WorldWideScience

Sample records for olive mill effluent

  1. Modelling anaerobic codigestion of manure with olive oil mill effluent

    DEFF Research Database (Denmark)

    Angelidaki, I.; Ellegaard, L.; Ahring, B.K.

    1997-01-01

    A mathematical model describing the combined anaerobic degradation of complex organic material, such as manure, and a lipid containing additive, such as olive oil mill effluents, has been developed based on a model previously described (Angelidaki et al. 1993). The model has been used to simulate...... anaerobic codigestion of cattle manure together with olive oil mill effluent (OME) and the simulations were compared with experimental data. Simulation data indicated that lack of ammonia, needed as nitrogen source for synthesis of bacterial biomass and as an important pH buffer, could be responsible...

  2. Enhancement of biogas production from olive mill effluent (OME) by co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Keskin, Tugba; Yuruyen, Aysegul [Bioengineering Department, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2008-12-15

    The olive oil has a healthy image during its consumption due to its oleic acid content, which may prevent some human diseases. Ironically, by-products of olive mill production such as olive mill effluent (OME) and olive cake pose a serious environmental risk where it is produced. In this study, feasibility of using some agro-industrial residue streams such as cheese whey (CW) and laying hen litter (LHL) in order to enhance the methane production of OME was investigated. For this purpose, biochemical methane potential (BMP) assay was carried out for both raw OME alone and OME mixed with varying amount of other substrates such as LHL and CW in the serum bottles, respectively. Corresponding methane production values for various mixtures of the organic residue streams used in this study were determined. It was demonstrated that co-digestion of OME with LHL significantly enhanced the biodegradability of OME which was too low if it was digested alone. Over 90% increase in biogas production was obtained when digesting OME with LHL. The biogas production increased only 22%, when CW was used for the same purpose. It was demonstrated that the biodegradability of OME could be significantly enhanced by co-digestion and thereby integrated management of OME using anaerobic degradation could be proposed as an economically viable and ecologically acceptable solution for the safe disposal of OME. (author)

  3. Sustainable technologies for olive mill wastewater management (abstract)

    Science.gov (United States)

    The California olive oil industry produces more than 600 million gallons of wastewater each year. Olive mill wastewater (OMWW) is considered a highly polluting effluent due to its high organic load and resistance to biological degradation. A current trend in OMWW management is to not only decrease e...

  4. Soil amendement with olive mill wastewater: impact of storage before spreading

    International Nuclear Information System (INIS)

    Kachouri, S.; Ayed, L.; Assas, N.; Marouani, L.; Macarie, H.; Hamdi, M.

    2009-01-01

    The olive oil production performed by the traditional three-phase process generates considerable amounts of olive mill wastewater (OMW) that is a liquid effluent, red to dark coloured depending on its level of oxidation. OMW is well known for the ecological problems it causes owing to the highly toxic polyphenolic compounds it contains. (Author)

  5. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Rytwo, Giora, E-mail: rytwo@telhai.ac.il [Tel Hai College, Dept. of Environmental Sciences, Upper Galilee 12210 (Israel); Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel); Lavi, Roy; Rytwo, Yuval; Monchase, Hila [Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel); Dultz, Stefan [Institute of Soil Science, Leibniz University Hannover, Herrenhaeuser Str. 2, D-30419 Hannover (Germany); Koenig, Tom N. [Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel)

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6 h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Highlights: Black-Right-Pointing-Pointer Nanocomposites yielded clarification of olive mill (OMW) and winery effluents (WW). Black-Right-Pointing-Pointer In smectite based nanocomposites intercalation of the polymer was measured. Black-Right-Pointing-Pointer In sepiolite based nanocomposites no changes in the spacing were observed. Black-Right-Pointing-Pointer Colloidal neutralization is the main clarification process in WW but not in OMW. Black-Right-Pointing-Pointer Several cycles of

  6. Clarification of olive mill and winery wastewater by means of clay–polymer nanocomposites

    International Nuclear Information System (INIS)

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N.

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6 h: coagulation—neutralizing the colloids, flocculation—aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay–polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Highlights: ► Nanocomposites yielded clarification of olive mill (OMW) and winery effluents (WW). ► In smectite based nanocomposites intercalation of the polymer was measured. ► In sepiolite based nanocomposites no changes in the spacing were observed. ► Colloidal neutralization is the main clarification process in WW but not in OMW. ► Several cycles of effluents might be added to an initial dose of nanocomposites.

  7. A review on the use of membrane technology and fouling control for olive mill wastewater treatment.

    Science.gov (United States)

    Pulido, Javier Miguel Ochando

    2016-09-01

    Olive mill effluents (OME) by-produced have significantly increased in the last decades as a result of the boost of the olive oil agro-industrial sector and due to the conversion into continuous operation centrifugation technologies. In these effluents, the presence of phytotoxic recalcitrant pollutants makes them resistant to biological degradation and thus inhibits the efficiency of biological and conventional processes. Many reclamation treatments as well as integrated processes for OME have already been proposed and developed but not led to completely satisfactory and cost-effective results. Olive oil industries in its current status, typically small mills dispersed, cannot afford such high treatment costs. Furthermore, conventional treatments are not able to abate the significant dissolved monovalent and divalent ions concentration present in OME. Within this framework, membrane technology offers high efficiency and moderate investment and maintenance expenses. Wastewater treatment by membrane technologies is growing in the recent years. This trend is owed to the fact of the availability of new membrane materials, membrane designs, membrane module concepts and general know-how, which have promoted credibility among investors. However, fouling reduces the membrane performances in time and leads to premature substitution of the membrane modules, and this is a problem of cost efficiency since wastewater treatment must imply low operating costs. Appropriate fouling inhibition methods should assure this result, thus making membrane processes for wastewater stream treatment both technically and economically feasible. In this paper, the treatment of the effluents by-produced in olive mills, generally called olive mill wastewaters, will be addressed. Within this context, the state of the art of the different pretreatments and integral membrane processes proposed up to today will be gathered and discussed, with an insight in the problem of fouling. Copyright © 2015

  8. Does wastewater from olive mills induce toxicity and water repellency in soil?

    Science.gov (United States)

    Peikert, B.; Bandow, N.; Schaumann, G. E.

    2012-04-01

    Olive oil mill wastewater is the effluent generated by the olive oil extraction process. It is the main waste product of this industry mainly being produced in the Mediterranean Basin. Because proper treatment options are rare it is often disposed into the environment, e.g. fields or wadies. Due to its high concentration of fatty acids and phytotoxic phenolic compounds and its high chemical and biological oxygen demand, olive oil mill wastewater becomes a serious environmental problem. In this screening study we investigated long-term effects of olive oil mill wastewater application on soil properties in several locations in the West Bank and Israel. We determined wettability via water drop penetration time and the contact angle as well as general soil properties including pH, EC, carbon content, and we conducted thermogravimetrical analyses in order to characterize the impact of the waste water on the quality of soil organic matter. Our results show that application of olive oil mill wastewater has various effects. We determined contact angles between 110 and 120° and water drop penetration times up to 1367 s indicating significant reduction in wettability. Furthermore, soil carbon and nitrogen content and water extractable organic matter increased as well as electric conductivity, which could be pointed out as a fertilizing effect. In contrast soil pH was significantly reduced. Conducting thermal analyses we observed an increase in the labile and refractory carbon fraction. Probably first one is responsible for induced water repellency. As a consequence the reduced wettability negatively affects soil quality. It would therefore be promising to minimize the hydrophobizing impacts without losing fertilizing effects of the olive oil mill wastewater.

  9. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær; Deng, H.

    2002-01-01

    Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process....... Furthermore, it was found that methane productions rates during digestion of either swine manure alone or OME alone were much lower than the rates achieved when OME and manure were digested together. Admixing OME with manure at a concentration of 5 to 10% OME resulted in the highest methane production rates....... Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed...

  10. Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20255 and Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    De Felice, B.; Pontecorvo, G.; Carfagna, M. [Univ. of Naples, Caserta (Italy). Inst. of Biology

    1997-12-31

    Waste water from olive oil processing may cause severe pollution in the Mediterranean area, since they have a high level of chemical oxygen demand (COD) (100-200 g/l) and contain other organic and inorganic compounds. In all olive oil producing countries, the reduction of pollution in olive oil mill waste waters at reasonable costs and using techniques suitable for most industrial applications is an unsolved problem. For this paper, the yeast Yarrowia lipolytica ATCC 20255 was grown on waste waters from an olive oil mill in a 3.5 l fermenter under batch culture conditions. The results showed that the yeast was capable of reducing the COD value by 80% in 24 h. In this way, a useful biomass of 22.45 g/l as single cell protein (SCP) and enzyme lipase were produced. During this process, most of the organic and inorganic substances were consumed, only aromatic pollutants were still present in the fermentation effluents. Therefore, we used a phenol degrader, namely Pseudomonas putida, to reduce phenolic compounds in the fermentation effluents after removing Yarrowia lipolytica cells. P. putida was effective in reducing phenols in only 12 h. (orig.)

  11. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus.

    Science.gov (United States)

    Koutrotsios, Georgios; Larou, Evangelia; Mountzouris, Konstantinos C; Zervakis, Georgios I

    2016-09-01

    Environmentally acceptable disposal of olive cultivation residues (e.g., olive prunings; olive pruning residues (OLPR)) and olive mill wastes is of paramount importance since they are generated in huge quantities within a short time. Moreover, olive mill wastewater (OMW) or sludge-like effluents ("alperujo"; two-phase olive mill waste (TPOMW)) are highly biotoxic. Hericium erinaceus is a white-rot fungus which produces choice edible mushrooms on substrates rich in lignocellulosics, and its suitability for the treatment of olive by-products was examined for the first time. Fungal growth resulted in a notable reduction of OMW's pollution parameters (i.e., 65 % decolorization, 47 % total phenolic reduction, and 52 % phytotoxicity decrease) and correlated with laccase and manganese peroxidase activities. Solid-state fermentation of various mixtures of OLPR, TPOMW, and beech sawdust (control) by H. erinaceus qualified OLPR in subsequent cultivation experiments, where it exhibited high mushroom yields and biological efficiency (31 %). Analyses of proximate composition and bioactive compound content revealed that mushrooms deriving from OLPR substrates showed significantly higher crude fat, total glucan, β-glucan, total phenolics, and ferric-reducing antioxidant potential values than the control. H. erinaceus demonstrated the potential to detoxify OMW and bioconvert OLPR into high-quality biomass, and hence, this fungus could be successfully exploited for the treatment of such by-products.

  12. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    Science.gov (United States)

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.

  13. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites.

    Science.gov (United States)

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Treatment of Olive Mill Wastewater and the Use of Polyphenols Obtained After Treatment

    Directory of Open Access Journals (Sweden)

    Semih Otles

    2012-04-01

    Full Text Available Olive mill wastes are signicant environmental problem especially in Mediterranean areas where they are generated in huge quantities in a short period of time. They are phytotoxic materials because of their high phenol, lipid and organic acid concentrations, but these wastes also contain valuable resources that could be recycled such as a large proportion of organic matter and a wide range of nutrients. The effluent from olive oil mills contains a large amount of polyphenols that have antioxidant properties. The market value of these antioxidants is high and they are commonly used in the food, cosmetics, pharmaceutics and chemical industries. For the management of olive mill wastewater (OMW and other olive residues, various treatment methods can be used. Many scientists work on more efficient and cheaper treatment alternatives. Due to the great variety of compounds in the waste, several technologies to remove the harmful compounds for the environment should be used single or together. Some of the most used OMW treatments are drying / evaporation, forced evaporation, thermal treatment, centrifugation-ultraltration, electrocoagulation, composting, lagooning, adsorption, powdered activated carbon, filtration, sand filtration, membrane filtration, ultrafiltration, precipitation / flocculation, distillation, electrolysis, co-composting, advanced oxidation processes (AOPs such as ozonation, hydrogen peroxide / ferrous iron oxidation (the so-called Fentons reagent. Several OMW treatment technologies have been developed aiming at the removal of the main toxic organic compounds. A lot of factors must be considered to choose the treatment methods among them the investment, required area, specic training of the workers, noise and odour emissions and seasonality of production.

  15. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis

    International Nuclear Information System (INIS)

    Martinez-Garcia, Gregorio; Johnson, Anbu Clemensis; Bachmann, Robert T.; Williams, Ceri J.; Burgoyne, Andrea; Edyvean, Robert G.J.

    2009-01-01

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 deg. C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20 L fixed-bed reactor at 37 deg. C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m -3 day -1 during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L biogas L reactor -1 day -1 , respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  16. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Garcia, Gregorio [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom); Johnson, Anbu Clemensis, E-mail: acj265@yahoo.com [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Jejawi, Perlis (Malaysia); Bachmann, Robert T. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, 1988 Vendor City, 7800 Taboh Naning, Alor Gajah, Melaka (Malaysia); Williams, Ceri J. [Yorkshire-Forward, Victoria House, Victoria Place, LS11 5AE Leeds (United Kingdom); Burgoyne, Andrea; Edyvean, Robert G.J. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)

    2009-05-30

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 deg. C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20 L fixed-bed reactor at 37 deg. C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m{sup -3} day{sup -1} during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L{sub biogas}L{sub reactor}{sup -1}day{sup -1}, respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  17. Treatment of Olive Mill Wastewater with Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2012-03-01

    Full Text Available The objective of this study was to investigate the application of constructed wetlands as a mean to manage olive mill wastewater (OMW. Two free water surface (FWS constructed wetlands, one without (CW1 and one with effluent recirculation (CW2, were operated for a two-year period with diluted OMW (1:10 and evaluated in terms of the removal of COD, TSS, TKN, NH4+-N, NO3−-N, TP and total phenols. The organic loading rate of CWs was adjusted to 925 kg BOD/ha·d. In CW1 the removal efficiency averaged 80%, 83%, 78%, 80%, and 74% for COD, TSS, TKN, TP, and total phenols, respectively, during the operation period. Effluent recirculation further improved the treatment efficiency which approached 90%, 98%, 87%, 85%, and 87% for COD, TSS, TKN, TP, and total phenols, respectively. Constructed wetlands also showed high removal efficiency for NH4+-N. Nitrate concentration maintained low in both CWs basins, probably due to the prevalence of high denitrification rates that efficiently removed the NO3--N produced by NH4+-N oxidation. Despite the increased removal percentages, pollutant concentration in effluent exceeded the allowable limits for discharge in water bodies, suggesting that additional practices, including enhanced pre-application treatment and/or higher dilution rates, are required to make this practice effective for OMW management.

  18. Disposal of olive mill wastewater with DC arc plasma method.

    Science.gov (United States)

    Ibrahimoglu, Beycan; Yilmazoglu, M Zeki

    2018-07-01

    Olive mill wastewater is an industrial waste, generated as a byproduct of olive oil production process and generally contains components such as organic matter, suspended solids, oil, and grease. Although various methods have been developed to achieve the disposal of this industrial wastewater, due to the low cost, the most common disposal application is the passive storage in the lagoons. The main objective of this study is to reduce pollution parameters in olive mill wastewater and draw water to discharge limits by using plasma technology. Plasma-assisted disposal of olive mill wastewater method could be an alternative disposal technique when considering potential utilization of treated water in agricultural areas and economic value of flammable plasma gas which is the byproduct of disposal process. According to the experimental results, the rates of COD (chemical oxygen demand) and BOD (biological oxygen demand) of olive mill wastewater are decreased by 94.42% and 95.37%, respectively. The dissolved oxygen amount is increased from 0.36 to 6.97 mg/l. In addition, plasma gas with high H 2 content and treated water that can be used in agricultural areas for irrigation are obtained from non-dischargeable wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Solar drying in greenhouse of mixture of olive mill wastewater and olive cake in Morocco

    International Nuclear Information System (INIS)

    Lakhytar, H.; Ismaili-Alaoui, M.; Perraud-Gaime, L.; Macarie, H.; Roussos, S.

    2009-01-01

    Morocco is a country which produces olive oil extensively and this industry within the country is currently under huge expansion. This particular industry, which is usually realized with triphasic processes using the technique of pressing, generates tons of wastes: olive mill wastewater (OMWW) (liquid waste) and olive cake (solid waste). (Author)

  20. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors.

    Science.gov (United States)

    Martini, Elisabetta; Merola, Giovanni; Tomassetti, Mauro; Campanella, Luigi

    2015-02-15

    New immunosensors working in organic solvent mixtures (OPIEs) for the analysis of traces of different pesticides (triazinic, organophosphates and chlorurates) present in hydrophobic matrices such as olive oil were developed and tested. A Clark electrode was used as transducer and peroxidase enzyme as marker. The competitive process took place in a chloroform-hexane 50% (V/V) mixture, while the subsequent enzymatic final measurement was performed in decane and using tert-butylhydroperoxide as substrate of the enzymatic reaction. A linear response of between about 10nM and 5.0μM was usually obtained in the presence of olive oil. Recovery tests were carried out in commercial or artisanal extra virgin olive oil. Traces of pesticides were also checked in the oily matrix, in pomace and mill wastewaters from an industrial oil mill. Immunosensors show good selectivity and satisfactory precision and recovery tests performed in olive oil gave excellent results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. An automated medium scale prototype for anaerobic co-digestion of olive mill wastewater

    Directory of Open Access Journals (Sweden)

    B. Bernardi

    2017-12-01

    Full Text Available Olive oil production constitutes one of the most important agro-industrial business for Mediterranean countries, where 97% of the international production is focused. Such an activity, mainly carried out through three phase olive oil mill plants, generates huge amounts of solid and liquid by-products further than olive oil. Physico-chemical features of these by-products depend on various factors such as soil and climatic conditions, agricultural practices and processing. As currently carried out, the disposal of these by-products may lead to numerous problems taking into account management, economic and particularly environmental aspects. Indeed, olive mill wastewater is not easily biodegradable due to its high chemical and biochemical oxygen demand, its high content in phenolic compounds, high ratio C/N and low pH, leading consequently to soil and water source pollution. Considering, the above-mentioned statements, olive mill waste disposal constitutes nowadays a challenge for oil industry stakeholders. It becomes necessary to look for alternative solutions in order to overcome environmental problems and ensure the sustainability of oil industry. Anaerobic co-digestion of olive mill wastewater with other agro-industrial matrices could be one of these solutions; since it offers the possibility to produce green energy and break down toxicological compounds contained in these wastewater for a better disposal of the digested matrices as soil conditioner. In this contest, this note reports the functioning principle of an automated medium scale plant for anaerobic co-digestion of olive mill wastewater. Keywords: Medium scale prototype, Olive mill wastewater (OMWW, Anaerobic co-digestion (AcoD, Automatic process

  2. Synthetic olive mill wastewater treatment by Fenton's process in batch and continuous reactors operation.

    Science.gov (United States)

    Esteves, Bruno M; Rodrigues, Carmen S D; Madeira, Luís M

    2017-11-04

    Degradation of total phenol (TPh) and organic matter, (expressed as total organic carbon TOC), of a simulated olive mill wastewater was evaluated by the Fenton oxidation process under batch and continuous mode conditions. A mixture of six phenolic acids usually found in these agro-industrial wastewaters was used for this purpose. The study focused on the optimization of key operational parameters of the Fenton process in a batch reactor, namely Fe 2+ dosage, hydrogen peroxide concentration, pH, and reaction temperature. On the assessment of the process efficiency, > 99% of TPh and > 56% of TOC removal were attained when [Fe 2+ ] = 100 ppm, [H 2 O 2 ] = 2.0 g/L, T = 30 °C, and initial pH = 5.0, after 300 min of reaction. Under those operational conditions, experiments on a continuous stirred-tank reactor (CSTR) were performed for different space-time values (τ). TOC and TPh removals of 47.5 and 96.9%, respectively, were reached at steady-state (for τ = 120 min). High removal of COD (> 75%) and BOD 5 (> 70%) was achieved for both batch and CSTR optimum conditions; analysis of the BOD 5 /COD ratio also revealed an increase in the effluent's biodegradability. Despite the high removal of lumped parameters, the treated effluent did not met the Portuguese legal limits for direct discharge of wastewaters into water bodies, which indicates that coupled chemical-biological process may be the best solution for real olive mill wastewater treatment.

  3. Catalytic pyrolysis of olive mill wastewater sludge

    Science.gov (United States)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  4. Airborne effluent control at uranium mills

    International Nuclear Information System (INIS)

    Sears, M.B.

    1976-01-01

    The Oak Ridge National Laboratory has made an engineering cost--environmental benefit study of radioactive waste treatment systems for decreasing the amount of radioactive materials released from uranium ore processing mills. This paper summarizes the results of the study which pertain to the control and/or abatement of airborne radioactive materials from the mill processes. The tailings area is not included. Present practices in the uranium milling industry, with particular emphasis on effluent control and waste management, have been surveyed. A questionnaire was distributed to each active mill in the United States. Replies were received from about 75 percent of the mill operators. Visits were made to six operating uranium mills that were selected because they represented the different processes in use today and the newest, most modern in mill designs. Discussions were held with members of the Region IV Office of NRC and the Grand Junction Office of ERDA. Nuclear Science Abstracts, as well as other sources, were searched for literature pertinent to uranium mill processes, effluent control, and waste management

  5. Assessment of the Genotoxicity of olive mill waste water (OMWW) with the Vicia faba Micronucleus test

    International Nuclear Information System (INIS)

    El Hajjouji, H.; Pinelli, E.; Revel, J. C.; Hafidi, M.

    2009-01-01

    Olive mill waste water (OMW) can cause serious environmental hazards in olive producing countries, especially around the Mediterranean basin. In Morocco, olive mills are noe of the foremost polluters: the volume of OMW produced annually is estimated at 250 000 m 3 during the season of production. the present study concerns the genotoxicity of OMW generated in mills producing olive oil in Morocco. (Author)

  6. Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Saleh Abu-Lafi

    2017-01-01

    Full Text Available The production of olive oil generates massive quantities of by-product called olive mill wastewater (OMWW. The uncontrolled disposal of OMWW poses serious environmental problems. The OMWW effluent is rich in several polyphenolic compounds. Liquid-liquid extraction of OMWW using ethyl acetate solvent was used to enrich phenolic compounds under investigation. Total phenolic and flavonoid content and antioxidant activity of the extract were determined. HPLC coupled to photodiode array (PDA detector was used to analyze the main three phenolic compounds of OMWW, namely, hydroxytyrosol, tyrosol, and oleuropein. The antimicrobial activity of the extract was also investigated. Additionally, the OMWW extract was used as natural preservative and antioxidants for olive oil. Results showed that OMWW is very rich in phenolic compounds and has strong antioxidant activity. HPLC analysis showed that the extract contains mainly hydroxytyrosol and tyrosol but no oleuropein. The OMWW extract showed also positive activities as antibacterial (gram positive and gram negative and antifungal as well as activities against yeast. The addition of OMWW extract to olive oil samples has an effect on the stability of olive oil as reflected by its acid value, peroxide value, K232 and K270, and total phenolic content.

  7. Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.

    Science.gov (United States)

    Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

    2013-10-15

    The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700 m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ≤4.0 €/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Directory of Open Access Journals (Sweden)

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  9. Removal of contaminants in a paper mill effluent by Azolla caroliniana

    Directory of Open Access Journals (Sweden)

    D. Sivakumar

    2015-09-01

    Full Text Available This study was focused on removal of various parameters in paper mill effluent using a method called bioremediation by Azolla caroliniana.  The experimental investigations have been carried out using Azolla caroliniana for conducting the sorption study with various dilution ratios (2, 4, 6, 8, and 10, pH (3, 4, 5, 6, 7, 8 and 9 and biomass (200, 400, 600, 800 and 1000 g. The maximum removal percentage of TDS, BOD and COD in a paper mill effluent was obtained at the optimum dilution ratio of 6, pH of 8 and biomass of 800 g. The results of this study indicated that the maximum removal percentage of TDS, BOD and COD in a paper mill effluent was 82.3 %, 88.6 % and 79.1 % respectively.  Also, the study focused on uptake of TDS, BOD and COD in paper mill effluent by Azolla caroliniana through bioaccumulation factor and translocation factor. The results of bioaccumulation factor revealed that TDS, BOD and COD in paper mill effluent were adsorbed by Azolla caroliniana.  The results of translocation factor revealed that the roots of Azolla caroliniana translocate the TDS, BOD and COD in a paper mill effluent to the shoots of Azolla caroliniana. From the results, this study concluded that bioremediation by Azolla caroliniana could be effectively used for removing TDS, BOD and COD in a paper mill effluent. This study also suggested that Azolla caroliniana may be used for removing various contaminants, not only from paper mill effluent, but also from any other industrial effluents.

  10. Multiple Biological Effects of Olive Oil By-products such as Leaves, Stems, Flowers, Olive Milled Waste, Fruit Pulp, and Seeds of the Olive Plant on Skin.

    Science.gov (United States)

    Kishikawa, Asuka; Ashour, Ahmed; Zhu, Qinchang; Yasuda, Midori; Ishikawa, Hiroya; Shimizu, Kuniyoshi

    2015-06-01

    As olive oil production increases, so does the amount of olive oil by-products, which can cause environmental problems. Thus, new ways to utilize the by-products are needed. In the present study, five bioactive characteristics of olive oil by-products were assessed, namely their antioxidant, anti-bacterial, anti-melanogenesis, anti-allergic, and collagen-production-promoting activities. First, the extracts of leaves (May and October), stems (May and October), flowers, olive milled waste, fruit pulp and seeds were prepared using two safe solvents, ethanol and water. According to HPLC and LC/MS analysis and Folin-Ciocalteu assay, the ethanol extracts of the leaves (May and October), stems (May and October) and flowers contained oleuropein, and the ethanol extract of the stems showed the highest total phenol content. Oleuropein may contribute to the antioxidant and anti-melanogenesis activities of the leaves, stems, and flowers. However, other active compounds or synergistic effects present in the ethanol extracts are also likely to contribute to the anti-bacterial activity of the leaves and flowers, the anti-melanogenesis activity of some parts, the anti-allergic activity of olive milled waste, and the collagen-production-promoting activity of the leaves, stems, olive milled waste and fruit pulp. This study provides evidence that the by-products of olive oil have the potential to be further developed and used in the skin care industry. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Traitement de la margine brute d'huile d'olive par distillation suivi de ...

    African Journals Online (AJOL)

    SARAH

    31 juil. 2014 ... Research on optimization of the distillate and residue are in progress. Keywords: olive oil ... des composés phénoliques de ce distillat avant et après sa ..... Ranalli A. (1991a) the effluent from olive mills: Proposals for re-use ...

  12. A Novel Photocatalyst with Ferromagnetic Core Used for the Treatment of Olive Oil Mill Effluents from Two-Phase Production Process

    Directory of Open Access Journals (Sweden)

    Javier Miguel Ochando-Pulido

    2013-01-01

    Full Text Available Photocatalytic degradation of olive oil mill wastewater from two-phase continuous centrifugation process was studied. A novel photocatalyst with ferromagnetic properties was characterized and investigated. The degradation capacity of the photocatalytic process of olive oil washing wastewater (OMW and mixture of olives and olive oil (1 v/v washing wastewaters (MOMW was demonstrated. At lab-scale, the %COD removal and residence time (τ for MOMW and OMW were 58.4% (τ=2 h and 21.4% (τ=3 h, respectively. On the other hand, at pilot scale, 23.4% CODremoval, 19.2% total phenolsremoval, and 28.1% total suspended solidsremoval were registered at the end of the UV/TiO2 process for OMW, whereas 58.3% CODremoval, 27.5% total phenolsremoval, and 25.0% total suspended solidsremoval for MOMW. Also, before the UV/TiO2 reaction, a pH-T flocculation operation as pretreatment was realized. The overall efficiency of the treatment process for MOMW was up to 91% of CODremoval, in contrast with 33.2% of CODremoval for OMW.

  13. Long-Term Effects of Olive oil Mill wastewater spreading on soil and olive trees

    Energy Technology Data Exchange (ETDEWEB)

    Ben rouina, B.; Ben Ahmed, C.; Boukhris, M.

    2009-07-01

    The olive oil extraction process produces huge amounts of liquid waste called olive mill waste water (OMWW). Large amounts of OMWW (30 million m{sup 3}) are produced in the Mediterranean regions that accounts for 95% of the total olive oil production worldwide. In Tunisia, OMWW constitutes a serious environmental problem due to the features associated with this type of agro-waste and to its diverse organic load which may reach values as high as 100 g/L and is mained with this type of agro-waste and to its diverse organic load which may reach values as high as 100 g/L is mainly due to sugars. lipids, phenols, and tannins. (Author)

  14. Long-Term Effects of Olive oil Mill wastewater spreading on soil and olive trees

    International Nuclear Information System (INIS)

    Ben rouina, B.; Ben Ahmed, C.; Boukhris, M.

    2009-01-01

    The olive oil extraction process produces huge amounts of liquid waste called olive mill waste water (OMWW). Large amounts of OMWW (30 million m 3 ) are produced in the Mediterranean regions that accounts for 95% of the total olive oil production worldwide. In Tunisia, OMWW constitutes a serious environmental problem due to the features associated with this type of agro-waste and to its diverse organic load which may reach values as high as 100 g/L and is mained with this type of agro-waste and to its diverse organic load which may reach values as high as 100 g/L is mainly due to sugars. lipids, phenols, and tannins. (Author)

  15. Impact analysis of palm oil mill effluent on the aerobic bacterial ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-18

    Jan 18, 2007 ... Key words: Palm oil mill effluent, total aerobic bacteria, ammonium oxidizers. INTRODUCTION ... bacteria help in the degradation of macromolecules from plant and animal .... Anaerobic digestion of palm oil mill effluent.

  16. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification

    Directory of Open Access Journals (Sweden)

    Javier Miguel Ochando-Pulido

    2015-09-01

    Full Text Available Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these highly polluted effluents. In the present work, a review on the actual state of the art concerning the treatment and disposal of OMW by membranes is addressed, comprising microfiltration (MF, ultrafiltration (UF, nanofiltration (NF, and reverse osmosis (RO, as well as membrane bioreactors (MBR and non-conventional membrane processes such as vacuum distillation (VD, osmotic distillation (OD and forward osmosis (FO. Membrane processes are becoming extensively used to replace many conventional processes in the purification of water and groundwater as well as in the reclamation of wastewater streams of very diverse sources, such as those generated by agro-industrial activities. Moreover, a brief insight into inhibition and control of fouling by properly-tailored pretreatment processes upstream the membrane operation and the use of the critical and threshold flux theories is provided.

  17. Phenolic compounds removal from mimosa tannin model water and olive mill wastewater by energy-efficient electrocoagulation process

    Directory of Open Access Journals (Sweden)

    Marijana Kraljić Roković

    2014-12-01

    Full Text Available The objective of this work was to study the influence of NaCl concentration, time, and current density on the removal efficiency of phenolic compounds by electrocoagulation process, as well as to compare the specific energy consumption (SEC of these processes under different experimental conditions. Electrocoagulation was carried out on two different samples of water: model water of mimosa tannin and olive mill wastewater (OMW. Low carbon steel electrodes were used in the experiments. The properties of the treated effluent were determined using UV/Vis spectroscopy and by measuring total organic carbon (TOC. Percentage of removal increased with time, current density, and NaCl concentration. SEC value increased with increased time and current density but it was decreased significantly by NaCl additions (0-29 g L-1. It was found that electro­coagulation treatment of effluents containing phenolic compounds involves complex formation between ferrous/ferric and phenolic compounds present in treated effluent, which has significant impact on the efficiency of the process.

  18. Impact of repeated two-phase olive mill waste application on phosphorus fractionation in a degraded olive grove soil

    International Nuclear Information System (INIS)

    Lopez-Pineiro, A.; Albarran, A.; Flores, S.; Rato, J. M.; Munoz, A.; Cabrera, D.; Pena, D.; Fernandez, S.

    2009-01-01

    Loss of organic matter is one of the main forms of soil degradation in Mediterranean agricultural soils, and external sources of organic matter are required to improve soil properties. the two-phase centrifugation system in the olive-oil extraction industry produces a large amount of olive mill waste sludge (TPOMW) which can be used to add organic C to degraded soils. (Author)

  19. Treatment technologies of liquid and solid wastes from two-phase olive oil mills

    OpenAIRE

    Borja Padilla, Rafael; Raposo Bejines, Francisco; Rincón, Bárbara

    2006-01-01

    Over the last 10 years the manufacture of olive oil has undergone important evolutionary changes in the equipment used for the separation of olive oil from the remaining components. The latest development has been the introduction of a two-phase centrifugation process in which a horizontally-mounted centrifuge is used for a primary separation of the olive oil fraction from the vegetable solid material and vegetation water. Therefore, the new two-phase olive oil mills produce three ident...

  20. Treatment technologies of liquid and solid wastes from two-phase olive oil mills

    OpenAIRE

    Rincón, Bárbara; Raposo, Francisco; Borja, Rafael

    2006-01-01

    Over the last 10 years the manufacture of olive oil has undergone important evolutionary changes in the equipment used for the separation of olive oil from the remaining components. The latest development has been the introduction of a two-phase centrifugation process in which a horizontally-mounted centrifuge is used for a primary separation of the olive oil fraction from the vegetable solid material and vegetation water. Therefore, the new two-phase olive oil mills produce three identifiabl...

  1. Regarding the rejection performance of a polymeric reverse osmosis membrane for the final purification of two-phase olive mill effluents previously treated by an advanced oxidation process

    International Nuclear Information System (INIS)

    Ochando-Pulido, J.M.; Martínez-Férez, A.

    2017-01-01

    In previous works on olive mill wastewater (OMW), secondary advanced oxidation treatment solved the problem related to the presence of phenolic compounds and considerable chemical oxygen demand. However, the effluent presented a significant salinity after this treatment. In this work, an adequate operation of a reverse osmosis (RO) membrane is addressed to ensure constant performance over a long period of time. In this paper, the effect of the operating parameters on the dynamic membrane rejection performance towards the target species was examined and discussed. Rejection efficiencies of all species were observed to follow a similar pattern, which consisted of slight initial improvement that further decreased over time. Rejection of both divalent ions remained constant at over 99% regardless of the operating conditions. Rejections were noticed to follow the order SO42−> Cl−> NO3− and Ca2+> Mg2+> K+> Na+, as a rule. Divalent species were moderately more highly rejected than monovalent ones, in accordance with their higher charge and molecular size, and sulfate anions were consistently rejected by over 99%. Finally, the RO membrane exiting treated effluent was depleted of the high electro conductivity initially present (above 97% rejection), permitting its re-use as good quality irrigation water (below 1 mS/cm). [es

  2. Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater

    Science.gov (United States)

    Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.

    2012-04-01

    In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the

  3. Microbiological effects of olive mill waste addition to substrates for Pleurotus pulmonarius cultivation

    NARCIS (Netherlands)

    Soler-Rivas, C.; Garcia-Rosado, A.; Polonia, I.; Junca-Blanch, G.; Marin, F.R.; Wichers, H.J.

    2006-01-01

    When olive mill wastes (OMWs) and vegetation waters (VWs) obtained during the manufacture of olive oil were added as substrate supplements for the cultivation of Pleurotus pulmonarius the material modified growth of the mushroom and the endemic microbiota of the substrate, in particular the

  4. Olive oil enriched in lycopene from tomato by-product through a co-milling process.

    Science.gov (United States)

    Bendini, Alessandra; Di Lecce, Giuseppe; Valli, Enrico; Barbieri, Sara; Tesini, Federica; Toschi, Tullia Gallina

    2015-01-01

    The aim of this investigation was to produce an olive oil (OO) naturally enriched with antioxidants, recovering carotenoids, in particular lycopene, using an industrial by-product of tomato seeds and skin. For this purpose, a technological process in a low-scale industrial plant to co-mill olives and tomato by-product in de-frosted or freeze-dried forms was applied and studied with respect to control samples. Preliminary results obtained from two different experiments were carried out by 40 kg of cultivar Correggiolo olives and 60 kg of olive blends from different cultivars. In both the experiments, the co-milling showed significant enrichment in carotenoids, especially in lycopene (mean values of 5.4 and 7.2 mg/kg oil from defrosted and freeze-dried by-products, respectively). The experimental results demonstrated the possibility to obtain a new functional food naturally enriched in antioxidant compounds, which might be marketed as "OO dressing enriched in lycopene" or "condiment produced using olives and tomato by-product".

  5. Optimizing Degradation of Olive Oil Mill Waste Water Using Paecilomyces variotii

    International Nuclear Information System (INIS)

    Khatab, O.K.; El-Nasr, A.A.; Hassan, A.A.; Abdel El- Aziz, A.B.; Zaki, G.H.

    2013-01-01

    Twenty six microbial isolates (ten fungal, nine yeast and seven bacterial isolates) were isolated from the Olive Oil Mill Waste Water (OOMW) which was extracted from effluent of olive oil industry factory. All isolates were tested for its growth on media containing 10% OOMW as sole carbon source. It was found that (three fungal, two yeast and two bacterial isolates) had the ability to grow on this concentration. These isolates were identified as Paecilomyces variotii, Ascopus stercoraris, Aspergillus terrus, Yarowia lipolytica, Candida tropicalis, Lactobacillus curvatus and Bacillus brevis. The identified isolates were tested for the biodegradation of phenolic compounds at high concentration of OOMW (25%). Paecilomyces variotii was the best isolate as it degraded 10.40 % of the phenolic compounds. The maximum degradation of phenolic compounds and chemical oxygen demand (COD) decrease percentage was (68.14 and 59.12, respectively) obtained at 50% dilution of OOMW for 12 days at 37±1 degree C, ph 6, supplement the degradation media with 150 mg/l sucrose, 2.5 g/l yeast extract and 0.070 mmol/l CuSO 4 concentration in aerobic conditions with aeration rate 4:1 (v air: v media), shaking at 150 rpm and 6 g/l inoculums size. In addition, 0.25 kGy was the best dose as it led to increase the phenolic compounds biodegradation percent 8.7% than the optimum conditions previously mentioned. Finally, the bio treated OOMW was lower toxicity to environment than untreated one.

  6. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    International Nuclear Information System (INIS)

    El-Gohary, F.A.; Badawy, M.I.; El-Khateeb, M.A.; El-Kalliny, A.S.

    2009-01-01

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H 2 O 2 dose, Fe +2 , COD:H 2 O 2 ratio and Fe +2 :H 2 O 2 ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l -1 for ρ-hydroxy-benzaldhyde to 3.273 mg l -1 for cinnamic acid

  7. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    Science.gov (United States)

    Koutrotsios, Georgios; Zervakis, Georgios I.

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  8. Dietary Administration of Olive Mill Wastewater Extract Reduces Campylobacter spp. Prevalence in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Raffaella Branciari

    2016-08-01

    Full Text Available Food wastes are sources of compounds that can be used as natural additives in the food and feed industry. The olive oil industry produces two main wastes: aqueous waste (olive mill wastewater and solid waste (pomace or olive cake. These by-products are rich in phenols, which are antioxidant and antimicrobial compounds able to inhibit or delay the growth of several bacteria in vitro. The dietary effect of both olive mill wastewater polyphenolic extract (OMWPE and dehydrated olive cake (DOC on the prevalence of Campylobacter spp. in broiler chickens was investigated. A commercial basal diet was supplemented with either OMWPE- or DOC-enriched maize at two dosages (low: 16%; high: 33%. The prevalence of Campylobacter spp. shedding was evaluated at 21, 35, and 49 days of age. The prevalence of Campylobacter spp. differed among groups only at 49 days of age. Both OMWPE groups showed a lower (p < 0.05 prevalence compared to the control group. The odds ratio evaluation showed that the higher dose of OMWPE reduced the possibility of shedding 11-fold compared to the control group (p < 0.001. These results highlight the potential use of olive by-products against Campylobacter spp. in poultry.

  9. Composted versus Raw Olive Mill Waste as Substrates for the Production of Medicinal Mushrooms: An Assessment of Selected Cultivation and Quality Parameters

    Directory of Open Access Journals (Sweden)

    Georgios I. Zervakis

    2013-01-01

    Full Text Available Two-phase olive mill waste (TPOMW, “alperujo” is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota, that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120–135% for Pleurotus spp. and 125% for A. cylindracea and productivity in subsequent cultivation experiments on substrates supplemented with 20–40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium. Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  10. Composted versus raw olive mill waste as substrates for the production of medicinal mushrooms: an assessment of selected cultivation and quality parameters.

    Science.gov (United States)

    Zervakis, Georgios I; Koutrotsios, Georgios; Katsaris, Panagiotis

    2013-01-01

    Two-phase olive mill waste (TPOMW, "alperujo") is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota), that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120-135% for Pleurotus spp. and 125% for A. cylindracea) and productivity in subsequent cultivation experiments on substrates supplemented with 20-40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium). Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  11. SBR treatment of olive mill wastewaters: dilution or pre-treatment?

    Science.gov (United States)

    Farabegoli, G; Chiavola, A; Rolle, E

    2012-01-01

    The olive-oil extraction industry is an economically important activity for many countries of the Mediterranean Sea area, with Spain, Greece and Italy being the major producers. This activity, however, may represent a serious environmental problem due to the discharge of highly polluted effluents, usually referred to as 'olive mill wastewaters' (OMWs). They are characterized by high values of chemical oxygen demand (COD) (80-300 g/L), lipids, total polyphenols (TPP), tannins and other substances difficult to degrade. An adequate treatment before discharging is therefore required to reduce the pollutant load. The aim of the present paper was to evaluate performances of a biological process in a sequencing batch reactor (SBR) fed with pre-treated OMWs. Pre-treatment consisted of a combined acid cracking (AC) and granular activated carbon (GAC) adsorption process. The efficiency of the system was compared with that of an identical SBR fed with the raw wastewater only diluted. Combined AC and GAC adsorption was chosen to be used prior to the following biological process due to its capability of providing high removal efficiencies of COD and TPP and also appreciable improvement of biodegradability. Comparing results obtained with different influents showed that best performances of the SBR were obtained by feeding it with raw diluted OMWs (dOMWs) and at the lowest dilution ratio (1:25): in this case, the removal efficiencies were 90 and 76%, as average, for COD and TPP, respectively. Feeding the SBR with either the pre-treated or the raw dOMWs at 1:50 gave very similar values of COD reduction (74%); however, an improvement of the TPP removal was observed in the former case.

  12. Mathematical modeling of olive mill waste composting process.

    Science.gov (United States)

    Vasiliadou, Ioanna A; Muktadirul Bari Chowdhury, Abu Khayer Md; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Pavlou, Stavros; Vayenas, Dimitrios V

    2015-09-01

    The present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes. First-order kinetics were used to describe the hydrolysis of insoluble organic matter, followed by formation of biomass. Microbial biomass growth was modeled with a double-substrate limitation by hydrolyzed available organic substrate and oxygen using Monod kinetics. The inhibitory factors of temperature and moisture content were included in the system. The production and consumption of nitrogen and phosphorous were also included in the model. In order to evaluate the kinetic parameters, and to validate the model, six pilot-scale composting experiments in controlled laboratory conditions were used. Low values of hydrolysis rates were observed (0.002841/d) coinciding with the high cellulose and lignin content of the composting materials used. Model simulations were in good agreement with the experimental results. Sensitivity analysis was performed and the modeling efficiency was determined to further evaluate the model predictions. Results revealed that oxygen simulations were more sensitive on the input parameters of the model compared to those of water, temperature and insoluble organic matter. Finally, the Nash and Sutcliff index (E), showed that the experimental data of insoluble organic matter (E>0.909) and temperature (E>0.678) were better simulated than those of water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification

    OpenAIRE

    Ochando-Pulido, Javier Miguel; Martinez-Ferez, Antonio

    2015-01-01

    Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW) have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these h...

  14. Extracellular laccase production and phenolic degradation by an olive mill wastewater isolate

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2018-03-01

    Full Text Available Olive mill wastewater (OMWW presents a challenge to the control of effluents due to the presence of a high organic load, antimicrobial agents (monomeric-polymeric phenols, volatile acids, polyalcohols, and tannins, salinity and acidity. In this study, the production of extracellular laccase, monomeric or polymeric phenol, from an OMWW isolate based on its ability to biodegrade phenols and gallic acid as a model of phenolic compounds in OMWW was investigated. Phylogenetic analysis of the 16S RNA gene sequences identified the bacterial isolate (Acinetobacter REY as being closest to Acinetobacter pittii. This isolate exhibited a constitutive production of extracellular laccase with an activity of 1.5 and 1.3 U ml/L when supplemented with the inducers CuSO4 and CuSO4+phenols, respectively. Batch experiments containing minimal media supplemented with phenols or gallic acid as the sole carbon and energy source were performed in order to characterize their phenolic biodegradability. Acinetobacter REY was capable of biodegrading up to 200 mg/L of phenols and gallic acid both after 10 h and 72 h, respectively.

  15. Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status.

    Science.gov (United States)

    Karaouzas, Ioannis; Skoulikidis, Nikolaos T; Giannakou, Urania; Albanis, Triantafyllos A

    2011-12-01

    Olive mill wastewater (OMW) is one of the major and most challenging organic pollutants in olive oil production countries. However, the knowledge about the in-situ effects of olive mill wastewaters to lotic ecosystems and their benthic organisms is very limited. To resolve this, eight sampling sites were selected upstream and downstream the outflow of several olive mills to assess the spatial and temporal effects of OMW to stream macroinvertebrates and to ecological status of stream ecosystems. Biotic (macroinvertebrates) and abiotic (physicochemical, hydromorphological) data were monitored for two years thus following the biennial cycle of olive growth and production and hydrological variation (drought-wet years). The results of this study revealed the spatial and temporal structural deterioration of the aquatic community due to OMW pollution with consequent reduction of the river capacity for reducing the effects of polluting substances through internal mechanisms of self-purification. OMW, even highly diluted, had dramatic impacts on the aquatic fauna and to the ecological status of the receiving stream ecosystems. The organic load of the wastewater expressed as BOD(5), COD and TSS, substrate contamination (sewage bacteria) and distance from the mill outlet, were the most important factors affecting macroinvertebrate assemblages while the typology (i.e. slope, altitude) and hydrology of the stream site (i.e. mountainous-lowland) and the intensity and volume of the wastewater were the most important determinants of self-purification processes. As OMW are usually being discharged in small size streams that are not considered in the Water Framework Directive 2000/60/EC, there is a need for including such systems into monitoring and assessment schemes as they may significantly contribute to the pollution load of the river basin. Furthermore, guidelines to manage these wastes through technologies that minimise their environmental impact and lead to a sustainable use

  16. Treatment technologies of liquid and solid wastes from two-phase olive oil mills

    Directory of Open Access Journals (Sweden)

    Rincón, Bárbara

    2006-03-01

    Full Text Available Over the last 10 years the manufacture of olive oil has undergone important evolutionary changes in the equipment used for the separation of olive oil from the remaining components. The latest development has been the introduction of a two-phase centrifugation process in which a horizontally-mounted centrifuge is used for a primary separation of the olive oil fraction from the vegetable solid material and vegetation water. Therefore, the new two-phase olive oil mills produce three identifiable and separate waste streams. These are: 1 the wash waters from the initial cleansing of the fruit; 2 the wash waters from the secondary centrifuge and 3 the aqueous solid residues from the primary centrifugation. As well as offering process advantages they also reduce the water consumption of the mill. The introduction of this technology was carried out in 90% of Spanish olive oil factories. Therefore, the new twophase olive mill effluents (TPOME are made up of the mixture of effluents (1 and (2, the total volume of TPOME generated being around 0.25 l/kg of olives processed. In addition, the solid residue (two-phase olive pomace, TPOP has a high organic matter concentration giving an elevated polluting load and it cannot be easily handled by traditional technology which deals with the conventional three-phase olive cake.So, this paper aims to report the main features and characteristics of TPOME, and of TPOP, as compared to the classical olive mill wastewater (OMW and olive cake derived from the three-phase manufacturing process. The advantages and disadvantages of the two-phase decanting process will be summarized. Among the treatments reported for TPOME, aerobic processes in completely mixed and activated sludge reactor showed high COD removal efficiencies. Kinetic constants of the aerobic processes were also compared at different operational conditions. The report also includes the following findings: assays of anaerobic digestion of wastewaters from the

  17. EVALUATION OF THE MICROCLIMATE DURING OLIVE OIL EXTRACTION OPERATIONS INSIDE OLIVE MILLS

    Directory of Open Access Journals (Sweden)

    Vittorio Panaro

    2007-06-01

    Full Text Available Some oil mills, among the most representative in the Puglia Region in terms of quality and productivity have been considered, and the temperature and humidity of the environment and the sensations of temperature felt by the workers were registered inside them during the process of oil extraction. Subsequently, a numerical code in MATLAB language was created, able to calculate the PMV and PPD and a study was carried out of the conditions of global comfort in the environment during the oil extraction process. The results of the surveys carried out in the mills show the importance of microclimate risk analysis in these workplaces, since the instrumental surveys and the calculations have shown that climatic conditions are not comfortable in the olive storage bays. On the other hand, the data from the oil extraction areas shows an acceptable condition of thermal well-being.

  18. Biodegradation Potentials of Cassava Mill Effluent (CME) by ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The indiscriminate discharge of Cassava mill effluent pose serious ... The study has shown that microbial isolates have the potentials of reducing pollution effect thereby ..... villages in Portharcourt, Rivers State Nigeria. J. Appl. Sci.

  19. Techno-Economic Performance Evaluation for Olive Mills Powered by Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Ovidio Rabaza

    2015-10-01

    Full Text Available In recent years, due to the rise in petroleum prices and greenhouse gas emissions, renewable energy has been recommended as a power source for different types of facilities. For the period 2010 to 2020 the European Commission has established three key objectives related to climatic change and energy sustainability, such as reductions of CO2 emissions, increases in the use of renewable energy, and improvements in energy efficiency. A key industry is olive oil production in olive mills, where there is a great opportunity to reduce electricity consumption, increase additional profits related to the reduction of technologies that are harmful to the environment, and to cut back maintenance costs. For this reason, a feasibility study of grid-connected photovoltaics (PV systems has been carried out for different types of olive mills in Andalusia (southern Spain. This region is highly energy dependent, but has an abundance of “green” resources to be exploited. The results of this study contemplate a reduction in spending on electrical power of between 2% and 37%, and an increase in the use of renewable energy of between 2% and 26%. These results are according to the self-consumption or net metering policy and the production capacity of olive oil.

  20. The postharvest of mill olives

    Directory of Open Access Journals (Sweden)

    Yousfi, Khaled

    2006-03-01

    Full Text Available The greatest deterioration of olive oil is due to poor handling of the olives during the time between harvesting and processing. Storage of olive fruits is carried out by simple heaping in fruit piles, waiting their processing. These fruits develop all kinds of degenerative processes in a short period of time. Oils obtained from them show characteristics hydrolytic and oxidative deteriorations confirmed by their high acidity values, peroxide value or ultraviolet absorbance at 232 and 270 nm. To avoid this situation, the industry is currently reducing the interval between harvesting and processing, through an increase in milling capacity. However, the equipment necessary for preventing the accumulation of fruit in January would be unnecessary for the rest of the season. In this chapter, refrigeration of the olive fruits, or the use of physical treatments, to allow the processing of unripe fruits, are analysed as possible alternatives.El mayor deterioro del aceite de oliva es debido a la inadecuada manipulación de las aceitunas durante el tiempo que media entre su cosecha y su procesado. El almacenamiento de las aceitunas se lleva acabo mediante el simple amontonamiento del fruto, esperando su procesamiento. Estos frutos desarrollan toda clase de procesos degenerativos en un corto periodo de tiempo. Los aceites obtenidos a partir de estos frutos exhiben deterioros hidrolíticos y oxidativos característicos, confirmados por sus valores altos de acidez, de índice de peróxidos o de absorbancia en la región ultravioleta a 232 y 270 nm. Para evitar esta situación, la industria intenta reducir al máximo el intervalo entre la cosecha y el procesado del fruto, mediante un aumento de la capacidad de molturación. Sin embargo, el equipo necesario para prevenir la acumulación de fruto en Enero no se precisa para el resto de la campaña. En este capítulo, la refrigeración de las aceitunas o el uso de tratamientos físicos, que permiten el procesado

  1. Use and treatment of olive mill wastewater: current situation and prospects in Spain

    Directory of Open Access Journals (Sweden)

    Fiestas Ros de Ursinos, J. A.

    1992-04-01

    Full Text Available The characteristics of olive mill wastewater are set out the viewpoint of their pollutant capacity and the problems arising from their tipping in olive-growing areas. The national administration's solutions for preventing pollutions of surface waters are also stated. Special detail is given to the action taken within a research and development program financed by the Spanish Government and the EEC through the Commission MEDSPA 89 for the technical-economic evaluation of different systems for eliminating and treating olive mill wastewater, in order to determine the feasibility of their introduction at industrial level. At the same time the systems currently under evaluation are described: - Intensification of natural evaporation from olive mill wastewater stored in ponds (two systems. - Physical processes using forced evaporation to eliminate the olive mill wastewater, followed by aerobic biological processes or systems of ultrafiltration and inverse osmosis for final treatment of the condensate (two systems. - Application of physico-chemical processes to eliminate the greater part of the organic components of the olive mill wastewaters and the use of aerobic biological processes or systems of ultrafiltration and inverse osmosis for final treatment of the clarified fraction (three systems. - Biological process for the complete treatment of the olive mill wastewaters by the successive application of processes: bioconversion, biomethanisation, aerobic treatment, and physico-chemical treatment. Treatment yields of the order of 99,6% are achieved, at the same time obtaining by-products of commercial interest (one system.

    Las características de los alpechines se establecen desde el punto de vista de su capacidad contaminante y de los problemas típicos que surgen en las zonas de cultivo del olivo. También están descritas las soluciones de la administración del Estado para la prevención de la contaminación de aguas de superficie

  2. In vitro fermentation of olive oil mill wastewaters using sheep rumen liquor as inoculum: Olive mill wastewaters an alternative for ruminant's nutrition

    Directory of Open Access Journals (Sweden)

    Moufida Aggoun

    2014-12-01

    Full Text Available Olive oil mill wastewaters (OMWW are the main liquid effluents generated by the olive oil production industry. This liquid, considered pollutant and toxic, is characterised by its high content of organic matter including mainly sugars and fats, and phenols compounds, which can be used in ruminants feeding. The purpose of this study is to valorise this agricultural by-product in ruminant feeding by estimation its in vitro degradability in presence of ovine ruminale microbiota comparatively to vetch-oat hay, using in vitro gas production technique coupled with NH3-N and protozoa measurements. Cumulative gas production was recorded at 3, 6, 9, 24, 48, 72 and 96 hours of incubation. The determination of gazes produced (carbon dioxide and methane was recorded at 6, 9, 24, 48 and 96 hours. However, Ammonia and protozoa number were recorded after 24 hours of incubation. Fermentation profile was fitted to the exponential model y = a + b (1 – e-kt. The OMWW are characterized by their high sugars content (39.91% and their low content in ash (1.99% and crude protein (2.70%. This by-product is also characterized by its high concentration in total phenols (7.2% and tannins (4.5%. However, they contain a very small amount of condensed tannins (0.89%. Comparatively to vetch-oat hay, OMWW produced low amount of gas (-23.6 units. Furthermore, its in vitro fermentation generates low volume of methane (9.83%, V/V, suggesting that the OMWW nature enhanced the efficiency of ruminale microbiota towards microbial biomass production and inhibition of ruminale methanogenesis pathway. This result is reinforced by the reduction of ammonia production (-0.35 units and protozoa proliferation (-1 unit comparatively to vetch-oat hay. The anaerobic biodegradation of OMWW reveal their significant use by the rumen microbiota, allowing us to strongly recommend its use as a supplement in feed ruminant. In addition, it allows considering using this residue as a feed additive in

  3. Degradation of olive mill wastewater by the induced extracellular ligninolytic enzymes of two wood-rot fungi.

    Science.gov (United States)

    Zerva, Anastasia; Zervakis, Georgios I; Christakopoulos, Paul; Topakas, Evangelos

    2017-12-01

    Olive mill wastewater (OMWW) is a major problem in olive oil - producing countries, due to its high organic load and concentration in phenols that are toxic for marine life, plants and soil microorganisms. In the present study, two mushroom species were tested in regard to their OMWW's oxidative capacity, Pleurotus citrinopileatus LGAM 28684 and Irpex lacteus LGAM 238. OMWW (25% v/v) degradation was investigated for several culture conditions, namely pH, agitation speed, nitrogen-based supplements and their concentration. The selected values were pH 6, agitation rate 150 rpm, 30 g L -1 corn steep liquor as nitrogen source for P. citrinopileatus and 20 g L -1 diammonium tartrate for I. lacteus. The two strains performed well in cultures supplemented with OMWW, generating very high titers of oxidative enzymes and achieving more than 90% color and phenols reduction within a 24 days cultivation period. In addition, the amount of glucans present in the fungal biomass was assessed. Hence, P. citrinopileatus and I. lacteus appear as potent degraders of OMWW with the ability to use the effluent as a substrate for the production of biotechnologically important enzymes and valuable fungal glucans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Impact of industrial hammer mill rotor speed on extraction efficiency and quality of extra virgin olive oil.

    Science.gov (United States)

    Polari, Juan J; Garcí-Aguirre, David; Olmo-García, Lucía; Carrasco-Pancorbo, Alegría; Wang, Selina C

    2018-03-01

    Crushing is a key step during olive oil extraction. Among commercial crushers, the hammer mill is the most widely used due to its robustness and high throughput. In the present work, the impact of hammer mill rotor speed on extraction yield and overall quality of super-high-density Arbosana olive oils were assessed in an industrial facility. Our results show that increasing the rotor speed from 2400rpm to 3600rpm led to a rise in oil yield of 1.2%, while conserving quality parameters. Sensory analysis showed more pungency with increased rotation speed, while others attributes were unaffected. Volatile compounds showed little variation with the differences in crusher speed; however, total phenols content, two relevant secoiridoids, and triterpenoids levels increased with rotor speed. Hammer mill rotor speed is a processing variable that can be tuned to increase the extraction efficiency and modulate the chemical composition of extra virgin olive oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biodegradation Potentials of Cassava Mill Effluent (CME) by ...

    African Journals Online (AJOL)

    Bacillus, Pseudomonas, Aspergillus and Penicillium species which had the highest turbidity were used for bioremediation studies. The consortium of microorganisms demonstrated the highest efficacy. Bioremediation of cassava mill effluent by these microorganisms was manifested in the reduction of biological oxygen ...

  6. Molecular microbial and chemical investigation of the bioremediation of two-phase olive mill waste using laboratory-scale bioreactors.

    Science.gov (United States)

    Morillo, J A; Aguilera, M; Antízar-Ladislao, B; Fuentes, S; Ramos-Cormenzana, A; Russell, N J; Monteoliva-Sánchez, M

    2008-05-01

    Two-phase olive mill waste (TPOMW) is a semisolid effluent that is rich in contaminating polyphenols and is produced in large amounts by the industry of olive oil production. Laboratory-scale bioreactors were used to investigate the biodegradation of TPOMW by its indigenous microbiota. The effect of nutrient addition (inorganic N and P) and aeration of the bioreactors was studied. Microbial changes were investigated by PCR-temperature time gradient electrophoresis (TTGE) and following the dynamics of polar lipid fatty acids (PLFA). The greatest decrease in the polyphenolic and organic matter contents of bioreactors was concomitant with an increase in the PLFA fungal/bacterial ratio. Amplicon sequences of nuclear ribosomal internal transcribed spacer region (ITS) and 16S rDNA allowed identification of fungal and bacterial types, respectively, by comparative DNA sequence analyses. Predominant fungi identified included members of the genera Penicillium, Candida, Geotrichum, Pichia, Cladosporium, and Aschochyta. A total of 14 bacterial genera were detected, with a dominance of organisms that have previously been associated with plant material. Overall, this work highlights that indigenous microbiota within the bioreactors through stimulation of the fungal fraction, is able to degrade the polyphenolic content without the inoculation of specific microorganisms.

  7. Integrating Fenton's process and ion exchange for olive mill wastewater treatment and iron recovery.

    Science.gov (United States)

    Reis, Patrícia M; Martins, Pedro J M; Martins, Rui C; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2018-02-01

    A novel integrated methodology involving Fenton's process followed by ion exchange (IE) was proposed for the treatment of olive mill wastewater. Fenton's process was optimized and it was able to remove up to 81% of chemical oxygen demand when pH 3.5, reaction time 1 h, [Fe 2+ ] = 50 mg L -1 and [Fe 2+ ]/[H 2 O 2 ] = 0.002 were applied. In spite of the potential of this treatment approach, final iron removal from the liquid typically entails pH increase and iron sludge production. The integration of an IE procedure using Lewatit TP 207 resin was found to be able to overcome this important environmental shortcoming. The resin showed higher affinity toward Fe 3+ than to Fe 2+ . However, the iron removal efficiency of an effluent coming from Fenton's was independent of the type of the initial iron used in the process. The presence of organic matter had no significant effect over the resin iron removal efficiency. Even if some efficiency decrease was observed when a high initial iron load was applied, the adsorbent mass quantity can be easily adapted to reach the desired iron removal. The use of IE is an interesting industrial approach able to surpass Fenton's peroxidation drawback and will surely boost its full-scale application in the treatment of bio-refractory effluents.

  8. Techno-Economic Performance Evaluation for Olive Mills Powered by Grid-Connected Photovoltaic Systems

    OpenAIRE

    Rabaza, Ovidio; Contreras-Montes, José; García-Ruiz, María; Delgado-Ramos, Fernando; Gómez-Lorente, Daniel

    2015-01-01

    In recent years, due to the rise in petroleum prices and greenhouse gas emissions, renewable energy has been recommended as a power source for different types of facilities. For the period 2010 to 2020 the European Commission has established three key objectives related to climatic change and energy sustainability, such as reductions of CO2 emissions, increases in the use of renewable energy, and improvements in energy efficiency. A key industry is olive oil production in olive mills, where t...

  9. Olive mill wastewater stabilization in open-air ponds: impact on clay-sandy soil.

    Science.gov (United States)

    Jarboui, Raja; Sellami, Fatma; Kharroubi, Adel; Gharsallah, Néji; Ammar, Emna

    2008-11-01

    The aim of this work was to study the natural biodegradation of the stored olive mill wastewater (OMW) in ponds and the infiltration as well as the impact on soil of the effluent in the evaporation pond used for the storage over the past eight years. For this, two approaches were considered. First, a laboratory-scale column was used for the infiltration of OMW through soil (clay and sand) to predict the effect of the clayey soil in reducing OMW pollution. Second, the ponds including the effluent annually stored and having this clayey structure were investigated. At the laboratory-scale, a modification of OMW contents was noticed, with the elimination of 95% of total suspended solids (TSS), 60% of chemical oxygen demand (COD), 40% of total organic carbon (TOC), 50% of total P, 50% of phenols and 40% of minerals (K+, Mg++ and Na+). The experimented soil was able to restrain the considerable effects of OMW pollution. In the ponds, the granulometric characteristics, the physico-chemical and the biological parameters of the soil profile from the contaminated pond were compared to those of a control soil, located near the contaminated pond. Property modifications of the contaminated soil were noted, especially pH, electrical conductivity, COD and microflora. These changes can be explained by the infiltration of OMW constituents, which were noticed in the soil layers, especially phenolic compounds that have a negative effect on the ground water.

  10. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater.

    Science.gov (United States)

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification.

  11. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    Directory of Open Access Journals (Sweden)

    Reda Elkacmi

    2016-01-01

    Full Text Available The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country’s climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification.

  12. Oxidant reduction and biodegradability improvement of paper mill effluent by irradiation

    International Nuclear Information System (INIS)

    Tiezheng Wang; Waite, T.D.; Kurucz, C.

    1994-01-01

    Paper mill bleach processing wastewaters represent a large input of hazardous compounds to the environment and these compounds are usually non-biodegradable. A preliminary study using a 5000 Ci 60 Co gamma radiation source as a surrogate for electron beam irradiation, potentially an emerging technology for wastewater treatment, to treat a paper mill bleach effluent showed that for an absorbed dose of 800 krads, chemical oxygen demand (COD) was reduced by 13.5% and 5 day biochemical oxygen demand (BOD 5 ) was increased 58.6%. These changes altered the value of COD/BOD 5 from 14 to 5. For the same dose, the absorbable organic halogen (AOX) was reduced 76.2%. These results suggested the possibility of using the electron beam process to detoxify paper mill effluent thereby generating a more biodegradable wastewater. (author)

  13. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, F.A.; Badawy, M.I. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt); El-Khateeb, M.A. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt)], E-mail: elkhateebcairo@yahoo.com; El-Kalliny, A.S. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt)

    2009-03-15

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H{sub 2}O{sub 2} dose, Fe{sup +2}, COD:H{sub 2}O{sub 2} ratio and Fe{sup +2}:H{sub 2}O{sub 2} ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l{sup -1} for {rho}-hydroxy-benzaldhyde to 3.273 mg l{sup -1} for cinnamic acid.

  14. Residual Sorption and leaching of the herbicide diuron following de-oiled two-phase olive mill waste addition to soil

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Pineiro, A.; Albarran, A.; Cabrera, D.; Rato, J. M.; Munoz, A.; Flores, S.

    2009-07-01

    The residual sorption, desorption, degradation, and leaching of the herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) a herbicide widely used in olive groves, was studied following the addition to soils of de oiled two-phase olive mill waste (DTPOMW). Field experiments were conducted on an olive grove soil amended over seven years with DTPOMW. (Author)

  15. Residual Sorption and leaching of the herbicide diuron following de-oiled two-phase olive mill waste addition to soil

    International Nuclear Information System (INIS)

    Lopez-Pineiro, A.; Albarran, A.; Cabrera, D.; Rato, J. M.; Munoz, A.; Flores, S.

    2009-01-01

    The residual sorption, desorption, degradation, and leaching of the herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) a herbicide widely used in olive groves, was studied following the addition to soils of de oiled two-phase olive mill waste (DTPOMW). Field experiments were conducted on an olive grove soil amended over seven years with DTPOMW. (Author)

  16. Review of the Drying Kinetics of Olive Oil Mill Wastes: Biomass Recovery

    Directory of Open Access Journals (Sweden)

    Francisco J. Gómez-de la Cruz

    2015-06-01

    Full Text Available The drying kinetics of olive oil mill wastes was analyzed based on experiments carried out by various researchers utilizing different drying systems. A critical review of the literature was done, and mathematical models of drying curves proposed by investigators were evaluated. A comparison between the best mathematical models of fit in the drying curves used in past experiments and a two-term Gaussian model was performed. This model improved all the results of fit in each experiment. Drying rates and drying stages were obtained and discussed. An average drying rate for each experiment from the two-term Gaussian model was calculated. This value allowed for visualizing and comparing the average speed of evaporated water in each experiment for the different dryers. Finally, and after having verified that almost all drying occurs mainly by a diffusion phenomenon, an analysis on the effective moisture diffusivity and activation energy values was performed. The results indicated that there was no dependency of these quantities on independent variables such as the drying air temperature, the drying air velocity, and the sample thickness. It follows that drying of olive oil mill wastes is a very complex physical process that depends heavily on aspects such as pieces of pit, pulp, skin, vegetation water, olive oil content, sugars and organics compounds of different nature.

  17. Effects of Cassava Mill Effluent on Some Chemical and Micro ...

    African Journals Online (AJOL)

    user

    KEY WORDS: Cassava Mill Effluent, Soil Pollution, Soil Properties, Bacteria, Fungi. INTRODUCTION .... The hydrocarbon utilizing bacteria (HUB) were Bacillus substilis and ..... fermentative hydrogen production: A Review Int. J. Hydrogen ...

  18. Treatment and valorization of olive mill wastewaters

    Directory of Open Access Journals (Sweden)

    Nabila Slimani Alaoui

    2016-04-01

    Full Text Available This study aims to evaluate the effectiveness of the physicochemical process with lime and ferric chloride in removing the pollution generated by the olive mill wastewaters (OMW .The characterization of the samples has shown that they are acidic, with a black color and a strong organic load due to the presence of phenolic compounds. The combination of the lime and the ferric chloride allows the removal of 87% of the total suspended solid (TSs, 58% of chemical oxygen demand (COD and 75% of Phenolic compounds. After purification the treated OMW were valorised as wash water or used for irrigation of green spaces and the generated sludge were dried and used to combustion. 

  19. Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout.

    Science.gov (United States)

    Orrego, Rodrigo; Guchardi, John; Hernandez, Victor; Krause, Rachelle; Roti, Lucia; Armour, Jeffrey; Ganeshakumar, Mathumai; Holdway, Douglas

    2009-01-01

    Endocrine disruption (ED) effects due to pulp and paper mill effluents extracts involving different industrial procedures and effluent treatments (nontreated, primary, and secondary treated) were evaluated using immature triploid rainbow trout in a pulse-exposure toxicity experiment. The protocol involved the use of intraperitoneal injection of mill extracts (solid-phase extraction [SPE]) corrected for individual fish weight and included several laboratory standards (steroidal hormones and phytosterols). Biological endpoints at two different levels of biological organization were analyzed (molecular and individual organism). Results indicated that nonsignificant changes were observed in the individual physiological indices represented by condition factor, liver somatic index, and gonad somatic index during the experiment. Significant induction of liver ethoxyresorufin-O-deethylase activity was observed between different effluent treatments and experimental controls. Significant endocrine-disrupting effects at the reproductive level were observed in all effluent treatments involving significant increments in plasma vitellogenin (VTG) levels. Fish exposed to untreated effluent extracts had significantly higher VTG levels compared to fish exposed to primary and secondary treatment effluent extracts, indicating a decrease of the estrogenic effect due to the effluent treatment. The present study has shown that for the Chilean pulp and paper mill SPE extracts evaluated, an endocrine disruption effect was induced in immature triploid rainbow, reaffirming the significant estrogenic effects demonstrated previously in laboratory and field experiments.

  20. Analysis of sugar mill effluent and its influence on germination and growth of African marigold ( Tagetes erecta L.)

    Science.gov (United States)

    Vaithiyanathan, Thanapal; Sundaramoorthy, Perumal

    2017-12-01

    Sugar industry is a very important agro-based industry in India and it discharges large amount of effluent into water bodies to create high pollution in water bodies which affects the plants and other living organisms. In the present investigation, the physico-chemical analyses of N. P. K. R. Ramaswamy co-operative sugar mill effluent was determined and impact of different concentrations (control, 10, 25, 50, 75 and 100%) of sugar mill effluent on seed germination behavior of African marigold ( Tagetes erecta L.) was studied. The morphological parameters such as germination percentage, shoot length, root length, fresh weight and dry weight of seedlings, seed vigour index, tolerance index and percentage of phytotoxicity were calculated. The results recorded for the analyses of sugar mill effluent indicated their some parameters such as PH, EC, acidity, TDS, TS, BOD, COD, sulphate, magnesium, nitrogen, zinc, iron, copper, lead, manganese and oil and grease exceeded the permissible limit compared to Tamil Nadu Pollution Control Board (TNPCB) and then germination and growth parameters increased in lower (10%) concentration of sugar mill effluent and this morphological parameters gradually decreased with increasing effluent concentration. The lower (10%) concentration of sugar mill effluent may be used for irrigation purposes.

  1. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    KAUST Repository

    Yahiaoui, O.; Lounici, Hakim; Abdi, Nadia; Drouiche, Nadjib; Ghaffour, NorEddine; Pauss, André ; Mameri, Nabil

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER

  2. Electro persulphate oxidation for polishing of biologically treated palm oil mill effluent (POME).

    Science.gov (United States)

    Bashir, Mohammed J K; Wei, Chong Jia; Aun, Ng Choon; Abu Amr, Salem S

    2017-05-15

    Malaysia alone produces more than 49 million m 3 palm oil mill effluent per year. Biological treated palm oil mill effluent via ponding system often fails to fulfill the regulatory discharge standards. This is due to remaining of non-biodegradable organics in the treated effluent. Thus, the aim of this study was to resolve such issue by using electro persulphate oxidation process, for the first time, as a post treatment of palm oil mill effluent. Central composite design in response surface methodology was used to analyze and optimize the interaction of operational variables (i.e., current density, contact time, initial pH and persulphate dosage) targeted on maximum treatment efficiency. The significance of quadratic model of each response was determined by analysis of variance, where all models indicated sufficient significance with p-value < 0.0001. Optimum operational conditions with 45 mA/cm 2 of current density, 45 min of contact time, pH 4 and 0.892 g of S 2 O 8 2- proved that 77.70% of Chemical Oxygen Demand, 97.96% of colour as well as 99.72% of Suspended Solids removal were achieved. The final pH of 5.88 of the effluent was obtained that fulfilled the limit and suitable for direct discharge to the natural environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evolution of the stability parameters composting two-phase olive mill waste with grape marc and vine branches

    International Nuclear Information System (INIS)

    Garcia-Gallego, A.; Lopez-Pineiro, A.; Albarran, A.; Rato, J. M.; Barreto, C.; Cabrera, D.; Prieto, M. H.; Munoz, A.; Almendro, J. P.

    2009-01-01

    Modern olive-oil extraction technology generates a large amount of two-phase olive mill waste (TPOMW) in Mediterranean countries, with composting being a viable alternative to the traditional disposal of these residues. Vine branches and grape marc also constitute abundant organic residues in these countries. TPOMW was composted with vine branches and grape mar as bulking agents for use as organic amendment. (Author)

  4. Electrocoagulation of Palm Oil Mill Effluent

    Science.gov (United States)

    Agustin, Melissa B.; Sengpracha, Waya P.; Phutdhawong, Weerachai

    2008-01-01

    Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537

  5. Effect of olive mill waste (OMW) supplementation to Oyster mushrooms substrates on the cultivation parameters and fruiting bodies quality

    NARCIS (Netherlands)

    Ruiz-Rodriguez, A.; Soler-Rivas, C.; Polonia, I.; Wichers, H.J.

    2010-01-01

    Seven Oyster mushroom strains were cultivated in wheat straw (WS) bags supplemented with 0 up to 90% olive mill waste (OMW), a solid residue obtained from a two-phases olive oil production system. All mushroom strains could grow but high OMW concentrations resulted in a significant yield, biological

  6. Spray drying of a phenolic-rich membrane filtration fraction of olive mill wastewater: Optimization and dried product quality

    Science.gov (United States)

    Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...

  7. Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae.

    Science.gov (United States)

    Izah, Sylvester Chibueze; Bassey, Sunday Etim; Ohimain, Elijah Ige

    2017-10-16

    Cassava is majorly processed into gari by smallholders in Southern Nigeria. During processing, large volume of effluents are produced in the pressing stage of cassava tuber processing. The cassava mill effluents are discharged into the soil directly and it drain into nearby pits, surface water, and canals without treatment. Cassava mill effluents is known to alter the receiving soil and water characteristics and affects the biota in such environments, such as fishes (water), domestic animals, and vegetation (soil). This study investigated the potential of Saccharomyces cerevisiae to be used for the treatment of some physicochemical properties of cassava mill effluents. S. cerevisiae was isolated from palm wine and identified based on conventional microbiological techniques, viz. morphological, cultural, and physiological/biochemical characteristics. The S. cerevisiae was inoculated into sterile cassava mill effluents and incubated for 15 days. Triplicate samples were withdrawn from the setup after the fifth day of treatment. Portable equipment was used to analyze the in-situ parameters, viz. total dissolved solids (TDS), pH, dissolved oxygen (DO), conductivity, salinity, and turbidity. Anions (nitrate, sulphate, and phosphate) and chemical oxygen demand (COD) were analyzed using spectrophotometric and open reflux methods respectively. Results showed a decline of 37.62%, 22.96%, 29.63%, 20.49%, 21.44%, 1.70%, 53.48%, 68.00%, 100%, and 74.48% in pH, conductivity, DO, TDS, salinity, sulphate, nitrate, phosphate, and COD levels respectively, and elevation of 17.17% by turbidity. The study showed that S. cerevisiae could be used for the treatment of cassava mill effluents prior to being discharged into the environment so as to reduce the pollution or contamination and toxicity levels.

  8. Water balance modelling of a uranium mill effluent management system

    Science.gov (United States)

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  9. The importance of pretreatment tailoring on the performance of ultrafiltration membranes to treat two-phase olive mill wastewater

    Directory of Open Access Journals (Sweden)

    Ochando Pulido, J. M.

    2015-03-01

    Full Text Available In this work, the performance of an ultrafiltration (UF membrane in the treatment of the effluents by-produced by olive mills is addressed by applying different pretreatments on the raw effluents. By conducting a photo-catalytic process (UV/TiO2 PC after pH-temperature flocculation (pH-T F higher threshold flux values were observed for all feed stocks than by applying solely the pH-T F process, with an 18.8–34.2% increment. In addition, the performance of the UF membrane was also improved in terms of rejection efficiency, such that higher rejection values were yielded by the membrane for the organic pollutants (RCOD by 48.5 vs. 39.9% and 53.4 vs. 42.0%. The UF membrane performance was also improved in terms of the volume feed recovery factor (VFR, achieving up to 88.2 vs. 87.2% and 90.7 vs. 89.3%. Results in the same line were also observed when the highly polluted olives oil washing wastewater raw stream was previously mixed with the effluent stream coming from the washing of the olives. This permits the UF to permeate, achieving the standard limits to reuse the purified effluent for irrigation purposes (COD values below 1000 mg·L−1, which makes the treatment process cost-effective and results in making the olive oil production process environmentally friendly.En este estudio se aborda el rendimiento de una membrana de ultrafiltración (UF para el tratamiento de los efluentes generados por la industria oleícola, mediante la aplicación de distintos pretratamientos. Tras aplicar un proceso fotocatalítico (UV/TiO2 PC después de una floculación pH-temperatura (pH-T F se observaron flujos límite para todos los efluentes mayores que tras la aplicación únicamente del proceso pH-T F, con incrementos del 18.8–34.2 %. Además, el rendimiento de la membrana de UF mejoró en términos de eficiencia de rechazo, con mayores valores de rechazo respecto de los contaminantes orgánicos (RCOD, 48.5 vs. 39.9 % y 53.4 vs. 42.0 %. El rendimiento de

  10. Time-dependent evolution of olive mill wastewater sludge organic and inorganic components and resident microbiota in multi-pond evaporation system.

    Science.gov (United States)

    Jarboui, Raja; Chtourou, Mohamed; Azri, Chafai; Gharsallah, Néji; Ammar, Emna

    2010-08-01

    The physico-chemical and microbiological characterizations of olive mill wastewater sludge (OMWS) were investigated in five OMW evaporation ponds of the open-pond system in Sfax (Tunisia), during the olive oil production period in 2004. Time-dependent changes in both physico-chemical parameters and the microbiota were investigated. Mathematical models and principal component analysis (PCA) were used to establish the correlations between the studied parameters. During the effluent time-dependent changes in the ponds, the result of OMWS analysis showed an increase of sludge index (SI), ash content, total solids (TS), volatile solids (VS), ethyl acetate extractive (EAE) and total phosphorus (Total P), as well as microbial flora especially the yeasts and moulds. The SI, TS, VS and Total P changes with time fit a simple linear equation, while EAE, phenols and NH(4)(+) fit a second-degree polynomial model. The PCA analysis exhibited three correlated groups. The first group included temperature, ash content, evaporation, SI, TS, VS, Total P, EAE, yeasts and moulds. The second group was made by bacteria and moisture; and the third group by NH(4)(+), oil and phenol. Such modelling might be of help in the prediction of OMW changes in natural evaporation ponds. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2014-11-01

    The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.

  12. IMPACT OF PALM OIL MILL EFFLUENT ON THE ACTIVITIES OF ...

    African Journals Online (AJOL)

    PUBLICATIONS1

    This study was carried out to evaluate the effect of palm oil mill effluent (POME) on some anti ... In Nigeria, palm oil production ... crude palm oil produced, 5-7.5 tonnes of water ... inter group comparison using least significant .... York, U.S.A. pp.

  13. Evaluation of full-strength paper mill effluent for electricity generation ...

    African Journals Online (AJOL)

    In the search for renewable, sustainable and affordable energy sources, microbial fuel cells (MFCs) offer the advantage of a biological oxidation of pollutants to the direct generation of electricity by microorganisms. We thus examined the biodegradability and suitability of unamended paper mill effluent for power production ...

  14. Co-composting of two-phase olive-mill pomace and poultry manure with tomato harvest stalks.

    Science.gov (United States)

    Sülük, Kemal; Tosun, İsmail; Ekinci, Kamil

    2017-04-01

    In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored. Compost mass and volume changes were determined at the beginning, during remixings, and at the end of composting. While the stabilization period took less time for the mixtures containing a high amount of poultry manure, the mixtures having the high portion of two-phase olive-mill pomace took a longer time due to the structure of olive stone and its lignin content. Dry matter loss (range: 18.1-34.0%.) in the mixtures increased with an increase in the share of poultry manure and tomato stalks in the initial mixture. OM loss (range: 21.7-46.1%) for tomato stalks (measured separately) during composting increased due to an increase in the ratio of poultry manure in the initial mixtures.

  15. Influence of olive oil mill waste amendment on fate of oxyfluorfen in Southern Spain soils

    Science.gov (United States)

    The influence of olive oil mill waste (OOMW) amendment on soil processes affecting the herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl-3-ethoxy-4-nitrophenyl ether) in two soils (P2 and SJ) was assessed under laboratory conditions. The soils used were from two diverse locations in Guadalqui...

  16. Gene expression fingerprints of largemouth bass (Micropterus salmoides) exposed to pulp and paper mill effluents.

    Science.gov (United States)

    Denslow, Nancy D; Kocerha, Jannet; Sepúlveda, Maria S; Gross, Timothy; Holm, Stewart E

    2004-08-18

    Effluents from pulp and paper mills that historically have used elemental chlorine in the bleaching process have been implicated in inhibiting reproduction in fish. Compounds with estrogenic and androgenic binding affinities have been found in these effluents, suggesting that the impairment of reproduction is through an endocrine-related mode of action. To date, a great deal of attention has been paid to phytoestrogens and resin acids that are present in mill process streams as a result of pulping trees. Estrogen and estrogen mimics interact directly with the estrogen receptor and have near immediate effects on gene transcription by turning on the expression of a unique set of genes. Using differential display (DD) RT-PCR, we examined changes in gene expression induced by exposure to paper mill effluents. Largemouth bass were exposed to 0, 10, 20, 40, and 80% paper mill effluent concentrations in large flow-through tanks for varied periods of time including 7, 28 or 56 days. Plasma hormone levels in males and females and plasma vitellogenin (Vtg) in females decreased with dose and time. Measurements of changes in gene expression using DD RT-PCR suggest that the gene expression patterns of male fish do not change much with exposure, except for the induction of a few genes including CYP 1A, a protein that is induced through the action of the Ah receptor in response to dioxin and similar polyaromatic hydrocarbons. However, in the case of females, exposure to these effluents resulted in an up-regulation of CYP 1A that was accompanied by a generalized down-regulation of genes normally expressed during the reproductive season. These antiestrogenic changes are in agreement with previous studies in bass exposed to these effluents, and could result in decreased reproductive success in affected populations.

  17. Short-term impact of dry olive mill residue addition to soil on the resident microbiota

    Czech Academy of Sciences Publication Activity Database

    Sampedro, I.; Giubilei, M. A.; Cajthaml, Tomáš; Federici, E.; Federici, F.; Petruccioli, M.; D´Annibale, A.

    2009-01-01

    Roč. 100, č. 23 (2009), s. 6098-6106 ISSN 0960-8524 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : Dry olive mill residue * Microbial community profiling * Toxicity Subject RIV: EE - Microbiology, Virology Impact factor: 4.253, year: 2009

  18. Effect of hydraulic retention time on biohydrogen and volatile fatty acids production during acidogenic digestion of dephenolized olive mill wastewaters

    International Nuclear Information System (INIS)

    Scoma, Alberto; Bertin, Lorenzo; Fava, Fabio

    2013-01-01

    The influence of Hydraulic Retention Time (HRT) on the performances of a recently developed biotechnological anaerobic acidogenic process fed with dephenolized Olive Mill Wastewater (OMW) was investigated. The study was carried out under mesophilic conditions in Packed Bed Biofilm Reactors (PBBRs), filled with ceramic cubes and inoculated with a characterized and acclimated acidogenic microbial consortium. The PBBRs were fed with a HRT of 7, 5, 3 or 1 day, which corresponded to Organic Loading Rates (OLRs) of about 5.5, 7.8, 12.9 and 38.8 g L −1 d −1 , respectively. A significant production of a H 2 -rich biogas was observed when shorter HRTs were applied: in particular, H 2 relative amount and productivity increased from 3% to 32% and from 0.20 to 6.10 dm 3 m −3 h −1 , respectively, by decreasing the HRT from 7 to 1 day. On the contrary, shorter HRTs turned into a lower accumulation of Volatile Fatty Acids (VFAs), whose highest amounts were found with HRTs of 7 and 5 days (about 18.4 and 19.7 g L −1 COD equivalents, respectively). The highest conversion yield of COD into VFAs (36%) was obtained with a HRT of 5 days, when VFAs represented about 78% of the effluent COD. HRT also influenced the composition of the VFA mixture: acetic, propionic and butyric acid were the most prominent VFAs, being their relative amounts higher when PBBRs were operated with shorter HRTs (up to 19, 12 and 42% of the whole mixture, respectively, when HRT was 1 day). -- Highlights: ► HRT affects the acidogenic digestion of dephenolized olive mill wastewater. ► A significant production of bioH 2 can be coupled to that of volatile fatty acids. ► Higher H 2 and lower VFA productions were obtained by shortening the HRT

  19. Raw or incubated olive-mill wastes and its biotransformed products as agricultural soil amendments-effect on sorption-desorption of triazine herbicides.

    Science.gov (United States)

    Delgado-Moreno, Laura; Almendros, Gonzalo; Peña, Aránzazu

    2007-02-07

    Raw olive-mill waste and soil amendments obtained from their traditional composting or vermicomposting were added, at rates equivalent to 200 Mg ha-1, to a calcareous silty clay loam soil in a laboratory test, in order to improve its fertility and physicochemical characteristics. In particular, the effects on the sorption-desorption processes of four triazine herbicides have been examined. We found that comparatively hydrophobic herbicides terbuthylazine and prometryn increased their retention on amended soil whereas the more polar herbicides simazine and cyanazine were less affected. Soil application of olive cake, without transformation, resulted in the highest herbicide retention. Its relatively high content in aliphatic fractions and lipids could explain the increased herbicide retention through hydrophobic bonding and herbicide diffusion favored by poorly condensed macromolecular structures. On the other hand, the condensed aromatic structure of the compost and vermicompost from olive cake could hinder diffusion processes, resulting in lower herbicide sorption. In fact, the progressive humification in soil of olive-mill solid waste led to a decrease of sorption capacity, which suggested important changes in organic matter quality and interactions during the mineralization process. When soil amended with vermicompost was incubated for different periods of time, the enhanced herbicide sorption capacity persisted for 2 months. Pesticide desorption was reduced by the addition of fresh amendments but was enhanced during the transformation process of amendments in soil. Our results indicate the potential of soil amendments based on olive-mill wastes in the controlled, selective release of triazine herbicides, which varies depending on the maturity achieved by their biological transformation.

  20. Reusing pulp and paper mill effluent as a bioresource to produce biohydrogen through ultrasonicated Rhodobacter sphaeroides

    International Nuclear Information System (INIS)

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Ng, Boon Junn; Juan, Joon Ching; Md Jahim, Jamaliah

    2016-01-01

    Highlights: • Ultrasonication pretreatment on R. sphaeroides enhanced biohydrogen production. • Pretreatment using amplitude 30% for 10 min gave the highest biohydrogen yield. • Pretreatment using amplitude 45% for 15 min inhibited biohydrogen production. - Abstract: Pulp and paper industry is a water-intensive industry. This industry commonly produces considerable amount of effluent, especially from virgin raw materials processing. The effluent, namely pulp and paper mill effluent has the potential to adversely affect the receiving watercourses. However, the nutrients in the pulp and paper mill effluent could be reused as a substrate in biohydrogen production. In this study, photofermentative biohydrogen production was investigated using Rhodobacter sphaeroides and pulp and paper mill effluent as a substrate. An application of low power ultrasound on R. sphaeroides was predicted to increase photofermentative biohydrogen production but excessive ultrasound effects might inhibit the production due to possible cell disruption. Hence, various ultrasonication duration (5, 10 and 15 min) and amplitude (15%, 30% and 45%) were applied on the bacteria to determine the recommended ultrasonication conditions for improving biohydrogen production. The recommended conditions were operated at ultrasonication amplitude and duration of 30% and 10 min, respectively. A maximum biohydrogen yield of 9.62 mL bioH_2/mL medium was obtained under this condition, which was 66.7% higher than the result obtained using R. sphaeroides without undergoing ultrasonication (control). The light efficiency and cell concentration were increased by 67% and 150%, respectively, using ultrasonication amplitude and duration of 30% and 10 min, respectively as compared to the control. The present results demonstrated that moderate power of ultrasonication applied on R. sphaeroides was an effective method for enhancing photofermentative biohydrogen production using raw pulp and paper mill effluent as a

  1. Solvent Fermentation From Palm Oil Mill Effluent Using Clostridium acetobutylicum In Oscillatory Flow Bioreactor

    International Nuclear Information System (INIS)

    Takriff, M.S.; Masngut, N.; Kadhum, A.A.H.; Kalil, M.S.; Mohammad, A.W.

    2009-01-01

    Acetone-butanol-ethanol (ABE) fermentation from Palm Oil Mill Effluent (POME) by C. acetobutylicum NCIMB 13357 in an oscillatory flow bioreactor was investigated. Experimental works were conducted in a U-shaped stainless steel oscillatory flow bioreactor at oscillation frequency between 0.45-0.78 Hz and a constant amplitude of 12.5 mm. Fermentations were carried out for 72 hr at 35 degree Celsius using palm oil mill effluent and reinforced clostridia medium as a growth medium in batch culture. Result of this investigation showed that POME is a viable media for ABE fermentation and oscillatory flow bioreactor has an excellent potential as an alternative fermentation device. (author)

  2. Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste

    International Nuclear Information System (INIS)

    Foo, K.Y.; Hameed, B.H.

    2010-01-01

    Water scarcity and pollution rank equal to climate change as the most intricate environmental turmoil for the 21st century. Today, the percolation of palm oil mill effluents into the waterways and ecosystems, remain a fastidious concern towards the public health and food chain interference. With the innovation of palm oil residue into a high valuable end commodity, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of palm oil mill effluent industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of palm oil mill effluent in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy. (author)

  3. Olive Mill Waste Enhances α-Glucan Content in the Edible Mushroom Pleurotus eryngii

    Directory of Open Access Journals (Sweden)

    Sharon Avni

    2017-07-01

    Full Text Available Mushroom polysaccharides are edible polymers that have numerous reported biological functions; the most common effects are attributed to β-glucans. In recent years, it became apparent that the less abundant α-glucans also possess potent effects in various health conditions. Here we explore several Pleurotus species for their total, β and α-glucan content. Pleurotus eryngii was found to have the highest total glucan concentrations and the highest α-glucans proportion. We also found that the stalks (stipe of the fruit body contained higher glucan content then the caps (pileus. Since mushrooms respond markedly to changes in environmental and growth conditions, we developed cultivation methods aiming to increase the levels of α and β-glucans. Using olive mill solid waste (OMSW from three-phase olive mills in the cultivation substrate. We were able to enrich the levels mainly of α-glucans. Maximal total glucan concentrations were enhanced up to twice when the growth substrate contained 80% of OMSW compared to no OMSW. Taking together this study demonstrate that Pleurotus eryngii can serve as a potential rich source of glucans for nutritional and medicinal applications and that glucan content in mushroom fruiting bodies can be further enriched by applying OMSW into the cultivation substrate.

  4. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties.

    Science.gov (United States)

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-03-01

    The present study was carried out to evaluate the impact of the effluents and the solid wastes generated by a giant pulp and paper mill in the northeastern part of India on soil mineralogy of the area. The impacts were monitored by analysis of soil samples from seven sites located in the potential impact zone and a control site where any kind of effluent discharge or solid waste dumping was absent. The soil belonged to medium texture type (sandy clay loam, sandy loam, loamy sand, and silt loam), and the soil aggregate analysis indicated higher levels of organic carbon, pH, electrical conductivity, effective cation exchange capacity, and mean weight diameter at sites receiving effluents and solid wastes from the pulp and paper mill. Depletion in soil silica level and in feldspar and quartz contents and rise in iron and calcium contents at the sites receiving effluents from the pulp and paper mill indicated significant influence on soil mineralogy. The soil contained a mixture of minerals consisting of tectosilicates (with silicate frameworks as in quartz or feldspar), phylosilicates (layered clays like kaolinite, smectite, chlorite, illite, etc.), and carbonates. Absence of pure clay minerals indicated a state of heterogeneous intermediate soil clay transformation. The significance of the mixed mineralogy in relation to the disposal of effluents and dumping of solid wastes is discussed in details.

  5. Olive mill wastewater sludge from evaporation ponds: evolution of physico-chemical parameters during storage and composting process.

    Science.gov (United States)

    Abid, N; Aloui, F; Dhouib, A; Sayadi, S

    2006-02-01

    The evolution of analytical parameters of olive mill waste water sludge stored in evaporation ponds was investigated after one year and two years of storage. It was observed that some of the phenolic monomer compounds resisted removal and the fraction of water soluble phenols was only slightly polymerised. Co-composting of the sludge was carried out with yard trimming as bulking agent ratio and poultry manure to balance the C/N. Three turned piles with three proportions of 35%, 65% and 80% of olive mill waste water sludge were prepared. Co-composting of the sludge was possible in all the cases. Best results were obtained, however, at a proportion of 35% which permitted a shorter composting time, a higher degree of nitrification and a higher rate of total phenols decreasing. A high polymerisation of the fraction of water soluble phenols was observed at the end of composting in all the piles.

  6. Technologies for the treatment of effluents from uranium mines, mills and tailings. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2002-06-01

    Effluent treatment is an important aspect of uranium mining and milling operations that continues through decommissioning and site rehabilitation. During the life of a mine, effluent treatment is an integral part of the operation with all effluent either being recycled to the mill or processed through a water treatment plant before being released into the environment. During decommissioning and rehabilitation, effluent treatment must continue either through a water treatment plant of by using passive treatment techniques. Because of the recent closing of several uranium mines or mining districts, particularly in eastern Europe, effluent treatment is becoming an ever increasing concern. Therefore the IAEA convened a technical committee meeting (TCM) so that experts from different countries could discuss information and knowledge on effluent treatment processes and methods. The papers presented at the meeting describe techniques for treatment of effluents from uranium production operations - both past and present. This publication contains ten papers presented at the meeting; each of the papers was indexed separately

  7. Olive mill wastewater treatment in Jordan: A Review

    Science.gov (United States)

    Bawab, Abeer Al; Ghannam, Noor; Abu-Mallouh, Saida; Bozeya, Ayat; Abu-Zurayk, Rund A.; Al-Ajlouni, Yazan A.; Alshawawreh, Fida'a.; Odeh, Fadwa; Abu-Dalo, Muna A.

    2018-02-01

    The environmental impact of olive mill wastewater (OMW) pollution is a public concern. OMW contains high levels of phenols, organic compounds, chemical oxygen demand (COD), biological oxygen demand (BOD), microorganisms, nutrients, and toxic compounds. The treatment of OMW has been investigated by many researchers in the Mediterranean region, using several treatment techniques to remove contaminants from OMW. These techniques include chemical, biological, physiochemical, and biophysical techniques. Surfactants and some adsorbents were used in chemical techniques, anaerobic and aerobic in biological techniques, while the combined treatment methods used Electroosmosis, ozonation and electrocoagulation processes as physiochemical methods, and ultrasonic irradiation combined with aerobic biodegradation as biophysical method. The effects of OMW, whether treated or untreated, have been evaluated on both plants’ growth and soil properties. The treatment methods as well as the environmental impact of OMW in Jordan were summarized in this review.

  8. Codigestion of olive oil mill wastewaters with manure, household waste or sewage sludge

    DEFF Research Database (Denmark)

    Angelidaki, I.; Ahring, B.K.

    1997-01-01

    Combined anaerobic digestion of oil mill effluent (OME) together with manure, household waste (HHW) or sewage sludge was investigated. In batch experiments it was shown that OME could be degraded into biogas when codigested with manure. In codigestion with HHW or sewage sludge, OME dilution...

  9. Olive mill wastewater biodegradation potential of white-rot fungi--Mode of action of fungal culture extracts and effects of ligninolytic enzymes.

    Science.gov (United States)

    Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Merhautová, Věra; Zervakis, Georgios I

    2015-01-01

    Forty-nine white-rot strains belonging to 38 species of Basidiomycota were evaluated for olive-mill wastewater (OMW) degradation. Almost all fungi caused high total phenolics (>60%) and color (⩽ 70%) reduction, while COD and phytotoxicity decreased to a lesser extent. Culture extracts from selected Agrocybe cylindracea, Inonotus andersonii, Pleurotus ostreatus and Trametes versicolor strains showed non-altered physicochemical and enzymatic activity profiles when applied to raw OMW in the presence or absence of commercial catalase, indicating no interaction of the latter with fungal enzymes and no competition for H2O2. Hydrogen peroxide's addition resulted in drastic OMW's decolorization, with no effect on phenolic content, suggesting that oxidation affects colored components, but not necessarily phenolics. When fungal extracts were heat-treated, no phenolics decrease was observed demonstrating thus their enzymatic rather than physicochemical oxidation. Laccases added to OMW were reversibly inhibited by the effluent's high phenolic load, while peroxidases were stable and active during the entire process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The impact of Palm Oil Mill Effluent (POME) application on the ...

    African Journals Online (AJOL)

    Palm Oil Mill Effluent (POME) is considered an efficient soil conditioner due to its high organic contents but the presence of phenol compounds limits their widespread use in agriculture. In the present study, POME was subjected to both aerobic and anaerobic decomposition to reduce its organic strength and degrade its ...

  11. Canadian uranium mines and mills evolution of regulatory expectations and requirements for effluent treatment

    International Nuclear Information System (INIS)

    LeClair, J.; Ashley, F.

    2006-01-01

    The regulation of uranium mining in Canada has changed over time as our understanding and concern for impacts on both human and non-human biota has evolved. Since the mid-1970s and early 1980s, new uranium mine and mill developments have been the subject of environmental assessments to assess and determine the significance of environmental effects throughout the project life cycle including the post-decommissioning phase. Water treatment systems have subsequently been improved to limit potential effects by reducing the concentration of radiological and non-radiological contaminants in the effluent discharge and the total loadings to the environment. This paper examines current regulatory requirements and expectations and how these impact uranium mining/milling practices. It also reviews current water management and effluent treatment practices and performance. Finally, it examines the issues and challenges for existing effluent treatment systems and identifies factors to be considered in optimizing current facilities and future facility designs. (author)

  12. Organic matter transformation and detoxification in dry olive mill residue by the saprophytic fungus Paecilomyces farinosus

    Czech Academy of Sciences Publication Activity Database

    Sampedro, I.; Cajthaml, Tomáš; Marinari, S.; Petruccioli, M.; Grego, S.; D´Annibale, A.

    2009-01-01

    Roč. 44, č. 2 (2009), s. 216-225 ISSN 1359-5113 R&D Projects: GA MŠk LC06066; GA MŠk 2B06156 Institutional research plan: CEZ:AV0Z50200510 Keywords : Dry olive mill residue * Phenols * Paecilomyces farinosus Subject RIV: EE - Microbiology, Virology Impact factor: 2.444, year: 2009

  13. Bioconversion of empty fruit bunches (EFB) and palm oil mill effluent ...

    African Journals Online (AJOL)

    This study shows the performance of Trichoderma virens as an activator for conversion of empty fruit bunches (EFB) and palm oil mill effluent (POME) into compost. EFB and POME are two abundant wastes produced by oil palm industries which keep accumulating. Since there is no proper way to dispose these wastes, ...

  14. Acute toxicity of cassava mill effluent to the African catfish fingerlings ...

    African Journals Online (AJOL)

    A bioassay test was performed on the toxic effect of Cassava Mill Effluent to the African Catfish - Heteroclarias Hybrid of Heterobranchus bidorsalis (Male) and Clarias gariepinus (Female). The 96-h LC50 was determined as 50. 12 mgl -1. Exposed fish became darker in colour and showed signs of respiratory distress, ...

  15. Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater

    Directory of Open Access Journals (Sweden)

    Inass Leouifoudi

    2014-06-01

    Full Text Available Olive mill wastewater, hereafter noted as OMWW was tested for its composition in phenolic compounds according to geographical areas of olive tree, i.e. the plain and the mountainous areas of Tadla-Azilal region (central Morocco. Biophenols extraction with ethyl acetate was efficient and the phenolic extract from the mountainous areas had the highest concentration of total phenols' content. Fourier-Transform-Middle Infrared (FT-MIR spectroscopy of the extracts revealed vibration bands corresponding to acid, alcohol and ketone functions. Additionally, HPLC-ESI-MS analyses showed that phenolic alcohols, phenolic acids, flavonoids, secoiridoids and derivatives and lignans represent the most abundant phenolic compounds. Nüzhenide, naringenin and long chain polymeric substances were also detected. Mountainous areas also presented the most effective DPPH scavenging potential compared to plain areas; IC50 values were 11.7 ± 5.6 µg/ml and 30.7 ± 4.4 µg/ml, respectively. OMWW was confirmed as a rich source of natural phenolic antioxidant agents.

  16. Integrative approach for utilization of olive mill wastewater and lebna's whey for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, M A; Hayek, B O; Al-Hmoud, N; Al-Gogazeh, L

    2009-09-15

    The industry of olive oil extraction in Jordan involves an intensive consumption of water and generates large quantities of olive mill wastewater (OMW). This wastewater has a high pollution risk with biological oxygen demand (BOD). The organic fraction of OMW includes sugars, tannins, polyphenols, polyalcohols, pectins and lipids. The presence of remarkable amounts of aromatic compounds in OMW is responsible for its phytotoxic and antimicrobial effects. The environmental problems and potential hazards caused by OMW had led olive oil producing countries to limit their discharge and to propose and develop new technologies for OMW treatments, such as physicochemical and biological treatments. In the present investigation lebna's whey a local byproduct of widely consumed local yogurt was used with OMW for ethanol production. The obtained results showed that the proteins of lebna's whey can remove substantial amounts of aromatic compounds present in OMW. This was reflected on the reduction of the intensity of black color of OMW and removal of 37% polyphenols. Moreover, the production of ethanol was ascertained in fermentation media composed of whey and in presence of various concentrations of OMW up to 20% OMW. The obtained results showed the possibility to develop a process for improvement and enhancement of ethanol production from whey and olive oil waste in mixed yeast cultures. (au)

  17. Start-up of a free water surface constructed wetland for treating olive mill wastewater

    Directory of Open Access Journals (Sweden)

    Michailides Michail

    2015-01-01

    Full Text Available An olive mill's existing evaporation pond was separated into five cells and transformed into a free water surface constructed wetland. The constructed wetland was used as a post-treatment stage for olive mill wastewater (OMW. Wastewater was previously treated by an aerobic trickling filter. The influent concentrations in the constructed wetland were 27400 mg.L-1, 4800 mg.L-1, 105 mg.L-1 and 770 mg.L-1 for COD, phenols, ortho-phosphate and TKN, respectively. Despite the rather high influent concentrations, the performance of the constructed wetland was very good since after the 60-day start-up operation period it achieved removal rates of about 94%, 95%, 95% and 98% for COD, phenols, ortho-phosphate and TKN, respectively. The major pollutant removal processes can be attributed to both biological processes occurring in the wetland and photo-oxidation. Laboratory-scale experiments with OMW from fifth cell of the wetland revealed that the net contribution of photo-oxidation after 112 hours of simulated solar radiation at 765 W/m2 (i.e. about 38 days of sunlight irradiation was 18% and 31% removal for COD and phenols, respectively. In the constructed wetland, the total removal reached 81% and 86% for COD and phenols, respectively, for the same time period (38 days.

  18. Electrochemical treatment of olive oil mill wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Longhi, P.; Fiori, G [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry; Vodopivec, B. [Milan Univ. Bicocca, Milan (Italy). Dept. of Biotechnologies and Biosciences

    2001-04-01

    The possibility of oxidizing at a PbO{sub 2} anode the phenols and polyphenols, present in the olive oil mill wastewater, has been studied as a pre-treatment for the submission of such wastewater to the traditional biological treatments. The results obtained operating at current densities ranging 500 to 2000 A/m{sup 2} show that it is possible to reduce the concentration of the phenolic components, which interfere with the biological treatments, down to low values without decreasing too much the total organic content of the wastewater. [Italian] E' stata studiata la possibilita' di ossidare anodicamente i componenti fenolici delle acque reflue di frantoio, quale pretrattamento delle stesse prima del loro invio ai processi di trattamento biologico. I risultati ottenuti impiegando PbO{sub 2} quale materiale anodico e operando con densita' di corrente comprese tra 500 e 2000 A/m{sup 2} mostrano come sia possibile eliminare, o almeno diminuire sino a concentrazioni accettabili, dalle acque di frantoio i fenoli e i polifenoli, che interferiscono con i normali trattamenti biologici, senza diminuire eccessivamente il carico organico totale.

  19. Physiological changes in largemouth bass exposed to paper mill effluents under laboratory and field conditions

    Science.gov (United States)

    Sepulveda, M.S.; Gallagher, E.P.; Gross, T.S.

    2004-01-01

    We report here on studies designed to asses the effects of paper mill effluents on non-reproductive functions of free-ranging and captive Florida largemouth bass (Micropterus salmoides floridanus) This was accomplished by conducting an outdoor tank study, in which fish were exposed to well water or to 10%, 20%, 40%, and 80% full strength effluent for 28 or 56 days, and by sampling largemouth bass from sites within the St. Johns River, Florida, upstream and downstream from a paper mill plant. Blood and plasma samples from fish from the tank study and from fish sampled from the ambient sites were analyzed for over 20 variables. We also determined liver and spleen weights and examined them histologically. The most significant finding from the tank study was an increase in the concentration of albumin and hepatosomatic index for bass exposed to ???20% effluents for 56 days. Spleenosomatic index and number of melanomacrophage centers were decreased in bass from effluent-dominated sites (Palatka and Rice Creek), whereas concentrations of calcium, phosphorous, glucose, and creatinine were elevated in fish from these sites, compared to fish from reference streams. Fish from Rice Creek also had fewer red blood cells, and male bass from Palatka had lower concentrations of cholesterol. Plasma concentrations of albumin and hepatic concentrations of glutathione were elevated in males from Palatka, and both females and males from Rice Creek had higher concentrations of globulin. These results indicate a complex pattern of effects of paper mill effluents on several physiological functions. However, despite the myriad of treatment and site-related effects, most physiological parameters fell within normal ranges when compared to reports on largemouth bass and other freshwater species.

  20. A process for the treatment of olive mill waste waters by immobilized cells.

    Directory of Open Access Journals (Sweden)

    ElYachioui, M.

    2005-06-01

    Full Text Available Mould strains were immobilized on sawdust from woods as a solid material for the treatment of Olive Mill Waste (OMW waters. Assays were carried out in flasks. The treatment process was monitored by physico-chemical determinations including pH, polyphenols and COD, which were followed up during the incubation time. In parallel the chemical inhibitory activity of OMW was confirmed biologically by the determination of some microorganisms in the medium including the plate count, yeasts and lactic acid bacteria. Results indicated that the polyphenol degradation level was 87 %. The COD was also reduced by 60 %. The pH of the effluent increased from 4.5 to 6.6. The microbial profiles showed their best growth during the treatment period indicating a removal of the inhibitory activities from the OMW waters. The growth patterns of all microorganism groups were similar and could reach high levels in the effluent.Cepas de moho fueron inmovilizadas sobre serrín de madera como material sólido para el tratamiento de aguas residuales de un molino de aceituna (OMW. Los ensayos se realizaron en matraces. El proceso de tratamiento se monitorizó mediante determinaciones físico-químicas incluyendo pH, polifenoles y DQO, que también se analizaron durante el tiempo de incubación. En paralelo, la actividad inhibidora química de las OMW se confirma biológicamente mediante su efecto sobre algunos microorganismos incluyendo levaduras y bactérias ácido lácticas. Los resultados indicaron que los polifenoles se degradan hasta un nivel del 87 %. La DQO se redujo también al 60 %. El pH del efluente aumentó de 4.5 a 6.6. Los perfiles microbiológicos mostraron un mejor crecimiento a medida que avanzaba el tratamiento indicando una supresión de las actividades inhibidoras de las aguas (OMW. El comportamiento del crecimiento de todos los grupos de microorganismos fue similar y puede alcanzar altos niveles en el efluente

  1. Effects of palm oil mill effluent (POME) anaerobic sludge from 500 m ...

    African Journals Online (AJOL)

    In this study, co-composting of pressed-shredded empty fruit bunches (EFB) and palm oil mill effluent (POME) anaerobic sludge from 500 m3 closed anaerobic methane digested tank was carried out. High nitrogen and nutrients content were observed in the POME anaerobic sludge. The sludge was subjected to the ...

  2. Colour removal from magnesium bisulphite pulp and paper mill effluent using lignite adsorption and salt coagulation

    OpenAIRE

    Yuliani, Galuh

    2017-01-01

    The removal of colour, organics and phosphorus from pulp and paper mill effluent and the development of colour of the wastewater were investigated. These contaminants are considered to be the most important due to their resistance over common treatment applied by the mill. Two approaches, adsorption and coagulation, were chosen for investigation of the removal of colour, organics and phosphorus from aqueous discharges of a bisulphite pulp and paper mill. Additionally, the colour generatio...

  3. Production of biochar from olive mill solid waste for heavy metal removal.

    Science.gov (United States)

    Abdelhadi, Samya O; Dosoretz, Carlos G; Rytwo, Giora; Gerchman, Yoram; Azaizeh, Hassan

    2017-11-01

    Commercial activated carbon (CAC) and biochar are useful adsorbents for removing heavy metals (HM) from water, but their production is costly. Biochar production from olive solid waste from two olive cultivars (Picual and Souri) and two oil production process (two- or three-phase) and two temperatures (350 and 450°C) was tested. The biochar yield was 24-35% of the biomass, with a surface area of 1.65-8.12m 2 g -1 , as compared to 1100m 2 g -1 for CAC. Picual residue from the two-phase milling technique, pyrolysed at 350°C, had the best cumulative removal capacity for Cu +2 , Pb +2 , Cd +2 , Ni +2 and Zn +2 with more than 85% compared to other biochar types and CAC. These results suggest that surface area cannot be used as a sole predictor of HM removal capacity. FTIR analysis revealed the presence of different functional groups in the different biochar types, which may be related to the differences in absorbing capacities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME

    Directory of Open Access Journals (Sweden)

    Wong Pui Wah

    2002-11-01

    Full Text Available Treatment of palm oil mill effluent (POME has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water. The proposed treatment will also ensure the industry to meet a more stringent discharge standard in terms of the BOD, COD and nitrogen values. In this study membrane ultrafiltration is used as the tertiary treatment method. Before the actual membrane operation was conducted, the samples were pre-treated using three separate method namely filtration, centrifugation and coagulation. It was found that the combination of filtrationultrafiltration treatment POME produced the best-treated sample quality in terms of pollutant contents elimination, namely % BOD, % COD and % nitrogen removal.

  5. Microalgal bacterial flocs treating paper mill effluent: A sunlight-based approach for removing carbon, nitrogen, phosphorus, and calcium.

    Science.gov (United States)

    Van Den Hende, Sofie; Rodrigues, André; Hamaekers, Helen; Sonnenholzner, Stanislaus; Vervaeren, Han; Boon, Nico

    2017-10-25

    Treatment of upflow anaerobic sludge blanket (UASB) effluent from a paper mill in aerated activated sludge reactors involves high aeration costs. Moreover, this calcium-rich effluent leads to problematic scale formation. Therefore, a novel strategy for the aerobic treatment of paper mill UASB effluent in microalgal bacterial floc sequencing batch reactors (MaB-floc SBRs) is proposed, in which oxygen is provided via photosynthesis, and calcium is removed via bio-mineralization. Based on the results of batch experiments in the course of this study, a MaB-floc SBR was operated at an initial neutral pH. This SBR removed 58±21% organic carbon, 27±8% inorganic carbon, 77±5% nitrogen, 73±2% phosphorus, and 27±11% calcium. MaB-flocs contained 10±3% calcium, including biologically-influenced calcite crystals. The removal of calcium and inorganic carbon by MaB-flocs significantly decreased when inhibiting extracellular carbonic anhydrase (CA), an enzyme that catalyses the hydration and dehydration of CO 2 . This study demonstrates the potential of MaB-floc SBRs for the alternative treatment of calcium-rich paper mill effluent, and highlights the importance of extracellular CA in this treatment process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study

    International Nuclear Information System (INIS)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2007-01-01

    Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H 2 O 2 /Fe 2+ ), UV, UV/H 2 O 2 , photo-Fenton (UV/H 2 O 2 /Fe 2+ ), ozonation and peroxone (ozone/H 2 O 2 ) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H 2 O 2 /Fe 2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used

  7. Geodiametris: an integrated geoinformatic approach for monitoring land pollution from the disposal of olive oil mill wastes

    Science.gov (United States)

    Alexakis, Dimitrios D.; Sarris, Apostolos; Papadopoulos, Nikos; Soupios, Pantelis; Doula, Maria; Cavvadias, Victor

    2014-08-01

    The olive-oil industry is one of the most important sectors of agricultural production in Greece, which is the third in olive-oil production country worldwide. Olive oil mill wastes (OOMW) constitute a major factor in pollution in olivegrowing regions and an important problem to be solved for the agricultural industry. The olive-oil mill wastes are normally deposited at tanks, or directly in the soil or even on adjacent torrents, rivers and lakes posing a high risk to the environmental pollution and the community health. GEODIAMETRIS project aspires to develop integrated geoinformatic methodologies for performing monitoring of land pollution from the disposal of OOMW in the island of Crete -Greece. These methodologies integrate GPS surveys, satellite remote sensing and risk assessment analysis in GIS environment, application of in situ and laboratory geophysical methodologies as well as soil and water physicochemical analysis. Concerning project's preliminary results, all the operating OOMW areas located in Crete have been already registered through extensive GPS field campaigns. Their spatial and attribute information has been stored in an integrated GIS database and an overall OOMW spectral signature database has been constructed through the analysis of multi-temporal Landsat-8 OLI satellite images. In addition, a specific OOMW area located in Alikianos village (Chania-Crete) has been selected as one of the main case study areas. Various geophysical methodologies, such as Electrical Resistivity Tomography, Induced Polarization, multifrequency electromagnetic, Self Potential measurements and Ground Penetrating Radar have been already implemented. Soil as well as liquid samples have been collected for performing physico-chemical analysis. The preliminary results have already contributed to the gradual development of an integrated environmental monitoring tool for studying and understanding environmental degradation from the disposal of OOMW.

  8. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    Science.gov (United States)

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment.

  9. A yearly spraying of olive mill wastewater on agricultural soil over six successive years: impact of different application rates on olive production, phenolic compounds, phytotoxicity and microbial counts.

    Science.gov (United States)

    Magdich, Salwa; Jarboui, Raja; Rouina, Béchir Ben; Boukhris, Makki; Ammar, Emna

    2012-07-15

    Olive mill wastewater (OMW) spraying effects onto olive-tree fields were investigated. Three OMW levels (50, 100 and 200 m(3)ha(-1)year(-1)) were applied over six successive years. Olive-crop yields, phenolic compounds progress, phytotoxicity and microbial counts were studied at different soil depths. Olive yield showed improvements with OMW level applied. Soil polyphenolic content increased progressively in relation to OMW levels in all the investigated layers. However, no significant difference was noted in lowest treatment rate compared to the control field. In the soil upper-layers (0-40 cm), five phenolic compounds were identified over six consecutive years of OMW-spraying. In all the soil-layers, the radish germination index exceeded 85%. However, tomato germination test values decreased with the applied OMW amount. For all treatments, microbial counts increased with OMW quantities and spraying frequency. Matrix correlation showed a strong relationship between soil polyphenol content and microorganisms, and a negative one to tomato germination index. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Inass Leouifoudi

    2015-01-01

    Full Text Available Natural polyphenols extracts have been usually associated with great bioactive properties. In this work, we investigated in vitro antioxidant and antimicrobial potential of the phenolic olive mill wastewater extracts (OWWE and the olive cake extracts (OCE. Using the Folin Ciocalteux method, OWWE contained higher total phenol content compared to OCE (8.90±0.728 g/L versus 0.95±0.017 mg/g. The phenolic compounds identification was carried out with a performance liquid chromatograph coupled to tandem mass spectrometry equipment (HPLC-ESI-MS. With this method, a list of polyphenols from OWWE and OCE was obtained. The antioxidant activity was measured in aqueous (DPPH and emulsion (BCBT systems. Using the DPPH assay, the results show that OWWE was more active than OCE and interestingly the extracts originating from mountainous areas were more active than those produced from plain areas (EC50=12.1±5.6 μg/mL; EC50=157.7±34.9 μg/mL, resp.. However, when the antioxidant activity was reversed in the BCBT, OCE produced from plain area was more potent than mountainous OCE. Testing by the gel diffusion assay, all the tested extracts have showed significant spectrum antibacterial activity against Staphylococcus aureus, whereas the biophenols extracts showed more limited activity against Escherichia coli and Streptococcus faecalis.

  11. Using Py-GC/MS to fingerprint additives associated with paper mill effluent toxicity episodes

    CSIR Research Space (South Africa)

    Sithole, Bruce

    2012-10-01

    Full Text Available techniques applicable to mill effluents such as gas chromatography. Py-GC/MS is a powerful analytical technique that can be used to fingerprint these additives. The presence of the additives is confirmed by fingerprint pyrograms of the additives (or...

  12. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    Science.gov (United States)

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  13. 97 Épandage des margines sur les sols agricoles : impacts ...

    African Journals Online (AJOL)

    AKA BOKO

    Spreading of olive mill wastewater on agricultural soils: environmental microbiological impacts. It has been shown that the olive mill effluents (OME), which are a waste water of olive oil extraction process, constitutes an alternative among the solutions proposed. Thus provided that this operation should be realized by a ...

  14. Effects of Kraft Mill effluent on the sexuality of fishes: An environmental early warning

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.P.; Bortone, S.A.

    1992-01-01

    Arrhenoid or masculinized female fish species of the live-bearing family, Poeciliidae, have been observed for over thirteen years in specific southern streams which receive waste effluents from pulping mills. The complex mixture of organic compounds in kraft mill effluent (KME) has inhibited specific identification of causal agent(s). However, microbially degraded phytosterols (e.g. sitosterol or stigmastanol) in experimental exposures induce the same intersexual states that characterize affected female poeciliids sampled from KME streams. KME-polluted streams often exhibit a drastic reduction of fish species diversity and degrees of physiological stress, all of which suggests reduced reproduction in surviving forms. A potential ontogenetic or developmental response is demonstrated in American eels captured in one of these streams as well. The authors examine available information, including laboratory and experimental field exposures, and suggest directions for additional research as well as the need for environmental concern.

  15. Potential for biohydrogen and methane production from olive pulp

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...... from the olive pulp, and c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H-2 per g TS. The methane potential of the raw olive pulp...... and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production....

  16. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms.

    Science.gov (United States)

    Soleimaninanadegani, Mohammadreza; Manshad, Soheila

    2014-01-01

    This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color.

  17. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms

    Science.gov (United States)

    Soleimaninanadegani, Mohammadreza

    2014-01-01

    This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color. PMID:27433516

  18. Technical treatment options for the mill effluents of the Los Gigantes Complex

    International Nuclear Information System (INIS)

    Asenjo, A.R.

    2002-01-01

    The Mining/Milling Los Gigantes Complex is located in Cordoba Province, about 100 km to the West of the capital city. The uranium mining and milling activities have been carried out during the period between 1980 and 1990. As result of those activities, mine wastes, low grade ore, sludge, heap leach wastes and liquid effluents have been accumulated in the site. At present, the National Atomic Energy Commission of Argentina is developing the Remediation Project of the site. Within the frame of this Project it is necessary to define the liquid effluent treatment methodology of the liquids accumulated in a pond in order to achieve the proper quality to be released to the environment, according with the national and provincial regulations. In this paper several liquid treatment methods are described. These methods were also developed at the lab scale. Among these we can mention hot and cool alcalinization with barium chloride addition and ion exchange resins treatments. Also a pilot scale assay has been done in the site (about 450 m 3 ) in order to verify the obtained lab scale results. Nevertheless that other assays are yet under developing, the obtained results are reported. (author)

  19. Low cost biosorbent "banana peel" for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies.

    Science.gov (United States)

    Achak, M; Hafidi, A; Ouazzani, N; Sayadi, S; Mandi, L

    2009-07-15

    The aim of this work is to determine the potential of application of banana peel as a biosorbent for removing phenolic compounds from olive mill wastewaters. The effect of adsorbent dosage, pH and contact time were investigated. The results showed that the increase in the banana peel dosage from 10 to 30 g/L significantly increased the phenolic compounds adsorption rates from 60 to 88%. Increase in the pH to above neutrality resulted in the increase in the phenolic compounds adsorption capacity. The adsorption process was fast, and it reached equilibrium in 3-h contact time. The Freundlich and Langmuir adsorption models were used for mathematical description of the adsorption equilibrium and it was found that experimental data fitted very well to both Freundlich and Langmuir models. Batch adsorption models, based on the assumption of the pseudo-first-order, pseudo-second-order and intraparticle diffusion mechanism, showed that kinetic data follow closely the pseudo-second-order than the pseudo-first-order and intraparticle diffusion. Desorption studies showed that low pH value was efficient for desorption of phenolic compounds. These results indicate clearly the efficiency of banana peel as a low-cost solution for olive mill wastewaters treatment and give some preliminary elements for the comprehension of the interactions between banana peel as a bioadsorbent and the very polluting compounds from the olive oil industry.

  20. Removal of pollutants from pulp and paper mill effluent by anaerobic and aerobic treatment in pilot scale bioreactor

    DEFF Research Database (Denmark)

    Singh, P.; Katiyar, D.; Gupta, M.

    2011-01-01

    Pilot-scale anaerobic and aerobic treatment in a two-step bioreactor was performed for the removal of pollutants from pulp and paper mill effluent. After seven days of anaerobic treatment, colour (45%), lignin (60%), COD (26%) and adsorbable organic halogen (AOX) (20%) were reduced. The anaerobic......Pilot-scale anaerobic and aerobic treatment in a two-step bioreactor was performed for the removal of pollutants from pulp and paper mill effluent. After seven days of anaerobic treatment, colour (45%), lignin (60%), COD (26%) and adsorbable organic halogen (AOX) (20%) were reduced....... The anaerobically treated effluent was then treated in a bioreactor in the presence of a fungal strain (Aspergillus fumigatus) or a bacterial strain (Pseudomonas ovalis). The results of this study indicated a reduction in colour (76% and 56%), lignin (78% and 68%), COD (85% and 78%) and AOX (70% and 82...

  1. Biopretreatment of palm oil mill effluent by thermotolerant polymer-producing fungi

    Directory of Open Access Journals (Sweden)

    Masao Ukita

    2001-11-01

    Full Text Available Palm oil industry is one of the three major agro-industries in Southern Thailand and generates large quantities of effluent with high organic matter (BOD and COD values of 58,000 and 110,000 mg/l, respectively, total solids and suspended solids (70,000 and 40,000 mg/l, respectively, oil & grease (25,600 mg/l, and has a low pH (4.5. Conventional anaerobic ponding system is normally employed in palm oil mills to treat the effluent. To increase its efficiency, biopretreatment to remove the organic matter and oil & grease by thermotolerant polymer-producing fungi was investigated. The palm oil mill effluent (POME was treated by the two thermotolerant polymer-producing fungi, Rhizopus sp. ST4 and Rhizopus sp. ST29, at 45ºC under aseptic and septic conditions. Rhizopus sp. ST4 gave the same oil & grease removal (84.2% under both conditions but COD removal under septic condition (62.2% was 8.8% higher than that under aseptic condition (53.4%. On the contrary, Rhizopus sp. ST 29 under aseptic condition showed 11% and 25.4% higher oil & grease removal (91.4% and COD removal (66.0% than those under septic condition. Comparison between the two isolates under aseptic condition revealed that Rhizopus sp. ST29 exhibited higher oil & grease removal (91.4% as well as COD removal (66.0% than those of Rhizopus sp. ST4 (84.2% and 53.4%, respectively. Under septic condition, Rhizopus sp. ST4 gave higher oil & grease removal (84.2% and COD removal (62.2% than did Rhizopus sp. ST 29 (80.5 and 40.6%, respectively.

  2. On the origin of benzene, toluene, ethylbenzene and xylene in extra virgin olive oil.

    Science.gov (United States)

    Biedermann, M; Grob, K; Morchio, G

    1995-04-01

    Concentrations of benzene, toluene, C2-benzenes and styrene were determined in olives and the oils produced thereof, as well as at various intermediate steps during production. Concentrations were compared to those found in samples of air taken from the olive grove and the olive mills. In an exposition experiment in the laboratory, olives absorbed aromatic compounds, approaching saturation corresponding to the partition coefficient between air and oil. However, concentrations in olives delivered to the mills were 4-10 times higher than expected from the analysis of the air in the olive grove. In the olive mills, concentrations were increased further by a factor of up to 2 because of uptake from air which contained high concentrations of aromatics. Styrene concentrations strongly increased during storage of crushed olives at ambient temperature, which confirms the hypothesis that styrene is a product of metabolism.

  3. Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for Nutrient Removal in Rice Mill Effluent (Paddy Soaked Water).

    Science.gov (United States)

    Abinandan, S; Bhattacharya, Ribhu; Shanthakumar, S

    2015-01-01

    Microalgae are product of sustainable development owing to its ability to treat variety of wastewater effluents and thus produced biomass can serve as value added product for various commercial applications. This paper deals with the cultivation of microalgae species namely Chlorella pyrenoidosa and Scenedesmus abundans in rice mill effluent (i.e., paddy soaked water) for nutrient removal. In order to investigate the nutrient removal capability, microalgae are subjected to cultivation in both raw and autoclaved samples. The maximum phosphate removal by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 98.3% and 97.6%, respectively, whereas, the removal of ammoniacal nitrogen by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 92% and 90.3%, respectively. The growth (measured in terms of chlorophyll content) of Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 3.88 mg/l and 5.55 mg/l, respectively. The results indicate the suitability of microalgae cultivation in rice mill effluent treatment for nutrient removal.

  4. Ecotoxicological studies with newly hatched larvae of Concholepas concholepas (Mollusca, Gastropoda): bioassay with secondary-treated kraft pulp mill effluents.

    Science.gov (United States)

    Manríquez, Patricio H; Llanos-Rivera, Alejandra; Galaz, Sylvana; Camaño, Andrés

    2013-12-01

    The Chilean abalone or "loco" (Concholepas concholepas, Bruguière 1789) represent the most economically important marine recourse exploited from inner inshore Management and Exploitation Areas for Benthic Resources along the Chilean coast. In this study, newly-hatched larvae of C. concholepas were investigated as a potential model species for marine ecotoxicological studies. The study developed a behavioral standard protocol for assessing the impact that kraft pulp mill effluents after secondary treatment have on C. concholepas larvae. Under controlled laboratory conditions, newly-hatched larvae were exposed to a series of different concentrations of kraft pulp mill effluents with secondary treatment (Pinus spp. and Eucalyptus spp.), potassium dichromate as standard reference toxicant and effluent-free control conditions. Regardless of the type of effluent the results indicated that diluted kraft pulp effluent with secondary treatment had reduced effect on larval survival. Low larval survivals were only recorded when they were exposed to high concentrations of the reference toxicant. This suggests that C. concholepas larval bioassay is a simple method for monitoring the effects of kraft pulp mill effluents with secondary treatment discharged into the sea. The results indicated that dilution of ca. 1% of the effluent with an elemental chlorine free (ECF) secondary treatment is appropriate for achieving low larval mortalities, such as those obtained under control conditions with filtered seawater, and to minimize their impact on early ontogenetic stages of marine invertebrates such as newly-hatched larvae of C. concholepas. The methodological aspects of toxicological testing and behavioral responses described here with newly-hatched larvae of C. concholepas can be used to evaluate in the future the potential effects of other stressful conditions as other pollutants or changes in seawater pH associated with ocean acidification. © 2013 Elsevier Inc. All rights

  5. Exposure to Paper Mill Effluent at a Site in North Central Florida Elicits Molecular-Level Changes in Gene Expression Indicative of Progesterone and Androgen Exposure

    OpenAIRE

    Brockmeier, Erica K.; Jayasinghe, B. Sumith; Pine, William E.; Wilkinson, Krystan A.; Denslow, Nancy D.

    2014-01-01

    Endocrine disrupting compounds (EDCs) are chemicals that negatively impact endocrine system function, with effluent from paper mills one example of this class of chemicals. In Florida, female Eastern mosquitofish (Gambusia holbrooki) have been observed with male secondary sexual characteristics at three paper mill-impacted sites, indicative of EDC exposure, and are still found at one site on the Fenholloway River. The potential impacts that paper mill effluent exposure has on the G. holbrooki...

  6. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Science.gov (United States)

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-12-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  7. Investigation of the potential of Cyperus alternifolius in the phytoremediation of palm oil mill effluent

    Science.gov (United States)

    Sa'at, Siti Kamariah Md; Zaman, Nastaein Qamaruz; Yusoff, Suffian Mohd; Ismail, Hirun Azaman

    2017-10-01

    Phytoremediation is an emerging technology nowadays due to demand in environmental sustainability which requires cost-effective solutions in terms of capital and operational cost. The treatment gain attention due to their potential in wastewater treatment especially in organics, nutrients, and heavy metal removal of domestics, agricultural, and industrial wastewater treatment. Plant functions in phytoremediation make the plant selection as an essential element. The plant should have the ability to tolerate with the toxic effluent and able to uptake the contaminant. Cyperus alternifolius (umbrella grass) was chosen as aquatic plant due to the ability to tolerance in municipal and industrial effluent sources with strong and dense root systems. Thus, the objectives of this study are to determine the potential and effectiveness of Cyperus alternifolius in the palm oil mill effluent treatment especially in the removal of organics (COD), nutrients (NH3-N and TP) and suspended solid. The batch experiment was run using Cyperus alternifolius to determine their potential of aerobic pond effluent for 21 days of treatment. Cyperus alternifolius treatment shows the great removal of COD and TSS with 96% and 91%, respectively at the end of 21 days of treatment. Nutrients removal achieved the maximum removal of 92% NH3-N and 99% TP shows after 11 days of treatment and percentage slowly decrease until the end of 21 days of treatment. Cyperus alternifolius had shown potential in the palm oil mill effluent treatment and can be combined with ponding treatment to enhance to water quality prior discharge.

  8. Integrated use of residues from olive mill and winery for lipase production by solid state fermentation with Aspergillus sp.

    Science.gov (United States)

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2014-02-01

    Two-phase olive mill waste (TPOMW) is presently the major waste produced by the olive mill industry. This waste has potential to be used as substrate for solid state fermentation (SSF) despite of its high concentration of phenolic compounds and low nitrogen content. In this work, it is demonstrated that mixtures of TPOMW with winery wastes support the production of lipase by Aspergillus spp. By agar plate screening, Aspergillus niger MUM 03.58, Aspergillus ibericus MUM 03.49, and Aspergillus uvarum MUM 08.01 were chosen for lipase production by SSF. Plackett-Burman experimental design was employed to evaluate the effect of substrate composition and time on lipase production. The highest amounts of lipase were produced by A. ibericus on a mixture of TPOMW, urea, and exhausted grape mark (EGM). Urea was found to be the most influent factor for the lipase production. Further optimization of lipase production by A. ibericus using a full factorial design (3(2)) conducted to optimal conditions of substrate composition (0.073 g urea/g and 25 % of EGM) achieve 18.67 U/g of lipolytic activity.

  9. Integrative approach for utilization of olive mill wastewater and lebna's whey for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, M.A.; Hayek, B.O.; Al-Hmoud, N.; Al-Gogazeh, L.

    2009-09-15

    The industry of olive oil extraction in Jordan involves an intensive consumption of water and generates large quantities of olive mill wastewater (OMW). This wastewater has a high pollution risk with biological oxygen demand (BOD). The organic fraction of OMW includes sugars, tannins, polyphenols, polyalcohols, pectins and lipids. The presence of remarkable amounts of aromatic compounds in OMW is responsible for its phytotoxic and antimicrobial effects. The environmental problems and potential hazards caused by OMW had led olive oil producing countries to limit their discharge and to propose and develop new technologies for OMW treatments, such as physicochemical and biological treatments. In the present investigation lebna's whey a local byproduct of widely consumed local yogurt was used with OMW for ethanol production. The obtained results showed that the proteins of lebna's whey can remove substantial amounts of aromatic compounds present in OMW. This was reflected on the reduction of the intensity of black color of OMW and removal of 37% polyphenols. Moreover, the production of ethanol was ascertained in fermentation media composed of whey and in presence of various concentrations of OMW up to 20% OMW. The obtained results showed the possibility to develop a process for improvement and enhancement of ethanol production from whey and olive oil waste in mixed yeast cultures. (au)

  10. Antioxidant activity of olive oil mill wastewater obtained from different thermal treatments

    Directory of Open Access Journals (Sweden)

    Giuffrè, A. M.

    2012-06-01

    Full Text Available In food industry, Olive Oil Mill Wastewater (OOMWW is considered a by-product because of the presence of biostatic compounds with a high polluting rate, in particular phenols. Moreover, during olive oil processing, a large amount of this by-product constitutes an ecological and economical problem for the producers. To reevaluate this by-product, the reuse of this wastewater to obtain useful compounds appears to be very important. In order to purify the wastewater, the development of operations that modify its organic content seems necessary for obtaining of eventual fertilizing agents and/or to recover substances with a high added value such as phenolic compounds, which are currently recognized scientifically as molecules with a high antioxidant activity. A chromatographic analysis of these compounds was conducted to characterize different concentrations of wastewater and the reducing power of the extracts was measured. The thermal treatment of olive oil mill wastewater in a rotary evaporator and in an oven involved an increase in radical scavenging efficiency. These results could be correlated with the possibility of recovering and reusing this type of waste for its antioxidant properties.

    En la industria alimentaria, el alpechín se considera un subproducto debido a la presencia de compuestos bioestáticos, con una alta tasa de contaminación, particularmente los fenoles. Además, durante el procesado de la aceituna, la generación de una gran cantidad de este subproducto supone un problema ecológico y económico para los productores. Es importante la reutilización de este agua de desecho para obtener compuestos útiles. Para purificar el agua de desecho es necesario el desarrollo de operaciones que modifiquen su contenido orgánico, para poder obtener agentes fertilizantes y/o recuperar sustancias con un alto valor añadido como los compuestos fenólicos, que actualmente están reconocidos científicamente como moléculas con una

  11. Treatment of liquid effluent from uranium mines and mills. Report of a co-ordinated research project 1996-2000

    International Nuclear Information System (INIS)

    2004-10-01

    Treatment and control of liquid effluents produced during uranium mining and milling operations is an integral part of environmental project management. Research has continued to add to the large body of science that has been built up around the treatment of radioactive and non-radioactive effluents to minimize their long-term environmental impact. The objective of the meetings on which this publication is based was to exchange information on active effluent treatment technologies that have application during operations and passive treatment techniques such as constructed wetlands and use of micro-organisms that are applicable during project reclamation and long-term care and maintenance. Papers describe effluent treatment case histories from active uranium mining and processing operations as well as effluent treatment research on both active and passive systems that have potential application under a wide range of operating and post-operational conditions including new information on high-density sludge from effluent neutralization (Australia), aerated manganese hydroxide for removal of radium (China), nanofiltration and macropore resins to treat mine water (Australia and China), in situ microbial treatment and permeable reactive walls for treatment of contaminated groundwater (Germany), construction of wetlands to treat mine water runoff (Australia and Germany), biogenic granules to remove 226 Ra from mill effluent (India), self-remediation of acidic in situ leach aquifers (Kazakhstan) and sorption characteristics of soil for self-remediation of contaminated groundwater (Hungary). These and other topics presented in this publication will be of interest to technical personnel who deal with day-to-day practical aspects of liquid effluent control and treatment at uranium production facilities worldwide

  12. Pesticide interactions with soils affected by olive oil mill wastewater

    Science.gov (United States)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  13. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk

    NARCIS (Netherlands)

    Troise, A.D.; Fiore, A.; Colantuono, A.; Kokkinidou, S.; Peterson, D.G.; Fogliano, V.

    2014-01-01

    Thermal processing and Maillard reaction (MR) affect the nutritional and sensorial qualities of milk. In this paper an olive mill wastewater phenolic powder (OMW) was tested as a functional ingredient for inhibiting MR development in ultrahigh-temperature (UHT)-treated milk. OMW was added to milk at

  14. The Impact of Olive Mill Wastewater on the Physicochemical and Biological Properties of Soils in Northwest Jordan

    Directory of Open Access Journals (Sweden)

    Mohammad Wahsha

    2014-12-01

    Full Text Available Soil contamination may influence negatively soil health, which often limits and sometimes disqualifies soil biodiversity and decreases plant growth. Soil health is the continued capacity of the soil to function as a vital living system, providing essential ecosystem services. Within soils, all bio-geo-chemical processes of the different ecosystem components are combined. These processes are able to sustain biological productivity of soil, to maintain the quality of surrounding air and water environments, as well as to promote plant, animal, and human health. A common criterion to evaluate long term sustainability of ecosystems is to assess the quality of soil. However, the increased concentration and distribution of toxic substances in soils by mismanagement of industrial activities, overuse of agrochemicals and waste disposal are causing worldwide concern. A major environmental concern in the Mediterranean countries is the production of the large quantities of olive oil mill wastewater (OMW produced during olive oil extraction process. OMW inhibits several groups of bacteria and fungal species, thus affecting soil stability. In the present study, we investigated the effect of OMW on the soil physical, chemical characteristics and the microarthropods structure. All soil samples were collected from an olive mill garden in Northwest Jordan. Biological soil quality index (QBS-ar values appeared to decrease with respect to soil pollution by OMW. All investigated parameters were significantly different depending on the levels of OMW contamination in soil. Anthropogenic activities influenced the microarthropod community, altering both quantity and quality of soil chemical and physical structure of the microhabitats. Preliminary data obtained in this study suggest that the application of QBS-ar index could be a useful tool for evaluating surface soils health status.

  15. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Directory of Open Access Journals (Sweden)

    Elisabetta eMartini

    2013-12-01

    Full Text Available Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  16. Lignin recovery and it effects quality of anaerobic treated palm oil mill effluent (AT-POME)

    Science.gov (United States)

    Haqi Ibrahim, Abdul; Fahmi Ridwan, Muhammad; Zulzikrami Azner Abidin, Che; Ong, Soon Ann; Shian Wong, Yee; Wazira Azhari, Ayu; Norruhaidawati Ozir, Siti

    2018-03-01

    Lignin is one of the main structural polymers present in plant tissue. It can also be found as an isolated product of the pulp and paper industry. Palm oil mill effluent (POME) has been known as high strength industrial wastewater that is difficult to treat due to its large variety of inorganic and organic contents. The main purpose of this study is to recover soluble lignin from anaerobically treated palm oil mill effluent (AT-POME) and indirectly improves the quality of AT-POME. AT-POME was adjusted to different pH using different type of acids. Response Surface Methodology (RSM) was utilized to obtain the optimum operating parameters as well as to analyse the interaction between them. Model shows that 74.67 % of lignin can be recovered from AT-POME after 5 minutes reaction time using sulfuric acid (H2S04) at pH 5. Hence from the experiment, it was proved that simple pH adjustment could precipitate the soluble lignin from AT-POME.

  17. Clean Fuel, Clean Energy Conversion Technology: Experimental and Numerical Investigation of Palm Oil Mill Effluent Biogas Flameless Combustion

    Directory of Open Access Journals (Sweden)

    Seyed Ehsan Hosseini

    2015-08-01

    Full Text Available The combustion of effluent biogas from a palm oil mill is not feasible on a large scale because of its low calorific value (LCV. Therefore, the captured biogas is usually flared because of a lack of appropriate combustion technology. However, such biogas could be an excellent source of energy for combined heat and power (CHP generation in palm oil mills. In this paper, the feasibility of using biogas from palm oil mills in flameless combustion systems is investigated. In computational fluid dynamic (CFD modeling, a two-step reaction scheme is employed to simulate the eddy dissipation method (EDM. In such biogas flameless combustion, the temperature inside the chamber is uniform and hot spots are eliminated. The peak of the non-luminous flame volume and the maximum temperature uniformity occur under stoichiometric conditions when the concentration of oxygen in the oxidizer is 7%. In these conditions, as the concentration of oxygen in the oxidizer increases, the efficiency of palm oil mill effluent biogas flameless combustion increases. The maximum efficiency (around 61% in the experiment is achieved when the percentage of oxygen in the oxidizer is 7%.

  18. Assessment of reproductive effects in largemouth bass (Micropterus salmoides) exposed to bleached/unbleached kraft mill effluents.

    Science.gov (United States)

    Sepúlveda, M S; Ruessler, D S; Denslow, N D; Holm, S E; Schoeb, T R; Gross, T S

    2001-11-01

    This study evaluated the potential effects of different concentrations of bleached/unbleached kraft mill effluent (B/UKME) on several reproductive endpoints in adult largemouth bass (Micropterus salmoides). The kraft mill studied produces a 50/50 mix of bleached/unbleached market pulp with an estimated release of 36 million gal of effluent/day. Bleaching sequences were C90d10EopHDp and CEHD for softwood (pines) and hardwoods (mainly tupelo, gums, magnolia, and water oaks), respectively. Bass were exposed to different effluent concentrations (0 [controls, exposed to well water], 10, 20, 40, or 80%) for either 28 or 56 days. At the end of each exposure period, fish were euthanized, gonads collected for histological evaluation and determination of gonadosomatic index (GSI), and plasma was analyzed for 17beta-estradiol, 11-ketotestosterone, and vitellogenin (VTG). Largemouth bass exposed to B/UKME responded with changes at the biochemical level (decline in sex steroids in both sexes and VTG in females) that were usually translated into tissue/organ-level responses (declines in GSI in both sexes and in ovarian development in females). Although most of these responses occurred after exposing fish to 40% B/UKME concentrations or greater, some were observed after exposures to 20% B/UKME. These threshold concentrations fall within the 60% average yearly concentration of effluent that exists in the stream near the point of discharge (Rice Creek), but are above the <10% effluent concentration present in the St. Johns River. The chemical(s) responsible for such changes as well as their mode(s) of action remain unknown at this time.

  19. IN VITRO ANDROGENIC ACTIVITY OF KRAFT MILL EFFLUENT IS ASSOCIATED WITH MASCULINIZATION OF FEMALE FISH

    Science.gov (United States)

    In Vitro Androgenic Activity of Kraft Mill Effluent is Associated with Masculinization of Female Fish. Lambright, CS 1 , Parks, LG 1, Orlando, E 2, Guillette, LJ, Jr.2, Ankley, G 3, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville ...

  20. Land Application-Based Olive Mill Wastewater Μanagement

    Directory of Open Access Journals (Sweden)

    Iosif Kapellakis

    2015-01-01

    Full Text Available Land application of olive mill wastewater (OMW is considered a promising low-cost practice for olive-oil producing countries. The objectives of this work were to investigate: (i OMW treatment potential of a land treatment system (LTS, planted with a E. camaldulensis species, regarding N, P, C, and phenols; (ii the effects of OMW on chemical properties of soil and soil solution characteristics; and (iii the performance of E. camaldulensis in terms of biomass production and N and P recovery. E. camaldulensis received OMW for two growing seasons at rates based on maximum organic loading. These rates were almost equivalent to the reference evapotranspiration of the area. Soil solution and soil samples were collected from three different depths (15, 30 and 60 cm at specified time intervals. -Also, samples of plant tissues were collected at the end of application periods. OMW land application resulted in significant reduction in inorganic and organic constituents of OMW. At 15 cm of soil profile, the average removal of COD, TKN, NH4+-N, TP, In-P, and total phenols approached 93%, 86%, 70%, 86%, 82%, and 85%, respectively, while an increase in soil depth (30 and 60 cm did not improve significantly treatment efficiency. Furthermore, OMW increased soil organic matter (SOM, total kjeldahl nitrogen (TKN, and available P, particularly in the upper soil layer. In contrast, low inorganic N content was observed in the soil throughout the study period caused probably by increased competition among soil microorganisms induced by the organic substrate supply and high C/N ratio. Also, electrical conductivity (EC and SAR increased by OMW addition, but at levels that may do not pose severe risk for soil texture. Enhancement of soil fertility due to OMW application sustained eucalyptus trees and provided remarkable biomass yield. In conclusion, land application of OMW has a great potential for organic matter and phenol assimilation and can be effectively used for OMW

  1. Effects of seasonal olive mill wastewater applications on hydrological and biological soil properties in an olive orchard in Israel

    Science.gov (United States)

    Steinmetz, Zacharias; Kurtz, Markus; Peikert, Benjamin; Zipori, Isaac; Dag, Arnon; Schaumann, Gabriele E.

    2014-05-01

    During olive oil production in Mediterranean countries, large amounts of olive mill wastewater (OMW) are generated within a short period of time. OMW has a high nutrient content and could serve as fertilizer when applied on land. However, its fatty and phenolic constituents have adverse effects on hydrological and biological soil properties. It is still unknown how seasonal fluctuations in temperature and precipitation influence the fate and effect of OMW components on soil in a long-term perspective. An appropriate application season could mitigate negative consequences of OMW while preserving its beneficial effects. In order to investigate this, 14 L OMW m-2 were applied to different plots of an olive orchard in Gilat, Israel, in winter, spring, and summer, respectively. Hydrological soil properties (water drop penetration time, hydraulic conductivity, dynamic contact angle), physicochemical parameters (pH, EC, soluble ions, phenolic compounds, organic matter), and biological degradation (bait-lamina test) were measured to assess the soil state after OMW application. After one rainy season following OMW application, the soil quality of summer treatments significantly decreased compared to the control. This was particularly apparent in a ten-fold higher soil water repellency, a three-times lower biodegradation performance, and a four-fold higher content of phenolic compounds. 1.5 years after the last OMW application, the soil properties of winter treatments were comparable to the control, which suggests a certain recovery potential of the soil. Spring treatments resulted in an intermediate response compared to summer and winter treatments, but without any precipitation following OMW application. Strongest OMW effects were found in the top soil layers. Further research is needed to quantify the effect of spring treatments as well as to gain further insight into leaching effects, the composition of organic OMW constituents, and the kinetics of their degradation in

  2. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review.

    Science.gov (United States)

    Şahin, Selin; Bilgin, Mehmet

    2018-03-01

    Research into finding new uses for by-products of table olive and olive oil industry are of great value not only to the economy but also to the environment where olives are grown and to the human health. Since leaves represent around 10% of the total weight of olives arriving at the mill, it is worth obtaining high added-value compounds from those materials for the preparation of dietary supplements, nutraceuticals, functional food ingredients or cosmeceuticals. In this review article, olive tree (Olea europaea L.) leaf is reviewed as being a potential inexpensive, renewable and abundant source of biophenols. The importance of this agricultural and industrial waste is emphasised by means of describing its availability, nutritional and therapeutic effects and studies conducted on this field. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.

    Science.gov (United States)

    Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young

    2013-01-01

    The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry.

  4. Eliminating radium from uranium mill acid effluent with barium chloride-sodium carbonate precipitation

    International Nuclear Information System (INIS)

    Xiao Jiayuan

    1998-01-01

    The eliminating radium procedure, barium chloride-sodium carbonate-sand filtering, being used, radium can be eliminated to 3.7 x 10 -2 Bq/L order of magnitude from uranium mill acid effluents which contain 3.7 Bq/L Ra and pH 6∼9 when Ba 2+ is added by 3∼5 mg per litre, Na 2 CO 3 5mg. The radium elimination rate is more than 90%

  5. Application of biotechnology for treatment of nitrogen compounds in gold mill effluents

    International Nuclear Information System (INIS)

    Kapoor, A.; Gould, W.D.; Bedard, P.; Morin, K.

    2004-01-01

    This paper presents the results of a research study that is being conducted by the Mine Effluents Program, Mining and Mineral Science Laboratory (MMSL), Natural Resources Canada aimed at evaluating biotechnology processes for the treatment of nitrogen compounds such as thiocyanide (CNS) and ammonia (NH 4- N) which are present in gold mill effluents. A sequencing batch reactor (SBR) technology, commonly used for the biological treatment of municipal and industrial effluents, was used in this study. In the SBR process, the micro-organisms were able to degrade CNS to NH 4- N and NH 4- N to nitrate (NO 3- N) at operating conditions of two 12 h treatment cycles per day, with pH maintained in the 7.4 to 7.6 range, and at room temperature (approximately 21 o C) and also at 12 o C. The end products of CNS and NH 4- N biological oxidation were NO 3- N and sulphate (SO 4 ) that are relatively non-toxic. Partial removal of NO 3- N was achieved by biological denitrification reactions in the SBR process. The SBR process effluent was measured to be non-toxic to rainbow trout based on the 96 h acute toxicity test. The microbial consortium isolated from the SBR treating a simulated effluent was able to effectively oxidize CNS and NH 4- N to NO 3- N in water samples (under batch conditions) collected at three mine sites located in Quebec, the Northwest Territories, and Yukon. (author)

  6. Effects of pulp and paper mill effluents on reproductive success of largemouth bass.

    Science.gov (United States)

    Sepúlveda, Maria S; Quinn, Brian P; Denslow, Nancy D; Holm, Stewart E; Gross, Timothy S

    2003-01-01

    This study evaluated the effects of bleached and unbleached kraft mill effluent on reproductive success of largemouth bass (Micropterus salmoides). Bass were exposed to effluent concentrations (0, 10, 20, 40, or 80%) for 28 and 56 d. Parameters measured included hepatosomatic index (HSI) and gonadosomatic index (GSI) and plasma concentrations of 17beta-estradiol (E2), 11-ketotestosterone (11-KT), and vitellogenin (VTG). At the end of the 56-d period, bass were moved to hatchery ponds to evaluate spawning success. Spawning mats with eggs either were brought indoors for evaluation of fecundities, hatchabilities, and egg and fry size (measured at age 3 d), or were left in ponds and fry number and size recorded (average age of 14 d). Effluent exposure was verified by measuring resin acids (isopimaric, abietic. and dehydroabietic acids) in bile. Compared to controls, exposed bass had greater concentrations of resin acids in bile. In general, exposed females had lower concentrations of E2 and VTG (> or = 20% effluent), whereas males had lower concentrations of 11-KT (> or = 20% effluent) and increased E2 (> or = 20% effluent). The HSI values increased in females (> or = 10% effluent), and GSI values decreased in both sexes (> or = 40% effluent). Fecundity, egg size, and hatchability did not differ across treatments, but an increase in the frequency of fry abnormalities and a decrease in fry weights was observed at effluent exposures of 40% and higher. However, results from the pond study, revealed a significant reduction in fry growth and survival (> or = 10%). This decline may have been caused by an increased frequency of deformities, in conjunction with alterations of growth. These changes could have resulted from alterations in egg quality because of failure of parental reproductive systems, from acute embryo toxicity after translocation of contaminants from the mother to the developing embryo, or from both.

  7. Membrane filtration of olive mill wastewater and exploitation of its fractions.

    Science.gov (United States)

    Paraskeva, C A; Papadakis, V G; Kanellopoulou, D G; Koutsoukos, P G; Angelopoulos, K C

    2007-04-01

    Olive mill wastewater (OMW) produced from small units scattered in rural areas of Southern Europe is a major source of pollution of surface and subsurface water. In the present work, a treatment scheme based on physical separation methods is presented. The investigation was carried out using a pilot-plant unit equipped with ultrafiltration, nanofiltration, and reverse osmosis membranes. Approximately 80% of the total volume of wastewater treated by the membrane units was sufficiently cleaned to meet the standards for irrigation water. The concentrated fractions collected in the treatment concentrates were characterized by high organic load and high content of phenolic compounds. The concentrates were tested in hydroponic systems to examine their toxicity towards undesired herbs. The calculations of the cost of the overall process showed that fixed and operational costs could be recovered from the exploitation of OMW byproducts as water for irrigation and/or as bioherbicides.

  8. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.

    Science.gov (United States)

    Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S

    2011-01-01

    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Multiclass pesticide determination in olives and their processing factors in olive oil: comparison of different olive oil extraction systems.

    Science.gov (United States)

    Amvrazi, Elpiniki G; Albanis, Triantafyllos A

    2008-07-23

    The processing factors (pesticide concentration found in olive oil/pesticide concentration found in olives) of azinphos methyl, chlorpyrifos, lambda-cyhalothrin, deltamethrin, diazinon, dimethoate, endosulfan, and fenthion were determined in olive oil production process in various laboratory-scale olive oil extractions based on three- or two-phase centrifugation systems in comparison with samples collected during olive oil extractions in conventional olive mills located at different olive oil production areas in Greece. Pesticide analyses were performed using a multiresidue method developed in our laboratory for the determination of different insecticides and herbicides in olive oil by solid-phase extraction techniques coupled to gas chromatography detection (electron capture detection and nitrogen phosphorus detection), optimized, and validated for olive fruits sample preparation. Processing factors were found to vary among the different pesticides studied. Water addition in the oil extraction procedure (as in a three-phase centrifugation system) was found to decrease the processing factors of dimethoate, alpha-endosulfan, diazinon, and chlorpyrifos, whereas those of fenthion, azinphos methyl, beta-endosulfan, lambda-cyhalothrin, and deltamethrin residues were not affected. The water content of olives processed was found to proportionally affect pesticide processing factors. Fenthion sulfoxide and endosulfan sulfate were the major metabolites of fenthion and endosulfan, respectively, that were detected in laboratory-produced olive oils, but only the concentration of fenthion sulfoxide was found to increase with the increase of water addition in the olive oil extraction process.

  10. Influence of crude oil and pulp and paper mill effluent on mixed infections of Trichodina cottidarium and T. saintjohnsi (Ciliophora) parasitizing Myoxocephalus octodecemspinosus and M. scorpius

    International Nuclear Information System (INIS)

    Khan, R.A.; Barker, D.E.; Williams-Ryan, K.; Hooper, R.G.

    1994-01-01

    Samples of longhorn sculpin (Myoxocephalus octodecemspinosus) were exposed to sediment contaminated with crude oil or pulp and paper mill effluent for periods up to 13 months in the laboratory. Other samples were collected at sites where crude oil or effluent from a pulp and paper mill are discharged. The intensity of gill infections of Trichodina spp. on exposed fish was significantly higher than on controls 5, 9, and 13 months after exposure. The intensity of the ciliates was also greater on sculpins collected near an oil-receiving terminal than on those sampled 5 km from the polluted site. Field collections of longhorn and shorthorn (Myoxocephalus scorpius) sculpins at and distant from a pulp and paper mill had high and low intensities of the ciliates, respectively. Similarly, the intensity of trichodinid ciliates was also significantly greater in longhorn sculpins exposed to effluent-contaminated sediment than in controls 5 months after exposure. The results suggest that the intensity of gill-inhibiting species such as trichodinids in susceptible fish hosts increases after chronic exposure to crude oil and to pulp and paper mill effluent, and the parasites may serve as indicators of pollution. 24 refs., 4 figs., 1 tab

  11. Effluents from a pulp and paper mill: a skin and health survey of children living in upstream and downstream villages

    OpenAIRE

    Lee, J; Koh, D; Andijani, M; Saw, S; Munoz, C; Chia, S; Wong, M; Hong, C; Ong, C

    2002-01-01

    Objectives: A health survey of three villages (upstream village Rantau Baru and two downstream villages, Sering and Pelalawan) in the vicinity of a pulp and paper mill along the Kampar river in the province of Riau, Indonesia was conducted to find whether exposure to the effluents from the mill was related to skin conditions and ill health.

  12. In situ olive mill residual co-composting for soil organic fertility restoration and by-product sustainable reuse

    Directory of Open Access Journals (Sweden)

    Teresa Casacchia

    2012-06-01

    Full Text Available The addition of organic matter in the form of compost improves overall physical, chemical and biological properties of soils but, to be really sustainable, the composting process should be carried out using the by-products available in situ. Two different soils of a Mediterranean olive orchard, one managed traditionally (NAS and the other amended with compost (AS, were investigated in a two-year experiment. Increases in total organic matter, total nitrogen and pH, were detected in AS if compared to NAS. Significant increases in total and specific microbial counts were observed in AS, with a clear amelioration of microbiological soil quality. The results demonstrated that soil amendment using compost deriving from olive mill by-products can be an important agricultural practice for supporting and stimulating soil microorganisms and, at the same time, for re-using these byproducts, so avoiding their negative environmental impact.

  13. Recovery of ovary size, follicle cell apoptosis, and HSP70 expression in fish exposed to bleached pulp mill effluent

    Energy Technology Data Exchange (ETDEWEB)

    Janz, D. M.; Weber, L. P. [Oklahoma State Univ., Stillwater, OK (United States); McMaster, M. E.; Munkittrrick, K. R. [Environment Canada, Burlington, ON (Canada); Van Der Kraak, G. [Guelph Univ., Dept. of Zoology, ON (Canada)

    2001-03-01

    Apoptosis of granulosa cells that provide hormonal support for the oocyte is the normal mechanism by which atresia ( reduced ovarian size, decreased fecundity, delayed sexual maturation, alterations in plasma sex steroid levels, etc) occurs in mammals, birds and possibly fish. The objective of this study is to determine ovarian cell apoptosis, gonadosomatic index (GSI) and heat shock protein (HSP70) expression during the growth stage of ovarian development in white sucker fish in order to compare samples of fish collected upstream and downstream of a bleached kraft pulp mill in Ontario. Fish for the study were collected in two different years, before and after the pulp mill undertook a number of improvements to eliminate the release of process chemicals. Results showed a 3.4-fold increase in ovarian cell apoptosis in growing white sucker collected four km downstream of the bleached kraft pulp mill in 1996 (before the improvements) compared to fish collected from upstream sources. The elevated ovarian cell apoptosis was associated with significant reduction in gonadosomatic index in fish collected downstream. There were no differences in ovarian cell apoptosis or gonadosomatic index between fish collected upstream and four km downstream of the mill in September 1998 (after the improvements.) Based on the results, it may be concluded that chronic stimulation of ovarian cell apoptosis by certain components of bleached kraft pulp mill effluents represents an important cellular mechanism for reducing the size of ovaries and other related reproductive responses in female fish exposed to these effluents. Although the specific effluent components are not known, the improvements undertaken between 1996 and 1998 resulted in significant enough recovery of these responses to justify the belief in a cause-effect relationship. 32 refs., 1 tab., 2 figs.

  14. Recovery of iron after Fenton-like secondary treatment of olive mill wastewater by nano-filtration and low-pressure reverse osmosis membranes

    International Nuclear Information System (INIS)

    Ochando-Pulido, J.M.; Victor-Ortega, M.D.; Martinez-Ferez, A.

    2016-01-01

    In this work, the performances of novel nano-filtration (NF) and low-pressure reverse osmosis (RO) polymeric membranes were examined with the aim of recovering the iron used as catalyst in former secondary treatment based on the Fenton-like advanced oxidation of olive mill wastewater (OMW). Results highlight that both membranes exhibit a good performance towards the rejection of iron (99.1% for the NF membrane vs. 100% for the low-pressure RO membrane) in the secondary-treated OMW effluent, thus permitting the recovery of iron in the concentrate stream in order to recycle it back into the oxidation reactor to reduce catalyst consumption. Finally, the permeate streams could be re-used for irrigation. Major productivity was observed by the selected NF membrane, about 47.4 L/hm2 upon 9 bar, whereas 30.9 L/hm2 could be yielded with the RO membrane under an operating pressure of 8 bar. Moreover, a sensibly lower fouling index was measured on the NF membrane (0.0072 in contrast with 0.065), which ensures major steady-state performance on this membrane and a longer service lifetime. This also results in lower required membrane area and membrane plant over dimension (4 modules in case of RO operation whereas only 2 modules for NF). [es

  15. New tailor-made bio-organoclays for the remediation of olive mill waste water

    International Nuclear Information System (INIS)

    Calabrese, Ilaria; Liveri, Maria Liria Turco; Gelardi, Giulia; Merli, Marcello; Sciascia, Luciana; Rytwo, Giora

    2013-01-01

    A systematic study aimed at obtaining new organoclays for the treatment of Olive Mill Waste water (OMW) has been performed. Several organoclays have been prepared by loading different amounts of the biocompatible surfactant Tween20 onto the K10 montmorillonite (MMT). Complementary kinetic and equilibrium studies on the adsorption of the Tween20 onto the MMT have been carried out and the characterization of the new tailor-made bio-materials has been performed by means of the XRD and FT-IR measurements. Finally the prepared bio-organoclays have been successfully applied for the OMW remediation and they proved to be highly effective in decreasing the organic content (OC) to an extent that depends on both the amount of loaded surfactant and the experimental protocols applied

  16. New tailor-made bio-organoclays for the remediation of olive mill waste water

    Science.gov (United States)

    Calabrese, Ilaria; Gelardi, Giulia; Merli, Marcello; Rytwo, Giora; Sciascia, Luciana; Liria Turco Liveri, Maria

    2013-12-01

    A systematic study aimed at obtaining new organoclays for the treatment of Olive Mill Waste water (OMW) has been performed. Several organoclays have been prepared by loading different amounts of the biocompatible surfactant Tween20 onto the K10 montmorillonite (MMT). Complementary kinetic and equilibrium studies on the adsorption of the Tween20 onto the MMT have been carried out and the characterization of the new tailor-made bio-materials has been performed by means of the XRD and FT-IR measurements. Finally the prepared bio-organoclays have been successfully applied for the OMW remediation and they proved to be highly effective in decreasing the organic content (OC) to an extent that depends on both the amount of loaded surfactant and the experimental protocols applied.

  17. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    Science.gov (United States)

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H2O2 with Lime and Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Alessio Siciliano

    2016-11-01

    Full Text Available In the Mediterranean region, the disposal of residues of olive oil industries represents an important environmental issue. In recent years, many techniques were proposed to improve the characteristics of these wastes with the aim to use them for methane generation in anaerobic digestion processes. Nevertheless, these techniques, in many cases, result costly as well as difficult to perform. In the present work, a simple and useful process that exploits H2O2 in conjunction with lime is developed to enhance the anaerobic biodegradability of wet olive mill wastes (WMOW. Several tests were performed to investigate the influence of lime amount and H2O2 addition modality. The treatment efficiency was positively affected by the increase of lime dosage and by the sequential addition of hydrogen peroxide. The developed process allows reaching phenols abatements up to 80% and volatile fatty acids productions up to 90% by using H2O2 and Ca(OH2 amounts of 0.05 gH2O2/gCOD and 35 g/L, respectively. The results of many batch anaerobic digestion tests, carried out by means of laboratory equipment, proved that the biogas production from fresh wet olive mill wastes is hardly achievable. On the contrary, organic matter abatements, around to 78%, and great methane yields, up to 0.34–0.35 LCH4/gCODremoved, were obtained on pretreated wastes.

  19. Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor

    Directory of Open Access Journals (Sweden)

    I Irvan

    2012-04-01

    Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

  20. Chemical characterization and effects on Lepidium sativum of the native and bioremediated components of dry olive mill residue.

    Science.gov (United States)

    Aranda, E; García-Romera, I; Ocampo, J A; Carbone, V; Mari, A; Malorni, A; Sannino, F; De Martino, A; Capasso, R

    2007-09-01

    Dry olive mill residue (DOR) from the olive oil production by two phase centrifugation system was fractionated by a consecutive continuous solid-liquid extraction obtaining the EAF, PF, MF and WF fractions with ethyl acetate, n-propanol, methanol and water, respectively. The chemical, chromatographic and mass spectrometric analyses showed EAF, PF and MF to be mainly composed of simple phenols, phenolic acids, flavonoids and glycosilated phenols (glycosides of phenols, secoiridoids and flavonoids), whereas WF was mainly consisting of polymerin, the metal organic polymeric mixture previously identified in olive oil mill waste waters and composed of carbohydrates, melanin, proteins and metals (K, Na, Ca, Mg and Fe). The identification in DOR of oleoside, 6'-beta-glucopyranosyl-oleoside and 6'-beta-rhamnopyranosyl-oleoside, and of its organic polymeric component, known as polymerin, are reported for the first time in this paper. The inoculation of the previously mentioned fractions with saprobe fungi Coriolopsis rigida, Pycnoporus cynnabarinus or Trametes versicolor indicated these fungi to be able to metabolize both the phenols and glycosilated phenols, but not polymerin. In correspondence, EAF, PF, MF and WF, which proved to be toxic on Lepidium sativum, decreased their toxicity after incubation with the selected fungi, WF showing to be also able to stimulate the growth of the selected seeds. The phytotoxicity appeared mainly correlated to the monomeric phenols and, to a lesser extent, to the glycosilated phenols, whereas polymerin proved to be non toxic. However, the laccase activity was not associated with the decrease of phytotoxicity. The valorization of DOR as a producer of high added value substances of industrial and agricultural interest in native form and after their bioremediation for a final objective of the total DOR recycling is also discussed.

  1. Application of nanofiltration to the treatment of uranium mill effluents

    International Nuclear Information System (INIS)

    Macnaughton, S.J.; McCulloch, J.K.; Marshall, K.; Ring, R.J.

    2002-01-01

    Nanofiltration is widely used in water treatment due to the lower energy requirements and higher yields than reverse osmosis. Separation characteristics are dependent on both the molecular size and charge of the dissolved species in the feed solution as well as membrane properties. In this investigation the potential of nanofiltration to remove dissolved species from uranium mill effluent has been studied. The background behind the application is discussed and the results of the first testwork programme are presented. An initial screening of seventeen commercially available membranes was completed and it was found that uranium rejections of greater than 75% were consistently achieved. Selected membranes also showed potential for the separation of radium, sulfate and manganese. (author)

  2. Investigation on microbiology of olive oil extraction process

    Directory of Open Access Journals (Sweden)

    B. Zanoni

    2015-06-01

    Full Text Available Several batches of approx. 200 kg olives from Frantoio and Moraiolo cultivars were processed in an oil mill at two dates of harvesting. Samples were collected in several steps of extraction process for sensory, chemical and microbial analyses.All extracted olive oil from the second olive harvesting date was affected by sensory defects and hence classified as being “non-extra virgin”. A distinction between extra virgin olive oil and nonextra virgin olive oil obtained from both harvesting dates was explained by the volatile compounds content of olive oil samples and by yeast and mould counts collected at different processing steps.

  3. Pilot scale hybrid processes for olive mill wastewater treatment, energy production and water reuse: comparison between fungal and electro-coagulation pre-treatments

    International Nuclear Information System (INIS)

    Sayadi, S.

    2009-01-01

    Olive oil mill wastewaters (OMW) cause disposal problems because they contain powerful pollutants such as phenolic compounds. Complete biodegradation or removal of these compounds is hardly achieved by a single treatment method. In this work, we investigated 2 integrated technologies for the treatment of the recalcitrant contaminants of OMW, allowing water recovery and reuse for agricultural purposes. (Author)

  4. Pilot scale hybrid processes for olive mill wastewater treatment, energy production and water reuse: comparison between fungal and electro-coagulation pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Sayadi, S.

    2009-07-01

    Olive oil mill wastewaters (OMW) cause disposal problems because they contain powerful pollutants such as phenolic compounds. Complete biodegradation or removal of these compounds is hardly achieved by a single treatment method. In this work, we investigated 2 integrated technologies for the treatment of the recalcitrant contaminants of OMW, allowing water recovery and reuse for agricultural purposes. (Author)

  5. Aerobic effluent treatment with lower electric power consumption. Survey of results from questionnaire sent out to Swedish pulp and paper mills with biological effluent treatment plants; Aerob rening med laegre elfoerbrukning. Sammanstaellning av enkaetsvar fraan svenska skogsindustrier med biologisk rening

    Energy Technology Data Exchange (ETDEWEB)

    Sivard, Aasa; Simon, Olle

    2010-12-15

    A survey of the energy situation at 23 Swedish pulp and paper mills with aerobic effluent treatment plants has been performed. The electricity consumption for aeration equipment is about 80 % of the total electricity consumption. Proposed measures to increase energy efficiency are regular measurements of energy consumption, better control of the oxygen level in some mills and evaluation of measures to use the heat in process effluent before and after biological treatment

  6. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    Directory of Open Access Journals (Sweden)

    Georgios Koutrotsios

    2014-01-01

    Full Text Available Olive mill wastewater (OMW constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent’s decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64% followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW’s phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment.

  7. The potential of Pleurotus-treated olive mill solid waste as cattle feed.

    Science.gov (United States)

    Shabtay, Ariel; Hadar, Yitzhak; Eitam, Harel; Brosh, Arieh; Orlov, Alla; Tadmor, Yaakov; Izhaki, Ido; Kerem, Zohar

    2009-12-01

    The aims of the current study were to follow: (1) the capability of the edible mushroom Pleurotus ostreatus to degrade cell wall components and soluble phenols of the olive mill solid waste (OMSW), and improve it for ruminant nutrition (2) the fate of oil and the lipid-soluble compounds tocopherols, squalene and beta-sitosterol in the fermented OMSW. A significant decrease in oil and lipid-soluble compounds with a concomitant shift in the fatty acid profile and degradation of soluble phenols took place already after 14 d. The utilization of lipids by the fungus shifted the degradation of the structural carbohydrates to a later stage, and significantly reduced the metabolizable energy of the OMSW. We propose that edible fungi with reduced lipase activity would preserve the energy and health promoting ingredients of the oil, and force the fungus to degrade structural carbohydrates, thus improving its digestibility.

  8. Exposure to paper mill effluent at a site in North Central Florida elicits molecular-level changes in gene expression indicative of progesterone and androgen exposure.

    Directory of Open Access Journals (Sweden)

    Erica K Brockmeier

    Full Text Available Endocrine disrupting compounds (EDCs are chemicals that negatively impact endocrine system function, with effluent from paper mills one example of this class of chemicals. In Florida, female Eastern mosquitofish (Gambusia holbrooki have been observed with male secondary sexual characteristics at three paper mill-impacted sites, indicative of EDC exposure, and are still found at one site on the Fenholloway River. The potential impacts that paper mill effluent exposure has on the G. holbrooki endocrine system and the stream ecosystem are unknown. The objective of this study was to use gene expression analysis to determine if exposure to an androgen receptor agonist was occurring and to couple this analysis with in vitro assays to evaluate the presence of androgen and progesterone receptor active chemicals in the Fenholloway River. Focused gene expression analyses of masculinized G. holbrooki from downstream of the Fenholloway River paper mill were indicative of androgen exposure, while genes related to reproduction indicated potential progesterone exposure. Hepatic microarray analysis revealed an increase in the expression of metabolic genes in Fenholloway River fish, with similarities in genes and biological processes compared to G. holbrooki exposed to androgens. Water samples collected downstream of the paper mill and at a reference site indicated that progesterone and androgen receptor active chemicals were present at both sites, which corroborates previous chemical analyses. Results indicate that G. holbrooki downstream of the Fenholloway River paper mill are impacted by a mixture of both androgens and progesterones. This research provides data on the mechanisms of how paper mill effluents in Florida are acting as endocrine disruptors.

  9. Phospholipid fatty acid analysis to monitor the co-composting process of olive oil mill wastes and organic household refuse

    OpenAIRE

    Barje , F.; Amir , S.; Winterton , Peter; Pinelli , Eric; Merlina , Georges; Cegarra , J.; Revel , Jean-Claude; Hafidi , Mohamed

    2008-01-01

    International audience; The co-composting of olive oil mill wastes and household refuse was followed for 5 months. During the thermophilic phase of composting, the aerobic heterotrophic bacteria (AHB) count, showed a significant rise with a slight regression of fungal biomass. In the same way, phospholipid fatty acids PLFAs common in bacteria, showed a significant increase of hydroxyl and branched PLFAs. The evaluation of the ratio of octadecenoic PLFAs to stearic acid (C18:1/C18:0) revealed ...

  10. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation.

    Science.gov (United States)

    Leite, Paulina; Salgado, José Manuel; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2016-08-01

    Olive mills generate a large amount of waste that can be revaluated. This work aim to improve the production lignocellulolytic enzymes by solid-state fermentation using ultrasounds pretreated olive mill wastes. The composition of olive mill wastes (crude and exhausted olive pomace) was compared and several physicochemical characteristics were significantly different. The use of both wastes in SSF was evaluated and a screening of fungi for xylanase and cellulase production was carried out. After screening, the use of exhausted olive pomace and Aspergillus niger led to the highest enzyme activities, so that they were used in the study of ultrasounds pre-treatment. The results showed that the sonication led to a 3-fold increase of xylanase activity and a decrease of cellulase activity. Moreover, the liquid fraction obtained from ultrasounds treatment was used to adjust the moisture of solid and a positive effect on xylanase (3.6-fold increase) and cellulase (1.2-fold increase) production was obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Trend and current practices of palm oil mill effluent polishing: Application of advanced oxidation processes and their future perspectives.

    Science.gov (United States)

    Bello, Mustapha Mohammed; Abdul Raman, Abdul Aziz

    2017-08-01

    Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thin layer drying kinetics of by-products from olive oil processing.

    Science.gov (United States)

    Montero, Irene; Miranda, Teresa; Arranz, Jose Ignacio; Rojas, Carmen Victoria

    2011-01-01

    The thin-layer behavior of by-products from olive oil production was determined in a solar dryer in passive and active operation modes for a temperature range of 20-50 °C. The increase in the air temperature reduced the drying time of olive pomace, sludge and olive mill wastewater. Moisture ratio was analyzed to obtain effective diffusivity values, varying in the oil mill by-products from 9.136 × 10(-11) to 1.406 × 10(-9) m(2)/s in forced convection (m(a) = 0.22 kg/s), and from 9.296 × 10(-11) to 6.277 × 10(-10) m(2)/s in natural convection (m(a) = 0.042 kg/s). Diffusivity values at each temperature were obtained using the Fick's diffusion model and, regardless of the convection, they increased with the air temperature. The temperature dependence on the effective diffusivity was determined by an Arrhenius type relationship. The activation energies were found to be 38.64 kJ/mol, 30.44 kJ/mol and 47.64 kJ/mol for the olive pomace, the sludge and the olive mill wastewater in active mode, respectively, and 91.35 kJ/mol, 14.04 kJ/mol and 77.15 kJ/mol in natural mode, in that order.

  13. Culture of the microalga chlorella vulgaris on different proportions of sugar mill effluents

    International Nuclear Information System (INIS)

    Khan, A.N.M.A.I.; Islam, M.R.; Habib, M.A.B.; Hossain, M.S.; Miah, M.I.

    2006-01-01

    Chlarella vulgaris was cultured in four different dilutions of sugar mill effluent media (SMEM). Bold's basal medium (BBM) was used as the control under laboratory conditions. Maximum cell growth and chlorophyll-a content were obtained on 10th day of the culture in 50% diluted SMEM, followed by those grown in BBM, and 75, 25 and 100% SMEM at stationary phase. The specific growth rate (mu g/day) of cells and chlorophyll-a of C. vulgaris grown in 50% SMEM varied significantly (p < 0.0 I) from those of C. vulgaris cultured in BBM, followed by other SMEM concentrations. Total biomass of C. vulgaris. cultured in 50% SMEM, was found to be significantly higher (p < 0.0 I) than that of C. vulgaris cultured in BBM, and 25, 75 and 100% SMEM concentrations. Similar trend was also observed in the case of optical density. Cell number and chlorophyll-a of C. vulgaris were highly (p < 0.01) and directly correlated with chlorophyll-a (r2 = 0.991) of C. vulgaris and optical density (r2 = 0.989) for the culture media containing C. vulgaris, respectively. Crude proteins and crude lipids of C. vulgaris. grown in 50% SMEM, were significantly (p < 0.01) higher than those of C. vulgaris cultured in other SMEM concentrations. Due to good growth performance exhibited in the 50% SMEM dilution, the sugar mill effluent may be used for efficient cultivation of C. vulgaris and possibly other micro algae. (author)

  14. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2006-01-01

    the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments...

  15. Kinetic and Isotherm Modelling of the Adsorption of Phenolic Compounds from Olive Mill Wastewater onto Activated Carbon

    Directory of Open Access Journals (Sweden)

    Alessandro A. Casazza

    2015-01-01

    Full Text Available The adsorption of phenolic compounds from olive oil wastewater by commercial activated carbon was studied as a function of adsorbent quantity and temperature. The sorption kinetics and the equilibrium isotherms were evaluated. Under optimum conditions (8 g of activated carbon per 100 mL, the maximum sorption capacity of activated carbon expressed as mg of caff eic acid equivalent per g of activated carbon was 35.8 at 10 °C, 35.4 at 25 °C and 36.1 at 40 °C. The pseudo-second-order model was considered as the most suitable for kinetic results, and Langmuir isotherm was chosen to bett er describe the sorption system. The results confi rmed the effi ciency of activated carbon to remove almost all phenolic compound fractions from olive mill effl uent. The preliminary results obtained will be used in future studies. The carbohydrate fraction of this upgraded residue could be employed to produce bioethanol, and adsorbed phenolic compounds can be recovered and used in different industries.

  16. A novel use of Moringa oleifera seed powder in enhancing the primary treatment of paper mill effluent.

    Science.gov (United States)

    Boulaadjoul, Soumia; Zemmouri, Hassiba; Bendjama, Zoubida; Drouiche, Nadjib

    2018-05-02

    In this study, Moringa oleifera (M. oleifera) performance as an eco-friendly coagulant in the enhanced primary treatment of paper mill effluent was investigated. Its performance in terms of turbidity removal and COD abatement was examined. Local M. oleifera seed powder from ADRAR-city, South of Algeria, was used. Conventional jar tests were conducted for enhancing the primary treatment of paper mill effluent from paper factory. For this reason, comparative coagulation tests were performed using aluminum sulfate (alum). Indeed, in terms of turbidity abatement, 96.02% and 97.1% were obtained for Moringa and alum, respectively. However, in the case of COD abatement, the abatement rate of M. oleifera seeds was slightly higher than that of alum, 97.28% and 92.67%, respectively. Because M. oleifera is a natural resource that is locally available, an eco-friendly coagulant, non-toxic, and biodegradable and does not affect the pH of water; thus, its use allows to avoid numerous disadvantages of conventional coagulants like alum. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Repercussions agronomiques de l'epandage d'effluents et dechets de moulins a huile d'olive

    OpenAIRE

    Morisot, Alain; Tournier, Jean Paul

    1986-01-01

    Les répercussions agronomiques de l’épandage d’effluents (ou margines) de moulins à huile d’olive sont étudiées au moyen de cultures de ray-grass en pots sous serre et de tests d’incubation sur l’azote minéral. L’épandage de 40 mm (40 l/m2) de margines sur une plantation de ray-grass diminue le rendement moyen de 45 p. 100 par rapport à celui de la culture de référence. La production de matière sèche des ray-grass semés immédiatement après l’épandage (doses de 40 et 80 mm) est égale au t...

  18. Bioremediation of olive mill waste water and its use as a bio fertilizer

    International Nuclear Information System (INIS)

    Shetaia, Y. M.; Abd El Kareem, H.; Gomaa, O. M.; Wageeh, L.

    2012-12-01

    Olive oil mill wastewater (OMW) constitutes a major environmental problem especially for mediterranean countries, where most of the world's olive oil production. Treatment of the OMW is highly demanded due to the hazards of its high chemical oxygen demand (COD), total phenolic content (TP), turbidity and color. In the present study, penicillium chrysogen um was selected as the predominant grown fungus in the presence of phenolic compounds (13 g/l). Bio stimulation was tried to assist, TP removal, decolorization, turbidity and COD reduction before disposal to the environment. Separate addition of glucose and urea resulted in 62% removal of the phenol, while the addition of KH 2 PO 4 resulted in 70% removal with lower effect on both turbidity and coloration. Consecutive use of the filtration prior or post to the bio stimulation revealed that the use 4 kGy enhanced phenolic degradation while the use of filtration post bio stimulation was the most effective treatment for phenolic removal (70%). Turbidity was also decreased from 9.81 to 2.72, and the decolorisation was increased from 28.5% (in control samples) to 77.6% and COD was decreased by only 21%. Analysis of the treated OMW revealed the presence of trace amounts of phenolic compounds, sugars and some minerals, suggesting its potential use as a bio fertilizer. Ocimum basilicum cultivated with the treated OMW showed the highest germination percentage (60%) in comparison with that irrigated with tap water and untreated OMW (50%, 20%) respectively. (Author)

  19. Bioremediation of olive mill waste water and its use as a bio fertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Shetaia, Y. M. [Microbiology Department, Ain Shams University, Cario (Egypt); Abd El Kareem, H.; Gomaa, O. M.; Wageeh, L. [Microbiology Department, National Center for Radiation Research and Technology, Cairo (Egypt)

    2012-12-15

    Olive oil mill wastewater (OMW) constitutes a major environmental problem especially for mediterranean countries, where most of the world's olive oil production. Treatment of the OMW is highly demanded due to the hazards of its high chemical oxygen demand (COD), total phenolic content (TP), turbidity and color. In the present study, penicillium chrysogen um was selected as the predominant grown fungus in the presence of phenolic compounds (13 g/l). Bio stimulation was tried to assist, TP removal, decolorization, turbidity and COD reduction before disposal to the environment. Separate addition of glucose and urea resulted in 62% removal of the phenol, while the addition of KH{sub 2}PO{sub 4} resulted in 70% removal with lower effect on both turbidity and coloration. Consecutive use of the filtration prior or post to the bio stimulation revealed that the use 4 kGy enhanced phenolic degradation while the use of filtration post bio stimulation was the most effective treatment for phenolic removal (70%). Turbidity was also decreased from 9.81 to 2.72, and the decolorisation was increased from 28.5% (in control samples) to 77.6% and COD was decreased by only 21%. Analysis of the treated OMW revealed the presence of trace amounts of phenolic compounds, sugars and some minerals, suggesting its potential use as a bio fertilizer. Ocimum basilicum cultivated with the treated OMW showed the highest germination percentage (60%) in comparison with that irrigated with tap water and untreated OMW (50%, 20%) respectively. (Author)

  20. Disposal of olive oil mill wastes in evaporation ponds: effects on soil properties.

    Science.gov (United States)

    Kavvadias, V; Doula, M K; Komnitsas, K; Liakopoulou, N

    2010-10-15

    The most common practice followed in the Med countries for the management of olive oil mill wastes (OMW) involves disposal in evaporation ponds or direct disposal on soil. So far there is lack of reliable information regarding the long-term effects of OMW application on soils. This study assesses the effects of OMW disposal in evaporation ponds on underlying soil properties in the wider disposal site as well as the impacts of untreated OMW application on agricultural soils. In case of active disposal sites, the carbonate content in most soils was decreased, whereas soil EC, as well as Cl(-), SO(4)(2-), PO(4)(3-), NH(4)(+) and particularly K(+) concentrations were substantially increased. Soil pH was only marginally affected. Phenol, total N, available P and PO(4)(3-) concentrations were considerably higher in the upper soil layers in areas adjacent to the ponds. Available B as well as DTPA extractable Cu, Mn, Zn and Fe increased substantially. Most surface soil parameters exhibited increased values at the inactive site 6 years after mill closure and cease of OMW disposal activities but differences were diminished in deeper layers. It is therefore concluded that long-term uncontrolled disposal of raw OMW on soils may affect soil properties and subsequently enhance the risk for groundwater contamination. 2010 Elsevier B.V. All rights reserved.

  1. Parameters and kinetics of olive mill wastewater dephenolization by immobilized Rhodotorula glutinis cells.

    Science.gov (United States)

    Bozkoyunlu, Gaye; Takaç, Serpil

    2014-01-01

    Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model.

  2. Assesing the effect of an olive mill wastewater evaporation pond in Sousse, Tunisia

    Science.gov (United States)

    S'habou, Rakia; Zairi, Moncef; Kallel, Amjed; Aydi, Abdelwaheb; Ben Dhia, Hamed

    2009-08-01

    Olive oil is a typical and valuable agro-industrial product in Mediterranean countries. In Tunisia, olive mill wastewaters (OMW) reach an amount of about 1,000,000 t year-1 and constitute a serious organic pollution risk because of the high chemical oxygen demand values and the presence of phytotoxic and antibacterial polyphenols. OMW have been generally stored in pond sites to be eliminated by natural evaporation or valorised by spreading on cultivated soils or by composting. Many researches on the interactions of OMW with soils at laboratory scale (columns) have been reported, but less attention have been paid to the effect of OMW on soils at field scale. The aim of this work is to investigate an area used for >15 years as an uncontrolled OMW pond site. The transformations of soil properties and groundwater occurring during OMW storage were characterised by the pH, phenolic contents, electrical conductivity (EC), moisture content and organic contents. The soil samples were taken from two borings and compared to those of a control one located near the pond site. Groundwater samples were taken on the accessible and nearest water wells to the evaporation ponds. The permeable silty and sandy layers in the site support the infiltration of OMW near the evaporation ponds. This infiltration has reached a depth of 6 m at a distance of almost 50 m laterally. The results show that the OMW infiltration in the subsoil has affected the pH, EC, organic content, phenolic compounds and the moisture.

  3. Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure

    International Nuclear Information System (INIS)

    Gelegenis, John; Georgakakis, Dimitris; Angelidaki, Irini; Christopoulou, Nicholetta; Goumenaki, Maria

    2007-01-01

    Optimization of biogas production from olive-mill wastewater (OMW) was attempted by codigesting with diluted poultry-manure (DPM) at mesophilic conditions. A series of laboratory experiments were performed in continuously-operating reactors, fed with mixtures of OMW and DPM at various concentrations. It was concluded that codigestion of OMW with DPM is possible without any dilution of OMW or addition of any chemicals. Biogas production was slightly higher when OMW was added to DPM up to a critical concentration (about 40%, expressed as contribution of OMW to the volatile solids of the mixture), after which production is decreased. The results were further verified by scaling up to a continuously-operating pilot-plant reactor digesting DPM, and confirmed that no negative impact was imposed by adding OMW up to the above critical value

  4. Ozone treatment of olive mill wastewater; Tratamiento con ozono de las aguas residuales de almazara

    Energy Technology Data Exchange (ETDEWEB)

    Beltran de Heredia Alonso, J.; Torregrosa Anton, J.; Garcia Rodriguez, J.; Dominguez Vargas, J. R. [Universidad de Extremadura. Badajoz (Spain)

    2000-07-01

    In the present work, the ozonization of olive mill wastewater has been studied. The evolution process was followed by measuring the chemical oxygen demand, the aromaticity and the contents of phenolic compounds. The aromaticity conversion ranged between 4.85 and 21% chemical oxygen demand degradation varied from 3.25 to 19.4% and the total polyphenolic reduction varied between 6.86 and 43.7%. The ozone consumption in the reduction of each variable was determined, being the average values of 57.2 g COD/mol O{sub 3} 2.9 un. Abs/mol O{sub 2} and 3.3 g poly phen./mol O{sub 3}. Finally, considering a first order kinetic equation with respect to each reactant, the apparent kinetic constants are evaluated for the studied variables. (Author) 19 refs.

  5. Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Badawy, M.I.; Gohary, F.El. [Water Pollution Research Department, National Research Centre (NRC), Dokki, Cairo 11312 (Egypt); Ghaly, M.Y., E-mail: ghalynrc@yahoo.com [Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), Dokki, Cairo (Egypt); Ali, M.E.M. [Water Pollution Research Department, National Research Centre (NRC), Dokki, Cairo 11312 (Egypt)

    2009-09-30

    Olive mills wastewater (OMW) is characterized by its high organic content and refractory compounds. In this study, an advanced technology for the treatment of the recalcitrant contaminants of OMW has been investigated. The technique used was either photo-Fenton as homogeneous photocatalytic oxidation or UV/semi-conductor catalyst (such as TiO{sub 2}, ZrO{sub 2} and FAZA) as heterogeneous photocatalytic oxidation for treatment of OMW. For both the processes, the effect of irradiation time, amounts of photocatalysts and semi-conductors, and initial concentration of hydrogen peroxide has been studied. At the optimum conditions, photo-Fenton process achieved COD, TOC, lignin (total phenolic compounds) and total suspended solids (TSSs) removal values of 87%, 84%, 97.44% and 98.31%, respectively. The corresponding values for UV/TiO{sub 2} were 68.8%, 67.3%, 40.19% and 48.9%, respectively, after 80 min irradiation time. The biodegradability expressed by BOD{sub 5}/COD ratio for treated wastewater was ranged from 0.66 to 0.8 compared to 0.19 for raw wastewater indicating enhancement of biodegradation.

  6. Near-infrared spectroscopy for detection of hailstorm damage on olive fruit

    Science.gov (United States)

    A rapid, robust, unbiased and inexpensive discriminant method capable of classifying olive fruit (Olea europaea L.) on the basis of the presence of hailstorm damage is economically important to the olive oil milling industry. Thus, in the present study, the feasibility of Near-Infrared (NIR) spectro...

  7. Treatment and Valorization of Palm Oil Mill Effluent through Production of Food Grade Yeast Biomass

    OpenAIRE

    Joy O. Iwuagwu; J. Obeta Ugwuanyi

    2014-01-01

    Palm oil mill effluent (POME) is high strength wastewater derived from processing of palm fruit. It is generated in large quantities in all oil palm producing nations where it is a strong pollutant amenable to microbial degradation being rich in organic carbon, nitrogen, and minerals. Valorization and treatment of POME with seven yeast isolates was studied under scalable conditions by using POME to produce value-added yeast biomass. POME was used as sole source of carbon and nitrogen and the ...

  8. 40 CFR 406.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... technology currently available. 406.32 Section 406.32 Protection of Environment ENVIRONMENTAL PROTECTION... Milling Subcategory § 406.32 Effluent limitations guidelines representing the degree of effluent reduction...

  9. 40 CFR 406.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... technology currently available. 406.42 Section 406.42 Protection of Environment ENVIRONMENTAL PROTECTION... Milling Subcategory § 406.42 Effluent limitations guidelines representing the degree of effluent reduction...

  10. 40 CFR 406.52 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... technology currently available. 406.52 Section 406.52 Protection of Environment ENVIRONMENTAL PROTECTION... Milling Subcategory § 406.52 Effluent limitations guidelines representing the degree of effluent reduction...

  11. Depuration of olive oil mill wastewater by an activated sludge system; Depuracion de alpechin mediante us sistema de fangos activados

    Energy Technology Data Exchange (ETDEWEB)

    Beltran de Heredia, J.; Torregrosa Anton, J.; Ramos Viscas, M. P.; Garcia Rodriguez, J.; Dominguez Vargas, R. [Universidad de Extremadura. Badajoz (Spain)

    1999-07-01

    In the present work, the degradation of alpechin (olive oil mill wastewaters) have been studied by an activated sludge treatment. The substrate evolution (based on COD and BOD{sub 5}), nitrogen Kjeldahl, phosphorus, biomass, aromaticity and total polyphenolic contents was followed during each experiment. A kinetic study is performed by using the Contois model, which applied to the experimental data, provides the specific kinetic parameters of this model. Moreover, others interesting biological parameters like the cellular yield and the kinetics of endogenous metabolism were determined. (Author) 17 refs.

  12. A MODELLING APPROACH TO EXTRA VIRGIN OLIVE OIL EXTRACTION

    Directory of Open Access Journals (Sweden)

    Marco Daou

    2007-12-01

    Full Text Available In the present work is described a feasibility assessment for a new approach in virgin olive oil production control system. A predicting or simulating algorithm is implemented as artificial neural network based software, using literature found data concerning parameters related to olive grove, process, machine. Test and validation proved this tool is able to answer two different frequently asked questions by olive oil mill operators, using few agronomic and technological parameters with time and cost saving: – which quality level is up to oil extracted from defined olive lot following a defined process (predicting mode; – which process and machine parameters set would determine highest quality level for oil extracted from a defined olive lot (simulating mode.

  13. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.).

    Science.gov (United States)

    Rusan, Munir J M; Albalasmeh, Ammar A; Zuraiqi, Said; Bashabsheh, Mohammad

    2015-06-01

    Olive-mill wastewater (OMW) is a by-product effluent of olive oil extraction process that is produced in large amount in the Mediterranean region. OMW is believed to induce phytotoxic effect on organisms including seed germination and plant growth. The objective of this study was to evaluate the impact of untreated and treated OMW with different techniques on seed germination of barley (Hordeum vulgare L.). The following treatments were investigated: (1) tap water (control); (2) OMW treated by aerobic biological technology in a Jacto Reactor (JR); (3) OMW treated by solar fenton oxidation (SFO); (4) OMW treated by microfiltration followed by nanofiltration (MF+NF); (5) OMW treated by microfiltration followed by reverse osmosis (MF+RO) process; (6) diluted OMW with tap water (25 % OMW); (7) diluted OMW with tap water (50 % OMW); (8) diluted OMW with tap water (75 % OMW); and (9) untreated OMW (100 % OMW). A germination test was conducted in an incubator at temperature of 23 (∘)C. In each petri dish, a filter paper was mounted and ten seeds of barley were placed on the filter paper. Five milliliter of water were added to each petri dish. The seed germination was determined by counting the number of germinated seeds to calculate the percentage of germination (G %). Germination rate index (GRI), seed vigor index (SVI), and phytotoxicity index (PI) were also calculated. Then, the dry weights and lengths of the shoots and the roots of the germinated seeds were measured. The results show that 100, 75, and 50 %OMW were very phytotoxic and completely prohibited seed germination. However, phytotoxicity decreased significantly following treatments of OMW with all techniques investigated and by the 25 % OMW dilution, as results of removing the phenols and other phytotoxic organic compounds from the OMW or by diluting it. This was evidenced by relative enhancement of the dry weights and lengths of shoot and root as well as the G %, GRI, SVG, and PI. It was concluded that if

  14. The possibility of palm oil mill effluent for biogas production

    Directory of Open Access Journals (Sweden)

    EDWI MAHAJOENO

    2008-01-01

    Full Text Available The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Indonesia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil (Elaeis guiinensis Jacq.. The aims of the research were to (i characterize palm oil mill effluent which will be used as source of biogas production, (ii know the biotic and abiotic factors which effect POME substrate for biogas production by anaerobic digestion in bulk system. The results show that POME sludge generated from PT Pinago Utama mill is viscous, brown or grey and has an average total solid (TS content of, 26.5-45.4, BOD is 23.5-29.3, COD is 49.0-63.6 and SS is 17.1-35.9 g/L, respectively. This substrate is a potential source of environmental pollutants. The biotic factors were kind and concentration of the inoculums, i.e. seed sludge of anaerobic lagoon II and 20% (w/v respectively. Both physical and chemical factors such as pre-treated POME pH, pH neutralizer matter Ca (OH2, temperature ≥40oC, agitation effect to increase biogas production, but in both coagulant concentration, FeCl2 were not.

  15. Synergistic Antibacterial Effects of Polyphenolic Compounds from Olive Mill Wastewater

    Directory of Open Access Journals (Sweden)

    Ahmed Tafesh

    2011-01-01

    Full Text Available Polyphenols or phenolic compounds are groups of secondary metabolites widely distributed in plants and found in olive mill wastewater (OMW. Phenolic compounds as well as OMW extracts were evaluated in vitro for their antimicrobial activity against Gram-positive (Streptococcus pyogenes and Staphylococcus aureus and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae. Most of the tested phenols were not effective against the four bacterial strains when tested as single compounds at concentrations of up to 1000 μg mL−1. Hydroxytyrosol at 400 μg mL−1 caused complete growth inhibition of the four strains. Gallic acid was effective at 200, and 400 μg mL−1 against S. aureus, and S. pyogenes, respectively, but not against the gram negative bacteria. An OMW fraction called AntiSolvent was obtained after the addition of ethanol to the crude OMW. HPLC analysis of AntiSolvent fraction revealed that this fraction contains mainly hydroxytyrosol (10.3%, verbascoside (7.4%, and tyrosol (2.6%. The combinations of AntiSolvent/gallic acid were tested using the low minimal inhibitory concentrations which revealed that 50/100–100/100 μg mL−1 caused complete growth inhibition of the four strains. These results suggest that OMW specific fractions augmented with natural phenolic ingredients may be utilized as a source of bioactive compounds to control pathogenic bacteria.

  16. Directional genetic selection by pulp mill effluent on multiple natural populations of three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Lind, Emma E; Grahn, Mats

    2011-05-01

    Contamination can cause a rapid environmental change which may require populations to respond with evolutionary changes. To evaluate the effects of pulp mill effluents on population genetics, we sampled three-spined sticklebacks (Gasterosteus aculeatus) near four pulp mills and four adjacent reference sites and analyzed Amplified Fragment Length Polymorphism (AFLP) to compare genetic variability. A fine scale genetic structure was detected and samples from polluted sites separated from reference sites in multidimensional scaling plots (Pselection. When removing 13 F(ST)-outlier loci, significant at the Pselective agent on natural populations of G. aculeatus, causing a convergence in genotype composition change at multiple sites in an open environment. © The Author(s) 2011. This article is published with open access at Springerlink.com

  17. Hydrogen production from palm oil mill effluent by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Shimazaki, T. [Yokohama National Univ., Shigeharu TANISHO and Tsuruyo SHIMAZAKI, Yokohama (Japan)

    2003-09-01

    Hydrogen production by fermentation was examined by using palm oil mill effluent. Clostridium butyricum produced more than 2.2 NL of hydrogen from 1 L of raw POME at pH 5.0, and Enterobacter aerogenes produced ca. 1.9 NL at pH 6.0. While from the culture liquid added 1% of peptone on the raw POME, C. butyricum produced more than 3.3 NL and also E. aerogenes 3.4 NL at pH 6.0 and 5.0, respectively. In this manner, the addition of nitrogen source to the POME liquid exerted an influence on the volume of hydrogen production. Since Aspergillus niger has ability to produce cellulase, co-cultivation of C.butyricum with A. niger was tried to utilize celluloses in the POME. Against our expectations, however, the results were lower productivities than pure cultivation's. We analyzed the components of POME by liquid chromatography and capillary electrophoresis before and after cultivation. The main substrate for hydrogen production was found to be glycerol. (authors)

  18. Valorization of Olive Mill Wastewater by Membrane Processes to Recover Natural Antioxidant Compounds for Cosmeceutical and Nutraceutical Applications or Functional Foods.

    Science.gov (United States)

    Alfano, Alberto; Corsuto, Luisana; Finamore, Rosario; Savarese, Maria; Ferrara, Filomena; Falco, Salvatore; Santabarbara, Giuseppe; De Rosa, Mario; Schiraldi, Chiara

    2018-05-23

    Olive oil boasts numerous health benefits due to the high content of the monounsaturated fatty acid (MUFA) and functional bioactives including tocopherols, carotenoids, phospholipids, and polyphenolics with multiple biological activities. Polyphenolic components present antioxidant properties by scavenging free radicals and eliminating metabolic byproducts of metabolism. The objective of this research project was to recover the biologically active components rich in polyphenols, which include treatment of olive oil mills wastewater, and, at the same time, to remove the pollutant waste component resulting from the olive oil manufacturing processes. With specific focus on using technologies based on the application of ultra and nanofiltration membranes, the polyphenols fraction was extracted after an initial flocculation step. The nano-filtration permeate showed a reduction of about 95% of the organic load. The polyphenols recovery after two filtration steps was about 65% w / v . The nanofiltration retentate, dried using the spray dryer technique, was tested for cell viability after oxidative stress induction on human keratinocytes model in vitro and an improved cell reparation in the presence of this polyphenolic compound was demonstrated in scratch assays assisted through time lapse video-microscopy. The polyphenols recovered from these treatments may be suitable ingredients in cosmeceuticals and possibly nutraceutical preparations or functional foods.

  19. Study on Olive Oil Wastewater Treatment: Nanotechnology Impact

    Directory of Open Access Journals (Sweden)

    Nika Gholamzadeh

    2016-11-01

    Full Text Available The olive mill wastewater (OMW is generated from olive oil extraction in olive mills. It contains a very high organic load and considerable quantities of phytotoxicity compounds. Comprehensive articles with different methods have been published about the treatment of OMW. This paper reviews the recent reports on the variety methods of OMW treatment. Biological process, containing aerobic pre-treatment by using different cultures and anaerobic co-digestion with other sewage and also added external nutrient with optimum ratio attracted much attention in the treatment of OMW. However, advanced oxidation process (AOP due to the high oxidation potential which causes destruction of organic pollutants, toxic and chlorinated compounds have been considered. Furthermore, membrane technologies consist of microfiltration, ultrafiltration and especially nanofiltrationin wastewater treatment are growing in recent years. They offer high efficiency and mediocre investments owing to novel membrane materials, membrane design technics, module figures and improvement of the skills. In addition, fouling reduces the membrane performances in time, which is a main problem of cost efficiency.

  20. Isolation of lipase producing fungi from palm oil Mill effluent (POME dump sites at Nsukka

    Directory of Open Access Journals (Sweden)

    Charles Ogugua Nwuche

    2011-02-01

    Full Text Available In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42% and was present in all the samples assayed. Mucor sp. was the least encountered (8.3%.The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL and Aspergillus (6.25 -7.54 u/mL spp. were the highest lipase producers while Mucor (5.72 u/mL was the least.

  1. ISOLATION AND IDENTIFICATION OF LIPASE-PRODUCING FUNGI FROM LOCAL OLIVE OIL MANUFACTURE IN EAST OF ALGERIA

    Directory of Open Access Journals (Sweden)

    ALIMA RIHANI

    2018-03-01

    Full Text Available The main objective of this work was primary screening and isolation of lipase-producing microorganisms from oil-mill waste. For the screening of fungal strains with lipolytic activity, we employed a sensitive agar plate method, using a medium supplemented with CaCl2 and Tween 80. Another Tributyrin lipase activity was detected from clearing zones due to the hydrolysis of the triacylglycerols. The evolution of biomass and enzyme production has been assayed. A quantitative analysis of lipase activity was performed by the titration method using olive oil as a substrate supplemented with glucose or Tween 80. We have isolated some lipolytic strains from oil-mill effluent. Three of them were found to be excellent lipase producers that were identified as Penicillium sp, Aspergillus fumigatus and Aspergillus terreus. Lipolytic activity and biomass were enhanced in the medium supplemented by glucose. Tween 80 is also considered as a best inducer at the concentration of 1 %. In this condition, these isolates showed maximum lipase production within 24 h; achieved (3.91 IU‧mL-1 ± 0.12 for Penicillium sp.

  2. Effect of washing on pesticide residues in olives.

    Science.gov (United States)

    Guardia-Rubio, M; Ayora-Cañada, M J; Ruiz-Medina, A

    2007-03-01

    The present work aims at contributing to the knowledge of the fate of 5 pesticides in olives in order to evaluate how washing may affect the presence of these residues in this fruit (and consequently in olive oil). For this purpose, olives were sprayed with commercial formulations containing the active ingredients and a series of analyses were performed for 64 d by using gas chromatography with mass spectrometric detection. Selected pesticides, ranked by their importance, were diuron, terbuthylazine, simazine, alpha-endosulfan, and beta-endosulfan. The pesticide fraction, which was not removable from olives by washing, increased with time after treatment until their degradation started at week 6. Washing performed 1 d after treatment was the most effective in reducing residues, especially for simazine. Consequently, the washing step performed in olive mills could be effective in removing those herbicide residues present in olives as a consequence of contact with contaminated soil for a short time. This happens when olives are dropped and harvested off the ground by means of brushes or suction equipment.

  3. Palm Oil Mill Effluent Treatment Through Combined Process Adsorption and Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Muhammad Said

    2016-08-01

    Full Text Available The growth in palm oil production also leads to an Increase in the production of palm oil mill effluent (POME. Nowadays, POME was treated using an open lagoon but this method is ineffectiveness in complying with the standards for water disposal. Therefore, efficient and cohesive treatment system is highly desired to ensure the final discharge of the treated water meets the effluent discharge standards. Initially, the POME was treated through adsorption, followed by UF membranes roomates were intended to reduce COD, TSS and turbidity up to 88%, 99%, and 98%, while the final treatment of RO membranes can reduce BOD, COD and color up to 92%, 98% and 99%. To determine the optimum condition of the RO membrane, response surface methodology (RSM was used. The results showed there was correlation between all key variables. POME concentration, trans-membrane pressure, pH and time would give significant effects in reducing the parameters in POME treatment with the optimum condition of 15.77% for POME concentration, 3.73 for pH, 0.5 bar trans-membrane pressure and 5 hours for filtration time. To predict COD removal, the results were analyzed by applying the artificial neural network (ANN to derive a mathematical model.

  4. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters

    Directory of Open Access Journals (Sweden)

    Emma Piacentini

    2016-05-01

    Full Text Available Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively were produced. The release of biophenols was also investigated.

  5. Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Kotsopoulos, T.A.; Martzopoulos, G.G.

    2014-01-01

    In the present study, the optimisation of the mesophilic anaerobic co-digestion process of olive mill wastewaters (OMW) together with swine manure (SM) was investigated. Batch and continuous mode experiments were performed in order to define the most efficient mixing ratio and to determine...... yield of the reactors fed with 40% OMW reached 373mL CH4/gVS (78% of the theoretical yield). The findings of the present study proved that the co-digestion of OMW together with SM is a sustainable solution, capable to efficiently treat simultaneously these residual residues. © 2014 Elsevier Ltd....

  6. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment.

    Science.gov (United States)

    Yacob, Shahrakbah; Ali Hassan, Mohd; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.

  7. Methods of evaluating ore processing and effluent treatment for Cigar Lake ore at the Rabbit Lake Mill

    International Nuclear Information System (INIS)

    Edwards, C.R.

    2002-01-01

    Cigar Lake is the second-largest, high grade uranium orebody in the world. Mineable reserves for Cigar Lake Phase 1 are estimated at 191 million pounds U 3 O 8 with a grade of 25.6% U 3 O 8 . Subject to regulatory approval, Cameco intends to process the majority of ore from Cigar Lake in the Rabbit Lake mill. Cameco initiated a programme to study the processing of Cigar Lake ore and the treatment of the resulting waste streams. Laboratory and follow-up pilot scale ore leaching tests with Cigar Lake ore samples were performed. Tailings and effluents were generated from the products of the pilot scale leach tests. Mill process tailings were blended with ground waste rock. Using these materials, geotechnical and geochemical properties, including long term tailings pore water characteristics, will be evaluated. In addition, proposed changes to the mill waste treatment operations were developed to deal with increased levels of arsenic and radium in the waste streams. This paper describes the methods and techniques Cameco used in this programme. (author)

  8. Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum mill) depending on growth substrate.

    Science.gov (United States)

    Ouzounidou, G; Asfi, M; Sotirakis, N; Papadopoulou, P; Gaitis, F

    2008-10-30

    We have studied the changes in the physiology and nutritional quality of Lycopersicon esculentum exposed to olive mill wastewater (OMW) with regard to cultivation in sand and soil. Tomato plant performance decreased with increasing concentration of OMW to both substrates. Root was more sensitive to OMW than the upper parts of the plants, grown either in sand or in soil for 10 days and 3 months, respectively, probably due to the direct OMW toxicity on roots as compared to other parts. Significant restriction on uptake and translocation of nutrients (K, Na, Fe, Ca and Mg) under OMW application was found. The decrease in the photochemical efficiency of PSII photochemistry in the light adapted state and the big decrease in photochemical quenching, indicate that OMW resulted in diminished reoxidation of Q(A)(-) and started to inactivate the reaction centers of PSII. The OMW supply on soil and sand, resulted in leaf water stress and lesser water use efficiency. Plants treated with high OMW concentration, produced fewer but bigger tomatoes as compared to plants treated with lower OMW concentration. Generally, fruit yield and nutritional value was inhibited under OMW application.

  9. Performance and emissions of an engine fuelled by biogas of palm oil mill effluent

    Science.gov (United States)

    Arjuna, J.; Sitorus, T. B.; Ambarita, H.; Abda, S.

    2018-02-01

    This research investigates the performance and emissions of an engine by biogas and gasoline. The experiments use biogas of palm oil mill effluent (POME) with turbocharger at engine loading conditions (100, 200, 300, 400, and 500 Watt). Specific fuel consumption and thermal efficiency are used to compare engine performance, and emission analysis is based on parameters such as carbon monoxide (CO), hydrocarbon (HC), carbon dioxide (CO2) and oxide (O2). The experimental data show that the maximum thermal efficiency when engine use biogas and gasoline is 20.44% and 22.22% respectively. However, there was CO emission reduction significantly when the engine using POME biogas.

  10. Olive oil mill wastewater for remediation of slag contaminated soil.

    Science.gov (United States)

    Ferrara, Luciano; Panzella, Lucia; Napolitano, Alessandra; Giudicianni, Italo; d'Ischia, Marco; Arienzo, Michele

    2013-12-01

    Two olive mill wastewaters (OMW) samples, OMWa and OMWb, containing different polyphenolic loads were used for decontaminating an unauthorized dump site in the Campania region, south Italy. In a bench-scale experiment, OMWa at pH 6.0 (OMWapH6.0) and 4.7 (OMWapH4.7), OMWb at pH 4.7 (OMWbpH4.7) and OMWa free of the polyphenolic moiety polyphenol-free OMWa (PF-OMWa) were added to the soil for a 96 h contact time. At 96 h, OMWapH4.7 was more effective than OMWapH6.0, with Cd, Cu, Pb and Zn removal percentages of 30.7-68.1. Cd and Pb levels were 6.0 and 915 mg kg(-1), respectively, decreasing below the regulatory limits for industrial and commercial areas (15.0 and 1 × 10(3) mg kg(-1), respectively). A threefold decrease in Zn levels was also observed from 13.5 × 10(3) to 4.3 × 10(3) mg kg(-1). The metal removal efficiency of PF-OMWa dropped from 30.7 % to 15.6 % for Cd and from 37.9 % to 1.3 % for Pb. OMWbpH4.7 at 96 h was more efficient than OMWapH4.7, with mean removal percentages of 32.5 versus 7.8, respectively.

  11. Comparative alteration in atherogenic indices and hypocholesteremic effect of palm oil and palm oil mill effluent in normal albino rats.

    Science.gov (United States)

    Ajiboye, John A; Erukainure, Ochuko L; Lawal, Babatunde A; Nwachukwu, Viola A; Tugbobo-Amisu, Adesewa O; Okafor, Ebelechukwu N

    2015-09-01

    The comparative hypocholesteremic effect of feeding palm oil and palm oil mill effluent (POME) was investigated in male albino rats. Diets were prepared and designed to contain 50% of energy as carbohydrate, 35% as fat, and 15% as protein. Groups of six rats were each fed one of these diets, while a group was fed pelletized mouse chow which served as the control. Feeding on palm oil and POME led to a significant increase (p palm oil fed rats compared to POME. These results indicate the protective potentials of palm oil against cardiovascular disease, as well as hyperlipidemia that characterize obesity and hypertension; as compared to its effluent.

  12. Screening for crude oil degrading bacteria in liquid organic waste (effluent samples)

    International Nuclear Information System (INIS)

    Akpe, A.R.

    2014-01-01

    The screening for crude oil degrading bacteria in some liquid organic wastes (cassava mill effluents, rubber effluents and oil palm mill effluents) was carried out. Hydrocarbon utilising bacteria were isolated on mineral salt agar using vapour phase technique. The samples yielded 20 bacterial isolates from 13 different genera. Cassava mill effluent and rubber effluent had the highest number (7), while oil palm effluent had the least number (6) of bacterial isolates. The isolates that had the highest occurrence (occurring in all samples) were Pseudomonas aeruginosa and Escherichia coli. Of these 13 genera 9 were gram negative, while only 4 were gram positive. The total heterotrophic bacterial (THB) count and total hydrocarbon utilisers (THU) from all the effluent samples ranged from 3.0 * 10/sup 4/ to 6.0* 10/sup 7/ cfu/mL and 2.3 *10/sup 2/ to 4.2*10/sup 3/ cfu/mL, respectively. The counts of hydrocarbon utilisers were obviously lower than the heterotrophic counts, although the differences in counts were found to be statistically non-significant (P > 0.05). Rubber effluents and oil palm mill effluents had the highest number of hydrocarbon utilisers with three isolates each. The active hydrocarbon utilisers encountered in this study included Serratia marscescens, Bacillus cereus, P. aeruginosa, Enterobacter aerogenes and Bacillus subtilis. Presence of nutrients and crude oil degrading bacteria in these effluents suggests that these effluents can be used to enhance bioremediation through their use as biostimulation and bioaugmentation agents. (author)

  13. Taggiasca extra virgin olive oil colonization by yeasts during the extraction process.

    Science.gov (United States)

    Ciafardini, G; Cioccia, G; Zullo, B A

    2017-04-01

    The opalescent appearance of the newly produced olive oil is due to the presence of solid particles and microdrops of vegetation water in which the microorganisms from the olives' carposphere are trapped. Present research has demonstrated that the microbiota of the fresh extracted olive oil, produced in the mills, is mainly composed of yeasts and to a lesser extent of molds. The close link between the composition of the microbiota of the olives' carposphere undergoing to processing, and that of the microbiota of the newly produced olive oil, concerns only the yeasts and molds, given that the bacterial component is by and large destroyed mainly in the kneaded paste during the malaxation process. Six physiologically homogenous yeast groups were highlighted in the wash water, kneaded paste and newly produced olive oil from the Taggiasca variety which had been collected in mills located in the Liguria region. The more predominant yeasts of each group belonged to a single species called respectively: Kluyveromyces marxianus, Candida oleophila, Candida diddensiae, Candida norvegica, Wickerhamomyces anomalus and Debaryomyces hansenii. Apart from K. marxianus, which was found only in the wash water, all the other species were found in the wash water and in the kneaded paste as well as in the newly produced olive oil, while in the six-month stored olive oil, was found only one physiologically homogeneous group of yeast represented by the W. anomalus specie. These findings in according to our previous studies carried out on other types of mono varietal olive oils, confirms that the habitat of the Taggiascas' extra virgin olive oil, had a strong selective pressure on the yeast biota, allowing only to a few member of yeast species, contaminating the fresh product, to survive and reproduce in it during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hydrogen photo-evolution by Rhodopseudomonas palustris 6A using pre-treated olive mill wastewater and a synthetic medium containing sugars

    International Nuclear Information System (INIS)

    Pintucci, Cristina; Padovani, Giulia; Giovannelli, Alessio; Traversi, Maria Laura; Ena, Alba; Pushparaj, Benjamin; Carlozzi, Pietro

    2015-01-01

    Highlights: • Adsorbent matrices to convert fresh olive mill wastewater (OMW F ) in feedstock. • Dry-Azolla and granular active carbon for adsorbing polyphenols from OMW F . • Photofermentative processes for biohydrogen production. • Culture mixing by means of an impeller or a magnetic stir bar. • A 30% of dephenolised OMW containing medium suits the photofermentative process. - Abstract: Increasing costs of petroleum, associated with the escalating problems of global climate change, require always greater efforts in order to produce an energy carrier as bioH 2 . In this study, bioH 2 production using photofermentative process was investigated. Two culture broths were used: (a) a synthetic medium rich in sugars (glucose and fructose) and (b) a pre-treated fresh olive-mill wastewater (OMW F ) diluted with water (30%, v:v). The pre-treatment was carried out using two different vegetable matrices (dry-Azolla and granular active carbon) to decrease both the content of polyphenols and the dark colour of wastewater. Rhodopseudomonas palustris 6A isolated from soil spread with OMW was utilized for batch growth experiments, carried out indoors under continuous light (200 μE/m 2 /s). When synthetic medium was used, the culture mixing was performed using either (i) a magnetic stir bar, and (ii) an impeller equipped with five turbines. The latter system made it possible to increase the bioH 2 photo-evolution by 1.4 times. The specific hydrogen photo-evolution rate was 13.5 mL/g(dw)/h in the broth containing diluted OMW F and 11.8 mL/g(dw)/h in the synthetic medium containing sugars (glucose and fructose)

  15. Box-Behnken Design Application to Study Leaching of Pyrolusite from Manganese Mining Residue Using Olive Mill Wastewater as Reductant

    Science.gov (United States)

    Alaoui, Abdallah; El Kacemi, K.; El Ass, K.; Kitane, S.; El Bouzidi, S.

    2015-05-01

    The leaching capacity of olive mill wastewater (OMW) for pyrolusite mine tailings (MnO2) was evaluated using the Box-Behnken experimental design of response surface methodology. The selected test parameters include the concentration of sulfuric acid, the OMW dosage chemical oxygen demand (COD), the solid/liquid ratio S/ L, and particle size. It was determined that the MnO2 dissolution increased with an increase in the sulfuric acid concentration and the OMW dosage, and with a decrease in the solid/liquid ratio. The particle size does not have significant influence on the manganese recovery. A quadratic polynomial model has been developed to predict the amount of manganese extraction from pyrolusite for other operating conditions that were not directly tested. The leaching ability was evaluated based on manganese recovery (Mn%) and the removal capability of chemical oxygen demand (COD%). The predicted values for the responses agreed well with experimental values; R 2 (correlation coefficient) values for Mn% and COD% were 0.9602 and 0.9687, respectively. Within the design space, the optimum conditions for the lixiviation of MnO2 in terms of manganese recovery and COD removal were established and include [H2SO4] of 3 mol L-1, OMW in range of 23 g L-1 to 25 g L-1 COD, and pulp density in range of 90 g L-1 to 100 g L-1. Under these conditions, the response values generated by the model are Mn% ˜49% and COD% >40%. These values show good agreement with those obtained in the validation test. This study has demonstrated that it is possible to use the olive mill wastewater as a reductant agent to recover manganese from a pyrolusite mining residue.

  16. Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery contex

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, P.; Ruiz, E.; Ballesteros, M.; Negro, M.J.; Gallego, F.J.; López-Linares, J.C.; Castro, E.

    2017-07-01

    Olive crop and olive oil industry generates several residues, i.e., olive tree pruning biomass (OTPB), extracted olive pomace (EOP) and olive leaves (OL) that could be used to produce high-added value products in an integrated biorefinery. OTPB is generated in the field as a result of pruning operation to remove old branches; EOP is the main residue of the pomace olive oil extracting industry after extraction with hexane of residual oil contained in olive pomace; and OL comes from the olive cleaning process carried out at olive mills, where small branches and leaves are separated by density. In this work, an analysis of the potential of OTPB, EOP and OL residues was addressed by estimating the production volumes at national level and the spatial distribution of these residues using geographic information system software. Information provided by public institutions and personal surveys to the industries was evaluated. Moreover, chemical analysis of the residues was undertaken and the results used to make a first assessment of valorization into biofuels such as bioethanol and bio based chemicals. Results show that close to 4.2 million tons/year of EOP, OL and OTPB derived from olive oil industry and olive tree cultivation in Spain could be available as a raw material for biorefineries in Spain. The analysis of the chemical characteristics indicates the relevant potential of these feedstocks for the production of bioethanol and other compounds such as phenols based on suitable processing and conversion routes, although techno-economic evaluations must be tackled to refine this approach.

  17. Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery context

    Directory of Open Access Journals (Sweden)

    Paloma Manzanares

    2017-12-01

    Full Text Available Olive crop and olive oil industry generates several residues, i.e., olive tree pruning biomass (OTPB, extracted olive pomace (EOP and olive leaves (OL that could be used to produce high-added value products in an integrated biorefinery. OTPB is generated in the field as a result of pruning operation to remove old branches; EOP is the main residue of the pomace olive oil extracting industry after extraction with hexane of residual oil contained in olive pomace; and OL comes from the olive cleaning process carried out at olive mills, where small branches and leaves are separated by density. In this work, an analysis of the potential of OTPB, EOP and OL residues was addressed by estimating the production volumes at national level and the spatial distribution of these residues using geographic information system software. Information provided by public institutions and personal surveys to the industries was evaluated. Moreover, chemical analysis of the residues was undertaken and the results used to make a first assessment of valorization into biofuels such as bioethanol and bio based chemicals. Results show that close to 4.2 million tons/year of EOP, OL and OTPB derived from olive oil industry and olive tree cultivation in Spain could be available as a raw material for biorefineries in Spain. The analysis of the chemical characteristics indicates the relevant potential of these feedstocks for the production of bioethanol and other compounds such as phenols based on suitable processing and conversion routes, although techno-economic evaluations must be tackled to refine this approach.

  18. Measuring the Biodegradability of Plastic Polymers in Olive-Mill Waste Compost with an Experimental Apparatus

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2016-01-01

    Full Text Available The use of biodegradable polymers is spreading in agriculture to replace those materials derived from petroleum, thus reducing the environmental concerns. However, to issue a significant assessment, biodegradation rate must be measured in case-specific standardized conditions. In accordance with ISO 14855-1, we designed and used an experimental apparatus to evaluate the biodegradation rate of three biopolymers based on renewable resources, two poly(ε-caprolactone (PCL composites, and a compatibilized polylactic acid and polybutyrate (PLA/PBAT blend. Biodegradation tests were carried out under composting condition using mature olive-mill waste (OMW compost as inoculum. Carbon dioxide emissions were automatically recorded by infrared gas detectors and also trapped in saturated Ba(OH2 solution and evaluated via a standard titration method to check the results. Some of the samples reached more than 80% biodegradation in less than 20 days. Both the experimental apparatus and the OMW compost showed to be suitable for the cases studied.

  19. Ethanol production from lignocellulosic byproducts of olive oil extraction.

    Science.gov (United States)

    Ballesteros, I; Oliva, J M; Saez, F; Ballesteros, M

    2001-01-01

    The recent implementation of a new two-step centrifugation process for extracting olive oil in Spain has substantially reduced water consumption, thereby eliminating oil mill wastewater. However, a new high sugar content residue is still generated. In this work the two fractions present in the residue (olive pulp and fragmented stones) were assayed as substrate for ethanol production by the simultaneous saccharification and fermentation (SSF) process. Pretreatment of fragmented olive stones by sulfuric acid-catalyzed steam explosion was the most effective treatment for increasing enzymatic digestibility; however, a pretreatment step was not necessary to bioconvert the olive pulp into ethanol. The olive pulp and fragmented olive stones were tested by the SSF process using a fed-batch procedure. By adding the pulp three times at 24-h intervals, 76% of the theoretical SSF yield was obtained. Experiments with fed-batch pretreated olive stones provided SSF yields significantly lower than those obtained at standard SSF procedure. The preferred SSF conditions to obtain ethanol from olives stones (61% of theoretical yield) were 10% substrate and addition of cellulases at 15 filter paper units/g of substrate.

  20. Key process parameters involved in the treatment of olive mill wastewater by membrane bioreactor.

    Science.gov (United States)

    Jaouad, Y; Villain-Gambier, M; Mandi, L; Marrot, B; Ouazzani, N

    2018-04-18

    The Olive Mill Wastewater (OMWW) biodegradation in an external ceramic membrane bioreactor (MBR) was investigated with a starting acclimation step with a Ultrafiltration (UF) membrane (150 kDa) and no sludge discharge in order to develop a specific biomass adapted to OMWW biodegradation. After acclimation step, UF was replaced by an Microfiltration (MF) membrane (0.1 µm). Sludge Retention Time (SRT) was set around 25 days and Food to Microorganisms ratio (F/M) was fixed at 0.2 kg COD  kg MLVSS -1  d -1 . At stable state, removal of the main phenolic compounds (hydroxytyrosol and tyrosol) and Chemical Oxygen Demand (COD) were successfully reached (95% both). Considered as a predominant fouling factor, but never quantified in MBR treated OMWW, Soluble Microbial Products (SMP) proteins, polysaccharides and humic substances concentrations were determined (80, 110 and 360 mg L -1 respectively). At the same time, fouling was easily managed due to favourable hydraulic conditions of external ceramic MBR. Therefore, OMWW could be efficiently and durably treated by an MF MBR process under adapted operating parameters.

  1. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents

    Energy Technology Data Exchange (ETDEWEB)

    Costigan, Shannon L.; Werner, Julieta; Ouellet, Jacob D.; Hill, Lauren G. [Department of Biology, Lakehead University, 955 Oliver Road, Ontario P7B 5E1, (Canada); Law, R. David, E-mail: dlaw@lakeheadu.ca [Department of Biology, Lakehead University, 955 Oliver Road, Ontario P7B 5E1, (Canada)

    2012-10-15

    Many studies link pulp and paper mill effluent (PPME) exposure to adverse effects in fish populations present in the mill receiving environments. These impacts are often characteristic of endocrine disruption and may include impaired reproduction, development and survival. While these physiological endpoints are well-characterized, the molecular mechanisms causing them are not yet understood. To investigate changes in gene transcription induced by exposure to a PPME at several stages of treatment, male and female fathead minnows (FHMs) were exposed for 6 days to 25% (v/v) secondary (biologically) treated kraft effluent (TK) or 100% (v/v) combined mill outfall (CMO) from a mill producing both kraft pulp and newsprint. The gene expression changes in the livers of these fish were analyzed using a 22 K oligonucleotide microarray. Exposure to TK or CMO resulted in significant changes in the expression levels of 105 and 238 targets in male FHMs and 296 and 133 targets in females, respectively. Targets were then functionally analyzed using gene ontology tools to identify the biological processes in fish hepatocytes that were affected by exposure to PPME after its secondary treatment. Proteolysis was affected in female FHMs exposed to both TK and CMO. In male FHMs, no processes were affected by TK exposure, while sterol, isoprenoid, steroid and cholesterol biosynthesis and electron transport were up-regulated by CMO exposure. The results presented in this study indicate that short-term exposure to PPMEs affects the expression of reproduction-related genes in the livers of both male and female FHMs, and that secondary treatment of PPMEs may not neutralize all of their metabolic effects in fish. Gene ontology analysis of microarray data may enable identification of biological processes altered by toxicant exposure and thus provide an additional tool for monitoring the impact of PPMEs on fish populations.

  2. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents

    International Nuclear Information System (INIS)

    Costigan, Shannon L.; Werner, Julieta; Ouellet, Jacob D.; Hill, Lauren G.; Law, R. David

    2012-01-01

    Many studies link pulp and paper mill effluent (PPME) exposure to adverse effects in fish populations present in the mill receiving environments. These impacts are often characteristic of endocrine disruption and may include impaired reproduction, development and survival. While these physiological endpoints are well-characterized, the molecular mechanisms causing them are not yet understood. To investigate changes in gene transcription induced by exposure to a PPME at several stages of treatment, male and female fathead minnows (FHMs) were exposed for 6 days to 25% (v/v) secondary (biologically) treated kraft effluent (TK) or 100% (v/v) combined mill outfall (CMO) from a mill producing both kraft pulp and newsprint. The gene expression changes in the livers of these fish were analyzed using a 22 K oligonucleotide microarray. Exposure to TK or CMO resulted in significant changes in the expression levels of 105 and 238 targets in male FHMs and 296 and 133 targets in females, respectively. Targets were then functionally analyzed using gene ontology tools to identify the biological processes in fish hepatocytes that were affected by exposure to PPME after its secondary treatment. Proteolysis was affected in female FHMs exposed to both TK and CMO. In male FHMs, no processes were affected by TK exposure, while sterol, isoprenoid, steroid and cholesterol biosynthesis and electron transport were up-regulated by CMO exposure. The results presented in this study indicate that short-term exposure to PPMEs affects the expression of reproduction-related genes in the livers of both male and female FHMs, and that secondary treatment of PPMEs may not neutralize all of their metabolic effects in fish. Gene ontology analysis of microarray data may enable identification of biological processes altered by toxicant exposure and thus provide an additional tool for monitoring the impact of PPMEs on fish populations.

  3. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  4. Comment on 'evaluation of dechlorination mechanisms during anaerobic fermentation of blached kraft mill effluent by W.J. Parker, E.R. Hall and G.J. Farquhar'

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    Comment on "Evaluation of dechlorination mechanisms during anaerobic fermentation of bleached kraft mill effluent", is put forth. The data reproduced in Table 1 does not seem to be authentic as the method of preprationo of the chlorinated organic...

  5. Photo-Fenton treatment of saccharin in a solar pilot compound parabolic collector: Use of olive mill wastewater as iron chelating agent, preliminary results.

    Science.gov (United States)

    Davididou, K; Chatzisymeon, E; Perez-Estrada, L; Oller, I; Malato, S

    2018-03-14

    The aim of this work was to investigate the treatment of the artificial sweetener saccharin (SAC) in a solar compound parabolic collector pilot plant by means of the photo-Fenton process at pH 2.8. Olive mill wastewater (OMW) was used as iron chelating agent to avoid acidification of water at pH 2.8. For comparative purposes, Ethylenediamine-N, N-disuccinic acid (EDDS), a well-studied iron chelator, was also employed at circumneutral pH. Degradation products formed along treatment were identified by LC-QTOF-MS analysis. Their degradation was associated with toxicity removal, evaluated by monitoring changes in the bioluminescence of Vibrio fischeri bacteria. Results showed that conventional photo-Fenton at pH 2.8 could easily degrade SAC and its intermediates yielding k, apparent reaction rate constant, in the range of 0.64-0.82 L kJ -1 , as well as, eliminate effluent's chronic toxicity. Both OMW and EDDS formed iron-complexes able to catalyse H 2 O 2 decomposition and generate HO. OMW yielded lower SAC oxidation rates (k = 0.05-0.1 L kJ -1 ) than EDDS (k = 2.21-7.88 L kJ -1 ) possibly due to its higher TOC contribution. However, the degradation rates were improved (k = 0.13 L kJ -1 ) by increasing OMW dilution in the reactant mixture. All in all, encouraging results were obtained by using OMW as iron chelating agent, thus rendering this approach promising towards the increase of process sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Use of Olive Oil Industrial By-Product for Pasta Enrichment.

    Science.gov (United States)

    Padalino, Lucia; D'Antuono, Isabella; Durante, Miriana; Conte, Amalia; Cardinali, Angela; Linsalata, Vito; Mita, Giovanni; Logrieco, Antonio F; Del Nobile, Matteo Alessandro

    2018-04-16

    During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. The goal of the study was to optimize, from both sensory and nutritional points of view, the formulation of durum wheat spaghetti enriched with an olive oil industrial by-product, indicated as olive paste. Three consecutive steps were carried out. In the first one, the olive paste was air-dried at low temperature, milled to record olive paste flour and properly analyzed for its biochemical composition. In the second step, the olive paste flour was added to the pasta dough at 10% and 15% ( w / w ). In the last step, different concentrations of transglutaminase were added to enriched pasta (10% olive paste) to further improve the quality. Sensory properties and nutritional content of enriched and control pasta were properly measured. Spaghetti with 10% olive paste flour and 0.6% transglutaminase were considered acceptable to the sensory panel test. Nutritional analyses showed that addition of 10% olive paste flour to pasta considerably increased content of flavonoids and total polyphenols. The proper addition of olive paste flour and transglutaminase for pasta enrichment could represent a starting point to valorize olive oil industrial by-products and produce new healthy food products.

  7. Identification and growth conditions of purple non-sulfur photosynthetic bacteria isolated from palm oil mill effluent

    International Nuclear Information System (INIS)

    Radziah Ariffin

    2004-01-01

    An indigenous strain of the purple non-sulphur photosynthetic bacterium, isolated from palm oil mill effluent was presumably identified as species of Rhodopseudomonas palustris. Cultivation in synthetic medium under different conditions indicated that it gave maximum carotenoid and bacteriophyll synthesis under anaerobic conditions in the light with values of 12.6 and 108.1 mg/g dry cell weight respectively. These values were significantly higher than the pigment content obtained from aerobic cultivation. The specific growth rates in anaerobic was twice those in aerobic conditions in the light. Growth was not occurred in anaerobic or aerobic conditions in the dark. (Author)

  8. Characterisation of olive fruit for the milling process by using visible/near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Roberto Beghi

    2013-10-01

    Full Text Available Increasing consumption of olive oil and table olives has recently determined an expansion of olive tree cultivation in the world. This trend is supported by the documented nutritional value of the Mediterranean diet. The aim of this work was to test a portable visible/ near infrared (vis/NIR system (400-1000 nm for the analysis of physical-chemical parameters, such as olive soluble solid content (SSC and texture before the olive oil extraction process. The final goal is to provide the sector with post-harvest methods and sorting systems for a quick evaluation of important properties of olive fruit. In the present study, a total of 109 olives for oil production were analysed. Olive spectra registered with the optical device and values obtained with destructive analysis in the laboratory were analysed. Specific statistical models were elaborated to study correlations between optical and laboratory analysis, and to evaluate predictions of reference parameters obtained through the analysis of the visible-near infrared range. Statistical models were processed using chemometric techniques to extract maximum data information. Principal component analysis (PCA was performed on vis/NIR spectra to examine sample groupings and identify outliers, while partial least square (PLS regression algorithm was used to correlate samples spectra and physical- chemical properties. Results are encouraging. PCA showed a significant sample grouping among different ranges of SSC and texture. PLS models gave fairly good predictive capabilities in validation for SSC (R2=0.67 and RMSECV%=7.5% and texture (R2=0.68 and RMSECV%=8.2%.

  9. Integrated biovalorization of wine and olive mill by-products to produce enzymes of industrial interest and soil amendments

    Energy Technology Data Exchange (ETDEWEB)

    Reina, R.; Ullrich, R.; García-Romera, I.; Liers, C.; Aranda, E.

    2016-11-01

    An integral and affordable strategy for the simultaneous production of lignin-modifying and carbohydrate active enzymes and organic amendment, with the aid of a saprobe fungus was developed by using olive oil and wine extraction by-products. The polyporal fungus Trametes versicolor was cultivated in soy or barley media supplemented with dry olive mill residue (DOR) as well as with grape pomace and stalks (GPS) in solid state fermentation (SSF). This strategy led to a 4-fold increase in the activity of laccase, the principal enzyme produced by SFF, in DOR-soy media as compared to controls. T. versicolor managed to secrete lignin-modifying enzymes in GPS, although no stimulative effect was observed. GPS-barley media turned out to be the appropriate medium to elicit most of the carbohydrate active enzymes. The reuse of exhausted solid by-products as amendments after fermentation was also investigated. The water soluble compound polymerization profile of fermented residues was found to correlate with the effect of phytotoxic depletion. The incubation of DOR and GPS with T. versicolor not only reduced its phytotoxicity but also stimulated the plant growth. This study provides a basis for understanding the stimulation and repression of two groups of enzymes of industrial interest in the presence of different carbon and nitrogen sources from by-products, possible enzyme recovery and the final reuse as soil amendments. (Author)

  10. Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting.

    Science.gov (United States)

    Cayuela, M L; Mondini, C; Sánchez-Monedero, M A; Roig, A

    2008-07-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated during the extraction of olive oil by the two-phase centrifugation system. Among all the available disposal options, composting is gaining interest as a sustainable strategy to recycle TPOMW for agricultural purposes. The quality of compost for agronomical use depends on the degree of organic matter stabilization, but despite several studies on the topic, there is not a single method available which alone can give a certain indication of compost stability. In addition, information on the biological and biochemical properties, including the enzymatic activity (EA) of compost, is rare. The aim of this work was to investigate the suitability of some enzymatic activities (beta-glucosidase, arylsulphatase, acid-phosphatase, alkaline-phosphatase, urease and fluorescein diacetate hydrolysis (FDA)) as parameters to evaluate organic matter stability during the composting of TPOMW. These enzymatic indices were also compared to conventional stability indices. For this purpose two composting piles were prepared by mixing TPOMW with sheep manure and grape stalks in different proportions, with forced aeration and occasional turnings. The composting of TPOMW followed the common pattern reported previously for this kind of material with a reduction of 40-50% of organic matter, a gradual increase in pH, disappearance of phytotoxicity and formation of humic-like C. All EA increased during composting except acid-phosphatase. Significant correlations were found between EA and some important conventional stability indices indicating that EA can be a simple and reliable tool to determine the degree of stability of TPOMW composts.

  11. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations.

    Science.gov (United States)

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2017-07-01

    Olive mill waste water (OMWW) is an acidic (pH 4-5), saline (EC ∼ 5-10 mS cm -1 ), blackish-red aqueous byproduct of the three phase olive oil production process, with a high chemical oxygen demand (COD) of up to 220,000 mg L -1 . OMWW is conventionally disposed of by uncontrolled dumping into the environment or by semi-controlled spreading on agricultural soils. It was hypothesized that spreading such liquids on agricultural soils could result in the release and mobilization of indigenous soil metals. The effect of OMWW spreading on leaching of metal cations (Na, K, Mg, Mn, Fe, Cu, Zn) was tested in four non-contaminated agricultural soils having different textures (sand, clay loam, clay, and loam) and chemical properties. While the OMWW contributed metals to the soil solution, it also mobilized indigenous soil metals as a function of soil clay content, cation exchange capacity (CEC), and soil pH-buffer capacity. Leaching of soil-originated metals from the sandy soil was substantially greater than from the loam and clay soils, while the clay loam was enriched with metals derived from the OMWW. These trends were attributed to cation exchange and organic-metal complex formation. The organic matter fraction of OMWW forms complexes with metal cations; these complexes may be mobile or precipitate, depending on the soil chemical and physical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Odor control in evaporation ponds treating olive mill wastewater through the use of Ca(OH)2.

    Science.gov (United States)

    Lagoudianaki, E; Manios, T; Geniatakis, M; Frantzeskaki, N; Manios, V

    2003-01-01

    Different amounts of Ca(OH)2 were added in 2 L beakers containing 1 L of olive mill wastewater (OMW). The mixture was stirred for 45 min and left to settle. Wastewater analysis was used in order to determine the effect of the different amounts of calcium hydroxide in the treating process, three days after the application. The Odor Detection Threshold was used for determining the effect of the treatment in the odors produced in the beakers, three and 30 days after. Both sets of measurements indicated an important reduction in wastewater pollutants and odor emission when 10 g/L of Ca(OH)2 were added. In order to evaluate these results in more realistic conditions. 10 L plastic containers were filled with 6 L of OMW, relevant amounts of Ca(OH)2 were added, the mixture was stirred manually and left to settle in the open. Again, 10 g/L of calcium hydroxide produced the best results in odor reduction and wastewater treatment.

  13. Effect of Recycle Sludge on Anaerobic Digestion of Palm Oil Mill Effluent in A Thermophilic Continuous Digester

    Science.gov (United States)

    Irvan; Trisakti, B.; Tomiuchi, Y.; Harahap, U.; Daimon, H.

    2017-06-01

    The objective of this research is to maintain short retention time and high degradation of palm oil mill effluent (POME) to biogas by applying recycle sludge. Fresh POME from Rambutan Mill without further treatment was used as feed. Two lab-scale digesters supported from Metawater Co. Ltd. have been applied to treat POME at thermophilic (55°C) condition. Both digesters were operated under intermittent operation mode. Experiments were performed in two methods: with and without recycle sludge. Hydraulic retention time (HRT) of both methods was maintained at 6 days, while sludge retention time (SRT) was maintained at various days. The result showed that by extending SRT in return sludge process where 25% of digested slurry recycled to the digester, improvement of volatile solid (VS) decomposition was obtained around 84% at HRT of 6 days and SRT of 21 days. Then, chemical oxygen demand (COD) removal efficiency could be reached until 85% by using recycle sludge.

  14. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    Science.gov (United States)

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.

  15. Acclimatization Study for Biohydrogen Production from Palm Oil Mill Effluent (POME) in Continuous-flow System

    Science.gov (United States)

    Idris, N.; Lutpi, N. A.; Wong, Y. S.; Tengku Izhar, T. N.

    2018-03-01

    This research aims to study the acclimatization phase for biohydrogen production from palm oil mill effluent (POME) by adapting the microorganism to the new environment in continuous-flow system of thermophilic bioreactor. The thermophilic fermentation was continuously loaded with 0.4 L/day of raw POME for 35 days to acclimatize the microorganism until a steady state of biohydrogen production was obtained. The significance effect of acclimatization phase on parameter such as pH, microbial growth, chemical oxygen demand (COD), and alkalinity were also studied besides the production of biogas. This study had found that the thermophilic bioreactor reach its steady state with 1960 mL/d of biogas produced, which consist of 894 ppm of hydrogen composition.

  16. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-01-01

    Full Text Available Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF; average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  17. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Science.gov (United States)

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  18. Fate of Potential Contaminants Due to Disposal of Olive Mill Wastewaters in Unprotected Evaporation Ponds.

    Science.gov (United States)

    Kavvadias, V; Elaiopoulos, K; Theocharopoulos, Sid; Soupios, P

    2017-03-01

    The disposal of olive mill wastewaters (OMW) in shallow and unprotected evaporation ponds is a common, low-cost management practice, followed in Mediterranean countries. So far, the fate of potential soil pollutants in areas located near evaporation ponds is not adequately documented. This study investigates the extent in which the long-term disposal of OMW in evaporation ponds can affect the soil properties of the area located outside the evaporation pond and assesses the fate of the pollution loads of OMW. Four soil profiles situated outside and around the down slope side of the disposal area were excavated. The results showed considerable changes in concentration of soil phenols at the down-site soil profiles, due to the subsurface transport of the OMW. In addition, excessive concentrations of NH 4 + , PO 4 3- and phenols were recorded in liquid samples taken from inside at the bottom of the soil profiles. It is concluded that unprotected evaporation ponds located in light texture soils pose a serious threat to favour soil and water pollution.

  19. De-oiled two-phase olive mill waste may reduce water contamination by metribuzin.

    Science.gov (United States)

    Peña, David; López-Piñeiro, Antonio; Albarrán, Ángel; Rato-Nunes, José Manuel; Sánchez-Llerena, Javier; Becerra, Daniel; Ramírez, Manuel

    2016-01-15

    The impact of de-oiled two-phase olive mill waste (DW) on the behavior of metribuzin in Mediterranean agricultural soils is evaluated, and the effects of the transformation of organic matter from this waste under field conditions are assessed. Four soils were selected and amended in the laboratory with DW at the rates of 2.5% and 5%. One of these soils was also amended in the field with 27 and 54 Mg ha(-1) of DW for 9 years. Significant increases in metribuzin sorption were observed in all the amended soils. In the laboratory, the 5% DW application rate increased the t1/2 values of metribuzin from 22.9, 35.8, 29.1, and 20.0 d for the original soils to 59.2, 51.1, 45.7, and 29.4d, respectively. This was attributable mainly to the inhibitory effect of the amendment on microbial activity. However, the addition of DW transformed naturally under field conditions decreased the persistence down to 3.93 d at the greater application rate. Both amendments (fresh and field-aged DW) significantly reduced the amount of metribuzin leached. This study showed that DW amendment may be an effective and sustainable management practice for controlling groundwater contamination by metribuzin. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of three types of composts of olive oil by-products on growth ...

    African Journals Online (AJOL)

    Indeed, the use of this compost as biofertilizer allowed an increase of the yield to 30.61% and an improvement of wheat growth, spikes' number (5.25±0.3 per plant in comparison with 1±0.09 for control) and seeds (57.12±0.99 per plant in comparison with 14.87±1.88 for control). Keywords: Compost, Olive husks, olive mill ...

  1. A new framework proposal, towards a common EU agricultural policy, with the best sustainable practices for the re-use of olive mill wastewater.

    Science.gov (United States)

    Koutsos, T M; Chatzistathis, T; Balampekou, E I

    2018-05-01

    The disposal of olive mill wastewater (OMW) is a serious environmental issue for the Mediterranean countries. However, there is still no common European legislation on the management and the re-use of OMW in agriculture, in the frame of sustainable crop management and the standards for the safe OMW disposal and re-use are left to be set by each EU country, individually. This review paper presents the most effective and sustainable practices for OMW, (treatment, application and management), which can maximize the benefits of OMW on crops and soils, while minimizing the potential hazards for public health, thus promoting environmental sustainability. The findings of this synthetic work suggest that there is enough information and proven sustainable practices to go ahead with the initial formulation of a new consensual framework, environmentally acceptable, socially bearable and economically viable, that could hopefully help to set the standards for the re-use of olive mil wastewater and can lead to a common EU policy on the management and re-use of OMW. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion.

    Science.gov (United States)

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2008-03-01

    Liquid-liquid extraction was used in order to recover phenolic compounds from centrifuged olive mill wastewater (OMW), a polluting by-product of olive oil production process, and to reduce their toxicity for a subsequent aerobic or anaerobic digestion. Phenolic compounds were identified in untreated and treated OMW by gas chromatography coupled to mass spectrometry (GC-MS). The experimental results of ethyl acetate extraction showed that the monomers recovery efficiency was over 90%. This pre-treatment resulted in the removal of the major LMM phenolic compounds and a small part of HMM polyphenols. The aerobic treatment of the exhausted OMW fraction removed 78.7% of the soluble COD. In the case of anaerobic digestion at OLR ranged from 1 to 3.5 gCOD l(-1)day(-1), methanisation process exhibited high methane yield as 0.3 l CH4 produced per g COD introduced and high COD removal (80%). However, a disruption of the process was observed when the OLR was increased to 4.5 gCODl(-1)day(-1). A pre-treatment by electro-coagulation resulted in decreasing the toxicity and enhancing the performance of methanisation operated at higher OLR from 4 to 7.5 gCODl(-1)day(-1).

  3. Processing of palm oil mill wastes based on zero waste technology

    Science.gov (United States)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  4. A biotechnological valorization and treatment of olive mill waste waters by selected yeast strains

    Directory of Open Access Journals (Sweden)

    Mouncif, M.

    1995-12-01

    Full Text Available Olive mill waste waters were diluted to 1/10, supplied with 2% urea and inoculated with yeast strains. 20 yeast strains isolated from Olive Mill Waste (OMW water were screened for their biomass production, GOD reduction and polyphenols bioconversión activities. Pure cultures of yeasts were realized in 100 ml erlen-meyer flasks. 50 ml cultures were used and the flasks were incubated at room temperature (22°G on a shaker. Biomass production, COD (chemical oxygen demand reduction and Polyphenols bioconversión were followed up in the inoculated OMW waters. Results showed that the urea supply improve significantly the biomass production relatively to the control. This reached in some assays 2.06% expressed as g of biomass dry weight per 100 mL of OMW water. Polyphenols removal was estimated to around 50% and the COD was decreased from 54.14 g/Kg to 21.56 g/Kg. This aerobic treatment lead to the biomass production and also to a pretreated efluent by the COD and the removal of the methanization inhibiting polyphenolic compounds.

    Aguas residuales de la molturación de la aceituna se diluyeron en la proporción 1/10, se le añadió un 2% de urea y se inoculó con cepas de levaduras. 20 cepas de levaduras aisladas de aguas residuales de la molturación de la aceituna (OMW se seleccionaron por su producción de biomasa, reducción DQO y actividades de bioconversión de polifenoles. Se llevaron a cabo cultivos puros de levaduras en matraces erlenmeyer de 100 mi. Se tomaron 50 ml de cultivos y los matraces se incubaron a temperatura ambiente (22°C en un agitador. Se siguió la producción de biomasa, la reducción de DQO (demanda química de oxígeno y la bioconversión de polifenoles en las aguas residuales de la aceituna. Los resultados mostraron que el suministro de urea mejoró significativamente la producción de biomasa en relación al control. Esta alcanzó en algunos ensayos el 2.06% expresado como g de peso seco de biomasa por 100 ml de

  5. EXPERIMENTAL STUDY OF PALM OIL MILL EFFLUENT AND OIL PALM FROND WASTE MIXTURE AS AN ALTERNATIVE BIOMASS FUEL

    Directory of Open Access Journals (Sweden)

    S. HASSAN, L. S. KEE

    2013-12-01

    Full Text Available Palm oil mill effluent (POME sludge generated from palm oil mill industry and oil palm frond (OPF from oil palm plantation are considered biomass wastes that can be fully utilized as a renewable energy sources. In this study, an attempt has been made to convert these residues into solid biomass fuel. The study was conducted by developing experimental testing on the POME and OPF mixture. The performance of each sample with different weight percentage was investigated using standard tests. The biomass mixture was converted into compressed form of briquette through a simple process. The properties of the briquettes were observed and compared at different weight percentage following standard testing methods included ultimate and proximate analyses, burning characteristics, dimensional stability and crack analysis. Experimental results showed that POME sludge and OPF mixture is feasible as an alternative biomass fuel, with briquette of 90:10 POME sludge to OPF ratio has a good combination of properties as an overall.

  6. Integration of biological method and membrane technology in treating palm oil mill effluent

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yejian; YAN Li; QIAO Xiangli; CHI Lina; NIU Xiangjun; MEI Zhijian; ZHANG Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.

  7. Phenols recovery after steam explosion of Olive Mill Solid Waste and its influence on a subsequent biomethanization process.

    Science.gov (United States)

    Serrano, Antonio; Fermoso, Fernando G; Alonso-Fariñas, Bernabé; Rodríguez-Gutierrez, Guillermo; Fernandez-Bolaños, Juan; Borja, Rafael

    2017-11-01

    A promising source of high added value compounds is the Olive Mill Solid Waste (OMSW). The aim of this research was to evaluate the viability of a biorefinery approach to valorize OMSW through the combination of steam explosion, phenols extraction, and anaerobic digestion. Steam explosion treatment increased the total phenol content in the steam exploited OMSW, which was twice than that the total phenol content in raw OMSW, although some undesirable compounds were also formed. Phenol extraction allowed the recovery of 2098mg hydroxytyrosol per kg of OMSW. Anaerobic digestion allowed the partial stabilization of the different substrates, although it was not improved by the steam explosion treatment. The economic suitability of the proposed biorefinery approach is favorable up to a phenol extract price 90.7% lower than the referenced actual price of 520€/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.

    Science.gov (United States)

    Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

    2007-06-25

    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).

  9. Effects of Olive Mill Wastewater on Soil Microarthropods and Soil Chemistry in Two Different Cultivation Scenarios in Israel and Palestinian Territories

    Directory of Open Access Journals (Sweden)

    Markus Peter Kurtz

    2015-09-01

    Full Text Available Although olive mill wastewater (OMW is often applied onto soil and is known to be phytotoxic, its impact on soil fauna is still unknown. The objective of this study was to investigate how OMW spreading in olive orchards affects Oribatida and Collembola communities, physicochemical soil properties and their interdependency. For this, we treated plots in two study sites (Gilat, Bait Reema with OMW. Among others, the sites differed in irrigation practice, soil type and climate. We observed that soil acidity and water repellency developed to a lower extent in Gilat than in Bait Reema. This may be explained by irrigation-induced dilution and leaching of OMW compounds in Gilat. In Bait Reema, OMW application suppressed emergence of Oribatida and induced a community shift, but the abundance of Collembola increased in OMW and water-treated plots. In Gilat, Oribatida abundance increased after OMW application. The effects of OMW application on soil biota result from an interaction between stimulation of biological activity and suppression of sensitive species by toxic compounds. Environmental and management conditions are relevant for the degree and persistence of the effects. Moreover, this study underlines the need for detailed research on the ecotoxicological effects of OMW at different application rates.

  10. Treatment of effluents in uranium industry

    International Nuclear Information System (INIS)

    Ghosh, S.K.

    2009-01-01

    Uranium processing technology in India has matured in the last 50 years and is able to meet the country's requirement. Right from mining of the ore to milling and refining, effluents are generated and are being processed for their safe disposal. While the available technology is able to meet the regulatory limits of the effluents, the same may not be enough to meet the increased demand of uranium in the future. The increased population, urbanization and climate change are not only going to decrease the supply of process water but will also place increased restrictions on disposal to environment. This demands technologies that will generate less effluent for disposal and enable reuse and recycle concept to the extent possible. Presently used conventional physical-chemical methods, to contain the contaminants would, therefore, require further refinements. Contaminants like sulfates, chlorides etc in the effluent of uranium mill based on acid leach process are the concerns for the future plants. Hence, there is an urgent need for development of suitable methods for maximum recycle of the process effluents, which will also enable in minimizing the consumption of process water. A suitable membrane based process can be an option leaving a concentrated brine for reuse or for further treatment and disposal

  11. Determination of polycyclic aromatic hydrocarbons in palm oil mill effluent by soxhlet extraction and gas chromatography-flame ionization detector

    International Nuclear Information System (INIS)

    Nor Fairolzukry Ahmad Rasdy; Mohd Marsin Sanagi; Wan Aini Wan Ibrahim; Ahmedy Abu Naim

    2008-01-01

    A method has been developed for the determination of polycyclic aromatic hydrocarbons (PAHs) from palm oil mill effluent based on gas chromatography-flame ionization detection. Extraction of spiked PAHs (napthalene, fluorene phenanthrene, fluoranthene and pyrene) in palm oil waste was carried out by Soxhlet extraction using hexane-dichloromethane (60:40 v/v) as the solvent. Excellent separations were achieved using temperature programmed GC on Ultra-1 fused-silica capillary column (30 m x 250 μm ID), carrier gas helium at a flow rate of 1 mL/ min. (author)

  12. Aeribacillus composti sp. nov., a thermophilic bacillus isolated from olive mill pomace compost.

    Science.gov (United States)

    Finore, Ilaria; Gioiello, Alessia; Leone, Luigi; Orlando, Pierangelo; Romano, Ida; Nicolaus, Barbara; Poli, Annarita

    2017-11-01

    A Gram-stain-positive, aerobic, endospore-forming, thermophilic bacterium, strain N.8 T , was isolated from the curing step of an olive mill pomace compost sample, collected at the Composting Experimental Centre (CESCO, Salerno, Italy). Strain N.8 T , based on 16S rRNA gene sequence similarities, was most closely related to Aeribacillus pallidus strain H12 T (=DSM 3670 T ) (99.8 % similarity value) with a 25 % DNA-DNA relatedness value. Cells were rod-shaped, non-motile and grew optimally at 60 °C and pH 9.0, forming cream colonies. Strain N.8 was able to grow on medium containing up to 9.0 % (w/v) NaCl with an optimum at 6.0 % (w/v) NaCl. The cellular membrane contained MK-7, and C16 : 0 (48.4 %), iso-C17 : 0 (19.4 %) and anteiso-C17 : 0 (14.6 %) were the major cellular fatty acids. The DNA G+C content was 40.5 mol%. Based on phenotypic characteristics, 16S rRNA gene sequences, DNA-DNA hybridization values and chemotaxonomic characteristics, strain N.8 T represents a novel species of the genus Aeribacillus, for which the name Aeribacillus composti sp. nov. is proposed. The type strain is N.8 T (=KCTC 33824 T =JCM 31580 T ).

  13. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    KAUST Repository

    Yahiaoui, O.

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER membrane was used as pre-treatment for electrochemical process. The obtained permeate from the ultrafiltration process allowed COD removal efficiency of about 96% from OMW. Obtained permeate with an average COD of about 1.1gdm-3 was treated by electrochemical reactor equipped with a reactor with bipolar iron plate electrodes. The effect of the experimental parameters such as current density, pH, surface electrode/reactor volume ratio and NaCl concentration on COD removal was assessed. The results showed that the optimum COD removal rate was obtained at a current density of 93.3Am-2 and pH ranging from 4.5 to 6.5. At the optimum operational parameters for the experiments, electrocoagulation process could reduce COD from 1.1gdm-3 to 78mgdm-3, allowing direct discharge of the treated OMW as that meets the Algerian wastewater discharge standards (<125mgdm-3). © 2010 Elsevier B.V.

  14. Use of solar distillation for olive mill wastewater drying and recovery of polyphenolic compounds.

    Science.gov (United States)

    Sklavos, Sotirios; Gatidou, Georgia; Stasinakis, Athanasios S; Haralambopoulos, Dias

    2015-10-01

    Olive mill wastewater (OMW) is characterized by its high organic load and the presence of phenolic compounds. For first time, a solar distillator was used to investigate the simultaneous solar drying of OMW and the recovery of phenolic compounds with antioxidant properties in the distillate. Two experiments were conducted and the role of thermal insulation on the performance of the distiller was studied. The use of insulation resulted to higher temperatures in the distillator (up to 84.3 °C and 78.5 °C at the air and sludge, respectively), shorter period for OMW dewatering (14 days), while it increased the performance of distillator by 26.1%. Chemical characterization of the distillate showed that pH and COD concentration gradually decreased during the experiments, whereas an opposite trend was noticed for conductivity and total phenols concentration. Almost 4% of the total phenols found initially in OMW were transferred to the distillate when an insulated solar distillator was used. Gas chromatographic analysis of collected distillates confirmed the presence of tyrosol in all samples; whereas hydroxytyrosol was found only in fresh collected distillate samples. Further experiments should be conducted to optimize the process and quantify the concentrations of recovered phenolic compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Water reclamation and effluent retreatment system at Jaduguda

    Energy Technology Data Exchange (ETDEWEB)

    Beri, K K [Uranium Corporation of India Limited, Jaduguda Mines, Singhbhum (India)

    1994-06-01

    Neutralization of uranium mill tailing with lime provided in original flow sheet was not found adequate for effluent quality control within limits particularly as regards to{sup 226}Ra and Mn. The same was being controlled by dilution and hence no water was being reclaimed. In October 1987 the Jaduguda mill was expanded to augment its ore processing capacity from 1000 MT/day to 1340 MT/day. This necessitated extra water requirement, which could have been met only with water reclamation. But this would have resulted in build up of pollutant ions apart from less water available for dilution. Hence a composite scheme was made for water reclamation and treatment of effluent with BaCl{sub 2} to precipitate Ba(Ra)So{sub 4} and with lime to precipitate Mn as hydroxide. This effluent treatment plant was commissioned in May 1990 and is working satisfactorily. The scheme is being further modified and augmented to take care of Narwa mine water and sewage treatment plant effluent. (author).

  16. Feasibility of composting combinations of sewage sludge, olive mill waste and winery waste in a rotary drum reactor.

    Science.gov (United States)

    Fernández, Francisco J; Sánchez-Arias, Virginia; Rodríguez, Lourdes; Villaseñor, José

    2010-10-01

    Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery-distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. (c) 2010 Elsevier Ltd. All rights reserved.

  17. KINETIC STUDIES ON BIODEGRADATION OF LIPIDS FROM OLIVE OIL MILL WASTEWATERS WITH FREE AND IMMOBILIZED Bacillus sp. CELLS

    Directory of Open Access Journals (Sweden)

    Anca-Irina Galaction

    2012-03-01

    Full Text Available The studies on the biodegradation of lipids from olive oil mill wastewater with free and immobilized Bacillus sp. cells indicated that the maximum specific rate of the process is reached at pH = 8. The use of immobilized cells allows to increasing the number of biodegradation process cycles, but reduces the rate of the process. In this case, the process rate depends on the biocatalysts size and cells concentration inside them. Thus, at bacterial cells concentration of 9 g d.w./100 mL biocatalyst, the apparent specific rate varied from 4.65 to 1.46×10-2 h-1 by increasing the biocatalyst particles diameter from 3 to 4.2 mm.The cumulated influences of the particles size and cells concentration have been included in a mathematical model for the apparent specific rate of lipids biodegradation. The model offers a good concordance with the experimental data, the average deviation being of +/- 7.38%.

  18. Olive mill wastewater characteristics: modelling and statistical analysis

    Directory of Open Access Journals (Sweden)

    Martins-Dias, Susete

    2004-09-01

    Full Text Available A synthesis of the work carried out on Olive Mill Wastewater (OMW characterisation is given, covering articles published over the last 50 years. Data on OMW characterisation found in the literature are summarised and correlations between them and with phenolic compounds content are sought. This permits the characteristics of an OMW to be estimated from one simple measurement: the phenolic compounds concentration. A model based on OMW characterisations accounting 6 countries was developed along with a model for Portuguese OMW. The statistical analysis of the correlations obtained indicates that Chemical Oxygen Demand of a given OMW is a second-degree polynomial function of its phenolic compounds concentration. Tests to evaluate the regressions significance were carried out, based on multivariable ANOVA analysis, on visual standardised residuals distribution and their means for confidence levels of 95 and 99 %, validating clearly these models. This modelling work will help in the future planning, operation and monitoring of an OMW treatment plant.Presentamos una síntesis de los trabajos realizados en los últimos 50 años relacionados con la caracterización del alpechín. Realizamos una recopilación de los datos publicados, buscando correlaciones entre los datos relativos al alpechín y los compuestos fenólicos. Esto permite la determinación de las características del alpechín a partir de una sola medida: La concentración de compuestos fenólicos. Proponemos dos modelos, uno basado en datos relativos a seis países y un segundo aplicado únicamente a Portugal. El análisis estadístico de las correlaciones obtenidas indica que la demanda química de oxígeno de un determinado alpechín es una función polinómica de segundo grado de su concentración de compuestos fenólicos. Se comprobó la significancia de esta correlación mediante la aplicación del análisis multivariable ANOVA, y además se evaluó la distribución de residuos y sus

  19. Anaerobic Treatment of Cane Sugar Effluent from Muhoroni Sugar ...

    African Journals Online (AJOL)

    It was therefore concluded that anaerobic treatment, particularly with pH control and seeding shows potential in first stage management of sugar mill wastewater. Keywords: cane sugar mill effluent, anaerobic treatment, batch reactor, waste stabilization ponds. Journal of Civil Engineering Research and Practice Vol.

  20. Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting.

    Science.gov (United States)

    Galliou, F; Markakis, N; Fountoulakis, M S; Nikolaidis, N; Manios, T

    2018-05-01

    Olive mill wastewater (OMW) is generated during the production of olive oil. Its disposal is still a major environmental problem in Mediterranean countries, despite the fact that a large number of technologies have been proposed up to date. The present work examines for the first time a novel, simple and low-cost technology for OMW treatment combining solar drying and composting. In the first step, OMW was dried in a chamber inside a solar greenhouse using swine manure as a bulking agent. The mean evaporation rate was found to be 5.2 kg H 2 O/m 2 /d for a drying period of 6 months (February-August). High phenol (75%) and low nitrogen (15%) and carbon (15%) losses were recorded at the end of the solar drying process. The final product after solar drying was rich in nutrients (N: 27.8 g/kg, P: 7.3 g/kg, K: 81.6 g/kg) but still contained significant quantities of phenols (18.4 g/kg). In order to detoxify the final product, a composting process was applied as a second step with or without the use of grape marc as bulking agent. Results showed that the use of grape marc as a bulking agent at a volume ratio of 1:1 achieved a higher compost temperature profile (60 °C) than 2:1 (solar drying product: grape marc) or no use (solar drying product). The end product after the combination of solar drying and composting had the characteristics of an organic fertilizer (57% organic carbon) rich in nutrients (3.5% N, 1% P, 6.5% K) with quite low phenol content (2.9 g/kg). Finally, the use of this product for the cultivation of pepper plants approved its fertility which was found similar with commercial NPK fertilizers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  2. Present and future mine effluents management at Zirovski Vrh uranium mine

    International Nuclear Information System (INIS)

    Logar, Z.; Likar, B.; Gantar, I.

    2002-01-01

    Zirovski Vrh uranium mine and its facilities are situated on the northeastern slopes of the Zirovski Vrh ridge (960 m) and on the southern slopes of Crna gora (611 m) respectively. Mine elevation is from 430 m (bottom of the valley) to 580 m (P-1 adit). All effluents from the mine and mill objects flow into the Brebovscica river (with average yearly flow of 0.74 m 3 /s): run off mine water; mine waste pile Jazbec outflow; mill tailings Borst outflows; effluents from mine temporary mine waste piles P-1, P-9, P-36 are of minor significance. The first three effluents and the recipient surface water flows (the Todrascica brook and the Brebovscica river) are monitored extensively. The impact of radioactive polluted outflows on named waters is proved, but far under the maximal permitted limit values. The authorised maximal limits values for mine effluents were obtained in 1996. Detail design will ensure that this values will not be exceeded in the future. The long term planes are to minimise the uranium concentrations in the run off mine water by target underground drilling. The mine waste pile and the mill tailings will be covered by engineered cover system to avoid clean water contamination by weathering and ablution as well. The existing effluents from the mill tailings will diminish after the remediation and consolidation of the tailing. The Government of Slovenia funds the remediation of the uranium production site Zirovski Vrh. Estimated needed funds for remediation of the main objects are shown in the table below. The total investment includes also the costs for effluents control. Area Mio US$ Underground mine remediation 19.00 Mine waste pile remediation 6.50 Mill tailings remediation 2.24 Total investment costs 27.74 Above figures do not include operation costs of the Zirovski Vrh Mine, approximately US$ 2.2 Mio per year nowadays. The last implementation schedule foresights the end of remediation works in year 2005. After that starts trial monitoring of 5 years

  3. Releases of radioactivity from uranium mills and effluent treatment costs

    International Nuclear Information System (INIS)

    Witherspoon, J.P.; Sears, M.B.; Blanco, R.E.

    1977-01-01

    Airborne releases of radioactive materials from uranium milling to the environment consist of ore dust, yellowcake dust, tailings dust, and radon gas while the mill is active. After a mill has ceased operations, tailings may be stabilized to minimize or prevent airborne releases of radioactive particulates. However, radon gas will continue to be released in amounts inversely proportional to the degree of stabilization treatment (and expense). Liquid waste disposal is by evaporation and natural seepage to the ground beneath the tailings impoundment area. The release of radioactive materials (and potential radiation exposures) determines the majority of costs associated with minimizing the environmental impact of uranium milling. Radwaste treatments to reduce estimated radiation doses to individuals to 3 to 5% of those received with current milling practices are equivalent to $0.66 per pounds of U 3 O 8 and 0.032 mill per kWhr of electricity. This cost would cover a high efficiency reverse jet bag filter and high energy venturi scrubbers for dusts, neutralization of liquids, and an asphalt-lined tailings basin with a clay core dam to reduce seepage. In addition, this increased cost would cover stabilization of tailings, after mill closure, with a 1-in. asphalt membrane topped by 2 ft of earth and 0.5 ft of crushed rock to provide protection against future leaching and wind erosion. The cost of reducing the radiological hazards associated with uranium milling to this degree would contribute about 0.4% to the current total cost of nuclear power

  4. Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process

    Directory of Open Access Journals (Sweden)

    Ahmad A.L.

    2015-12-01

    Full Text Available This research emphasizes eloquently on membrane technology for treatment of palm oil mill effluent (POME as it is the Malaysia’s largest and most important agro based industry. Findings established significant quality improvement with an efficient recovery of water from palm oil mill via innovative membrane application. Conventional bio-methods, whilst adhering to the Department of Environment’s (DOE discharge regulations, produces brownish liquid which pales in comparison to the crystal clear water obtained through membrane treatment. The pre-treatment process consists of coagulation-flocculation using green environmental coagulant bases such as Moringa oleifera (MO seeds. The ultrafiltration polyvinylidene difluoride (PVDF and thin film composite (TFC reverse osmosis were vital for the membrane processes. The system gave 99% suspended solids reduction in suspended solid and 78% of water present was successfully recovered. This technology guarantees water recovery with drinking water quality; meeting the US Environmental Protection Agency (USEPA standard or could be recycled into the plant with sludge utilization for palm oil estates, thus enabling the concept of zero discharge to be executed in the industries. In addition, green and healthy antioxidants such as oil and beta-carotene can be recovered from POME further demonstrate. Silica gel showed better performance in separation of carotenes from oil at temperature 40°C using adsorption chromatography with 1154.55 ppm. The attractiveness of this technology, enabling the utilization of reuse of agricultural waste into potentially value added products.

  5. 40 CFR 406.10 - Applicability; description of the corn wet milling subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the corn wet milling subcategory. 406.10 Section 406.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling...

  6. 40 CFR 406.20 - Applicability; description of the corn dry milling subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the corn dry milling subcategory. 406.20 Section 406.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Dry Milling...

  7. Evaluation of Fungal Growth on Olive-Mill Wastewaters Treated at High Temperature and by High-Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Francesca Cibelli

    2017-12-01

    Full Text Available Reuse of olive mill wastewaters (OMWWs in agriculture represents a significant challenge for health and safety of our planet. Phytotoxic compounds in OMWW generally prohibit use of untreated OMWWs for agricultural irrigation or direct discharge into surface waters. However, pretreated OMWW can have positive effects on chemical and microbiological soil characteristics, to fight against fungal soil-borne pathogens. Low amounts of OMWW following thermal (TT-OMWW and high-pressure homogenization (HPH-OMWW pretreatments counteracted growth of some of 12 soil-borne and/or pathogenic fungi examined. With fungal growth measured as standardized change in time to half maximum colony diameter, Δτ, overall, HPH-OMWW showed increased bioactivity, as increased mean Δτ from 3.0 to 4.8 days. Principal component analysis highlighted two fungal groups: Colletotrichum gloeosporioides, Alternaria alternata, Sclerotium rolfsii, and Rosellinia necatrix, with growth strongly inhibited by the treated OMWWs; and Aspergillus ochraceus and Phaeoacremonium parasiticum, with stimulated growth by the treated OMWWs. As a non-thermal treatment, HPH-OMWW generally shows improved positive effects, which potentially arise from preservation of the phenols.

  8. Utilization of biogas released from palm oil mill effluent for power generation using self-preheated reactor

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2015-01-01

    Highlights: • A lab-scale reactor called self-preheating flameless combustion (SPFC) system is experimented. • Feasibility of power generation by POME biogas is modeled using SPFC system. • 4 MW power is available by POME biogas utilization in a typical palm oil mill with 300,000 tons production. • The rate of power generation increases when 2% hydrogen is added to POME biogas ingredients. - Abstract: In palm oil mills, for one ton crude palm oil (CPO) production, 70 m"3 biogas is released from palm oil mill effluent (POME) which can endanger the environment. Palm oil mills without appropriate strategies for biogas collection can participate in greenhouse gases (GHGs) generation actively. In this paper, a typical palm oil mill with annual capacity of 300,000 ton oil palm production and 3 MW electricity demand is considered as a pilot plant and feasibility of power generation by POME biogas is modeled by Aspen Plus considering flameless mode in combustion system. A new design of lab-scale flameless reactor called self-preheated flameless combustion (SPFC) system is presented and employed in power generation modeling. In SPFC system, the flameless chamber is employed as a heater to preheat an oxidizer over the self-ignition temperature of the fuel. A helical stainless steel pipe (called self-preheating pipe) is installed inside the chamber to conduct the oxidizer from exhaust zone to the combustion zone inside the chamber and preheat oxidizer. In the flameless mode, the diluted oxidizer is injected to the helical pipe from the exhaust zone and the preheated oxidizer at the burner is conducted to the flameless furnace through a distributor. In SPFC system external heater for preheating oxidizer is removed and the rate of power generation increases. The results show that 10.8 MW power could be generated in ultra-lean POME biogas SPFC. However, the rate of pollutant especially CO_2 and NO_x is high in this circumstances. In stoichiometric condition, 4 MW power

  9. Fungal bioremediation of olive mill wastewater: using a multi-step approach to model inhibition or stimulation.

    Science.gov (United States)

    Bevilacqua, Antonio; Cibelli, Francesca; Raimondo, Maria Luisa; Carlucci, Antonia; Lops, Francesco; Sinigaglia, Milena; Corbo, Maria Rosaria

    2017-01-01

    Olive mill wastewaters (OMWWs) possess a strong environmental impact; the use of fungi as tools for bioremediation could be a promising method. Twenty-nine fungi were grown on minimal media supplemented with five different kinds of OMWWs (5-15%). Radial growth was assessed for 21 days and the data were modelled through the Dantigny-logistic like function to estimate τ, i.e. the time to attain half of the maximum diameter. Growth on potato dextrose agar and water agar (WA, minimal medium without supplementation) was used as reference. The differences in τ between PDA/WA and minimal media with OMWWs were modelled through a multi-factorial ANOVA, using the concentration of OMWW, the kind of wastes and fungi as categorical predictors. Finally, a principal component analysis was run to group and divide resistant and sensitive fungi. Some fungi experienced a positive Δτ, thus suggesting an inhibition by OMWW, whereas other isolates were enhanced. Some isolates (for example Aspergillus ochraceus) showed a promising trend and could be possible candidates for a validation on a real scale. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.

    Science.gov (United States)

    Oz, Nilgun Ayman; Uzun, Alev Cagla

    2015-01-01

    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (pbiogas and methane compared with the untreated one (control reactor). The

  11. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Microbial Succession in Co-Composting of Chipped-Ground Oil Palm Frond and Palm Oil Mill Effluent

    International Nuclear Information System (INIS)

    Mohd Najib Ahmad; Siti Ramlah Ahmad Ali; Mohd Ali Hassan

    2016-01-01

    Succession and phylogenetic profile of microbial communities during co-composting of chipped-ground oil palm frond (CG-OPF) and palm oil mill effluent (POME) were studied by apply-ing polymerase chain reaction-denaturant gel gradient electrophoresis (PCR-DGGE) analysis. The results indicated that the dominant microbial community detected was γ-Pro bacteria such as Pseudomonas sp. at almost throughout the composting process. Whilst Bacillales such as Bacillus psychrodurans were found toward the end of the composting process. Bacteroidetes such as Pedobacter solani were detected at the final stage of composting. This study contributed to a better understanding of microbial shifting and functioning throughout CG-OPF composting. Therefore, PCR-DGGE is recommended to be used as a tool to identify potential microbes that can contribute to a better performance of composting process. (author)

  13. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents.

    Science.gov (United States)

    Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R

    2018-06-01

    High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.

  14. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment.

    Science.gov (United States)

    Nair, Ranjith G; Bharadwaj, P J; Samdarshi, S K

    2016-12-01

    This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Physico-chemical and toxicological assessment of liquid wastes from olive processing-related industries.

    Science.gov (United States)

    Pierantozzi, Pierluigi; Zampini, Catiana; Torres, Mariela; Isla, María I; Verdenelli, Romina A; Meriles, José M; Maestri, Damián

    2012-01-30

    In the last few years, agricultural uses of waste waters from olive processing-related industries have been gaining interest mainly with a view to composting or bio-fertilizers. The present work examines physico-chemical, toxicological and geno-toxicological properties of three liquid wastes, namely olive mill wastewater (OMWW), olive wet husk and olive brine. The effect of OMWW spreading on soil microbial activity and biomass was also evaluated. Data from Artemia salina and Lactuca sativa toxicity tests indicated high levels of lethality, and inhibitory effects on seed germination and seedling growth of all olive wastes. The genotoxicity assays using Allium cepa tests showed contrasting results. At high concentrations, olive wastes caused inhibition or suppression of mitosis. However, they did not produce induced anaphase aberrations. Data on reversion of Salmonella thyphimurium strains using the Ames test indicated that the olive wastes did not present mutagenic activity. Results from the field experiment showed that OMWW at a 500 m(3) ha(-1) had the highest values of both soil microbial activity and biomass after 3 months of the amendment application. This work adds new data for environmental risk assessment of olive industrial wastes. Direct use of olive wastes for agricultural purposes should be limited owing to their possible chemotoxic, phytotoxic and antimicrobial effects. Copyright © 2011 Society of Chemical Industry.

  16. Annealing optimization in the process of making membrane PSF19%DMFEVA2 for wastewater treatment of palm oil mill effluent

    Science.gov (United States)

    Said, A. A.; Mustafa

    2018-02-01

    A small proportion of the Palm Oil Mill Effluent (POME) treatment has used its wastewater to converted to methane gas which will then be converted again into electrical energy. However, for Palm Oil Mill whose has a value of Chemical Oxygen Demand in its wastewater is less than 60.000 mg / L this can’t so that the purpose wastewater treatment only to reach the standard that can be safe to dispose into the environment. Wastewater treatment systems that are general applied by Palm Oil Mill especially in North Sumatera are aerobic and anaerobic, this method takes a relatively long time due to very dependent on microbial activity. An alternative method for wastewater treatment offered is membrane technology because the process is much more effective, the time is relatively short, and expected to give more optimal result. The optimum membrane obtained is PSF19%DMFEVA2T75 membrane,while the parameter condition of the permeate analysis produced in the treatment of POME wastewater with membrane PSF19%DMFEVA2T75 obtained at pH = 7.0; TSS = 148 mg / L; BOD = 149 mg / L; And COD = 252 mg / L. The results obtained is accordance with the standard of the quality of POME.

  17. Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters.

    Science.gov (United States)

    Cheng, Jia; Zhu, Xiuping; Ni, Jinren; Borthwick, Alistair

    2010-04-01

    An integrated system of two-stage microbial fuel cells (MFCs) and immobilized biological aerated filters (I-BAFs) was used to treat palm oil mill effluent (POME) at laboratory scale. By replacing the conventional two-stage up-flow anaerobic sludge blanket (UASB) with a newly proposed upflow membrane-less microbial fuel cell (UML-MFC) in the integrated system, significant improvements on NH(3)-N removal were observed and direct electricity generation implemented in both MFC1 and MFC2. Moreover, the coupled iron-carbon micro-electrolysis in the cathode of MFC2 further enhanced treatment efficiency of organic compounds. The I-BAFs played a major role in further removal of NH(3)-N and COD. For influent COD and NH(3)-N of 10,000 and 125 mg/L, respectively, the final effluents COD and NH(3)-N were below 350 and 8 mg/L, with removal rates higher than 96.5% and 93.6%. The GC-MS analysis indicated that most of the contaminants were satisfactorily biodegraded by the integrated system. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Investigation on the Influence of Bio-catalytic Enzyme Produced from Fruit and Vegetable Waste on Palm Oil Mill Effluent

    Science.gov (United States)

    Rasit, Nazaitulshila; Chee Kuan, Ooi

    2018-04-01

    Pre-consumer waste from supermarkets, such as vegetables and fruits dreg are always discarded as solid waste and disposed to landfill. Implementing waste recovery method as a form of waste management strategy will reduce the amount of waste disposed. One of the ways to achieve this goal is through fermentation of the pre-consumer supermarket waste to produce a solution known as garbage enzyme. This study has been conducted to produce and characterize biocatalytic garbage enzyme and to evaluate its influence on palm oil mill effluent as a pre-treatment process before further biological process takes place. Garbage enzyme was produced by three-month long fermentation of a mixture of molasses, pre-consumer supermarket residues, and water in the ratio of 1:3:10. Subsequently, the characterization of enzyme was conducted based on pH, total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), and enzyme activities. The influence of produced enzyme was evaluated on oil & grease (O&G), TSS and COD of palm oil mill effluent (POME). Different levels of dilution of garbage enzyme to POME samples (5%, 10%, 15%) were explored as pre-treatment (duration of six days) and the results showed that the garbage enzyme contained bio-catalytic enzyme such as amylase, protease, and lipase. The pre-treatment showed removal of 90% of O&G in 15% dilution of garbage enzyme. Meanwhile, reduction of TSS and COD in dilution of 10% garbage enzyme were measured at 50% and 25% respectively. The findings of this study are important to analyse the effectiveness of pre-treatment for further improvement of anaerobic treatment process of POME, especially during hydrolysis stage.

  19. Removal of radium-226 from uranium mining effluents

    International Nuclear Information System (INIS)

    Averill, D.W.; Moffett, D.; Webber, R.T.; Whittle, L.; Wood, J.A.

    1984-12-01

    Uranium mining and milling operations usually generate large quantities of solid and liquid waste materials. A slurry, consisting of waste rock and chemical solutions from the milling operation, is discharged to impoundment areas (tailings basins). Most of the radioactive material dissolved in tailings slurries is precipitated by the addition of lime and limestone prior to discharge from the mill. However, the activity of one radioisotope, radium-226, remains relatively high in the tailings basin effluents. In Canada, radium-226 is removed from uranium mining and milling effluents by the addition of barium chloride to precipitate barium-radium sulphate [(Ba,Ra)SO 4 ]. Although dissolved radium-226 activities are generally reduced effectively, the process is considered to have two undesirable characteristics: the first related to suspended radium-226 in the effluents and the second to ultimate disposal of the (Ba,Ra)SO 4 sludge. A government-industry mining task force established a radioactivity sub-group in 1974 to assist in the development of effluent guidelines and regulations for the uranium mining industry (Radioactivity Sub-group, 1974). The investigation of more effective removal methods was recommended, including the development of mechanical treatment systems as alternatives to settling ponds. Environment Canada's Wastewater Technology Centre (WTC) initiated a bench scale study in March, 1976 which was designed to assess the feasibility of using precipitation, coagulation, flocculation and sedimentation for the removal of radium-226. In 1977, the study was accelerated with financial assistance from the Atomic Energy Control Board. The results were favourable, with improved radium removals obtained in bench scale batch tests using barium chloride as the precipitant and either alum or ferric chloride as the coagulant. A more comprehensive bench scale and pilot scale process development and demonstration program was formulated. The results of the joint study

  20. Improvements in the malaxation process to enhance the aroma quality of extra virgin olive oils.

    Science.gov (United States)

    Reboredo-Rodríguez, P; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J

    2014-09-01

    The influence of olive paste preparation conditions on the standard quality parameters, as well as volatile profiles of extra virgin olive oils (EVOOs) from Morisca and Manzanilla de Sevilla cultivars produced in an emerging olive growing area in north-western Spain and processed in an oil mill plant were investigated. For this purpose, two malaxation temperatures (20/30 °C), and two malaxation times (30/90 min) selected in accordance with the customs of the area producers were tested. The volatile profile of the oils underwent a substantial change in terms of odorant series when different malaxation parameters were applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters.

    Directory of Open Access Journals (Sweden)

    Majdouline Belaqziz

    Full Text Available Olive processing wastewaters (OPW, namely olive mill wastewater (OMW and table-olive wastewaters (TOW were evaluated for their antibacterial activity against five Gram-positive and two Gram-negative bacteria using the standard disc diffusion and thin layer chromatography (TLC-bioautography assays. Disc diffusion screening and bioautography of OMW were compared to the phenolic extracts of table-olive brines. Positive activity against S. aureus was demonstrated. The optimization of chromatographic separation revealed that hexane/acetone in the ratio of 4:6 was the most effective for phenolic compounds separation. A HPLC-MS analysis was performed showing that only two compounds, hydroxytyrosol and tyrosol, were the predominant phenolic compounds in all OPW. The phenolic extract of OMW generated by a semi-modern process showed the highest free radical-scavenging activity (DPPH assay compared to the other phenolic extracts. It is apparent from the present study that OPW are a rich source of antioxidants suitable for use in food, cosmetic or pharmaceutical applications.

  2. Preliminary Study on Treatment of Palm Oil Mill Effluent (POME by Sand Filtration-DBD Plasma System

    Directory of Open Access Journals (Sweden)

    Ariadi Hazmi

    2016-02-01

    Full Text Available In the palm oil industry, open ponding, aerobic and anaerobic digestion, physicochemical treatment and membrane filtration are generally applied as conventional treatments of palm oil mill effluent (POME. In this study, a sand filtration-dielectric barrier discharge (DBD system was investigated as an alternative process for treating POME. This system can reduce land usage, processing time and costs compared to conventional systems. The removal efficiency of chemical oxygen demand (COD, biological oxygen demand (BOD5, and oil-grease in relation to the applied voltage were studied. Furthermore, the pH and temperature profiles were investigated. The obtained results indicate that the removal efficiency of COD, BOD5, and oil-grease increased with an increase of the applied voltage. The electrical energy consumption needed is about 10.56 kWh/L of POME.

  3. Dry matter and root colonization of plants by indigenous arbuscular mycorrhizal fungi with physical fractions of dry olive mill residue inoculated with saprophytic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, E.; Sampredro, I.; Diaz, R.; Garcia-Sanchez, M.; Siles, J. A.; Ocampo, J. A.; Garcia-Romera, I.

    2010-07-01

    We studied the influence of indigenous arbuscular mycorrhizal (AM) and saprobe fungi on the phytotoxicity of the physical fractions of dry olive mill residue (DOR). The physical extractions of DOR gave an aqueous (ADOR) and an exhausted (SDOR) fraction with less phytotoxicity for tomato than the original samples. The indigenous AM were able to decrease the phytotoxicity of SDOR inoculated with Trametes versicolor and Pycnoporus cinnabarinus on tomato. However, incubation of ADOR with both saprophytic fungi did not decrease its phytotoxicity in presence of the indigenous AM fungi. The percentage of root length colonized by indigenous AM strongly decreased in presence of DOR, around 80% of decrease at dose of 25 g kg-1of DOR, but the level of mycorrhization was higher in presence of ADOR or SDOR (38% and 44% of decrease respectively at the same dose). There were no relationships between the effects of the physical fractions of DOR incubated with the saprobe fungi on AM colonization and on plant dry weight of tomato. Our results suggest that the phytotoxicity of the olive residues can be eliminated by the combination of physical extraction and by saprobe fungal inoculation and the use of this agrowaste as organic amendment in agricultural soil may be possible. (Author) 33 refs.

  4. Investigation of olive mill wastewater (OMW) ozonation efficiency with the use of a battery of selected ecotoxicity and human toxicity assays

    Energy Technology Data Exchange (ETDEWEB)

    Siorou, Sofia [Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500 Patras (Greece); Vgenis, Theodoros T.; Dareioti, Margarita A. [Laboratory of Biochemical Engineering and Environmental Technology, Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, GR-26500 Patras (Greece); Vidali, Maria-Sophia; Efthimiou, Ioanna [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR-30100 Agrinio (Greece); Kornaros, Michael [Laboratory of Biochemical Engineering and Environmental Technology, Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, GR-26500 Patras (Greece); Vlastos, Dimitris [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR-30100 Agrinio (Greece); Dailianis, Stefanos, E-mail: sdailianis@upatras.gr [Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500 Patras (Greece)

    2015-07-15

    Highlights: • Raw- and ozonated-olive mill wastewater (OMW) toxic effects were investigated. • A battery of biological assays and toxic endpoints were used. • Ozonation for up to 300 min attenuates OMW toxicity, following phenols’ reduction. • Further OMW ozonation (>300 min) could enhance OMW toxicity. • OMW ozonation efficacy depends on OMW-derived intermediates and high NO{sub 3}{sup −}–N levels. - Abstract: The effects of olive mill wastewater (OMW) on a battery of biological assays, before and during the ozonation process, were investigated in order to assess ozone’s efficiency in removing phenolic compounds from OMW and decreasing the concomitant OMW toxicity. Specifically, ozonated-OMW held for 0, 60, 120, 300, 420, 540 min in a glass bubble reactor, showed a drastic reduction of OMW total phenols (almost 50%) after 300 min of ozonation with a concomitant decrease of OMW toxicity. In particular, the acute toxicity test primarily performed in the fairy shrimp Thamnocephalus platyurus (Thamnotoxkit F™ screening toxicity test) showed a significant attenuation of OMW-induced toxic effects, after ozonation for a period of 120 and in a lesser extent 300 min, while further treatment resulted in a significant enhancement of ozonated-OMW toxic effects. Furthermore, ozonated-OMW-treated mussel hemocytes showed a significant attenuation of the ability of OMW to cause cytotoxic (obtained by the use of NRRT assay) effects already after an ozonation period of 120 and to a lesser extent 300 min. In accordance with the latter, OMW-mediated oxidative (enhanced levels of superoxide anions and lipid peroxidation by-products) and genotoxic (induction of DNA damage) effects were diminished after OMW ozonation for the aforementioned periods of time. The latter was also revealed by the use of cytokinesis block micronucleus (CBMN) assay in human lymphocytes exposed to different concentrations of both raw- and ozonated-OMW for 60, 120 and 300 min. Those findings

  5. Biotechnological applications for the utilisation of wastes from palm oil mills

    Energy Technology Data Exchange (ETDEWEB)

    Cheah, S C; Ma, A N; Ooi, L C.L.; Ong, A S.H.

    1988-05-01

    The milling of oil palm fruits produces about two-and-a-half to three times as much effluent as oil does. It also generates a large amount of lignocellulosic wastes, mainly in the form of empty fruit bunches, press cake fibres and nut shell. Research efforts at PORIM have been directed towards the utilisation of these wastes as a means to solve the problem of environmental pollution as well as for the generation of economic returns for the mills. We have studied a thermophilic contact process for the anaerobic digestion of palm oil mill effluent and its potential for generating biogas for energy uses. Our work has also shown that the condensate derived from the fruit sterilisation process during milling is amenable to fermentation for the production of single cell protein (SCP) and exo-enzymes. The enzymes produced have been applied for oil clarification, oil recovery from press cake fibers and saccharification of the fibers for the production of sugar feedstocks. This paper will also introduce the concept of integrated waste management for the palm oil mill through the implementation of these technologies.

  6. Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens.

    Science.gov (United States)

    Gerasopoulos, Konstantinos; Stagos, Dimitrios; Kokkas, Stylianos; Petrotos, Konstantinos; Kantas, Dimitrios; Goulas, Panagiotis; Kouretas, Dimitrios

    2015-08-01

    In the present study, a ceramic membrane microfiltration method was used for the separation of two liquid products, the downstream permeate and the upstream retentate, from olive mill wastewater (OMWW). These liquid products were examined for their antioxidant activity by incorporating them into broilers' feed. Twenty four broilers 13 d old were divided into two feeding groups receiving supplementation with OMWW retentate or permeate for 37 d. Blood was drawn at 17, 27 and 37 d, while tissues (muscle, heart, liver) were collected at 37 d. The antioxidant effects were assessed by measuring oxidative stress biomarkers in blood and tissues. The results showed that broilers given feed supplemented with OMWW retentate or permeate had significantly lower protein oxidation and lipid peroxidation levels and higher total antioxidant capacity in plasma and tissues compared to control group. In both OMWW groups, catalase activity in erythrocytes and tissues was significantly increased compared to control group. OMWW retentate administration increased significantly GSH in erythrocytes in broilers with low GSH, although both OMWW products significantly reduced GSH in broilers with high GSH. Thus, it has been demonstrated for the first time that supplementation with OMWW processing residues could be used for enhancing broilers' redox status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Science.gov (United States)

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-01-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of OMW. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46–51% in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials. PMID:24790964

  8. The digester modification for biogas production from palm oil mill effluent by Fed-batch

    Science.gov (United States)

    Aznury, M.; Amin, J. M.; Hasan, A.; Harsyah, A.

    2018-03-01

    The purpose of this research is to biogas production in the digester modification equipment by Fed-batch of the palm oil mill effluent (POME) to determine the quality of POME after a treatment and the concentration of biogas that is formed every 24 hours within 10 days. The raw materials used are POME from PT Mitra Ogan, Tbk. In the initial stage is sedimentation process in the first digester tank at a flow rate 6 liters/minute and then observing the retention time of 24 hours. POME flowed into the second digester tank for fermentation process with the addition of active microbes seed every 24 hours to produce biogas. After the fermentation process is complete, POME flowed to third digester tank for water treatment stage before being released into the environment. COD content test values obtained after processing are 766, 362 and 350 mg/L, approximately. While the BOD value is 212.75; 125 and 110.9 mg/L, approximately. Biogas production for 10 days fermentation are 10.88% methane, 19.2% oxygen and 75.83% nitrogen, approximately.

  9. Characterization of Oily and Non-Oily Natural Sediments in Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Reem A. Alrawi

    2013-01-01

    Full Text Available Palm oil is one of the many vegetable oils widely consumed around the world. The production of palm oil requires voluminous amount of water with the concurrent generation of large amount of wastewater known as palm oil mill effluent (POME. POME is a mixture of water, oil, and natural sediments (solid particles and fibres.There is a dearth of information on the physical properties of these POME sediments. This study intends to distinguish the physical properties of oily and non-oily POME sediments which include sediment size, particle size distribution (PSD, sediment shape, sediment surface morphology, and sediment density. These characterizations are important for future researches because these properties have significant effects on the settling process that occurs either under natural gravity or by coagulations. It was found that the oily and non-oily POME sediments have different sizes with nonspherical irregular shapes, and because of that, the aspect ratio (AR and circularity shape factors were adopted to describe the shapes of these sediments. The results also indicate that the density of oily POME sediment decreases as the sediment size increases.

  10. Palm Oil Milling Wastes and Sustainable Development

    OpenAIRE

    A. C. Er; Abd. R.M. Nor; Katiman Rostam

    2011-01-01

    Problem statement: Palm oil milling generates solid wastes, effluent and gaseous emissions. The aim of this study is to assess the progress made in waste management by the Malaysian palm oil milling sector towards the path of sustainable development. Sustainable development is defined as the utilization of renewable resources in harmony with ecological systems. Inclusive in this definition is the transition from low value-added to higher value-added transformation of waste...

  11. 40 CFR 406.50 - Applicability; description of the normal rice milling subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the normal rice milling subcategory. 406.50 Section 406.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice...

  12. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead... copper, lead, zinc, gold, silver, or molybdenum bearing ores or any combination of these ores from open... pollutants discharged from mills that use the froth-flotation process alone, or in conjunction with other...

  13. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    Science.gov (United States)

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A Software for soil quality conservation at organic waste disposal areas: The case of olive mill and pistachio wastes.

    Science.gov (United States)

    Doula, Maria; Sarris, Apostolos; Papadopoulos, Nikos; Hliaoutakis, Aggelos; Kydonakis, Aris; Argyriou, Lemonia; Theocharopoulos, Sid; Kolovos, Chronis

    2016-04-01

    For the sustainable reuse of organic wastes at agricultural areas, apart from extensive evaluation of waste properties and characteristics, it is of significant importance, in order to protect soil quality, to evaluate land suitability and estimate the correct application doses prior waste landspreading. In the light of this precondition, a software was developed that integrates GIS maps of land suitability for waste reuse (wastewater and solid waste) and an algorithm for waste doses estimation in relation to soil analysis, and in case of reuse for fertilization with soil analysis, irrigation water quality and plant needs. EU and legislation frameworks of European Member States are also considered for the assessment of waste suitability for landspreading and for the estimation of the correct doses that will not cause adverse effects on soil and also to underground water (e.g. Nitrate Directive). Two examples of software functionality are presented in this study using data collected during two LIFE projects, i.e. Prosodol for landspreading of olive mill wastes and AgroStrat for pistachio wastes.

  15. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system.

    Science.gov (United States)

    Ntaikou, I; Valencia Peroni, C; Kourmentza, C; Ilieva, V I; Morelli, A; Chiellini, E; Lyberatos, G

    2014-10-20

    The operational efficiency of a two stage pilot scale system for polyhydroxyalkanoates (PHAs) production from three phase olive oil mill wastewater (OMW) was investigated in this study. A mixed anaerobic, acidogenic culture derived from a municipal wastewater treatment plant, was used in the first stage, aiming to the acidification of OMW. The effluent of the first bioreactor that was operated in continuous mode, was collected in a sedimentation tank in which partial removal of the suspended solids was taking place, and was then forwarded to an aerobic reactor, operated in sequential batch mode under nutrient limitation. In the second stage an enriched culture of Pseudomonas sp. was used as initial inoculum for the production of PHAs from the acidified waste. Clarification of the acidified waste, using aluminium sulphate which causes flocculation and precipitation of solids, was also performed, and its effect on the composition of the acidified waste as well as on the yields and properties of PHAs was investigated. It was shown that clarification had no significant qualitative or quantitative effect on the primary carbon sources, i.e. short chain fatty acids and residual sugars, but only on the values of total suspended solids and total chemical oxygen demand of the acidified waste. The type and thermal characteristics of the produced PHAs were also similar for both types of feed. However the clarification of the waste seemed to have a positive impact on final PHAs yield, measured as gPHAs/100g of VSS, which reached up to 25%. Analysis of the final products via nuclear magnetic resonance spectroscopy revealed the existence of 3-hydroxybutyrate (3HB) and 3-hydroxyoctanoate (HO) units, leading to the conclusion that the polymer could be either a blend of P3HB and P3HO homopolymers or/and the 3HB-co-3HO co-polymer, an unusual polymer occurring in nature with advanced properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Dahl, Olli; Master, Emma

    2016-01-01

    and in combination: total bleaching effluent, alkaline bleaching effluent, kraft evaporator condensate, and chemithermomechanical pulping effluent. The total bleaching effluent, consisting of the chlorine dioxide bleaching and alkaline bleaching effluents, exhibited the highest potential for organic matter...

  17. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    Science.gov (United States)

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols.

    Science.gov (United States)

    Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-06-05

    This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.

  19. Recycling and reuse of wastewater from uranium mining and milling

    International Nuclear Information System (INIS)

    Xu Lechang; Gao Jie; Zhang Xueli; Wei Guangzhi; Zhang Guopu

    2010-01-01

    Uranium mining/milling process, and the sources, recycling/reuse approach and treatment methods of process wastewater are introduced. The wastewater sources of uranium mining and milling include effluent, raffinate, tailings water, mine discharge, resin form converted solution, and precipitation mother liquor. Wastewater can be recycled/reused for leachant, eluent, stripping solution,washing solution and tailings slurry. (authors)

  20. Four marine-derived fungi for bioremediation of raw textile mill effluents

    Digital Repository Service at National Institute of Oceanography (India)

    Verma, A; Raghukumar, C.; Verma, P.; Shouche, Y.S.; Naik, C.G.

    microorganisms and high dilutions. We report here decolorization and detoxification of two raw textile effluents, with extreme variations in their pH and dye composition, used at 20-90% concentrations by each of the four marine-derived fungi. Textile effluent A...

  1. Comparison between different liquid-liquid and solid phase methods of extraction prior to the identification of the phenolic fraction present in olive oil washing wastewater from the two-phase olive oil extraction system

    Directory of Open Access Journals (Sweden)

    S. Jiménez-Herrera

    2017-09-01

    Full Text Available Phenolic compounds from olive mill wastewater (OMW, are characterized by a strong antioxidant activity. At the same time, they represent an environmental problem because they are difficult to degrade. The purpose of this work was to identify these biologically active compounds in the OMW from two-phase olive oil production in order to convert a polluting residue into a source of natural antioxidants. After optimizing the extraction process of phenolic compounds using liquid-liquid extraction (LLE and solid phase extraction (SPE methods, it was determined that the most appropriate sequence comprised a previous centrifugation to remove the lipid fraction, followed by liquid extraction with ethyl acetate or SPE. The most important compounds identified in olive oil washing wastewater (OOWW were tyrosol, hydroxytyrosol and succinic acid; whereas the ones in the wastewater derived from the washing of the olives (OWW were cresol, catechol, 4-methylcatechol, hydrocinnamic acid and p-hydroxy-hydrocinnamic acid.

  2. Comparison between different liquid-liquid and solid phase methods of extraction prior to the identification of the phenolic fraction present in olive oil washing wastewater from the two-phase olive oil extraction system

    International Nuclear Information System (INIS)

    Jiménez-Herrera, S.; Ochando-Pulido, J.M.; Martínez-Ferez, A.

    2017-01-01

    Phenolic compounds from olive mill wastewater (OMW), are characterized by a strong antioxidant activity. At the same time, they represent an environmental problem because they are difficult to degrade. The purpose of this work was to identify these biologically active compounds in the OMW from two-phase olive oil production in order to convert a polluting residue into a source of natural antioxidants. After optimizing the extraction process of phenolic compounds using liquid-liquid extraction (LLE) and solid phase extraction (SPE) methods, it was determined that the most appropriate sequence comprised a previous centrifugation to remove the lipid fraction, followed by liquid extraction with ethyl acetate or SPE. The most important compounds identified in olive oil washing wastewater (OOWW) were tyrosol, hydroxytyrosol and succinic acid; whereas the ones in the wastewater derived from the washing of the olives (OWW) were cresol, catechol, 4-methylcatechol, hydrocinnamic acid and p-hydroxy-hydrocinnamic acid. [es

  3. 40 CFR 406.40 - Applicability; description of the bulgur wheat flour milling subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the bulgur wheat flour milling subcategory. 406.40 Section 406.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Bulgur...

  4. 40 CFR 406.30 - Applicability; description of the normal wheat flour milling subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the normal wheat flour milling subcategory. 406.30 Section 406.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal...

  5. Environmental planning in uranium milling

    International Nuclear Information System (INIS)

    Bertello, L.F.

    1987-01-01

    Effluents from uranium milling in the Achala region in the province of Cordoba are studied. Liquids from lixiviation-recovery and from precipitation-washing of yellow-cake were analyzed. Separation of both liquids before treatment and disposal is recommended. Data of the hydric environment are presented specially for volumes of flow. The disposal criteria established by the provincial authorities are presented, and discussed. Calculations to define the effects on the environment of two types of effluents (the leaching effluent without treatment and the same after treating it) on two points of the rivers net, are given and the results discussed. A disposal policy for a treated effluent of mean composition is presented, based on two different amounts for the two phases of the river flux; the possible effects on two points of the net were also calculated. In the author's opinion, such policy will result in a disposal without a sensible damage in the receptor. (Author) [es

  6. Bench scale evaluation and economic assessment of ion exchange resins for the removal of radionuclides from uranium mill tailings effluents

    International Nuclear Information System (INIS)

    Lakshmanan, V.I.; Itzkovitch, I.J.

    1981-07-01

    The removal of <0.45 m radium 226 (soluble) from acid and alkaline mill tailings effluents to meet the Canadian provincial (Ontario and Saskatchewan) objective of <3 pCi/L using ion exchange has been studied. Stirred tank tests were used to screen potential solid ion exchangers for detailed testing in columns. Column tests on selected exchangers were carried out to determine breakthrough curves as a function of column throughput. An economic assessment of the process was carried out. Results obtained indicate that removal of soluble radium 226 to <3 pCi/L by ion exchange is technically feasible. However, if the solid exchangers are to be used on a once through basis the process is prohibitively expensive

  7. Recovery of soil properties after seedlings Inoculation with AM fungi and addition of composted olive mill waste in the regeneration of a heavy metal polluted environment

    Science.gov (United States)

    curaqueo, Gustavo; Schoebitz, Mauricio; Borie, Fernando; del Mar Alguacil, Maria; Caravaca, Fuensanta; Roldan, Antonio

    2014-05-01

    A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) on the establishment of Tetraclinis articulata and soil properties in a heavy metal polluted soil. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96% and 60% respectively. These treatments trended to improve the soils properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided G-mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs; because it promotes soil properties, a better performance of plants for supporting the stress in heavy-metal contaminated soils derived from mining process, and also can be a good way for olive mill wastes disposal.

  8. Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-07-01

    Full Text Available Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME, this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%. The objective of the research is to determine growth rate and biomass productivity in Chlorella Sp cultured in POME. Chlorella Sp was cultured in 20%, 50%, 70% POME using urea concentration 0.1gr/L (low nitrogen source and 1gr/l (high nitrogen source at flask disk, pH 6.8-7.2; aerated using aquarium pump and fluorescence lamp 3000-6000 lux as light. Medium was measured using spectrophotometer Optima Sp-300 OD at 680 wave length in 15 days to calculate specific growth rate. At end of cultivation, Chlorella sp was filtered and measured as dry weight. Result indicated that Chlorella sp at 50% POME 1gr/L urea showed higher specific growth rate (0.066/day. Factor affecting growth rate of microalgae is CNP ratio, POME concentration, and urea concentration.

  9. Impact of microwave pre-treatment on the batch anaerobic digestion of two-phase olive mill solid residue: a kinetic approach

    International Nuclear Information System (INIS)

    Rincon, B.; Gonzalez de Canales, M.; Martin, A.; Borja, R.

    2016-01-01

    The effect of a microwave (MW) pre-treatment on two-phase olive mill solid residue (OMSR) or alperujo with a view to enhancing its anaerobic digestibility was studied. The MW pre-treatment was carried out at a power of 800 W and at a targeted temperature of 50 °C using different heating rates and holding times. The following specific energies were applied: 4377 kJ·kg TS−1 (MW1), 4830 kJ·kg TS−1 (MW2), 7170 kJ·kg TS−1 (MW3) and 7660 kJ·kg TS−1 (MW4). The maximum methane yield, 395±1 mL CH4·g VSadded−1, was obtained for MW4. The effect of the pre-treatment on the kinetics of the process was also studied. The methane production curves generated during the batch tests showed a first exponential stage and a second sigmoidal stage for all the cases studied. In the first stage, the kinetic constant for the pre-treatment MW1 was 54.8% higher than that obtained for untreated OMSR. [es

  10. Application of waste stabilization pond's effluent on cultivation of roses (rosa damascena mill)

    International Nuclear Information System (INIS)

    Khan, M.A.; Shaukat, S.; Shahzad, A.; Ahmed, W.

    2011-01-01

    The study focuses on the use of Waste Stabilization Ponds (WSP) effluent for irrigation and also aims to compare the efficiency of effluent with the Hoagland solution. Results revealed that the number of flowers, size of flower and the petals per flower increased by the use of both Hoagland solution and treated effluent while the height of plant and the fresh weight of flowers were increased significantly by the Hoagland solution only. Moreover, the leaves showed high concentration of reducing and non-reducing sugars as compared to flowers whereas, only the leaves of plants which were treated by the ponds effluent had low content of reducing sugars as compared to leaves of untreated plants serving as controls. The variation in chlorophyll content was similar to that of reducing and non-reducing sugars. In addition, leaves of plants that were treated by pond's effluent showed highest concentration of total phenol content. It is concluded that treated effluent is as effective as Hoagland for the irrigation of rose. Additionally, the use of treated effluent for irrigation reduces the demand of fresh water and the use of inorganic fertilizers for the commercial production of roses. (author)

  11. AN OVERVIEW OF GAS-UPGRADING TECHNOLOGIES FOR BIOHYDROGEN PRODUCED FROM TREATMENT OF PALM OIL MILL EFFLUENT

    Directory of Open Access Journals (Sweden)

    IZZATI NADIA MOHAMAD

    2017-03-01

    Full Text Available To date, a high energy demand has led to massive research efforts towards improved gas-separation techniques for more energy-efficient and environmenttally friendly methods. One of the potential alternative energies is biogas produced from the fermentation of liquid waste generated from the oil-extraction process, which is known as palm oil mill effluent (POME. Basically, the gas produced from the POME fermentation process consists mainly of a CO2 and H2 gas mixture. CO2 is known as an anthropogenic greenhouse gas, which contributes towards the climate change phenomenon. Hence, it is crucial to determine a suitable technique for H2 separation and purification with good capability for CO2 capture, as this will reduce CO2 emission to the environment as well. This paper reviewed the current gas-separation techniques that consist of absorption, adsorption and a membrane in order to determine the advantages and disadvantages of these techniques towards the efficiency of the separation system. Crucial aspects for gas-separation techniques such as energy, economic, and environmental considerations are discussed, and a potential biohydrogen and biogas-upgrading technique for industrial POME application is presented and concluded in this paper. Based on the comparison on these aspects, water scrubbing is found to be the best technique to be used in the biogas-upgrading industry, followed by membrane and chemical scrubbing as well as PSA. Hence, these guidelines are justified for selecting the best gas-upgrading technique to be used in palm oil mill industry applications.

  12. Disposal of by-products in olive oil industry: waste-to-energy solutions

    International Nuclear Information System (INIS)

    Caputo, Antonio C.; Scacchia, Federica; Pelagagge, Pacifico M.

    2003-01-01

    Olive oil production industry is characterized by relevant amounts of liquid and solid by-products [olive mill wastewater (OMW) and olive husk (OH)], and by economical, technical and organizational constraints that make difficult the adoption of environmentally sustainable waste disposal approaches. In this context, waste treatment technologies aimed at energy recovery represent an interesting alternative. In the paper, a technical and economical analysis of thermal disposal plant solutions with energy recovery has been carried out. The considered plants enable the combined treatment of OMW and OH which, although penalizes the energy recovery, proves to be feasible and profitable in a future legislative scenario when stricter limitation on OMW disposal will force oil producers to bear high disposal costs. Results are compared by using economic performance measures, including revenues from produced energy and avoided disposal costs. A sensitivity and risk analysis is also performed in order to assess the economic profitability of the proposed solutions

  13. Integrated chemical plants at the pulp mill

    Energy Technology Data Exchange (ETDEWEB)

    Ehtonen, P.; Hurme, M.; Jaervelaeinen, M.

    1995-12-31

    The goal of this paper is to present how the chemical plants can be integrated to the pulp mill. The integration renders possible to balance the chemical consumptions. The total mass balance of a pulp mill with the incoming fuel material and the outgoing waste and flue gases are discussed. The balance figures are presented for the chemicals of the modern fibre line, which will produce fully bleached softwood pulp with an improved effluent quality. The main benefits are lower chemical and transportation costs. The principal over-all plant process block diagrams and process descriptions are presented. The presented info system provides real time information on process and production status at overall mill and department levels. (author)

  14. Assessment of Coriolopsis gallica-treated olive mill wastewater phytotoxicity on tomato plants.

    Science.gov (United States)

    Daâssi, Dalel; Sellami, Sahar; Frikha, Fakher; Rodriguez-Couto, Susana; Nasri, Moncef; Mechichi, Tahar

    2016-08-01

    The aim of the present study was to evaluate the phytotoxicity of olive mill wastewater (OMW) after being treated by the white-rot fungus Coriolopsis gallica. For this, the effect of irrigation with treated OMW (TOMW) and untreated OMW (UOMW) on tomato plants (Lycopersicon esculentum) for 3 weeks was studied. The control plants were irrigated with distilled water. Agronomic tests were performed in pot experiments in a greenhouse using the randomized complete block (RCB) experimental design. The relative leaf height (RLH), as a morphological parameter, and the content of total phenols in the roots and total chlorophyll [Cha + Chb] and reducing sugars in the leaves, as physiological parameters, were selected as responses of the experimental design. The results obtained showed that [Cha + Chb] in the leaves of tomato growth under TOMW was enhanced by 36.3 and 19.4 % compared to the plant growth under UOMW and to the controls, respectively. Also, reducing sugar concentrations were closed to those of the control plants, ranging from 0.424 to 0.678 g/L for the different dilutions tested. However, the plants irrigated with UOMW showed lower reducing sugar concentrations ranging from 0.042 to 0.297g/L. The optimum RLH (0.537) was observed in the plants irrigated with TOMW diluted at (1:4), this value being higher than that observed in the controls (0.438). Our study proved that the irrigation with TOMW significantly improved tomato growth and photosynthesis activity over those irrigated with UOMW. Optimization of TOMW as a fertilizer was obtained for a dilution of 1:4. From the obtained results, it can be concluded that OMW treated by C. gallica holds potential to be used as a fertilizer for tomato plants. Graphical Abstract ᅟ Please provide a caption for the graphical abstract.The graphical abstract is improved and sent as attachment Please replace it.

  15. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration.

    Science.gov (United States)

    Vietina, Michelangelo; Agrimonti, Caterina; Marmiroli, Nelson

    2013-12-15

    Extra virgin olive oil is frequently subjected to adulterations with addition of oils obtained from plants other than olive. DNA analysis is a fast and economic tool to identify plant components in oils. Extraction and amplification of DNA by PCR was tested in olives, in milled seeds and in oils, to investigate its use in olive oil traceability. DNA was extracted from different oils made of hazelnut, maize, sunflower, peanut, sesame, soybean, rice and pumpkin. Comparing the DNA melting profiles in reference plant materials and in the oils, it was possible to identify any plant components in oils and mixtures of oils. Real-Time PCR (RT-PCR) platform has been added of the new methodology of high resolution melting (HRM), both were used to analyse olive oils mixed with different percentage of other oils. Results showed HRM a cost effective method for efficient detection of adulterations in olive oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Acephate and buprofezin residues in olives and olive oil.

    Science.gov (United States)

    Cabras, P; Angioni, A; Garau, V L; Pirisi, F M; Cabitza, F; Pala, M

    2000-10-01

    Field trials were carried out to study the persistence of acephate and buprofezin on olives. Two cultivars, pizz'e carroga and pendolino, with very large and small fruits respectively were used. After treatment, no difference was found between the two pesticide deposits on the olives. The disappearance rates, calculated as pseudo first order kinetics, were similar for both pesticides (on average 12 days). Methamidophos, the acephate metabolite, was always present on all olives, and in some pendolino samples it showed higher residues than the maximum residue limit (MRL). During washing, the first step of olive processing, the residue level of both pesticides on the olives did not decrease. After processing of the olives into oil, no residues of acephate or methamidophos were found in the olive oil, while the residues of buprofezin were on average four times higher than on olives.

  17. Olive mill wastewater evaporation management using PCA method Case study of natural degradation in stabilization ponds (Sfax, Tunisia).

    Science.gov (United States)

    Jarboui, Raja; Sellami, Fatma; Azri, Chafai; Gharsallah, Néji; Ammar, Emna

    2010-04-15

    Olive mill wastewater (OMW) evaporation ponds management was investigated in five serial evaporation open-air multiponds of 50 ha located in Sfax (Tunisia). Physico-chemical parameters and microbial flora evolution were considered. Empirical models describing the OMW characteristic changes with the operation time were established and Principal Component Analysis (PCA) described the correlation between physico-chemical and biological parameters. COD, BOD, total solids, polyphenols and electrical conductivity exhibited first-order models. Four groups exhibited high correlations. The first included temperature, density, COD, TSS, TS, BOD, VS, TOC, TKN, polyphenols and minerals. The second group was made up of yeasts and moulds. The third group was established with phenolic compounds, total sugars, fats, total phosphorous, NH(4)(+) and pH. The fourth group was constituted by exclusively aerobic bacteria. Bacterial-growth toxic effect was exhibited by high organic load, ash content and polyphenols, whereas moulds and yeasts were more adapted to OMW. During the storage, all the third group parameter values decreased and were inversely related to the others. In the last pond, COD, BOD, TS and TSS rates were reduced by 40%, 50%, 50% and 75% respectively. The evaporation and the biological activity were the main processes acting, predicting the OMW behavior during evaporation in air-open ponds. 2009 Elsevier B.V. All rights reserved.

  18. Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium

    Directory of Open Access Journals (Sweden)

    Aliyu Salihu

    2014-12-01

    Full Text Available The ability of Candida cylindracea lipase produced using palm oil mill effluent (POME as a basal medium to catalyze the esterification reaction for butyl butyrate formation was investigated. Butyric acid and n-butanol were used as substrates at different molar ratios. Different conversion yields were observed according to the affinity of the produced lipase toward the substrates. The n-butanol to butyric acid molar ratio of 8 and lipase concentration of 75 U/mg gave the highest butyl butyrate formation of 63.33% based on the statistical optimization using face centered central composite design (FCCCD after 12 h reaction. The esterification potential of the POME based lipase when compared with the commercial lipase from the same strain using the optimum levels was found to show a similar pattern. It can be concluded therefore that the produced lipase possesses appropriate characteristics to be used as a biocatalyst in the esterification reactions for butyl butyrate formation.

  19. Palm oil mill effluent and municipal wastewater co-treatment by zeolite augmented sequencing batch reactors: Turbidity removal

    Science.gov (United States)

    Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md

    2017-10-01

    Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.

  20. Fabrication and application of boron doped diamond BDD electrode in olive mill wastewater treatment in Jordan

    Directory of Open Access Journals (Sweden)

    Inshad Jum'h

    2017-12-01

    Full Text Available A boron doped diamond (BDD electrode was employed in an electrochemical reactor to oxidize the phenolic content of Jordanian olive mill wastewater. The BDD anode was fabricated using hot filament chemical vapor deposition on niobium and the morphology of the BDD electrode was characterized using an atomic force microscope. Then, electrolysis batch runs were carried out at laboratory scale to test the effect of different process parameters, namely, initial chemical oxygen demand (COD load (72.9, 33.8, and 0.18 g/L, the addition of Na2SO4 as supporting electrolyte, and adding NaCl along with Na2SO4, on the efficiency of the treatment process. The results were reported in terms of COD, color and turbidity removal, and pH variation. The experiments revealed that electrochemical oxidation using BDD significantly reduced the COD by 85% with no supporting electrolytes. It was observed that adding Na2SO4 with NaCl brought the COD removal to higher than 90% after 7 hours of treatment for COD loads of 72.9 and 33.8 g/L, and after 2 hours for a COD load of 0.18 g/L. Likewise, color was completely removed regardless of the initial COD load. The turbidity for samples with 72.9 and 33.8 g/L as COD load reached a minimal value of 2.5 and 1 NTU respectively.

  1. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products

    Directory of Open Access Journals (Sweden)

    Julio Berbel

    2018-01-01

    Full Text Available By-products and waste from olive production (agriculture and the olive oil industry (mills and refineries are an important environmental issue in Mediterranean areas. Industrial waste and by-products contain highly valuable components that can also be phytotoxic. This article reviews recent research on the valorisation of olive by-products under the bioeconomy strategy. The alternatives are classified according to the ‘bioeconomy value pyramid’, which prioritises higher value uses over the current energy and compost valorisation. Special attention is paid to the use of these by-products for animal feed that can be improved by reducing the content of saturated fatty acids (SFAs and increase the polyunsaturated fatty acids amount considered beneficial in response to their use; this makes the food healthier for humans while simultaneously reducing feeding costs and the environmental impact of livestock.

  2. Application of Acid Cracking and Fenton Processes inTreating Olive Mill Wastewater

    Directory of Open Access Journals (Sweden)

    Majid Aliabadi

    2006-03-01

    Full Text Available In recent years, the growth in the industries of olive oil extraction has brought about a number of environmental problems. The waste water resulting from olive oil extraction can not be naturally degraded due to the presence of phenol, volatile fatty acids, catchin, and other recalcitrants.In recent years advanced oxidation processes based on hydroxyl radical are paid special attention by scientific, research and industrial centers to degrade the pollutants. In this study, a combination of acid cracking and advanced oxidation process in terms of Fenton process have been studied. Results showed that acid cracking can remove 97, 47, 30, 63 and 57 percent of Turbidity, COD, Total Phenols, Color and Aromaticity, respectively. Fenton process in pH=3 at optimal conditions can remove 57, 97, 18 and 32 percent of COD, Total Phenols, Color and Aromaticity, respectively. Necessary time of reaction was 4 hrs and optimum concentration of H2O2 and Fe2+ ions was determined 0. 5 M and 0.02 M, respectively. Increasing temperature in the range of 25-35°C and type of iron used(ferric or ferrous has no considerable effect in  the efficiency of the process.

  3. Treatment and decolorization of biologically treated Palm Oil Mill Effluent (POME) using banana peel as novel biosorbent.

    Science.gov (United States)

    Mohammed, Rafie Rushdy; Chong, Mei Fong

    2014-01-01

    Palm Oil Mill Effluent (POME) treatment has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The main aim of this work is to evaluate the potential of applying natural, chemically and thermally modified banana peel as sorbent for the treatment of biologically treated POME. Characteristics of these sorbents were analyzed with BET surface area and SEM. Batch adsorption studies were carried out to remove color, total suspended solids (TSS), chemical oxygen demand (COD), tannin and lignin, and biological oxygen demand (BOD) onto natural banana peel (NBP), methylated banana peel (MBP), and banana peel activated carbon (BPAC) respectively. The variables of pH, adsorbent dosage, and contact time were investigated in this study. Maximum percentage removal of color, TSS, COD, BOD, and tannin and lignin (95.96%, 100%, 100%, 97.41%, and 76.74% respectively) on BPAC were obtained at optimized pH of 2, contact time of 30 h and adsorbent dosage of 30 g/100 ml. The isotherm data were well described by the Redlich-Peterson isotherm model with correlation coefficient of more than 0.99. Kinetic of adsorption was examined by Langergren pseudo first order, pseudo second order, and second order. The pseudo second order was identified to be the governing mechanism with high correlation coefficient of more than 0.99. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes.

    Science.gov (United States)

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2010-07-01

    Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Treatment of Palm Oil Mill Effluent (POME) by Using Electrocoagulation as an Alternative Method

    International Nuclear Information System (INIS)

    Suzana Che Sayuti; Abdul Aziz Mohd Azoddein

    2015-01-01

    The treatment of palm oil mill effluent (POME) is a crucial stage to prevent from environmental pollution. An alternative method should be implemented to replace the conventional wastewater treatment method. Concentration required by the Department of Environment (DOE) is 200 mg/L for chemical oxygen demand (COD) and 100 mg/L for total suspended solid (TSS). Electrocoagulation was used to reduce the amount of COD and TSS in POME. The performance of COD and TSS removal using electrocoagulation was scrutinized. Electrocoagulation reactor was used and the optimum operating parameters were determined. The voltage parameter was manipulated in order to identify the effect on the removal efficiency of COD and TSS. The highest removal efficiency obtained were 95.71 % for COD and 99.25 % for TSS in which COD reduced from 4900 mg/L to 210 mg/L meanwhile TSS from 4000 mg/L to 30 mg/L. The final COD almost meets the requirement of DOE of 200 mg/L while TSS fulfil the requirement of 100 mg/L for standard B. The highest efficiency obtained at optimum pH 7.44, electrocoagulation time 25 min and voltage of 100 V by using aluminium electrodes. This method was found to be efficient and capable to reduce time of treatment compared to standard conventional method. (author)

  6. Anaerobic digestion of palm oil mill effluent (POME) using bio-methane potential (BMP) test

    Science.gov (United States)

    Aziz, Nur Izzah Hamna A.; Hanafiah, Marlia M.

    2018-04-01

    Biogas is a promising sustainable and renewable energy alternative to reduce the dependence on fossil fuel. In Malaysia, the conversion of palm oil mill effluent (POME) to bioenergy has recently been expanded due to its high potential in generating energy. However, without a proper treatment and management, POME could be harmful to environment because it emits greenhouse gas emissions into the atmosphere and could also pollutes the watercourses if discharge directly due to the high acidity and chemical oxygen demand (COD) content. Many initiatives have been taken by the government towards sustainable development. Therefore, more efforts need to be practiced to improve and upscale the technology for a better waste management. In this study, the anaerobic digestion of POME was carried out using Bio-methane potential (BMP) test in batch and laboratory scales. Physicochemical characteristics and the biogas production of POME were measured. The BMP test under mesophilic condition was conducted for 23 consecutive days to measure the biogas production. The POME produced 721.3 cm3 of biogas by using anaerobic sludge as inoculum. The results also found that the methane (CH4) and carbon dioxide (CO2) gases produced with 360.65 cm3 and 288.52 cm3, respectively.

  7. Comamonas sp. EB172 isolated from digester treating palm oil mill ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... palm oil mill effluent as potential polyhydroxyalkanoate ... Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, ... industry is actively looking for ways to minimize the ... methane gas.

  8. Fate and Prediction of Phenolic Secoiridoid Compounds throughout the Different Stages of the Virgin Olive Oil Making Process.

    Science.gov (United States)

    Fregapane, Giuseppe; Salvador, M Desamparados

    2017-08-03

    The evolution of the main phenolic secoiridoid compounds throughout the different stages of the virgin olive oil making process-crushing, malaxation and liquid-solid separation-is studied here, with the goal of making possible the prediction of the partition and transformation that take place in the different steps of the process. The concentration of hydroxytyrosol secoiridoids produced under the different crushing conditions studied are reasonably proportional to the intensity of the milling stage, and strongly depend on the olive variety processed. During malaxation, the content of the main phenolic secoiridoids is reduced, especially in the case of the hydroxytyrosol derivatives, in which a variety-dependent behaviour is observed. The prediction of the concentration of phenolic secoiridoids finally transferred from the kneaded paste to the virgin olive oil is also feasible, and depends on the phenolic content and amount of water in the olive paste. The determination of the phenolic compounds in the olive fruit, olive paste and olive oil has been carried out by LC-MS (Liquid-Chromatography Mass-Spectrometry). This improved knowledge could help in the use of more adequate processing conditions for the production of virgin olive oil with desired properties; for example, higher or lower phenolic content, as the amount of these minor components is directly related to its sensory, antioxidant and healthy properties.

  9. Solid carbon dioxide to promote the extraction of extra-virgin olive oil

    Energy Technology Data Exchange (ETDEWEB)

    Zinnai, A.; Venturi, F.; Quartacci, V.F.; Sanmartin, C.; Favati, F.; Andrich, G.

    2016-07-01

    The use of solid carbon dioxide (dry ice) as a cryogen is widespread in the food industry to produce high quality wines, rich in color and perfumes. The direct addition of carbon dioxide to olives in the solid state before milling represents a fundamental step which characterizes this innovative extraction system. At room temperature conditions solid carbon dioxide evolves directly into the air phase (sublimation), and the direct contact between the cryogen and the olives induces a partial solidification of the cellular water inside the fruits. Since the volume occupied by water in the solid state is higher than that in the liquid state, the ice crystals formed are incompatible with the cellular structure and induce the collapse of the cells, besides promoting the diffusion of the cellular substances in the extracted oil, which is thus enriched with cellular metabolites characterized by a high nutraceutical value. Furthermore, a layer of CO2 remains over the olive paste to preserve it from oxidative degradation. The addition of solid carbon dioxide to processed olives induced a statistically significant increase in oil yield and promoted the accumulation of tocopherols in the lipid phase, whereas a not significant increase in the phenolic fraction of the oil occurred. (Author)

  10. The Effect of Fe Concentration on the Quality and Quantity of Biogas Produced From Fermentation of Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Irvan Matseh

    2012-10-01

    Full Text Available The purpose of this research is to study the effect of Fe concentration as a trace metal on the quality and quantity of biogas produced from the fermentation of palm oil mill effluent (POME. Raw POME as feed was obtained from one of the palm oil mills belong to PTPN IV, other materials used were hydrochloric acid, sodium bicarbonate, and trace metals. Observed variables were volume of biogas, concentration of Fe in raw POME and biodigester, degradation rate of total solid (TS and volatile solid (VS, M-Alkalinity, pH, H2S and CO2 concentration in biogas at hydraulic retention time (HRT 6 days. Before HRT of 6 days reached, initial trace metal compositions were 25.2 mg/L of Fe, 0.42 mg/L of Co, and 0.49 mg/L of Ni. After that, composition of trace metal were consisted only Co and Ni. The results showed that Fe as a trace metal did not affect the production or quantity of biogas. When Fe concentration reached over to 330 mg/L then concentration of CH4, total solid (TS and volatile solid (VS decreased. Moreover, the higher the Fe contents the smaller of H2S production. Fe content in POME from the same mill had different concentration, as the consequence biogas with different H2S concentrations were produced as well. Thus, Fe in the trace metals is no longer required if high concentration of Fe already existed in POME because it can reduce the formation of H2S. In addition, too high concentration of Fe in POME can be toxic for microorganism in the fermentation of biogas.

  11. Extraction of interesting organic compounds from olive oil waste

    Directory of Open Access Journals (Sweden)

    Jiménez, Ana

    2006-03-01

    Full Text Available In the olive fruits there is a large amount of bioactive compounds and substances of high interest. Many of them are known by owing health beneficial properties that contribute to protective effect of the virgin olive oil. During olive oil processing, most of them remain in the olive oil wastes. Although, olive-mill wastewater (OMWW or “alpechin”, olive oil cake (OOC, and the new by-product, known as “alperujo” in Spain and generated by the two-phase extraction process, represent a major disposal and potentially severe pollution problem for the industry, they are also promising source of substances of high value. This review summarises the last knowledge on the utilisation of residual products, with more than 90 references including articles and patents, which are promising with regard to future application. All these investigations have been classified into two options, the recovery of valuable natural constituents and the bioconversion into useful products.Existe una gran cantidad de compuestos bioactivos y de alto interés presentes en la aceituna. Muchos de ellos se conocen por las cualidades beneficiosas que aportan al aceite de oliva virgen. La mayoría permanecen en mayor cantidad en el subproducto de la extracción del aceite. Aunque, el alpechín, el orujo y el nuevo subproducto de extracción del aceite en dos fases, alperujo, representan un problema potencial de vertido y contaminación, también son una prometedora fuente de compuestos de alto valor. Esta revisión resume lo último que se conoce sobre la utilización de estos residuos en el campo anteriormente mencionado, con más de 90 referencias que incluyen artículos y patentes. Todas estas investigaciones han sido clasificadas en cuanto a la recuperación de constituyentes naturalmente presentes o en cuanto a la bioconversión de los residuos en sustancias de interés.

  12. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.

    Science.gov (United States)

    Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2015-02-01

    A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19 g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27 l/g COD, and the biogas production rate per reactor volume was 6.23 l/l d, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9 g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Heavy-metal contamination of agricultural soils irrigated with industrial effluents

    International Nuclear Information System (INIS)

    Nabi, G.; Ashraf, M.; Aslam, M. R.

    2001-01-01

    Pakistan is facing a thread of degradation of water and land-resources by industrial effluents. To evaluated the suitability of these effluents as a source of irrigation for agriculture and the study their effects on soil chemical properties, experiments were conducted in the industrial area of Sheikhupura, where effluent from Paper and Board Mill (PBM), Leather Industry (LI) and Fertilizer Industry (FI) were being used for irrigation. At each site, two fields were selected, one irrigated with industrial effluents and the other with tube-well/canal water. The soil samples were collected and analyzed for pH, ECe, SAR and for heavy metals, such as Cu, Cd, Cr, Zn, Pb, Mn, Fe, Al and Ni. Soil receiving effluent from LI showed higher ECe and SAR values, as compared to the soils receiving other effluents. The concentration of Al was high in the soil irrigated with LI effluent. The Mn and Fe contents were higher in soils irrigated with PBM effluent. Effluent from LI is not fit for irrigation, since its recipient soil showed high concentration of Cr and also high sodicity values. Except Cr, the heavy metals were not of environmental concern. (author)

  14. Influence of Nutrient Impregnated into Zeolite Addition on Anaerobic Digestion of Palm Oil Mill Effluent (POME)

    Science.gov (United States)

    Mellyanawaty, M.; Chusna, F. M. A.; Sudibyo, H.; Nurjanah, N.; Budhijanto, W.

    2018-03-01

    Palm oil mill effluent (POME) was wastewater generated from palm oil milling activities which was brownish liquid, acidic with pH 3-4, and contained soluble materials which were hazardous to the environment. It was characterized by high organic loading (COD 40,000–60,000 mg/L). According to its characteristics, POME was identified as a potential source to generate renewable energy through anaerobic digestion. In other words, a combination of wastewater treatment and renewable energy production would be an additional advantage to the palm oil industries. Methanogenesis was the rate limiting step in anaerobic digestion. In the conventional anaerobic digester, it required large reactors and long retention time. The addition of microbial immobilization media was to improve anaerobic reactor performance in term of higher organic removal and methane production. Additionally, better performance could lead to reduction of reactor volume and shorter retention time in high rate anaerobic digester. The loading of essential microorganism nutrient into the media might increase the affinity of bacteria to attach and grow on the media surface. Activating or inhibition effects of natural and modified zeolite addition in anaerobic digestion of POME was studied in batch reactors using erlenmeyer of 1,000 mL at COD concentrations of about 8,000 mg/L. Zeolite was impregnated with nickel and magnesium at concentrations of 0.0561 mg Ni/g zeolite and 0.0108 mg Mg/g zeolite. The effect of the different zeolite addition was determined by the measurement of soluble COD (sCOD), Volatile Fatty Acids (VFAs) and biogas production. Greater effect of modified zeolite was observed in zeolite impregnated with nickel with a 54% increase of biogas production. Meanwhile, the modified zeolite impregnated with magnesium had no positive impact to the methanogenic bacteria activities.

  15. Effect of olive mill wastewater on growth and bulb production of tulip plants infected by bulb diseases

    Energy Technology Data Exchange (ETDEWEB)

    Lykas, C.; Vegalas, I.; Gougaulias, N.

    2014-06-01

    The effect of olive mill wastewater (OMW) on growth of tulip plants infected by common diseases as well as on their new bulbs production is analyzed in this work. Filtered and sterilized OMW was tested as growth inhibitor of Botrytis tulipae, Fusarium oxysporum, Aspergillus niger and Penicillium spp. mycelium. The effect of filtered OMW on uninfected tulip bulbs was also tested as well as on the growth of bulbs infected with the fungus B. tulipae and A. niger in vivo. The mycelium length, severity of scab-like lesions, plant height (PH), fresh mass (FM) and dry mass (DM) of plants and production of new bulbs were recorded. Only the filtered OMW inhibited the in vitro mycelium growth of all tested fungi. However filtered OMW caused infections when it sprayed on uninfected bulbs, malformations on 30% of the plants grown from these bulbs and decrease PH, FM and DM as well as new bulbs production at 75%, 72.4%, 79.1% and 50% respectively. The treatment of B. tulipae infected bulbs with filtered OMW reduced further the PH, FM, DM and the production of new bulbs in 92.1%, 81.4%, 78.7% and 97% respectively. In contrast the treatment of infected bulbs by B. tulipae + A. niger with filtered OMW did not affect PH, FM and the number of new bulbs produced and significantly improved plants DM and the mass of new bulbs. (Author)

  16. Effect of olive mill wastewater on growth and bulb production of tulip plants infected by bulb diseases

    Directory of Open Access Journals (Sweden)

    Christos Lykas

    2014-02-01

    Full Text Available The effect of olive mill wastewater (OMW on growth of tulip plants infected by common diseases as well as on their new bulbs production is analyzed in this work. Filtered and sterilized OMW was tested as growth inhibitor of Botrytis tulipae, Fusarium oxysporum, Aspergillus niger and Penicillium spp. mycelium. The effect of filtered OMW on uninfected tulip bulbs was also tested as well as on the growth of bulbs infected with the fungus B. tulipae and A. niger in vivo. The mycelium length, severity of scab-like lesions, plant height (PH, fresh mass (FM and dry mass (DM of plants and production of new bulbs were recorded. Only the filtered OMW inhibited the in vitro mycelium growth of all tested fungi. However filtered OMW caused infections when it sprayed on uninfected bulbs, malformations on 30% of the plants grown from these bulbs and decrease PH, FM and DM as well as new bulbs production at 75%, 72.4%, 79.1% and 50% respectively. The treatment of B. tulipae infected bulbs with filtered OMW reduced further the PH, FM, DM and the production of new bulbs in 92.1%, 81.4%, 78.7% and 97% respectively. In contrast the treatment of infected bulbs by B. tulipae + A. niger with filtered OMW did not affect PH, FM and the number of new bulbs produced and significantly improved plants DM and the mass of new bulbs.

  17. Characterization and seasonal variation of the quality of virgin olive oil of the Throumbolia and Koroneiki varieties from Southern Greece

    Energy Technology Data Exchange (ETDEWEB)

    Vekiari, S. A.; Oreopoulou, V.; Kourkaoutas, Y.; Kamoun, N.; Msallem, M.; Psimouli, V.; Arapoglou, D.

    2010-07-01

    Extra virgin olive oil was produced from olives of the two main varieties cultivated in the region of Rhytmaton in the Greek island of Crete named Throumbolia, and Koroneiki. The former is very famous due to the natural way of fruit debittering, while the latter is the most common olive variety cultivated in Northern Greece. The olives were harvested at three successive stages of ripening according to their skin color and the extra virgin olive oil was extracted using an experimental olive oil extraction mill at 30 degree centigrade. Peroxide value, UV absorption, acidity, fatty acid content and total polyphenols were measured and the contents of tyrosol, hydroxytyrosol 3,4- DHPEA-EDA, p-HPEA-EDA and 3,4-DHPEA-EA were determined by HPLC. The sterol fraction and the volatile component profile were determined by GC and SPME GC/MS, respectively. Throumbolia olive oil presented an extremely higher content of {beta}-sitosterol and linoleic acid (n6) in comparison to the Koroneiki variety. The concentration of linoleic acid decreased in olive oils produced from both varieties in contrast to oleic acid which increased at the same time. Furthermore, the content of OH-tyrosol was higher, while the content of 3, 4-DHPEA-EDA and the total polyphenols was lower in Throumbolia olive oil than in olive oil produced from the Koroneiki variety. In general, significant differences were observed in all parameters between the olive oils produced from the two varieties during different stages of maturation. (Author) 41 refs.

  18. Polishing of treated palm oil mill effluent (POME) from ponding system by electrocoagulation process.

    Science.gov (United States)

    Bashir, Mohammed J K; Mau Han, Tham; Jun Wei, Lim; Choon Aun, Ng; Abu Amr, Salem S

    2016-01-01

    As the ponding system used to treat palm oil mill effluent (POME) frequently fails to satisfy the discharge standard in Malaysia, the present study aimed to resolve this problem using an optimized electrocoagulation process. Thus, a central composite design (CCD) module in response surface methodology was employed to optimize the interactions of process variables, namely current density, contact time and initial pH targeted on maximum removal of chemical oxygen demand (COD), colour and turbidity with satisfactory pH of discharge POME. The batch study was initially designed by CCD and statistical models of responses were subsequently derived to indicate the significant terms of interactive process variables. All models were verified by analysis of variance showing model significances with Prob > F < 0.01. The optimum performance was obtained at the current density of 56 mA/cm(2), contact time of 65 min and initial pH of 4.5, rendering complete removal of colour and turbidity with COD removal of 75.4%. The pH of post-treated POME of 7.6 was achieved, which is suitable for direct discharge. These predicted outputs were subsequently confirmed by insignificant standard deviation readings between predicted and actual values. This optimum condition also permitted the simultaneous removal of NH3-N, and various metal ions, signifying the superiority of the electrocoagulation process optimized by CCD.

  19. Antioxidant activity of oregano, parsley, and olive mill wastewaters in bulk oils and oil-in-water emulsions enriched in fish oil.

    Science.gov (United States)

    Jimenez-Alvarez, D; Giuffrida, F; Golay, P A; Cotting, C; Lardeau, A; Keely, Brendan J

    2008-08-27

    The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products.

  20. Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste.

    Science.gov (United States)

    Cabrera, A; Cox, Lucia; Velarde, P; Koskinen, William C; Cornejo, Juan

    2007-06-13

    The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (alperujo) on soil sorption-desorption, degradation, and leaching of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and terbuthylazine [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine], two herbicides widely used in olive crops. The soils used in this study were a sandy soil and a silty clay soil from two different olive groves. The sandy soil was amended in the laboratory with fresh (uncomposted) alperujo at the rate of 10% w/w, and the silty clay soil was amended in the field with fresh alperujo at the rate of 256 kg per tree during 4 years and in the laboratory with fresh or composted alperujo. Sorption of both herbicides increased in laboratory-amended soils as compared to unamended or field-amended soils, and this process was less reversible in laboratory-amended soils, except for diuron in amended sandy soil. Addition of alperujo to soils increased half-lives of the herbicides in most of the soils. Diuron and terbuthylazine leached through unamended sandy soil, but no herbicide was detected in laboratory-amended soil. Diuron did not leach through amended or unamended silty clay soil, whereas small amounts of terbuthylazine were detected in leachates from unamended soil. Despite their higher sorption capacity, greater amounts of terbuthylazine were found in the leachates from amended silty clay soils. The amounts of dissolved organic matter from alperujo and the degree of humification can affect sorption, degradation, and leaching of these two classes of herbicides in soils. It appears that adding alperujo to soil would not have adverse impacts on the behavior of herbicides in olive production.

  1. Comamonas sp. EB172 isolated from digester treating palm oil mill ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... palm oil mill effluent as potential polyhydroxyalkanoate. (PHA) producer ... modifications to old ones to reduce the environmental impact of ... In this study, sludge was obtained from open digester tank (ODT) treating POME at ...

  2. Performance Evaluation on Otto Engine Generator Using Gasoline and Biogas from Palm Oil Mill Effluent

    Science.gov (United States)

    Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB

    2017-06-01

    Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).

  3. Phytoremediation Potential of Vetiver System Technology for Improving the Quality of Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Negisa Darajeh

    2014-01-01

    Full Text Available Palm oil mill effluent (POME, a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST. This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD and chemical oxygen demand (COD. In this study, two different concentrations of POME (low and high were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.

  4. Olive paste oil content on a dry weight basis (OPDW): an indicator for optimal harvesting time in modern olive orchards

    Energy Technology Data Exchange (ETDEWEB)

    Zipori, I.; Bustan, A.; Kerem, Z.; Dag, A.

    2016-07-01

    In modern oil olive orchards, mechanical harvesting technologies have significantly accelerated harvesting outputs, thereby allowing for careful planning of harvest timing. While optimizing harvest time may have profound effects on oil yield and quality, the necessary tools to precisely determine the best date are rather scarce. For instance, the commonly used indicator, the fruit ripening index, does not necessarily correlate with oil accumulation. Oil content per fruit fresh weight is strongly affected by fruit water content, making the ripening index an unreliable indicator. However, oil in the paste, calculated on a dry weight basis (OPDW), provides a reliable indication of oil accumulation in the fruit. In most cultivars tested here, OPDW never exceeded ca. 0.5 g·g–1 dry weight, making this threshold the best indicator for the completion of oil accumulation and its consequent reduction in quality thereafter. The rates of OPDW and changes in quality parameters strongly depend on local conditions, such as climate, tree water status and fruit load. We therefore propose a fast and easy method to determine and monitor the OPDW in a given orchard. The proposed method is a useful tool for the determination of optimal harvest timing, particularly in large plots under intensive cultivation practices, with the aim of increasing orchard revenues. The results of this research can be directly applied in olive orchards, especially in large-scale operations. By following the proposed method, individual plots can be harvested according to sharp thresholds of oil accumulation status and pre-determined oil quality parameters, thus effectively exploiting the potentials of oil yield and quality. The method can become a powerful tool for scheduling the harvest throughout the season, and at the same time forecasting the flow of olives to the olive mill. (Author)

  5. Matter transfer during virgin olive oil elaboration

    Directory of Open Access Journals (Sweden)

    Gómez Herrera, Carlos

    2007-06-01

    Full Text Available In the course of the process of elaboration of virgin olive oil (whose main stages are crushing, malaxation and centrifugation the transfer of several minor components to the triacylglycerol constituent of the oily globules originally present in the cells of the fruit mesocarp is produced. Such minor components are chemical species present in the olive fruits, as well as those resulting from chemical or enzymatic processes which take place in the olive paste upon crushing. In this paper several types of transferable minor components, as well as those parameters affecting the rates of transfer are studied.Geometric and physical variations of interfacial regions between the oil and other systems in contact with it are discussed. These systems are olive vegetation water, olive pulp components, and fragments of the woody endocarp, as well as the atmospheric air and the tools and equipment of the oil mill.This article concludes with some considerations about the improvements of virgin olive oils achieved by controlling the transfer of minor components.Durante la elaboración del aceite de oliva virgen (cuyas principales etapas son molturación, batido y centrifugación se producen transferencias de diversos componentes menores a los triacilgliceroles originalmente presentes en los glóbulos oleosos de las células del mesocarpio de los frutos. Estos componentes menores son especies químicas presentes en las aceitunas, así como especies resultantes de procesos químicos o enzimáticos que se producen en la pasta a partir de la molturación. En este artículo se estudian diversos tipos de componentes menores transferibles, así como aquellos parámetros que afectan sus velocidades de transferencia.Se discuten las variaciones geométricas y físicas de las regiones interfaciales situadas entre el aceite y los otros sistemas en contacto con el mismo. Estos sistemas son el agua de vegetación, los componentes de la pulpa y los fragmentos de endocarpio

  6. Surface water contamination by uranium Mining/Milling activities in Northern guangdong province, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin; Song, Gang; Chen, Yongheng; Zhu, Li [Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou (China); Liu, Juan [Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou (China); Department of Geosciences, National Taiwan University, Taipei (China); Li, Hongchun [Department of Geosciences, National Taiwan University, Taipei (China); Xiao, Tangfu [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (China); Qi, Jianying [South China Institute of Environmental Science, Ministry of Environmental Protection, Guangzhou (China)

    2012-12-15

    The northern region of Guangdong Province, China, has suffered from the extensive mining/milling of uranium for several decades. In this study, surface waters in the region were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) for the concentrations of uranium (U), thorium (Th), and non-radioactive metals (Fe, Mn, Mg, Li, Co, Cu, Ni, and Zn). Results showed highly elevated concentrations of the studied radionuclides and metals in the discharged effluents and the tailing seepage of the U mining/milling sites. Radionuclide and heavy metal concentrations were also observed to be overall enhanced in the recipient stream that collected the discharged effluents from the industrial site, compared to the control streams, and rivers with no impacts from the U mining/milling sites. They displayed significant spatial variations and a general decrease downstream away from upper point-source discharges of the industrial site. In addition, obvious positive correlations were found between U and Th, Fe, Zn, Li, and Co (R{sup 2} > 0.93, n = 28) in the studied water samples, which suggest for an identical source and transport pathway of these elements. In combination with present surface water chemistry and chemical compositions of uraniferous minerals, the elevation of the analyzed elements in the recipient stream most likely arose from the liquid effluents, processing water, and acid drainage from the U mining/milling facilities. The dispersion of radionuclides and hazardous metals is actually limited to a small area at present, but some potential risk should not be negligible for local ecosystem. The results indicate that environmental remediation work is required to implement and future cleaner production technology should be oriented to avoid wide dispersion of radioactivity and non-radioactive hazards in U mining/milling sites. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. La filière huile d’olive en Tunisie

    Directory of Open Access Journals (Sweden)

    Gharbi Ines

    2014-03-01

    Full Text Available L’olivier a façonné, au fil des millénaires, les paysages, l’histoire, la culture et la gastronomie du bassin méditerranéen qui est encore aujourd’hui le cœur productif et commercial de l’huile d’olive. La Tunisie est le pays oléicole le plus important du Sud de la Méditerranée. Si l’on exclut l’Union européenne, la Tunisie est la plus grande puissance mondiale dans le secteur de l’huile d’olive, déployant de grands efforts de restructuration, de modernisation et d’amélioration de la qualité de ses huiles, accompagnés d’une considérable expansion de surfaces. L’enjeu sera pour la Tunisie d’assurer un ajustement permanent de sa politique oléicole et d’élaborer et mettre en œuvre des stratégies concurrentielles lui permettant de profiter de ces nouvelles opportunités et de renforcer sa compétitivité. La présente étude, qui s’insère dans le cadre de cette préoccupation, a pour objectif d’affiner cette connaissance. Elle se propose d’étudier la filière huile d’olive tunisienne et les possibilités d’amélioration de ses performances.

  8. Effluent controls and environmental monitoring programs for uranium milling operations

    International Nuclear Information System (INIS)

    Maixner, R.D.

    1979-01-01

    Controls will reduce gaseous, particulate, and liquid discharges. Monitoring programs are used to determine effectiveness. The controls and programs discussed are used at Cotter Corporation's Canon City Mill in Colorado. 3 refs

  9. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach.

    Science.gov (United States)

    Gan, Pei Pei; Ng, Shi Han; Huang, Yan; Li, Sam Fong Yau

    2012-06-01

    The present study reports the synthesis of gold nanoparticles (AuNps) from gold precursor using palm oil mill effluent (POME) without adding external surfactant, capping agent or template. The biosynthesized AuNps were characterized by using UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). According to the image analysis performed on a representative TEM micrograph by counting 258 particles, the obtained AuNps are predominantly spherical with an average size of 18.75 ± 5.96 nm. In addition, some triangular and hexagonal nanoparticles were also observed. The influence of various reaction parameters such as reaction pH, concentration of gold precursor and interaction time to the morphology and size of biosynthesized AuNps was investigated. This study shows the feasibility of using agro waste material for the biosynthesis of AuNps which is potentially more scalable and economic due to its lower cost. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Pesticide interactions with soil affected by olive mill wastewater (OMW): how strong and long-lasting is the OMW effect?

    Science.gov (United States)

    Keren, Yonatan; Borisover, Mikhail; Schaumann, Gabriele E.; Diehl, Dörte; Tamimi, Nisreen; Bukhanovsky, Nadezhda

    2017-04-01

    Sorption interactions with soils are well known to control the environmental fate of multiple organic compounds including pesticides. Pesticide-soil interactions may be affected by organic amendments or organic matter (OM)-containing wastewater brought to the field. Specifically, land spreading of olive mill wastewater (OMW), occurring intentionally or not, may also influence pesticide-soil interactions. The effects of the OMW disposed in the field on soil properties, including their ability to interact with pesticides, become of great interest due to the increasing demand for olive oil and a constant growth of world oil production. This paper summarizes some recent findings related to the effect of prior OMW land application on the ability of soils to interact with the organic compounds including pesticides, diuron and simazine. The major findings are as following: (1) bringing OMW to the field increases the potential of soils to sorb non-ionized pesticides; (2) this sorption increase may not be related solely to the increase in soil organic carbon content but it can reflect also the changes in the soil sorption mechanisms; (3) increased pesticide interactions with OMW-affected soils may become irreversible, due, assumedly, to the swelling of some components of the OMW-treated soil; (4) enhanced pesticide-soil interactions mitigate with the time passed after the OMW application, however, in the case of diuron, the remaining effect could be envisioned at least 600 days after the normal OMW application; (5) the enhancement effect of OMW application on soil sorption may increase with soil depth, in the 0-10 cm interval; (6) at higher pesticide (diuron) concentrations, larger extents of sorption enhancement, following the prior OMW-soil interactions, may be expected; (7) disposal of OMW in the field may be seasonal-dependent, and, in the case studied, it led to more distinct impacts on sorption when carried out in spring and winter, as compared with summer. It appears

  11. Inoculation with arbuscular mycorrhizal fungi and addition of composted olive-mill waste enhance plant establishment and soil properties in the regeneration of a heavy metal-polluted environment.

    Science.gov (United States)

    Curaqueo, Gustavo; Schoebitz, Mauricio; Borie, Fernando; Caravaca, Fuensanta; Roldán, Antonio

    2014-06-01

    A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) in the establishment of Tetraclinis articulata and soil properties in a heavy metal-polluted soil. The treatments assayed were as follows: AM + 0% COW, AM + 1% COW, and AM + 3% COW. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96 and 60%, respectively. These treatments trended to improve the soil properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni, and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided Glomus mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs because it promotes soil properties, a better performance of plants for supporting the stress in heavy metal-contaminated soils derived from the mining process, and also can be a good way for olive-mill waste disposal.

  12. Heterogeneous photocatalysis using TiO2 modified with hydrotalcite and iron oxide under UV-visible irradiation for color and toxicity reduction in secondary textile mill effluent.

    Science.gov (United States)

    Arcanjo, Gemima Santos; Mounteer, Ann H; Bellato, Carlos Roberto; Silva, Laís Miguelina Marçal da; Brant Dias, Santos Henrique; Silva, Priscila Romana da

    2018-04-01

    The objective of this study was to evaluate ADMI color removal from a biologically treated textile mill effluent by heterogeneous photocatalysis with UV-visible irradiation (UV-vis) using a novel catalyst composed of TiO 2 supported on hydrotalcite and doped with iron oxide (HT/Fe/TiO 2 ). Simulated biological treatment of solutions of the dyes (50 mg/L) used in the greatest amounts at the mill where the textile effluent was collected resulted in no color removal in reactive dye solutions and about 50% color removal in vat dye solutions, after 96 h, indicating that the secondary effluent still contained a large proportion of anionic reactive dyes. Photocatalytic treatments were carried out with TiO 2 and HT/Fe/TiO 2 of Fe:Ti molar ratios of 0.25, 0.5, 0.75 and 1, with varying catalyst doses (0-3 mg/L), initial pH values (4-10) and UV-vis times (0-6 h). The highest ADMI color removal with unmodified TiO 2 was found at a dose of 2 g/L and pH 4, an impractical pH value for industrial application. The most efficient composite was HT/Fe/TiO 2 1 at pH 10, also at a dose of 2 g/L, which provided more complete ADMI color removal, from 303 to 9 ADMI color units (96%), than unmodified TiO 2 , from 303 to 37 ADMI color units (88%), under the same conditions. Hydroxyl radicals were responsible for the color reduction, since when 2-propanol, an OH scavenger, was added color removal was very low. For this reason, the HT/Fe/TiO 2 1 composite performed better at pH 10, because the higher concentration of hydroxide ions present at higher pH favored hydroxyl radical formation. COD reductions were relatively low and similar, approximately 20% for both catalysts after 6 h under UV-vis, because of the low initial COD (78 mg/L). Secondary effluent toxicity to Daphnia similis (EC 50  = 70.7%) was reduced by photocatalysis with TiO 2 (EC 50  = 95.0%) and the HT/Fe/TiO 2 1 composite (EC 50  = 78.6%). HT/Fe/TiO 2 1 was reused five times and still lowered

  13. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon.

    Science.gov (United States)

    Bertin, Lorenzo; Lampis, Silvia; Todaro, Daniela; Scoma, Alberto; Vallini, Giovanni; Marchetti, Leonardo; Majone, Mauro; Fava, Fabio

    2010-08-01

    Four identically configured anaerobic packed bed biofilm reactors were developed and employed in the continuous acidogenic digestion of olive mill wastewaters to produce volatile fatty acids (VFAs), which can be exploited in the biotechnological production of polyhydroxyalkanoates. Ceramic porous cubes or granular activated carbon were used as biofilm supports. Aside packing material, the role of temperature and organic loading rate (OLR) on VFA production yield and mixture composition were also studied. The process was monitored through a chemical, microbiological and molecular biology integrated procedure. The highest wastewater acidification yield was achieved with the ceramic-based technology at 25 degrees C, with an inlet COD and an OLR of about 17 g/L and 13 g/L/day, respectively. Under these conditions, about the 66% of the influent COD (not including its VFA content) was converted into VFAs, whose final amount represented more than 82% of the influent COD. In particular, acetic, propionic and butyric acids were the main VFAs by composing the 55.7, 21.5 and 14.4%, respectively, of the whole VFA mixture. Importantly, the relative concentrations of acetate and propionate were affected by the OLR parameter. The nature of the packing material remarkable influenced the process performances, by greatly affecting the biofilm bacterial community structure. In particular, ceramic cubes favoured the immobilization of Firmicutes of the genera Bacillus, Paenibacillus and Clostridium, which were probably involved in the VFA producing process. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Y-chromosomal DNA markers for discrimination of chemical substance and effluent effects on sexual differentiation in salmon.

    OpenAIRE

    Afonso, Luis O B; Smith, Jack L; Ikonomou, Michael G; Devlin, Robert H

    2002-01-01

    Chinook salmon alevins were exposed during their labile period for sex differentiation to different concentrations of bleached kraft mill effluent (BKME), primary sewage effluent, secondary sewage effluent (SE), 17ss-estradiol, testosterone, and nonylphenol. After exposure for 29 days post hatching (DPH), fish were allowed to grow until 103 and 179 DPH, at which time their genetic sex was determined using Y-chromosomal DNA markers and their gonadal sex was determined by histology. Independent...

  15. Preparation and Characterization of Activated Cow Bone Powder for the Adsorption of Cadmium from Palm Oil Mill Effluent

    Science.gov (United States)

    AbdulRahman, A.; Latiff, A. A. A.; Daud, Z.; Ridzuan, M. B.; D, N. F. M.; Jagaba, A. H.

    2016-07-01

    Several studies have been conducted on the removal of heavy metals from palm oil mill effluent. In this study, cow bones were developed as an adsorbent for the removal of cadmium II from POME. A batch experiment was conducted to investigate the effectiveness of the prepared activated cow bone powder for the sorption of cadmium II from raw POME. The experiment was carried out under fixed conditions using 100mg/L raw POME combined with different adsorbent dosage of CBP of 184.471 Ra(nm) surface roughness. The equilibrium adsorption capacity of the hydrophobic CBP of average contact angle 890 was determined from the relationship between the initial and equilibrium liquid phase concentrations of POME. The optimum adsorption of cadmium II on CBP was at 10g adsorbent dosage for sample 1 and 2 at 97.8% and 96.93% respectively. The least uptake was at 30g adsorbent weight for both samples at average of 95.1% for both samples. The effective removal of cadmium ion showed that CBP has a great potential for the treatment of heavy metal in POME.

  16. Purification of waste effluents from uranium mines and mills in Ukraine

    International Nuclear Information System (INIS)

    Bezrodny, S.; Bakarzhiyev, Y.; Pesmenny, B.

    2002-01-01

    Development of Nuclear Energy Industry, which is foundation for energy supplying and economic independence of the country, based on increasing our own uranium resources. Reserves of uranium ore have explored by SGS Kirovgeology show the possibility to supply the nuclear fuel on the Atomic Power Stations for many years. From other side, mining of uranium ore and producing the uranium concentrate have a range of environmental problems. Successful solution of those problems can make the Atomic Energy Industry one of the environmentally safe producer of electric energy. Mining of uranium ore creates large volume of radioactive waste effluents. Presents of the uranium and natural radioactive elements (NRE) in concentration that is higher than in the hydrographic net, require effective treatment technologies to separate the radio-elements from waste effluents. During the last years specialists from VOSTGOK (Zholty Wody), Chemistry Institute (Kiev), Institute of Industrial Technology (Zholty Wody) and SGS Kirovgeology designed a reliable and simple technology for purification of mining water. This technology is based on the process of co-precipitation uranium, natural radioelements, beryllium and heavy metals with mixed collector by hydroxide magnesium and carbonate calcium. Advantage of this technology is the possibility to extend its by second stage - desalting of effluents up to necessary concentration. Second stage does not require essential changes of the process. All sediments which are created after purification are the material for secondary extraction of uranium. The technology was tested at one of the VOSTGOK mines. The achieved results have shown that effluents can be purified from radio-elements up to necessary requirements. According to proposed technology, treatment of radioactive contaminated mining water allows to exclude negative influents of uranium mining on the environment. (author)

  17. Effect of surface treatment of tailings on effluent quality

    International Nuclear Information System (INIS)

    Murray, D.R.; Okuhara, D.

    1980-01-01

    Lysimeters containing 125 tons of mine tailings were used to determine the impact of gravel, sawdust, and vegetation as surface treatments on the quality and quantity of effluent produced from sulfide-containing uranium mill tailings. Over a 5-yr period, treatments did not alter the effluent quality to a level acceptable to regulatory requirements. The concentration of iron, copper, lead, aluminum, and sulfate increased with the rise of acidity during this period. However, the rate and extent of changes did vary with the treatment. The role of surface treatment in long-term waste abandonment must be investigated further

  18. ASSESSMENT OF IN VITRO ANDROGENIC ACTIVITY IN KRAFT MILL EFFLUENT

    Science.gov (United States)

    Detection of In Vitro Androgenic Activity in Feedlot Effluent. Lambright, CS 1 , Guillette, LJ, Jr.2, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville FLRecent studies have shown the presence of androgenic activity in water...

  19. Determination of amino acids in industrial effluents contaminated soil

    International Nuclear Information System (INIS)

    Mahar, M.T.; Khuhawar, M.Y.

    2014-01-01

    38 samples of soil for 19 locations partially irrigated on the effluents of sugar mill and oil andghee mill, bottom sediments of evaporation ponds of sugar and fertilizer industries were collected and analyzed for amino acids after acid digestion by gas chromatography using pre column derivatization with trifluroacetyleacetone and ethyl chloroformate. The results obtained were compared with the soil samples irrigated with fresh water. The soil samples were also analyzed for pH, total nitrogen contents and organic carbon. Nine essential (leucine (Leu), threonine (Thr), lysine (Lys), L-phenylalanine (Phe), tryptophan (Trp), histadine (His), L-valine (Val), methionine (Met) and isoleucine Ile) and ten non-essential ( alanine (Ala), cysteine (Cys), asparagine (Asn), glutamic acid (Glu), serine (Ser), glycine (Gly), proline (Pro), Glutamine (Gln), aspartic acid (Asp), tyrosine (Tyr)) amino acids were analyzed 13-15 amino acids were identified and determined quantitatively from soil samples. Amino acids Met, Asn, Gln and Trp were observed absent from all the samples. The variation in the amino acids contents in soil with the industrial effluents added and total nitrogen and organic carbon is discussed. (author)

  20. Use of Bacillus pumilus CBMAI 0008 and Paenibacillus sp. CBMAI 868 for colour removal from paper mill effluent Emprego de Bacillus pumilus CBMAI 0008 e Paenibacillus sp. CBMAI 868 para remoção da cor do efluente da indústria papeleira

    Directory of Open Access Journals (Sweden)

    Patrícia Lopes de Oliveira

    2009-06-01

    Full Text Available Bacillus pumilus and Paenibacillus sp. were applied on the paper mill effluent to investigate the colour remotion. Inocula were individually applied in effluent at pH 7.0, 9.0 and 11.0. The real colour and COD remotion after 48h at pH 9.0 were, respectively, 41.87% and 22.08% for B. pumilus treatment and 42.30% and 22.89% for Paenibacillus sp. Gel permeation chromatography was used to verify the molar masses of compounds in the non-treated and treated effluent, showing a decrease in the compounds responsible for the paper mill effluent colour.Bacillus pumilus e Paenibacillus sp. foram aplicados separadamente no efluente da indústria papeleira a pH 7,0, 9,0 e 11,0, para verificação da remoção da cor e da DQO. As remoções da cor real e DQO após 48h a pH 9,0 foram, respectivamente, de 41,87% e 22,08% após o tratamento com B. pumilus e 42,30% e 22,89% após tratamento com Paenibacillus sp. As massas molares dos compostos presentes no efluente não tratado e tratado foram determinadas por cromatografia de permeação em gel. O emprego dos microrganismos reduziu os compostos responsáveis pela cor do efluente da indústria papeleira.

  1. Development of Microbial Fuel Cell for Palm Oil Mill Effluent Treatment

    International Nuclear Information System (INIS)

    Su, L.S.; Jamaliah Mohd Jahim; Siti Norhana Shari; Manal Ismail; Wan Ramli Wan Daud

    2012-01-01

    Microbial fuel cells (MFCs) are a device that utilises microorganisms as a bio catalyst, to oxidize organic and inorganic matters to generate electric current. The main purpose of this study was to evaluate laboratory scale MFC which was inoculated with sludge containing mixed culture grown in palm oil mill effluent (POME). This work also aimed to construct a suitable design of MFC and to observe mixed culture activation that could lead to electricity power production. POME was used in diluted form with COD concentration of 3750 mg-COD L -1 . The performance of power generation and the efficiency of waste-water treatment in term of COD, nitrogen and total carbohydrate removal, in dual chamber MFC were recorded and analysed everyday for 15 days. The plots between experimental data and polarization model fit well and are able to describe the ability of power density generated in each day. Power density increased from 1.607 mW m -2 (3.816 mA m -2 ), in the first day of the experiments to a maximum value on the third day 1.979 mW m -2 (4.780 mA m -2 ) and then slowed down in day seventh to a minimum value of 1.311 mW m -2 (3.346 mA m -2 ). The removal efficiency in MFC could be divided into three different levels. The first level is in term of poor efficiency although the power was increasing, while in the second level, the efficiency was getting higher and finally in third level, power production of MFC started to diminish. The highest efficiency occurs during the third level when steady power generation took place at certain level. The treatment efficiency in term of COD removal, nitrogen and carbohydrate utilization at day 15 th were 54.9, 100 and 98.9 %, respectively. The relationship between electricity power generation and treatment efficiency was successfully modelled into linear equation based on the respective power generation levels. (author)

  2. Pile composting of two-phase centrifuged olive husk residues: technical solutions and quality of cured compost.

    Science.gov (United States)

    Alfano, G; Belli, C; Lustrato, G; Ranalli, G

    2008-07-01

    The present work proposed an economically sustainable solution for composting olive humid husks (OHH) and leaves (OL) at a small/medium sized olive oil mill. We planned and set up a composting plant, the prototype taking the form of a simplified low-cost turning machine, and evaluated the use of an inoculum of one year-old composted humid husks (CHH) and sheep manure (SM) to facilitate the starting phase of the process. Trials were carried out using four piles under different experimental conditions (turnover, static, and type of inoculum). The best results were achieved with turnover and an inoculum that induced fast start-up and a correct evolution of the composting process. The final product was a hygienically clean, cured compost.

  3. Evaluation of the cytogenotoxicity of textile effluents using Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Sandro Barbosa

    2011-08-01

    Full Text Available The cytotoxic and genotoxic potential of the raw (EB and treated (ET effluents of two textile mills located in south of Minas Gerais State that have their effluents treated at the same Effluent Treatment Plant was investigated using the Allium cepa test system. Cytotoxicity was evaluated by the root elongation and mitotic index (MI endpoints and the genotoxicity was assessed by de determination of chromosome aberrations (CA.The effluent samples were tested at the concentrations 0 (ultrapure water, 25, 50, 75, and 100 % (v/v. A Completely Randomized Design with four replicates of 30 seeds was used. The effluent samples in almost all tested concentrations promoted an increase in root elongation compared to the negative control and this effect was probably related to nutrients levels and organic matter in effluent samples. A lower MI at all concentrations of ET compared to EB. The highest MI was observed at 100% (v/v concentration of both effluents. The highest rates of CA occurred at concentrations 75% (v/v of EB and 100% (v/v of both effluents. The effluent samples showed no cytotoxic effect, but cell division occurred disorderly, leading to increase rate of AC, revealing a genetoxic effect. Improvements in the wastewater treatment are needed to reduce environmental impacts.

  4. Utilization of palm oil mill effluent as a novel and promising substrate for biosurfactant production by Nevskia ramosa NA3

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2013-04-01

    Full Text Available This paper introduces palm oil mill effluent as a promising substrate for biosurfactant production. Potential strains ofbacteria were isolated from various hydrocarbon-contaminated soils and screened for biosurfactant production with the helpof the drop collapse method and surface tension measurements. Out of 26 isolates of bacteria, the strain NA3 showed thehighest bacterial growth with the highest surface tension reduction of 27.2 mN/m. It was then identified as Nevskia ramosaNA3 by biochemical and 16S rRNA sequence analysis. The Plackett-Burman experimental design was employed to determinethe important nutritional requirements for biosurfactant production by N. ramosa NA3 under controlled conditions. Six outof 11 factors of the production medium were found to significantly affect the production of biosurfactant. FeCl2 and NaNO3had a direct proportional correlation with the biosurfactant production. Commercial sugar, glucose, K2HPO4 and MgCl2showed inversely proportional relationship with biosurfactant production in the selected experimental range.

  5. On Operating a Nanofiltration Membrane for Olive Mill Wastewater Purification at Sub- and Super-Boundary Conditions.

    Science.gov (United States)

    Stoller, Marco; Ochando-Pulido, Javier Miguel; Field, Robert

    2017-07-14

    In the last decades, membrane processes have gained a significant share of the market for wastewater purification. Although the product (i.e., purified water) is not of high added value, these processes are feasible both technically and from an economic point of view, provided the flux is relatively high and that membrane fouling is strongly inhibited. By controlling membrane fouling, the membrane may work for years without service, thus dramatically reducing operating costs and the need for membrane substitution. There is tension between operating at high permeate fluxes, which enhances fouling but reduces capital costs, and operating at lower fluxes which increases capital costs. Operating batch membrane processes leads to increased difficulties, since the feed fed to the membrane changes as a function of the recovery value. This paper is concerned with the operation of such a process. Membrane process designers should therefore avoid membrane fouling by operating membranes away from the permeate flux point where severe fouling is triggered. The design and operation of membrane purification plants is a difficult task, and the precision to properly describe the evolution of the fouling phenomenon as a function of the operating conditions is a key to success. Many reported works have reported on the control of fouling by operating below the boundary flux. On the other hand, only a few works have successfully sought to exploit super-boundary operating conditions; most super-boundary operations are reported to have led to process failures. In this work, both sub- and super-boundary operating conditions for a batch nanofiltration membrane process used for olive mill wastewater treatment were investigated. A model to identify a priori the point of transition from a sub-boundary to a super-boundary operation during a batch operation was developed, and this will provide membrane designers with a helpful tool to carefully avoid process failures.

  6. Potential Contributions of Olives and Olive Oil in the Developing Tourism in Mudanya (Bursa)

    OpenAIRE

    UYLAŞER, Vildan

    2017-01-01

    Turkey is the 3rd country in olive production and 4th country in olive oil production in the world. Olive oil and olive farming has significant economic value both in the national and international arena for Turkey. Olive and olive oil, which are irreplaceable ingredients in our breakfasts, many meals and salads in Turkish kitchen, are the primary source of income for the families in Mudanya. Mudanya has a historical past and it has a significant potential in terms ...

  7. Effect of Gamma Irradiation and Coagualtion on the Molegular Weight Distribution of Soluble Organic Substances in Paper Mill Effluent

    International Nuclear Information System (INIS)

    He Shijun; Wang Jianlong; Wan Jianxin; Sun Mengmeng; Ye Longfei

    2012-01-01

    In order to look into the insights of the influence of gamma irradiation and coagulation on the molecular weight distribution (MWD) of soluble organic substances in real paper mill effluent, various parameters of wastewater samples before and after treated were investigated, including chemical oxygen demand (COD), biochemical oxygen demand (BOD 5 ), dissolved organic carbon (DOC) and absorbance at 254 nm wavelength (UV 254 ) as well. In addition, the effects of irradiation on oxygen uptake and on acute toxicity were also presented. The results showed that irradiation alone cannot promote the biodegradability and oxygen uptake as originally expected. The whole acute toxicity of samples was reduced after gamma irradiation. On the other side, coagulation can not only effectively eliminate the sectors with high molecular weight (MW>3000 Dalton, in short HMW), but also improve the capacity of ionizing irradiation initiated the transformation of medium molecular weight (1000 Dalton< MW<3000 Dalton, in short MMW) into low molecular weight (MW<1000 Dalton, in short LWM), which is readily degraded by the subsequently activated sludge process. (author)

  8. Effect of Gamma Irradiation and Coagualtion on the Molegular Weight Distribution of Soluble Organic Substances in Paper Mill Effluent

    Energy Technology Data Exchange (ETDEWEB)

    Shijun, He; Jianlong, Wang [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084 (China); Jianxin, Wan; Mengmeng, Sun [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084 (China); School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070 (China); Longfei, Ye [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084 (China); College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2012-07-01

    In order to look into the insights of the influence of gamma irradiation and coagulation on the molecular weight distribution (MWD) of soluble organic substances in real paper mill effluent, various parameters of wastewater samples before and after treated were investigated, including chemical oxygen demand (COD), biochemical oxygen demand (BOD{sub 5}), dissolved organic carbon (DOC) and absorbance at 254 nm wavelength (UV{sub 254}) as well. In addition, the effects of irradiation on oxygen uptake and on acute toxicity were also presented. The results showed that irradiation alone cannot promote the biodegradability and oxygen uptake as originally expected. The whole acute toxicity of samples was reduced after gamma irradiation. On the other side, coagulation can not only effectively eliminate the sectors with high molecular weight (MW>3000 Dalton, in short HMW), but also improve the capacity of ionizing irradiation initiated the transformation of medium molecular weight (1000 Dalton

  9. Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure-Physico-chemical characterization of the processed organic matter.

    Science.gov (United States)

    Hachicha, Salma; Sellami, Fatma; Cegarra, Juan; Hachicha, Ridha; Drira, Noureddine; Medhioub, Khaled; Ammar, Emna

    2009-02-15

    Olive mill sludge (OMS), a by-product resulting from natural evaporation of olive oil processing effluent, poses a major environmental threat. A current cost-effective practice of OMS management is composting. A mixture of OMS (60%) with poultry manure (PM) was successfully composted for 210 days. During the process, effluents of olive oil mill and confectionary were used to keep moisture at optimal level (40-60%). Biological indicators reflecting stability of the compost (microbial biota respiration and enumeration, and germination index) were analysed for the assessment of the product quality. The composted mixture showed a high microbial activity with a succession of microbial populations depending on the temperature reached during the biodegradation. The pathogen content from PM decreased with composting as did phytotoxic compounds. Phenols and lipids were reduced, respectively, by 40% and 84% while germination index increased with composting progress. Fourier transform infrared (FTIR) spectroscopic analysis revealed that the final compost improved the aromatic content compared to the starting materials, with a decrease in aliphatic groups and a reduction in the easily assimilated components by the microflora acting during the biological process. The final compost was characterized by relatively high organic matter content (26.21%), a low C/N ratio (16.21), an alkaline pH (8.32), a relatively high electrical conductivity (9.21mS/cm) and a high level of nutrients. The germination index for Lepidium sativum L. was 87.71% after 210 days of composting, showing that the final compost was not phytotoxic.

  10. Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-12-01

    Full Text Available The feasibility of using vibratory ball milled South African bentonite clay for neutralization and attenuation of inorganic contaminants from acidic and metalliferous mine effluents has been evaluated. Treatment of acid mine drainage (AMD...

  11. OGDD (Olive Genetic Diversity Database): a microsatellite markers' genotypes database of worldwide olive trees for cultivar identification and virgin olive oil traceability.

    Science.gov (United States)

    Ben Ayed, Rayda; Ben Hassen, Hanen; Ennouri, Karim; Ben Marzoug, Riadh; Rebai, Ahmed

    2016-01-01

    Olive (Olea europaea), whose importance is mainly due to nutritional and health features, is one of the most economically significant oil-producing trees in the Mediterranean region. Unfortunately, the increasing market demand towards virgin olive oil could often result in its adulteration with less expensive oils, which is a serious problem for the public and quality control evaluators of virgin olive oil. Therefore, to avoid frauds, olive cultivar identification and virgin olive oil authentication have become a major issue for the producers and consumers of quality control in the olive chain. Presently, genetic traceability using SSR is the cost effective and powerful marker technique that can be employed to resolve such problems. However, to identify an unknown monovarietal virgin olive oil cultivar, a reference system has become necessary. Thus, an Olive Genetic Diversity Database (OGDD) (http://www.bioinfo-cbs.org/ogdd/) is presented in this work. It is a genetic, morphologic and chemical database of worldwide olive tree and oil having a double function. In fact, besides being a reference system generated for the identification of unkown olive or virgin olive oil cultivars based on their microsatellite allele size(s), it provides users additional morphological and chemical information for each identified cultivar. Currently, OGDD is designed to enable users to easily retrieve and visualize biologically important information (SSR markers, and olive tree and oil characteristics of about 200 cultivars worldwide) using a set of efficient query interfaces and analysis tools. It can be accessed through a web service from any modern programming language using a simple hypertext transfer protocol call. The web site is implemented in java, JavaScript, PHP, HTML and Apache with all major browsers supported. Database URL: http://www.bioinfo-cbs.org/ogdd/. © The Author(s) 2016. Published by Oxford University Press.

  12. Influence of forest and rangeland management on anadromous fish habitat in Western North America: processing mills and camps.

    Science.gov (United States)

    Donald C. Schmiege

    1980-01-01

    For nearly 50 years, effluents from pulp and paper mills have been known to be toxic to fish and other aquatic animals. Lethal concentrations have been determined for several species of fish and other organisms. Many factors- -such as water temperature, age of fish, and additional stresses—affect the ability of fish to withstand pollution. Kraft mill wastes...

  13. 75 FR 22363 - United States Standards for Grades of Olive Oil and Olive-Pomace Oil

    Science.gov (United States)

    2010-04-28

    ... it as extra virgin olive oil at a premium price. The petitioners requested that the U.S. grade... requirements. The virgin olive oil category, which includes extra virgin olive oil, is unprocessed. Olive oil...: Section 52.1539, Aspect at 20 degrees after 24 hours. Extra virgin and virgin olive oils can be filtered...

  14. Mäekalda kortermaja : Lucca küla, Tabasalu = Mäekalda Apartment Building : Lucca küla, Tabasalu / Oliver Alver

    Index Scriptorium Estoniae

    Alver, Oliver, 1977-

    2005-01-01

    Elamu kergust rõhutavad galeriid teepoolsel fassaadil, treppe katavad varikatused, pankranniku poolses küljes on avatav klaassein, mille taga on igal korteril veranda. Üldpind: 1071 mø, korterite arv: 8. Projekteerija: HTMd. Autor Oliver Alver. Konstruktor Eino Hint (Ehitusekspertiisibüroo). Projekt 2004, valmis 2005. Ill.: I, II ja III korruse plaan, 3 värv. välisvaadet

  15. Optimization and performance evaluation for nutrient removal from palm oil mill effluent wastewater using microalgae

    Science.gov (United States)

    Ibrahim, Raheek I.; Wong, Z. H.; Mohammad, A. W.

    2015-04-01

    Palm oil mill effluent (POME) wastewater was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients. This study was devoted to POME wastewater treatment with microalgae. The main objective was to find the optimum conditions (retention time, and pH) in the microalgae treatment of POME wastewater considering retention time as a most important parameter in algae treatment, since after the optimum conditions there is a diverse effect of time and pH and so, the process becomes costly. According to our knowledge, there is no existing study optimized the retention time and pH with % removal of nutrients (ammonia nitrogen NH3-N, and orthophosphorous PO43-) for microalgae treatment of POME wastewater. In order to achieve with optimization, a central composite rotatable design with a second order polynomial model was used, regression coefficients and goodness of fit results in removal percentages of nutrients (NH3-N, and PO43-) were estimated.WinQSB technique was used to optimize the surface response objective functionfor the developed model. Also experiments were done to validate the model results.The optimum conditions were found to be 18 day retention time for ammonia nitrogen, and pH of 9.22, while for orthophosphorous, 15 days were indicated as the optimum retention time with a pH value of 9.2.

  16. Combined effect of diuron and simazine on photosystem II photochemistry in a sandy soil and soil amended with solid olive-mill waste.

    Science.gov (United States)

    Redondo-Gómez, Susana; Cox, Lucía; Cornejo, Juan; Figueroa, Enrique

    2007-01-01

    Diuron (3-(3,4-dichlorophenyl)- = 1,1-dimethylurea) and simazine (6-chloro-N(2), N(4)-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the effect of these herbicides on Photosystem II photochemistry of Olea europaea L., and whether the amendment of soil with an organic waste (OW) from olive oil production industry modifies this effect. For this purpose, herbicide soil adsorption studies, with unamended and OW-amended soil, and chlorophyll fluorescence measurements in adult olive leaves, after one, two and three weeks of soil herbicide treatment and/or OW amendment, were performed. Soil application of these herbicides reduced the efficiency of Photosystem II photochemistry of olive trees due to chronic photoinhibition, and this effect is counterbalanced by the addition of OW to the soil. OW reduces herbicide uptake by the plant due to an increase in herbicide adsorption.

  17. Green synthesis of palm oil mill effluent-based graphenic adsorbent for the treatment of dye-contaminated wastewater.

    Science.gov (United States)

    Teow, Yeit Haan; Nordin, Nadzirah Ilyiani; Mohammad, Abdul Wahab

    2018-05-12

    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.

  18. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to polyphenols in olive and maintenance of normal blood HDL-cholesterol concentrations (ID 1639, further assessment) pursuant to Article 13(1) of Regulation (EC

    DEFF Research Database (Denmark)

    Tetens, Inge

    and maintenance of normal blood HDL-cholesterol concentrations. The food constituent, polyphenols in olive (olive fruit, olive mill waste waters or olive oil, Olea europaea L. extract and leaf) standardised by their content of hydroxytyrosol and its derivatives (e.g. oleuropein complex), that is the subject...... was insufficient to establish a cause and effect relationship between the consumption of olive oil polyphenols (standardised by the content of hydroxytyrosol and its derivatives) and maintenance of normal blood HDL cholesterol concentrations.......Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to provide a scientific opinion on a health claim pursuant to Article 13 of Regulation (EC) No 1924/2006 in the framework of further assessment related to polyphenols in olive...

  19. Assessment of carbon footprint and energy performance of the extra virgin olive oil chain in Umbria, Italy.

    Science.gov (United States)

    Rinaldi, S; Barbanera, M; Lascaro, E

    2014-06-01

    The cradle to grave carbon footprint (CF) and energy footprint (EF) analysis of extra virgin olive oil (EVOO) produced in the Province of Perugia (Umbria, Italy) is assessed. In this study, olive orchard cultivation, EVOO extraction, bottling, packaging, storage at -18°C and distribution in the main importing countries were studied from a life cycle assessment perspective, with the main objective of identifying the processes with the largest environmental impacts. The selected functional unit was 1L of EVOO, packaged for distribution. Inventory data was gathered mainly through both direct communication using questionnaires and direct measurements. To determine the CF the ISO/TS 14067:2013 was followed while the EF was evaluated according to ISO standards 14040 and 14044. Results showed that the most impacting process is the distribution, mainly due to the choice of employing air transport. The main other hot spots identified were the olive orchard fertilization, EVOO freezing during its storage at the olive mill factory and the manufacture of glass bottles. Suggested improvement opportunities included shifts in the EVOO transportation policy, the introduction of lighter glass bottles in the bottling process, the use of cooling agent with lower global warming potential and the employment of biodiesel in the farming machineries. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Biodegradation of high doses of commercial pesticide products in pilot-scale biobeds using olive-oil agroindustry wastes.

    Science.gov (United States)

    Delgado-Moreno, L; Nogales, R; Romero, E

    2017-12-15

    Biobeds systems containing soil, peat and straw (SPS) are used worldwide to eliminate pesticide point-source contamination, but implantation is difficult when peat and/or straw are not available. Novel biobeds composed of soil, olive pruning and wet olive mill cake (SCPr) or its vermicompost (SVPr) were assayed at pilot scale for its use in olive grove areas. Their removal efficiency for five pesticides applied at high concentration was compared with the biobed with SPS. The effect of a grass layer on the efficiency of these biobeds was also evaluated. Pesticides were retained mainly in the upper layer. In non-planted biobeds with SCPr and SVPr, pesticides dissipation was higher than in SPS, except for diuron. In the biobed with SVPr, with the highest pesticide dissipation capacity, the removed amount of dimethoate, imidacloprid, tebuconazole, diuron and oxyfluorfen was 100, 80, 73, 75 and 50%, respectively. The grass layer enhanced dehydrogenase and diphenol-oxidase activities, modified the pesticides dissipation kinetics and favored the pesticide downward movement. One metabolite of imidacloprid, 3 of oxyfluorfen and 4 of diuron were identified by GC-MS. These novel biobeds represent an alternative to the traditional one and a contribution to promote a circular economy for the olive-oil production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition

    Directory of Open Access Journals (Sweden)

    Chonticha Mamimin

    2017-09-01

    Conclusion: Preventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.

  2. Effect of olive storage conditions on Chemlali olive oil quality and the effective role of fatty acids alkyl esters in checking olive oils authenticity.

    Science.gov (United States)

    Jabeur, Hazem; Zribi, Akram; Abdelhedi, Ridha; Bouaziz, Mohamed

    2015-02-15

    The present paper accounts for the study of the storage of Chemlali olive fruits at two conditions of limited aerobiosis: in closed plastic bags and in open perforated plastic boxes for different periods before oil extraction. The ultimate objective is to investigate the effect of the container type of the postharvest fruit storage on the deterioration of the olive oil quality. The results have shown that the oil quality of Chemlali olives deteriorated more rapidly during fruit storage in closed plastic bags than in perforated plastic boxes. Therefore, the use of perforated plastic boxes is recommended for keeping the olives for longer periods of storage. The repeated measures analysis of variance of all parameters analyzed indicated that the olive oil quality is mainly affected by the olives storage conditions (containers type and storage periods). Finally, blends of extra-virgin olive oil and mildly deodorized low-quality olive oils can be detected by their alkyl esters concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Morphological Characterization of Photosynthetic Microbial Granule from Palm Oil Mill Effluent (POME)

    International Nuclear Information System (INIS)

    Najib, M.Z.M.

    2013-01-01

    Presently, global warming is the most highlighted subjects in the environmental issues which relates closely to greenhouse gases (GHG) emissions. In 2007, the Intergovernmental Panel on Climate Change (IPCC) assigns only methane (CH 4 ) emissions to wastewater treatment rather than GHG emissions specifically carbon dioxide (CO 2 ) gas from the aerobic treatment processes. Focusing on the palm oil industry in Malaysia, the most commonly used treatment of palm oil mill effluent (POME) which is the conventional pounding system, has caused excessive generation of GHG such as CH 4 and CO 2 gases. To develop a novel, innovative and environmental-friendly mitigation method, this study explores into the possibility of growing the photosynthetic bacteria in the form of granules via the aerobic granulation process with potential applications in reducing CO 2 gases. The cultivation of photosynthetic microbial granules was investigated using POME as the substrate in a sequencing batch reactor (SBR) system via the sequencing cycle of feeding, reacting, settling and decanting. Evidence of the formation of granule was based on microscopic examination of the morphological changes during the development of the granule in the SBR system over a period of 90 days. It shows changes from dispersed loose structure of the sludge merging into small flocs of irregular shapes and finally into dense and compact granular form. The granule was formed by applying an organic loading rate (OLR) at 2.75 kg COD/ m 3 .day, hydraulic retention time (HRT) at 4 h and superficial air velocity of 2.07 cm/ s. The biomass concentration began to decreased first (initial sludge biomass = 16750 mg/ L) and then increased steadily to a constant value of 32000 mg/ L after 90 days. Besides, the results also demonstrated a good accumulation of biomass as the settleability between raw sludge and granule increased from 0.03 cm/ s to 0.94 cm/ s. The maximum settling velocity obtained in the reactor was approximately 2

  4. Comparison of the efficiencies of attached- versus suspended-growth SBR systems in the treatment of recycled paper mill wastewater.

    Science.gov (United States)

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Abd Rahim, Reehan Adnee

    2015-11-01

    The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Optimization of fermentative hydrogen production from palm oil mill effluent in an up-flow anaerobic sludge blanket fixed film bioreactor

    Directory of Open Access Journals (Sweden)

    Parviz Mohammadi

    2017-09-01

    Full Text Available Response surface methodology with a central composite design was applied to optimize fermentative hydrogen production from palm oil mill effluent (POME in an upflow anaerobic sludge blanket fixed film reactor. In this study, the concurrent effects of up-flow velocity (Vup and feed flow rate (QF as independent operating variables on biological hydrogen production were investigated. A broad range of organic loading rate between 10 and 60 g COD L−1 d−1 was used as the operating variables. The dependent parameters as multiple responses were evaluated. Experimental results showed the highest value of yield at 0.31 L H2 g−1 COD was obtained at Vup and QF of 0.5 m h−1 and 1.7 L d−1, respectively. The optimum conditions for the fermentative hydrogen production using pre-settled POME were QF = 2.0–3.7 L d−1 and Vup = 1.5–2.3 m h−1. The experimental results agreed very well with the model prediction.

  6. MECHANIZED HARVESTING TESTS PERFORMED BY GRAPE HARVESTERS IN SUPER INTENSIVE OLIVE ORCHARD CULTIVATION IN SPAIN

    Directory of Open Access Journals (Sweden)

    Gennaro Giametta

    2009-06-01

    Full Text Available Today also those countries boasting a century-old olive growing tradition have to look at the latest, most dynamic, non labour-intensive olive growing systems to abate production (notably, harvesting operations costs and remain competitive in a globalized market. This is why over the last few years super intensive olive orchard cultivation has been attracting a lot of interest on the part of olive growers all over the world as it accounts for an innovative model whereby olive groves are tailored to the special needs of grape harvesters. This paper reports the first results of experimental mechanical harvesting tests in a super-intensive olive cultivation. The study is intended to explore both productivity and work capacity of two of the most commonly used grape harvesters, Grégoire G120SW and New Holland Braud VX680, in a view to assessing their harvesting performance by a series of tests conducted in Spain. On the basis of the tests it was possible to verify that the machines are able to detach the almost all the drupes (more than 90%, with one only passage, and this independently of both size and location of drupes on the tree crown and of their maturity stage. Using these machines, two people can often carry out the whole harvest process: an operator driving the harvester and another person transferring the fruit from the harvester in the field to the olive oil mill for processing. With this system, the work speed is usually, in the best working conditions, about 1.7 km/hour and the average harvesting time is about 2.5-3 hours/ha. For the time being it is however impossible to draw definitive conclusions in terms of performance of the above cultivation systems and harvesting machines. Additional key observational studies are needed in the years to come to assess the efficiency of the entire model.

  7. Physical and chemical properties of olive oil extracted from olive cultivars grown in Shiraz and Kazeroon

    DEFF Research Database (Denmark)

    Homapour, M.; Hamedi, M.; Moslehishad, M.

    2014-01-01

    Background and objective: The composition of olive oil is significantly affected by the cultivar and climatic conditions. The present study determined the chemical characteristics of olive oil extracted from two major Iranian varieties of olive (yellow and local oil-grade) in Shiraz and Kazeroon......, two major olive-producing areas in Fars province. Materials and methods: The composition of olive oil is significantly affected by the cultivar and climatic conditions. The present study determined the chemical characteristics of olive oil extracted from two major Iranian varieties of olive (yellow...... and local oil-grade) in Shiraz and Kazeroon, two major olive-producing areas in Fars province. Results: The results showed that the physical and chemical properties of both cultivars are in accordance with national and international standards. There was a significant difference in acidity, iodine content...

  8. Oliver Twist

    NARCIS (Netherlands)

    Dickens, Charles

    2005-01-01

    Oliver Twist is one of Dickens's most popular novels, with many famous film, television and musical adaptations. It is a classic story of good against evil, packed with humour and pathos, drama and suspense, in which the orphaned Oliver is brought up in a harsh workhouse, and then taken in and

  9. Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    The effect of pretreatment methods for improved biodegradability and biogas production of oil palm empty fruit bunches (EFB) and its co-digestion with palm oil mill effluent (POME) was investigated. The maximum methane potential of POME was 502mL CH4/gVS-added corresponding to 33.2m3 CH4/ton POME...... and 98% biodegradability. Meanwhile, the maximum methane potential of EFB was 202mL CH4/gVS-added corresponding to 79.1m3 CH4/ton EFB with 38% biodegradability. Co-digestion of EFB with POME enhanced microbial biodegradability and resulted in 25–32% higher methane production at mixing ratios of 0.4:1, 0.......8:1 and 2.3:1 on VS basis than digesting EFB alone. The methane yield was 276–340mL CH4/gVS-added for co-digestion of EFB with POME at mixing ratios of 0.4:1–2.3:1, while minor improvement was observed at mixing ratios of 6.8:1 and 11:1 (175–197mL CH4/gVS-added). The best improved was achieved from co...

  10. How 'ground-picked' olive fruits affect virgin olive oil ethanol content, ethyl esters and quality.

    Science.gov (United States)

    Beltran, Gabriel; Sánchez, Raquel; Sánchez-Ortiz, Araceli; Aguilera, Maria P; Bejaoui, Mohamed A; Jimenez, Antonio

    2016-08-01

    Olives dropped on the ground naturally sometimes are not separated from those fresh and healthy collected from the tree for harvest and processing. In this work we compared the quality, ethanol content and bioactive components of virgin olive oils from ground-picked olives, tree-picked fruits and their mixture. Ground-picked olives produced 'Lampante' virgin olive oils; these are of a lower quality category, because of important alterations in chemical and sensory characteristics. Ethyl esters showed the highest values, although under the regulated limit. The mixture of ground and tree-picked olives gave oils classified as 'virgin' because of sensory defects, although the quality parameters did not exceed the limits for the 'extra' category. Ethanol content showed a significant increase in the oils from ground- picked olives and their mixture with respect to those from tree-picked fruits. Furthermore, bioactive compounds showed a significant decrease as fruit quality was poorer. Ground-picked olives must be harvested and processed separately since they produce low-quality virgin olive oils with sensory defects and lower concentrations of bioactive compounds. The higher acidity and ethanol concentration observed in oils from ground-picked fruits or their mixture may help ethyl ester synthesis during storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.

    Science.gov (United States)

    Lam, Man Kee; Lee, Keat Teong

    2011-01-01

    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Romanian regulatory framework for uranium mining and milling (present and future)

    International Nuclear Information System (INIS)

    Rodna, A.L.; Dumitrescu, N.

    2002-01-01

    In Romania, all operations in the nuclear field, including uranium mining and milling, are regulated by Law no. 111/1996 (republished in 1998), regarding the safe conduct of nuclear activities. These activities can be performed only on the basis of an authorization released by the national regulatory authority, i.e. the National Commission for Nuclear Activities Control. The specific requirements which must be carried out by the owner of an operating licence for a uranium mining and milling operation are stipulated by the Republican Nuclear Safety Norms for Geological Research, Mining and Milling of Nuclear Raw Materials. These regulatory requirements have been in force since 1975. The regulatory norms include provisions that the effective dose limit for workers should not exceed 50 mSv/year and also that liquid effluents released into surface waters must have a content of natural radioactive elements that meets the standards for drinking water. The norms do not contain provisions concerning the conditions under which the mining sites and the uranium processing facilities can be shut down and decommissioned. The norms also do not contain requirements regarding either the rehabilitation of environments affected by abandoned mining and milling activities, nor criteria for the release of the rehabilitated sites for alternative uses. To implement the provisions of Council Directive 96/29 EURATOM in Romania, new Fundamental Radiological Protection Norms have been approved and will soon be published in the 'Monitorul Official' (Official Gazette of Romania). One of the main provisions of these norms is the reduction of the effective dose limit for the workers to 20 mSv/year. Changes in the Republican Nuclear Safety Norms for Geological Research, Mining and Milling of Nuclear Raw Materials, are also planned; these changes will be consistent with the Fundamental Radiological Protection Norms. To cover existing gaps, the new norms for uranium mining and milling will include

  13. Soil Quality after Six Years of Paper Mill Industrial Wastewater Application

    Directory of Open Access Journals (Sweden)

    Ivan Carlos Carreiro Almeida

    Full Text Available ABSTRACT The application of wastewater to irrigate soils may be an attractive option for paper mills, especially when the effluents can also provide nutrients to plants. Since there could be negative environmental effects, such activity must be preceded by a thorough evaluation of the consequences. The changes in soil quality of a Neossolo Flúvico Distrófico (Typic Udifluvent were evaluated over a period of six years of irrigation with treated effluent from a wood pulp company. Although effluent application for six years did not affect soil resistance to penetration and soil hydraulic conductivity, it promoted a decrease in the mean size of aggregates and an increase in clay dispersion. Effluent application increased soil pH but did not change exchangeable Ca and Mg contents and organic carbon. After a full rotation of eucalyptus cultivation common in Brazil (six years, no negative effects in tree growth were found due to effluent irrigation. However, effluent addition caused higher values of Na adsorption ratio and intermediate electrical conductivity in the soil, which indicates a possible negative effect on soil quality if the application continues over a longer period. Therefore, a monitoring program should be carried out during subsequent crop rotations, and alternatives must be studied to obtain better effluent quality, such as adding Ca and Mg to the wastewater and using gypsum in the soil.

  14. Characteristics of treated effluents and their potential applications for producing concrete.

    Science.gov (United States)

    Noruzman, Ainul Haezah; Muhammad, Bala; Ismail, Mohammad; Abdul-Majid, Zaiton

    2012-11-15

    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Biological fermentative hydrogen production from olive pulp at 35 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Koutrouli, E.C.; Gavala, H.N.; Skiadas, I.V.; Lyberatos, G. [Patras Univ., Patras (Greece). Dept. of Chemical Engineering

    2004-07-01

    In response to energy security and environmental concerns, there is renewed interest in the use of hydrogen gas as a renewable energy source. However, many processes for generating hydrogen are extremely energy intensive and costly. This study focused on biological production of hydrogen from wastewater or other biomass. Photosynthetic and fermentation processes were outlined, but the main focus of this paper was on continuous anaerobic fermentation of low cost substrates such as olive pulp at 35 degrees C. This process is linked to the acidogenic stage of anaerobic digestion where carbohydrates are the preferred carbon source. Volatile fatty acids and alcohols are produced simultaneously with the hydrogen gas. An added advantage is that the effluent from the fermentation process can be further used by methanogenesis due to its rich organic acids content. Batch experiments with olive pulp resulted in 2.5 mmole of hydrogen per gram of total carbohydrates. It was noted that more research is required to maximize hydrogen production in a continuous process. It was suggested that hydrogen production could be optimized through hydrolysis of the non-soluble carbohydrates. This could be accomplished through physicochemical or biological pretreatments. 7 refs., 3 tabs., 1 fig.

  16. Effect of pre-treatment of Palm oil Mill effluent (POME) and Cassava ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: Pretreatment measures in effluents' management comprised of phase separation involving sedimentation, aeration to enhance biodegradation and pH neutralization. A randomized complete block design experiment in factorial arrangement was set up to assess effects of aeration, settling and pH neutralization ...

  17. Olives and olive oil are sources of electrophilic fatty acid nitroalkenes.

    Directory of Open Access Journals (Sweden)

    Marco Fazzari

    Full Text Available Extra virgin olive oil (EVOO and olives, key sources of unsaturated fatty acids in the Mediterranean diet, provide health benefits to humans. Nitric oxide (•NO and nitrite (NO2 (--dependent reactions of unsaturated fatty acids yield electrophilic nitroalkene derivatives (NO2-FA that manifest salutary pleiotropic cell signaling responses in mammals. Herein, the endogenous presence of NO2-FA in both EVOO and fresh olives was demonstrated by mass spectrometry. The electrophilic nature of these species was affirmed by the detection of significant levels of protein cysteine adducts of nitro-oleic acid (NO2-OA-cysteine in fresh olives, especially in the peel. Further nitration of EVOO by NO2 (- under acidic gastric digestive conditions revealed that human consumption of olive lipids will produce additional nitro-conjugated linoleic acid (NO2-cLA and nitro-oleic acid (NO2-OA. The presence of free and protein-adducted NO2-FA in both mammalian and plant lipids further affirm a role for these species as signaling mediators. Since NO2-FA instigate adaptive anti-inflammatory gene expression and metabolic responses, these redox-derived metabolites may contribute to the cardiovascular benefits associated with the Mediterranean diet.

  18. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge.

    Science.gov (United States)

    Devi, Parmila; Saroha, Anil K

    2015-09-01

    The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [Determination of olive oil content in olive blend oil by headspace gas chromatography-mass spectrometry].

    Science.gov (United States)

    Jiang, Wanfeng; Zhang, Ning; Zhang, Fengyan; Yang, Zhao

    2017-07-08

    A method for the determination of the content of olive oil in olive blend oil by headspace gas chromatography-mass spectrometry (SH-GC/MS) was established. The amount of the sample, the heating temperature, the heating time, the amount of injection, the injection mode and the chromatographic column were optimized. The characteristic compounds of olive oil were found by chemometric method. A sample of 1.0 g was placed in a 20 mL headspace flask, and heated at 180℃ for 2700 s. Then, 1.0 mL headspace gas was taken into the instrument. An HP-88 chromatographic column was used for the separation and the analysis was performed by GC/MS. The results showed that the linear range was 0-100%(olive oil content). The linear correlation coefficient ( r 2 ) was more than 0.995, and the limits of detection were 1.26%-2.13%. The deviations of olive oil contents in the olive blend oil were from -0.65% to 1.02%, with the relative deviations from -1.3% to 6.8% and the relative standard deviations from 1.18% to 4.26% ( n =6). The method is simple, rapid, environment friendly, sensitive and accurate. It is suitable for the determination of the content of olive oil in olive blend oil.

  20. Olive pomace valorization by Aspergillus species: lipase production using solid-state fermentation.

    Science.gov (United States)

    Oliveira, Felisbela; Moreira, Cláudia; Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Belo, Isabel

    2016-08-01

    Pollution by olive mill wastes is an important problem in the Mediterranean area and novel solutions for their proper management and valorization are needed. The aim of this work was to optimize a solid-state fermentation (SSF) process to produce lipase using olive pomace (OP) as the main source of nutrients by several Aspergillus spp. Optimized variables in two different designs were: ratio between olive pomace and wheat bran (OP:WB), NaNO3 , Czapek nutrients, fermentation time, moisture content (MC) and temperature. Results showed that the mixture OP:WB and MC were the most significant factors affecting lipase production for all fungi strains tested. With MC and temperature optimization, a 4.4-fold increase in A. ibericus lipase was achieved (90.5 ± 1.5 U g(-1) ), using a mixture of OP and WB at 1:1 ratio, 0.02 g NaNO3 g(-1) dry substrate, absence of Czapek nutrients, 60% of MC and incubation at 30 °C for 7 days. For A. niger and A. tubingensis, highest lipase activity obtained was 56.6 ± 5.4 and 7.6 ± 0.6 U g(-1) , respectively. Aspergillus ibericus was found to be the most promising microorganism for lipase production using mixtures of OP and WB. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Proteins in olive fruit and oil.

    Science.gov (United States)

    Montealegre, Cristina; Esteve, Clara; García, Maria Concepción; García-Ruiz, Carmen; Marina, Maria Luisa

    2014-01-01

    This paper is a comprehensive review grouping the information on the extraction, characterization, and quantitation of olive and olive oil proteins and providing a practical guide about these proteins. Most characterized olive proteins are located in the fruit, mainly in the seed, where different oleosins and storage proteins have been found. Unlike the seed, the olive pulp contains a lower protein content having been described a polypeptide of 4.6 kDa and a thaumain-like protein. Other important proteins studied in olive fruits have been enzymes which could play important roles in olives characteristics. Part of these proteins is transferred from the fruit to the oil during the manufacturing process of olive oil. In fact, the same polypeptide of 4.6 kDa found in the pulp has been described in the olive oil and, additionally, the presence of other proteins and enzymes have also been described. Protein profiles have recently been proposed as an interesting strategy for the varietal classification of olive fruits and oils. Nevertheless, there is still a lot of knowledge without being explored requiring new studies focused on the determination and characterization of these proteins.

  2. Effects of Mesophilic and Thermophilic Temperature Condition to Biogas Production (Methane from Palm Oil Mill Effluent (POME with Cow Manures

    Directory of Open Access Journals (Sweden)

    Muhammad Fajar Fajar

    2018-01-01

    Full Text Available Biogas is an environmentally friendly renewable energy source. Biogas can be used using Palm Oil Mill Effluents (POME. However, the % yield of biogas productivity is still not optimum due to the low conversion. The biogas productivity can be optimized by adding methanogen bacteria which increase the methane production through the anaerobic fermentation process. This study aims to utilize cow manures as the source of methanogen bacteria in methane production from POME. Furthermore, this study specifically aims to obtain the optimum productivity condition of biogas production by the composition ratio of POME and cow manures to the amount of fermentation time at 35oC and 50oC for mesophilic and thermophilic bacteria, respectively. The ratio of POME and cow mature were A1 (100:0, A2 (80:20, A3 (70:30, A4 (60:40, and A5 (0:100. The highest yield of biogas production was A2 ratio using the thermophilic condition which showed 51.33% mol with the total solid decline of 73.43%, COD removal of 77.01%, and BOD removal of 70.02%.

  3. Toward the complete utilization of rice straw: Methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration.

    Science.gov (United States)

    Sasaki, Kengo; Okamoto, Mami; Shirai, Tomokazu; Tsuge, Yota; Fujino, Ayami; Sasaki, Daisuke; Morita, Masahiko; Matsuda, Fumio; Kikuchi, Jun; Kondo, Akihiko

    2016-09-01

    Rice straw was mechanically milled using a process consuming 1.9MJ/kg-biomass, and 10g/L of unmilled or milled rice straw was used as the carbon source for methane fermentation in a digester containing carbon fiber textile as the supporting material. Milling increased methane production from 226 to 419mL/L/day at an organic loading rate of 2180mg-dichromate chemical oxygen demand/L/day, corresponding to 260mLCH4/gVS. Storage of the fermentation effluent at room temperature decreased the weight of the milled rice straw residue from 3.81 to 1.00g/L. The supernatant of the effluent was subjected to nanofiltration. The black concentrates deposited on the nanofiltration membranes contained 53.0-57.9% lignin. Solution nuclear magnetic resonance showed that lignin aromatic components such as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) were retained primarily, and major lignin interunit structures such as the β-O-4-H/G unit were absent. This combinational process will aid the complete utilization of rice straw. Copyright © 2016. Published by Elsevier Ltd.

  4. Effect of addition of organic materials and irrigation conditions on soil quality in olive groves in the region of Messinia, Greece.

    Science.gov (United States)

    Kavvadias, Victor; Papadopoulou, Maria; Vavoulidou, Evangelia; Theocharopoulos, Sideris; Repas, Spiros; Koubouris, Georgos; Psaras, Georgios

    2017-04-01

    Intensive cultivation practices are associated to soil degradation mainly due to low soil organic matter content. The application of organic materials to land is a common practice in sustainable agriculture in the last years. However, its implementation in olive groves under different irrigation regimes has not been systematically tested under the prevailing Mediterranean conditions. The aim of this work was to study the effect of alternative carbon input techniques (i.e. wood shredded, pruning residues, returning of olive mill wastes the field with compost) and irrigation conditions (irrigated and rainfed olive orchards) on spatial distribution of soil chemical (pH, EC, total organic carbon, total nitrogen, inorganic nitrogen, humic and fulvic acids, available P, and exchangeable K) and microbial properties (soil basal microbial respiration and microbial biomass carbon) in two soil depths (0-10 cm and 10-40 cm). The study took place in the region of Messinia, South western Peloponnese, Greece during three year soil campaigns. Forty soil plots of olive groves were selected (20 rainfed and 20 irrigated) and carbon input practices were applied on the half of the irrigated and rainfed soil parcels (10 rainfed and 10 irrigated), while the remaining ones were used as controls. The results showed significant changes of chemical and biological properties of soil in olive orchards due to carbon treatments. However, these changes were depended on irrigation conditions. Microbial parameters appeared to be reliable indicators of changes in soil management. Proper management of alternative soil carbon inputs in olive orchards can positively affect soil fertility.

  5. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    Science.gov (United States)

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, puranium concentration in plant and the substrate (r=0.88, puranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (puranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characterization of effluent from food processing industries and stillage treatment trial with Eichhornia crassipes (Mart. and Panicum maximum (Jacq.

    Directory of Open Access Journals (Sweden)

    N.A. Noukeu

    2016-12-01

    Full Text Available In this study, effluents from 11 food processing industries from various sectors were characterized through analysis of physical and chemical parameters. In general, effluents pHs are between 4.07 and 7.63. Lead (Pb2+ and cadmium (Cd+ concentrations range from 0.083 to 1.025 mg/l and 0.052–0.158 mg/l respectively. The biodegradability of the effluent is very low. The principal component analysis (PCA grouped industries according to their organic matter levels; thus, stillage, livestock, molasses and sugar refinery effluents show some similarities, as well as confectionery, oil mill, dairy and brewery effluents. Forms of nitrogen measured show low levels of nitrites (NO2−, high levels of nitrates (NO3−, ammonium (NH4+ and Kjeldahl nitrogen (TKN. Among these effluents, a treatment trial with Eichhornia crassipes and Panicum maximum was applied to stillage effluent from Fermencam distillery. The results show that Panicum maximum and Eichhornia crassipes reduce pollutant loads of Fermencam's wastewater.

  7. Recovery of iron after Fenton-like secondary treatment of olive mill wastewater by nano-filtration and low-pressure reverse osmosis membranes

    Directory of Open Access Journals (Sweden)

    Ochando-Pulido, J. M.

    2016-09-01

    Full Text Available In this work, the performances of novel nano-filtration (NF and low-pressure reverse osmosis (RO polymeric membranes were examined with the aim of recovering the iron used as catalyst in former secondary treatment based on the Fenton-like advanced oxidation of olive mill wastewater (OMW. Results highlight that both membranes exhibit a good performance towards the rejection of iron (99.1% for the NF membrane vs. 100% for the low-pressure RO membrane in the secondary-treated OMW effluent, thus permitting the recovery of iron in the concentrate stream in order to recycle it back into the oxidation reactor to reduce catalyst consumption. Finally, the permeate streams could be re-used for irrigation. Major productivity was observed by the selected NF membrane, about 47.4 L/hm2 upon 9 bar, whereas 30.9 L/hm2 could be yielded with the RO membrane under an operating pressure of 8 bar. Moreover, a sensibly lower fouling index was measured on the NF membrane (0.0072 in contrast with 0.065, which ensures major steady-state performance on this membrane and a longer service lifetime. This also results in lower required membrane area and membrane plant over dimension (4 modules in case of RO operation whereas only 2 modules for NF.En este trabajo, se examinó el rendimiento de membranas modernas de nanofiltración (NF y ósmosis inversa (OI poliméricas con el objetivo de recuperar el hierro utilizado como catalizador en un tratamiento secundario previo de agua residual oleícola (OMW basado en oxidación avanzada tipo Fenton. Los resultados ponen de relieven que ambas membranas exhiben buen rendimiento en cuanto al rechazo de hierro (99.1 % para la membrana de NF vs. 100 % para la membrana de OI de bajas presiones en el efluente oleícola tras tratamiento secundario, permitiendo en consecuencia la recuperación de hierro en la corriente de concentrado para su recirculación de nuevo al reactor de oxidación para reducir el consumo de catalizador. Finalmente

  8. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion

    Directory of Open Access Journals (Sweden)

    Francisco Noé eArroyo López

    2014-10-01

    Full Text Available The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933 and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, Lactobacillus pentosus TOMC-LAB2 and Lactobacillus pentosus TOMC-LAB4 during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was very low, while its transit through the distal parts (jejunum and ileum resulted in an increase in the pathogen population. The production of Shiga toxins by this enterohemorrhagic microorganism in the ileal effluents of the in vitro system was too low to be detected by ELISA assays. On the contrary, the three lactobacilli species assayed showed a considerable resistance to the gastric digestion, but not to the intestinal one, which affected their survival, and was especially evident in the case of both L. pentosus strains. In spite of this, high population levels for all assayed microorganisms were recovered at the end of the gastrointestinal passage. The results obtained in the present study show the potential use of table olives as a vehicle of beneficial microorganisms to the human body, as well as the need for good hygienic practices on the part of olive manufacturers in order to avoid the possibility of contamination by food-borne pathogens.

  9. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent.

    Science.gov (United States)

    Gumel, Ahmad Mohammed; Annuar, Mohamad Suffian Mohamad; Heidelberg, Thorsten

    2012-01-01

    The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW) basis were observed when fatty acids ranging from octanoic acid (C(8:0)) to oleic acid (C(18:1)) were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1)H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d)) of 264.6 to 318.8 (± 0.2) (o)C, melting temperature (T(m)) of 43. (± 0.2) (o)C, glass transition temperature (T(g)) of -1.0 (± 0.2) (o)C and apparent melting enthalpy of fusion (ΔH(f)) of 100.9 (± 0.1) J g(-1).

  10. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan [Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800, Kgs. Lyngby (Denmark); Angelidaki, Irini, E-mail: ria@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800, Kgs. Lyngby (Denmark)

    2011-05-15

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH{sub 4}/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH{sub 4}/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH{sub 4}/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

  11. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    International Nuclear Information System (INIS)

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH 4 /gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH 4 /gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH 4 /gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.

  12. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME).

    Science.gov (United States)

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2011-05-15

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH(4)/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH(4)/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH(4)/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Treatment of palm oil mill effluent by electrocoagulation with presence of hydrogen peroxide as oxidizing agent and polialuminum chloride as coagulant-aid

    Directory of Open Access Journals (Sweden)

    Mohd Nasrullah

    2017-06-01

    Full Text Available The purposes of this study were to investigate the effects of operating parameters, such as electrode material, current density, percentage of hydrogen peroxide and amount of polialuminum chloride (PAC on chemical oxygen demand (COD removal of palm oil mill effluent (POME. The current density was varied between 30–80 mA cm−2, PAC (1–3 g L−1 as coagulant-aid and 1 and 2% of hydrogen peroxide as an oxidizing agent. As for the performance of electrode type, iron was more effective than aluminum. It appeared that the removal of COD increased with the increased of current density. When PAC and H2O2 increased, the percent of COD removal was increasing as well. The overall results demonstrate that electrocoagulation is very efficient and able to achieve more than 70% COD removal in 180 min at current density 30–80 mA cm−2 reliant upon the concentration of H2O2 and PAC.

  14. Olives and Bone: A Green Osteoporosis Prevention Option

    Directory of Open Access Journals (Sweden)

    Kok-Yong Chin

    2016-07-01

    Full Text Available Skeletal degeneration due to aging, also known as osteoporosis, is a major health problem worldwide. Certain dietary components confer protection to our skeletal system against osteoporosis. Consumption of olives, olive oil and olive polyphenols has been shown to improve bone health. This review aims to summarize the current evidence from cellular, animal and human studies on the skeletal protective effects of olives, olive oil and olive polyphenols. Animal studies showed that supplementation of olives, olive oil or olive polyphenols could improve skeletal health assessed via bone mineral density, bone biomechanical strength and bone turnover markers in ovariectomized rats, especially those with inflammation. The beneficial effects of olive oil and olive polyphenols could be attributed to their ability to reduce oxidative stress and inflammation. However, variations in the bone protective, antioxidant and anti-inflammatory effects between studies were noted. Cellular studies demonstrated that olive polyphenols enhanced proliferation of pre-osteoblasts, differentiation of osteoblasts and decreased the formation of osteoclast-like cells. However, the exact molecular pathways for its bone health promoting effects are yet to be clearly elucidated. Human studies revealed that daily consumption of olive oil could prevent the decline in bone mineral density and improve bone turnover markers. As a conclusion, olives, olive oil and its polyphenols are potential dietary interventions to prevent osteoporosis among the elderly.

  15. Toward a proof of Montonen-Olive duality via multiple M2-branes

    International Nuclear Information System (INIS)

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-01-01

    We derive 4-dimensional N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N)) 2n . The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g 2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  16. Toward a proof of Montonen-Olive duality via multiple M2-branes

    Science.gov (United States)

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-04-01

    We derive 4-dimensional Script N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N))2n. The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  17. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester

    International Nuclear Information System (INIS)

    Sivasankari, R; Kumaran, P; Normanbhay, Saifuddin; Shamsuddin, Abd Halim

    2013-01-01

    An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

  18. Virgin olive oil yeasts: A review.

    Science.gov (United States)

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Geographical Characterization of Tunisian Olive Tree Leaves (cv. Chemlali) Using HPLC-ESI-TOF and IT/MS Fingerprinting with Hierarchical Cluster Analysis

    Science.gov (United States)

    Arráez Román, David; Gómez Caravaca, Ana María; Zarrouk, Mokhtar

    2018-01-01

    The olive plant has been extensively studied for its nutritional value, whereas its leaves have been specifically recognized as a processing by-product. Leaves are considered by-products of olive farming, representing a significant material arriving to the olive mill. They have been considered for centuries as an important herbal remedy in Mediterranean countries. Their beneficial properties are generally attributed to the presence of a range of phytochemicals such as secoiridoids, triterpenes, lignans, and flavonoids. With the aim to study the impact of geographical location on the phenolic compounds, Olea europaea leaves were handpicked from the Tunisian cultivar “Chemlali” from nine regions in the north, center, and south of Tunisia. The ground leaves were then extracted with methanol : water 80% (v/v) and analyzed by using high-performance liquid chromatography coupled to electrospray time of flight and ion trap mass spectrometry analyzers. A total of 38 compounds could be identified. Their contents showed significant variation among samples from different regions. Hierarchical cluster analysis was applied to highlight similarities in the phytochemical composition observed between the samples of different regions. PMID:29725553

  20. Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS.

    Science.gov (United States)

    Aydi, Abdelwaheb; Abichou, Tarek; Nasr, Imen Hamdi; Louati, Mourad; Zairi, Moncef

    2016-01-01

    This paper presents a geographic information system-based multi-criteria site selection tool of an olive mill wastewater (OMW) disposal site in Sidi Bouzid Region, Tunisia. The multi-criteria decision framework integrates ten constraints and six factors that relate to environmental and economic concerns, and builds a hierarchy model for OMW disposal site suitability. The methodology is used for preliminary assessment of the most suitable OMW disposal sites by combining fuzzy set theory and analytic hierarchy process (AHP). The fuzzy set theory is used to standardize factors using different fuzzy membership functions while the AHP is used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by both environmental and economic decision criteria. The OMW disposal site suitability is achieved by applying a weighted linear combination that uses a comparison matrix to aggregate different importance scenarios associated with environmental and economic objectives. Three different scenarios generated by different weights applied to the two objectives. The scenario (a) assigns a weight of 0.75 to the environmental and 0.25 to the economic objective, scenario (b) has equal weights, and scenario (c) features weights of 0.25 and 0.75 for environmental and economic objectives, respectively. The results from this study assign the least suitable OMW disposal site of 2.5 % when environmental and economic objectives are rated equally, while a more suitable OMW disposal site of 1.0 % is generated when the economic objective is rated higher.

  1. Olive mill wastewater disposal in evaporation ponds in Sfax (Tunisia): moisture content effect on microbiological and physical chemical parameters.

    Science.gov (United States)

    Jarboui, Raja; Hadrich, Bilel; Gharsallah, Néji; Ammar, Emna

    2009-11-01

    The study of the isotherms desorption of olive mill wastewater (OMW) was investigated to describe its water activity under different saturated environments. The microbial biodegradation of OMW during its storage in 5 evaporation ponds located in Agareb (Sfax-Tunisia) was carried out during the oil-harvesting year held 105 days in 2004. Gravimetric static method using saturated salt solutions was used and OMW as placed at 30 degrees C and under different water activities ranging from 0.11 to 0.90. Eight models were taken from the literature to describe experimental desorption isotherms. During storage, the evolution of physico-chemical parameters including pH, temperature, evaporation, humidity, total phosphorus, chemical oxygen demand (COD), biological oxygen demand (BOD) and phenols and three microbiological flora (aerobic mesophilic bacteria, yeasts and moulds) were considered. At 30 degrees C, when relative humidity increased in the experimented ponds of 69, 84 and 90%, the evaporation speed decreased from 1.24 x 10(-5) to 5 x 10(-6) cm(3) s(-1), from 6 x 10(-5) to 7 x 10(-6) cm(3) s(-1) and from 5 x 10(-6) to 1.1 x 10(-7) cm(3) s(-1) respectively. The desorption isotherm exhibited a sigmoidal curve corresponding to type II, typical of many organic material. The GAB and Peleg models gave the best fit for describing the relationship between the equilibrium moisture content and water activity in OMW (R (2) = 0.998). During the storage period, the analysis showed an increase of all the physico-chemical parameters studied, except phenols and total phosphorus concentrations. The microbiological study showed the predominance of yeasts and moulds and the decrease of bacteria population after 75 days reflecting both effect of recalcitrant compounds and the water activity on microbial growth.

  2. Radiocarbon measurements of dissolved organic carbon in sewage-treatment-plant effluent and domestic sewage

    International Nuclear Information System (INIS)

    Nara, Fumiko Watanabe; Imai, Akio; Matsushige, Kazuo; Komatsu, Kazuhiro; Kawasaki, Nobuyuki; Shibata, Yasuyuki

    2010-01-01

    In an attempt to better characterize dissolved organic carbon (DOC) in several specific sources to Lake Kasumigaura, such as sewage-treatment-plant effluent (STPE), domestic sewage (DS) and forest stream (FS), we analyzed radiocarbon ( 14 C) and stable carbon isotopic compositions ( 13 C) of the DOCs. The measurements of 14 C for DOC were performed by an accelerator mass spectrometer (AMS) at the National Institute for Environmental Studies (NIES-TERRA) in Japan. The Δ 14 C and δ 13 C values of the DOCs in several sources to Lake Kasumigaura, have low carbon isotopic values, ranging from -470 per mille to -79 per mille and from -27.9 per mille to -24.2 per mille , respectively. These carbon isotopic values are substantially different from those of Lake Kasumigaura. These results imply different origins for the DOC in Lake Kasumigaura. The 14 C and 13 C analyses of DOC led to a useful classification for DOCs in Lake Kasumigaura, Japan.

  3. Effects of olive scale (Parlatoria oleae (Colvée attack on yield, quality and fatty acid profile of virgin olive oil

    Directory of Open Access Journals (Sweden)

    M. Krapac

    2014-01-01

    Full Text Available Olive scale (Parlatoria oleae (Colvée is a common pest in Mediterranean olive orchards which primarily causes damage on olive fruits. The quality of virgin olive oil is strongly related to the health status of the olive fruits from which is extracted. In this paper the effects of olive scale (Parlatoria oleae (Colvée attack on the oil yield, chemical and sensorial quality, as well as on the fatty acid profile of virgin olive oil were studied. Olive fruits (Olea europea L. from Bova cultivar (Istria, Croatia were collected and divided into different groups according to the presence or absence of infestation by the olive scale. Olive scale attack did not induce ripening process nor stimulate oil synthesis in the infested fruits. Healthy and infested fruit groups were processed separately to produce corresponding olive oils. As regards the oil acidity, the oil samples obtained from infested fruits had similar values as samples obtained from healthy fruits. However, olive scale attack led to slight oxidative deterioration of oil, but had no effect on sensory characteristics of obtained olive oils. Fatty acid profile was slightly affected by olive scale attack: an increase of linoleic (about 13 % and palmitoleic acid (about 8 %, but a decrease of oleic (about 3 % and stearic acid (about 4 % in oils obtained from infested fruits was detected. Oleic to linoleic ratio was lower in oils obtained from infested fruits indicating its lower oxidative stability.

  4. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  5. Enhancement of Antioxidant Mechanisms and Reduction of Oxidative Stress in Chickens after the Administration of Drinking Water Enriched with Polyphenolic Powder from Olive Mill Waste Waters

    Directory of Open Access Journals (Sweden)

    Aliki Papadopoulou

    2017-01-01

    Full Text Available The aim of the study was to examine the effects of a polyphenolic powder from olive mill wastewater (OMWW administered through drinking water, on chickens’ redox status. Thus, 75 chickens were divided into three groups. Group A was given just drinking water, while groups B and C were given drinking water containing 20 and 50 μg/ml of polyphenols, respectively, for 45 days. The antioxidant effects of the polyphenolic powder were assessed by measuring oxidative stress biomarkers in blood after 25 and 45 days of treatment. These markers were total antioxidant capacity (TAC, protein carbonyls (CARB, thiobarbituric acid reactive species (TBARS and superoxide dismutase activity (SOD in plasma, and glutathione (GSH and catalase activity in erythrocytes. The results showed that CARB and TBARS were decreased significantly in groups B and C, and SOD decreased in group B compared to that in group A. TAC was increased significantly in group C and GSH was increased in group B, while catalase activity was increased in groups B and C compared to that in group A. In conclusion, this is the first study showing that supplementation of chickens with polyphenols from OMWW through drinking water enhanced their antioxidant mechanisms and reduced oxidative stress-induced damage.

  6. Enhancement of Antioxidant Mechanisms and Reduction of Oxidative Stress in Chickens after the Administration of Drinking Water Enriched with Polyphenolic Powder from Olive Mill Waste Waters.

    Science.gov (United States)

    Papadopoulou, Aliki; Petrotos, Konstantinos; Stagos, Dimitrios; Gerasopoulos, Konstantinos; Maimaris, Antonios; Makris, Haralampos; Kafantaris, Ioannis; Makri, Sotiria; Kerasioti, Efthalia; Halabalaki, Maria; Brieudes, Vincent; Ntasi, Georgia; Kokkas, Stylianos; Tzimas, Pavlos; Goulas, Panagiotis; Zakharenko, Alexander M; Golokhvast, Kirill S; Tsatsakis, Aristidis; Kouretas, Demetrios

    2017-01-01

    The aim of the study was to examine the effects of a polyphenolic powder from olive mill wastewater (OMWW) administered through drinking water, on chickens' redox status. Thus, 75 chickens were divided into three groups. Group A was given just drinking water, while groups B and C were given drinking water containing 20 and 50  μ g/ml of polyphenols, respectively, for 45 days. The antioxidant effects of the polyphenolic powder were assessed by measuring oxidative stress biomarkers in blood after 25 and 45 days of treatment. These markers were total antioxidant capacity (TAC), protein carbonyls (CARB), thiobarbituric acid reactive species (TBARS) and superoxide dismutase activity (SOD) in plasma, and glutathione (GSH) and catalase activity in erythrocytes. The results showed that CARB and TBARS were decreased significantly in groups B and C, and SOD decreased in group B compared to that in group A. TAC was increased significantly in group C and GSH was increased in group B, while catalase activity was increased in groups B and C compared to that in group A. In conclusion, this is the first study showing that supplementation of chickens with polyphenols from OMWW through drinking water enhanced their antioxidant mechanisms and reduced oxidative stress-induced damage.

  7. Heavy metals adsorption on rolling mill scale; Adsorcion de metales pesados sobre cascarill de laminacion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, F. A.; Martin, M. I.; Perez, C.; Lopez-Delgado, A.; Alguacil, E. J.

    2003-07-01

    A great quantity of industries are responsible for contaminating the environment with the heavy metals which are containing in their wastewaters. The recovery of these metals is both from an environmental and economical points of view of the upmost interest. A study is made of the use of mill scale-originating in the hot rolling of steel-as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Zn''2+, Cd''2+ y Pb''2+ on the rolling mill scale was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on mill scale adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Langmuir and Freundlich. Desorption process of metals from loaded mill scales was also studied using several doser bent at different experimental conditions. It has been proved that the mill scale is an effective adsorbent for the cations studies in aqueous solutions within the range of the working concentrations. (Author) 32 refs.

  8. Phytosanitary evaluation of olive germplasm in Albania

    Directory of Open Access Journals (Sweden)

    M. Luigi

    2009-09-01

    Full Text Available A survey on viruses was carried out in 2008 in the main olive-growing areas of Albania (Kruja, Sauk and Vlora. Fifty samples from 14 local and 2 exotic olive cultivars were collected from 10 commercial orchards and one collection field and inspected for Arabis mosaic virus (ArMV, Cherry leaf roll virus (CLRV, Strawberry latent ringspot virus (SLRV, Olive latent virus 1 (OLV-1, Olive leaf yellowing-associated virus (OLYaV, Cucumber mosaic virus (CMV, Olive latent virus-2 (OLV-2 and Tobacco necrosis virus strain D (TNV-D by a one-step RT-PCR assay using virus-specifi c primers. None of these viruses were found in the source plants except SLRSV and OLYaV, which were detected in a ‘K. M. Berat’ olive tree grown in the collection field. These findings are important because the incidence of olive virus diseases is low in Albania but high in other Mediterranean countries. Thus, all efforts should be to directed to maintaining the Albanian olive germplasm pathogen-free and in the best agronomical and phytosanitary condition possible.

  9. DEVELOPMENT OF A METHANE-FREE, CONTINUOUS BIOHYDROGEN PRODUCTION SYSTEM FROM PALM OIL MILL EFFLUENT (POME IN CSTR

    Directory of Open Access Journals (Sweden)

    MARIATUL FADZILLAH MANSOR

    2016-08-01

    Full Text Available This study aimed to develop the start-up experiment for producing biological hydrogen in 2 L continuous stirred tank reactor (CSTR from palm oil mill effluent (POME by the use of mixed culture sludge under non-sterile conditions. Besides using different source of starter culture, the effects of acid treated culture and various operating temperature from 35 °C to 55 °C were studied against the evolved gas in terms of volumetric H2 production rate (VHPR and soluble metabolite products (SMPs. The formation of methane was closely observed throughout the run. Within the studied temperature, VHPR was found as low as 0.71 L/L.d and ethanol was the main by-products (70-80% of total soluble metabolites. Attempts were made to produce biohydrogen without methane formation at higher thermophilic temperature (45-55 °C than the previous range. The average of 1.7 L H2 of 2 L working volume per day was produced at 55 oC with VHPR of 1.16 L/L.d. The results of soluble metabolites also are in agreement with the volatile fatty acids (VFAs which is higher than ethanol. Higher VFAs of 2269 mg/L was obtained with acetic acid being the main by-product. At this time methanogen has been deactivated and no methane was produced. From this study, it can be concluded that thermophilic environment may offer a better option in a way to eliminate methane from the biogas and at the same time improving hydrogen production rate as well.

  10. Laboratory evaluation of limestone and lime neutralization of acidic uranium mill tailings solution. Progress report

    International Nuclear Information System (INIS)

    Opitz, B.E.; Dodson, M.E.; Serne, R.J.

    1984-02-01

    Experiments were conducted to evaluate a two-step neutralization scheme for treatment of acidic uranium mill tailings solutions. Tailings solutions from the Lucky Mc Mill and Exxon Highland Mill, both in Wyoming, were neutralized with limestone, CaCO 3 , to an intermediate pH of 4.0 or 5.0, followed by lime, Ca(OH) 2 , neutralization to pH 7.3. The combination limestone/lime treatment methods, CaCO 3 neutralization to pH 4 followed by neutralization with Ca(OH) 2 to pH 7.3 resulted in the highest quality effluent solution with respect to EPA's water quality guidelines. The combination method is the most cost-effective treatment procedure tested in our studies. Neutralization experiments to evaluate the optimum solution pH for contaminant removal were performed on the same two tailings solutions using only lime Ca(OH) 2 as the neutralizing agent. The data indicate solution neutralization above pH 7.3 does not significantly increase removal of pH dependent contaminants from solution. Column leaching experiments were performed on the neutralized sludge material (the precipitated solid material which forms as the acidic tailings solutions are neutralized to pH 4 or above). The sludges were contacted with laboratory prepared synthetic ground water until several effluent pore volumes were collected. Effluent solutions were analyzed for macro ions, trace metals and radionuclides in an effort to evaluate the long term effectiveness of attenuating contaminants in sludges formed during solution neutralization. Neutralized sludge leaching experiments indicate that Ca, Na, Mg, Se, Cl, and SO 4 are the only constituents which show solution concentrations significantly higher than the synthetic ground water in the early pore volumes of long-term leaching studies

  11. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent.

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammed Gumel

    Full Text Available The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW basis were observed when fatty acids ranging from octanoic acid (C(8:0 to oleic acid (C(18:1 were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d of 264.6 to 318.8 (± 0.2 (oC, melting temperature (T(m of 43. (± 0.2 (oC, glass transition temperature (T(g of -1.0 (± 0.2 (oC and apparent melting enthalpy of fusion (ΔH(f of 100.9 (± 0.1 J g(-1.

  12. A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME.

    Science.gov (United States)

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2009-01-01

    During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products.

  13. Sensitization to olive oil (olea europeae)

    NARCIS (Netherlands)

    van Joost, T.; Smitt, J. H.; van Ketel, W. G.

    1981-01-01

    Sensitization to olive oil is seldom reported in the literature. By use of epicutaneous tests a delayed type of hypersensitivity to pure freshly-prepared olive oil could be demonstrated in two patients. Patch tests with certain major constituents of olive oil; the methyl ester of linoleic acid, the

  14. Olive oil: composition and health benefits

    OpenAIRE

    Salazar, D.M.; López Cortés, I.; Salazar García, Domingo C.

    2017-01-01

    The production of Extra Virgin Olive Oil (EVOO) in Spain is very high, it reached 1 million tonnes in the last olive oil campaign, with over two million hectares planted with olive trees. This crop is distributed in over six different bioclimatic zones and with more than 100 cultivars, many of them native from a pomological point of view. Among the olive areas of Spain, Andalusia, Extremadura, Catalonia and Valencia stand out, next to the Central Region (Castilla-La Mancha). Each one of them ...

  15. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns.

    Science.gov (United States)

    Prabakar, Desika; Suvetha K, Subha; Manimudi, Varshini T; Mathimani, Thangavel; Kumar, Gopalakrishnan; Rene, Eldon R; Pugazhendhi, Arivalagan

    2018-07-15

    The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Chemistry and health of olive oil phenolics.

    Science.gov (United States)

    Cicerale, Sara; Conlan, Xavier A; Sinclair, Andrew J; Keast, Russell S J

    2009-03-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, and certain types of cancer. The apparent health benefits have been partially attributed to the dietary consumption of virgin olive oil by Mediterranean populations. Most recent interest has focused on the biologically active phenolic compounds naturally present in virgin olive oils. Studies (human, animal, in vivo and in vitro) have shown that olive oil phenolics have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, and antimicrobial activity. Presumably, regular dietary consumption of virgin olive oil containing phenolic compounds manifests in health benefits associated with a Mediterranean diet. This paper summarizes current knowledge on the physiological effects of olive oil phenolics. Moreover, a number of factors have the ability to affect phenolic concentrations in virgin olive oil, so it is of great importance to understand these factors in order to preserve the essential health promoting benefits of olive oil phenolic compounds.

  17. Are olive oil diets antithrombotic?

    DEFF Research Database (Denmark)

    Larsen, L. F.; Jespersen, J.; Marckmann, Peter

    1999-01-01

    compared the effects of virgin olive oil with those of rapeseed and sunflower oils on blood coagulation factor VII (FVII), a key factor in thrombogenesis. DESIGN: In a randomized and strictly controlled crossover study, 18 healthy young men consumed diets enriched with 5 g/MJ (19% of total energy) olive...... FVII (FVIIa) were 11.3 +/- 5.1 U/L lower after olive oil than after sunflower oil, an 18% reduction (P diets...... with respect to nonfasting factor VII coagulant activity (FVII:c), prothrombin fragment 1+2 (F1+2), and tissue factor pathway inhibitor (TFPI) concentrations, or with respect to fasting plasma values of FVII protein, FVII:c, FVIIa, F1+2, or TFPI. CONCLUSION: A background diet rich in olive oil may attenuate...

  18. Evaluation of regional effects of effluents from uranium production in New Mexico

    International Nuclear Information System (INIS)

    Wilson, D.W.

    1977-01-01

    The Grants Uranium Region is a 2500 mile area of northcentral New Mexico which has produced about 40 percent of all domestic uranium, and holds over one-half of the current reserves. The increasing demand for uranium to fuel commercial nuclear power plants is resulting in rapid growth of the uranium industry and economic, social, and environmental changes are occurring. One of the environmental issues of this region is the concern for eventually unacceptable levels of air and water pollution from effluents from uranium mill tailings piles. This study addresses these potential impacts in relation to industrial environmental control practices, siting features, and other regional/temporal variables, including rates of production, locations and sizes of new mills, and population distributions

  19. A guide to ventilation requirements for uranium mines and mills. Regulatory guide G-221

    International Nuclear Information System (INIS)

    2003-06-01

    The purpose of G-221 is to help persons address the requirements for the submission of ventilation-related information when applying for a Canadian Nuclear Safety Commission (CNSC) licence to site and construct, operate or decommission a uranium mine or mill. This guide is also intended to help applicants for a uranium mine or mill licence understand their operational and maintenance obligations with respect to ventilation systems, and to help CNSC staff evaluate the adequacy of applications for uranium mine and mill licences. This guide is relevant to any application for a CNSC licence to prepare a site for and construct, operate or decommission a uranium mine or mill. In addition to summarizing the ventilation-related obligations or uranium mine and mill licensee, the guide describes and discusses the ventilation-related information that licence applicants should typically submit to meet regulatory requirements. The guide pertains to any ventilation of uranium mines and mills for the purpose of assuring the radiation safety of workers and on-site personnel. This ventilation may be associated with any underground or surface area or premise that is licensable by the CNSC as part of a uranium mine or mill. These areas and premises typically include mine workings, mill buildings, and other areas or premises involving or potentially affected by radiation or radioactive materials. Some examples of the latter include offices, effluent treatment plants, cafeterias, lunch rooms and personnel change-rooms. (author)

  20. Integrated process for the removal of emulsified oils from effluents in the steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Benito, J.M.; Rios, G.; Gutierrez, B.; Pazos, C.; Coca, J.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicated coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.

  1. Association of SSR markers with contents of fatty acids in olive oil and genetic diversity analysis of an olive core collection.

    Science.gov (United States)

    Ipek, M; Ipek, A; Seker, M; Gul, M K

    2015-03-27

    The purpose of this research was to characterize an olive core collection using some agronomic characters and simple sequence repeat (SSR) markers and to determine SSR markers associated with the content of fatty acids in olive oil. SSR marker analysis demonstrated the presence of a high amount of genetic variation between the olive cultivars analyzed. A UPGMA dendrogram demonstrated that olive cultivars did not cluster on the basis of their geographic origin. Fatty acid components of olive oil in these cultivars were determined. The results also showed that there was a great amount of variation between the olive cultivars in terms of fatty acid composition. For example, oleic acid content ranged from 57.76 to 76.9% with standard deviation of 5.10%. Significant correlations between fatty acids of olive oil were observed. For instance, a very high negative correlation (-0.812) between oleic and linoleic acids was detected. A structured association analysis between the content of fatty acids in olive oil and SSR markers was performed. STRUCTURE analysis assigned olive cultivars to two gene pools (K = 2). Assignment of olive cultivars to these gene pools was not based on geographical origin. Association between fatty acid traits and SSR markers was evaluated using the general linear model of TASSEL. Significant associations were determined between five SSR markers and stearic, oleic, linoleic, and linolenic acids of olive oil. Very high associations (P < 0.001) between ssrOeUA-DCA14 and stearic acid and between GAPU71B and oleic acid indicated that these markers could be used for marker-assisted selection in olive.

  2. Olive

    Science.gov (United States)

    ... some people. Metabolic syndrome. Metabolic syndrome is a group of conditions such as high blood pressure, excess ... Up to 1 liter per week of extra-virgin olive oil has been used safely as part ...

  3. Environmental study of a pulp and paper mill in NWFP, Pakistan

    International Nuclear Information System (INIS)

    Shah, J.; Jan, A.; Rahman, A.U.

    2006-01-01

    A detailed environmental study of a pulp and paper mill was carried out, which included effluent flow measurements and sample collection from some selected points. Stack gas analysis was carried out on the sport. The quantity of raw materials used and their wastage in the production processes were identified. The data obtained were fed into environmental balance sheets, already developed for the mill, which showed excessive use of water per ton production of paper, as compared to a European paper mill the biological oxygen demand, chemical oxygen demand, and total soluble solids were above the permissible level of National Environmental Quality Standards specified by the Government of Pakistan. Control measures for preventing raw materials wastage, both at in-plant and end-of-pipe treatment, were recommended, which included water conservation, spill control, recovery of valuable fibre, reduction in chlorinated compounds, waste heat recovery, solid waste recovery and its safe disposal for the in-plant controls, while options for the end-of-pipe treatment were discussed with the factory management. (author)

  4. Optimal Condition of Fenton's Reagent to Enhance the Alcohol Production from Palm Oil Mill Effluent (POME

    Directory of Open Access Journals (Sweden)

    Supawadee Sinnaraprasat

    2011-07-01

    Full Text Available Application of Fenton's reaction for a proper hydrolysis step is an essential and important step in obtaining a higher level of readily biodegradable sugars from palm oil mill effluent (POME for improving the alcohol production by using immobilized Clostridium acetobutylicum. The objective of this research was, therefore, to investigate the optimum condition of Fenton's reaction in terms of COD: H2O2 ratios (w/w and H2O2: Fe2+ ratios (molar ratio used to oxidize carbohydrate and high molecular organic compounds into simple sugars, which are further fermented into alcohol. The experiments were carried out at H2O2: Fe2+ ratios (molar ratios of 5, 10, 20, 30 and 40 and the COD: H2O2 ratios (w/w of 50, 70, 100 and 130 (initial COD about 50,000 mg/L. The total sugar concentrations and organic compounds biodegradability (BOD5/COD ratios were also used for investigating suitable conditions for Fenton's reaction. The concentration of Fenton's reagent at H2O2:Fe2+ and COD:H2O2 ratio of 20 and 130 was identified as the optimum operating condition for the highest simple sugars of about 0.865% and BOD5/COD ratios of 0.539. The alcohol productions were carried out in the continuous stirred tank reactors (CSTR under an anaerobic continuous immobilization system. At a hydraulic retention time of 12 hours and POME pH of 4.8, the maximum total ABE concentration of 495 mg/L and the ABE yield of 0.236 grams of ABE produced/gram of reducing sugars were achieved at the mixed polyvinyl alcohol (PVA and palm oil ash (POA ratio of 10 : 3.

  5. Improved biohydrogen production and treatment of pulp and paper mill effluent through ultrasonication pretreatment of wastewater

    International Nuclear Information System (INIS)

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Juan, Joon Ching; Md Jahim, Jamaliah

    2015-01-01

    Highlights: • Ultrasonication facilitated the reuse of PPME in biohydrogen production. • Ultrasonication at an amplitude of 60% for 45 min produced the highest biohydrogen. • Ultrasonication increased the solubilization of PPME. • Higher net savings were obtained in pretreated PPME compared to raw PPME. - Abstract: Pulp and paper mill effluent (PPME), a rich cellulosic material, was found to have great potential for biohydrogen production through a photofermentation process. However, pretreatments were needed for degrading the complex structure of PPME before biohydrogen production. The aim of this study was to gain further insight into the effect of an ultrasonication process on PPME as a pretreatment method and on photofermentative biohydrogen production using Rhodobacter sphaeroides NCIMB. The ultrasonication amplitudes and times were varied between 30–90% and 15–60 min, respectively, and no dilution or nutrient supplementation was introduced during the biohydrogen production process. A higher biohydrogen yield, rate, light efficiency and COD removal efficiency were attained in conditions using ultrasonicated PPME. Among these different pretreatment conditions, PPME with ultrasonication pretreatment employing an amplitude of 60% and time of 45 min (A60:T45) gave the highest yield and rate of 5.77 mL H_2/mL medium and 0.077 mL H_2/mL h, respectively, while the raw PPME without ultrasonication showed a significantly lower yield and rate of 1.10 mL H_2/mL medium and 0.015 mL H_2/mL h, respectively. The results of this study demonstrated the potential of using ultrasonication as a pretreatment for PPME because the yield and rate of biohydrogen production were highly enhanced compared to the raw PPME. Economic analysis was also performed in this study, and in comparison with raw PPME, the highest net saving was $0.2132 for A60:T45.

  6. Site specific management in an olive tree plantation

    DEFF Research Database (Denmark)

    Fountas, S.; Aggelopoulou, K.; Bouloulis, C.

    2011-01-01

    Yield and soil mapping were carried out in 2007 and 2008 in a 9.1 ha commercial olive tree plantation for olive oil production. The orchard is in the southern Peloponnese, where olives are cultivated extensively for extra virgin olive oil production. The field is planted in rows with about 1650...... shoots and letting the olives fall onto a plastic net covering the ground. Sacks of approximately 58 kg capacity were filled with olives from as many adjacent trees as were needed to fill a sack. The location of the sacks, or group of closely placed sacks, was identified using a commercial GPS (5 m...

  7. Pedologic Factors Affecting Virgin Olive Oil Quality of "Chemlali" Olive Trees (Olea europaea L.).

    Science.gov (United States)

    Rached, Mouna Ben; Galaverna, Gianni; Cirlini, Martina; Boujneh, Dalenda; Zarrouk, Mokhtar; Guerfel, Mokhtar

    2017-08-01

    The aim of this study examined the characterization of extra virgin olive oil samples from the main cultivar Chemlali, grown in five olive orchards with different soil type (Sandy, Clay, Stony, Brown, Limestone and Gypsum). Volatile compounds were studied using headspace-solid phase micro-extraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) technics. Moreover, the sterol profile was established using gas chromatography-mass spectrometry. 35 different volatile compounds were identified: alcohols, esters, aldehydes, ketones and hydrocarbons. The chemical composition of the volatile fraction was characterized by the preeminence of 2-hexenal (32.75%) and 1-hexanol (31.88%). Three sterols were identified and characterized. For all olive oil samples, ß-sitosterol (302.25 mg/kg) was the most abundant sterol. Interestingly, our results showed significant qualitative and quantitative differences in the levels of the volatile compounds and sterols from oils obtained from olive trees grown in different soil type.

  8. Olive oil biophenols and women's health.

    Science.gov (United States)

    Fistonić, Ivan; Situm, Mirna; Bulat, Vedrana; Harapin, Mario; Fistonić, Nikola; Verbanac, Donatella

    2012-02-01

    Olea europea, the olive tree, is an ancient tree that originates from the Mediterranean environment of Asia Minor. The edible olive fruit is also used for its oil, gained by the process of pressing, a nutrient with proven beneficial effects. Virgin olive oil is the natural juice of the olive fruit, which plays a major role in the healthy Mediterranean diet. The source of its health effects are the biophenols and squalenes (oleocanthal, tyrosol, hydroxytyrosol, oleuropein) it contains. They provide an exceptional antioxidative activity, removing harmful compounds from the body. Oxidants are essential in the genesis of many diseases and conditions, such as cardiovascular disorders, cancer, osteoporosis, Alzheimer disease, and premenstrual syndrome. Oleic acid, an unsaturated fatty acid, has demonstrated a significant effect in the prevention of malignant diseases such as colon cancer and breast cancer. Biophenols from olive oil successfully suppress the synthesis of LDL, a protein that is crucial in the development of cardiovascular disease, by reducing blood pressure and the development of atherosclerotic plaques. In addition, there is strong evidence of the antimicrobic effect of the biphenols from olive oil that successfully destroy colonies of microorganisms which may cause respiratory tract, intestinal, and genital tract infections.

  9. Recycling of dyehouse effluents by biological and chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Krull, R.; Doepkens, E. [Inst. of Biochemical Engineering, Technical Univ. of Braunschweig, Braunschweig (Germany)

    2003-07-01

    The introduction of the production integrated environmental protection by closing raw material cycles is shown exemplary for the textile finishing industry. Colored process water with a high content of dissolved organic dyes has always been a non-trivial problem for the sewage engineering sector. The recycling of process water of textile mills is often hindered by remaining color of water-soluable azo dyes after conventional wastewater treatment. Rising costs of emitted wastewater, lawful limits and restricted availability of water makes it of great interest to introduce sophisticated techniques helping to purify dye effluents and to recycle process water. A combined biological and chemical process of purification and recycling of residual dyehouse split flows into the production was developed, investigated and installed by a textile finishing company which produces 330,000 m{sup 3} colored wastewater effluents per year. The process contains anaerobic dye-cleavage, aerobic mineralization of cleavage-products and the decolorization and partial oxidation of traces of dyeresiduals by advanced oxidation. (orig.)

  10. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, V.N., E-mail: jhavn1971@gmail.com; Tripathi, R.M., E-mail: tripathirm@yahoo.com; Sethy, N.K., E-mail: sethybarc@rediffmail.com; Sahoo, S.K., E-mail: sksbarc@gmail.com

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r = 0.86, p < 0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r = 0.88, p < 0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p < 0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. - Highlights: • Uranium mill tailings pond. • Jaduguda, India. • Fresh water plants. • Uranium uptake. • Relationship of uranium with stable elements.

  11. Ferti-irrigational impact of sugar mill effluent on agronomical characteristics of Phaseolus vulgaris (L.) in two seasons.

    Science.gov (United States)

    Kumar, Vinod; Chopra, A K

    2014-11-01

    Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P potassium (K(+)), calcium (Ca(2+)), magnesium (Mg(2+)), total Kjeldahl nitrogen (TKN), phosphate (PO4 (3-)), sulfate (SO4 (2-)), ferrous (Fe(2+)), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn), in both seasons. The contents of Cr, Cu, Mn, and Zn except Cd were found to be below the maximum levels permitted for soils in India. The agronomic performance of P. vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.

  12. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  13. Effect of consumption of phenols from olives and extra virgin olive oil on LDL oxidizability in healthy humans

    NARCIS (Netherlands)

    Vissers, M.N.; Zock, P.L.; Leenen, R.; Roodenburg, A.J.C.; Putte, van K.P.A.M.; Katan, M.B.

    2001-01-01

    A high intake of olive oil has been proposed as an explanation for the low incidence of coronary heart disease in Mediterranean countries, but it is unclear whether olive oil offers specific benefits beyond a low content of saturated fat. Some types of extra virgin olive oil are rich in non-polar

  14. Cooling treatment of olive paste during the oil processing: Impact on the yield and extra virgin olive oil quality.

    Science.gov (United States)

    Veneziani, G; Esposto, S; Taticchi, A; Urbani, S; Selvaggini, R; Di Maio, I; Sordini, B; Servili, M

    2017-04-15

    In recent years, the temperature of processed olives in many olive-growing areas was often close to 30°C, due to the global warming and an early harvesting period. Consequently, the new trends in the extraction process have to include the opportunity to cool the olives or olive paste before processing to obtain high quality EVOO. A tubular thermal exchanger was used for a rapid cooling treatment (CT) of olive paste after crushing. The results did not show a significant difference in the oil yield or any modifications in the legal parameters. The cooling process determined a significant improvement of phenolic compounds in all the three Italian cultivar EVOOs analyzed, whereas the volatile compounds showed a variability largely affected by the genetic origin of the olives with C 6 aldehydes that seem to be more stable than C 6 alcohols and esters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation.

    Science.gov (United States)

    Michael, I; Panagi, A; Ioannou, L A; Frontistis, Z; Fatta-Kassinos, D

    2014-09-01

    This study investigated the application of a solar-driven advanced oxidation process (solar Fenton) combined with previous coagulation/flocculation, for the treatment of olive mill wastewater (OMW) at a pilot scale. Pre-treatment by coagulation/flocculation using FeSO4·7H2O (6.67 g L(-1)) as the coagulant, and an anionic polyelectrolyte (FLOCAN 23, 0.287 g L(-1)) as the flocculant, was performed to remove the solid content of the OMW. The solar Fenton experiments were carried out in a compound parabolic collector pilot plant, in the presence of varying doses of H2O2 and Fe(2+). The optimization of the oxidation process, using reagents at low concentrations ([Fe(2+)] = 0.08 g L(-1); [H2O2] = 1 g L(-1)), led to a high COD removal (87%), while the polyphenolic fraction, which is responsible for the biorecalcitrant and/or toxic properties of OMW, was eliminated. A kinetic study using a modified pseudo first-order kinetic model was performed in order to determine the reaction rate constants. This work evidences also the potential use of the solar Fenton process at the inherent pH of the OMW, yielding only a slightly lower COD removal (81%) compared to that obtained under acidic conditions. Moreover, the results demonstrated the capacity of the applied advanced process to reduce the initial OMW toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba), and the water flea Daphnia magna. The OMW treated samples displayed a varying toxicity profile for each type of organism and plant examined in this study, a fact that can potentially be attributed to the varying oxidation products formed during the process applied. Finally, the overall cost of solar Fenton oxidation for the treatment of 50 m(3) of OMW per day was estimated to be 2.11 € m(-3). Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Modification of Oil Palm Plantation Wastes as Oil Adsorbent for Palm Oil Mill Effluent (POME)

    International Nuclear Information System (INIS)

    Noraisah Jahi; Ling, E.S.; Rizafizah Othaman; Suria Ramli

    2015-01-01

    This research was conducted to modify oil palm solid wastes chemically to become oil adsorbent for palm oil mill effluent (POME). The purpose of modification on oil palm leaves (OPL) and oil palm frond (OPF) was to change the hydrophilic nature to a more hydrophobic character. This study also exploited the production of sorbent materials with high efficiency in the oil uptake for POME from OPL and OPF. Chemical modification was carried out using 200 mL of 1.0 M lauric acid solution for 6 hrs at room temperature. The modified OPL and OPF were preceded to adsorption test for POME and the capacity of oil adsorbed was compared between them. FTIR analysis supported the modification to occur with the increase in a peak of C-H group and the presence of C=O originated from lauric acid structure chain. The hydrophobicity of modified OPL and OPF samples was supported by XRD and contact angle analysis with modified OPL became more hydrophobic than the modified OPF, which had been 38.15 % and 24.67 % respectively. Both the analyses proved that the result from the oil adsorption test on POME showed the presence of a new peak attribute at C=C stretching of aromatics for the oil in POME proved that it was attached on the sorbent materials. Based on SEM analysis, the perforated and rough surface had been observed on modified OPL and OPF samples because oil layers on OPL and OPF surfaces were observed on the modified samples after the adsorption test. All the analyses in the study agreed that the results from oil adsorption test showed that the modified OPL had higher adsorption capacity than the modified OPF with the percentage of oil uptake at 83.74 % and 39.84 % respectively. The prepared adsorbent showed the potential to be used as a low-cost adsorbent in oil for POME. (author)

  17. The Green Integrated Forest Biorefinery: An innovative concept for the pulp and paper mills

    International Nuclear Information System (INIS)

    Rafione, Tatiana; Marinova, Mariya; Montastruc, Ludovic; Paris, Jean

    2014-01-01

    The Green Integrated Forest Biorefinery (GIFBR), a new concept suitable for implementation in pulp and paper mills is characterized by low greenhouse gases emissions, reduced water consumption and production of effluents. Its fossil fuel consumption must be nil. Several challenges have to be addressed to develop a sustainable GIFBR facility. An implementation strategy by phase is proposed to schedule the total capital investment over several years and to mitigate the economic risks associated with the transformation of an existing pulp and paper mill into a GIFBR. In the first phase of the methodology, the receptor mill and the biorefinery plant are selected. An intensive energy and material integration of the two plants is performed in the second phase, then a gasification unit is implemented and, finally a polygeneration unit is installed. The methodology is illustrated by application to a case study based on a reference Canadian Kraft mill. Each phase of the implementation strategy of the GIFBR is described. - Highlights: • The Green Integrated Forest Biorefinery (GIFBR) is a new biorefinery concept. • A GIFBR includes a pulp mill, a biorefinery, a gasification and a polygeneration units. • An implementation strategy by phase is proposed to successfully develop a GIFBR. • To determine achievable level of integration between the GIFBR constituents is crucial. • GIFBR concept technically and economically feasibility for pulp and paper mills

  18. Water management methodologies from mining and milling activities in Argentina

    International Nuclear Information System (INIS)

    Asenjo, A.

    2006-01-01

    Mining and Milling activities have been developed in Argentina in several provinces, in order to obtain uranium concentrate. As a result of milling process and mining exploitation, contaminated water remain accumulated in several sites. Methodologies to treat the contaminated water from the different places has been evaluated, at laboratory scale. At Los Gigantes Site, effluents from process containing U, Ra, Mn and NH 4 + , are accumulated in a dam. Precipitation using lime and barium chloride was tested to remove impurities in the effluent. From the same place, contaminated liquid from seepage of tailing containing U and Ra was treated using different permeable reactive barriers (PRB). Some materials, such as zeolite, montmorillonite and iron fine grained (Fe 0 ), to be study as a permeable reactive barrier (PRB), were tested to treat seepage. Glass column 100 cc of capacity, were used to performed the tests. At Sierra Pintada Site, water from mine containing U, Ra and As, are accumulated in a open pit. Anionic resin Amberlite IR 400 to remove uranium, and precipitation using barium chloride and iron sulphate to remove radium and arsenic, were tested to treat water from the open pits. Glass column resin 1000 cc of capacity, and a agitated tank 25 liter of capacity for precipitation, were used to performed the test. Cationic resin, Amberlite IR 120, was tested too, in order to remove radium from water from mine. (author)

  19. Evaluation of processing factors for selected organic contaminants during virgin olive oil production: Distribution of BTEXS during olives processing.

    Science.gov (United States)

    López-Blanco, Rafael; Gilbert-López, Bienvenida; Rojas-Jiménez, Rubén; Robles-Molina, José; Ramos-Martos, Natividad; García-Reyes, Juan F; Molina-Díaz, Antonio

    2016-05-15

    The presence of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) in virgin olive oils can be attributed to environmental contamination, but also to biological processes during oil lipogenesis (styrene). In this work, the processing factor of BTEXS from olives to olive oil during its production was evaluated at lab-scale with an Abencor system. Benzene showed the lowest processing factor (15%), whereas toluene and xylenes showed an intermediate behavior (with 40-60% efficiency), and ethylbenzene and styrene were completely transferred (100%). In addition, an attempt to examine the contribution of potential sources to olives contamination with BTEXS was carried out for the first time. Two types of olives samples were classified according to their proximity to the contamination source (road). Although higher levels of BTEXS were found in samples close to roads, the concentrations were relatively low and do not constitute a major contribution to BTEXS usually detected in olive oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. OLIVE: Speech-Based Video Retrieval

    NARCIS (Netherlands)

    de Jong, Franciska M.G.; Gauvain, Jean-Luc; den Hartog, Jurgen; den Hartog, Jeremy; Netter, Klaus

    1999-01-01

    This paper describes the Olive project which aims to support automated indexing of video material by use of human language technologies. Olive is making use of speech recognition to automatically derive transcriptions of the sound tracks, generating time-coded linguistic elements which serve as the

  1. A review of the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels

    International Nuclear Information System (INIS)

    Costello, J.M.; Davy, D.R.; Cattell, F.C.R.; Cook, J.E.

    1980-01-01

    The subject is discussed under the headings: uranium mining; milling of uranium ores; manufacture of uranium hexafluoride; uranium enrichment; fuel manufacture and fabrication; environmental impact (use of natural resources; effluents from fuel cycle operations; occupational health; public health); alternative fuel cycles; additional waste treatment. (U.K.)

  2. Oil Characteristics of Four Palestinian Olive Varieties.

    Science.gov (United States)

    Lodolini, Enrico Maria; Polverigiani, Serena; Ali, Saed; Mutawea, Mohammed; Qutub, Mayyada; Arabasi, Taysir; Pierini, Fabio; Abed, Mohammed; Neri, Davide

    2017-05-01

    Olive oil represents an important source of income for Palestinian farmers in local, national and international markets. Sometimes, olive oil produced in local climatic conditions, does not achieve the International Olive Council (IOC) trade standards so that international markets are precluded. The oil chemical composition and sensory profile of four Palestinian olive varieties (Nabali Baladi, Nabali Mohassan, Souri and K18) were characterized in 2010 throughout an in situ evaluation. Most of the physicchemical characteristics and the fatty acid composition of the varieties met the International Olive Council trade standards (IOC-TS) for extra virgin olive oils. Values of K 270 for Nabali Baladi and linolenic acid for Souri slightly exceeded the limit. Eicosanoic acid exceeded the IOC-TS limits in the oils of all considered varieties. Among the sterols, the Δ-7-stigmastenol resulted too high for Nabali Baladi and Souri. Sensory profile for the tested varieties showed a reminiscence of tomato or artichoke and light to medium bitter and pungent sensations. Results represent an important baseline reference for further studies about oil composition and quality of the main Palestinian olive germplasm and provide indication of potential critical points to be controlled in order to ensure the full achievement of IOC-TS and access international markets.

  3. Biological pretreatment and ethanol production from olive cake

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Baroi, George Nabin

    2010-01-01

    Olive oil is one of the major Mediterranean products, whose nutritional and economic importance is well-known. However the extraction of olive oil yields a highly contaminating residue that causes serious environmental concerns in the olive oil producing countries. The olive cake (OC) coming out...... of the three-phase olive oil production process could be used as low price feedstock for lignocellulosic ethanol production due to its high concentration in carbohydrates. However, the binding of the carbohydrates with lignin may significantly hinder the necessary enzymatic hydrolysis of the polymeric sugars...... before ethanol fermentation. Treatment with three white rot fungi, Phaneroachaete chrysosporium, Ceriporiopsis subvermispora and Ceriolopsis polyzona has been applied on olive cake in order to investigate the potential for performing delignification and thus enhancing the efficiency of the subsequent...

  4. Fungal post-treatment of pulp mill effluents for the removal of recalcitrant pollutants.

    Science.gov (United States)

    Ortega-Clemente, Alfredo; Caffarel-Méndez, S; Ponce-Noyola, M T; Barrera-Córtes, J; Poggi-Varaldo, Héctor M

    2009-03-01

    The objective of this work was to evaluate the post-treatment of an anaerobic recalcitrant effluent (anaerobically-treated weak black liquor, AnE) in an aerobic, upflow reactor packed with "biocubes" of Trametes versicolor immobilized onto small cubes of holm oak wood. The treated effluent (named anaerobic effluent; AnE) from an anaerobic fluidized bed reactor was fed to an up-flow aerobic fungal packed bed reactor (PBR). Two HRT were tested in this unit, namely 5 and 2.5days; the PBR operated 60days at 5-day HRT and 35days at 2.5-day HRT. The aerobic packed bench scale reactor was a glass column 1.5L total geometric volume containing 0.75L biocubes of T. versicolor immobilized onto holm oak wood small cubes of 5mm side. The reactor was operated at 25 degrees C. The pH of the AnE was adjusted to 4.5 before feeding; no carbohydrates or other soluble carbon source was supplemented. The fungal packed bed bioreactor averaged organic matter removals of 30% and 32% COD basis, during an experimental run of 60days at 5-day HRT and 35days at 2.5-day HRT, respectively. Colour and ligninoids contents were removed at higher percentages (69% and 54% respectively, average of both HRT). There was no significant difference between reactor performance at 5- and 2.5-day HRT, so, operation at 2.5-day HRT is recommended since reactor throughput is double. Activity of manganese peroxidase and laccase was found during the entire operation of the fungal PBR whereas lignin peroxidase activity practically disappeared in the second operation period. In general, enzyme activities were higher in the first period of operation (5-day HRT) than at 2.5-day HRT. To the best of our knowledge, this is one of the few works that demonstrated extended performance (3months) of a fungal bioreactor for the treatment of a recalcitrant wastewater with no supplementation of glucose or other expensive, soluble carbohydrate.

  5. Combustion of Biogas Released from Palm Oil Mill Effluent and the Effects of Hydrogen Enrichment on the Characteristics of the Biogas Flame

    Directory of Open Access Journals (Sweden)

    Seyed Ehsan Hosseini

    2015-01-01

    Full Text Available Biogas released from palm oil mill effluent (POME could be a source of air pollution, which has illustrated negative effects on the global warming. To protect the environment from toxic emissions and use the energy of POME biogas, POME is conducted to the closed digestion systems and released biogas is captured. Since POME biogas upgrading is a complicated process, it is not economical and thus new combustion techniques should be examined. In this paper, POME biogas (40% CO2 and 60% CH4 has been utilized as a fuel in a lab-scale furnace. A computational approach by standard k-ε combustion and turbulence model is applied. Hydrogen is added to the biogas components and the impacts of hydrogen enrichment on the temperature distribution, flame stability, and pollutant formation are studied. The results confirm that adding hydrogen to the POME biogas content could improve low calorific value (LCV of biogas and increases the stability of the POME biogas flame. Indeed, the biogas flame length rises and distribution of the temperature within the chamber is uniform when hydrogen is added to the POME biogas composition. Compared to the pure biogas combustion, thermal NOx formation increases in hydrogen-enriched POME biogas combustion due to the enhancement of the furnace temperature.

  6. Interaction of Olive Oil and Metals

    OpenAIRE

    BÜYÜKGÖK, Elif Burçin; ÖTLEŞ, Semih

    2011-01-01

    Olive oil, obtained only from the fruits of olive trees, is a food item consumed in natural form without any chemical process and is liquid at room temperature. In addition to its flavor, oxidative stability is the unique property of it. Oxidative stability of olive oil is so powerful is due to its major components which are fatty acids and minor components which are phenolic compounds, tocopherols, squalene, sterols, phospholipids, carotenoids, chlorophyll, etc. All edible oils, including ol...

  7. Regarding the rejection performance of a polymeric reverse osmosis membrane for the final purification of two-phase olive mill effluents previously treated by an advanced oxidation process; Sobre la eficiencia del rechazo de una membrana polimérica de ósmosis inversa para la purificación del agua residual de almazara de dos fases, previamente tratada mediante un proceso avanzado de oxidación

    Energy Technology Data Exchange (ETDEWEB)

    Ochando-Pulido, J.M.; Martínez-Férez, A.

    2017-07-01

    In previous works on olive mill wastewater (OMW), secondary advanced oxidation treatment solved the problem related to the presence of phenolic compounds and considerable chemical oxygen demand. However, the effluent presented a significant salinity after this treatment. In this work, an adequate operation of a reverse osmosis (RO) membrane is addressed to ensure constant performance over a long period of time. In this paper, the effect of the operating parameters on the dynamic membrane rejection performance towards the target species was examined and discussed. Rejection efficiencies of all species were observed to follow a similar pattern, which consisted of slight initial improvement that further decreased over time. Rejection of both divalent ions remained constant at over 99% regardless of the operating conditions. Rejections were noticed to follow the order SO42−> Cl−> NO3− and Ca2+> Mg2+> K+> Na+, as a rule. Divalent species were moderately more highly rejected than monovalent ones, in accordance with their higher charge and molecular size, and sulfate anions were consistently rejected by over 99%. Finally, the RO membrane exiting treated effluent was depleted of the high electro conductivity initially present (above 97% rejection), permitting its re-use as good quality irrigation water (below 1 mS/cm). [Spanish] En trabajos previos con agua residual de almazara, se solucionó el problema en relación a la presencia de compuestos fenólicos y la considerable concentración de material orgánico. Sin embargo, el efluente presentaba una salinidad significativa tras éste. Este trabajo tiene por objetivo estudiar la adecuada operación de una membrana de ósmosis inversa (OI) para asegurar rendimientos constantes por largos períodos de tiempo de operación. Se examina y discute el efecto de los parámetros de operación en el rendimiento dinámico del rechazo de especies diana. Se observó que la eficiencia de rechazo de todas las especies siguió un

  8. Silica removal in industrial effluents with high silica content and low hardness.

    Science.gov (United States)

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  9. Comparison of Manzanilla and wild type olives by RAPD-PCR ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-15

    Feb 15, 2010 ... In this study, the cultivated type olive Manzanilla was supplied from Olive ... America and Australia continents (MOARA, 2006). Olive ... reserved as table olives and 52.869 tons for oil produc- .... phism rate indicates a high genetic diversity in varieties. ... olive germplasm bank by means of RAPD markers.

  10. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    Directory of Open Access Journals (Sweden)

    S. Ok

    2017-03-01

    Full Text Available Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF proton (1H nuclear magnetic resonance (NMR relaxometry and ultra-violet (UV visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2 curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively.

  11. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    International Nuclear Information System (INIS)

    Ok, S.

    2017-01-01

    Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF) proton (1H) nuclear magnetic resonance (NMR) relaxometry and ultra-violet (UV) visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2) curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively. [es

  12. Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays

    Science.gov (United States)

    Rossi, Stefano; Calabretta, Alessandro; Tedeschi, Tullia; Sforza, Stefano; Arcioni, Sergio; Baldoni, Luciana; Corradini, Roberto; Marchelli, Rosangela

    2012-01-01

    PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes. PMID:22772038

  13. Screening of Candida boidinii from Chemlal spent olive ...

    African Journals Online (AJOL)

    SAM

    2014-03-12

    Mar 12, 2014 ... ... and Microbial Activity, Faculty of Natural and Life Sciences, University - ... A total of 24 lipolytic yeasts were isolated from the spent olive derived from olive fruits of ... isolated during process of fermentation of olive table, can.

  14. Estudio del efecto de la adición de alperujo sobre la persis­tencia de diuron en el cultivo del olivar Study of the effect of olive mill waste "alperujo" addition on the persis­tence of diuron in olive groves

    Directory of Open Access Journals (Sweden)

    A. Cabrera

    2010-01-01

    Full Text Available El objetivo de este trabajo ha sido estu­diar el efecto de la aplicación de alperujo (residuo de almazara sobre la persisten­cia y el movimiento del herbicida diuron [3-(3,4-diclorofenil-1,1-dimetilurea] en un olivar en Mengíbar (Jaén, España. La parcela se dividió en 2 subparcelas, un en la que no se aplicó enmienda al suelo y otra donde se aplicó alperujo (18000 kg ha-1. Tras la aplicación del herbicida a una dosis de 2 kg/ha se tomaron muestras de suelo por triplicado en cada subparce­la, a distintas profundidades y distintos días desde la aplicación de diuron. Des­pués de secar, limpiar las muestras de sue-lo y tamizarlas, se procedió a la extrac­ción de diuron con metanol y se analizó por HPLC. Se observó una mayor canti­dad de diurón en el suelo enmendado que en el suelo no enmendado en todas las muestras. Sin embargo, la movilidad de diuron no aumentó con el tiempo en el suelo enmendado.The aim of this work was to study the ef­fect of "alperujo" (olive mill waste on the persistence and the mobility of the herbicide diuron [3-(3,4-dichlorophenyl-1,1-dime­thylurea] in an olive grove from Mengíbar (Jaén, Spain. The plot was divided in two subplots, one where no amendement was applied and another one where "alperujo" was applied to the soil (18.000 kg ha-1. Af­ter herbicide application at a rate of 2 kg/ha, three replicates of soil were sampled at each subplot, at different depths and different days after diuron application. After drying, cleaning and sieving samples diuron was extracted with methanol and the extracts were analyzed by HPLC. Higher amounts of diuron were recovered from amended soil than from non amended soil in every sam­ple. However, diuron mobility in amen-ded soil did not increase with time.

  15. Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge.

    Science.gov (United States)

    Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Shirai, Yoshihito; Tashiro, Kosuke; Sakai, Kenji; Tashiro, Yukihiro

    2017-06-01

    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.

  16. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity.

    Science.gov (United States)

    Hachicha, Ridha; Rekik, Olfa; Hachicha, Salma; Ferchichi, Mounir; Woodward, Steve; Moncef, Nasri; Cegarra, Juan; Mechichi, Tahar

    2012-07-01

    The co-composting of spent coffee grounds, olive mill wastewater sludge and poultry manure was investigated on a semi-industrial scale. In order to reduce the toxicity of the phenolic fraction and to improve the degree of composting humification, composts were inoculated with the white-rot fungus Trametes versicolor in the early stages of the maturation phase. During composting, a range of physico-chemical parameters (temperature and both organic matter and C/N reduction), total organic carbon, total nitrogen, elemental composition, lignin degradation and spectroscopic characteristics of the humic acids (HAs) were determined; impacts of the composting process on germination index of Hordeum vulgare and Lactuca sativa were assessed. The coffee waste proved to be a highly compostable feedstock, resulting in mature final compost with a germination index of 120% in less than 5 months composting. In addition, inoculation with T. versicolor led to a greater degree of aromatization of HA than in the control pile. Moreover, in the inoculated mixture, lignin degradation was three times greater and HA increased by 30% (P<0.05), compared to the control pile. In the T. versicolor inoculated mixture, the averages of C and N were significantly enhanced in the HA molecules (P<0.05), by 26% and 22%, respectively. This improvement in the degree of humification was confirmed by the ratio of optical densities of HA solutions at 465 and 665 nm which was lower for HA from the treated mixture (4.5) than that from the control pile (5.4). Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effect of iron and magnesium addition for ethanol production from the conversion of palm oil mill effluent by anaerobic processes

    Science.gov (United States)

    Handajani, M.; Gumilar, A.; Syafila, M.

    2018-01-01

    Nowadays, crisis of the energy is the main problem in the world. Currently, most the energy resource derived from the fossil material that cannot be refurbished. Ethanol is an alternative fuel that content as a fossil fuels. Wastewater with the high concentration of the organic can be used for the ethanol production to replace foodstuff as a raw material. In this study, palm oil mill effluent (POME) with the concentration of COD is 24,500 mg/L has been used as a substrate. The purpose of this study was to determine the effect of the metal addition in the substrate metabolic pathways. Circulating batch reactor (CBR) is used with the flushing N2 1L/min for 24 hours and continued operates for 72 hours by internal biogas. The additional variation concentration of Fe(II) ion are 0.5; 1.0 and 2.5 mg/L, and Mg(II) are 0.5 and 1.5 mg/L were added by combination. The results showed that the combination of Fe (II) 2.5 mg/L and Mg(II) 1.5 mg/L produced the highest ethanol concentration is 715.8 mg/L and degree of acidification (DA) 0.284-0.357. Another combination of Fe(II) and Mg(II) provide results for the ethanol production 463.7-689.7 mg/L with the rate of ethanol production is 1.09-26.5 mg/L/hour.

  18. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Energy Technology Data Exchange (ETDEWEB)

    Inconomou, D.; Arapoglou, D.; Israilides, C.

    2010-07-01

    The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and {beta}-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L.) of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA) and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA) in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value) and their sensory attributes. The use of additional N{sub 2} flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall organoleptic quality, but also increased the olive oil yield. (Author) 33 refs.

  19. Olive oil biophenols and women’s health

    Directory of Open Access Journals (Sweden)

    Ivan Fistonić

    2012-08-01

    Full Text Available Olea europea, the olive tree, is an ancient tree that originates fromthe Mediterranean environment of Asia Minor. The edible olive fruit is also used for its oil, gained by the process of pressing, a nutrient with proven beneficial effects. Virgin olive oil is the natural juice of the olive fruit, which plays a major role in the healthy Mediterranean diet. The source of its health effects are the biophenols and squalenes (oleocanthal, tyrosol, hydroxytyrosol, oleuropein it contains. They provide an exceptional antioxidative activity, removing harmful compounds from the body. Oxidants are essential in the genesis of many diseases and conditions, such as cardiovascular disorders, cancer, osteoporosis, Alzheimer disease, andpremenstrual syndrome. Oleic acid, an unsaturated fatty acid, has demonstrated a significant effect in the prevention of malignant diseases such as colon cancer and breast cancer. Biophenols from olive oil successfully suppress the synthesis of LDL, a protein that is crucial in the development of cardiovascular disease, by reducingblood pressure and the development of atherosclerotic plaques. In addition, there is strong evidence of the antimicrobic effect of the biphenols from olive oil that successfully destroy colonies of microorganisms which may cause respiratory tract, intestinal,and genital tract infections.

  20. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.