact was imposed by adding OMW up to the above critical value

  2. Phenols recovery after steam explosion of Olive Mill Solid Waste and its influence on a subsequent biomethanization process.

    Serrano, Antonio; Fermoso, Fernando G; Alonso-Fariñas, Bernabé; Rodríguez-Gutierrez, Guillermo; Fernandez-Bolaños, Juan; Borja, Rafael

    2017-11-01

    A promising source of high added value compounds is the Olive Mill Solid Waste (OMSW). The aim of this research was to evaluate the viability of a biorefinery approach to valorize OMSW through the combination of steam explosion, phenols extraction, and anaerobic digestion. Steam explosion treatment increased the total phenol content in the steam exploited OMSW, which was twice than that the total phenol content in raw OMSW, although some undesirable compounds were also formed. Phenol extraction allowed the recovery of 2098mg hydroxytyrosol per kg of OMSW. Anaerobic digestion allowed the partial stabilization of the different substrates, although it was not improved by the steam explosion treatment. The economic suitability of the proposed biorefinery approach is favorable up to a phenol extract price 90.7% lower than the referenced actual price of 520€/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Kinetic and Isotherm Modelling of the Adsorption of Phenolic Compounds from Olive Mill Wastewater onto Activated Carbon

    Alessandro A. Casazza

    2015-01-01

    Full Text Available The adsorption of phenolic compounds from olive oil wastewater by commercial activated carbon was studied as a function of adsorbent quantity and temperature. The sorption kinetics and the equilibrium isotherms were evaluated. Under optimum conditions (8 g of activated carbon per 100 mL, the maximum sorption capacity of activated carbon expressed as mg of caff eic acid equivalent per g of activated carbon was 35.8 at 10 °C, 35.4 at 25 °C and 36.1 at 40 °C. The pseudo-second-order model was considered as the most suitable for kinetic results, and Langmuir isotherm was chosen to bett er describe the sorption system. The results confi rmed the effi ciency of activated carbon to remove almost all phenolic compound fractions from olive mill effl uent. The preliminary results obtained will be used in future studies. The carbohydrate fraction of this upgraded residue could be employed to produce bioethanol, and adsorbed phenolic compounds can be recovered and used in different industries.

  4. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations.

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2017-07-01

    Olive mill waste water (OMWW) is an acidic (pH 4-5), saline (EC ∼ 5-10 mS cm -1 ), blackish-red aqueous byproduct of the three phase olive oil production process, with a high chemical oxygen demand (COD) of up to 220,000 mg L -1 . OMWW is conventionally disposed of by uncontrolled dumping into the environment or by semi-controlled spreading on agricultural soils. It was hypothesized that spreading such liquids on agricultural soils could result in the release and mobilization of indigenous soil metals. The effect of OMWW spreading on leaching of metal cations (Na, K, Mg, Mn, Fe, Cu, Zn) was tested in four non-contaminated agricultural soils having different textures (sand, clay loam, clay, and loam) and chemical properties. While the OMWW contributed metals to the soil solution, it also mobilized indigenous soil metals as a function of soil clay content, cation exchange capacity (CEC), and soil pH-buffer capacity. Leaching of soil-originated metals from the sandy soil was substantially greater than from the loam and clay soils, while the clay loam was enriched with metals derived from the OMWW. These trends were attributed to cation exchange and organic-metal complex formation. The organic matter fraction of OMWW forms complexes with metal cations; these complexes may be mobile or precipitate, depending on the soil chemical and physical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Feasibility of composting combinations of sewage sludge, olive mill waste and winery waste in a rotary drum reactor.

    Fernández, Francisco J; Sánchez-Arias, Virginia; Rodríguez, Lourdes; Villaseñor, José

    2010-10-01

    Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery-distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Integrated biovalorization of wine and olive mill by-products to produce enzymes of industrial interest and soil amendments

    Reina, R.; Ullrich, R.; García-Romera, I.; Liers, C.; Aranda, E.

    2016-11-01

    An integral and affordable strategy for the simultaneous production of lignin-modifying and carbohydrate active enzymes and organic amendment, with the aid of a saprobe fungus was developed by using olive oil and wine extraction by-products. The polyporal fungus Trametes versicolor was cultivated in soy or barley media supplemented with dry olive mill residue (DOR) as well as with grape pomace and stalks (GPS) in solid state fermentation (SSF). This strategy led to a 4-fold increase in the activity of laccase, the principal enzyme produced by SFF, in DOR-soy media as compared to controls. T. versicolor managed to secrete lignin-modifying enzymes in GPS, although no stimulative effect was observed. GPS-barley media turned out to be the appropriate medium to elicit most of the carbohydrate active enzymes. The reuse of exhausted solid by-products as amendments after fermentation was also investigated. The water soluble compound polymerization profile of fermented residues was found to correlate with the effect of phytotoxic depletion. The incubation of DOR and GPS with T. versicolor not only reduced its phytotoxicity but also stimulated the plant growth. This study provides a basis for understanding the stimulation and repression of two groups of enzymes of industrial interest in the presence of different carbon and nitrogen sources from by-products, possible enzyme recovery and the final reuse as soil amendments. (Author)

  7. Box-Behnken Design Application to Study Leaching of Pyrolusite from Manganese Mining Residue Using Olive Mill Wastewater as Reductant

    Alaoui, Abdallah; El Kacemi, K.; El Ass, K.; Kitane, S.; El Bouzidi, S.

    2015-05-01

    The leaching capacity of olive mill wastewater (OMW) for pyrolusite mine tailings (MnO2) was evaluated using the Box-Behnken experimental design of response surface methodology. The selected test parameters include the concentration of sulfuric acid, the OMW dosage chemical oxygen demand (COD), the solid/liquid ratio S/ L, and particle size. It was determined that the MnO2 dissolution increased with an increase in the sulfuric acid concentration and the OMW dosage, and with a decrease in the solid/liquid ratio. The particle size does not have significant influence on the manganese recovery. A quadratic polynomial model has been developed to predict the amount of manganese extraction from pyrolusite for other operating conditions that were not directly tested. The leaching ability was evaluated based on manganese recovery (Mn%) and the removal capability of chemical oxygen demand (COD%). The predicted values for the responses agreed well with experimental values; R 2 (correlation coefficient) values for Mn% and COD% were 0.9602 and 0.9687, respectively. Within the design space, the optimum conditions for the lixiviation of MnO2 in terms of manganese recovery and COD removal were established and include [H2SO4] of 3 mol L-1, OMW in range of 23 g L-1 to 25 g L-1 COD, and pulp density in range of 90 g L-1 to 100 g L-1. Under these conditions, the response values generated by the model are Mn% ˜49% and COD% >40%. These values show good agreement with those obtained in the validation test. This study has demonstrated that it is possible to use the olive mill wastewater as a reductant agent to recover manganese from a pyrolusite mining residue.

  8. Microalgal bacterial flocs treating paper mill effluent: A sunlight-based approach for removing carbon, nitrogen, phosphorus, and calcium.

    Van Den Hende, Sofie; Rodrigues, André; Hamaekers, Helen; Sonnenholzner, Stanislaus; Vervaeren, Han; Boon, Nico

    2017-10-25

    Treatment of upflow anaerobic sludge blanket (UASB) effluent from a paper mill in aerated activated sludge reactors involves high aeration costs. Moreover, this calcium-rich effluent leads to problematic scale formation. Therefore, a novel strategy for the aerobic treatment of paper mill UASB effluent in microalgal bacterial floc sequencing batch reactors (MaB-floc SBRs) is proposed, in which oxygen is provided via photosynthesis, and calcium is removed via bio-mineralization. Based on the results of batch experiments in the course of this study, a MaB-floc SBR was operated at an initial neutral pH. This SBR removed 58±21% organic carbon, 27±8% inorganic carbon, 77±5% nitrogen, 73±2% phosphorus, and 27±11% calcium. MaB-flocs contained 10±3% calcium, including biologically-influenced calcite crystals. The removal of calcium and inorganic carbon by MaB-flocs significantly decreased when inhibiting extracellular carbonic anhydrase (CA), an enzyme that catalyses the hydration and dehydration of CO 2 . This study demonstrates the potential of MaB-floc SBRs for the alternative treatment of calcium-rich paper mill effluent, and highlights the importance of extracellular CA in this treatment process. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Treatment of liquid effluent from uranium mines and mills. Report of a co-ordinated research project 1996-2000

    2004-10-01

    Treatment and control of liquid effluents produced during uranium mining and milling operations is an integral part of environmental project management. Research has continued to add to the large body of science that has been built up around the treatment of radioactive and non-radioactive effluents to minimize their long-term environmental impact. The objective of the meetings on which this publication is based was to exchange information on active effluent treatment technologies that have application during operations and passive treatment techniques such as constructed wetlands and use of micro-organisms that are applicable during project reclamation and long-term care and maintenance. Papers describe effluent treatment case histories from active uranium mining and processing operations as well as effluent treatment research on both active and passive systems that have potential application under a wide range of operating and post-operational conditions including new information on high-density sludge from effluent neutralization (Australia), aerated manganese hydroxide for removal of radium (China), nanofiltration and macropore resins to treat mine water (Australia and China), in situ microbial treatment and permeable reactive walls for treatment of contaminated groundwater (Germany), construction of wetlands to treat mine water runoff (Australia and Germany), biogenic granules to remove 226 Ra from mill effluent (India), self-remediation of acidic in situ leach aquifers (Kazakhstan) and sorption characteristics of soil for self-remediation of contaminated groundwater (Hungary). These and other topics presented in this publication will be of interest to technical personnel who deal with day-to-day practical aspects of liquid effluent control and treatment at uranium production facilities worldwide

  10. Photo-Fenton treatment of saccharin in a solar pilot compound parabolic collector: Use of olive mill wastewater as iron chelating agent, preliminary results.

    Davididou, K; Chatzisymeon, E; Perez-Estrada, L; Oller, I; Malato, S

    2018-03-14

    The aim of this work was to investigate the treatment of the artificial sweetener saccharin (SAC) in a solar compound parabolic collector pilot plant by means of the photo-Fenton process at pH 2.8. Olive mill wastewater (OMW) was used as iron chelating agent to avoid acidification of water at pH 2.8. For comparative purposes, Ethylenediamine-N, N-disuccinic acid (EDDS), a well-studied iron chelator, was also employed at circumneutral pH. Degradation products formed along treatment were identified by LC-QTOF-MS analysis. Their degradation was associated with toxicity removal, evaluated by monitoring changes in the bioluminescence of Vibrio fischeri bacteria. Results showed that conventional photo-Fenton at pH 2.8 could easily degrade SAC and its intermediates yielding k, apparent reaction rate constant, in the range of 0.64-0.82 L kJ -1 , as well as, eliminate effluent's chronic toxicity. Both OMW and EDDS formed iron-complexes able to catalyse H 2 O 2 decomposition and generate HO. OMW yielded lower SAC oxidation rates (k = 0.05-0.1 L kJ -1 ) than EDDS (k = 2.21-7.88 L kJ -1 ) possibly due to its higher TOC contribution. However, the degradation rates were improved (k = 0.13 L kJ -1 ) by increasing OMW dilution in the reactant mixture. All in all, encouraging results were obtained by using OMW as iron chelating agent, thus rendering this approach promising towards the increase of process sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system.

    Ntaikou, I; Valencia Peroni, C; Kourmentza, C; Ilieva, V I; Morelli, A; Chiellini, E; Lyberatos, G

    2014-10-20

    The operational efficiency of a two stage pilot scale system for polyhydroxyalkanoates (PHAs) production from three phase olive oil mill wastewater (OMW) was investigated in this study. A mixed anaerobic, acidogenic culture derived from a municipal wastewater treatment plant, was used in the first stage, aiming to the acidification of OMW. The effluent of the first bioreactor that was operated in continuous mode, was collected in a sedimentation tank in which partial removal of the suspended solids was taking place, and was then forwarded to an aerobic reactor, operated in sequential batch mode under nutrient limitation. In the second stage an enriched culture of Pseudomonas sp. was used as initial inoculum for the production of PHAs from the acidified waste. Clarification of the acidified waste, using aluminium sulphate which causes flocculation and precipitation of solids, was also performed, and its effect on the composition of the acidified waste as well as on the yields and properties of PHAs was investigated. It was shown that clarification had no significant qualitative or quantitative effect on the primary carbon sources, i.e. short chain fatty acids and residual sugars, but only on the values of total suspended solids and total chemical oxygen demand of the acidified waste. The type and thermal characteristics of the produced PHAs were also similar for both types of feed. However the clarification of the waste seemed to have a positive impact on final PHAs yield, measured as gPHAs/100g of VSS, which reached up to 25%. Analysis of the final products via nuclear magnetic resonance spectroscopy revealed the existence of 3-hydroxybutyrate (3HB) and 3-hydroxyoctanoate (HO) units, leading to the conclusion that the polymer could be either a blend of P3HB and P3HO homopolymers or/and the 3HB-co-3HO co-polymer, an unusual polymer occurring in nature with advanced properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Comparative alteration in atherogenic indices and hypocholesteremic effect of palm oil and palm oil mill effluent in normal albino rats.

    Ajiboye, John A; Erukainure, Ochuko L; Lawal, Babatunde A; Nwachukwu, Viola A; Tugbobo-Amisu, Adesewa O; Okafor, Ebelechukwu N

    2015-09-01

    The comparative hypocholesteremic effect of feeding palm oil and palm oil mill effluent (POME) was investigated in male albino rats. Diets were prepared and designed to contain 50% of energy as carbohydrate, 35% as fat, and 15% as protein. Groups of six rats were each fed one of these diets, while a group was fed pelletized mouse chow which served as the control. Feeding on palm oil and POME led to a significant increase (p palm oil fed rats compared to POME. These results indicate the protective potentials of palm oil against cardiovascular disease, as well as hyperlipidemia that characterize obesity and hypertension; as compared to its effluent.

  13. Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition

    Chonticha Mamimin

    2017-09-01

    Conclusion: Preventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.

  14. Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste.

    Cabrera, A; Cox, Lucia; Velarde, P; Koskinen, William C; Cornejo, Juan

    2007-06-13

    The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (alperujo) on soil sorption-desorption, degradation, and leaching of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and terbuthylazine [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine], two herbicides widely used in olive crops. The soils used in this study were a sandy soil and a silty clay soil from two different olive groves. The sandy soil was amended in the laboratory with fresh (uncomposted) alperujo at the rate of 10% w/w, and the silty clay soil was amended in the field with fresh alperujo at the rate of 256 kg per tree during 4 years and in the laboratory with fresh or composted alperujo. Sorption of both herbicides increased in laboratory-amended soils as compared to unamended or field-amended soils, and this process was less reversible in laboratory-amended soils, except for diuron in amended sandy soil. Addition of alperujo to soils increased half-lives of the herbicides in most of the soils. Diuron and terbuthylazine leached through unamended sandy soil, but no herbicide was detected in laboratory-amended soil. Diuron did not leach through amended or unamended silty clay soil, whereas small amounts of terbuthylazine were detected in leachates from unamended soil. Despite their higher sorption capacity, greater amounts of terbuthylazine were found in the leachates from amended silty clay soils. The amounts of dissolved organic matter from alperujo and the degree of humification can affect sorption, degradation, and leaching of these two classes of herbicides in soils. It appears that adding alperujo to soil would not have adverse impacts on the behavior of herbicides in olive production.

  15. Aerobic effluent treatment with lower electric power consumption. Survey of results from questionnaire sent out to Swedish pulp and paper mills with biological effluent treatment plants; Aerob rening med laegre elfoerbrukning. Sammanstaellning av enkaetsvar fraan svenska skogsindustrier med biologisk rening

    Sivard, Aasa; Simon, Olle

    2010-12-15

    A survey of the energy situation at 23 Swedish pulp and paper mills with aerobic effluent treatment plants has been performed. The electricity consumption for aeration equipment is about 80 % of the total electricity consumption. Proposed measures to increase energy efficiency are regular measurements of energy consumption, better control of the oxygen level in some mills and evaluation of measures to use the heat in process effluent before and after biological treatment

  16. Comment on 'evaluation of dechlorination mechanisms during anaerobic fermentation of blached kraft mill effluent by W.J. Parker, E.R. Hall and G.J. Farquhar'

    Sarkar, A.

    Comment on "Evaluation of dechlorination mechanisms during anaerobic fermentation of bleached kraft mill effluent", is put forth. The data reproduced in Table 1 does not seem to be authentic as the method of preprationo of the chlorinated organic...

  17. Influence of Nutrient Impregnated into Zeolite Addition on Anaerobic Digestion of Palm Oil Mill Effluent (POME)

    Mellyanawaty, M.; Chusna, F. M. A.; Sudibyo, H.; Nurjanah, N.; Budhijanto, W.

    2018-03-01

    Palm oil mill effluent (POME) was wastewater generated from palm oil milling activities which was brownish liquid, acidic with pH 3-4, and contained soluble materials which were hazardous to the environment. It was characterized by high organic loading (COD 40,000–60,000 mg/L). According to its characteristics, POME was identified as a potential source to generate renewable energy through anaerobic digestion. In other words, a combination of wastewater treatment and renewable energy production would be an additional advantage to the palm oil industries. Methanogenesis was the rate limiting step in anaerobic digestion. In the conventional anaerobic digester, it required large reactors and long retention time. The addition of microbial immobilization media was to improve anaerobic reactor performance in term of higher organic removal and methane production. Additionally, better performance could lead to reduction of reactor volume and shorter retention time in high rate anaerobic digester. The loading of essential microorganism nutrient into the media might increase the affinity of bacteria to attach and grow on the media surface. Activating or inhibition effects of natural and modified zeolite addition in anaerobic digestion of POME was studied in batch reactors using erlenmeyer of 1,000 mL at COD concentrations of about 8,000 mg/L. Zeolite was impregnated with nickel and magnesium at concentrations of 0.0561 mg Ni/g zeolite and 0.0108 mg Mg/g zeolite. The effect of the different zeolite addition was determined by the measurement of soluble COD (sCOD), Volatile Fatty Acids (VFAs) and biogas production. Greater effect of modified zeolite was observed in zeolite impregnated with nickel with a 54% increase of biogas production. Meanwhile, the modified zeolite impregnated with magnesium had no positive impact to the methanogenic bacteria activities.

  18. Recovery of ovary size, follicle cell apoptosis, and HSP70 expression in fish exposed to bleached pulp mill effluent

    Janz, D. M.; Weber, L. P. [Oklahoma State Univ., Stillwater, OK (United States); McMaster, M. E.; Munkittrrick, K. R. [Environment Canada, Burlington, ON (Canada); Van Der Kraak, G. [Guelph Univ., Dept. of Zoology, ON (Canada)

    2001-03-01

    Apoptosis of granulosa cells that provide hormonal support for the oocyte is the normal mechanism by which atresia ( reduced ovarian size, decreased fecundity, delayed sexual maturation, alterations in plasma sex steroid levels, etc) occurs in mammals, birds and possibly fish. The objective of this study is to determine ovarian cell apoptosis, gonadosomatic index (GSI) and heat shock protein (HSP70) expression during the growth stage of ovarian development in white sucker fish in order to compare samples of fish collected upstream and downstream of a bleached kraft pulp mill in Ontario. Fish for the study were collected in two different years, before and after the pulp mill undertook a number of improvements to eliminate the release of process chemicals. Results showed a 3.4-fold increase in ovarian cell apoptosis in growing white sucker collected four km downstream of the bleached kraft pulp mill in 1996 (before the improvements) compared to fish collected from upstream sources. The elevated ovarian cell apoptosis was associated with significant reduction in gonadosomatic index in fish collected downstream. There were no differences in ovarian cell apoptosis or gonadosomatic index between fish collected upstream and four km downstream of the mill in September 1998 (after the improvements.) Based on the results, it may be concluded that chronic stimulation of ovarian cell apoptosis by certain components of bleached kraft pulp mill effluents represents an important cellular mechanism for reducing the size of ovaries and other related reproductive responses in female fish exposed to these effluents. Although the specific effluent components are not known, the improvements undertaken between 1996 and 1998 resulted in significant enough recovery of these responses to justify the belief in a cause-effect relationship. 32 refs., 1 tab., 2 figs.

  19. Raw or incubated olive-mill wastes and its biotransformed products as agricultural soil amendments-effect on sorption-desorption of triazine herbicides.

    Delgado-Moreno, Laura; Almendros, Gonzalo; Peña, Aránzazu

    2007-02-07

    Raw olive-mill waste and soil amendments obtained from their traditional composting or vermicomposting were added, at rates equivalent to 200 Mg ha-1, to a calcareous silty clay loam soil in a laboratory test, in order to improve its fertility and physicochemical characteristics. In particular, the effects on the sorption-desorption processes of four triazine herbicides have been examined. We found that comparatively hydrophobic herbicides terbuthylazine and prometryn increased their retention on amended soil whereas the more polar herbicides simazine and cyanazine were less affected. Soil application of olive cake, without transformation, resulted in the highest herbicide retention. Its relatively high content in aliphatic fractions and lipids could explain the increased herbicide retention through hydrophobic bonding and herbicide diffusion favored by poorly condensed macromolecular structures. On the other hand, the condensed aromatic structure of the compost and vermicompost from olive cake could hinder diffusion processes, resulting in lower herbicide sorption. In fact, the progressive humification in soil of olive-mill solid waste led to a decrease of sorption capacity, which suggested important changes in organic matter quality and interactions during the mineralization process. When soil amended with vermicompost was incubated for different periods of time, the enhanced herbicide sorption capacity persisted for 2 months. Pesticide desorption was reduced by the addition of fresh amendments but was enhanced during the transformation process of amendments in soil. Our results indicate the potential of soil amendments based on olive-mill wastes in the controlled, selective release of triazine herbicides, which varies depending on the maturity achieved by their biological transformation.

  20. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-12-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  1. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Elisabetta eMartini

    2013-12-01

    Full Text Available Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  2. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China.

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2014-11-01

    The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.

  3. Performance Evaluation on Otto Engine Generator Using Gasoline and Biogas from Palm Oil Mill Effluent

    Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB

    2017-06-01

    Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).

  4. Treatment of Palm Oil Mill Effluent (POME) by Using Electrocoagulation as an Alternative Method

    Suzana Che Sayuti; Abdul Aziz Mohd Azoddein

    2015-01-01

    The treatment of palm oil mill effluent (POME) is a crucial stage to prevent from environmental pollution. An alternative method should be implemented to replace the conventional wastewater treatment method. Concentration required by the Department of Environment (DOE) is 200 mg/L for chemical oxygen demand (COD) and 100 mg/L for total suspended solid (TSS). Electrocoagulation was used to reduce the amount of COD and TSS in POME. The performance of COD and TSS removal using electrocoagulation was scrutinized. Electrocoagulation reactor was used and the optimum operating parameters were determined. The voltage parameter was manipulated in order to identify the effect on the removal efficiency of COD and TSS. The highest removal efficiency obtained were 95.71 % for COD and 99.25 % for TSS in which COD reduced from 4900 mg/L to 210 mg/L meanwhile TSS from 4000 mg/L to 30 mg/L. The final COD almost meets the requirement of DOE of 200 mg/L while TSS fulfil the requirement of 100 mg/L for standard B. The highest efficiency obtained at optimum pH 7.44, electrocoagulation time 25 min and voltage of 100 V by using aluminium electrodes. This method was found to be efficient and capable to reduce time of treatment compared to standard conventional method. (author)

  5. Phytoremediation Potential of Vetiver System Technology for Improving the Quality of Palm Oil Mill Effluent

    Negisa Darajeh

    2014-01-01

    Full Text Available Palm oil mill effluent (POME, a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST. This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD and chemical oxygen demand (COD. In this study, two different concentrations of POME (low and high were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.

  6. Polishing of treated palm oil mill effluent (POME) from ponding system by electrocoagulation process.

    Bashir, Mohammed J K; Mau Han, Tham; Jun Wei, Lim; Choon Aun, Ng; Abu Amr, Salem S

    2016-01-01

    As the ponding system used to treat palm oil mill effluent (POME) frequently fails to satisfy the discharge standard in Malaysia, the present study aimed to resolve this problem using an optimized electrocoagulation process. Thus, a central composite design (CCD) module in response surface methodology was employed to optimize the interactions of process variables, namely current density, contact time and initial pH targeted on maximum removal of chemical oxygen demand (COD), colour and turbidity with satisfactory pH of discharge POME. The batch study was initially designed by CCD and statistical models of responses were subsequently derived to indicate the significant terms of interactive process variables. All models were verified by analysis of variance showing model significances with Prob > F < 0.01. The optimum performance was obtained at the current density of 56 mA/cm(2), contact time of 65 min and initial pH of 4.5, rendering complete removal of colour and turbidity with COD removal of 75.4%. The pH of post-treated POME of 7.6 was achieved, which is suitable for direct discharge. These predicted outputs were subsequently confirmed by insignificant standard deviation readings between predicted and actual values. This optimum condition also permitted the simultaneous removal of NH3-N, and various metal ions, signifying the superiority of the electrocoagulation process optimized by CCD.

  7. Characterization of Oily and Non-Oily Natural Sediments in Palm Oil Mill Effluent

    Reem A. Alrawi

    2013-01-01

    Full Text Available Palm oil is one of the many vegetable oils widely consumed around the world. The production of palm oil requires voluminous amount of water with the concurrent generation of large amount of wastewater known as palm oil mill effluent (POME. POME is a mixture of water, oil, and natural sediments (solid particles and fibres.There is a dearth of information on the physical properties of these POME sediments. This study intends to distinguish the physical properties of oily and non-oily POME sediments which include sediment size, particle size distribution (PSD, sediment shape, sediment surface morphology, and sediment density. These characterizations are important for future researches because these properties have significant effects on the settling process that occurs either under natural gravity or by coagulations. It was found that the oily and non-oily POME sediments have different sizes with nonspherical irregular shapes, and because of that, the aspect ratio (AR and circularity shape factors were adopted to describe the shapes of these sediments. The results also indicate that the density of oily POME sediment decreases as the sediment size increases.

  8. Anaerobic digestion of palm oil mill effluent (POME) using bio-methane potential (BMP) test

    Aziz, Nur Izzah Hamna A.; Hanafiah, Marlia M.

    2018-04-01

    Biogas is a promising sustainable and renewable energy alternative to reduce the dependence on fossil fuel. In Malaysia, the conversion of palm oil mill effluent (POME) to bioenergy has recently been expanded due to its high potential in generating energy. However, without a proper treatment and management, POME could be harmful to environment because it emits greenhouse gas emissions into the atmosphere and could also pollutes the watercourses if discharge directly due to the high acidity and chemical oxygen demand (COD) content. Many initiatives have been taken by the government towards sustainable development. Therefore, more efforts need to be practiced to improve and upscale the technology for a better waste management. In this study, the anaerobic digestion of POME was carried out using Bio-methane potential (BMP) test in batch and laboratory scales. Physicochemical characteristics and the biogas production of POME were measured. The BMP test under mesophilic condition was conducted for 23 consecutive days to measure the biogas production. The POME produced 721.3 cm3 of biogas by using anaerobic sludge as inoculum. The results also found that the methane (CH4) and carbon dioxide (CO2) gases produced with 360.65 cm3 and 288.52 cm3, respectively.

  9. Optimization and performance evaluation for nutrient removal from palm oil mill effluent wastewater using microalgae

    Ibrahim, Raheek I.; Wong, Z. H.; Mohammad, A. W.

    2015-04-01

    Palm oil mill effluent (POME) wastewater was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients. This study was devoted to POME wastewater treatment with microalgae. The main objective was to find the optimum conditions (retention time, and pH) in the microalgae treatment of POME wastewater considering retention time as a most important parameter in algae treatment, since after the optimum conditions there is a diverse effect of time and pH and so, the process becomes costly. According to our knowledge, there is no existing study optimized the retention time and pH with % removal of nutrients (ammonia nitrogen NH3-N, and orthophosphorous PO43-) for microalgae treatment of POME wastewater. In order to achieve with optimization, a central composite rotatable design with a second order polynomial model was used, regression coefficients and goodness of fit results in removal percentages of nutrients (NH3-N, and PO43-) were estimated.WinQSB technique was used to optimize the surface response objective functionfor the developed model. Also experiments were done to validate the model results.The optimum conditions were found to be 18 day retention time for ammonia nitrogen, and pH of 9.22, while for orthophosphorous, 15 days were indicated as the optimum retention time with a pH value of 9.2.

  10. Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME

    H Hadiyanto

    2012-07-01

    Full Text Available Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME, this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%. The objective of the research is to determine growth rate and biomass productivity in Chlorella Sp cultured in POME. Chlorella Sp was cultured in 20%, 50%, 70% POME using urea concentration 0.1gr/L (low nitrogen source and 1gr/l (high nitrogen source at flask disk, pH 6.8-7.2; aerated using aquarium pump and fluorescence lamp 3000-6000 lux as light. Medium was measured using spectrophotometer Optima Sp-300 OD at 680 wave length in 15 days to calculate specific growth rate. At end of cultivation, Chlorella sp was filtered and measured as dry weight. Result indicated that Chlorella sp at 50% POME 1gr/L urea showed higher specific growth rate (0.066/day. Factor affecting growth rate of microalgae is CNP ratio, POME concentration, and urea concentration.

  11. The digester modification for biogas production from palm oil mill effluent by Fed-batch

    Aznury, M.; Amin, J. M.; Hasan, A.; Harsyah, A.

    2018-03-01

    The purpose of this research is to biogas production in the digester modification equipment by Fed-batch of the palm oil mill effluent (POME) to determine the quality of POME after a treatment and the concentration of biogas that is formed every 24 hours within 10 days. The raw materials used are POME from PT Mitra Ogan, Tbk. In the initial stage is sedimentation process in the first digester tank at a flow rate 6 liters/minute and then observing the retention time of 24 hours. POME flowed into the second digester tank for fermentation process with the addition of active microbes seed every 24 hours to produce biogas. After the fermentation process is complete, POME flowed to third digester tank for water treatment stage before being released into the environment. COD content test values obtained after processing are 766, 362 and 350 mg/L, approximately. While the BOD value is 212.75; 125 and 110.9 mg/L, approximately. Biogas production for 10 days fermentation are 10.88% methane, 19.2% oxygen and 75.83% nitrogen, approximately.

  12. Trend and current practices of palm oil mill effluent polishing: Application of advanced oxidation processes and their future perspectives.

    Bello, Mustapha Mohammed; Abdul Raman, Abdul Aziz

    2017-08-01

    Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Clean Fuel, Clean Energy Conversion Technology: Experimental and Numerical Investigation of Palm Oil Mill Effluent Biogas Flameless Combustion

    Seyed Ehsan Hosseini

    2015-08-01

    Full Text Available The combustion of effluent biogas from a palm oil mill is not feasible on a large scale because of its low calorific value (LCV. Therefore, the captured biogas is usually flared because of a lack of appropriate combustion technology. However, such biogas could be an excellent source of energy for combined heat and power (CHP generation in palm oil mills. In this paper, the feasibility of using biogas from palm oil mills in flameless combustion systems is investigated. In computational fluid dynamic (CFD modeling, a two-step reaction scheme is employed to simulate the eddy dissipation method (EDM. In such biogas flameless combustion, the temperature inside the chamber is uniform and hot spots are eliminated. The peak of the non-luminous flame volume and the maximum temperature uniformity occur under stoichiometric conditions when the concentration of oxygen in the oxidizer is 7%. In these conditions, as the concentration of oxygen in the oxidizer increases, the efficiency of palm oil mill effluent biogas flameless combustion increases. The maximum efficiency (around 61% in the experiment is achieved when the percentage of oxygen in the oxidizer is 7%.

  14. Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting.

    Cayuela, M L; Mondini, C; Sánchez-Monedero, M A; Roig, A

    2008-07-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated during the extraction of olive oil by the two-phase centrifugation system. Among all the available disposal options, composting is gaining interest as a sustainable strategy to recycle TPOMW for agricultural purposes. The quality of compost for agronomical use depends on the degree of organic matter stabilization, but despite several studies on the topic, there is not a single method available which alone can give a certain indication of compost stability. In addition, information on the biological and biochemical properties, including the enzymatic activity (EA) of compost, is rare. The aim of this work was to investigate the suitability of some enzymatic activities (beta-glucosidase, arylsulphatase, acid-phosphatase, alkaline-phosphatase, urease and fluorescein diacetate hydrolysis (FDA)) as parameters to evaluate organic matter stability during the composting of TPOMW. These enzymatic indices were also compared to conventional stability indices. For this purpose two composting piles were prepared by mixing TPOMW with sheep manure and grape stalks in different proportions, with forced aeration and occasional turnings. The composting of TPOMW followed the common pattern reported previously for this kind of material with a reduction of 40-50% of organic matter, a gradual increase in pH, disappearance of phytotoxicity and formation of humic-like C. All EA increased during composting except acid-phosphatase. Significant correlations were found between EA and some important conventional stability indices indicating that EA can be a simple and reliable tool to determine the degree of stability of TPOMW composts.

  15. Application of Acid Cracking and Fenton Processes inTreating Olive Mill Wastewater

    Majid Aliabadi

    2006-03-01

    Full Text Available In recent years, the growth in the industries of olive oil extraction has brought about a number of environmental problems. The waste water resulting from olive oil extraction can not be naturally degraded due to the presence of phenol, volatile fatty acids, catchin, and other recalcitrants.In recent years advanced oxidation processes based on hydroxyl radical are paid special attention by scientific, research and industrial centers to degrade the pollutants. In this study, a combination of acid cracking and advanced oxidation process in terms of Fenton process have been studied. Results showed that acid cracking can remove 97, 47, 30, 63 and 57 percent of Turbidity, COD, Total Phenols, Color and Aromaticity, respectively. Fenton process in pH=3 at optimal conditions can remove 57, 97, 18 and 32 percent of COD, Total Phenols, Color and Aromaticity, respectively. Necessary time of reaction was 4 hrs and optimum concentration of H2O2 and Fe2+ ions was determined 0. 5 M and 0.02 M, respectively. Increasing temperature in the range of 25-35°C and type of iron used(ferric or ferrous has no considerable effect in  the efficiency of the process.

  16. Assessment of reproductive effects in largemouth bass (Micropterus salmoides) exposed to bleached/unbleached kraft mill effluents.

    Sepúlveda, M S; Ruessler, D S; Denslow, N D; Holm, S E; Schoeb, T R; Gross, T S

    2001-11-01

    This study evaluated the potential effects of different concentrations of bleached/unbleached kraft mill effluent (B/UKME) on several reproductive endpoints in adult largemouth bass (Micropterus salmoides). The kraft mill studied produces a 50/50 mix of bleached/unbleached market pulp with an estimated release of 36 million gal of effluent/day. Bleaching sequences were C90d10EopHDp and CEHD for softwood (pines) and hardwoods (mainly tupelo, gums, magnolia, and water oaks), respectively. Bass were exposed to different effluent concentrations (0 [controls, exposed to well water], 10, 20, 40, or 80%) for either 28 or 56 days. At the end of each exposure period, fish were euthanized, gonads collected for histological evaluation and determination of gonadosomatic index (GSI), and plasma was analyzed for 17beta-estradiol, 11-ketotestosterone, and vitellogenin (VTG). Largemouth bass exposed to B/UKME responded with changes at the biochemical level (decline in sex steroids in both sexes and VTG in females) that were usually translated into tissue/organ-level responses (declines in GSI in both sexes and in ovarian development in females). Although most of these responses occurred after exposing fish to 40% B/UKME concentrations or greater, some were observed after exposures to 20% B/UKME. These threshold concentrations fall within the 60% average yearly concentration of effluent that exists in the stream near the point of discharge (Rice Creek), but are above the <10% effluent concentration present in the St. Johns River. The chemical(s) responsible for such changes as well as their mode(s) of action remain unknown at this time.

  17. KINETIC STUDIES ON BIODEGRADATION OF LIPIDS FROM OLIVE OIL MILL WASTEWATERS WITH FREE AND IMMOBILIZED Bacillus sp. CELLS

    Anca-Irina Galaction

    2012-03-01

    Full Text Available The studies on the biodegradation of lipids from olive oil mill wastewater with free and immobilized Bacillus sp. cells indicated that the maximum specific rate of the process is reached at pH = 8. The use of immobilized cells allows to increasing the number of biodegradation process cycles, but reduces the rate of the process. In this case, the process rate depends on the biocatalysts size and cells concentration inside them. Thus, at bacterial cells concentration of 9 g d.w./100 mL biocatalyst, the apparent specific rate varied from 4.65 to 1.46×10-2 h-1 by increasing the biocatalyst particles diameter from 3 to 4.2 mm.The cumulated influences of the particles size and cells concentration have been included in a mathematical model for the apparent specific rate of lipids biodegradation. The model offers a good concordance with the experimental data, the average deviation being of +/- 7.38%.

  18. Effect of olive mill wastewater on growth and bulb production of tulip plants infected by bulb diseases

    Lykas, C.; Vegalas, I.; Gougaulias, N.

    2014-06-01

    The effect of olive mill wastewater (OMW) on growth of tulip plants infected by common diseases as well as on their new bulbs production is analyzed in this work. Filtered and sterilized OMW was tested as growth inhibitor of Botrytis tulipae, Fusarium oxysporum, Aspergillus niger and Penicillium spp. mycelium. The effect of filtered OMW on uninfected tulip bulbs was also tested as well as on the growth of bulbs infected with the fungus B. tulipae and A. niger in vivo. The mycelium length, severity of scab-like lesions, plant height (PH), fresh mass (FM) and dry mass (DM) of plants and production of new bulbs were recorded. Only the filtered OMW inhibited the in vitro mycelium growth of all tested fungi. However filtered OMW caused infections when it sprayed on uninfected bulbs, malformations on 30% of the plants grown from these bulbs and decrease PH, FM and DM as well as new bulbs production at 75%, 72.4%, 79.1% and 50% respectively. The treatment of B. tulipae infected bulbs with filtered OMW reduced further the PH, FM, DM and the production of new bulbs in 92.1%, 81.4%, 78.7% and 97% respectively. In contrast the treatment of infected bulbs by B. tulipae + A. niger with filtered OMW did not affect PH, FM and the number of new bulbs produced and significantly improved plants DM and the mass of new bulbs. (Author)

  19. A Software for soil quality conservation at organic waste disposal areas: The case of olive mill and pistachio wastes.

    Doula, Maria; Sarris, Apostolos; Papadopoulos, Nikos; Hliaoutakis, Aggelos; Kydonakis, Aris; Argyriou, Lemonia; Theocharopoulos, Sid; Kolovos, Chronis

    2016-04-01

    For the sustainable reuse of organic wastes at agricultural areas, apart from extensive evaluation of waste properties and characteristics, it is of significant importance, in order to protect soil quality, to evaluate land suitability and estimate the correct application doses prior waste landspreading. In the light of this precondition, a software was developed that integrates GIS maps of land suitability for waste reuse (wastewater and solid waste) and an algorithm for waste doses estimation in relation to soil analysis, and in case of reuse for fertilization with soil analysis, irrigation water quality and plant needs. EU and legislation frameworks of European Member States are also considered for the assessment of waste suitability for landspreading and for the estimation of the correct doses that will not cause adverse effects on soil and also to underground water (e.g. Nitrate Directive). Two examples of software functionality are presented in this study using data collected during two LIFE projects, i.e. Prosodol for landspreading of olive mill wastes and AgroStrat for pistachio wastes.

  20. Fungal bioremediation of olive mill wastewater: using a multi-step approach to model inhibition or stimulation.

    Bevilacqua, Antonio; Cibelli, Francesca; Raimondo, Maria Luisa; Carlucci, Antonia; Lops, Francesco; Sinigaglia, Milena; Corbo, Maria Rosaria

    2017-01-01

    Olive mill wastewaters (OMWWs) possess a strong environmental impact; the use of fungi as tools for bioremediation could be a promising method. Twenty-nine fungi were grown on minimal media supplemented with five different kinds of OMWWs (5-15%). Radial growth was assessed for 21 days and the data were modelled through the Dantigny-logistic like function to estimate τ, i.e. the time to attain half of the maximum diameter. Growth on potato dextrose agar and water agar (WA, minimal medium without supplementation) was used as reference. The differences in τ between PDA/WA and minimal media with OMWWs were modelled through a multi-factorial ANOVA, using the concentration of OMWW, the kind of wastes and fungi as categorical predictors. Finally, a principal component analysis was run to group and divide resistant and sensitive fungi. Some fungi experienced a positive Δτ, thus suggesting an inhibition by OMWW, whereas other isolates were enhanced. Some isolates (for example Aspergillus ochraceus) showed a promising trend and could be possible candidates for a validation on a real scale. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Evaluation of Fungal Growth on Olive-Mill Wastewaters Treated at High Temperature and by High-Pressure Homogenization

    Francesca Cibelli

    2017-12-01

    Full Text Available Reuse of olive mill wastewaters (OMWWs in agriculture represents a significant challenge for health and safety of our planet. Phytotoxic compounds in OMWW generally prohibit use of untreated OMWWs for agricultural irrigation or direct discharge into surface waters. However, pretreated OMWW can have positive effects on chemical and microbiological soil characteristics, to fight against fungal soil-borne pathogens. Low amounts of OMWW following thermal (TT-OMWW and high-pressure homogenization (HPH-OMWW pretreatments counteracted growth of some of 12 soil-borne and/or pathogenic fungi examined. With fungal growth measured as standardized change in time to half maximum colony diameter, Δτ, overall, HPH-OMWW showed increased bioactivity, as increased mean Δτ from 3.0 to 4.8 days. Principal component analysis highlighted two fungal groups: Colletotrichum gloeosporioides, Alternaria alternata, Sclerotium rolfsii, and Rosellinia necatrix, with growth strongly inhibited by the treated OMWWs; and Aspergillus ochraceus and Phaeoacremonium parasiticum, with stimulated growth by the treated OMWWs. As a non-thermal treatment, HPH-OMWW generally shows improved positive effects, which potentially arise from preservation of the phenols.

  2. Odor control in evaporation ponds treating olive mill wastewater through the use of Ca(OH)2.

    Lagoudianaki, E; Manios, T; Geniatakis, M; Frantzeskaki, N; Manios, V

    2003-01-01

    Different amounts of Ca(OH)2 were added in 2 L beakers containing 1 L of olive mill wastewater (OMW). The mixture was stirred for 45 min and left to settle. Wastewater analysis was used in order to determine the effect of the different amounts of calcium hydroxide in the treating process, three days after the application. The Odor Detection Threshold was used for determining the effect of the treatment in the odors produced in the beakers, three and 30 days after. Both sets of measurements indicated an important reduction in wastewater pollutants and odor emission when 10 g/L of Ca(OH)2 were added. In order to evaluate these results in more realistic conditions. 10 L plastic containers were filled with 6 L of OMW, relevant amounts of Ca(OH)2 were added, the mixture was stirred manually and left to settle in the open. Again, 10 g/L of calcium hydroxide produced the best results in odor reduction and wastewater treatment.

  3. Olive mill wastewater evaporation management using PCA method Case study of natural degradation in stabilization ponds (Sfax, Tunisia).

    Jarboui, Raja; Sellami, Fatma; Azri, Chafai; Gharsallah, Néji; Ammar, Emna

    2010-04-15

    Olive mill wastewater (OMW) evaporation ponds management was investigated in five serial evaporation open-air multiponds of 50 ha located in Sfax (Tunisia). Physico-chemical parameters and microbial flora evolution were considered. Empirical models describing the OMW characteristic changes with the operation time were established and Principal Component Analysis (PCA) described the correlation between physico-chemical and biological parameters. COD, BOD, total solids, polyphenols and electrical conductivity exhibited first-order models. Four groups exhibited high correlations. The first included temperature, density, COD, TSS, TS, BOD, VS, TOC, TKN, polyphenols and minerals. The second group was made up of yeasts and moulds. The third group was established with phenolic compounds, total sugars, fats, total phosphorous, NH(4)(+) and pH. The fourth group was constituted by exclusively aerobic bacteria. Bacterial-growth toxic effect was exhibited by high organic load, ash content and polyphenols, whereas moulds and yeasts were more adapted to OMW. During the storage, all the third group parameter values decreased and were inversely related to the others. In the last pond, COD, BOD, TS and TSS rates were reduced by 40%, 50%, 50% and 75% respectively. The evaporation and the biological activity were the main processes acting, predicting the OMW behavior during evaporation in air-open ponds. 2009 Elsevier B.V. All rights reserved.

  4. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon.

    Bertin, Lorenzo; Lampis, Silvia; Todaro, Daniela; Scoma, Alberto; Vallini, Giovanni; Marchetti, Leonardo; Majone, Mauro; Fava, Fabio

    2010-08-01

    Four identically configured anaerobic packed bed biofilm reactors were developed and employed in the continuous acidogenic digestion of olive mill wastewaters to produce volatile fatty acids (VFAs), which can be exploited in the biotechnological production of polyhydroxyalkanoates. Ceramic porous cubes or granular activated carbon were used as biofilm supports. Aside packing material, the role of temperature and organic loading rate (OLR) on VFA production yield and mixture composition were also studied. The process was monitored through a chemical, microbiological and molecular biology integrated procedure. The highest wastewater acidification yield was achieved with the ceramic-based technology at 25 degrees C, with an inlet COD and an OLR of about 17 g/L and 13 g/L/day, respectively. Under these conditions, about the 66% of the influent COD (not including its VFA content) was converted into VFAs, whose final amount represented more than 82% of the influent COD. In particular, acetic, propionic and butyric acids were the main VFAs by composing the 55.7, 21.5 and 14.4%, respectively, of the whole VFA mixture. Importantly, the relative concentrations of acetate and propionate were affected by the OLR parameter. The nature of the packing material remarkable influenced the process performances, by greatly affecting the biofilm bacterial community structure. In particular, ceramic cubes favoured the immobilization of Firmicutes of the genera Bacillus, Paenibacillus and Clostridium, which were probably involved in the VFA producing process. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Effect of olive mill wastewater on growth and bulb production of tulip plants infected by bulb diseases

    Christos Lykas

    2014-02-01

    Full Text Available The effect of olive mill wastewater (OMW on growth of tulip plants infected by common diseases as well as on their new bulbs production is analyzed in this work. Filtered and sterilized OMW was tested as growth inhibitor of Botrytis tulipae, Fusarium oxysporum, Aspergillus niger and Penicillium spp. mycelium. The effect of filtered OMW on uninfected tulip bulbs was also tested as well as on the growth of bulbs infected with the fungus B. tulipae and A. niger in vivo. The mycelium length, severity of scab-like lesions, plant height (PH, fresh mass (FM and dry mass (DM of plants and production of new bulbs were recorded. Only the filtered OMW inhibited the in vitro mycelium growth of all tested fungi. However filtered OMW caused infections when it sprayed on uninfected bulbs, malformations on 30% of the plants grown from these bulbs and decrease PH, FM and DM as well as new bulbs production at 75%, 72.4%, 79.1% and 50% respectively. The treatment of B. tulipae infected bulbs with filtered OMW reduced further the PH, FM, DM and the production of new bulbs in 92.1%, 81.4%, 78.7% and 97% respectively. In contrast the treatment of infected bulbs by B. tulipae + A. niger with filtered OMW did not affect PH, FM and the number of new bulbs produced and significantly improved plants DM and the mass of new bulbs.

  6. Morphological Characterization of Photosynthetic Microbial Granule from Palm Oil Mill Effluent (POME)

    Najib, M.Z.M.

    2013-01-01

    Presently, global warming is the most highlighted subjects in the environmental issues which relates closely to greenhouse gases (GHG) emissions. In 2007, the Intergovernmental Panel on Climate Change (IPCC) assigns only methane (CH 4 ) emissions to wastewater treatment rather than GHG emissions specifically carbon dioxide (CO 2 ) gas from the aerobic treatment processes. Focusing on the palm oil industry in Malaysia, the most commonly used treatment of palm oil mill effluent (POME) which is the conventional pounding system, has caused excessive generation of GHG such as CH 4 and CO 2 gases. To develop a novel, innovative and environmental-friendly mitigation method, this study explores into the possibility of growing the photosynthetic bacteria in the form of granules via the aerobic granulation process with potential applications in reducing CO 2 gases. The cultivation of photosynthetic microbial granules was investigated using POME as the substrate in a sequencing batch reactor (SBR) system via the sequencing cycle of feeding, reacting, settling and decanting. Evidence of the formation of granule was based on microscopic examination of the morphological changes during the development of the granule in the SBR system over a period of 90 days. It shows changes from dispersed loose structure of the sludge merging into small flocs of irregular shapes and finally into dense and compact granular form. The granule was formed by applying an organic loading rate (OLR) at 2.75 kg COD/ m 3 .day, hydraulic retention time (HRT) at 4 h and superficial air velocity of 2.07 cm/ s. The biomass concentration began to decreased first (initial sludge biomass = 16750 mg/ L) and then increased steadily to a constant value of 32000 mg/ L after 90 days. Besides, the results also demonstrated a good accumulation of biomass as the settleability between raw sludge and granule increased from 0.03 cm/ s to 0.94 cm/ s. The maximum settling velocity obtained in the reactor was approximately 2

  7. Modification of Oil Palm Plantation Wastes as Oil Adsorbent for Palm Oil Mill Effluent (POME)

    Noraisah Jahi; Ling, E.S.; Rizafizah Othaman; Suria Ramli

    2015-01-01

    This research was conducted to modify oil palm solid wastes chemically to become oil adsorbent for palm oil mill effluent (POME). The purpose of modification on oil palm leaves (OPL) and oil palm frond (OPF) was to change the hydrophilic nature to a more hydrophobic character. This study also exploited the production of sorbent materials with high efficiency in the oil uptake for POME from OPL and OPF. Chemical modification was carried out using 200 mL of 1.0 M lauric acid solution for 6 hrs at room temperature. The modified OPL and OPF were preceded to adsorption test for POME and the capacity of oil adsorbed was compared between them. FTIR analysis supported the modification to occur with the increase in a peak of C-H group and the presence of C=O originated from lauric acid structure chain. The hydrophobicity of modified OPL and OPF samples was supported by XRD and contact angle analysis with modified OPL became more hydrophobic than the modified OPF, which had been 38.15 % and 24.67 % respectively. Both the analyses proved that the result from the oil adsorption test on POME showed the presence of a new peak attribute at C=C stretching of aromatics for the oil in POME proved that it was attached on the sorbent materials. Based on SEM analysis, the perforated and rough surface had been observed on modified OPL and OPF samples because oil layers on OPL and OPF surfaces were observed on the modified samples after the adsorption test. All the analyses in the study agreed that the results from oil adsorption test showed that the modified OPL had higher adsorption capacity than the modified OPF with the percentage of oil uptake at 83.74 % and 39.84 % respectively. The prepared adsorbent showed the potential to be used as a low-cost adsorbent in oil for POME. (author)

  8. Optimal Condition of Fenton's Reagent to Enhance the Alcohol Production from Palm Oil Mill Effluent (POME

    Supawadee Sinnaraprasat

    2011-07-01

    Full Text Available Application of Fenton's reaction for a proper hydrolysis step is an essential and important step in obtaining a higher level of readily biodegradable sugars from palm oil mill effluent (POME for improving the alcohol production by using immobilized Clostridium acetobutylicum. The objective of this research was, therefore, to investigate the optimum condition of Fenton's reaction in terms of COD: H2O2 ratios (w/w and H2O2: Fe2+ ratios (molar ratio used to oxidize carbohydrate and high molecular organic compounds into simple sugars, which are further fermented into alcohol. The experiments were carried out at H2O2: Fe2+ ratios (molar ratios of 5, 10, 20, 30 and 40 and the COD: H2O2 ratios (w/w of 50, 70, 100 and 130 (initial COD about 50,000 mg/L. The total sugar concentrations and organic compounds biodegradability (BOD5/COD ratios were also used for investigating suitable conditions for Fenton's reaction. The concentration of Fenton's reagent at H2O2:Fe2+ and COD:H2O2 ratio of 20 and 130 was identified as the optimum operating condition for the highest simple sugars of about 0.865% and BOD5/COD ratios of 0.539. The alcohol productions were carried out in the continuous stirred tank reactors (CSTR under an anaerobic continuous immobilization system. At a hydraulic retention time of 12 hours and POME pH of 4.8, the maximum total ABE concentration of 495 mg/L and the ABE yield of 0.236 grams of ABE produced/gram of reducing sugars were achieved at the mixed polyvinyl alcohol (PVA and palm oil ash (POA ratio of 10 : 3.

  9. Improved biohydrogen production and treatment of pulp and paper mill effluent through ultrasonication pretreatment of wastewater

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Juan, Joon Ching; Md Jahim, Jamaliah

    2015-01-01

    Highlights: • Ultrasonication facilitated the reuse of PPME in biohydrogen production. • Ultrasonication at an amplitude of 60% for 45 min produced the highest biohydrogen. • Ultrasonication increased the solubilization of PPME. • Higher net savings were obtained in pretreated PPME compared to raw PPME. - Abstract: Pulp and paper mill effluent (PPME), a rich cellulosic material, was found to have great potential for biohydrogen production through a photofermentation process. However, pretreatments were needed for degrading the complex structure of PPME before biohydrogen production. The aim of this study was to gain further insight into the effect of an ultrasonication process on PPME as a pretreatment method and on photofermentative biohydrogen production using Rhodobacter sphaeroides NCIMB. The ultrasonication amplitudes and times were varied between 30–90% and 15–60 min, respectively, and no dilution or nutrient supplementation was introduced during the biohydrogen production process. A higher biohydrogen yield, rate, light efficiency and COD removal efficiency were attained in conditions using ultrasonicated PPME. Among these different pretreatment conditions, PPME with ultrasonication pretreatment employing an amplitude of 60% and time of 45 min (A60:T45) gave the highest yield and rate of 5.77 mL H_2/mL medium and 0.077 mL H_2/mL h, respectively, while the raw PPME without ultrasonication showed a significantly lower yield and rate of 1.10 mL H_2/mL medium and 0.015 mL H_2/mL h, respectively. The results of this study demonstrated the potential of using ultrasonication as a pretreatment for PPME because the yield and rate of biohydrogen production were highly enhanced compared to the raw PPME. Economic analysis was also performed in this study, and in comparison with raw PPME, the highest net saving was $0.2132 for A60:T45.

  10. Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for Nutrient Removal in Rice Mill Effluent (Paddy Soaked Water).

    Abinandan, S; Bhattacharya, Ribhu; Shanthakumar, S

    2015-01-01

    Microalgae are product of sustainable development owing to its ability to treat variety of wastewater effluents and thus produced biomass can serve as value added product for various commercial applications. This paper deals with the cultivation of microalgae species namely Chlorella pyrenoidosa and Scenedesmus abundans in rice mill effluent (i.e., paddy soaked water) for nutrient removal. In order to investigate the nutrient removal capability, microalgae are subjected to cultivation in both raw and autoclaved samples. The maximum phosphate removal by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 98.3% and 97.6%, respectively, whereas, the removal of ammoniacal nitrogen by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 92% and 90.3%, respectively. The growth (measured in terms of chlorophyll content) of Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 3.88 mg/l and 5.55 mg/l, respectively. The results indicate the suitability of microalgae cultivation in rice mill effluent treatment for nutrient removal.

  11. Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H2O2 with Lime and Anaerobic Digestion

    Alessio Siciliano

    2016-11-01

    Full Text Available In the Mediterranean region, the disposal of residues of olive oil industries represents an important environmental issue. In recent years, many techniques were proposed to improve the characteristics of these wastes with the aim to use them for methane generation in anaerobic digestion processes. Nevertheless, these techniques, in many cases, result costly as well as difficult to perform. In the present work, a simple and useful process that exploits H2O2 in conjunction with lime is developed to enhance the anaerobic biodegradability of wet olive mill wastes (WMOW. Several tests were performed to investigate the influence of lime amount and H2O2 addition modality. The treatment efficiency was positively affected by the increase of lime dosage and by the sequential addition of hydrogen peroxide. The developed process allows reaching phenols abatements up to 80% and volatile fatty acids productions up to 90% by using H2O2 and Ca(OH2 amounts of 0.05 gH2O2/gCOD and 35 g/L, respectively. The results of many batch anaerobic digestion tests, carried out by means of laboratory equipment, proved that the biogas production from fresh wet olive mill wastes is hardly achievable. On the contrary, organic matter abatements, around to 78%, and great methane yields, up to 0.34–0.35 LCH4/gCODremoved, were obtained on pretreated wastes.

  12. Pesticide interactions with soil affected by olive mill wastewater (OMW): how strong and long-lasting is the OMW effect?

    Keren, Yonatan; Borisover, Mikhail; Schaumann, Gabriele E.; Diehl, Dörte; Tamimi, Nisreen; Bukhanovsky, Nadezhda

    2017-04-01

    Sorption interactions with soils are well known to control the environmental fate of multiple organic compounds including pesticides. Pesticide-soil interactions may be affected by organic amendments or organic matter (OM)-containing wastewater brought to the field. Specifically, land spreading of olive mill wastewater (OMW), occurring intentionally or not, may also influence pesticide-soil interactions. The effects of the OMW disposed in the field on soil properties, including their ability to interact with pesticides, become of great interest due to the increasing demand for olive oil and a constant growth of world oil production. This paper summarizes some recent findings related to the effect of prior OMW land application on the ability of soils to interact with the organic compounds including pesticides, diuron and simazine. The major findings are as following: (1) bringing OMW to the field increases the potential of soils to sorb non-ionized pesticides; (2) this sorption increase may not be related solely to the increase in soil organic carbon content but it can reflect also the changes in the soil sorption mechanisms; (3) increased pesticide interactions with OMW-affected soils may become irreversible, due, assumedly, to the swelling of some components of the OMW-treated soil; (4) enhanced pesticide-soil interactions mitigate with the time passed after the OMW application, however, in the case of diuron, the remaining effect could be envisioned at least 600 days after the normal OMW application; (5) the enhancement effect of OMW application on soil sorption may increase with soil depth, in the 0-10 cm interval; (6) at higher pesticide (diuron) concentrations, larger extents of sorption enhancement, following the prior OMW-soil interactions, may be expected; (7) disposal of OMW in the field may be seasonal-dependent, and, in the case studied, it led to more distinct impacts on sorption when carried out in spring and winter, as compared with summer. It appears

  13. EXPERIMENTAL STUDY OF PALM OIL MILL EFFLUENT AND OIL PALM FROND WASTE MIXTURE AS AN ALTERNATIVE BIOMASS FUEL

    S. HASSAN, L. S. KEE

    2013-12-01

    Full Text Available Palm oil mill effluent (POME sludge generated from palm oil mill industry and oil palm frond (OPF from oil palm plantation are considered biomass wastes that can be fully utilized as a renewable energy sources. In this study, an attempt has been made to convert these residues into solid biomass fuel. The study was conducted by developing experimental testing on the POME and OPF mixture. The performance of each sample with different weight percentage was investigated using standard tests. The biomass mixture was converted into compressed form of briquette through a simple process. The properties of the briquettes were observed and compared at different weight percentage following standard testing methods included ultimate and proximate analyses, burning characteristics, dimensional stability and crack analysis. Experimental results showed that POME sludge and OPF mixture is feasible as an alternative biomass fuel, with briquette of 90:10 POME sludge to OPF ratio has a good combination of properties as an overall.

  14. Effect of Recycle Sludge on Anaerobic Digestion of Palm Oil Mill Effluent in A Thermophilic Continuous Digester

    Irvan; Trisakti, B.; Tomiuchi, Y.; Harahap, U.; Daimon, H.

    2017-06-01

    The objective of this research is to maintain short retention time and high degradation of palm oil mill effluent (POME) to biogas by applying recycle sludge. Fresh POME from Rambutan Mill without further treatment was used as feed. Two lab-scale digesters supported from Metawater Co. Ltd. have been applied to treat POME at thermophilic (55°C) condition. Both digesters were operated under intermittent operation mode. Experiments were performed in two methods: with and without recycle sludge. Hydraulic retention time (HRT) of both methods was maintained at 6 days, while sludge retention time (SRT) was maintained at various days. The result showed that by extending SRT in return sludge process where 25% of digested slurry recycled to the digester, improvement of volatile solid (VS) decomposition was obtained around 84% at HRT of 6 days and SRT of 21 days. Then, chemical oxygen demand (COD) removal efficiency could be reached until 85% by using recycle sludge.

  15. Directional genetic selection by pulp mill effluent on multiple natural populations of three-spined stickleback (Gasterosteus aculeatus).

    Lind, Emma E; Grahn, Mats

    2011-05-01

    Contamination can cause a rapid environmental change which may require populations to respond with evolutionary changes. To evaluate the effects of pulp mill effluents on population genetics, we sampled three-spined sticklebacks (Gasterosteus aculeatus) near four pulp mills and four adjacent reference sites and analyzed Amplified Fragment Length Polymorphism (AFLP) to compare genetic variability. A fine scale genetic structure was detected and samples from polluted sites separated from reference sites in multidimensional scaling plots (Pselection. When removing 13 F(ST)-outlier loci, significant at the Pselective agent on natural populations of G. aculeatus, causing a convergence in genotype composition change at multiple sites in an open environment. © The Author(s) 2011. This article is published with open access at Springerlink.com

  16. Determination of polycyclic aromatic hydrocarbons in palm oil mill effluent by soxhlet extraction and gas chromatography-flame ionization detector

    Nor Fairolzukry Ahmad Rasdy; Mohd Marsin Sanagi; Wan Aini Wan Ibrahim; Ahmedy Abu Naim

    2008-01-01

    A method has been developed for the determination of polycyclic aromatic hydrocarbons (PAHs) from palm oil mill effluent based on gas chromatography-flame ionization detection. Extraction of spiked PAHs (napthalene, fluorene phenanthrene, fluoranthene and pyrene) in palm oil waste was carried out by Soxhlet extraction using hexane-dichloromethane (60:40 v/v) as the solvent. Excellent separations were achieved using temperature programmed GC on Ultra-1 fused-silica capillary column (30 m x 250 μm ID), carrier gas helium at a flow rate of 1 mL/ min. (author)

  17. Identification and growth conditions of purple non-sulfur photosynthetic bacteria isolated from palm oil mill effluent

    Radziah Ariffin

    2004-01-01

    An indigenous strain of the purple non-sulphur photosynthetic bacterium, isolated from palm oil mill effluent was presumably identified as species of Rhodopseudomonas palustris. Cultivation in synthetic medium under different conditions indicated that it gave maximum carotenoid and bacteriophyll synthesis under anaerobic conditions in the light with values of 12.6 and 108.1 mg/g dry cell weight respectively. These values were significantly higher than the pigment content obtained from aerobic cultivation. The specific growth rates in anaerobic was twice those in aerobic conditions in the light. Growth was not occurred in anaerobic or aerobic conditions in the dark. (Author)

  18. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents

    Costigan, Shannon L.; Werner, Julieta; Ouellet, Jacob D.; Hill, Lauren G. [Department of Biology, Lakehead University, 955 Oliver Road, Ontario P7B 5E1, (Canada); Law, R. David, E-mail: dlaw@lakeheadu.ca [Department of Biology, Lakehead University, 955 Oliver Road, Ontario P7B 5E1, (Canada)

    2012-10-15

    Many studies link pulp and paper mill effluent (PPME) exposure to adverse effects in fish populations present in the mill receiving environments. These impacts are often characteristic of endocrine disruption and may include impaired reproduction, development and survival. While these physiological endpoints are well-characterized, the molecular mechanisms causing them are not yet understood. To investigate changes in gene transcription induced by exposure to a PPME at several stages of treatment, male and female fathead minnows (FHMs) were exposed for 6 days to 25% (v/v) secondary (biologically) treated kraft effluent (TK) or 100% (v/v) combined mill outfall (CMO) from a mill producing both kraft pulp and newsprint. The gene expression changes in the livers of these fish were analyzed using a 22 K oligonucleotide microarray. Exposure to TK or CMO resulted in significant changes in the expression levels of 105 and 238 targets in male FHMs and 296 and 133 targets in females, respectively. Targets were then functionally analyzed using gene ontology tools to identify the biological processes in fish hepatocytes that were affected by exposure to PPME after its secondary treatment. Proteolysis was affected in female FHMs exposed to both TK and CMO. In male FHMs, no processes were affected by TK exposure, while sterol, isoprenoid, steroid and cholesterol biosynthesis and electron transport were up-regulated by CMO exposure. The results presented in this study indicate that short-term exposure to PPMEs affects the expression of reproduction-related genes in the livers of both male and female FHMs, and that secondary treatment of PPMEs may not neutralize all of their metabolic effects in fish. Gene ontology analysis of microarray data may enable identification of biological processes altered by toxicant exposure and thus provide an additional tool for monitoring the impact of PPMEs on fish populations.

  19. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents

    Costigan, Shannon L.; Werner, Julieta; Ouellet, Jacob D.; Hill, Lauren G.; Law, R. David

    2012-01-01

    Many studies link pulp and paper mill effluent (PPME) exposure to adverse effects in fish populations present in the mill receiving environments. These impacts are often characteristic of endocrine disruption and may include impaired reproduction, development and survival. While these physiological endpoints are well-characterized, the molecular mechanisms causing them are not yet understood. To investigate changes in gene transcription induced by exposure to a PPME at several stages of treatment, male and female fathead minnows (FHMs) were exposed for 6 days to 25% (v/v) secondary (biologically) treated kraft effluent (TK) or 100% (v/v) combined mill outfall (CMO) from a mill producing both kraft pulp and newsprint. The gene expression changes in the livers of these fish were analyzed using a 22 K oligonucleotide microarray. Exposure to TK or CMO resulted in significant changes in the expression levels of 105 and 238 targets in male FHMs and 296 and 133 targets in females, respectively. Targets were then functionally analyzed using gene ontology tools to identify the biological processes in fish hepatocytes that were affected by exposure to PPME after its secondary treatment. Proteolysis was affected in female FHMs exposed to both TK and CMO. In male FHMs, no processes were affected by TK exposure, while sterol, isoprenoid, steroid and cholesterol biosynthesis and electron transport were up-regulated by CMO exposure. The results presented in this study indicate that short-term exposure to PPMEs affects the expression of reproduction-related genes in the livers of both male and female FHMs, and that secondary treatment of PPMEs may not neutralize all of their metabolic effects in fish. Gene ontology analysis of microarray data may enable identification of biological processes altered by toxicant exposure and thus provide an additional tool for monitoring the impact of PPMEs on fish populations.

  20. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia.

    Abd Rahman, Raja Noor Zaliha Raja; Leow, Thean Chor; Salleh, Abu Bakar; Basri, Mahiran

    2007-08-10

    Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78 degrees C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5-99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70 degrees C and was also stable up to 60 degrees C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T) and Geobacillus kaustophilus (DSM 7263T). Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T). Strain T1T was able to secrete extracellular thermostable lipase into culture

  1. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    Salleh Abu

    2007-08-01

    Full Text Available Abstract Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0 as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%. Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T and Geobacillus kaustophilus (DSM 7263T. Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T. Conclusion Strain T1T was able to secrete extracellular

  2. Development of Microbial Fuel Cell for Palm Oil Mill Effluent Treatment

    Su, L.S.; Jamaliah Mohd Jahim; Siti Norhana Shari; Manal Ismail; Wan Ramli Wan Daud

    2012-01-01

    Microbial fuel cells (MFCs) are a device that utilises microorganisms as a bio catalyst, to oxidize organic and inorganic matters to generate electric current. The main purpose of this study was to evaluate laboratory scale MFC which was inoculated with sludge containing mixed culture grown in palm oil mill effluent (POME). This work also aimed to construct a suitable design of MFC and to observe mixed culture activation that could lead to electricity power production. POME was used in diluted form with COD concentration of 3750 mg-COD L -1 . The performance of power generation and the efficiency of waste-water treatment in term of COD, nitrogen and total carbohydrate removal, in dual chamber MFC were recorded and analysed everyday for 15 days. The plots between experimental data and polarization model fit well and are able to describe the ability of power density generated in each day. Power density increased from 1.607 mW m -2 (3.816 mA m -2 ), in the first day of the experiments to a maximum value on the third day 1.979 mW m -2 (4.780 mA m -2 ) and then slowed down in day seventh to a minimum value of 1.311 mW m -2 (3.346 mA m -2 ). The removal efficiency in MFC could be divided into three different levels. The first level is in term of poor efficiency although the power was increasing, while in the second level, the efficiency was getting higher and finally in third level, power production of MFC started to diminish. The highest efficiency occurs during the third level when steady power generation took place at certain level. The treatment efficiency in term of COD removal, nitrogen and carbohydrate utilization at day 15 th were 54.9, 100 and 98.9 %, respectively. The relationship between electricity power generation and treatment efficiency was successfully modelled into linear equation based on the respective power generation levels. (author)

  3. On Operating a Nanofiltration Membrane for Olive Mill Wastewater Purification at Sub- and Super-Boundary Conditions.

    Stoller, Marco; Ochando-Pulido, Javier Miguel; Field, Robert

    2017-07-14

    In the last decades, membrane processes have gained a significant share of the market for wastewater purification. Although the product (i.e., purified water) is not of high added value, these processes are feasible both technically and from an economic point of view, provided the flux is relatively high and that membrane fouling is strongly inhibited. By controlling membrane fouling, the membrane may work for years without service, thus dramatically reducing operating costs and the need for membrane substitution. There is tension between operating at high permeate fluxes, which enhances fouling but reduces capital costs, and operating at lower fluxes which increases capital costs. Operating batch membrane processes leads to increased difficulties, since the feed fed to the membrane changes as a function of the recovery value. This paper is concerned with the operation of such a process. Membrane process designers should therefore avoid membrane fouling by operating membranes away from the permeate flux point where severe fouling is triggered. The design and operation of membrane purification plants is a difficult task, and the precision to properly describe the evolution of the fouling phenomenon as a function of the operating conditions is a key to success. Many reported works have reported on the control of fouling by operating below the boundary flux. On the other hand, only a few works have successfully sought to exploit super-boundary operating conditions; most super-boundary operations are reported to have led to process failures. In this work, both sub- and super-boundary operating conditions for a batch nanofiltration membrane process used for olive mill wastewater treatment were investigated. A model to identify a priori the point of transition from a sub-boundary to a super-boundary operation during a batch operation was developed, and this will provide membrane designers with a helpful tool to carefully avoid process failures.

  4. Olive mill wastewater disposal in evaporation ponds in Sfax (Tunisia): moisture content effect on microbiological and physical chemical parameters.

    Jarboui, Raja; Hadrich, Bilel; Gharsallah, Néji; Ammar, Emna

    2009-11-01

    The study of the isotherms desorption of olive mill wastewater (OMW) was investigated to describe its water activity under different saturated environments. The microbial biodegradation of OMW during its storage in 5 evaporation ponds located in Agareb (Sfax-Tunisia) was carried out during the oil-harvesting year held 105 days in 2004. Gravimetric static method using saturated salt solutions was used and OMW as placed at 30 degrees C and under different water activities ranging from 0.11 to 0.90. Eight models were taken from the literature to describe experimental desorption isotherms. During storage, the evolution of physico-chemical parameters including pH, temperature, evaporation, humidity, total phosphorus, chemical oxygen demand (COD), biological oxygen demand (BOD) and phenols and three microbiological flora (aerobic mesophilic bacteria, yeasts and moulds) were considered. At 30 degrees C, when relative humidity increased in the experimented ponds of 69, 84 and 90%, the evaporation speed decreased from 1.24 x 10(-5) to 5 x 10(-6) cm(3) s(-1), from 6 x 10(-5) to 7 x 10(-6) cm(3) s(-1) and from 5 x 10(-6) to 1.1 x 10(-7) cm(3) s(-1) respectively. The desorption isotherm exhibited a sigmoidal curve corresponding to type II, typical of many organic material. The GAB and Peleg models gave the best fit for describing the relationship between the equilibrium moisture content and water activity in OMW (R (2) = 0.998). During the storage period, the analysis showed an increase of all the physico-chemical parameters studied, except phenols and total phosphorus concentrations. The microbiological study showed the predominance of yeasts and moulds and the decrease of bacteria population after 75 days reflecting both effect of recalcitrant compounds and the water activity on microbial growth.

  5. Four marine-derived fungi for bioremediation of raw textile mill effluents

    Verma, A; Raghukumar, C.; Verma, P.; Shouche, Y.S.; Naik, C.G.

    microorganisms and high dilutions. We report here decolorization and detoxification of two raw textile effluents, with extreme variations in their pH and dye composition, used at 20-90% concentrations by each of the four marine-derived fungi. Textile effluent A...

  6. A novel use of Moringa oleifera seed powder in enhancing the primary treatment of paper mill effluent.

    Boulaadjoul, Soumia; Zemmouri, Hassiba; Bendjama, Zoubida; Drouiche, Nadjib

    2018-05-02

    In this study, Moringa oleifera (M. oleifera) performance as an eco-friendly coagulant in the enhanced primary treatment of paper mill effluent was investigated. Its performance in terms of turbidity removal and COD abatement was examined. Local M. oleifera seed powder from ADRAR-city, South of Algeria, was used. Conventional jar tests were conducted for enhancing the primary treatment of paper mill effluent from paper factory. For this reason, comparative coagulation tests were performed using aluminum sulfate (alum). Indeed, in terms of turbidity abatement, 96.02% and 97.1% were obtained for Moringa and alum, respectively. However, in the case of COD abatement, the abatement rate of M. oleifera seeds was slightly higher than that of alum, 97.28% and 92.67%, respectively. Because M. oleifera is a natural resource that is locally available, an eco-friendly coagulant, non-toxic, and biodegradable and does not affect the pH of water; thus, its use allows to avoid numerous disadvantages of conventional coagulants like alum. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure

    Kougias, Panagiotis; Kotsopoulos, T.A.; Martzopoulos, G.G.

    2014-01-01

    In the present study, the optimisation of the mesophilic anaerobic co-digestion process of olive mill wastewaters (OMW) together with swine manure (SM) was investigated. Batch and continuous mode experiments were performed in order to define the most efficient mixing ratio and to determine...... yield of the reactors fed with 40% OMW reached 373mL CH4/gVS (78% of the theoretical yield). The findings of the present study proved that the co-digestion of OMW together with SM is a sustainable solution, capable to efficiently treat simultaneously these residual residues. © 2014 Elsevier Ltd....

  8. Application of waste stabilization pond's effluent on cultivation of roses (rosa damascena mill)

    Khan, M.A.; Shaukat, S.; Shahzad, A.; Ahmed, W.

    2011-01-01

    The study focuses on the use of Waste Stabilization Ponds (WSP) effluent for irrigation and also aims to compare the efficiency of effluent with the Hoagland solution. Results revealed that the number of flowers, size of flower and the petals per flower increased by the use of both Hoagland solution and treated effluent while the height of plant and the fresh weight of flowers were increased significantly by the Hoagland solution only. Moreover, the leaves showed high concentration of reducing and non-reducing sugars as compared to flowers whereas, only the leaves of plants which were treated by the ponds effluent had low content of reducing sugars as compared to leaves of untreated plants serving as controls. The variation in chlorophyll content was similar to that of reducing and non-reducing sugars. In addition, leaves of plants that were treated by pond's effluent showed highest concentration of total phenol content. It is concluded that treated effluent is as effective as Hoagland for the irrigation of rose. Additionally, the use of treated effluent for irrigation reduces the demand of fresh water and the use of inorganic fertilizers for the commercial production of roses. (author)

  9. Annealing optimization in the process of making membrane PSF19%DMFEVA2 for wastewater treatment of palm oil mill effluent

    Said, A. A.; Mustafa

    2018-02-01

    A small proportion of the Palm Oil Mill Effluent (POME) treatment has used its wastewater to converted to methane gas which will then be converted again into electrical energy. However, for Palm Oil Mill whose has a value of Chemical Oxygen Demand in its wastewater is less than 60.000 mg / L this can’t so that the purpose wastewater treatment only to reach the standard that can be safe to dispose into the environment. Wastewater treatment systems that are general applied by Palm Oil Mill especially in North Sumatera are aerobic and anaerobic, this method takes a relatively long time due to very dependent on microbial activity. An alternative method for wastewater treatment offered is membrane technology because the process is much more effective, the time is relatively short, and expected to give more optimal result. The optimum membrane obtained is PSF19%DMFEVA2T75 membrane,while the parameter condition of the permeate analysis produced in the treatment of POME wastewater with membrane PSF19%DMFEVA2T75 obtained at pH = 7.0; TSS = 148 mg / L; BOD = 149 mg / L; And COD = 252 mg / L. The results obtained is accordance with the standard of the quality of POME.

  10. Methods of evaluating ore processing and effluent treatment for Cigar Lake ore at the Rabbit Lake Mill

    Edwards, C.R.

    2002-01-01

    Cigar Lake is the second-largest, high grade uranium orebody in the world. Mineable reserves for Cigar Lake Phase 1 are estimated at 191 million pounds U 3 O 8 with a grade of 25.6% U 3 O 8 . Subject to regulatory approval, Cameco intends to process the majority of ore from Cigar Lake in the Rabbit Lake mill. Cameco initiated a programme to study the processing of Cigar Lake ore and the treatment of the resulting waste streams. Laboratory and follow-up pilot scale ore leaching tests with Cigar Lake ore samples were performed. Tailings and effluents were generated from the products of the pilot scale leach tests. Mill process tailings were blended with ground waste rock. Using these materials, geotechnical and geochemical properties, including long term tailings pore water characteristics, will be evaluated. In addition, proposed changes to the mill waste treatment operations were developed to deal with increased levels of arsenic and radium in the waste streams. This paper describes the methods and techniques Cameco used in this programme. (author)

  11. Valorization of Olive Mill Wastewater by Membrane Processes to Recover Natural Antioxidant Compounds for Cosmeceutical and Nutraceutical Applications or Functional Foods.

    Alfano, Alberto; Corsuto, Luisana; Finamore, Rosario; Savarese, Maria; Ferrara, Filomena; Falco, Salvatore; Santabarbara, Giuseppe; De Rosa, Mario; Schiraldi, Chiara

    2018-05-23

    Olive oil boasts numerous health benefits due to the high content of the monounsaturated fatty acid (MUFA) and functional bioactives including tocopherols, carotenoids, phospholipids, and polyphenolics with multiple biological activities. Polyphenolic components present antioxidant properties by scavenging free radicals and eliminating metabolic byproducts of metabolism. The objective of this research project was to recover the biologically active components rich in polyphenols, which include treatment of olive oil mills wastewater, and, at the same time, to remove the pollutant waste component resulting from the olive oil manufacturing processes. With specific focus on using technologies based on the application of ultra and nanofiltration membranes, the polyphenols fraction was extracted after an initial flocculation step. The nano-filtration permeate showed a reduction of about 95% of the organic load. The polyphenols recovery after two filtration steps was about 65% w / v . The nanofiltration retentate, dried using the spray dryer technique, was tested for cell viability after oxidative stress induction on human keratinocytes model in vitro and an improved cell reparation in the presence of this polyphenolic compound was demonstrated in scratch assays assisted through time lapse video-microscopy. The polyphenols recovered from these treatments may be suitable ingredients in cosmeceuticals and possibly nutraceutical preparations or functional foods.

  12. Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater

    Sacchi, Angelo

    2007-03-01

    Full Text Available We investigated the biofiltration ability of the aquatic fern Azolla to remove polyphenols and chemical oxygen demand (COD from olive mill wastewater (OMWw collected from the traditional (TS and continuous (CS extraction systems. Azolla biomass was packed into five sequential Imhoff cones and five sequential columns. In both experiments, the filtrates collected from the 5th biofilter showed a decrease in polyphenol contents: from 7650 mg l–1 to 3610 mg l–1 in TS OMWw and from 3852 mg l–1 to 1351 mg l–1 in CS OMWw. The COD contents decreased from 110200 mg L–1 to 52400 mg L–1 in TS OMWw and from 41600 mg L–1 to 2300 mg L–1 in CS OMWw. A 5:1 OMWw to Azolla-fresh-weight ratio was optimal for both polyphenol and COD removal. The biofiltration ability of alfalfa was compared with that of Azolla, but the treatment with alfalfa did not result in the reduction of COD or polyphenols.La eficacia del helecho de agua azolla para eliminar polifenoles y reducir la demanda química de oxígeno (DQO de los alpechines obtenidos en el proceso de obtención tradicional y continuo del aceite de oliva, fue investigado mediante ensayos de filtración. Cinco conos secuenciales de Imhoff y cinco columnas secuenciales se rellenaron de biomasa de Azolla. En ambos experimentos, el filtrado procedente de la quinta extracción mostró una disminución en el contenido de polifenoles de 7650 mg L–1 a 3610 mg L–1en el alpechín obtenido mediante el sistema tradicional y de 3852 mg L–1 a 1351 mg L–1en el alpechín del sistema continuo. La demanda química de oxígeno del alpechín del sistema tradicional disminuyó de 110200 mg L–1 a 52400 mg L–1 en y de 41600 mg L–1a 2300 mg L–1en el procedente del sistema continuo. Una proporción en peso 5:1 de alpechín: Azolla fue la óptima tanto para la reducción de los polifenoles como para la de la DQO. La eficiencia del tratamiento biológico con alfalfa se comparó con la obtenida con Azolla. Los

  13. Influence of crude oil and pulp and paper mill effluent on mixed infections of Trichodina cottidarium and T. saintjohnsi (Ciliophora) parasitizing Myoxocephalus octodecemspinosus and M. scorpius

    Khan, R.A.; Barker, D.E.; Williams-Ryan, K.; Hooper, R.G.

    1994-01-01

    Samples of longhorn sculpin (Myoxocephalus octodecemspinosus) were exposed to sediment contaminated with crude oil or pulp and paper mill effluent for periods up to 13 months in the laboratory. Other samples were collected at sites where crude oil or effluent from a pulp and paper mill are discharged. The intensity of gill infections of Trichodina spp. on exposed fish was significantly higher than on controls 5, 9, and 13 months after exposure. The intensity of the ciliates was also greater on sculpins collected near an oil-receiving terminal than on those sampled 5 km from the polluted site. Field collections of longhorn and shorthorn (Myoxocephalus scorpius) sculpins at and distant from a pulp and paper mill had high and low intensities of the ciliates, respectively. Similarly, the intensity of trichodinid ciliates was also significantly greater in longhorn sculpins exposed to effluent-contaminated sediment than in controls 5 months after exposure. The results suggest that the intensity of gill-inhibiting species such as trichodinids in susceptible fish hosts increases after chronic exposure to crude oil and to pulp and paper mill effluent, and the parasites may serve as indicators of pollution. 24 refs., 4 figs., 1 tab

  14. Preliminary Study on Treatment of Palm Oil Mill Effluent (POME by Sand Filtration-DBD Plasma System

    Ariadi Hazmi

    2016-02-01

    Full Text Available In the palm oil industry, open ponding, aerobic and anaerobic digestion, physicochemical treatment and membrane filtration are generally applied as conventional treatments of palm oil mill effluent (POME. In this study, a sand filtration-dielectric barrier discharge (DBD system was investigated as an alternative process for treating POME. This system can reduce land usage, processing time and costs compared to conventional systems. The removal efficiency of chemical oxygen demand (COD, biological oxygen demand (BOD5, and oil-grease in relation to the applied voltage were studied. Furthermore, the pH and temperature profiles were investigated. The obtained results indicate that the removal efficiency of COD, BOD5, and oil-grease increased with an increase of the applied voltage. The electrical energy consumption needed is about 10.56 kWh/L of POME.

  15. Bench scale evaluation and economic assessment of ion exchange resins for the removal of radionuclides from uranium mill tailings effluents

    Lakshmanan, V.I.; Itzkovitch, I.J.

    1981-07-01

    The removal of <0.45 m radium 226 (soluble) from acid and alkaline mill tailings effluents to meet the Canadian provincial (Ontario and Saskatchewan) objective of <3 pCi/L using ion exchange has been studied. Stirred tank tests were used to screen potential solid ion exchangers for detailed testing in columns. Column tests on selected exchangers were carried out to determine breakthrough curves as a function of column throughput. An economic assessment of the process was carried out. Results obtained indicate that removal of soluble radium 226 to <3 pCi/L by ion exchange is technically feasible. However, if the solid exchangers are to be used on a once through basis the process is prohibitively expensive

  16. Microbial Succession in Co-Composting of Chipped-Ground Oil Palm Frond and Palm Oil Mill Effluent

    Mohd Najib Ahmad; Siti Ramlah Ahmad Ali; Mohd Ali Hassan

    2016-01-01

    Succession and phylogenetic profile of microbial communities during co-composting of chipped-ground oil palm frond (CG-OPF) and palm oil mill effluent (POME) were studied by apply-ing polymerase chain reaction-denaturant gel gradient electrophoresis (PCR-DGGE) analysis. The results indicated that the dominant microbial community detected was γ-Pro bacteria such as Pseudomonas sp. at almost throughout the composting process. Whilst Bacillales such as Bacillus psychrodurans were found toward the end of the composting process. Bacteroidetes such as Pedobacter solani were detected at the final stage of composting. This study contributed to a better understanding of microbial shifting and functioning throughout CG-OPF composting. Therefore, PCR-DGGE is recommended to be used as a tool to identify potential microbes that can contribute to a better performance of composting process. (author)

  17. Investigation on the Influence of Bio-catalytic Enzyme Produced from Fruit and Vegetable Waste on Palm Oil Mill Effluent

    Rasit, Nazaitulshila; Chee Kuan, Ooi

    2018-04-01

    Pre-consumer waste from supermarkets, such as vegetables and fruits dreg are always discarded as solid waste and disposed to landfill. Implementing waste recovery method as a form of waste management strategy will reduce the amount of waste disposed. One of the ways to achieve this goal is through fermentation of the pre-consumer supermarket waste to produce a solution known as garbage enzyme. This study has been conducted to produce and characterize biocatalytic garbage enzyme and to evaluate its influence on palm oil mill effluent as a pre-treatment process before further biological process takes place. Garbage enzyme was produced by three-month long fermentation of a mixture of molasses, pre-consumer supermarket residues, and water in the ratio of 1:3:10. Subsequently, the characterization of enzyme was conducted based on pH, total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), and enzyme activities. The influence of produced enzyme was evaluated on oil & grease (O&G), TSS and COD of palm oil mill effluent (POME). Different levels of dilution of garbage enzyme to POME samples (5%, 10%, 15%) were explored as pre-treatment (duration of six days) and the results showed that the garbage enzyme contained bio-catalytic enzyme such as amylase, protease, and lipase. The pre-treatment showed removal of 90% of O&G in 15% dilution of garbage enzyme. Meanwhile, reduction of TSS and COD in dilution of 10% garbage enzyme were measured at 50% and 25% respectively. The findings of this study are important to analyse the effectiveness of pre-treatment for further improvement of anaerobic treatment process of POME, especially during hydrolysis stage.

  18. Recovery of iron after Fenton-like secondary treatment of olive mill wastewater by nano-filtration and low-pressure reverse osmosis membranes

    Ochando-Pulido, J. M.

    2016-09-01

    Full Text Available In this work, the performances of novel nano-filtration (NF and low-pressure reverse osmosis (RO polymeric membranes were examined with the aim of recovering the iron used as catalyst in former secondary treatment based on the Fenton-like advanced oxidation of olive mill wastewater (OMW. Results highlight that both membranes exhibit a good performance towards the rejection of iron (99.1% for the NF membrane vs. 100% for the low-pressure RO membrane in the secondary-treated OMW effluent, thus permitting the recovery of iron in the concentrate stream in order to recycle it back into the oxidation reactor to reduce catalyst consumption. Finally, the permeate streams could be re-used for irrigation. Major productivity was observed by the selected NF membrane, about 47.4 L/hm2 upon 9 bar, whereas 30.9 L/hm2 could be yielded with the RO membrane under an operating pressure of 8 bar. Moreover, a sensibly lower fouling index was measured on the NF membrane (0.0072 in contrast with 0.065, which ensures major steady-state performance on this membrane and a longer service lifetime. This also results in lower required membrane area and membrane plant over dimension (4 modules in case of RO operation whereas only 2 modules for NF.En este trabajo, se examinó el rendimiento de membranas modernas de nanofiltración (NF y ósmosis inversa (OI poliméricas con el objetivo de recuperar el hierro utilizado como catalizador en un tratamiento secundario previo de agua residual oleícola (OMW basado en oxidación avanzada tipo Fenton. Los resultados ponen de relieven que ambas membranas exhiben buen rendimiento en cuanto al rechazo de hierro (99.1 % para la membrana de NF vs. 100 % para la membrana de OI de bajas presiones en el efluente oleícola tras tratamiento secundario, permitiendo en consecuencia la recuperación de hierro en la corriente de concentrado para su recirculación de nuevo al reactor de oxidación para reducir el consumo de catalizador. Finalmente

  19. Effect of pre-treatment of Palm oil Mill effluent (POME) and Cassava ...

    MICHAEL

    ABSTRACT: Pretreatment measures in effluents' management comprised of phase separation involving sedimentation, aeration to enhance biodegradation and pH neutralization. A randomized complete block design experiment in factorial arrangement was set up to assess effects of aeration, settling and pH neutralization ...

  20. Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters.

    Cheng, Jia; Zhu, Xiuping; Ni, Jinren; Borthwick, Alistair

    2010-04-01

    An integrated system of two-stage microbial fuel cells (MFCs) and immobilized biological aerated filters (I-BAFs) was used to treat palm oil mill effluent (POME) at laboratory scale. By replacing the conventional two-stage up-flow anaerobic sludge blanket (UASB) with a newly proposed upflow membrane-less microbial fuel cell (UML-MFC) in the integrated system, significant improvements on NH(3)-N removal were observed and direct electricity generation implemented in both MFC1 and MFC2. Moreover, the coupled iron-carbon micro-electrolysis in the cathode of MFC2 further enhanced treatment efficiency of organic compounds. The I-BAFs played a major role in further removal of NH(3)-N and COD. For influent COD and NH(3)-N of 10,000 and 125 mg/L, respectively, the final effluents COD and NH(3)-N were below 350 and 8 mg/L, with removal rates higher than 96.5% and 93.6%. The GC-MS analysis indicated that most of the contaminants were satisfactorily biodegraded by the integrated system. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes.

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2010-07-01

    Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Utilization of biogas released from palm oil mill effluent for power generation using self-preheated reactor

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2015-01-01

    Highlights: • A lab-scale reactor called self-preheating flameless combustion (SPFC) system is experimented. • Feasibility of power generation by POME biogas is modeled using SPFC system. • 4 MW power is available by POME biogas utilization in a typical palm oil mill with 300,000 tons production. • The rate of power generation increases when 2% hydrogen is added to POME biogas ingredients. - Abstract: In palm oil mills, for one ton crude palm oil (CPO) production, 70 m"3 biogas is released from palm oil mill effluent (POME) which can endanger the environment. Palm oil mills without appropriate strategies for biogas collection can participate in greenhouse gases (GHGs) generation actively. In this paper, a typical palm oil mill with annual capacity of 300,000 ton oil palm production and 3 MW electricity demand is considered as a pilot plant and feasibility of power generation by POME biogas is modeled by Aspen Plus considering flameless mode in combustion system. A new design of lab-scale flameless reactor called self-preheated flameless combustion (SPFC) system is presented and employed in power generation modeling. In SPFC system, the flameless chamber is employed as a heater to preheat an oxidizer over the self-ignition temperature of the fuel. A helical stainless steel pipe (called self-preheating pipe) is installed inside the chamber to conduct the oxidizer from exhaust zone to the combustion zone inside the chamber and preheat oxidizer. In the flameless mode, the diluted oxidizer is injected to the helical pipe from the exhaust zone and the preheated oxidizer at the burner is conducted to the flameless furnace through a distributor. In SPFC system external heater for preheating oxidizer is removed and the rate of power generation increases. The results show that 10.8 MW power could be generated in ultra-lean POME biogas SPFC. However, the rate of pollutant especially CO_2 and NO_x is high in this circumstances. In stoichiometric condition, 4 MW power

  3. Exposure to paper mill effluent at a site in North Central Florida elicits molecular-level changes in gene expression indicative of progesterone and androgen exposure.

    Erica K Brockmeier

    Full Text Available Endocrine disrupting compounds (EDCs are chemicals that negatively impact endocrine system function, with effluent from paper mills one example of this class of chemicals. In Florida, female Eastern mosquitofish (Gambusia holbrooki have been observed with male secondary sexual characteristics at three paper mill-impacted sites, indicative of EDC exposure, and are still found at one site on the Fenholloway River. The potential impacts that paper mill effluent exposure has on the G. holbrooki endocrine system and the stream ecosystem are unknown. The objective of this study was to use gene expression analysis to determine if exposure to an androgen receptor agonist was occurring and to couple this analysis with in vitro assays to evaluate the presence of androgen and progesterone receptor active chemicals in the Fenholloway River. Focused gene expression analyses of masculinized G. holbrooki from downstream of the Fenholloway River paper mill were indicative of androgen exposure, while genes related to reproduction indicated potential progesterone exposure. Hepatic microarray analysis revealed an increase in the expression of metabolic genes in Fenholloway River fish, with similarities in genes and biological processes compared to G. holbrooki exposed to androgens. Water samples collected downstream of the paper mill and at a reference site indicated that progesterone and androgen receptor active chemicals were present at both sites, which corroborates previous chemical analyses. Results indicate that G. holbrooki downstream of the Fenholloway River paper mill are impacted by a mixture of both androgens and progesterones. This research provides data on the mechanisms of how paper mill effluents in Florida are acting as endocrine disruptors.

  4. The Effect of Fe Concentration on the Quality and Quantity of Biogas Produced From Fermentation of Palm Oil Mill Effluent

    Irvan Matseh

    2012-10-01

    Full Text Available The purpose of this research is to study the effect of Fe concentration as a trace metal on the quality and quantity of biogas produced from the fermentation of palm oil mill effluent (POME. Raw POME as feed was obtained from one of the palm oil mills belong to PTPN IV, other materials used were hydrochloric acid, sodium bicarbonate, and trace metals. Observed variables were volume of biogas, concentration of Fe in raw POME and biodigester, degradation rate of total solid (TS and volatile solid (VS, M-Alkalinity, pH, H2S and CO2 concentration in biogas at hydraulic retention time (HRT 6 days. Before HRT of 6 days reached, initial trace metal compositions were 25.2 mg/L of Fe, 0.42 mg/L of Co, and 0.49 mg/L of Ni. After that, composition of trace metal were consisted only Co and Ni. The results showed that Fe as a trace metal did not affect the production or quantity of biogas. When Fe concentration reached over to 330 mg/L then concentration of CH4, total solid (TS and volatile solid (VS decreased. Moreover, the higher the Fe contents the smaller of H2S production. Fe content in POME from the same mill had different concentration, as the consequence biogas with different H2S concentrations were produced as well. Thus, Fe in the trace metals is no longer required if high concentration of Fe already existed in POME because it can reduce the formation of H2S. In addition, too high concentration of Fe in POME can be toxic for microorganism in the fermentation of biogas.

  5. Purification of waste effluents from uranium mines and mills in Ukraine

    Bezrodny, S.; Bakarzhiyev, Y.; Pesmenny, B.

    2002-01-01

    Development of Nuclear Energy Industry, which is foundation for energy supplying and economic independence of the country, based on increasing our own uranium resources. Reserves of uranium ore have explored by SGS Kirovgeology show the possibility to supply the nuclear fuel on the Atomic Power Stations for many years. From other side, mining of uranium ore and producing the uranium concentrate have a range of environmental problems. Successful solution of those problems can make the Atomic Energy Industry one of the environmentally safe producer of electric energy. Mining of uranium ore creates large volume of radioactive waste effluents. Presents of the uranium and natural radioactive elements (NRE) in concentration that is higher than in the hydrographic net, require effective treatment technologies to separate the radio-elements from waste effluents. During the last years specialists from VOSTGOK (Zholty Wody), Chemistry Institute (Kiev), Institute of Industrial Technology (Zholty Wody) and SGS Kirovgeology designed a reliable and simple technology for purification of mining water. This technology is based on the process of co-precipitation uranium, natural radioelements, beryllium and heavy metals with mixed collector by hydroxide magnesium and carbonate calcium. Advantage of this technology is the possibility to extend its by second stage - desalting of effluents up to necessary concentration. Second stage does not require essential changes of the process. All sediments which are created after purification are the material for secondary extraction of uranium. The technology was tested at one of the VOSTGOK mines. The achieved results have shown that effluents can be purified from radio-elements up to necessary requirements. According to proposed technology, treatment of radioactive contaminated mining water allows to exclude negative influents of uranium mining on the environment. (author)

  6. Decomposition of olive mill waste compost, goat manure and Medicago sativa in Lebanese soils using the litterbag technique

    Atallah, Therese

    2014-05-01

    Organic amendments, green manure and plant residues incorporation are the main sources of nutrients in organic farming, their decomposition rate is crucial for the accumulation and long-term storage of organic matter in soils. In this study the decomposition of compost from olive mill waste (N: 29.3 g kg-1; total dissolved nitrogen or TDN: 3.82 g kg-1), goat manure (N: 31.5 g kg-1; TDN: 0.94 g kg-1), the shoots (N: 33.6 g kg-1; TDN: 17.57 g kg-1) and roots (N: 22.12 g kg-1; TDN: 8.87 g kg-1) of Medicago sativa was followed in three Lebanese soils. The nitrogen, phosphorus and potassium released were followed over one year, starting in early winter (December-January). The mild sub-humid Mediterranean conditions allowed a rapid mass loss in alfalfa shoots 30 days after incorporation. Manure and compost were more persistent. Between 80 and 90% of TDN were released, after 30 days of in-situ incubation for compost, the release was over 90% for alfalfa shoots. The movement of P was slower, as the compost (6.99 g kg-1 of P) and manure (9.81 g kg-1 of P) lost 33% and 22%, respectively, during 30 days of incubation. After one year, 15 to 35% of P remained in the soils. The manure was the richest in potassium (19.66 g kg-1) followed by the alfalfa shoots (15.56 g kg-1), the compost (8.19 g kg-1) and the roots (5.96 g kg-1). The loss of potassium was important, as over 88% had disappeared over the year. All decomposition curves followed an exponential model. The calculated coefficients of decomposition for total nitrogen (lnfinal - lninitial/days) were significantly higher for alfalfa shoots (0.00547 day-1) and similar for the compost (0.00184 day-1) and the manure (0.00175 day-1). The ANOVA test showed a difference between two of the sites (Site A: 521 g kg-1 of clay and 42 g kg-1 of calcium carbonate; Site S: 260 g kg-1 of clay and 269 g kg-1 of CaCO3) and the third one (Site L: 315 g kg-1 of clay and 591 g kg-1 of CaCO3). The relationships between the soil calcium

  7. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-01-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of OMW. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46–51% in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials. PMID:24790964

  8. Recovery of soil properties after seedlings Inoculation with AM fungi and addition of composted olive mill waste in the regeneration of a heavy metal polluted environment

    curaqueo, Gustavo; Schoebitz, Mauricio; Borie, Fernando; del Mar Alguacil, Maria; Caravaca, Fuensanta; Roldan, Antonio

    2014-05-01

    A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) on the establishment of Tetraclinis articulata and soil properties in a heavy metal polluted soil. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96% and 60% respectively. These treatments trended to improve the soils properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided G-mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs; because it promotes soil properties, a better performance of plants for supporting the stress in heavy-metal contaminated soils derived from mining process, and also can be a good way for olive mill wastes disposal.

  9. Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion.

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2008-03-01

    Liquid-liquid extraction was used in order to recover phenolic compounds from centrifuged olive mill wastewater (OMW), a polluting by-product of olive oil production process, and to reduce their toxicity for a subsequent aerobic or anaerobic digestion. Phenolic compounds were identified in untreated and treated OMW by gas chromatography coupled to mass spectrometry (GC-MS). The experimental results of ethyl acetate extraction showed that the monomers recovery efficiency was over 90%. This pre-treatment resulted in the removal of the major LMM phenolic compounds and a small part of HMM polyphenols. The aerobic treatment of the exhausted OMW fraction removed 78.7% of the soluble COD. In the case of anaerobic digestion at OLR ranged from 1 to 3.5 gCOD l(-1)day(-1), methanisation process exhibited high methane yield as 0.3 l CH4 produced per g COD introduced and high COD removal (80%). However, a disruption of the process was observed when the OLR was increased to 4.5 gCODl(-1)day(-1). A pre-treatment by electro-coagulation resulted in decreasing the toxicity and enhancing the performance of methanisation operated at higher OLR from 4 to 7.5 gCODl(-1)day(-1).

  10. Effects of Olive Mill Wastewater on Soil Microarthropods and Soil Chemistry in Two Different Cultivation Scenarios in Israel and Palestinian Territories

    Markus Peter Kurtz

    2015-09-01

    Full Text Available Although olive mill wastewater (OMW is often applied onto soil and is known to be phytotoxic, its impact on soil fauna is still unknown. The objective of this study was to investigate how OMW spreading in olive orchards affects Oribatida and Collembola communities, physicochemical soil properties and their interdependency. For this, we treated plots in two study sites (Gilat, Bait Reema with OMW. Among others, the sites differed in irrigation practice, soil type and climate. We observed that soil acidity and water repellency developed to a lower extent in Gilat than in Bait Reema. This may be explained by irrigation-induced dilution and leaching of OMW compounds in Gilat. In Bait Reema, OMW application suppressed emergence of Oribatida and induced a community shift, but the abundance of Collembola increased in OMW and water-treated plots. In Gilat, Oribatida abundance increased after OMW application. The effects of OMW application on soil biota result from an interaction between stimulation of biological activity and suppression of sensitive species by toxic compounds. Environmental and management conditions are relevant for the degree and persistence of the effects. Moreover, this study underlines the need for detailed research on the ecotoxicological effects of OMW at different application rates.

  11. Dry matter and root colonization of plants by indigenous arbuscular mycorrhizal fungi with physical fractions of dry olive mill residue inoculated with saprophytic fungi

    Aranda, E.; Sampredro, I.; Diaz, R.; Garcia-Sanchez, M.; Siles, J. A.; Ocampo, J. A.; Garcia-Romera, I.

    2010-07-01

    We studied the influence of indigenous arbuscular mycorrhizal (AM) and saprobe fungi on the phytotoxicity of the physical fractions of dry olive mill residue (DOR). The physical extractions of DOR gave an aqueous (ADOR) and an exhausted (SDOR) fraction with less phytotoxicity for tomato than the original samples. The indigenous AM were able to decrease the phytotoxicity of SDOR inoculated with Trametes versicolor and Pycnoporus cinnabarinus on tomato. However, incubation of ADOR with both saprophytic fungi did not decrease its phytotoxicity in presence of the indigenous AM fungi. The percentage of root length colonized by indigenous AM strongly decreased in presence of DOR, around 80% of decrease at dose of 25 g kg-1of DOR, but the level of mycorrhization was higher in presence of ADOR or SDOR (38% and 44% of decrease respectively at the same dose). There were no relationships between the effects of the physical fractions of DOR incubated with the saprobe fungi on AM colonization and on plant dry weight of tomato. Our results suggest that the phytotoxicity of the olive residues can be eliminated by the combination of physical extraction and by saprobe fungal inoculation and the use of this agrowaste as organic amendment in agricultural soil may be possible. (Author) 33 refs.

  12. A new framework proposal, towards a common EU agricultural policy, with the best sustainable practices for the re-use of olive mill wastewater.

    Koutsos, T M; Chatzistathis, T; Balampekou, E I

    2018-05-01

    The disposal of olive mill wastewater (OMW) is a serious environmental issue for the Mediterranean countries. However, there is still no common European legislation on the management and the re-use of OMW in agriculture, in the frame of sustainable crop management and the standards for the safe OMW disposal and re-use are left to be set by each EU country, individually. This review paper presents the most effective and sustainable practices for OMW, (treatment, application and management), which can maximize the benefits of OMW on crops and soils, while minimizing the potential hazards for public health, thus promoting environmental sustainability. The findings of this synthetic work suggest that there is enough information and proven sustainable practices to go ahead with the initial formulation of a new consensual framework, environmentally acceptable, socially bearable and economically viable, that could hopefully help to set the standards for the re-use of olive mil wastewater and can lead to a common EU policy on the management and re-use of OMW. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Hydrogen photo-evolution by Rhodopseudomonas palustris 6A using pre-treated olive mill wastewater and a synthetic medium containing sugars

    Pintucci, Cristina; Padovani, Giulia; Giovannelli, Alessio; Traversi, Maria Laura; Ena, Alba; Pushparaj, Benjamin; Carlozzi, Pietro

    2015-01-01

    Highlights: • Adsorbent matrices to convert fresh olive mill wastewater (OMW F ) in feedstock. • Dry-Azolla and granular active carbon for adsorbing polyphenols from OMW F . • Photofermentative processes for biohydrogen production. • Culture mixing by means of an impeller or a magnetic stir bar. • A 30% of dephenolised OMW containing medium suits the photofermentative process. - Abstract: Increasing costs of petroleum, associated with the escalating problems of global climate change, require always greater efforts in order to produce an energy carrier as bioH 2 . In this study, bioH 2 production using photofermentative process was investigated. Two culture broths were used: (a) a synthetic medium rich in sugars (glucose and fructose) and (b) a pre-treated fresh olive-mill wastewater (OMW F ) diluted with water (30%, v:v). The pre-treatment was carried out using two different vegetable matrices (dry-Azolla and granular active carbon) to decrease both the content of polyphenols and the dark colour of wastewater. Rhodopseudomonas palustris 6A isolated from soil spread with OMW was utilized for batch growth experiments, carried out indoors under continuous light (200 μE/m 2 /s). When synthetic medium was used, the culture mixing was performed using either (i) a magnetic stir bar, and (ii) an impeller equipped with five turbines. The latter system made it possible to increase the bioH 2 photo-evolution by 1.4 times. The specific hydrogen photo-evolution rate was 13.5 mL/g(dw)/h in the broth containing diluted OMW F and 11.8 mL/g(dw)/h in the synthetic medium containing sugars (glucose and fructose)

  14. Treatment and decolorization of biologically treated Palm Oil Mill Effluent (POME) using banana peel as novel biosorbent.

    Mohammed, Rafie Rushdy; Chong, Mei Fong

    2014-01-01

    Palm Oil Mill Effluent (POME) treatment has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The main aim of this work is to evaluate the potential of applying natural, chemically and thermally modified banana peel as sorbent for the treatment of biologically treated POME. Characteristics of these sorbents were analyzed with BET surface area and SEM. Batch adsorption studies were carried out to remove color, total suspended solids (TSS), chemical oxygen demand (COD), tannin and lignin, and biological oxygen demand (BOD) onto natural banana peel (NBP), methylated banana peel (MBP), and banana peel activated carbon (BPAC) respectively. The variables of pH, adsorbent dosage, and contact time were investigated in this study. Maximum percentage removal of color, TSS, COD, BOD, and tannin and lignin (95.96%, 100%, 100%, 97.41%, and 76.74% respectively) on BPAC were obtained at optimized pH of 2, contact time of 30 h and adsorbent dosage of 30 g/100 ml. The isotherm data were well described by the Redlich-Peterson isotherm model with correlation coefficient of more than 0.99. Kinetic of adsorption was examined by Langergren pseudo first order, pseudo second order, and second order. The pseudo second order was identified to be the governing mechanism with high correlation coefficient of more than 0.99. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. AN OVERVIEW OF GAS-UPGRADING TECHNOLOGIES FOR BIOHYDROGEN PRODUCED FROM TREATMENT OF PALM OIL MILL EFFLUENT

    IZZATI NADIA MOHAMAD

    2017-03-01

    Full Text Available To date, a high energy demand has led to massive research efforts towards improved gas-separation techniques for more energy-efficient and environmenttally friendly methods. One of the potential alternative energies is biogas produced from the fermentation of liquid waste generated from the oil-extraction process, which is known as palm oil mill effluent (POME. Basically, the gas produced from the POME fermentation process consists mainly of a CO2 and H2 gas mixture. CO2 is known as an anthropogenic greenhouse gas, which contributes towards the climate change phenomenon. Hence, it is crucial to determine a suitable technique for H2 separation and purification with good capability for CO2 capture, as this will reduce CO2 emission to the environment as well. This paper reviewed the current gas-separation techniques that consist of absorption, adsorption and a membrane in order to determine the advantages and disadvantages of these techniques towards the efficiency of the separation system. Crucial aspects for gas-separation techniques such as energy, economic, and environmental considerations are discussed, and a potential biohydrogen and biogas-upgrading technique for industrial POME application is presented and concluded in this paper. Based on the comparison on these aspects, water scrubbing is found to be the best technique to be used in the biogas-upgrading industry, followed by membrane and chemical scrubbing as well as PSA. Hence, these guidelines are justified for selecting the best gas-upgrading technique to be used in palm oil mill industry applications.

  16. Fungal post-treatment of pulp mill effluents for the removal of recalcitrant pollutants.

    Ortega-Clemente, Alfredo; Caffarel-Méndez, S; Ponce-Noyola, M T; Barrera-Córtes, J; Poggi-Varaldo, Héctor M

    2009-03-01

    The objective of this work was to evaluate the post-treatment of an anaerobic recalcitrant effluent (anaerobically-treated weak black liquor, AnE) in an aerobic, upflow reactor packed with "biocubes" of Trametes versicolor immobilized onto small cubes of holm oak wood. The treated effluent (named anaerobic effluent; AnE) from an anaerobic fluidized bed reactor was fed to an up-flow aerobic fungal packed bed reactor (PBR). Two HRT were tested in this unit, namely 5 and 2.5days; the PBR operated 60days at 5-day HRT and 35days at 2.5-day HRT. The aerobic packed bench scale reactor was a glass column 1.5L total geometric volume containing 0.75L biocubes of T. versicolor immobilized onto holm oak wood small cubes of 5mm side. The reactor was operated at 25 degrees C. The pH of the AnE was adjusted to 4.5 before feeding; no carbohydrates or other soluble carbon source was supplemented. The fungal packed bed bioreactor averaged organic matter removals of 30% and 32% COD basis, during an experimental run of 60days at 5-day HRT and 35days at 2.5-day HRT, respectively. Colour and ligninoids contents were removed at higher percentages (69% and 54% respectively, average of both HRT). There was no significant difference between reactor performance at 5- and 2.5-day HRT, so, operation at 2.5-day HRT is recommended since reactor throughput is double. Activity of manganese peroxidase and laccase was found during the entire operation of the fungal PBR whereas lignin peroxidase activity practically disappeared in the second operation period. In general, enzyme activities were higher in the first period of operation (5-day HRT) than at 2.5-day HRT. To the best of our knowledge, this is one of the few works that demonstrated extended performance (3months) of a fungal bioreactor for the treatment of a recalcitrant wastewater with no supplementation of glucose or other expensive, soluble carbohydrate.

  17. Effect of ozonation on the biological treatability of a textile mill effluent.

    Karahan, O; Dulkadiroglu, H; Kabdasli, I; Sozen, S; Babuna, F Germirli; Orhon, D

    2002-12-01

    Ozonation applied prior to biological processes, has proved to be a very effective chemical treatment step mostly for colour removal when soluble dyes are used in textile finishing operations. Its impact on biological treatability however has not been fully evaluated yet. This study evaluates the effect of ozonation on the quality of wastewater from a textile mill involving bleaching and reactive dyeing of cotton and synthetic knit fabric. The effect of ozonation on COD fractionation and kinetic coefficients defining major biological processes is emphasised. The results indicate that the extent of ozone applied greatly affects the remaining organic carbon composition in the wastewater. The relative magnitude of different COD fractions varies as a function of the ozone dose. Ozonation does not however exert a measurable impact on the rate of major biological processes.

  18. Palm oil mill effluent and municipal wastewater co-treatment by zeolite augmented sequencing batch reactors: Turbidity removal

    Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md

    2017-10-01

    Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.

  19. Effect of Gamma Irradiation and Coagualtion on the Molegular Weight Distribution of Soluble Organic Substances in Paper Mill Effluent

    Shijun, He; Jianlong, Wang [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084 (China); Jianxin, Wan; Mengmeng, Sun [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084 (China); School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070 (China); Longfei, Ye [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084 (China); College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2012-07-01

    In order to look into the insights of the influence of gamma irradiation and coagulation on the molecular weight distribution (MWD) of soluble organic substances in real paper mill effluent, various parameters of wastewater samples before and after treated were investigated, including chemical oxygen demand (COD), biochemical oxygen demand (BOD{sub 5}), dissolved organic carbon (DOC) and absorbance at 254 nm wavelength (UV{sub 254}) as well. In addition, the effects of irradiation on oxygen uptake and on acute toxicity were also presented. The results showed that irradiation alone cannot promote the biodegradability and oxygen uptake as originally expected. The whole acute toxicity of samples was reduced after gamma irradiation. On the other side, coagulation can not only effectively eliminate the sectors with high molecular weight (MW>3000 Dalton, in short HMW), but also improve the capacity of ionizing irradiation initiated the transformation of medium molecular weight (1000 Dalton

  20. Effect of Gamma Irradiation and Coagualtion on the Molegular Weight Distribution of Soluble Organic Substances in Paper Mill Effluent

    He Shijun; Wang Jianlong; Wan Jianxin; Sun Mengmeng; Ye Longfei

    2012-01-01

    In order to look into the insights of the influence of gamma irradiation and coagulation on the molecular weight distribution (MWD) of soluble organic substances in real paper mill effluent, various parameters of wastewater samples before and after treated were investigated, including chemical oxygen demand (COD), biochemical oxygen demand (BOD 5 ), dissolved organic carbon (DOC) and absorbance at 254 nm wavelength (UV 254 ) as well. In addition, the effects of irradiation on oxygen uptake and on acute toxicity were also presented. The results showed that irradiation alone cannot promote the biodegradability and oxygen uptake as originally expected. The whole acute toxicity of samples was reduced after gamma irradiation. On the other side, coagulation can not only effectively eliminate the sectors with high molecular weight (MW>3000 Dalton, in short HMW), but also improve the capacity of ionizing irradiation initiated the transformation of medium molecular weight (1000 Dalton< MW<3000 Dalton, in short MMW) into low molecular weight (MW<1000 Dalton, in short LWM), which is readily degraded by the subsequently activated sludge process. (author)

  1. Effects of Mesophilic and Thermophilic Temperature Condition to Biogas Production (Methane from Palm Oil Mill Effluent (POME with Cow Manures

    Muhammad Fajar Fajar

    2018-01-01

    Full Text Available Biogas is an environmentally friendly renewable energy source. Biogas can be used using Palm Oil Mill Effluents (POME. However, the % yield of biogas productivity is still not optimum due to the low conversion. The biogas productivity can be optimized by adding methanogen bacteria which increase the methane production through the anaerobic fermentation process. This study aims to utilize cow manures as the source of methanogen bacteria in methane production from POME. Furthermore, this study specifically aims to obtain the optimum productivity condition of biogas production by the composition ratio of POME and cow manures to the amount of fermentation time at 35oC and 50oC for mesophilic and thermophilic bacteria, respectively. The ratio of POME and cow mature were A1 (100:0, A2 (80:20, A3 (70:30, A4 (60:40, and A5 (0:100. The highest yield of biogas production was A2 ratio using the thermophilic condition which showed 51.33% mol with the total solid decline of 73.43%, COD removal of 77.01%, and BOD removal of 70.02%.

  2. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan [Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800, Kgs. Lyngby (Denmark); Angelidaki, Irini, E-mail: ria@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800, Kgs. Lyngby (Denmark)

    2011-05-15

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH{sub 4}/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH{sub 4}/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH{sub 4}/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

  3. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH 4 /gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH 4 /gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH 4 /gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

  4. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME).

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2011-05-15

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH(4)/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH(4)/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH(4)/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production

    O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    The effect of pretreatment methods for improved biodegradability and biogas production of oil palm empty fruit bunches (EFB) and its co-digestion with palm oil mill effluent (POME) was investigated. The maximum methane potential of POME was 502mL CH4/gVS-added corresponding to 33.2m3 CH4/ton POME...... and 98% biodegradability. Meanwhile, the maximum methane potential of EFB was 202mL CH4/gVS-added corresponding to 79.1m3 CH4/ton EFB with 38% biodegradability. Co-digestion of EFB with POME enhanced microbial biodegradability and resulted in 25–32% higher methane production at mixing ratios of 0.4:1, 0.......8:1 and 2.3:1 on VS basis than digesting EFB alone. The methane yield was 276–340mL CH4/gVS-added for co-digestion of EFB with POME at mixing ratios of 0.4:1–2.3:1, while minor improvement was observed at mixing ratios of 6.8:1 and 11:1 (175–197mL CH4/gVS-added). The best improved was achieved from co...

  6. Green synthesis of palm oil mill effluent-based graphenic adsorbent for the treatment of dye-contaminated wastewater.

    Teow, Yeit Haan; Nordin, Nadzirah Ilyiani; Mohammad, Abdul Wahab

    2018-05-12

    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.

  7. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.

    Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2015-02-01

    A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19 g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27 l/g COD, and the biogas production rate per reactor volume was 6.23 l/l d, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9 g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium

    Aliyu Salihu

    2014-12-01

    Full Text Available The ability of Candida cylindracea lipase produced using palm oil mill effluent (POME as a basal medium to catalyze the esterification reaction for butyl butyrate formation was investigated. Butyric acid and n-butanol were used as substrates at different molar ratios. Different conversion yields were observed according to the affinity of the produced lipase toward the substrates. The n-butanol to butyric acid molar ratio of 8 and lipase concentration of 75 U/mg gave the highest butyl butyrate formation of 63.33% based on the statistical optimization using face centered central composite design (FCCCD after 12 h reaction. The esterification potential of the POME based lipase when compared with the commercial lipase from the same strain using the optimum levels was found to show a similar pattern. It can be concluded therefore that the produced lipase possesses appropriate characteristics to be used as a biocatalyst in the esterification reactions for butyl butyrate formation.

  9. Preparation and Characterization of Activated Cow Bone Powder for the Adsorption of Cadmium from Palm Oil Mill Effluent

    AbdulRahman, A.; Latiff, A. A. A.; Daud, Z.; Ridzuan, M. B.; D, N. F. M.; Jagaba, A. H.

    2016-07-01

    Several studies have been conducted on the removal of heavy metals from palm oil mill effluent. In this study, cow bones were developed as an adsorbent for the removal of cadmium II from POME. A batch experiment was conducted to investigate the effectiveness of the prepared activated cow bone powder for the sorption of cadmium II from raw POME. The experiment was carried out under fixed conditions using 100mg/L raw POME combined with different adsorbent dosage of CBP of 184.471 Ra(nm) surface roughness. The equilibrium adsorption capacity of the hydrophobic CBP of average contact angle 890 was determined from the relationship between the initial and equilibrium liquid phase concentrations of POME. The optimum adsorption of cadmium II on CBP was at 10g adsorbent dosage for sample 1 and 2 at 97.8% and 96.93% respectively. The least uptake was at 30g adsorbent weight for both samples at average of 95.1% for both samples. The effective removal of cadmium ion showed that CBP has a great potential for the treatment of heavy metal in POME.

  10. A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME.

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2009-01-01

    During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products.

  11. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.

    Lam, Man Kee; Lee, Keat Teong

    2011-01-01

    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Utilization of palm oil mill effluent as a novel and promising substrate for biosurfactant production by Nevskia ramosa NA3

    Benjamas Cheirsilp

    2013-04-01

    Full Text Available This paper introduces palm oil mill effluent as a promising substrate for biosurfactant production. Potential strains ofbacteria were isolated from various hydrocarbon-contaminated soils and screened for biosurfactant production with the helpof the drop collapse method and surface tension measurements. Out of 26 isolates of bacteria, the strain NA3 showed thehighest bacterial growth with the highest surface tension reduction of 27.2 mN/m. It was then identified as Nevskia ramosaNA3 by biochemical and 16S rRNA sequence analysis. The Plackett-Burman experimental design was employed to determinethe important nutritional requirements for biosurfactant production by N. ramosa NA3 under controlled conditions. Six outof 11 factors of the production medium were found to significantly affect the production of biosurfactant. FeCl2 and NaNO3had a direct proportional correlation with the biosurfactant production. Commercial sugar, glucose, K2HPO4 and MgCl2showed inversely proportional relationship with biosurfactant production in the selected experimental range.

  13. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents.

    Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R

    2018-06-01

    High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.

  14. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification

    Janssen, Albert J.H.; Lens, Piet N.L.; Stams, Alfons J.M.; Plugge, Caroline M.; Sorokin, Dimitri Y.; Muyzer, Gerard; Dijkman, Henk; Van Zessen, Erik; Luimes, Peter; Buisman, Cees J.N.

    2009-01-01

    In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual COD organic and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH 4 (80-90 vol.%), CO 2 (10-20 vol.%) and H 2 S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H 2 S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass

  15. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification

    Janssen, Albert J.H. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands); Shell Global Solutions Int. B.V., Amsterdam (Netherlands)], E-mail: albert.janssen@wur.nl; Lens, Piet N.L. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands); Stams, Alfons J.M.; Plugge, Caroline M. [Laboratory of Microbiology, Wageningen University, Wageningen (Netherlands); Sorokin, Dimitri Y. [Department of Biotechnology, Delft (Netherlands); Institute of Microbiology, Russian Academy of Science, Moscow (Russian Federation); Muyzer, Gerard [Department of Biotechnology, Delft (Netherlands); Dijkman, Henk; Van Zessen, Erik [Paques B.V., Balk (Netherlands); Luimes, Peter [Industriewater Eerbeek B.V. Eerbeek (Netherlands); Buisman, Cees J.N. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands)

    2009-02-01

    In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual COD{sub organic} and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH{sub 4} (80-90 vol.%), CO{sub 2} (10-20 vol.%) and H{sub 2}S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H{sub 2}S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass.

  16. Kinetics of pulp mill effluent treatment by ozone-based processes

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-01-01

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  17. Investigation of olive mill wastewater (OMW) ozonation efficiency with the use of a battery of selected ecotoxicity and human toxicity assays

    Siorou, Sofia [Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500 Patras (Greece); Vgenis, Theodoros T.; Dareioti, Margarita A. [Laboratory of Biochemical Engineering and Environmental Technology, Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, GR-26500 Patras (Greece); Vidali, Maria-Sophia; Efthimiou, Ioanna [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR-30100 Agrinio (Greece); Kornaros, Michael [Laboratory of Biochemical Engineering and Environmental Technology, Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, GR-26500 Patras (Greece); Vlastos, Dimitris [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR-30100 Agrinio (Greece); Dailianis, Stefanos, E-mail: sdailianis@upatras.gr [Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500 Patras (Greece)

    2015-07-15

    Highlights: • Raw- and ozonated-olive mill wastewater (OMW) toxic effects were investigated. • A battery of biological assays and toxic endpoints were used. • Ozonation for up to 300 min attenuates OMW toxicity, following phenols’ reduction. • Further OMW ozonation (>300 min) could enhance OMW toxicity. • OMW ozonation efficacy depends on OMW-derived intermediates and high NO{sub 3}{sup −}–N levels. - Abstract: The effects of olive mill wastewater (OMW) on a battery of biological assays, before and during the ozonation process, were investigated in order to assess ozone’s efficiency in removing phenolic compounds from OMW and decreasing the concomitant OMW toxicity. Specifically, ozonated-OMW held for 0, 60, 120, 300, 420, 540 min in a glass bubble reactor, showed a drastic reduction of OMW total phenols (almost 50%) after 300 min of ozonation with a concomitant decrease of OMW toxicity. In particular, the acute toxicity test primarily performed in the fairy shrimp Thamnocephalus platyurus (Thamnotoxkit F™ screening toxicity test) showed a significant attenuation of OMW-induced toxic effects, after ozonation for a period of 120 and in a lesser extent 300 min, while further treatment resulted in a significant enhancement of ozonated-OMW toxic effects. Furthermore, ozonated-OMW-treated mussel hemocytes showed a significant attenuation of the ability of OMW to cause cytotoxic (obtained by the use of NRRT assay) effects already after an ozonation period of 120 and to a lesser extent 300 min. In accordance with the latter, OMW-mediated oxidative (enhanced levels of superoxide anions and lipid peroxidation by-products) and genotoxic (induction of DNA damage) effects were diminished after OMW ozonation for the aforementioned periods of time. The latter was also revealed by the use of cytokinesis block micronucleus (CBMN) assay in human lymphocytes exposed to different concentrations of both raw- and ozonated-OMW for 60, 120 and 300 min. Those findings

  18. Effect of iron and magnesium addition for ethanol production from the conversion of palm oil mill effluent by anaerobic processes

    Handajani, M.; Gumilar, A.; Syafila, M.

    2018-01-01

    Nowadays, crisis of the energy is the main problem in the world. Currently, most the energy resource derived from the fossil material that cannot be refurbished. Ethanol is an alternative fuel that content as a fossil fuels. Wastewater with the high concentration of the organic can be used for the ethanol production to replace foodstuff as a raw material. In this study, palm oil mill effluent (POME) with the concentration of COD is 24,500 mg/L has been used as a substrate. The purpose of this study was to determine the effect of the metal addition in the substrate metabolic pathways. Circulating batch reactor (CBR) is used with the flushing N2 1L/min for 24 hours and continued operates for 72 hours by internal biogas. The additional variation concentration of Fe(II) ion are 0.5; 1.0 and 2.5 mg/L, and Mg(II) are 0.5 and 1.5 mg/L were added by combination. The results showed that the combination of Fe (II) 2.5 mg/L and Mg(II) 1.5 mg/L produced the highest ethanol concentration is 715.8 mg/L and degree of acidification (DA) 0.284-0.357. Another combination of Fe(II) and Mg(II) provide results for the ethanol production 463.7-689.7 mg/L with the rate of ethanol production is 1.09-26.5 mg/L/hour.

  19. Ferti-irrigational impact of sugar mill effluent on agronomical characteristics of Phaseolus vulgaris (L.) in two seasons.

    Kumar, Vinod; Chopra, A K

    2014-11-01

    Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P potassium (K(+)), calcium (Ca(2+)), magnesium (Mg(2+)), total Kjeldahl nitrogen (TKN), phosphate (PO4 (3-)), sulfate (SO4 (2-)), ferrous (Fe(2+)), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn), in both seasons. The contents of Cr, Cu, Mn, and Zn except Cd were found to be below the maximum levels permitted for soils in India. The agronomic performance of P. vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.

  20. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent.

    Ahmad Mohammed Gumel

    Full Text Available The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW basis were observed when fatty acids ranging from octanoic acid (C(8:0 to oleic acid (C(18:1 were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d of 264.6 to 318.8 (± 0.2 (oC, melting temperature (T(m of 43. (± 0.2 (oC, glass transition temperature (T(g of -1.0 (± 0.2 (oC and apparent melting enthalpy of fusion (ΔH(f of 100.9 (± 0.1 J g(-1.

  1. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent.

    Gumel, Ahmad Mohammed; Annuar, Mohamad Suffian Mohamad; Heidelberg, Thorsten

    2012-01-01

    The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C(8:0)) to oleic acid (C(18:1)) were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1)H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d)) of 264.6 to 318.8 (± 0.2) (o)C, melting temperature (T(m)) of 43. (± 0.2) (o)C, glass transition temperature (T(g)) of -1.0 (± 0.2) (o)C and apparent melting enthalpy of fusion (ΔH(f)) of 100.9 (± 0.1) J g(-1).

  2. DEVELOPMENT OF A METHANE-FREE, CONTINUOUS BIOHYDROGEN PRODUCTION SYSTEM FROM PALM OIL MILL EFFLUENT (POME IN CSTR

    MARIATUL FADZILLAH MANSOR

    2016-08-01

    Full Text Available This study aimed to develop the start-up experiment for producing biological hydrogen in 2 L continuous stirred tank reactor (CSTR from palm oil mill effluent (POME by the use of mixed culture sludge under non-sterile conditions. Besides using different source of starter culture, the effects of acid treated culture and various operating temperature from 35 °C to 55 °C were studied against the evolved gas in terms of volumetric H2 production rate (VHPR and soluble metabolite products (SMPs. The formation of methane was closely observed throughout the run. Within the studied temperature, VHPR was found as low as 0.71 L/L.d and ethanol was the main by-products (70-80% of total soluble metabolites. Attempts were made to produce biohydrogen without methane formation at higher thermophilic temperature (45-55 °C than the previous range. The average of 1.7 L H2 of 2 L working volume per day was produced at 55 oC with VHPR of 1.16 L/L.d. The results of soluble metabolites also are in agreement with the volatile fatty acids (VFAs which is higher than ethanol. Higher VFAs of 2269 mg/L was obtained with acetic acid being the main by-product. At this time methanogen has been deactivated and no methane was produced. From this study, it can be concluded that thermophilic environment may offer a better option in a way to eliminate methane from the biogas and at the same time improving hydrogen production rate as well.

  3. Effect of temperature on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas

    Trisakti, B.; Irvan, Mahdalena; Taslim; Turmuzi, M.

    2017-06-01

    This study aimed to determine the effect of temperature on methanogenesis stage of conversion of palm oil mill effluent into biogas. Methanogenesis is the second stage of methanogenic anaerobic digestion. Improved performance of the methanogenesis process was determined by measuring the growth of microorganisms, degradation of organic materials, biogas production and composition. Initially, the suitable loading up was determined by varying the HRT 100, 40, 6, and 4.0 days in the continuous stirred tank reactor (CSTR) with mixing rate 100 rpm, pH 6.7-7.5 at room temperature. Next, effect of temperature on the process was determined by varying temperature at mesophilic range (30-42°C) and thermophilic range (43-55°C). Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), and chemical oxygen demand (COD) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce biogas. Degradation of organic content i.e. VS decomposition and COD removal increased with the increasing of temperature. At mesophilic range, VS decomposition and COD removal were 51.56 ± 8.30 and 79.82 ± 6.03, respectively. Meanwhile at thermopilic range, VS decomposition and COD removal were 67.44 ± 3.59 and 79.16 ± 1.75, respectively. Biogas production and its methane content also increased with the increasing of temperature, but CO2 content also increased. Biogas production at mesophilic range was 31.77 ± 3.46 L/kg-ΔVS and methane content was 75 . Meanwhile, biogas production at thermopilic range was 37.03 ± 5.16 L/kg-ΔVS and methane content was 62.25 ± 5.50 .

  4. Improving photofermentative biohydrogen production by using intermittent ultrasonication and combined industrial effluents from palm oil, pulp and paper mills

    Budiman, Pretty Mori; Wu, Ta Yeong; Ramanan, Ramakrishnan Nagasundara; Md Jahim, Jamaliah

    2017-01-01

    Highlights: • Intermittent ultrasonication onto broth improved biohydrogen production. • A20T10 treatment produced 14.438 mL H_2/mL_m_e_d_i_u_m with 7.412% light efficiency. • Excessive ultrasonication (>306.1 J/mL) inhibited biohydrogen production. - Abstract: An ultrasonication technique was applied intermittently onto photofermentation broth during the first six hours of photofermentation to improve biohydrogen production by using Rhodobacter sphaeroides NCIMB8253. In this research, photofermentation broth consisted of a combination of palm oil (25%, v/v), pulp and paper (75%, v/v) mill effluents as well as liquid inoculum. The effects of amplitude (10, 20 and 30%, A) and ultrasonication duration (5, 10 and 15 min, T) were investigated in terms of their influences on photofermentative biohydrogen yield and total chemical oxygen demand (COD_t_o_t_a_l) removal. The recommended ultrasonication parameters were found at the middle range of amplitude and duration (A20T10). Using A20T10 intermittent treatment, the production of biohydrogen could be maximized up to 14.438 mL H_2/mL_m_e_d_i_u_m with a COD_t_o_t_a_l removal and light efficiency of 52.2% and 7.412%, respectively. By comparing the treatment without intermittent ultrasonication, an increase of biohydrogen yield by 44.6% was achieved in A20T10 treatment. A total energy input of 306.1 J/mL (A20T10 treatment) was supplied to improve substrate consumption and light distribution during the photofermentation, which led to the increase of biohydrogen yield.

  5. Enhancement of Antioxidant Mechanisms and Reduction of Oxidative Stress in Chickens after the Administration of Drinking Water Enriched with Polyphenolic Powder from Olive Mill Waste Waters

    Aliki Papadopoulou

    2017-01-01

    Full Text Available The aim of the study was to examine the effects of a polyphenolic powder from olive mill wastewater (OMWW administered through drinking water, on chickens’ redox status. Thus, 75 chickens were divided into three groups. Group A was given just drinking water, while groups B and C were given drinking water containing 20 and 50 μg/ml of polyphenols, respectively, for 45 days. The antioxidant effects of the polyphenolic powder were assessed by measuring oxidative stress biomarkers in blood after 25 and 45 days of treatment. These markers were total antioxidant capacity (TAC, protein carbonyls (CARB, thiobarbituric acid reactive species (TBARS and superoxide dismutase activity (SOD in plasma, and glutathione (GSH and catalase activity in erythrocytes. The results showed that CARB and TBARS were decreased significantly in groups B and C, and SOD decreased in group B compared to that in group A. TAC was increased significantly in group C and GSH was increased in group B, while catalase activity was increased in groups B and C compared to that in group A. In conclusion, this is the first study showing that supplementation of chickens with polyphenols from OMWW through drinking water enhanced their antioxidant mechanisms and reduced oxidative stress-induced damage.

  6. Antioxidant activity of oregano, parsley, and olive mill wastewaters in bulk oils and oil-in-water emulsions enriched in fish oil.

    Jimenez-Alvarez, D; Giuffrida, F; Golay, P A; Cotting, C; Lardeau, A; Keely, Brendan J

    2008-08-27

    The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products.

  7. Enhancement of Antioxidant Mechanisms and Reduction of Oxidative Stress in Chickens after the Administration of Drinking Water Enriched with Polyphenolic Powder from Olive Mill Waste Waters.

    Papadopoulou, Aliki; Petrotos, Konstantinos; Stagos, Dimitrios; Gerasopoulos, Konstantinos; Maimaris, Antonios; Makris, Haralampos; Kafantaris, Ioannis; Makri, Sotiria; Kerasioti, Efthalia; Halabalaki, Maria; Brieudes, Vincent; Ntasi, Georgia; Kokkas, Stylianos; Tzimas, Pavlos; Goulas, Panagiotis; Zakharenko, Alexander M; Golokhvast, Kirill S; Tsatsakis, Aristidis; Kouretas, Demetrios

    2017-01-01

    The aim of the study was to examine the effects of a polyphenolic powder from olive mill wastewater (OMWW) administered through drinking water, on chickens' redox status. Thus, 75 chickens were divided into three groups. Group A was given just drinking water, while groups B and C were given drinking water containing 20 and 50  μ g/ml of polyphenols, respectively, for 45 days. The antioxidant effects of the polyphenolic powder were assessed by measuring oxidative stress biomarkers in blood after 25 and 45 days of treatment. These markers were total antioxidant capacity (TAC), protein carbonyls (CARB), thiobarbituric acid reactive species (TBARS) and superoxide dismutase activity (SOD) in plasma, and glutathione (GSH) and catalase activity in erythrocytes. The results showed that CARB and TBARS were decreased significantly in groups B and C, and SOD decreased in group B compared to that in group A. TAC was increased significantly in group C and GSH was increased in group B, while catalase activity was increased in groups B and C compared to that in group A. In conclusion, this is the first study showing that supplementation of chickens with polyphenols from OMWW through drinking water enhanced their antioxidant mechanisms and reduced oxidative stress-induced damage.

  8. Impact of microwave pre-treatment on the batch anaerobic digestion of two-phase olive mill solid residue: a kinetic approach

    Rincon, B.; Gonzalez de Canales, M.; Martin, A.; Borja, R.

    2016-01-01

    The effect of a microwave (MW) pre-treatment on two-phase olive mill solid residue (OMSR) or alperujo with a view to enhancing its anaerobic digestibility was studied. The MW pre-treatment was carried out at a power of 800 W and at a targeted temperature of 50 °C using different heating rates and holding times. The following specific energies were applied: 4377 kJ·kg TS−1 (MW1), 4830 kJ·kg TS−1 (MW2), 7170 kJ·kg TS−1 (MW3) and 7660 kJ·kg TS−1 (MW4). The maximum methane yield, 395±1 mL CH4·g VSadded−1, was obtained for MW4. The effect of the pre-treatment on the kinetics of the process was also studied. The methane production curves generated during the batch tests showed a first exponential stage and a second sigmoidal stage for all the cases studied. In the first stage, the kinetic constant for the pre-treatment MW1 was 54.8% higher than that obtained for untreated OMSR. [es

  9. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor

    Ahmad, Anwar; Ghufran, Rumana; Wahid, Zularisam Abd.

    2011-01-01

    Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: ► Examine the treatability of POME and effects of CaO–CKD on the granulation process in UASB reactors. ► The main objective was to determine the influent CaO–CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. ► The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. ► SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO–CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO–CKD at doses of 1.5–20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 °C for 150 days to investigate the effect of CaO–CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5–65.5 g-COD g/l at an OLR of 4.5–12.5 kg-COD/m 3 d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased

  10. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor

    Ahmad, Anwar, E-mail: anwarak218@yahoo.co.uk [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia); Ghufran, Rumana; Wahid, Zularisam Abd. [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2011-12-30

    Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: Black-Right-Pointing-Pointer Examine the treatability of POME and effects of CaO-CKD on the granulation process in UASB reactors. Black-Right-Pointing-Pointer The main objective was to determine the influent CaO-CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. Black-Right-Pointing-Pointer The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. Black-Right-Pointing-Pointer SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 Degree-Sign C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-COD g/l at an OLR of 4.5-12.5 kg-COD/m{sup 3} d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids

  11. Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS.

    Aydi, Abdelwaheb; Abichou, Tarek; Nasr, Imen Hamdi; Louati, Mourad; Zairi, Moncef

    2016-01-01

    This paper presents a geographic information system-based multi-criteria site selection tool of an olive mill wastewater (OMW) disposal site in Sidi Bouzid Region, Tunisia. The multi-criteria decision framework integrates ten constraints and six factors that relate to environmental and economic concerns, and builds a hierarchy model for OMW disposal site suitability. The methodology is used for preliminary assessment of the most suitable OMW disposal sites by combining fuzzy set theory and analytic hierarchy process (AHP). The fuzzy set theory is used to standardize factors using different fuzzy membership functions while the AHP is used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by both environmental and economic decision criteria. The OMW disposal site suitability is achieved by applying a weighted linear combination that uses a comparison matrix to aggregate different importance scenarios associated with environmental and economic objectives. Three different scenarios generated by different weights applied to the two objectives. The scenario (a) assigns a weight of 0.75 to the environmental and 0.25 to the economic objective, scenario (b) has equal weights, and scenario (c) features weights of 0.25 and 0.75 for environmental and economic objectives, respectively. The results from this study assign the least suitable OMW disposal site of 2.5 % when environmental and economic objectives are rated equally, while a more suitable OMW disposal site of 1.0 % is generated when the economic objective is rated higher.

  12. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity.

    Hachicha, Ridha; Rekik, Olfa; Hachicha, Salma; Ferchichi, Mounir; Woodward, Steve; Moncef, Nasri; Cegarra, Juan; Mechichi, Tahar

    2012-07-01

    The co-composting of spent coffee grounds, olive mill wastewater sludge and poultry manure was investigated on a semi-industrial scale. In order to reduce the toxicity of the phenolic fraction and to improve the degree of composting humification, composts were inoculated with the white-rot fungus Trametes versicolor in the early stages of the maturation phase. During composting, a range of physico-chemical parameters (temperature and both organic matter and C/N reduction), total organic carbon, total nitrogen, elemental composition, lignin degradation and spectroscopic characteristics of the humic acids (HAs) were determined; impacts of the composting process on germination index of Hordeum vulgare and Lactuca sativa were assessed. The coffee waste proved to be a highly compostable feedstock, resulting in mature final compost with a germination index of 120% in less than 5 months composting. In addition, inoculation with T. versicolor led to a greater degree of aromatization of HA than in the control pile. Moreover, in the inoculated mixture, lignin degradation was three times greater and HA increased by 30% (P<0.05), compared to the control pile. In the T. versicolor inoculated mixture, the averages of C and N were significantly enhanced in the HA molecules (P<0.05), by 26% and 22%, respectively. This improvement in the degree of humification was confirmed by the ratio of optical densities of HA solutions at 465 and 665 nm which was lower for HA from the treated mixture (4.5) than that from the control pile (5.4). Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Chemical composition, antioxidant potential and phenolic profile of oil mill waste water from Tunisian olive varieties (Chetoui and Chemlali

    Maissa Khemakhem Sellami

    2016-07-01

    Full Text Available Oil mill waste water (OMWW is of great interest due to the presence of valuable resources such as biophenols that can be recovered as food additives and pharmaceuticals. The aim of this study is to investigate the variation of physicochemical composition of OMWW from Chetoui and Chemlali varieties, to evaluate phenolic composition, antioxidant potential and phenolic profile of OMWW extracts under native and acidified conditions. Liquid-liquid extraction was performed for the extraction of polyphenols. Antioxidant activity was investigated by DPPH•, ABTS•+ and FRAP tests. Phenolic compounds content was determined by HPLC-DAD method. OMWW from Chetoui variety has been shown to contain an important amount of K, Ca and Na whereas Chemlali cultivar was rich in Mg. Phenolic extract from Chetoui fruit (COCt has been  shown to contain the highest amount of polyphenols (2.48 ± 0.21 g L-1 as well as an appreciable content of flavonoids (9.39 ± 0.32 g L-1. However, phenolic extract from Chemlali fruit (COCm has been shown to have the highest content of proanthocyanidins (0.39 ± 0.00 g L-1. Acidification treatment improved polyphenol recovery of extracts from both varieties. COCt was more active using DPPH (EC50 of 7.5 mg L-1 and FRAP tests. However, COCt and COCm exhibited the same activity using ABTS test. In general, acidification treatment decreased antioxidant activity of extracts. COCt has been shown to contain higher amount of hydroxytyrosol when compared to COCm (157.16 ± 0.820 and 23.440 ± 0.440 mg g-1 D.W. of extract, respectively as revealed by HPLC-DAD analysis. 

  14. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge.

    Devi, Parmila; Saroha, Anil K

    2015-09-01

    The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation.

    Michael, I; Panagi, A; Ioannou, L A; Frontistis, Z; Fatta-Kassinos, D

    2014-09-01

    This study investigated the application of a solar-driven advanced oxidation process (solar Fenton) combined with previous coagulation/flocculation, for the treatment of olive mill wastewater (OMW) at a pilot scale. Pre-treatment by coagulation/flocculation using FeSO4·7H2O (6.67 g L(-1)) as the coagulant, and an anionic polyelectrolyte (FLOCAN 23, 0.287 g L(-1)) as the flocculant, was performed to remove the solid content of the OMW. The solar Fenton experiments were carried out in a compound parabolic collector pilot plant, in the presence of varying doses of H2O2 and Fe(2+). The optimization of the oxidation process, using reagents at low concentrations ([Fe(2+)] = 0.08 g L(-1); [H2O2] = 1 g L(-1)), led to a high COD removal (87%), while the polyphenolic fraction, which is responsible for the biorecalcitrant and/or toxic properties of OMW, was eliminated. A kinetic study using a modified pseudo first-order kinetic model was performed in order to determine the reaction rate constants. This work evidences also the potential use of the solar Fenton process at the inherent pH of the OMW, yielding only a slightly lower COD removal (81%) compared to that obtained under acidic conditions. Moreover, the results demonstrated the capacity of the applied advanced process to reduce the initial OMW toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba), and the water flea Daphnia magna. The OMW treated samples displayed a varying toxicity profile for each type of organism and plant examined in this study, a fact that can potentially be attributed to the varying oxidation products formed during the process applied. Finally, the overall cost of solar Fenton oxidation for the treatment of 50 m(3) of OMW per day was estimated to be 2.11 € m(-3). Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Appropriate conditions for applying NaOH-pretreated two-phase olive milling waste for codigestion with food waste to enhance biogas production.

    Al-Mallahi, Jumana; Furuichi, Toru; Ishii, Kazuei

    2016-02-01

    The high methane gas production potential of two phase olive milling waste (2POMW) makes its application to biogas plants in business an economical process to increase the productivity of the plants. The objective of this study was to investigate the appropriate conditions for the codigestion of NaOH-pretreated 2POMW with food waste. NaOH pretreatment can increase the methane production by increasing the soluble chemical oxygen demand (sCOD), but it may cause inhibition because of higher levels of alkalinity, sodium ion, volatile fatty acids and long chain fatty acids (LCFAs). Therefore, the first experimental phase of this study aimed to investigate the effect of different mixing ratios of 2POMW to food waste. A continuous stirred tank reactor experiment with different mixing ratios of 3%, 4.3%, 5.7% and 8.3% (2POMW: food waste) was conducted. NaOH pretreatment in the range of 6-20% was used. A mixing ratio up to 4.3%, when 10% NaOH pretreatment was used, caused no inhibition and increased methane production by 445.9mL/g-VS(2POMW). For this mixing ratio an additional experimental phase was conducted with the 20% NaOH pretreatment as the 20% NaOH pretreatment had the highest sCOD. The methane gas production was increased by 503.6mL/g-VS(2POMW). However, pH adjustment was required for applying this concentration of the high alkalinity 20% NaOH-pretreated 2POMW. Therefore, we consider using 10% NaOH pretreatment in a mixing ratio of 4.3% to be more applicable. The increase in methane gas production was correlated to the oleic acid concentration inside the reactors. The high oleic acid concentration of 61.8mg/L for the 8.3% mixing ratio was responsible for the strong inhibition. This study showed that adjusting the appropriate mixing ratio of the NaOH-pretreated 2POMW could increase the electricity production of a reactor that regularly receives food waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of cell immobilization on the treatment of olive mill wastewater by a total phenols, acetic acid and formic acid degrading bacterium strain

    Errami, Mohamed

    2005-06-01

    Full Text Available Olive mill wastewater (OMW is a pure vegetative by-product, containing a high organic and polyphenol content and is resistant to biodegradation. Its disposal lead to major environmental pollution problems in the Mediterranean basin. An aerobic bacterium was isolated from OMW. During three consecutive diluted and supplemented OMW treatment cycles, significant abatement of its phytotoxic substances was observed. In fact, total phenols, acetic and formic acids were reduced between 33 and 64 % when cells of the isolated bacterium were grown free; and between 62 and 78 % when cells of the same isolated bacterium were grown immobilized in a polyurethane sponge. These results suggest that the bacterium culture of the new isolate would decrease the OMW phytotoxicity. Phylogenetic analysis of 16S ribosomal DNA showed that all the related sequences are members of the Enterobacteriaceae family and revealed that the isolated bacterium was characterized as a Klebsiella oxytoca strain.El alpechín (OMW es un residuo puro de la extracción del aceite de oliva, que contiene una elevada carga orgánica y de polifenoles por lo que es resistente a la degradación. Su descarga produce graves problemas de contaminación medioambiental en toda el área mediterránea. Se ha aislado una bacteria anaerobia del OMW, que , durante tres ciclos consecutivos de tratamiento del OMW diluido y suplementado, produjo una disminución significativa de las sustancias fitotóxicas del residuo. De hecho, la concentración en fenoles totales, ácido acético y ácido fórmico se redujeron entre 33 y 64 % cuando las células no estaban inmovilizadas y entre el 62 y 78 % cuando las células bacterianas se inmovilizaron en una esponja de poliuretano. Estos resultados indican que el cultivo de la nueva bacteria aislada puede disminuir la fototoxicidad del alpechín. Análisis filogenético del ribosoma 16S de DNA demostró que todas las secuencias eran miembros de la familia

  18. A study of the natural biodegradation of two-phase olive mill solid waste during its storage in an evaporation pond.

    Borja, R; Sánchez, E; Raposo, F; Rincón, B; Jiménez, A M; Martín, A

    2006-01-01

    A study of the natural biodegradation of two-phase olive mill solid waste (OMSW) during its storage in an evaporation pond was carried out. This system is traditionally used as the final disposal of this waste or constitutes a previous stage before being processed by cogeneration or anaerobic digestion processes. A laboratory-scale pond with a total volume of 520 l was used. The experiment was carried out between December 2002 and August 2003 covering a total period of 269 days. During the experiment, the variations of temperature (outside and inside the pond), the effective volume of the OMSW in the pond, moisture content, total solids (TS), volatile solids (VS), the total chemical oxygen demand (TCOD), total volatile acids (TVA), pH and cumulative methane production as a function of the operation time were evaluated. The experimental results obtained showed that the characteristics of the two-phase OMSW in the pond were dependent on the time of operation and temperature. During the experiment, three periods were clearly observed and differentiated: (a) An initial period with a rapid reduction of moisture content and effective volume, with an increase of TS, VS and TCOD removals, a decrease of pH and an increase of TVA and methane production until day 21. (b) A second period of slow decrease of moisture content and effective volume, due to the decrease of the ambient temperature. This period took place between day 21 and days 120-150 of assay, and it was characterised by a slight change in the OMSW properties. (c) A third period where the characteristics of the waste in the pond changed considerably due to the increase of the temperature outside the pond. The methane gas production also showed an increase due to the increase of methanogenic activity with the increase of temperature. An empirical model to describe the changes of two-phase OMSW characteristics and methane production with the operation time was developed. The proposed model, based on the use of

  19. Combined effect of diuron and simazine on photosystem II photochemistry in a sandy soil and soil amended with solid olive-mill waste.

    Redondo-Gómez, Susana; Cox, Lucía; Cornejo, Juan; Figueroa, Enrique

    2007-01-01

    Diuron (3-(3,4-dichlorophenyl)- = 1,1-dimethylurea) and simazine (6-chloro-N(2), N(4)-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the effect of these herbicides on Photosystem II photochemistry of Olea europaea L., and whether the amendment of soil with an organic waste (OW) from olive oil production industry modifies this effect. For this purpose, herbicide soil adsorption studies, with unamended and OW-amended soil, and chlorophyll fluorescence measurements in adult olive leaves, after one, two and three weeks of soil herbicide treatment and/or OW amendment, were performed. Soil application of these herbicides reduced the efficiency of Photosystem II photochemistry of olive trees due to chronic photoinhibition, and this effect is counterbalanced by the addition of OW to the soil. OW reduces herbicide uptake by the plant due to an increase in herbicide adsorption.

  20. Heterogeneous photocatalysis using TiO2 modified with hydrotalcite and iron oxide under UV-visible irradiation for color and toxicity reduction in secondary textile mill effluent.

    Arcanjo, Gemima Santos; Mounteer, Ann H; Bellato, Carlos Roberto; Silva, Laís Miguelina Marçal da; Brant Dias, Santos Henrique; Silva, Priscila Romana da

    2018-04-01

    The objective of this study was to evaluate ADMI color removal from a biologically treated textile mill effluent by heterogeneous photocatalysis with UV-visible irradiation (UV-vis) using a novel catalyst composed of TiO 2 supported on hydrotalcite and doped with iron oxide (HT/Fe/TiO 2 ). Simulated biological treatment of solutions of the dyes (50 mg/L) used in the greatest amounts at the mill where the textile effluent was collected resulted in no color removal in reactive dye solutions and about 50% color removal in vat dye solutions, after 96 h, indicating that the secondary effluent still contained a large proportion of anionic reactive dyes. Photocatalytic treatments were carried out with TiO 2 and HT/Fe/TiO 2 of Fe:Ti molar ratios of 0.25, 0.5, 0.75 and 1, with varying catalyst doses (0-3 mg/L), initial pH values (4-10) and UV-vis times (0-6 h). The highest ADMI color removal with unmodified TiO 2 was found at a dose of 2 g/L and pH 4, an impractical pH value for industrial application. The most efficient composite was HT/Fe/TiO 2 1 at pH 10, also at a dose of 2 g/L, which provided more complete ADMI color removal, from 303 to 9 ADMI color units (96%), than unmodified TiO 2 , from 303 to 37 ADMI color units (88%), under the same conditions. Hydroxyl radicals were responsible for the color reduction, since when 2-propanol, an OH scavenger, was added color removal was very low. For this reason, the HT/Fe/TiO 2 1 composite performed better at pH 10, because the higher concentration of hydroxide ions present at higher pH favored hydroxyl radical formation. COD reductions were relatively low and similar, approximately 20% for both catalysts after 6 h under UV-vis, because of the low initial COD (78 mg/L). Secondary effluent toxicity to Daphnia similis (EC 50  = 70.7%) was reduced by photocatalysis with TiO 2 (EC 50  = 95.0%) and the HT/Fe/TiO 2 1 composite (EC 50  = 78.6%). HT/Fe/TiO 2 1 was reused five times and still lowered

  1. Multiclass pesticide determination in olives and their processing factors in olive oil: comparison of different olive oil extraction systems.

    Amvrazi, Elpiniki G; Albanis, Triantafyllos A

    2008-07-23

    The processing factors (pesticide concentration found in olive oil/pesticide concentration found in olives) of azinphos methyl, chlorpyrifos, lambda-cyhalothrin, deltamethrin, diazinon, dimethoate, endosulfan, and fenthion were determined in olive oil production process in various laboratory-scale olive oil extractions based on three- or two-phase centrifugation systems in comparison with samples collected during olive oil extractions in conventional olive mills located at different olive oil production areas in Greece. Pesticide analyses were performed using a multiresidue method developed in our laboratory for the determination of different insecticides and herbicides in olive oil by solid-phase extraction techniques coupled to gas chromatography detection (electron capture detection and nitrogen phosphorus detection), optimized, and validated for olive fruits sample preparation. Processing factors were found to vary among the different pesticides studied. Water addition in the oil extraction procedure (as in a three-phase centrifugation system) was found to decrease the processing factors of dimethoate, alpha-endosulfan, diazinon, and chlorpyrifos, whereas those of fenthion, azinphos methyl, beta-endosulfan, lambda-cyhalothrin, and deltamethrin residues were not affected. The water content of olives processed was found to proportionally affect pesticide processing factors. Fenthion sulfoxide and endosulfan sulfate were the major metabolites of fenthion and endosulfan, respectively, that were detected in laboratory-produced olive oils, but only the concentration of fenthion sulfoxide was found to increase with the increase of water addition in the olive oil extraction process.

  2. Investigation on microbiology of olive oil extraction process

    B. Zanoni

    2015-06-01

    Full Text Available Several batches of approx. 200 kg olives from Frantoio and Moraiolo cultivars were processed in an oil mill at two dates of harvesting. Samples were collected in several steps of extraction process for sensory, chemical and microbial analyses.All extracted olive oil from the second olive harvesting date was affected by sensory defects and hence classified as being “non-extra virgin”. A distinction between extra virgin olive oil and nonextra virgin olive oil obtained from both harvesting dates was explained by the volatile compounds content of olive oil samples and by yeast and mould counts collected at different processing steps.

  3. Inoculation with arbuscular mycorrhizal fungi and addition of composted olive-mill waste enhance plant establishment and soil properties in the regeneration of a heavy metal-polluted environment.

    Curaqueo, Gustavo; Schoebitz, Mauricio; Borie, Fernando; Caravaca, Fuensanta; Roldán, Antonio

    2014-06-01

    A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) in the establishment of Tetraclinis articulata and soil properties in a heavy metal-polluted soil. The treatments assayed were as follows: AM + 0% COW, AM + 1% COW, and AM + 3% COW. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96 and 60%, respectively. These treatments trended to improve the soil properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni, and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided Glomus mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs because it promotes soil properties, a better performance of plants for supporting the stress in heavy metal-contaminated soils derived from the mining process, and also can be a good way for olive-mill waste disposal.

  4. Combustion of Biogas Released from Palm Oil Mill Effluent and the Effects of Hydrogen Enrichment on the Characteristics of the Biogas Flame

    Seyed Ehsan Hosseini

    2015-01-01

    Full Text Available Biogas released from palm oil mill effluent (POME could be a source of air pollution, which has illustrated negative effects on the global warming. To protect the environment from toxic emissions and use the energy of POME biogas, POME is conducted to the closed digestion systems and released biogas is captured. Since POME biogas upgrading is a complicated process, it is not economical and thus new combustion techniques should be examined. In this paper, POME biogas (40% CO2 and 60% CH4 has been utilized as a fuel in a lab-scale furnace. A computational approach by standard k-ε combustion and turbulence model is applied. Hydrogen is added to the biogas components and the impacts of hydrogen enrichment on the temperature distribution, flame stability, and pollutant formation are studied. The results confirm that adding hydrogen to the POME biogas content could improve low calorific value (LCV of biogas and increases the stability of the POME biogas flame. Indeed, the biogas flame length rises and distribution of the temperature within the chamber is uniform when hydrogen is added to the POME biogas composition. Compared to the pure biogas combustion, thermal NOx formation increases in hydrogen-enriched POME biogas combustion due to the enhancement of the furnace temperature.

  5. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach.

    Gan, Pei Pei; Ng, Shi Han; Huang, Yan; Li, Sam Fong Yau

    2012-06-01

    The present study reports the synthesis of gold nanoparticles (AuNps) from gold precursor using palm oil mill effluent (POME) without adding external surfactant, capping agent or template. The biosynthesized AuNps were characterized by using UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). According to the image analysis performed on a representative TEM micrograph by counting 258 particles, the obtained AuNps are predominantly spherical with an average size of 18.75 ± 5.96 nm. In addition, some triangular and hexagonal nanoparticles were also observed. The influence of various reaction parameters such as reaction pH, concentration of gold precursor and interaction time to the morphology and size of biosynthesized AuNps was investigated. This study shows the feasibility of using agro waste material for the biosynthesis of AuNps which is potentially more scalable and economic due to its lower cost. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Treatment of palm oil mill effluent by electrocoagulation with presence of hydrogen peroxide as oxidizing agent and polialuminum chloride as coagulant-aid

    Mohd Nasrullah

    2017-06-01

    Full Text Available The purposes of this study were to investigate the effects of operating parameters, such as electrode material, current density, percentage of hydrogen peroxide and amount of polialuminum chloride (PAC on chemical oxygen demand (COD removal of palm oil mill effluent (POME. The current density was varied between 30–80 mA cm−2, PAC (1–3 g L−1 as coagulant-aid and 1 and 2% of hydrogen peroxide as an oxidizing agent. As for the performance of electrode type, iron was more effective than aluminum. It appeared that the removal of COD increased with the increased of current density. When PAC and H2O2 increased, the percent of COD removal was increasing as well. The overall results demonstrate that electrocoagulation is very efficient and able to achieve more than 70% COD removal in 180 min at current density 30–80 mA cm−2 reliant upon the concentration of H2O2 and PAC.

  7. Optimization of fermentative hydrogen production from palm oil mill effluent in an up-flow anaerobic sludge blanket fixed film bioreactor

    Parviz Mohammadi

    2017-09-01

    Full Text Available Response surface methodology with a central composite design was applied to optimize fermentative hydrogen production from palm oil mill effluent (POME in an upflow anaerobic sludge blanket fixed film reactor. In this study, the concurrent effects of up-flow velocity (Vup and feed flow rate (QF as independent operating variables on biological hydrogen production were investigated. A broad range of organic loading rate between 10 and 60 g COD L−1 d−1 was used as the operating variables. The dependent parameters as multiple responses were evaluated. Experimental results showed the highest value of yield at 0.31 L H2 g−1 COD was obtained at Vup and QF of 0.5 m h−1 and 1.7 L d−1, respectively. The optimum conditions for the fermentative hydrogen production using pre-settled POME were QF = 2.0–3.7 L d−1 and Vup = 1.5–2.3 m h−1. The experimental results agreed very well with the model prediction.

  8. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester

    Sivasankari, R; Kumaran, P; Normanbhay, Saifuddin; Shamsuddin, Abd Halim

    2013-01-01

    An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

  9. Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge.

    Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Shirai, Yoshihito; Tashiro, Kosuke; Sakai, Kenji; Tashiro, Yukihiro

    2017-06-01

    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.

  10. Utilization of Cocoa Peel as Biosorbent for Oil and Color Removal in Palm Oil Mill Effluent (POME)

    Pandia, S.; Hutagalung, A. T.; Siahaan, A. D.

    2018-01-01

    The aim of this study is to discover the effectiveness of cocoa peel as biosorbents for oil and color removal in POME. This study used biosorbent from cocoa peel with variation of particle size which passed through 70 mesh, 100 mesh, and 120 mesh and was activated with the ratio of biosorbent and 0,6 M HNO3 of 1:2, 1:4, and 1:6 (m/v). The adsorption process was carried out using biosorbent with the highest iodine number in varying biosorbent mass and contact time. The highest iodine number was 596,684 mg/g and obtained at particle size 120 mesh and the ratio of biosorbent : HNO3 as 1 : 4. The resulting biosorbents were analyzed for their characterization, such as vapor content, ash content, and volatile matter, including FT-IR and SEM-EDX. The POME were analyzed for their oil and color content, using gravimetric method and UV-Vis spectrophotometry. The best removal is were 80,88% for oil and 83.45% for color at 1.5 g biosorbent mass and 3 h contact time. The resullt for oil removal was close to the standard of Indonesian Environment Minister for oil in effluent. Also the adsorption of oil and color behaves as a pseudo-second-order kinetic models.

  11. Potential for biohydrogen and methane production from olive pulp

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...... from the olive pulp, and c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H-2 per g TS. The methane potential of the raw olive pulp...... and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production....

  12. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  13. A biodegradation and treatment of palm oil mill effluent (POME) using a hybrid up-flow anaerobic sludge bed (HUASB) Reactor

    Habeeb, S.A.; Latiff, AB. Aziz Abdul; Daud, Zawawi; Ahmad, Zulkifli [Faculty of Civil and Enviromental Engineering, University Tun Hussein Onn (Malaysia)

    2011-07-01

    Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME). This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB). Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR) and hydraulic retention time (HRT) of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28{+-}2 C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37{+-}1 C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD) removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

  14. Kinetics of Anaerobic Digestion of Palm Oil Mill Effluent (POME) in Double-Stage Batch Bioreactor with Recirculation and Fluidization of Microbial Immobilization Media

    Ramadhani, L. I.; Damayanti, S. I.; Sudibyo, H.; Budhijanto, W.

    2018-03-01

    Palm Oil Mill Effluent (POME) becomes big problem for palm oil industries, especially for Crude Palm Oil (CPO) industry since it produces 3 tons of POME for every ton of CPO production.The high amount of organic loading in POME makes it potential as a substrate in anaerobic digestion to generate biogas as renewable energy source. The most common but conventional method by using open lagoon is still preferred for most CPO industry in Indonesia to treat POME because of its simplicity and easiness. However, this method creates new major problem for the water bodies since it has no significant chemical oxygen demand (COD) removal and needs wide area. Besides, greenhouse gas (CH4) is also released during the process. An innovation was made in this study by designing vertical column process equipment to run an anaerobic digestion of POME. The vertical column was functioned as anaerobic fluidized bed reactor (AFBR). To enhance the digestion rate in AFBR, natural zeolite was used as the immobilization media and the inoculum was taken from digested biodiesel waste. This research aimed to determine the kinetic constants of double-stage anaerobic POME digestion for COD removal and biogas production. To get close to the real condition, the POME used in this experiment had 8,000 mg/L of sCOD (the real sCOD was ±16,000 mg/L). The experiment was conducted under room temperature with up-flow velocity between 1.75 and 2.3 cm/s for optimum fluidization of immobilization media.

  15. Anaerobic digestion of palm oil mill effluent with lampung natural zeolite as microbe immobilization medium and digested cow manure as starter

    Halim, Lenny; Mellyanawaty, Melly; Cahyono, Rochim Bakti; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2017-05-01

    Indonesia is well-known as the world's biggest palm oil producer with 32.5 million tons of annual production. Palm oil processing contributes to 60% wastewater, leading to environmental problem caused by excessive production of wastewater. This wastewater, i.e. Palm Oil Mill Effluent (POME), has high organic content (40,000-60,000 mg COD/L) which is potential for biogas production. However, its low pH value and long chain fatty acid content likely inhibit the anaerobic digestion. Porous media might reduce the inhibitory effect during POME digestion since the media act as both immobilization media for bacteria and as inhibitor adsorbent. Excessive amount of porous media might interfere with the nutrient consumption by microbes. There will be an optimum amount of porous media added, which depends on the wastewater characteristics. This research studied Lampung natural zeolite as immobilization media in digesting POME. The batch experiment was conducted for 40 days with different amount of natural zeolite, i.e. 0; 45; 100; and 200 g/g COD. Digested cow manure was used as the starter inoculum, considering the abundance of anaerobic bacteria therein. Zeolite addition was proven to accelerate COD reduction and stabilized the volatile fatty acid as the intermediate product of anaerobic digestion. The addition of natural zeolite up to 45 g/g COD is considered enough to increase the COD removal (85.695 %), maintain the methane content up to 50%, and enhance the bacteria activity. However, larger amount of natural zeolite lowered the methane production and COD reduction, which indicated nutrient adsorption on to the media and hence caused decreasing nutrient access by the microbes.

  16. Upflow anaerobic sludge blanket-hollow centered packed bed (UASB-HCPB) reactor for thermophilic palm oil mill effluent (POME) treatment

    Poh, P.E.; Chong, M.F.

    2014-01-01

    Upflow anaerobic sludge blanket-hollow centered packed bed (UASB-HCPB) reactor was developed with the aim to minimize operational problems in the anaerobic treatment of Palm Oil Mill Effluent (POME) under thermophilic conditions. The performance of UASB-HCPB reactor on POME treatment was investigated at 55 °C. Subsequent to start-up, the performance of the UASB-HCPB reactor was evaluated in terms of i) effect of hydraulic retention time (HRT); ii) effect of organic loading rate (OLR); and iii) effect of mixed liquor volatile suspended solid (MLVSS) concentration on thermophilic POME treatment. Start-up up of the UASB-HCPB reactor was completed in 36 days, removing 88% COD and 90% BOD respectively at an OLR of 28.12 g L −1  d −1 , producing biogas with 52% of methane. Results from the performance study of the UASB-HCPB reactor on thermophilic POME treatment indicated that HRT of 2 days, OLR of 27.65 g L −1  d −1 and MLVSS concentration of 14.7 g L −1 was required to remove 90% of COD and BOD, 80% of suspended solid and at the same time produce 60% of methane. - Highlights: • UASB-HCPB was proposed for POME treatment under thermophilic conditions. • Start-up up of the UASB-HCPB reactor was completed in 36 days. • 88% COD and 90% BOD were removed at an OLR of 28.12 g COD/L.day during start-up. • HRT of 2 days and OLR of 27.65 g COD/L.day was required to produce 60% methane. • Methanosarcina sp. forms the majority of microbial population in the UASB section

  17. Anaerobic treatment of palm oil mill effluent in batch reactor with digested biodiesel waste as starter and natural zeolite for microbial immobilization

    Setyowati, Paulina Adina Hari; Halim, Lenny; Mellyanawaty, Melly; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2017-05-01

    Palm oil mill effluent (POME) is the wastewater discharged from sludge separation, sterilization, and clarification process of palm oil industries. Each ton of palm oil produces about half ton of high organic load wastewater. Up to now, POME treatment is done in lagoon, leaving major problems in land requirement and greenhouse gasses release. The increasing of palm oil production provokes the urgency of appropriate technology application in treating POME to prevent the greenhouse gasses emission while exploit POME as renewable energy source. The purposes of this study were firstly to test the effectiveness of using the digested biodiesel waste as the inoculum and secondly to evaluate the effectiveness of natural zeolite addition in minimizing the inhibitory effect in digesting POME. It was expected that the oil-degrading bacteria in the inoculum would shorten the adaptation period in digesting POME. Furthermore, the consortium formation of anaerobic bacteria accelerated by natural zeolite powder addition would increase the microbial resistance to the inhibitors contained in the POME. The batch digesters, containing 0 (control); 17; 38; and 63 g natural zeolite/g sCOD substrate were observed for 43 days. The result showed that zeolite addition did not give significant effect on sCOD reduction (97.3-98.6% of initial sCOD). Moreover, addition of immobilization media up to 17 g natural zeolite/g stimulated the acidification and biogas production up to 10% higher than control. The purity of methane produced with various amount of immobilization media did not differ for each variation, i.e. 50-54% v/v methane. The increasing amount of natural zeolite up to 63 g/g sCOD did not significantly enhance biogas product rate nor methane content.

  18. Unusual poly(3-hydroxyalkanoate) (PHA) biosynthesis behavior of Pseudomonas putida Bet001 and Delftia tsuruhatensis Bet002 isolated from palm oil mill effluent.

    Razaif-Mazinah, Mohd Rafais Mohd; Anis, Siti Nor Syairah; Harun, Hazwani Izzati; Rashid, Khairunnisa Abdul; Annuar, Mohamad Suffian Mohamad

    2017-03-01

    Pseudomonas putida Bet001 and Delftia tsuruhatensis Bet002, isolated from palm oil mill effluent, accumulated poly(3-hydroxyalkanoates) (PHAs) when grown on aliphatic fatty acids, sugars, and glycerol. The substrates were supplied at 20:1 C/N mole ratio. Among C-even n-alkanoic acids, myristic acid gave the highest PHA content 26 and 28 wt% in P. putida and D. tsuruhatensis, respectively. Among C-odd n-alkanoic acids, undecanoic gave the highest PHA content at 40 wt% in P. putida and 46 wt% in D. tsuruhatensis on pentadecanoic acid. Sugar and glycerol gave <10 wt% of PHA content for both bacteria. Interestingly, D. tsuruhatensis accumulated both short- and medium-chain length PHA when supplied with n-alkanoic acids ranging from octanoic to lauric, sucrose, and glycerol with 3-hydroxybutyrate as the major monomer unit. In P. putida, the major hydroxyalkanoates unit was 3-hydroxyoctanoate and 3-hydroxydecanoate when grown on C-even acids. Conversely, 3-hydroxyheptanoate, 3-hydrxoynonanoate, and 3-hydroxyundecanoate were accumulated with C-odd acids. Weight-averaged molecular weight (M w ) was in the range of 53-81 kDa and 107-415 kDa for P. putida and D. tsuruhatensis, respectively. Calorimetric analyses indicated that both bacteria synthesized semicrystalline polymer with good thermal stability with degradation temperature (T d ) ranging from 178 to 282 °C. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  19. Oliver Twist

    Dickens, Charles

    2005-01-01

    Oliver Twist is one of Dickens's most popular novels, with many famous film, television and musical adaptations. It is a classic story of good against evil, packed with humour and pathos, drama and suspense, in which the orphaned Oliver is brought up in a harsh workhouse, and then taken in and

  20. On the origin of benzene, toluene, ethylbenzene and xylene in extra virgin olive oil.

    Biedermann, M; Grob, K; Morchio, G

    1995-04-01

    Concentrations of benzene, toluene, C2-benzenes and styrene were determined in olives and the oils produced thereof, as well as at various intermediate steps during production. Concentrations were compared to those found in samples of air taken from the olive grove and the olive mills. In an exposition experiment in the laboratory, olives absorbed aromatic compounds, approaching saturation corresponding to the partition coefficient between air and oil. However, concentrations in olives delivered to the mills were 4-10 times higher than expected from the analysis of the air in the olive grove. In the olive mills, concentrations were increased further by a factor of up to 2 because of uptake from air which contained high concentrations of aromatics. Styrene concentrations strongly increased during storage of crushed olives at ambient temperature, which confirms the hypothesis that styrene is a product of metabolism.

  1. Enhancing the Bioconversion of Winery and Olive Mill Waste Mixtures into Lignocellulolytic Enzymes and Animal Feed by Aspergillus uvarum Using a Packed-Bed Bioreactor.

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2015-10-28

    Wineries and olive oil industries are dominant agro-industrial activities in southern European regions. Olive pomace, exhausted grape marc, and vine shoot trimmings are lignocellulosic residues generated by these industries, which could be valued biotechnologically. In the present work these residues were used as substrate to produce cellulases and xylanases through solid-state fermentation using Aspergillus uvarum MUM 08.01. For that, two factorial designs (3(2)) were first planned to optimize substrate composition, temperature, and initial moisture level. Subsequently, the kinectics of cellulolytic enzyme production, fungal growth, and fermented solid were characterized. Finally, the process was performed in a packed-bed bioreactor. The results showed that cellulase activity improved with the optimization processes, reaching 33.56 U/g, and with the packed-bed bioreactor aeration of 0.2 L/min, reaching 38.51 U/g. The composition of fermented solids indicated their potential use for animal feed because cellulose, hemicellulose, lignin, and phenolic compounds were partially degraded 28.08, 10.78, 13.3, and 28.32%, respectively, crude protein was increased from 8.47 to 17.08%, and the mineral contents meet the requirements of main livestock.

  2. Prooxidant Effects of Verbascoside, a Bioactive Compound from Olive Oil Mill Wastewater, on In Vitro Developmental Potential of Ovine Prepubertal Oocytes and Bioenergetic/Oxidative Stress Parameters of Fresh and Vitrified Oocytes

    Dell'Aquila, M. E.; Bogliolo, L.; Russo, R.; Martino, N. A.; Filioli Uranio, M.; Ariu, F.; Amati, F.; Sardanelli, A. M.; Linsalata, V.; Ferruzzi, M. G.; Cardinali, A.; Minervini, F.

    2014-01-01

    Verbascoside (VB) is a bioactive polyphenol from olive oil mill wastewater with known antioxidant activity. Oxidative stress is an emerging problem in assisted reproductive technology (ART). Juvenile ART is a promising topic because, in farm animals, it reduces the generation gap and, in human reproductive medicine, it helps to overcome premature ovarian failure. The aim of this study was to test the effects of VB on the developmental competence of ovine prepubertal oocytes and the bioenergetic/oxidative stress status of fresh and vitrified oocytes. In fresh oocytes, VB exerted prooxidant short-term effects, that is, catalase activity increase and uncoupled increases of mitochondria and reactive oxygen species (ROS) fluorescence signals, and long-term effects, that is, reduced blastocyst formation rate. In vitrified oocytes, VB increased ROS levels. Prooxidant VB effects in ovine prepubertal oocytes could be related to higher VB accumulation, which was found as almost one thousand times higher than that reported in other cell systems in previous studies. Also, long exposure times of oocytes to VB, throughout the duration of in vitro maturation culture, may have contributed to significant increase of oocyte oxidation. Further studies are needed to identify lower concentrations and/or shorter exposure times to figure out VB antioxidant effects in juvenile ARTs. PMID:24719893

  3. Prooxidant Effects of Verbascoside, a Bioactive Compound from Olive Oil Mill Wastewater, on In Vitro Developmental Potential of Ovine Prepubertal Oocytes and Bioenergetic/Oxidative Stress Parameters of Fresh and Vitrified Oocytes

    M. E. Dell'Aquila

    2014-01-01

    Full Text Available Verbascoside (VB is a bioactive polyphenol from olive oil mill wastewater with known antioxidant activity. Oxidative stress is an emerging problem in assisted reproductive technology (ART. Juvenile ART is a promising topic because, in farm animals, it reduces the generation gap and, in human reproductive medicine, it helps to overcome premature ovarian failure. The aim of this study was to test the effects of VB on the developmental competence of ovine prepubertal oocytes and the bioenergetic/oxidative stress status of fresh and vitrified oocytes. In fresh oocytes, VB exerted prooxidant short-term effects, that is, catalase activity increase and uncoupled increases of mitochondria and reactive oxygen species (ROS fluorescence signals, and long-term effects, that is, reduced blastocyst formation rate. In vitrified oocytes, VB increased ROS levels. Prooxidant VB effects in ovine prepubertal oocytes could be related to higher VB accumulation, which was found as almost one thousand times higher than that reported in other cell systems in previous studies. Also, long exposure times of oocytes to VB, throughout the duration of in vitro maturation culture, may have contributed to significant increase of oocyte oxidation. Further studies are needed to identify lower concentrations and/or shorter exposure times to figure out VB antioxidant effects in juvenile ARTs.

  4. Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors

    Sumate Chaiprapat

    2007-05-01

    Full Text Available Anaerobic treatment of palm oil mill effluent (POME with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB reactor and an up-flowanaerobic filter (UFAF reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane production. Therefore, POME without pH adjustment was used as influent for the UASB reactor. Moreover, the syntheticwastewater with pH adjustment to 6.00 was fed into the UFAF reactor. The inoculum source for both reactors was the combination of POME sludge collected from the CSTR of a POME treatment plant and granulesludge collected from the UASB reactor of a frozen sea food industry treatment plant. During experimental operation, the organic loading rate (OLR was gradually increased from 2.50 to 17.5 g COD/l/day in theUASB reactor and 1.10 to 10.0 g COD/l/day in the UFAF reactor. Consequently, hydraulic retention time (HRT ranged from 20.0 to 2.90 days in the UASB reactor and from 13.5 to 1.50 days in the UFAF reactor.The result showed that the COD removal efficiency from both reactors was greater than 60.0%. In addition, the total volatile fatty acids increased with the increasing OLR. The total volatile fatty acids and acetic acidproduction in the UASB reactor reached 5.50 g/l and 4.90 g/l, respectively at OLR of 17.5 g COD/l/day and HRT of 2.90 days before washout was observed. In the UFAF reactor, the methane and biogas productionincreased with increasing OLR until an OLR of 7.50 g COD/l/day. However, the methane and biogas production significantly decreased when OLR increased up to 10.0 g COD/l/day. Therefore, the optimum OLR inthe laboratory-scale UASB and UFAF reactors were concluded to be 15.5 and 7.50 g COD/l/day, respectively.

  5. Experimental and kinetics study for phytoremediation of sugar mill effluent using water lettuce (Pistia stratiotes L.) and its end use for biogas production.

    Kumar, Vinod; Singh, Jogendra; Pathak, V V; Ahmad, Shamshad; Kothari, Richa

    2017-10-01

    In present study, the performance of phytoremediation by Pistia stratiotes on sugar mill effluent (SME) and its end use for biogas production are investigated. The objectives of the study are to determine the nutrient and pollution reduction efficiency of P. stratiotes from SME and evaluation of its biomass as a feedstock for biogas production. Various concentrations of SME (25, 50, 75, and 100%) were remediated by Pistia stratiotes (initial weight; 150 g) outdoor for 60 days under batch mode experimental setup. The results showed that P. stratiotes achieved marked reduction in nutrient (TKN, 72.86%; TP, 71.49%) and pollutant load (EC, 25.69%; TDS, 57.26%; BOD, 69.40%; COD, 61.80%; Ca 2+ , 56.79%; Mg 2+ , 55.01%; Na + , 42.86%; K + , 54.38%; MPN, 78.13%; SPC, 60.13%) from 75% SME at the end of the experiment. The highest biomass (328.48 ± 2.04 g) and chlorophyll content (3.62 ± 3.04 mg/g) were also achieved with 75% SME. The dried biomass of P. stratiotes (from 75% SME) was inoculated with cow dung (10% w/v) and diluted with distilled water (1:10). The whole content was used as a substrate for the biogas production within hydraulic retention time (HRT) of 30 days at room temperature. Substrate parameters such as pH, TS (%), COD (mg/L), TKN (%), TOC (%), VS (%), and C/N ratio were reduced from 7.85 to 6.0, 66.65 to 28.65%, 12,900 to 2800 mg/L, 0.95 to 0.75%, 45.54 to 19.5%, 76.87 to 28.78%, and 47.94 to 26.00, respectively, in 30 days of HRT. About 8478.6 mL of cumulative biogas production was evaluated by modified Gompertz equation. Thus, the present investigation not only achieved efficient nutrient and pollution reduction from SME but also proved the potential of P. stratiotes for biogas production.

  6. Estudio del efecto de la adición de alperujo sobre la persis­tencia de diuron en el cultivo del olivar Study of the effect of olive mill waste "alperujo" addition on the persis­tence of diuron in olive groves

    A. Cabrera

    2010-01-01

    Full Text Available El objetivo de este trabajo ha sido estu­diar el efecto de la aplicación de alperujo (residuo de almazara sobre la persisten­cia y el movimiento del herbicida diuron [3-(3,4-diclorofenil-1,1-dimetilurea] en un olivar en Mengíbar (Jaén, España. La parcela se dividió en 2 subparcelas, un en la que no se aplicó enmienda al suelo y otra donde se aplicó alperujo (18000 kg ha-1. Tras la aplicación del herbicida a una dosis de 2 kg/ha se tomaron muestras de suelo por triplicado en cada subparce­la, a distintas profundidades y distintos días desde la aplicación de diuron. Des­pués de secar, limpiar las muestras de sue-lo y tamizarlas, se procedió a la extrac­ción de diuron con metanol y se analizó por HPLC. Se observó una mayor canti­dad de diurón en el suelo enmendado que en el suelo no enmendado en todas las muestras. Sin embargo, la movilidad de diuron no aumentó con el tiempo en el suelo enmendado.The aim of this work was to study the ef­fect of "alperujo" (olive mill waste on the persistence and the mobility of the herbicide diuron [3-(3,4-dichlorophenyl-1,1-dime­thylurea] in an olive grove from Mengíbar (Jaén, Spain. The plot was divided in two subplots, one where no amendement was applied and another one where "alperujo" was applied to the soil (18.000 kg ha-1. Af­ter herbicide application at a rate of 2 kg/ha, three replicates of soil were sampled at each subplot, at different depths and different days after diuron application. After drying, cleaning and sieving samples diuron was extracted with methanol and the extracts were analyzed by HPLC. Higher amounts of diuron were recovered from amended soil than from non amended soil in every sam­ple. However, diuron mobility in amen-ded soil did not increase with time.

  7. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2006-01-01

    the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments...

  8. A thermophilic membrane bioreactor for treating and re-using paper mill effluent; Biorreactor de membrana termofilico para el tratamiento y reutilizacion de efluentes de papelera

    Lopetegui Garnika, J.; Sancho Seuma, L.; Abad Oliva, A.

    2002-07-01

    Thermophilic operation of a membrane bioreactor offers many advantages; biodegradation rates increase with temperature and flux is higher because of water viscosity decrease. Therefore,poor sttleability related to thermophilic sludges is solved by ultrafiltration and a suspended solids and turbidity free effluent is obtained. That suppose a wider range of applications interns of water reuse. (Author) 18 refs.

  9. 40 CFR 406.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    2010-07-01

    ... technology currently available. 406.32 Section 406.32 Protection of Environment ENVIRONMENTAL PROTECTION... Milling Subcategory § 406.32 Effluent limitations guidelines representing the degree of effluent reduction...

  10. 40 CFR 406.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    2010-07-01

    ... technology currently available. 406.42 Section 406.42 Protection of Environment ENVIRONMENTAL PROTECTION... Milling Subcategory § 406.42 Effluent limitations guidelines representing the degree of effluent reduction...

  11. 40 CFR 406.52 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    2010-07-01

    ... technology currently available. 406.52 Section 406.52 Protection of Environment ENVIRONMENTAL PROTECTION... Milling Subcategory § 406.52 Effluent limitations guidelines representing the degree of effluent reduction...

  12. Biological characterization of radiation exposure and dose estimates for inhaled uranium milling effluents. Annual progress report April 1, 1982-March 31, 1983

    Eidson, A.F.

    1984-05-01

    The problems addressed are the protection of uranium mill workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. A quantitative analytical method for yellowcake was developed based on the infrared absorption of ammonium diuranate and U 3 O 8 mixtures in KBr. The method was applied to yellowcake samples obtained from six operating mills. The composition of yellowcake from the six mills ranged from nearly pure ammonium diuranate to nearly pure U 3 O 8 . The composition of yellowcake samples taken from lots from the same mill was only somewhat less variable. Because uranium mill workers might be exposed to yellowcake either by contamination of a wound or by inhalation, a study of retention and translocation of uranium after subcutaneous implantation in rats was done. The results showed that 49% of the implanted yellowcake cleared from the body with a half-time (T sub 1/2) in the body of 0.3 days, and the remainder was cleared with a T sub 1/2 of 11 to 30 days. Exposures of Beagle dogs by nose-only inhalation to aerosols of commercial yellowcake were completed. Biochemical indicators of kidney dysfunction that appeared in blood and urine 4 to 8 days after exposure to the more soluble yellowcake showed significant changes in dogs, but levels returned to normal by 16 days after exposure. No biochemical evidence of kidney dysfunction was observed in dogs exposed to the less soluble yellowcake form. 18 figures, 9 tables

  13. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review.

    Şahin, Selin; Bilgin, Mehmet

    2018-03-01

    Research into finding new uses for by-products of table olive and olive oil industry are of great value not only to the economy but also to the environment where olives are grown and to the human health. Since leaves represent around 10% of the total weight of olives arriving at the mill, it is worth obtaining high added-value compounds from those materials for the preparation of dietary supplements, nutraceuticals, functional food ingredients or cosmeceuticals. In this review article, olive tree (Olea europaea L.) leaf is reviewed as being a potential inexpensive, renewable and abundant source of biophenols. The importance of this agricultural and industrial waste is emphasised by means of describing its availability, nutritional and therapeutic effects and studies conducted on this field. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Recovery of iron after Fenton-like secondary treatment of olive mill wastewater by nano-filtration and low-pressure reverse osmosis membranes; Recuperación de hierro tras tratamiento secundario tipo Fenton de agua residual de la industria oleícola por membranas de nanofiltración y ósmosis inversa de baja presión

    Ochando-Pulido, J.M.; Victor-Ortega, M.D.; Martinez-Ferez, A.

    2016-07-01

    In this work, the performances of novel nano-filtration (NF) and low-pressure reverse osmosis (RO) polymeric membranes were examined with the aim of recovering the iron used as catalyst in former secondary treatment based on the Fenton-like advanced oxidation of olive mill wastewater (OMW). Results highlight that both membranes exhibit a good performance towards the rejection of iron (99.1% for the NF membrane vs. 100% for the low-pressure RO membrane) in the secondary-treated OMW effluent, thus permitting the recovery of iron in the concentrate stream in order to recycle it back into the oxidation reactor to reduce catalyst consumption. Finally, the permeate streams could be re-used for irrigation. Major productivity was observed by the selected NF membrane, about 47.4 L/hm2 upon 9 bar, whereas 30.9 L/hm2 could be yielded with the RO membrane under an operating pressure of 8 bar. Moreover, a sensibly lower fouling index was measured on the NF membrane (0.0072 in contrast with 0.065), which ensures major steady-state performance on this membrane and a longer service lifetime. This also results in lower required membrane area and membrane plant over dimension (4 modules in case of RO operation whereas only 2 modules for NF). [Spanish] En este trabajo, se examinó el rendimiento de membranas modernas de nanofiltración (NF) y ósmosis inversa (OI) poliméricas con el objetivo de recuperar el hierro utilizado como catalizador en un tratamiento secundario previo de agua residual oleícola (OMW) basado en oxidación avanzada tipo Fenton. Los resultados ponen de relieven que ambas membranas exhiben buen rendimiento en cuanto al rechazo de hierro (99.1 % para la membrana de NF vs. 100 % para la membrana de OI de bajas presiones) en el efluente oleícola tras tratamiento secundario, permitiendo en consecuencia la recuperación de hierro en la corriente de concentrado para su recirculación de nuevo al reactor de oxidación para reducir el consumo de catalizador. Finalmente

  15. Biotreatment of paper mill effluent using alkaliphilic Rhizobium sp. NCIM 5590 isolated from meteoric alkaline Lonar Lake, Buldhana District, Maharashtra, India

    Raut, Avinash A.; Phugare, Swapnil S.; Kalyani, Dayanand C.

    2018-01-01

    Bacterial strain Rhizobium sp. was isolated from littoral soil of meteoric alkaline Lonar Lake and used to treat paper mill waste water. The bacterium was found to fix 125.7 nmol of C2H4 formed ml−1 culture media in 72 hr by ARA (acetylene reduction assay). The optimum pH for its growth was 12, w...... was studied using Allium cepa root cells, evaluating various biochemical parameters to assess the toxicity, including lipid peroxidation, protein oxidation, antioxidant enzyme status (catalase, superoxide dismutase) and genotoxicity assays using single cell gel electrophoresis (SCGE)....

  16. Removal of absorbable organic halides (aox) from recycled paper mill effluent using granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR)

    Mohamad, A.B.; Rahman, R.A.; Kadhum, A.A.H.; Abdullah, S.R.S.; Shaari, S.

    2006-01-01

    Paper mills generate varieties of pollutants depending upon the type of the pulping process. Paper mill wastewaters have high chemical oxygen demand (COD) and colour, indicating high concentrations of recalcitrant organics. The study was conducted employing a Granular Activated Carbon - Sequencing Batch Biofilm Reactor (GAC-SBBR), containing 3.0 L working volume, operated in aerobic condition and packed with 200 g/L of 2-3 mm granular activated carbon (coconut shells) as a medium for biofilm growth. For the first couple of month, the HRT was 36 hours and the HRT of this reactor was adjusted to 24 hours in order to evaluate the performance of the system. The treated wastewater sample for these studies came from a recycle paper factory from MNI Sdn Bhd with 4 different samples characteristics. The adsorbable organic halides (AOX) to be determined and treated were Pentachlorophenol (PCP), 2,3,4,5-Tetrachlorophenol (2,3,4,5-TeCP), 2,4,6-Trichlorophenol (2,4,6-TCP), 2,4-Dichlorophenol ( 2,4-DCP), 2-Chlorophenol (CP) and phenol. Results showed that, the biofilm attached onto granular activated carbon (GAC) could substantially remove these recalcitrant in the wastewater. More over, results from the studies showed that high removal was achieved by the biofilm SBR with 10-100% removal of AOX and depending on HRT. (Author)

  17. A MODELLING APPROACH TO EXTRA VIRGIN OLIVE OIL EXTRACTION

    Marco Daou

    2007-12-01

    Full Text Available In the present work is described a feasibility assessment for a new approach in virgin olive oil production control system. A predicting or simulating algorithm is implemented as artificial neural network based software, using literature found data concerning parameters related to olive grove, process, machine. Test and validation proved this tool is able to answer two different frequently asked questions by olive oil mill operators, using few agronomic and technological parameters with time and cost saving: – which quality level is up to oil extracted from defined olive lot following a defined process (predicting mode; – which process and machine parameters set would determine highest quality level for oil extracted from a defined olive lot (simulating mode.

  18. Near-infrared spectroscopy for detection of hailstorm damage on olive fruit

    A rapid, robust, unbiased and inexpensive discriminant method capable of classifying olive fruit (Olea europaea L.) on the basis of the presence of hailstorm damage is economically important to the olive oil milling industry. Thus, in the present study, the feasibility of Near-Infrared (NIR) spectro...

  19. Ethanol production from lignocellulosic byproducts of olive oil extraction.

    Ballesteros, I; Oliva, J M; Saez, F; Ballesteros, M

    2001-01-01

    The recent implementation of a new two-step centrifugation process for extracting olive oil in Spain has substantially reduced water consumption, thereby eliminating oil mill wastewater. However, a new high sugar content residue is still generated. In this work the two fractions present in the residue (olive pulp and fragmented stones) were assayed as substrate for ethanol production by the simultaneous saccharification and fermentation (SSF) process. Pretreatment of fragmented olive stones by sulfuric acid-catalyzed steam explosion was the most effective treatment for increasing enzymatic digestibility; however, a pretreatment step was not necessary to bioconvert the olive pulp into ethanol. The olive pulp and fragmented olive stones were tested by the SSF process using a fed-batch procedure. By adding the pulp three times at 24-h intervals, 76% of the theoretical SSF yield was obtained. Experiments with fed-batch pretreated olive stones provided SSF yields significantly lower than those obtained at standard SSF procedure. The preferred SSF conditions to obtain ethanol from olives stones (61% of theoretical yield) were 10% substrate and addition of cellulases at 15 filter paper units/g of substrate.

  20. Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery context

    Paloma Manzanares

    2017-12-01

    Full Text Available Olive crop and olive oil industry generates several residues, i.e., olive tree pruning biomass (OTPB, extracted olive pomace (EOP and olive leaves (OL that could be used to produce high-added value products in an integrated biorefinery. OTPB is generated in the field as a result of pruning operation to remove old branches; EOP is the main residue of the pomace olive oil extracting industry after extraction with hexane of residual oil contained in olive pomace; and OL comes from the olive cleaning process carried out at olive mills, where small branches and leaves are separated by density. In this work, an analysis of the potential of OTPB, EOP and OL residues was addressed by estimating the production volumes at national level and the spatial distribution of these residues using geographic information system software. Information provided by public institutions and personal surveys to the industries was evaluated. Moreover, chemical analysis of the residues was undertaken and the results used to make a first assessment of valorization into biofuels such as bioethanol and bio based chemicals. Results show that close to 4.2 million tons/year of EOP, OL and OTPB derived from olive oil industry and olive tree cultivation in Spain could be available as a raw material for biorefineries in Spain. The analysis of the chemical characteristics indicates the relevant potential of these feedstocks for the production of bioethanol and other compounds such as phenols based on suitable processing and conversion routes, although techno-economic evaluations must be tackled to refine this approach.

  1. Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery contex

    Manzanares, P.; Ruiz, E.; Ballesteros, M.; Negro, M.J.; Gallego, F.J.; López-Linares, J.C.; Castro, E.

    2017-07-01

    Olive crop and olive oil industry generates several residues, i.e., olive tree pruning biomass (OTPB), extracted olive pomace (EOP) and olive leaves (OL) that could be used to produce high-added value products in an integrated biorefinery. OTPB is generated in the field as a result of pruning operation to remove old branches; EOP is the main residue of the pomace olive oil extracting industry after extraction with hexane of residual oil contained in olive pomace; and OL comes from the olive cleaning process carried out at olive mills, where small branches and leaves are separated by density. In this work, an analysis of the potential of OTPB, EOP and OL residues was addressed by estimating the production volumes at national level and the spatial distribution of these residues using geographic information system software. Information provided by public institutions and personal surveys to the industries was evaluated. Moreover, chemical analysis of the residues was undertaken and the results used to make a first assessment of valorization into biofuels such as bioethanol and bio based chemicals. Results show that close to 4.2 million tons/year of EOP, OL and OTPB derived from olive oil industry and olive tree cultivation in Spain could be available as a raw material for biorefineries in Spain. The analysis of the chemical characteristics indicates the relevant potential of these feedstocks for the production of bioethanol and other compounds such as phenols based on suitable processing and conversion routes, although techno-economic evaluations must be tackled to refine this approach.

  2. Effect of washing on pesticide residues in olives.

    Guardia-Rubio, M; Ayora-Cañada, M J; Ruiz-Medina, A

    2007-03-01

    The present work aims at contributing to the knowledge of the fate of 5 pesticides in olives in order to evaluate how washing may affect the presence of these residues in this fruit (and consequently in olive oil). For this purpose, olives were sprayed with commercial formulations containing the active ingredients and a series of analyses were performed for 64 d by using gas chromatography with mass spectrometric detection. Selected pesticides, ranked by their importance, were diuron, terbuthylazine, simazine, alpha-endosulfan, and beta-endosulfan. The pesticide fraction, which was not removable from olives by washing, increased with time after treatment until their degradation started at week 6. Washing performed 1 d after treatment was the most effective in reducing residues, especially for simazine. Consequently, the washing step performed in olive mills could be effective in removing those herbicide residues present in olives as a consequence of contact with contaminated soil for a short time. This happens when olives are dropped and harvested off the ground by means of brushes or suction equipment.

  3. Environmental planning in uranium milling

    Bertello, L.F.

    1987-01-01

    Effluents from uranium milling in the Achala region in the province of Cordoba are studied. Liquids from lixiviation-recovery and from precipitation-washing of yellow-cake were analyzed. Separation of both liquids before treatment and disposal is recommended. Data of the hydric environment are presented specially for volumes of flow. The disposal criteria established by the provincial authorities are presented, and discussed. Calculations to define the effects on the environment of two types of effluents (the leaching effluent without treatment and the same after treating it) on two points of the rivers net, are given and the results discussed. A disposal policy for a treated effluent of mean composition is presented, based on two different amounts for the two phases of the river flux; the possible effects on two points of the net were also calculated. In the author's opinion, such policy will result in a disposal without a sensible damage in the receptor. (Author) [es

  4. Use of Bacillus pumilus CBMAI 0008 and Paenibacillus sp. CBMAI 868 for colour removal from paper mill effluent Emprego de Bacillus pumilus CBMAI 0008 e Paenibacillus sp. CBMAI 868 para remoção da cor do efluente da indústria papeleira

    Patrícia Lopes de Oliveira

    2009-06-01

    Full Text Available Bacillus pumilus and Paenibacillus sp. were applied on the paper mill effluent to investigate the colour remotion. Inocula were individually applied in effluent at pH 7.0, 9.0 and 11.0. The real colour and COD remotion after 48h at pH 9.0 were, respectively, 41.87% and 22.08% for B. pumilus treatment and 42.30% and 22.89% for Paenibacillus sp. Gel permeation chromatography was used to verify the molar masses of compounds in the non-treated and treated effluent, showing a decrease in the compounds responsible for the paper mill effluent colour.Bacillus pumilus e Paenibacillus sp. foram aplicados separadamente no efluente da indústria papeleira a pH 7,0, 9,0 e 11,0, para verificação da remoção da cor e da DQO. As remoções da cor real e DQO após 48h a pH 9,0 foram, respectivamente, de 41,87% e 22,08% após o tratamento com B. pumilus e 42,30% e 22,89% após tratamento com Paenibacillus sp. As massas molares dos compostos presentes no efluente não tratado e tratado foram determinadas por cromatografia de permeação em gel. O emprego dos microrganismos reduziu os compostos responsáveis pela cor do efluente da indústria papeleira.

  5. Use of Olive Oil Industrial By-Product for Pasta Enrichment.

    Padalino, Lucia; D'Antuono, Isabella; Durante, Miriana; Conte, Amalia; Cardinali, Angela; Linsalata, Vito; Mita, Giovanni; Logrieco, Antonio F; Del Nobile, Matteo Alessandro

    2018-04-16

    During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. The goal of the study was to optimize, from both sensory and nutritional points of view, the formulation of durum wheat spaghetti enriched with an olive oil industrial by-product, indicated as olive paste. Three consecutive steps were carried out. In the first one, the olive paste was air-dried at low temperature, milled to record olive paste flour and properly analyzed for its biochemical composition. In the second step, the olive paste flour was added to the pasta dough at 10% and 15% ( w / w ). In the last step, different concentrations of transglutaminase were added to enriched pasta (10% olive paste) to further improve the quality. Sensory properties and nutritional content of enriched and control pasta were properly measured. Spaghetti with 10% olive paste flour and 0.6% transglutaminase were considered acceptable to the sensory panel test. Nutritional analyses showed that addition of 10% olive paste flour to pasta considerably increased content of flavonoids and total polyphenols. The proper addition of olive paste flour and transglutaminase for pasta enrichment could represent a starting point to valorize olive oil industrial by-products and produce new healthy food products.

  6. (EFB)-palm oil mill effluent

    Jane

    2011-06-15

    Jun 15, 2011 ... decomposed by a combination of physical, chemical and biological processes. ... shade and cement base area. Brick blocks with length of ..... Elemental compositions, FT-IR spectra and thermal behavior of sedimentary fulvic ...

  7. (EFB) and palm oil mill effluent (POME)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... The fungal strain of T. virens was procured from Universiti. Kebangsaan Malaysia (UKM). The fungal culture was maintained by subculturing it on potato dextrose agar and keeping it at room temperature for 7 days. Lignocellulosic content. Lignocellulosic content was analysed using Datta's method (1981).

  8. ISOLATION AND IDENTIFICATION OF LIPASE-PRODUCING FUNGI FROM LOCAL OLIVE OIL MANUFACTURE IN EAST OF ALGERIA

    ALIMA RIHANI

    2018-03-01

    Full Text Available The main objective of this work was primary screening and isolation of lipase-producing microorganisms from oil-mill waste. For the screening of fungal strains with lipolytic activity, we employed a sensitive agar plate method, using a medium supplemented with CaCl2 and Tween 80. Another Tributyrin lipase activity was detected from clearing zones due to the hydrolysis of the triacylglycerols. The evolution of biomass and enzyme production has been assayed. A quantitative analysis of lipase activity was performed by the titration method using olive oil as a substrate supplemented with glucose or Tween 80. We have isolated some lipolytic strains from oil-mill effluent. Three of them were found to be excellent lipase producers that were identified as Penicillium sp, Aspergillus fumigatus and Aspergillus terreus. Lipolytic activity and biomass were enhanced in the medium supplemented by glucose. Tween 80 is also considered as a best inducer at the concentration of 1 %. In this condition, these isolates showed maximum lipase production within 24 h; achieved (3.91 IU‧mL-1 ± 0.12 for Penicillium sp.

  9. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols.

    Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-06-05

    This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.

  10. Palm Oil Milling Wastes and Sustainable Development

    A. C. Er; Abd. R.M. Nor; Katiman Rostam

    2011-01-01

    Problem statement: Palm oil milling generates solid wastes, effluent and gaseous emissions. The aim of this study is to assess the progress made in waste management by the Malaysian palm oil milling sector towards the path of sustainable development. Sustainable development is defined as the utilization of renewable resources in harmony with ecological systems. Inclusive in this definition is the transition from low value-added to higher value-added transformation of waste...

  11. Effect of three types of composts of olive oil by-products on growth ...

    Indeed, the use of this compost as biofertilizer allowed an increase of the yield to 30.61% and an improvement of wheat growth, spikes' number (5.25±0.3 per plant in comparison with 1±0.09 for control) and seeds (57.12±0.99 per plant in comparison with 14.87±1.88 for control). Keywords: Compost, Olive husks, olive mill ...

  12. Effluent Guidelines

    Effluent guidelines are national standards for wastewater discharges to surface waters and municipal sewage treatment plants. We issue the regulations for industrial categories based on the performance of treatment and control technologies.

  13. Physico-chemical and toxicological assessment of liquid wastes from olive processing-related industries.

    Pierantozzi, Pierluigi; Zampini, Catiana; Torres, Mariela; Isla, María I; Verdenelli, Romina A; Meriles, José M; Maestri, Damián

    2012-01-30

    In the last few years, agricultural uses of waste waters from olive processing-related industries have been gaining interest mainly with a view to composting or bio-fertilizers. The present work examines physico-chemical, toxicological and geno-toxicological properties of three liquid wastes, namely olive mill wastewater (OMWW), olive wet husk and olive brine. The effect of OMWW spreading on soil microbial activity and biomass was also evaluated. Data from Artemia salina and Lactuca sativa toxicity tests indicated high levels of lethality, and inhibitory effects on seed germination and seedling growth of all olive wastes. The genotoxicity assays using Allium cepa tests showed contrasting results. At high concentrations, olive wastes caused inhibition or suppression of mitosis. However, they did not produce induced anaphase aberrations. Data on reversion of Salmonella thyphimurium strains using the Ames test indicated that the olive wastes did not present mutagenic activity. Results from the field experiment showed that OMWW at a 500 m(3) ha(-1) had the highest values of both soil microbial activity and biomass after 3 months of the amendment application. This work adds new data for environmental risk assessment of olive industrial wastes. Direct use of olive wastes for agricultural purposes should be limited owing to their possible chemotoxic, phytotoxic and antimicrobial effects. Copyright © 2011 Society of Chemical Industry.

  14. Anaerobic Treatment of Cane Sugar Effluent from Muhoroni Sugar ...

    It was therefore concluded that anaerobic treatment, particularly with pH control and seeding shows potential in first stage management of sugar mill wastewater. Keywords: cane sugar mill effluent, anaerobic treatment, batch reactor, waste stabilization ponds. Journal of Civil Engineering Research and Practice Vol.

  15. Improvements in the malaxation process to enhance the aroma quality of extra virgin olive oils.

    Reboredo-Rodríguez, P; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J

    2014-09-01

    The influence of olive paste preparation conditions on the standard quality parameters, as well as volatile profiles of extra virgin olive oils (EVOOs) from Morisca and Manzanilla de Sevilla cultivars produced in an emerging olive growing area in north-western Spain and processed in an oil mill plant were investigated. For this purpose, two malaxation temperatures (20/30 °C), and two malaxation times (30/90 min) selected in accordance with the customs of the area producers were tested. The volatile profile of the oils underwent a substantial change in terms of odorant series when different malaxation parameters were applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Recycling and reuse of wastewater from uranium mining and milling

    Xu Lechang; Gao Jie; Zhang Xueli; Wei Guangzhi; Zhang Guopu

    2010-01-01

    Uranium mining/milling process, and the sources, recycling/reuse approach and treatment methods of process wastewater are introduced. The wastewater sources of uranium mining and milling include effluent, raffinate, tailings water, mine discharge, resin form converted solution, and precipitation mother liquor. Wastewater can be recycled/reused for leachant, eluent, stripping solution,washing solution and tailings slurry. (authors)

  17. Acephate and buprofezin residues in olives and olive oil.

    Cabras, P; Angioni, A; Garau, V L; Pirisi, F M; Cabitza, F; Pala, M

    2000-10-01

    Field trials were carried out to study the persistence of acephate and buprofezin on olives. Two cultivars, pizz'e carroga and pendolino, with very large and small fruits respectively were used. After treatment, no difference was found between the two pesticide deposits on the olives. The disappearance rates, calculated as pseudo first order kinetics, were similar for both pesticides (on average 12 days). Methamidophos, the acephate metabolite, was always present on all olives, and in some pendolino samples it showed higher residues than the maximum residue limit (MRL). During washing, the first step of olive processing, the residue level of both pesticides on the olives did not decrease. After processing of the olives into oil, no residues of acephate or methamidophos were found in the olive oil, while the residues of buprofezin were on average four times higher than on olives.

  18. Taggiasca extra virgin olive oil colonization by yeasts during the extraction process.

    Ciafardini, G; Cioccia, G; Zullo, B A

    2017-04-01

    The opalescent appearance of the newly produced olive oil is due to the presence of solid particles and microdrops of vegetation water in which the microorganisms from the olives' carposphere are trapped. Present research has demonstrated that the microbiota of the fresh extracted olive oil, produced in the mills, is mainly composed of yeasts and to a lesser extent of molds. The close link between the composition of the microbiota of the olives' carposphere undergoing to processing, and that of the microbiota of the newly produced olive oil, concerns only the yeasts and molds, given that the bacterial component is by and large destroyed mainly in the kneaded paste during the malaxation process. Six physiologically homogenous yeast groups were highlighted in the wash water, kneaded paste and newly produced olive oil from the Taggiasca variety which had been collected in mills located in the Liguria region. The more predominant yeasts of each group belonged to a single species called respectively: Kluyveromyces marxianus, Candida oleophila, Candida diddensiae, Candida norvegica, Wickerhamomyces anomalus and Debaryomyces hansenii. Apart from K. marxianus, which was found only in the wash water, all the other species were found in the wash water and in the kneaded paste as well as in the newly produced olive oil, while in the six-month stored olive oil, was found only one physiologically homogeneous group of yeast represented by the W. anomalus specie. These findings in according to our previous studies carried out on other types of mono varietal olive oils, confirms that the habitat of the Taggiascas' extra virgin olive oil, had a strong selective pressure on the yeast biota, allowing only to a few member of yeast species, contaminating the fresh product, to survive and reproduce in it during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effluent standards

    Geisler, G C [Pennsylvania State University (United States)

    1974-07-01

    At the conference there was a considerable interest in research reactor standards and effluent standards in particular. On the program, this is demonstrated by the panel discussion on effluents, the paper on argon 41 measured by Sims, and the summary paper by Ringle, et al. on the activities of ANS research reactor standards committee (ANS-15). As a result, a meeting was organized to discuss the proposed ANS standard on research reactor effluents (15.9). This was held on Tuesday evening, was attended by members of the ANS-15 committee who were present at the conference, participants in the panel discussion on the subject, and others interested. Out of this meeting came a number of excellent suggestions for changes which will increase the utility of the standard, and a strong recommendation that the effluent standard (15.9) be combined with the effluent monitoring standard. It is expected that these suggestions and recommendations will be incorporated and a revised draft issued for comment early this summer. (author)

  20. 40 CFR 406.10 - Applicability; description of the corn wet milling subcategory.

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the corn wet milling subcategory. 406.10 Section 406.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling...

  1. 40 CFR 406.20 - Applicability; description of the corn dry milling subcategory.

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the corn dry milling subcategory. 406.20 Section 406.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Dry Milling...

  2. Matter transfer during virgin olive oil elaboration

    Gómez Herrera, Carlos

    2007-06-01

    Full Text Available In the course of the process of elaboration of virgin olive oil (whose main stages are crushing, malaxation and centrifugation the transfer of several minor components to the triacylglycerol constituent of the oily globules originally present in the cells of the fruit mesocarp is produced. Such minor components are chemical species present in the olive fruits, as well as those resulting from chemical or enzymatic processes which take place in the olive paste upon crushing. In this paper several types of transferable minor components, as well as those parameters affecting the rates of transfer are studied.Geometric and physical variations of interfacial regions between the oil and other systems in contact with it are discussed. These systems are olive vegetation water, olive pulp components, and fragments of the woody endocarp, as well as the atmospheric air and the tools and equipment of the oil mill.This article concludes with some considerations about the improvements of virgin olive oils achieved by controlling the transfer of minor components.Durante la elaboración del aceite de oliva virgen (cuyas principales etapas son molturación, batido y centrifugación se producen transferencias de diversos componentes menores a los triacilgliceroles originalmente presentes en los glóbulos oleosos de las células del mesocarpio de los frutos. Estos componentes menores son especies químicas presentes en las aceitunas, así como especies resultantes de procesos químicos o enzimáticos que se producen en la pasta a partir de la molturación. En este artículo se estudian diversos tipos de componentes menores transferibles, así como aquellos parámetros que afectan sus velocidades de transferencia.Se discuten las variaciones geométricas y físicas de las regiones interfaciales situadas entre el aceite y los otros sistemas en contacto con el mismo. Estos sistemas son el agua de vegetación, los componentes de la pulpa y los fragmentos de endocarpio

  3. Screening for crude oil degrading bacteria in liquid organic waste (effluent samples)

    Akpe, A.R.

    2014-01-01

    The screening for crude oil degrading bacteria in some liquid organic wastes (cassava mill effluents, rubber effluents and oil palm mill effluents) was carried out. Hydrocarbon utilising bacteria were isolated on mineral salt agar using vapour phase technique. The samples yielded 20 bacterial isolates from 13 different genera. Cassava mill effluent and rubber effluent had the highest number (7), while oil palm effluent had the least number (6) of bacterial isolates. The isolates that had the highest occurrence (occurring in all samples) were Pseudomonas aeruginosa and Escherichia coli. Of these 13 genera 9 were gram negative, while only 4 were gram positive. The total heterotrophic bacterial (THB) count and total hydrocarbon utilisers (THU) from all the effluent samples ranged from 3.0 * 10/sup 4/ to 6.0* 10/sup 7/ cfu/mL and 2.3 *10/sup 2/ to 4.2*10/sup 3/ cfu/mL, respectively. The counts of hydrocarbon utilisers were obviously lower than the heterotrophic counts, although the differences in counts were found to be statistically non-significant (P > 0.05). Rubber effluents and oil palm mill effluents had the highest number of hydrocarbon utilisers with three isolates each. The active hydrocarbon utilisers encountered in this study included Serratia marscescens, Bacillus cereus, P. aeruginosa, Enterobacter aerogenes and Bacillus subtilis. Presence of nutrients and crude oil degrading bacteria in these effluents suggests that these effluents can be used to enhance bioremediation through their use as biostimulation and bioaugmentation agents. (author)

  4. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle for use in establishing ''as low as practicable'' guides: milling of uranium ores

    Sears, M.B.; Blanco, R.E.; Dahlman, R.C.; Hill, G.S.; Ryon, A.D.; Witherspoon, J.P.

    1975-05-01

    A cost-benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from model uranium ore processing mills, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as practicable'' in relation to limiting the release of radioactive materials from nuclear facilities. The base case model mills are representative of mills which will process a major fraction of the ore in the next 20 years. Each mill processes 2,000 short tons of ore per day. Additional radwaste treatment techniques are applied to the base case mill and the waste tailings area in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration and is not suitable for immediate use. The methodology used in estimating the costs, detailed calculations, and tabulations are presented in ORNL-TM-4903, Volume 2. The methodology and assumptions for the radiological doses are found in ORNL-4992. (U.S.)

  5. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation.

    Leite, Paulina; Salgado, José Manuel; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2016-08-01

    Olive mills generate a large amount of waste that can be revaluated. This work aim to improve the production lignocellulolytic enzymes by solid-state fermentation using ultrasounds pretreated olive mill wastes. The composition of olive mill wastes (crude and exhausted olive pomace) was compared and several physicochemical characteristics were significantly different. The use of both wastes in SSF was evaluated and a screening of fungi for xylanase and cellulase production was carried out. After screening, the use of exhausted olive pomace and Aspergillus niger led to the highest enzyme activities, so that they were used in the study of ultrasounds pre-treatment. The results showed that the sonication led to a 3-fold increase of xylanase activity and a decrease of cellulase activity. Moreover, the liquid fraction obtained from ultrasounds treatment was used to adjust the moisture of solid and a positive effect on xylanase (3.6-fold increase) and cellulase (1.2-fold increase) production was obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Thin layer drying kinetics of by-products from olive oil processing.

    Montero, Irene; Miranda, Teresa; Arranz, Jose Ignacio; Rojas, Carmen Victoria

    2011-01-01

    The thin-layer behavior of by-products from olive oil production was determined in a solar dryer in passive and active operation modes for a temperature range of 20-50 °C. The increase in the air temperature reduced the drying time of olive pomace, sludge and olive mill wastewater. Moisture ratio was analyzed to obtain effective diffusivity values, varying in the oil mill by-products from 9.136 × 10(-11) to 1.406 × 10(-9) m(2)/s in forced convection (m(a) = 0.22 kg/s), and from 9.296 × 10(-11) to 6.277 × 10(-10) m(2)/s in natural convection (m(a) = 0.042 kg/s). Diffusivity values at each temperature were obtained using the Fick's diffusion model and, regardless of the convection, they increased with the air temperature. The temperature dependence on the effective diffusivity was determined by an Arrhenius type relationship. The activation energies were found to be 38.64 kJ/mol, 30.44 kJ/mol and 47.64 kJ/mol for the olive pomace, the sludge and the olive mill wastewater in active mode, respectively, and 91.35 kJ/mol, 14.04 kJ/mol and 77.15 kJ/mol in natural mode, in that order.

  7. Impact of microwave pre-treatment on the batch anaerobic digestion of two-phase olive mill solid residue: a kinetic approach; Impacto del pretratamiento con microondas sobre la digestión anaerobia en régimen discontinuo de residuos sólidos de almazaras de dos fases: un enfoque cinético

    Rincon, B.; Gonzalez de Canales, M.; Martin, A.; Borja, R.

    2016-07-01

    The effect of a microwave (MW) pre-treatment on two-phase olive mill solid residue (OMSR) or alperujo with a view to enhancing its anaerobic digestibility was studied. The MW pre-treatment was carried out at a power of 800 W and at a targeted temperature of 50 °C using different heating rates and holding times. The following specific energies were applied: 4377 kJ·kg TS−1 (MW1), 4830 kJ·kg TS−1 (MW2), 7170 kJ·kg TS−1 (MW3) and 7660 kJ·kg TS−1 (MW4). The maximum methane yield, 395±1 mL CH4·g VSadded−1, was obtained for MW4. The effect of the pre-treatment on the kinetics of the process was also studied. The methane production curves generated during the batch tests showed a first exponential stage and a second sigmoidal stage for all the cases studied. In the first stage, the kinetic constant for the pre-treatment MW1 was 54.8% higher than that obtained for untreated OMSR. [Spanish] El efecto del pretratamiento con microondas (MW) sobre el residuo semisólido procedente de la elaboración del aceite de oliva por el sistema de dos fases o alperujo fue estudiado con el objeto de aumentar su digestibilidad anaerobia. El pretratamiento fue llevado a cabo a una potencia de 800W y a una temperatura de 50 °C empleándose distintas velocidades de calentamiento así como diferentes tiempos de espera para obtener dichas condiciones. Las siguientes energías específicas fueron aplicadas: 4377 kJ·kg TS−1 (MW1), 4830 kJ·kg TS−1 (MW2), 7170 kJ·kg TS−1 (MW3) y 7660 kJ·kg TS−1 (MW4). El máximo rendimiento 395±1 mL CH4·g SVañadidos −1 se obtuvo para MW4. El efecto del pretratamiento en la cinética del proceso también fue estudiado. Las curvas de producción de metano durante los ensayos mostraron una etapa exponencial y una sigmoidal en todos los casos. En la primera etapa, la constante cinética para MW1 fue 54.8% mayor que la obtenida para el alperujo sin pretratar.

  8. Olive oil and pomace olive oil processing

    Siragakis, George

    2006-03-01

    Full Text Available Olive oil processing is introduced in food industry at the end of the nineteenth century and a lot of improvements have been initialized since. The steps for refining are, settling, neutralizing, bleaching and deodorizing. Monitoring of effective refining and the use of processes that remove less minor components of olive oil, like polyphenols and tocopherols are some issues for the process. The stringent environmental requirements and the target of industry for continuous improvements and cost savings, forcing equipment manufacturers to innovations and new products. The complete removal of polycyclic aromatic hydrocarbons during pomace oil process and the utilization of distillates are also important areas for research and development.El procesado del aceite de oliva se introdujo en la industria alimentaria a finales del siglo diecinueve y desde entonces se han realizado considerables mejoras. Los pasos de refinación son: decantado, neutralización, decoloración, y desodorización. La monitorización de una refinación efectiva así como el uso de procesos que eliminen una menor proporción de componentes menores del aceite de oliva, tales como polifenoles y tocoferoles, son algunos de los objetivos del proceso. La rigurosa normativa medioambiental y el interés de la industria por introducir mejoras y ahorro de costes han forzado a los fabricantes de equipos a innovar y desarrollar nuevos productos. La eliminación completa de los hidrocarburos aromáticos policíclicos durante el refinado del aceite de orujo y la utilización de los destilados son también áreas importantes de investigación y desarrollo.

  9. Treatment of effluents in uranium industry

    Ghosh, S.K.

    2009-01-01

    Uranium processing technology in India has matured in the last 50 years and is able to meet the country's requirement. Right from mining of the ore to milling and refining, effluents are generated and are being processed for their safe disposal. While the available technology is able to meet the regulatory limits of the effluents, the same may not be enough to meet the increased demand of uranium in the future. The increased population, urbanization and climate change are not only going to decrease the supply of process water but will also place increased restrictions on disposal to environment. This demands technologies that will generate less effluent for disposal and enable reuse and recycle concept to the extent possible. Presently used conventional physical-chemical methods, to contain the contaminants would, therefore, require further refinements. Contaminants like sulfates, chlorides etc in the effluent of uranium mill based on acid leach process are the concerns for the future plants. Hence, there is an urgent need for development of suitable methods for maximum recycle of the process effluents, which will also enable in minimizing the consumption of process water. A suitable membrane based process can be an option leaving a concentrated brine for reuse or for further treatment and disposal

  10. High-yield pulping effluent treatment technologies

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  11. Study on Olive Oil Wastewater Treatment: Nanotechnology Impact

    Nika Gholamzadeh

    2016-11-01

    Full Text Available The olive mill wastewater (OMW is generated from olive oil extraction in olive mills. It contains a very high organic load and considerable quantities of phytotoxicity compounds. Comprehensive articles with different methods have been published about the treatment of OMW. This paper reviews the recent reports on the variety methods of OMW treatment. Biological process, containing aerobic pre-treatment by using different cultures and anaerobic co-digestion with other sewage and also added external nutrient with optimum ratio attracted much attention in the treatment of OMW. However, advanced oxidation process (AOP due to the high oxidation potential which causes destruction of organic pollutants, toxic and chlorinated compounds have been considered. Furthermore, membrane technologies consist of microfiltration, ultrafiltration and especially nanofiltrationin wastewater treatment are growing in recent years. They offer high efficiency and mediocre investments owing to novel membrane materials, membrane design technics, module figures and improvement of the skills. In addition, fouling reduces the membrane performances in time, which is a main problem of cost efficiency.

  12. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration.

    Vietina, Michelangelo; Agrimonti, Caterina; Marmiroli, Nelson

    2013-12-15

    Extra virgin olive oil is frequently subjected to adulterations with addition of oils obtained from plants other than olive. DNA analysis is a fast and economic tool to identify plant components in oils. Extraction and amplification of DNA by PCR was tested in olives, in milled seeds and in oils, to investigate its use in olive oil traceability. DNA was extracted from different oils made of hazelnut, maize, sunflower, peanut, sesame, soybean, rice and pumpkin. Comparing the DNA melting profiles in reference plant materials and in the oils, it was possible to identify any plant components in oils and mixtures of oils. Real-Time PCR (RT-PCR) platform has been added of the new methodology of high resolution melting (HRM), both were used to analyse olive oils mixed with different percentage of other oils. Results showed HRM a cost effective method for efficient detection of adulterations in olive oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Oliver St John Gogarty.

    Clarke, R W

    1997-01-01

    Oliver St John Gogarty--Otolaryngologist to fashionable Edwardian Dublin--was a distinguished poet and a Senator in the fledgling Irish Free State after its establishment in 1922. He numbered amongst his acquaintances the poet William Butler Yeats, the novelist James Joyce and a host of political and literary persona who helped to shape modern Ireland. He was satirised as 'stately plump Buck Mulligan' in Joyce's novel Ulysses.

  14. Olive oil and cancer

    Muriana, Francisco J.G.; Abia, Rocío; Bermúdez, Beatriz; Pacheco, Yolanda M.; López, Sergio

    2004-01-01

    In the last years, numerous studies have examined the association of dietary fat and cancer. Polyunsaturated fatty acids (PUFA) from n -6 family display a strong promoting effect, this may be partially due to the especially prone to lipid peroxidation of PUFA that leads to formation of aldehydes, which react with DNA bases, forming genotoxic exocyclic etheno(epsilon)-adducts. On the contrary, there are growing evidences that monounsaturated oils, like olive oil, may be associated with a decre...

  15. Comamonas sp. EB172 isolated from digester treating palm oil mill ...

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... palm oil mill effluent as potential polyhydroxyalkanoate ... Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, ... industry is actively looking for ways to minimize the ... methane gas.

  16. Comamonas sp. EB172 isolated from digester treating palm oil mill ...

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... palm oil mill effluent as potential polyhydroxyalkanoate. (PHA) producer ... modifications to old ones to reduce the environmental impact of ... In this study, sludge was obtained from open digester tank (ODT) treating POME at ...

  17. Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage

    Masindi, Vhahangwele

    2015-12-01

    Full Text Available The feasibility of using vibratory ball milled South African bentonite clay for neutralization and attenuation of inorganic contaminants from acidic and metalliferous mine effluents has been evaluated. Treatment of acid mine drainage (AMD...

  18. Uranium milling costs

    Coleman, R.B.

    1980-01-01

    Basic process flowsheets are reviewed for conventional milling of US ores. Capital costs are presented for various mill capacities for one of the basic processes. Operating costs are shown for various mill capacities for all of the basic process flowsheets. The number of mills using, or planning to use, a particular process is reviewed. A summary of the estimated average milling costs for all operating US mills is shown

  19. 75 FR 22363 - United States Standards for Grades of Olive Oil and Olive-Pomace Oil

    2010-04-28

    ... it as extra virgin olive oil at a premium price. The petitioners requested that the U.S. grade... requirements. The virgin olive oil category, which includes extra virgin olive oil, is unprocessed. Olive oil...: Section 52.1539, Aspect at 20 degrees after 24 hours. Extra virgin and virgin olive oils can be filtered...

  20. Fate and Prediction of Phenolic Secoiridoid Compounds throughout the Different Stages of the Virgin Olive Oil Making Process.

    Fregapane, Giuseppe; Salvador, M Desamparados

    2017-08-03

    The evolution of the main phenolic secoiridoid compounds throughout the different stages of the virgin olive oil making process-crushing, malaxation and liquid-solid separation-is studied here, with the goal of making possible the prediction of the partition and transformation that take place in the different steps of the process. The concentration of hydroxytyrosol secoiridoids produced under the different crushing conditions studied are reasonably proportional to the intensity of the milling stage, and strongly depend on the olive variety processed. During malaxation, the content of the main phenolic secoiridoids is reduced, especially in the case of the hydroxytyrosol derivatives, in which a variety-dependent behaviour is observed. The prediction of the concentration of phenolic secoiridoids finally transferred from the kneaded paste to the virgin olive oil is also feasible, and depends on the phenolic content and amount of water in the olive paste. The determination of the phenolic compounds in the olive fruit, olive paste and olive oil has been carried out by LC-MS (Liquid-Chromatography Mass-Spectrometry). This improved knowledge could help in the use of more adequate processing conditions for the production of virgin olive oil with desired properties; for example, higher or lower phenolic content, as the amount of these minor components is directly related to its sensory, antioxidant and healthy properties.

  1. Characterization and seasonal variation of the quality of virgin olive oil of the Throumbolia and Koroneiki varieties from Southern Greece

    Vekiari, S. A.; Oreopoulou, V.; Kourkaoutas, Y.; Kamoun, N.; Msallem, M.; Psimouli, V.; Arapoglou, D.

    2010-07-01

    Extra virgin olive oil was produced from olives of the two main varieties cultivated in the region of Rhytmaton in the Greek island of Crete named Throumbolia, and Koroneiki. The former is very famous due to the natural way of fruit debittering, while the latter is the most common olive variety cultivated in Northern Greece. The olives were harvested at three successive stages of ripening according to their skin color and the extra virgin olive oil was extracted using an experimental olive oil extraction mill at 30 degree centigrade. Peroxide value, UV absorption, acidity, fatty acid content and total polyphenols were measured and the contents of tyrosol, hydroxytyrosol 3,4- DHPEA-EDA, p-HPEA-EDA and 3,4-DHPEA-EA were determined by HPLC. The sterol fraction and the volatile component profile were determined by GC and SPME GC/MS, respectively. Throumbolia olive oil presented an extremely higher content of {beta}-sitosterol and linoleic acid (n6) in comparison to the Koroneiki variety. The concentration of linoleic acid decreased in olive oils produced from both varieties in contrast to oleic acid which increased at the same time. Furthermore, the content of OH-tyrosol was higher, while the content of 3, 4-DHPEA-EDA and the total polyphenols was lower in Throumbolia olive oil than in olive oil produced from the Koroneiki variety. In general, significant differences were observed in all parameters between the olive oils produced from the two varieties during different stages of maturation. (Author) 41 refs.

  2. Olive oil and haemostasis

    Williams, Christine M.

    2004-03-01

    Full Text Available Olive oil is a key component of the traditional Mediterranean diet; a diet that may explain the low rate of cardiovascular disease (CVD in Southern European. (Extra virgin Olive oil is a good source of monounsaturated fatty acids (MUFA and phenolic compounds, both of which have been investigated for their effects on plasma lipids and lipoproteins, measures of oxidation and factors related to thrombosis. This issue aims to summarise the current understanding of the effects of such dietary components on the haemostatic system and subsequent risk of CVD. To date, evidence suggests that diets rich in MUFA and thus in olive oil attenuate the thrombotic response via a reduction in platelet aggregation and in postprandial FVII levels. Thrombosis is a key event in causing heart attacks and strokes, which if modulated by diet could pose a cost-effective way of reducing CVD incidence in populations that adhere to MUFA/olive oil-rich diets long-term.El aceite de oliva es un componente esencial de la dieta Mediterránea que puede explicar el bajo índice de enfermedad cardiovascular (CVD en los países del sur de Europa. El aceite de oliva (extra virgen es una fuente de ácidos grasos monoinsaturados (MUFA y de compuestos fenólicos, de gran interés por sus efectos, entre otros, sobre las lipoproteínas y los lípidos plasmáticos, su capacidad antioxidante y su papel en la expresión de factores relacionados con la trombosis. En este capítulo se presenta un resumen del conocimiento actual sobre la influencia derivada del consumo de aceite de oliva (extra virgen en el sistema hemostático y el riesgo de CVD. Por ahora se sabe que dietas ricas en MUFA (aceite de oliva pueden atenuar la respuesta trombótica mediante la reducción de la agregación plaquetaria y de las concentraciones postprandiales del factor VII de coagulación (FVII. La trombosis es un evento relevante en los ataques al corazón y el ictus, de manera que su modulación con la dieta puede

  3. Integrated chemical plants at the pulp mill

    Ehtonen, P.; Hurme, M.; Jaervelaeinen, M.

    1995-12-31

    The goal of this paper is to present how the chemical plants can be integrated to the pulp mill. The integration renders possible to balance the chemical consumptions. The total mass balance of a pulp mill with the incoming fuel material and the outgoing waste and flue gases are discussed. The balance figures are presented for the chemicals of the modern fibre line, which will produce fully bleached softwood pulp with an improved effluent quality. The main benefits are lower chemical and transportation costs. The principal over-all plant process block diagrams and process descriptions are presented. The presented info system provides real time information on process and production status at overall mill and department levels. (author)

  4. 40 CFR 406.40 - Applicability; description of the bulgur wheat flour milling subcategory.

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the bulgur wheat flour milling subcategory. 406.40 Section 406.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Bulgur...

  5. 40 CFR 406.50 - Applicability; description of the normal rice milling subcategory.

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the normal rice milling subcategory. 406.50 Section 406.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice...

  6. 40 CFR 406.30 - Applicability; description of the normal wheat flour milling subcategory.

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the normal wheat flour milling subcategory. 406.30 Section 406.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal...

  7. Comparison between different liquid-liquid and solid phase methods of extraction prior to the identification of the phenolic fraction present in olive oil washing wastewater from the two-phase olive oil extraction system

    S. Jiménez-Herrera

    2017-09-01

    Full Text Available Phenolic compounds from olive mill wastewater (OMW, are characterized by a strong antioxidant activity. At the same time, they represent an environmental problem because they are difficult to degrade. The purpose of this work was to identify these biologically active compounds in the OMW from two-phase olive oil production in order to convert a polluting residue into a source of natural antioxidants. After optimizing the extraction process of phenolic compounds using liquid-liquid extraction (LLE and solid phase extraction (SPE methods, it was determined that the most appropriate sequence comprised a previous centrifugation to remove the lipid fraction, followed by liquid extraction with ethyl acetate or SPE. The most important compounds identified in olive oil washing wastewater (OOWW were tyrosol, hydroxytyrosol and succinic acid; whereas the ones in the wastewater derived from the washing of the olives (OWW were cresol, catechol, 4-methylcatechol, hydrocinnamic acid and p-hydroxy-hydrocinnamic acid.

  8. Comparison between different liquid-liquid and solid phase methods of extraction prior to the identification of the phenolic fraction present in olive oil washing wastewater from the two-phase olive oil extraction system

    Jiménez-Herrera, S.; Ochando-Pulido, J.M.; Martínez-Ferez, A.

    2017-01-01

    Phenolic compounds from olive mill wastewater (OMW), are characterized by a strong antioxidant activity. At the same time, they represent an environmental problem because they are difficult to degrade. The purpose of this work was to identify these biologically active compounds in the OMW from two-phase olive oil production in order to convert a polluting residue into a source of natural antioxidants. After optimizing the extraction process of phenolic compounds using liquid-liquid extraction (LLE) and solid phase extraction (SPE) methods, it was determined that the most appropriate sequence comprised a previous centrifugation to remove the lipid fraction, followed by liquid extraction with ethyl acetate or SPE. The most important compounds identified in olive oil washing wastewater (OOWW) were tyrosol, hydroxytyrosol and succinic acid; whereas the ones in the wastewater derived from the washing of the olives (OWW) were cresol, catechol, 4-methylcatechol, hydrocinnamic acid and p-hydroxy-hydrocinnamic acid. [es

  9. Are olive oil diets antithrombotic?

    Larsen, L. F.; Jespersen, J.; Marckmann, Peter

    1999-01-01

    compared the effects of virgin olive oil with those of rapeseed and sunflower oils on blood coagulation factor VII (FVII), a key factor in thrombogenesis. DESIGN: In a randomized and strictly controlled crossover study, 18 healthy young men consumed diets enriched with 5 g/MJ (19% of total energy) olive...... FVII (FVIIa) were 11.3 +/- 5.1 U/L lower after olive oil than after sunflower oil, an 18% reduction (P diets...... with respect to nonfasting factor VII coagulant activity (FVII:c), prothrombin fragment 1+2 (F1+2), and tissue factor pathway inhibitor (TFPI) concentrations, or with respect to fasting plasma values of FVII protein, FVII:c, FVIIa, F1+2, or TFPI. CONCLUSION: A background diet rich in olive oil may attenuate...

  10. Olive oil in clinical nutrition

    García-Luna, Pedro Pablo; Pereira Cunill, J. L.; Garnacho-Montero, J.; Ortiz-Leyba, C.; Martínez-Brocca, M.; Mangas-Cruz, M. A.

    2004-01-01

    The different beneficial effects of olive oil have a rational and scientific basis due to advances in the knowledge of lipid metabolism. The evidence that for a similar plasma cholesterol concentration, the rate of cardiovascular deaths is lower in the Mediterranean countries than in other ones, suggests that the beneficial effects of olive oil may not be only related to the known quantitative changes in plasma lipoproteins, but also to other, as yet unknown or little known, anti-atherogenic ...

  11. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead... copper, lead, zinc, gold, silver, or molybdenum bearing ores or any combination of these ores from open... pollutants discharged from mills that use the froth-flotation process alone, or in conjunction with other...

  12. Disposal of by-products in olive oil industry: waste-to-energy solutions

    Caputo, Antonio C.; Scacchia, Federica; Pelagagge, Pacifico M.

    2003-01-01

    Olive oil production industry is characterized by relevant amounts of liquid and solid by-products [olive mill wastewater (OMW) and olive husk (OH)], and by economical, technical and organizational constraints that make difficult the adoption of environmentally sustainable waste disposal approaches. In this context, waste treatment technologies aimed at energy recovery represent an interesting alternative. In the paper, a technical and economical analysis of thermal disposal plant solutions with energy recovery has been carried out. The considered plants enable the combined treatment of OMW and OH which, although penalizes the energy recovery, proves to be feasible and profitable in a future legislative scenario when stricter limitation on OMW disposal will force oil producers to bear high disposal costs. Results are compared by using economic performance measures, including revenues from produced energy and avoided disposal costs. A sensitivity and risk analysis is also performed in order to assess the economic profitability of the proposed solutions

  13. Facility effluent monitoring

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  14. Biomass torrefaction mill

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  15. Olive oil and cancer

    Muriana, Francisco J.G.

    2004-03-01

    Full Text Available In the last years, numerous studies have examined the association of dietary fat and cancer. Polyunsaturated fatty acids (PUFA from n -6 family display a strong promoting effect, this may be partially due to the especially prone to lipid peroxidation of PUFA that leads to formation of aldehydes, which react with DNA bases, forming genotoxic exocyclic etheno(epsilon-adducts. On the contrary, there are growing evidences that monounsaturated oils, like olive oil, may be associated with a decreased risk of some cancers. However, the epidemiological data do not fully agree with the experimental ones previously published. Minor compounds from (extra virgin olive oil, mainly phenolics like hydroxytyrosol and tocopherol, are antioxidants and radical scavenging. They can minimize the amount of reactive oxygen species (ROS generated by fatty acid peroxidation and in the case of monounsaturated fatty acids (MUFA the DNA damage can be reduced by a lower lipid peroxidation.Numerosos estudios en los últimos años han determinado la existencia de una asociación entre las grasas procedentes de la dieta y el cáncer. Los ácidos grasos poliinsaturados (PUFA de la familia n -6 pueden tener efectos proliferativos y angiogénicos, lo cual se debe en parte a que son especialmente sensibles a la peroxidación lipídica, formándose aldehídos que reaccionan con las bases del ADN y por lo tanto aductos exocíclicos con propiedades genotóxicas. Por el contrario, el consumo de dietas ricas en ácidos grasos monoinsaturados (MUFA está relacionado con un menor riesgo de distintos tipos de cáncer. Si bien, los datos epidemiológicos no siempre concuerdan con los datos experimentales. Los componentes menores del aceite de oliva (extra virgen, fundamentalmente el hidroxitirosol y tocoferol, son antioxidantes y secuestradores de radicales libres. Pueden minimizar la cantidad de especies reactivas de oxígeno que se generan por la peroxidación lipídica y además los

  16. Extraction of interesting organic compounds from olive oil waste

    Jiménez, Ana

    2006-03-01

    Full Text Available In the olive fruits there is a large amount of bioactive compounds and substances of high interest. Many of them are known by owing health beneficial properties that contribute to protective effect of the virgin olive oil. During olive oil processing, most of them remain in the olive oil wastes. Although, olive-mill wastewater (OMWW or “alpechin”, olive oil cake (OOC, and the new by-product, known as “alperujo” in Spain and generated by the two-phase extraction process, represent a major disposal and potentially severe pollution problem for the industry, they are also promising source of substances of high value. This review summarises the last knowledge on the utilisation of residual products, with more than 90 references including articles and patents, which are promising with regard to future application. All these investigations have been classified into two options, the recovery of valuable natural constituents and the bioconversion into useful products.Existe una gran cantidad de compuestos bioactivos y de alto interés presentes en la aceituna. Muchos de ellos se conocen por las cualidades beneficiosas que aportan al aceite de oliva virgen. La mayoría permanecen en mayor cantidad en el subproducto de la extracción del aceite. Aunque, el alpechín, el orujo y el nuevo subproducto de extracción del aceite en dos fases, alperujo, representan un problema potencial de vertido y contaminación, también son una prometedora fuente de compuestos de alto valor. Esta revisión resume lo último que se conoce sobre la utilización de estos residuos en el campo anteriormente mencionado, con más de 90 referencias que incluyen artículos y patentes. Todas estas investigaciones han sido clasificadas en cuanto a la recuperación de constituyentes naturalmente presentes o en cuanto a la bioconversión de los residuos en sustancias de interés.

  17. Avaliação do emprego de microfiltração para remoção de fibras do efluente de branqueamento de polpa celulósica Evaluation of the use of microfiltration for removal of fiber from bleaching pulp mill effluent

    Míriam Cristina Santos Amaral

    2013-03-01

    Full Text Available O processo de branqueamento é o estágio em que ocorre a maior perda de fibras durante a fabricação de polpa celulósica. Além de ser uma perda de produto, estas fibras aumentam a concentração de matéria orgânica do efluente dificultando seu tratamento. O objetivo deste trabalho foi avaliar o emprego de microfiltração (MF na remoção de fibras de efluente de branqueamento alcalino de polpa celulósica. Foi empregada membrana de poli(éter imida com tamanho médio de poros de 0,5 µm e área de filtração de 0,05 m². O efeito das condições operacionais no fluxo permeado foi avaliado através do monitoramento do perfil de fluxo durante a operação em diferentes condições de velocidade de escoamento (Reynolds de 1.226, 1.653 e 2.043, pH da alimentação (7, 10 e 10,6, temperatura (28, 43 e 48°C e pressão de operação através da avaliação da pressão crítica. Os resultados mostraram que a MF é um processo eficiente para remoção de fibras, apresentado 99% eficiência de remoção de sólidos suspensos. O melhor desempenho da operação de MF foi obtido empregando pH 7, pressão de 1 bar e Re de 1.653. Os resultados mostram que a redução do fluxo se deve principalmente à formação de torta.The bleaching process is the stage where there is the greatest loss of fibers during the pulp production. Besides being a waste of product, these fibers increase the concentration of organic matter in the effluent and make the treatment of effluent more difficult. The aim of this study was to evaluate the use of microfiltration (MF in the removal of fiber of effluent of alkaline bleaching pulp mill. The membrane employed was hollow fiber poly (ether imide, with average pore size of 0.5 µm and filtration area of 0.05 m². The effect of operating conditions on the permeate flux was evaluated by monitoring the flux profile during operation in different conditions of flow velocity (Reynolds 1,226, 1,653 and 2,043, pH of feeding (7, 10

  18. Olive paste oil content on a dry weight basis (OPDW): an indicator for optimal harvesting time in modern olive orchards

    Zipori, I.; Bustan, A.; Kerem, Z.; Dag, A.

    2016-07-01

    In modern oil olive orchards, mechanical harvesting technologies have significantly accelerated harvesting outputs, thereby allowing for careful planning of harvest timing. While optimizing harvest time may have profound effects on oil yield and quality, the necessary tools to precisely determine the best date are rather scarce. For instance, the commonly used indicator, the fruit ripening index, does not necessarily correlate with oil accumulation. Oil content per fruit fresh weight is strongly affected by fruit water content, making the ripening index an unreliable indicator. However, oil in the paste, calculated on a dry weight basis (OPDW), provides a reliable indication of oil accumulation in the fruit. In most cultivars tested here, OPDW never exceeded ca. 0.5 g·g–1 dry weight, making this threshold the best indicator for the completion of oil accumulation and its consequent reduction in quality thereafter. The rates of OPDW and changes in quality parameters strongly depend on local conditions, such as climate, tree water status and fruit load. We therefore propose a fast and easy method to determine and monitor the OPDW in a given orchard. The proposed method is a useful tool for the determination of optimal harvest timing, particularly in large plots under intensive cultivation practices, with the aim of increasing orchard revenues. The results of this research can be directly applied in olive orchards, especially in large-scale operations. By following the proposed method, individual plots can be harvested according to sharp thresholds of oil accumulation status and pre-determined oil quality parameters, thus effectively exploiting the potentials of oil yield and quality. The method can become a powerful tool for scheduling the harvest throughout the season, and at the same time forecasting the flow of olives to the olive mill. (Author)

  19. Sensitization to olive oil (olea europeae)

    van Joost, T.; Smitt, J. H.; van Ketel, W. G.

    1981-01-01

    Sensitization to olive oil is seldom reported in the literature. By use of epicutaneous tests a delayed type of hypersensitivity to pure freshly-prepared olive oil could be demonstrated in two patients. Patch tests with certain major constituents of olive oil; the methyl ester of linoleic acid, the

  20. MECHANIZED HARVESTING TESTS PERFORMED BY GRAPE HARVESTERS IN SUPER INTENSIVE OLIVE ORCHARD CULTIVATION IN SPAIN

    Gennaro Giametta

    2009-06-01

    Full Text Available Today also those countries boasting a century-old olive growing tradition have to look at the latest, most dynamic, non labour-intensive olive growing systems to abate production (notably, harvesting operations costs and remain competitive in a globalized market. This is why over the last few years super intensive olive orchard cultivation has been attracting a lot of interest on the part of olive growers all over the world as it accounts for an innovative model whereby olive groves are tailored to the special needs of grape harvesters. This paper reports the first results of experimental mechanical harvesting tests in a super-intensive olive cultivation. The study is intended to explore both productivity and work capacity of two of the most commonly used grape harvesters, Grégoire G120SW and New Holland Braud VX680, in a view to assessing their harvesting performance by a series of tests conducted in Spain. On the basis of the tests it was possible to verify that the machines are able to detach the almost all the drupes (more than 90%, with one only passage, and this independently of both size and location of drupes on the tree crown and of their maturity stage. Using these machines, two people can often carry out the whole harvest process: an operator driving the harvester and another person transferring the fruit from the harvester in the field to the olive oil mill for processing. With this system, the work speed is usually, in the best working conditions, about 1.7 km/hour and the average harvesting time is about 2.5-3 hours/ha. For the time being it is however impossible to draw definitive conclusions in terms of performance of the above cultivation systems and harvesting machines. Additional key observational studies are needed in the years to come to assess the efficiency of the entire model.

  1. Y-chromosomal DNA markers for discrimination of chemical substance and effluent effects on sexual differentiation in salmon.

    Afonso, Luis O B; Smith, Jack L; Ikonomou, Michael G; Devlin, Robert H

    2002-01-01

    Chinook salmon alevins were exposed during their labile period for sex differentiation to different concentrations of bleached kraft mill effluent (BKME), primary sewage effluent, secondary sewage effluent (SE), 17ss-estradiol, testosterone, and nonylphenol. After exposure for 29 days post hatching (DPH), fish were allowed to grow until 103 and 179 DPH, at which time their genetic sex was determined using Y-chromosomal DNA markers and their gonadal sex was determined by histology. Independent...

  2. Influence of forest and rangeland management on anadromous fish habitat in Western North America: processing mills and camps.

    Donald C. Schmiege

    1980-01-01

    For nearly 50 years, effluents from pulp and paper mills have been known to be toxic to fish and other aquatic animals. Lethal concentrations have been determined for several species of fish and other organisms. Many factors- -such as water temperature, age of fish, and additional stresses—affect the ability of fish to withstand pollution. Kraft mill wastes...

  3. Chemistry and health of olive oil phenolics.

    Cicerale, Sara; Conlan, Xavier A; Sinclair, Andrew J; Keast, Russell S J

    2009-03-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, and certain types of cancer. The apparent health benefits have been partially attributed to the dietary consumption of virgin olive oil by Mediterranean populations. Most recent interest has focused on the biologically active phenolic compounds naturally present in virgin olive oils. Studies (human, animal, in vivo and in vitro) have shown that olive oil phenolics have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, and antimicrobial activity. Presumably, regular dietary consumption of virgin olive oil containing phenolic compounds manifests in health benefits associated with a Mediterranean diet. This paper summarizes current knowledge on the physiological effects of olive oil phenolics. Moreover, a number of factors have the ability to affect phenolic concentrations in virgin olive oil, so it is of great importance to understand these factors in order to preserve the essential health promoting benefits of olive oil phenolic compounds.

  4. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Potential Contributions of Olives and Olive Oil in the Developing Tourism in Mudanya (Bursa)

    UYLAŞER, Vildan

    2017-01-01

    Turkey is the 3rd country in olive production and 4th country in olive oil production in the world. Olive oil and olive farming has significant economic value both in the national and international arena for Turkey. Olive and olive oil, which are irreplaceable ingredients in our breakfasts, many meals and salads in Turkish kitchen, are the primary source of income for the families in Mudanya. Mudanya has a historical past and it has a significant potential in terms ...

  6. Olives: less kilos, more watts

    Flandroy, L.

    1994-01-01

    Ancestral mediterranean basin food, oil olive holds more and more the scientist attention for its high dietetic value. The valorization or the traditional or more and more refining of its by-products or wastes illustrates exemplary the ''lasting development'' concept. 10 refs

  7. Virgin Olive Oil and Hypertension.

    Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Abia, Rocio; Muriana, Francisco Jg

    2016-01-01

    The incidence of high blood pressure (BP) along with other cardiovascular (CV) risk factors on human health has been studied for many years. These studies have proven a link between unhealthy dietary habits and sedentary lifestyle with the onset of hypertension, which is a hallmark of CV and cerebrovascular diseases. The Mediterranean diet, declared by the UNESCO as an Intangible Cultural Heritage since 2013, is rich in vegetables, legumes, fruits and virgin olive oil. Thanks to its many beneficial effects, including those with regard to lowering BP, the Mediterranean diet may help people from modern countries to achieve a lower occurrence of CV disease. Data from human and animal studies have shown that the consumption of virgin olive oil shares most of the beneficial effects of the Mediterranean diet. Virgin olive oil is the only edible fat that can be consumed as a natural fruit product with no additives or preservatives, and contains a unique constellation of bioactive entities, namely oleic acid and minor constituents. In this review, we summarize what is known about the effects of virgin olive oil on hypertension.

  8. Direct olive oil analysis

    Peña, F.

    2002-03-01

    Full Text Available The practical impact of “direct analysis” is undeniable as it strong contributes to enhance the so-called productive analytical features such as expeditiousness, reduction of costs and minimisation of risks for the analysts and environment. The main objective is to establish a reliable bypass to the conventional preliminary operations of the analytical process. This paper offers a systematic approach in this context and emphasises the great field of action of direct methodologies in the routine analysis of olive oil. Two main types of methodologies are considered. On the one hand, the direct determination of volatile components is systematically considered. On the other hand, simple procedures to automatically implement the preliminary operations of the oil analysis using simple devices in which the sample is directly introduced with/without a simple dilution are present and discussed.El impacto práctico del análisis directo es tan innegable como que el contribuye decisivamente a mejorar las denominadas características analíticas relacionadas con la productividad como la rapidez, la reducción de costes y la minimización de riesgos para los analistas y el ambiente. El principal objetivo es establecer un adecuado "bypass" a las operaciones convencionales preliminares del proceso analítico. Este artículo ofrece una propuesta sistemática en este contexto y resalta el gran campo de acción de las metodologías directas en los análisis de rutina del aceite de oliva. Se analizan los dos tipos principales de metodologías. Por una lado, se analiza la determinación directa de los compuestos volátiles. Por el otro, se presentan y discuten los procedimientos simples para implementar automáticamente las operaciones preliminares del análisis del aceite usando sistemas simples en los que la muestra se introduce directamente con/sin un dilución simple.

  9. Effect of surface treatment of tailings on effluent quality

    Murray, D.R.; Okuhara, D.

    1980-01-01

    Lysimeters containing 125 tons of mine tailings were used to determine the impact of gravel, sawdust, and vegetation as surface treatments on the quality and quantity of effluent produced from sulfide-containing uranium mill tailings. Over a 5-yr period, treatments did not alter the effluent quality to a level acceptable to regulatory requirements. The concentration of iron, copper, lead, aluminum, and sulfate increased with the rise of acidity during this period. However, the rate and extent of changes did vary with the treatment. The role of surface treatment in long-term waste abandonment must be investigated further

  10. Olive oil and oxidative stress

    Galli, Claudio

    2004-03-01

    Full Text Available In addition to the fatty acid profile of olive oil, which is high in the monounsaturated oleic acid and appears to be beneficial in reducing several risk factors for coronary heart disease and certain cancers, extra virgin olive oil contains a considerable amount of phenolic compounds, e.g. hydroxytyrosol and oleuropein, that are responsible for its peculiar taste and for its high stability. A body of evidence demonstrates that olive oil phenolics are powerful antioxidants. Although most of these studies have been carried out in vitro, some in vivo experiments confirm that olive oil phenolics are dose-dependently absorbed and that they retain their biological activities after ingestion. These data could in part explain the lower incidence of coronary heart disease in the Mediterranean area, where (extra virgin olive oil is the principal source of fat.La composición del aceite de oliva virgen extra se caracteriza por su contenido en ácidos grasos, fundamentalmente monoinsaturados (ácido oleico beneficiosos para reducir el riesgo de enfermedad coronaria, y en componentes menores, particularmente polifenoles (p.e. hidroxitirosol y oleuropeína responsables de su sabor y estabilidad. Diversos estudios demuestran el poder antioxidante de los compuestos fenólicos del aceite de oliva (virgen extra. Aunque la mayoría de ellos se han realizado in vitro, algunos in vivo parecen confirmar que los polifenoles se absorben dependiendo de la dosis y que retienen las actividades biológicas después de su ingestión. Estos resultados pueden explicar en parte la menor incidencia de enfermedad coronaria en los países del área Mediterránea, donde el aceite de oliva (extra virgen es la principal fuente de grasas.

  11. Uranium Mill Tailings Management

    Nelson, J.D.

    1982-01-01

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements)

  12. FM Interviews: Stephanie Mills

    Valauskas, Edward

    2002-01-01

    Stephanie Mills is an author, editor, lecturer and ecological activist who has concerned herself with the fate of the earth and humanity since 1969, when her commencement address at Mills College in Oakland, Calif., drew the attention of a nation. Her speech, which the New York Times called "perhaps the most anguished statement" of the year's crop of valedictory speeches, predicted a bleak future. According to Mills, humanity was destined for suicide, the result of overpopulation and overuse ...

  13. Physical and chemical properties of olive oil extracted from olive cultivars grown in Shiraz and Kazeroon

    Homapour, M.; Hamedi, M.; Moslehishad, M.

    2014-01-01

    Background and objective: The composition of olive oil is significantly affected by the cultivar and climatic conditions. The present study determined the chemical characteristics of olive oil extracted from two major Iranian varieties of olive (yellow and local oil-grade) in Shiraz and Kazeroon......, two major olive-producing areas in Fars province. Materials and methods: The composition of olive oil is significantly affected by the cultivar and climatic conditions. The present study determined the chemical characteristics of olive oil extracted from two major Iranian varieties of olive (yellow...... and local oil-grade) in Shiraz and Kazeroon, two major olive-producing areas in Fars province. Results: The results showed that the physical and chemical properties of both cultivars are in accordance with national and international standards. There was a significant difference in acidity, iodine content...

  14. Purification of pulp and paper mill effluent using Eichornia crassipes.

    Yedla, S; Mitra, A; Bandyopadhyay, M

    2002-04-01

    Konark Pulp and Paper Industries Private Limited is a medium size industry producing 1600 m3 of wastewater a day. The existing water treatment system of the industry was found to be ineffective both in performance and economy. In the present study, a new system of treatment has been developed using water hyacinth Eichornia crassipes, coagulation by lime and alum, followed by rapid sand filtration. The performance efficiency of each unit viz. Eichornia treatment; coagulation with lime, with alum, and with lime:alum combinations, and filtration was studied. Water quality parameters considered were Biological Oxygen Demand, Chemical Oxygen Demand, Dissolve Oxygen, Total Dissolved Solids, turbidity, percentage transmission, and water colour. Based on the individual performance of each unit, a continuous system has been designed and was tested. The new system of treatment could treat the wastewater to the discharge standards and also was found economically feasible. Testing culture of fish (tilapia) proved that the treated water could be safely discharged into natural waters. All fish tested, survived and remained healthy throughout the period of testing. Culture of fish further improved the water quality.

  15. Evaluation of full strength paper mill effluent for electricity generation ...

    0615306y

    2011-11-07

    Nov 7, 2011 ... operated in a continuous flow system (Huang et al.,. 2009). Mathuriya and ... Each MFC setup was run for 10 to 14 days and voltage was measured at 2 h .... a bimodal distribution of power densities in most cases. Presumably, E. ... settable solids removal efficiency); however, the drop in glucose removal ...

  16. bioelectricity production from cassava mill effluents using microbial

    user

    2016-04-02

    Apr 2, 2016 ... technologies of energy production using renewable ... mediators in the commercial use of MFCs for energy .... gas for a period of 4 minutes to maintain anaerobic ..... potentials of some Nigerian industrial wastewater through ...

  17. Screening of Candida boidinii from Chemlal spent olive ...

    SAM

    2014-03-12

    Mar 12, 2014 ... ... and Microbial Activity, Faculty of Natural and Life Sciences, University - ... A total of 24 lipolytic yeasts were isolated from the spent olive derived from olive fruits of ... isolated during process of fermentation of olive table, can.

  18. 97 Épandage des margines sur les sols agricoles : impacts ...

    AKA BOKO

    Spreading of olive mill wastewater on agricultural soils: environmental microbiological impacts. It has been shown that the olive mill effluents (OME), which are a waste water of olive oil extraction process, constitutes an alternative among the solutions proposed. Thus provided that this operation should be realized by a ...

  19. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products

    Julio Berbel

    2018-01-01

    Full Text Available By-products and waste from olive production (agriculture and the olive oil industry (mills and refineries are an important environmental issue in Mediterranean areas. Industrial waste and by-products contain highly valuable components that can also be phytotoxic. This article reviews recent research on the valorisation of olive by-products under the bioeconomy strategy. The alternatives are classified according to the ‘bioeconomy value pyramid’, which prioritises higher value uses over the current energy and compost valorisation. Special attention is paid to the use of these by-products for animal feed that can be improved by reducing the content of saturated fatty acids (SFAs and increase the polyunsaturated fatty acids amount considered beneficial in response to their use; this makes the food healthier for humans while simultaneously reducing feeding costs and the environmental impact of livestock.

  20. modelling effluent assimila modelling effluent assimilat modelling

    eobe

    G EFFLUENT ASSIMILATIVE CAPACITY OF IKPOBA RIVE. BENIN CITY, NIGERIA ... l purposes to communities rse such as ... treat in order for it to meet the aforeme of the communities. It is therefore i ..... Substituting and integrating yields the following equations ..... Purification Potentials of Small Tropical Urban. Stream: A ...

  1. Interaction of Olive Oil and Metals

    BÜYÜKGÖK, Elif Burçin; ÖTLEŞ, Semih

    2011-01-01

    Olive oil, obtained only from the fruits of olive trees, is a food item consumed in natural form without any chemical process and is liquid at room temperature. In addition to its flavor, oxidative stability is the unique property of it. Oxidative stability of olive oil is so powerful is due to its major components which are fatty acids and minor components which are phenolic compounds, tocopherols, squalene, sterols, phospholipids, carotenoids, chlorophyll, etc. All edible oils, including ol...

  2. INEEL Liquid Effluent Inventory

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  3. Removal of radium-226 from uranium mining effluents

    Averill, D.W.; Moffett, D.; Webber, R.T.; Whittle, L.; Wood, J.A.

    1984-12-01

    Uranium mining and milling operations usually generate large quantities of solid and liquid waste materials. A slurry, consisting of waste rock and chemical solutions from the milling operation, is discharged to impoundment areas (tailings basins). Most of the radioactive material dissolved in tailings slurries is precipitated by the addition of lime and limestone prior to discharge from the mill. However, the activity of one radioisotope, radium-226, remains relatively high in the tailings basin effluents. In Canada, radium-226 is removed from uranium mining and milling effluents by the addition of barium chloride to precipitate barium-radium sulphate [(Ba,Ra)SO 4 ]. Although dissolved radium-226 activities are generally reduced effectively, the process is considered to have two undesirable characteristics: the first related to suspended radium-226 in the effluents and the second to ultimate disposal of the (Ba,Ra)SO 4 sludge. A government-industry mining task force established a radioactivity sub-group in 1974 to assist in the development of effluent guidelines and regulations for the uranium mining industry (Radioactivity Sub-group, 1974). The investigation of more effective removal methods was recommended, including the development of mechanical treatment systems as alternatives to settling ponds. Environment Canada's Wastewater Technology Centre (WTC) initiated a bench scale study in March, 1976 which was designed to assess the feasibility of using precipitation, coagulation, flocculation and sedimentation for the removal of radium-226. In 1977, the study was accelerated with financial assistance from the Atomic Energy Control Board. The results were favourable, with improved radium removals obtained in bench scale batch tests using barium chloride as the precipitant and either alum or ferric chloride as the coagulant. A more comprehensive bench scale and pilot scale process development and demonstration program was formulated. The results of the joint study

  4. Proteins in olive fruit and oil.

    Montealegre, Cristina; Esteve, Clara; García, Maria Concepción; García-Ruiz, Carmen; Marina, Maria Luisa

    2014-01-01

    This paper is a comprehensive review grouping the information on the extraction, characterization, and quantitation of olive and olive oil proteins and providing a practical guide about these proteins. Most characterized olive proteins are located in the fruit, mainly in the seed, where different oleosins and storage proteins have been found. Unlike the seed, the olive pulp contains a lower protein content having been described a polypeptide of 4.6 kDa and a thaumain-like protein. Other important proteins studied in olive fruits have been enzymes which could play important roles in olives characteristics. Part of these proteins is transferred from the fruit to the oil during the manufacturing process of olive oil. In fact, the same polypeptide of 4.6 kDa found in the pulp has been described in the olive oil and, additionally, the presence of other proteins and enzymes have also been described. Protein profiles have recently been proposed as an interesting strategy for the varietal classification of olive fruits and oils. Nevertheless, there is still a lot of knowledge without being explored requiring new studies focused on the determination and characterization of these proteins.

  5. Virgin olive oil yeasts: A review.

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Olive oil: composition and health benefits

    Salazar, D.M.; López Cortés, I.; Salazar García, Domingo C.

    2017-01-01

    The production of Extra Virgin Olive Oil (EVOO) in Spain is very high, it reached 1 million tonnes in the last olive oil campaign, with over two million hectares planted with olive trees. This crop is distributed in over six different bioclimatic zones and with more than 100 cultivars, many of them native from a pomological point of view. Among the olive areas of Spain, Andalusia, Extremadura, Catalonia and Valencia stand out, next to the Central Region (Castilla-La Mancha). Each one of them ...

  7. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to polyphenols in olive and maintenance of normal blood HDL-cholesterol concentrations (ID 1639, further assessment) pursuant to Article 13(1) of Regulation (EC

    Tetens, Inge

    and maintenance of normal blood HDL-cholesterol concentrations. The food constituent, polyphenols in olive (olive fruit, olive mill waste waters or olive oil, Olea europaea L. extract and leaf) standardised by their content of hydroxytyrosol and its derivatives (e.g. oleuropein complex), that is the subject...... was insufficient to establish a cause and effect relationship between the consumption of olive oil polyphenols (standardised by the content of hydroxytyrosol and its derivatives) and maintenance of normal blood HDL cholesterol concentrations.......Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to provide a scientific opinion on a health claim pursuant to Article 13 of Regulation (EC) No 1924/2006 in the framework of further assessment related to polyphenols in olive...

  8. Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters.

    Majdouline Belaqziz

    Full Text Available Olive processing wastewaters (OPW, namely olive mill wastewater (OMW and table-olive wastewaters (TOW were evaluated for their antibacterial activity against five Gram-positive and two Gram-negative bacteria using the standard disc diffusion and thin layer chromatography (TLC-bioautography assays. Disc diffusion screening and bioautography of OMW were compared to the phenolic extracts of table-olive brines. Positive activity against S. aureus was demonstrated. The optimization of chromatographic separation revealed that hexane/acetone in the ratio of 4:6 was the most effective for phenolic compounds separation. A HPLC-MS analysis was performed showing that only two compounds, hydroxytyrosol and tyrosol, were the predominant phenolic compounds in all OPW. The phenolic extract of OMW generated by a semi-modern process showed the highest free radical-scavenging activity (DPPH assay compared to the other phenolic extracts. It is apparent from the present study that OPW are a rich source of antioxidants suitable for use in food, cosmetic or pharmaceutical applications.

  9. Solid carbon dioxide to promote the extraction of extra-virgin olive oil

    Zinnai, A.; Venturi, F.; Quartacci, V.F.; Sanmartin, C.; Favati, F.; Andrich, G.

    2016-07-01

    The use of solid carbon dioxide (dry ice) as a cryogen is widespread in the food industry to produce high quality wines, rich in color and perfumes. The direct addition of carbon dioxide to olives in the solid state before milling represents a fundamental step which characterizes this innovative extraction system. At room temperature conditions solid carbon dioxide evolves directly into the air phase (sublimation), and the direct contact between the cryogen and the olives induces a partial solidification of the cellular water inside the fruits. Since the volume occupied by water in the solid state is higher than that in the liquid state, the ice crystals formed are incompatible with the cellular structure and induce the collapse of the cells, besides promoting the diffusion of the cellular substances in the extracted oil, which is thus enriched with cellular metabolites characterized by a high nutraceutical value. Furthermore, a layer of CO2 remains over the olive paste to preserve it from oxidative degradation. The addition of solid carbon dioxide to processed olives induced a statistically significant increase in oil yield and promoted the accumulation of tocopherols in the lipid phase, whereas a not significant increase in the phenolic fraction of the oil occurred. (Author)

  10. Nuclear reactor effluent monitoring

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  11. Nuclear reactor effluent monitoring

    Minns, J.L.; Essig, T.H.

    1993-01-01

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC's program results

  12. Processing of palm oil mill wastes based on zero waste technology

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  13. Genotoxicity of swine effluents.

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  14. Treated Effluent Disposal Facility

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  15. Liquid Effluent Retention Facility

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  16. Water reclamation and effluent retreatment system at Jaduguda

    Beri, K K [Uranium Corporation of India Limited, Jaduguda Mines, Singhbhum (India)

    1994-06-01

    Neutralization of uranium mill tailing with lime provided in original flow sheet was not found adequate for effluent quality control within limits particularly as regards to{sup 226}Ra and Mn. The same was being controlled by dilution and hence no water was being reclaimed. In October 1987 the Jaduguda mill was expanded to augment its ore processing capacity from 1000 MT/day to 1340 MT/day. This necessitated extra water requirement, which could have been met only with water reclamation. But this would have resulted in build up of pollutant ions apart from less water available for dilution. Hence a composite scheme was made for water reclamation and treatment of effluent with BaCl{sub 2} to precipitate Ba(Ra)So{sub 4} and with lime to precipitate Mn as hydroxide. This effluent treatment plant was commissioned in May 1990 and is working satisfactorily. The scheme is being further modified and augmented to take care of Narwa mine water and sewage treatment plant effluent. (author).

  17. CONCAWE effluent speciation project

    Leonards, P.; Comber, M.; Forbes, S.; Whale, G.; Den Haan, K.

    2010-09-15

    In preparation for the implementation of the EU REACH regulation, a project was undertaken to transfer the high-resolution analytical method for determining hydrocarbon blocks in petroleum products by comprehensive two-dimensional gas chromatography (GCxGC) to a laboratory external to the petroleum industry (Institute for Environmental Studies (IVM) of the VU University of Amsterdam). The method was validated and used for the analysis of petroleum hydrocarbons extracted from refinery effluents. The report describes the technology transfer and the approaches used to demonstrate the successful transfer and application of the GCxGC methodology from analysing petroleum products to the quantitative determination of hydrocarbon blocks in refinery effluents. The report describes all the methods used for all the determinations on the effluent samples along with an overview of the results obtained which are presented in summary tables and graphs. These data have significantly improved CONCAWE's knowledge of what refineries emit in their effluents. A total of 111 Effluent Discharge Samples from 105 CONCAWE refineries in Europe were obtained in the period June 2008 to March 2009. These effluents were analysed for metals, standard effluent parameters (including COD, BOD), oil in water, BTEX and volatile organic compounds. The hydrocarbon speciation determinations and other hydrocarbon analyses are also reported. The individual refinery analytical results are included into this report, coded as per the CONCAWE system. These data will be, individually, communicated to companies and refineries. The report demonstrates that it is feasible to conduct a research programme to investigate the fate and effects of hydrocarbon blocks present in discharged refinery effluents.

  18. Olive oil phenols are absorbed in humans

    Vissers, M.N.; Zock, P.L.; Roodenburg, A.J.C.; Leenen, R.; Katan, M.B.

    2002-01-01

    Animal and in vitro studies suggest that olive oil phenols are effective antioxidants. The most abundant phenols in olive oil are the nonpolar oleuropein- and ligstroside-aglycones and the polar hydroxytyrosol and tyrosol. The aim of this study was to gain more insight into the metabolism of those

  19. Fruit load governs transpiration of olive trees

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-01-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from

  20. OLIVE: Speech-Based Video Retrieval

    de Jong, Franciska M.G.; Gauvain, Jean-Luc; den Hartog, Jurgen; den Hartog, Jeremy; Netter, Klaus

    1999-01-01

    This paper describes the Olive project which aims to support automated indexing of video material by use of human language technologies. Olive is making use of speech recognition to automatically derive transcriptions of the sound tracks, generating time-coded linguistic elements which serve as the