WorldWideScience

Sample records for oligonucleotides effectively radiosensitize

  1. A novel setup for the determination of absolute cross sections for low-energy electron induced strand breaks in oligonucleotides - The effect of the radiosensitizer 5-fluorouracil

    International Nuclear Information System (INIS)

    Rackwitz, J.; Rankovic, M.L.; Milosavljevic, A.R.; Bald, I.

    2017-01-01

    Low-energy electrons (LEEs) play an important role in DNA radiation damage. Here we present a method to quantify LEE induced strand breakage in well-defined oligonucleotide single strands in terms of absolute cross sections. An LEE irradiation setup covering electron energies <500 eV is constructed and optimized to irradiate DNA origami triangles carrying well-defined oligonucleotide target strands. Measurements are presented for 10.0 and 5.5 eV for different oligonucleotide targets. The determination of absolute strand break cross sections is performed by atomic force microscopy analysis. An accurate fluence determination ensures small margins of error of the determined absolute single strand break cross sections σ SSB . In this way, the influence of sequence modification with the radiosensitive 5-Fluorouracil ( 5F U) is studied using an absolute and relative data analysis. We demonstrate an increase in the strand break yields of 5F U containing oligonucleotides by a factor of 1.5 to 1.6 compared with non-modified oligonucleotide sequences when irradiated with 10 eV electrons. (authors)

  2. Inhibition of cyclic AMP response element-directed transcription by decoy oligonucleotides enhances tumor-specific radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Serk In, E-mail: serkin@korea.edu [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of); The BK21 Plus Program for Biomedical Sciences, Korea University College of Medicine, Seoul (Korea, Republic of); Department of Medicine and Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN (United States); Park, Sung-Jun [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of); Laboratory of Obesity and Aging Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Lee, Junghan; Kim, Hye Eun; Park, Su Jin; Sohn, Jeong-Won [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of); Park, Yun Gyu, E-mail: parkyg@korea.ac.kr [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-01-15

    The radiation stress induces cytotoxic responses of cell death as well as cytoprotective responses of cell survival. Understanding exact cellular mechanism and signal transduction pathways is important in improving cancer radiotherapy. Increasing evidence suggests that cyclic AMP response element binding protein (CREB)/activating transcription factor (ATF) family proteins act as a survival factor and a signaling molecule in response to stress. We postulated that CREB inhibition via CRE decoy oligonucleotide increases tumor cell sensitization to γ-irradiation-induced cytotoxic stress. In the present study, we demonstrate that CREB phosphorylation and CREB DNA-protein complex formation increased in time- and radiation dose-dependent manners, while there was no significant change in total protein level of CREB. In addition, CREB was phosphorylated in response to γ-irradiation through p38 MAPK pathway. Further investigation revealed that CREB blockade by decoy oligonucleotides functionally inhibited transactivation of CREB, and significantly increased radiosensitivity of multiple human cancer cell lines including TP53- and/or RB-mutated cells with minimal effects on normal cells. We also demonstrate that tumor cells ectopically expressing dominant negative mutant CREB (KCREB) and the cells treated with p38 MAPK inhibitors were more sensitive to γ-irradiation than wild type parental cells or control-treated cells. Taken together, we conclude that CREB protects tumor cells from γ-irradiation, and combination of CREB inhibition plus ionizing radiation will be a promising radiotherapeutic approach. - Highlights: • γ-Irradiation induced CREB phosphorylation and CRE-directed transcription in tumor. • γ-Irradiation-induced transcriptional activation of CREB was via p38 MAPK pathway. • CRE blockade increased radiosensitivity of tumor cells but not of normal cells. • CRE decoy oligonucleotides or p38 MAPK inhibitors can be used as radiosensitizers.

  3. Inhibition of cyclic AMP response element-directed transcription by decoy oligonucleotides enhances tumor-specific radiosensitivity

    International Nuclear Information System (INIS)

    Park, Serk In; Park, Sung-Jun; Lee, Junghan; Kim, Hye Eun; Park, Su Jin; Sohn, Jeong-Won; Park, Yun Gyu

    2016-01-01

    The radiation stress induces cytotoxic responses of cell death as well as cytoprotective responses of cell survival. Understanding exact cellular mechanism and signal transduction pathways is important in improving cancer radiotherapy. Increasing evidence suggests that cyclic AMP response element binding protein (CREB)/activating transcription factor (ATF) family proteins act as a survival factor and a signaling molecule in response to stress. We postulated that CREB inhibition via CRE decoy oligonucleotide increases tumor cell sensitization to γ-irradiation-induced cytotoxic stress. In the present study, we demonstrate that CREB phosphorylation and CREB DNA-protein complex formation increased in time- and radiation dose-dependent manners, while there was no significant change in total protein level of CREB. In addition, CREB was phosphorylated in response to γ-irradiation through p38 MAPK pathway. Further investigation revealed that CREB blockade by decoy oligonucleotides functionally inhibited transactivation of CREB, and significantly increased radiosensitivity of multiple human cancer cell lines including TP53- and/or RB-mutated cells with minimal effects on normal cells. We also demonstrate that tumor cells ectopically expressing dominant negative mutant CREB (KCREB) and the cells treated with p38 MAPK inhibitors were more sensitive to γ-irradiation than wild type parental cells or control-treated cells. Taken together, we conclude that CREB protects tumor cells from γ-irradiation, and combination of CREB inhibition plus ionizing radiation will be a promising radiotherapeutic approach. - Highlights: • γ-Irradiation induced CREB phosphorylation and CRE-directed transcription in tumor. • γ-Irradiation-induced transcriptional activation of CREB was via p38 MAPK pathway. • CRE blockade increased radiosensitivity of tumor cells but not of normal cells. • CRE decoy oligonucleotides or p38 MAPK inhibitors can be used as radiosensitizers.

  4. Effect of electroporation on radiosensitization with cisplatin in two cell lines with different chemo- and radiosensitivity

    International Nuclear Information System (INIS)

    Kranjc, S.; Cemazar, M.; Grosel, A.; Pipan, Z.; Sersa, G.

    2003-01-01

    Aim. Radiosensitization with cisplatin can be enhanced by electroporation of cells and tumours. The aim of this study was to extend our previous studies on two carcinoma tumour models with different chemo- and radiosensitivity in order to evaluate whether this treatment is effective also on less chemo- and radiosensitive tumour cells. Materials and methods. This in vitro study was performed on carcinoma SCK and EAT-E cells. The cytotoxicity of three-modality treatment consisting of cisplatin, electroporation and irradiation was determined by the clonogenic assay. Results. The radiosensitizing effect of cisplatin on the two cell lines was greatly enhanced by electroporation. By this combined treatment, less chemo and radiosensitive EAT-E cells were rendered as sensitive as more chemo and radiosensitive SCK cells. Conclusion. The enhancement of cisplatin-induced radiosensitization of cells by electroporation could be beneficially used in the treatment of intrinsically less chemo- and radiosensitive tumours. (author)

  5. Effect of hypothermia on radiosensitization

    International Nuclear Information System (INIS)

    Nias, A.H.W.; Perry, P.; Photiou, A.; Reghebi, K.

    1986-01-01

    The blood supply and oxygen tension have been measured in C3H mouse mammary tumours under hypothermia and hyperbaric oxygen, and the enhancement of radiosensitivity by hyperbaric oxygen has been estimated in mice irradiated at different temperatures with and without anaesthesia. Measurement of xenon-133 clearance showed that the blood supply of a tumour tended to increase when anaesthetized mice became hypothermic. Oxygen cathode data showed that the oxygen tension tended to be relatively higher in tumours and lower in subcutaneous tissue when mice exposed to hyperbaric oxygen became hypothermic under anaesthesia. Hyperbaric oxygen enhanced the radiation response of the tumour in terms of an increase in regrowth delay by a factor of 1.7 when the mice had been anaesthetized, whether or not they became hypothermic. A lower factor of 1.4 was obtained without anaesthesia although induced hypothermia increased the response to a small extent. The authors conclude that anaesthesia and hypothermia affect oxygen metabolism in tumours by different mechanisms. (author)

  6. Radiosensitizers action on Iodine 131 therapeutical effect

    International Nuclear Information System (INIS)

    Agote, Marcos; Kreimann, Erica L.; Bocanera, Laura V.; Dagrosa, Maria A.; Juvenal, Guillermo J.; Pisarev, Mario A.

    1999-01-01

    Present studies were aimed to research the possible application of a radiosensitizer, nicotinamide, to increase the therapeutical effect of radioiodine. There were used goitrous and normal rats with growing dose of Iodine 131, with and without simultaneous treatment with nicotinamide. The obtained results show that the nicotinamide treatment importantly increases the thyroid radio destructive effect induced by radioiodine. Under these experimental conditions, nicotinamide induces to a significant increase of thyroid vascularisation, without changes in the proteins ADP-ribosylation activity. These results show, for the first time, the radiosensitizer effect of nicotinamide in front of Iodine 131 and give the possibility of using it in the treatment of hyperthyroid or thyroid difference cancer patients. (author)

  7. Effect of laser radiation on rat radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Laprun, I.B.

    1979-03-01

    Quite a few experimental data have been obtained to date indicating that radioresistance of the organism is enhanced under the influence of electromagnetic emissions in the radiofrequency and optical ranges. But no studies were made of the possible radioprotective properties of coherent laser radiation. At the same time, it was demonstrated that the low-energy emission of optical quantum generators (lasers) in the red band stimulates the protective forces of the organism and accelerates regenerative processes; i.e., it induces effects that are the opposite of that of ionizing radiation. Moreover, it was recently demonstrated that there is activation of catalase, a radiosensitive enzyme that plays an important role in the metabolism of peroxide compounds, under the influence of lasers. For this reason, the effect of pre-exposure to laser beams on radiosensitivity of rats was tested.

  8. Evaluation of a MTT assay in measurement of radiosensitizing effect

    International Nuclear Information System (INIS)

    Higuchi, Keiko; Mitsuhashi, Norio; Saitoh, Jun-ichi; Maebayashi, Katsuya; Sakurai, Hideyuki; Akimoto, Tetsuo; Niibe, Hideo

    1999-01-01

    The usefulness of a MTT assay by measuring the radiosensitizing effect of caffeine on rat yolk sac tumor cell line with a mutant-type p53 in vitro was evaluated. A rat yolk sac tumor cell line with a mutant-type p53, NMT-1R, was used in this study. The radiosensitivity of NMT-1R with or without caffeine was measured with a MTT assay. The results were compared with those by a clonogenic assay. Caffeine at a concentration of 2.0 mM which released radiation-induced G 2 block demonstrated a radiosensitizing effect, but caffeine at a concentration of 0.5 mM did not. The radiosensitizing effect of caffeine measured by a MTT assay correlated with that measured by a clonogenic assay. A MTT assay was useful to measure radiosensitivity and/or a radiosensitizing effect in vitro. (author)

  9. Effects of Atelocollagen Formulation Containing Oligonucleotide on Endothelial Permeability

    Directory of Open Access Journals (Sweden)

    Koji Hanai

    2012-01-01

    Full Text Available Atelocollagen is a major animal protein that is used as a highly biocompatible biomaterial. To date, atelocollagen has been used as an effective drug delivery technology to sustain the release of antitumor proteins and to enhance the antitumor activity of oligonucleotides in in vivo models. However, the biological effects of this technology are not fully understood. In the present study, we investigated the effects of atelocollagen on endothelial paracellular barrier function. An atelocollagen formulation containing oligonucleotides specifically increased the permeability of two types of endothelial cells, and the change was dependent on the molecular size, structure of the oligonucleotides used and the concentrations of the oligonucleotide and atelocollagen in the formulation. An immunohistochemical examination revealed that the formulation had effects on the cellular skeleton and intercellular structure although it did not affect the expression of adherens junction or tight junction proteins. These changes were induced through p38 MAP kinase signaling. It is important to elucidate the biological functions of atelocollagen in order to be able to exploit its drug delivery properties.

  10. Radio-sensitizing effect of ethyl caffeate on nasopharyngeal ...

    African Journals Online (AJOL)

    3Department of Clinical Laboratory, The 5th People's Hospital of Ji'nan, Ji'nan ... Purpose: To investigate the radio-sensitizing effect of ethyl caffeate (ETF) on naso-pharyngeal ... malignant solid tumors of head and neck which ... Excess irradiation could result in severe side .... protein bands were probed with corresponding.

  11. The combination of olaparib and camptothecin for effective radiosensitization

    Directory of Open Access Journals (Sweden)

    Miura Katsutoshi

    2012-04-01

    Full Text Available Abstract Background Poly (ADP-ribose polymerase-1 (PARP-1 is a key enzyme involved in the repair of radiation-induced single-strand DNA breaks. PARP inhibitors such as olaparib (KU-0059436, AZD-2281 enhance tumor sensitivity to radiation and to topoisomerase I inhibitors like camptothecin (CPT. Olaparib is an orally bioavailable inhibitor of PARP-1 and PARP-2 that has been tested in multiple clinical trials. The purpose of this study was to investigate the characteristics of the sensitizing effect of olaparib for radiation and CPT in order to support clinical application of this agent. Methods DLD-1 cells (a human colorectal cancer cell line and H1299 cells (a non-small cell lung cancer cell line with differences of p53 gene status were used. The survival of these cells was determined by clonogenic assay after treatment with drugs and X-ray irradiation. The γH2AX focus formation assay was performed to examine the influence of olaparib on induction and repair of double-stranded DNA breaks after exposure to radiation or CPT. Results A radiosensitizing effect of olaparib was seen even at 0.01 μM. Its radiosensitizing effect after exposure for 2 h was similar to that after 24 h. H1299 cells with depletion or mutation of p53 were more radioresistant than H1299 cells with wild-type p53. However, similar enhancement of radiosensitization by olaparib was observed with all of the tested cell lines regardless of the p53 status. Olaparib also sensitized cells to CPT. This sensitizing effect was seen at low concentrations of olaparib such as 0.01 μM, and its sensitizing effect was the same at both 0.01 μM and 1 μM. The combination of olaparib and CPT had a stronger radiosensitizing effect. The results of the γH2AX focus assay corresponded with the clonogenic assay findings. Conclusion Olaparib enhanced sensitivity to radiation and CPT at low concentrations and after relatively short exposure times such as 2 h. The radiosensitizing effect of olaprib

  12. The combination of olaparib and camptothecin for effective radiosensitization

    International Nuclear Information System (INIS)

    Miura, Katsutoshi; Sakata, Koh-ichi; Someya, Masanori; Matsumoto, Yoshihisa; Matsumoto, Hideki; Takahashi, Akihisa; Hareyama, Masato

    2012-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) is a key enzyme involved in the repair of radiation-induced single-strand DNA breaks. PARP inhibitors such as olaparib (KU-0059436, AZD-2281) enhance tumor sensitivity to radiation and to topoisomerase I inhibitors like camptothecin (CPT). Olaparib is an orally bioavailable inhibitor of PARP-1 and PARP-2 that has been tested in multiple clinical trials. The purpose of this study was to investigate the characteristics of the sensitizing effect of olaparib for radiation and CPT in order to support clinical application of this agent. DLD-1 cells (a human colorectal cancer cell line) and H1299 cells (a non-small cell lung cancer cell line) with differences of p53 gene status were used. The survival of these cells was determined by clonogenic assay after treatment with drugs and X-ray irradiation. The γH2AX focus formation assay was performed to examine the influence of olaparib on induction and repair of double-stranded DNA breaks after exposure to radiation or CPT. A radiosensitizing effect of olaparib was seen even at 0.01 μM. Its radiosensitizing effect after exposure for 2 h was similar to that after 24 h. H1299 cells with depletion or mutation of p53 were more radioresistant than H1299 cells with wild-type p53. However, similar enhancement of radiosensitization by olaparib was observed with all of the tested cell lines regardless of the p53 status. Olaparib also sensitized cells to CPT. This sensitizing effect was seen at low concentrations of olaparib such as 0.01 μM, and its sensitizing effect was the same at both 0.01 μM and 1 μM. The combination of olaparib and CPT had a stronger radiosensitizing effect. The results of the γH2AX focus assay corresponded with the clonogenic assay findings. Olaparib enhanced sensitivity to radiation and CPT at low concentrations and after relatively short exposure times such as 2 h. The radiosensitizing effect of olaprib was not dependent on the p53 status of tumor cells. These

  13. Radiosensitizing effect of RHOB protein in melanoma cells

    International Nuclear Information System (INIS)

    Notcovich, C.; Grissi, C.; Sánchez Crespo, R.; Delgado, D.C.; Molinari, B.; Ibañez, I.L.; Durán, H.

    2015-01-01

    Melanoma cells are highly resistant to chemo or radiotherapy. DNA damage agents such as ionizing radiation induce apoptosis involving RhoB protein. In a great variety of tumors the levels of this protein decrease along tumor progression. RhoB is considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. Considering the aforementioned, the aim of this study was to characterize the radiobiological response of different human melanoma cell lines, and to evaluate the possible correlation between RhoB expression and radiosensitivity. The human melanoma cell lines A375, MELJ and SB2 were gamma-irradiated ( 137 Cs). Survival curves were obtained by clonogenic assay and fitted to the Linear-Quadratic (LQ) model. Radiosensitivity was evaluated by surviving fraction at 2 Gy (SF2). Results showed that MELJ was significantly more radioresistant (SF2=0.71) than A375 and SB2 (0.29 and 0.21 respectively. Expression levels of RhoB, evaluated by western blot, increased in all lines vs. non-irradiated control. SB2, the most radiosensitive cells, showed a greater induction (p<0.05) of RhoB. Finally, to study whether RhoB has a radiosensitizing effect, these cell lines were stably transfected with a wild type RhoB construction, a constitutively active RhoB mutant V14, or with the empty plasmid as control. For all cell lines higher expression level of this protein was found in RhoB or V14 transfected cells (p<0.05). Sensitization was evaluated by SF2. Significant radiosensitization was demonstrated in clones derived from A375 and SB2 ((p<0.05), while for MELJ cells, radio-sensitization was only found in clones overexpressing V14. In conclusion, the increase of RhoB in melanoma cell lines, either by radiation or transfection has a radiosensitizing effect. Thus, we propose RhoB modulation as a potential therapeutic tool to improve the radiation response of radioresistant melanoma. (authors)

  14. In vivo radiosensitizing effect of nitroimidazole derivative KIN-804

    International Nuclear Information System (INIS)

    Tada, Takuhito; Nakajima, Toshifumi; Onoyama, Yasuto; Murayama, Chieko; Mori, Yomoyuki; Nagasawa, Hideko; Hori, Hitoshi; Inayama, Seiichi

    1994-01-01

    In vivo characteristics of 2-nitroimidazole-1-methylacetohydroxamate (KIN-804), which is a newly developed hypoxic cell radiosensitizer, are presented. The toxicity, pharmacokinetics, and radiosensitizing effect of KIN-804 were studied by in vivo experiments using C3H/He mice bearing the SCCVII tumor. Results were compared with misonidazole (MISO). LD 50 7 of KIN-804 and MISO were 3200 mg/kg and 2000 mg/kg, respectively. The peak concentration of KIN-804 in the tumor occurred 20 min after intraperitoneal injection and reached about 62% of the maximum concentration in the blood. The concentrations in brain and sciatic nerve were very low and clearance from sciatic nerve was rapid. Enhancement ratios of KIN-804 calculated using the growth delay method were 1.22, 1.50, and 1.71 at doses of 50, 100, and 200 mg/kg, respectively, compared with 1.36 for MISO at a dose of 100 mg/kg. In the TCD 50 assay, enhancement ratios at a dose of 200 mg/kg were 1.69 for KIN-804 and 1.52 for MISO, respectively. KIN-804 is a promising radiosensitizer since it shows less toxicity and higher radiosensitizing activity than MISO. 10 refs., 5 figs

  15. Radiosensitization effects of nicotinamide on malignant and normal mouse tissue

    International Nuclear Information System (INIS)

    Jonsson, G.G.; Kjellen, E.; Pero, R.W.; Cameron, R.

    1985-01-01

    Inhibitors of the chromatin-associated enzyme adenosine diphosphate ribosyltransferase have been found to inhibit DNA strand rejoining and to potentiate lethality of DNA-damaging agents both in vivo and in vitro. The authors have in this work examined the radiosensitizing potential of one such inhibitor, nicotinamide, on tumor tissue by using transplanted C3H mouse mammary adenocarcinomas and on normal tissue in a tail-stunting experiment using BALB/cA mice. The data indicate a radiosensitizing effect of nicotinamide on tumor cells as well as on normal tissue. The data indicate a possible role of adenosine diphosphate ribosyltransferase inhibitors as a sensitizing agent in the radiotherapy of malignant tumors

  16. Radiosensitizers and the oxygen effects in mammalian cells

    International Nuclear Information System (INIS)

    Millar, B.C.; Fielden, E.M.; Steele, J.J.

    1979-01-01

    The survival curves for Chinese Hamster cells irradiated under various oxygen tensions have been determined. The variation in OER with oxygen concentration shows two distinct components. Between 1.4 and 7.0 μM the OER is constant with a value of 1.9. Experiments with nitroaromatic radiosensitizers in combination with low concentrations of oxygen show that they can all mimic the 'low concentration' oxygen effect. Of the compounds tested only misonidazole can apparently mimic the 'high concentration' oxygen effect although the full OER cannot be obtained with the authors cell line because of toxicity by the sensitizer. (Auth.)

  17. Effect of misonidazole on radiosensitivity of Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi

    1986-01-01

    The effect of Misonidazole on radiosensitivity of Ehrlich ascites tumor cells was studied in vivo. Ehrlich ascites tumor cells growing intraperitoneally (ICR/SIC mice) for either 1, 4, 6 or 10 days were irradiated in vivo (whole body irradiation) with or without Misonidazole. Immediately after irradiation tumor cells were transplanted intraperitoneally into new animals. Four days later, the propagated surviving cells were removed and counted for analyses. Enhancement ratio of Misonidazole at the surviving fraction of 0.1 were 1.0 (for 1-day-old), 1.3 (for 4-day-old), 1.9 (for 6-day-old), 1.9 (for 10-day-old) and 2.8 (for anoxic cells) respectively. The gradual increase of the enhancement ratio of the ascites tumore cells during intraperitoneal growth from 1 through 10 days might be attributed to an increase of hypoxic tumor cells. Cytotoxicity was not observed at 0.1 mg per gram body weight of Misonidazole but was at 1 mg per gram body weight of Misonidazole in 6-day-old and 10-day-old Ehrlich ascites tumor cells which were supposed to contain hypoxic cells. These results suggest that Misonidazole may prove an effective radiosensitizer for hypoxic tumor cells. (author)

  18. Effects of diphenylhydantoin on murine astrocytoma radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Lordo, C.D.; Stroude, E.C.; Del Maestro, R.F.

    1987-01-01

    Diphenylhydantoin is a well known anticonvulsant used primarily in the treatment of epilepsy. The prophylactic use of diphenylhydantoin has been suggested for certain cerebral metastases, and it is routinely administered to prevent seizures induced by intracranial neoplasms and/or surgery. Patients with malignant gliomas treated with diphenylhydantoin frequently receive radiation therapy. The effects of a clinical concentration of diphenylhydantoin in combination with gamma radiation was investigated using the C6 astrocytoma cell line in both monolayer and three dimensional multicellular spheroid cultures. Diphenylhydantoin at 7.2 X 10(-5) M (20 micrograms/ml) significantly increased the doubling time (23%) of the C6 astrocytoma cells in monolayer, but did not affect their survival as measured by plating efficiency. No changes were seen in spheroid growth or plating efficiency of the cells dissociated from spheroids at this concentration. Diphenylhydantoin at the clinical concentration tested was not associated with an alteration in radiation sensitivity of C6 astrocytoma cells in monolayer or three dimensional multicellular spheroid cultures.

  19. Release from the Crabtree effect by hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Mustea, I.; Bara, A.

    1979-01-01

    The Crabtree effect can be observed when the 0 2 consumption of tumour cells or of mammalian cells grown in culture is measured in physiological medium containing glucose. The effect of 2 hypoxic cell radiosensitizers, misonidazole and NDPP, on the 0 2 consumption of Ehrlich ascites tumour cells was compared in media with and without glucose. A stimulatory effect on 0 2 consumption was found for 5-20 mM misonidazole as well as for 0.5mM NDPP, both in media containing 10 -2 M glucose. Thus glucose induced a Crabtree effect in Ehrlich tumour cells, expressed as 38-45% inhibition of 0 2 consumption relative to that in the same medium without glucose. The stimulatory effect of misonidazole and NDPP on 0 2 utilization in medium with glucose undoubtedly appeared as a release from the Crabtree effect. (author)

  20. LET effects on normal and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Geard, C.R.; Travisano, M.

    1986-01-01

    Charged particles in the track segment mode were produced by the RARAF Van de Graaff accelerator and used to irradiate two CHO cell lines, a radiosensitive hypermutable line EM9 and its normal parent AA8. Asynchronous cells were irradiated attached to 6 micrometer thick Mylar with protons, deuterons and helium-3 particles at LETs ranging from 10 to 150 keV per micrometer. A 50 kVp x-ray tube integrated into the track segment facility provided a low LET comparison. Following irradiation cells were monitored for clonogenicity, and in a separate series of experiments frequencies of sister chromatid exchanges. Up to 9 experiments were carried out at each LET, with a total of 8 radiations of different LETs being compared. The optimally effective LET for cell survival was between 80 and 120 keV per micrometer, with the 150 keV per micrometer particles indicating energy wastage. The differential between the normal and radiosensitive cell lines was maintained at all LETs

  1. Effects of binding metronidazole to a copper-acetate compound on radiosensitizer properties

    International Nuclear Information System (INIS)

    Negron, Ana C. Valderrama; Silva, Denise de Oliveira; Cruz, Aurea S.

    2009-01-01

    Copper compounds exhibit interesting biological properties. Nitroimidazoles show radiosensitizer properties for radiotherapy tumor treatment. In the present work, the effect of binding metronidazole (1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole = MTZ) to copper-acetate on the radiosensitizer properties has been investigated. A compound of copper-acetate-MTZ was prepared and characterized. The experiments were carried out by gamma-irradiation of Hep2 (human larynx cancer) cells under hypoxic conditions. The radiation doses for 50% cell survival in the presence of radiosensitizer were about 8.2 Gy for CuAcMTZ or free MTZ. The effect of binding metronidazole to copper acetate on radiosensitizer properties is mainly related to the radiosensitizer process which involves two events for CuAcMTZ in contrast to one event observed for the MTZ free drug. (author)

  2. Radiosensitizing effects of 9401 on mice bearing H22 hepatoma

    International Nuclear Information System (INIS)

    Liu Xiaoqiu; Wang Qin; Zhou Zewei; Han Ying; Wang Dezhi; Shen Xiu

    2013-01-01

    Objective: To investigate the radiosensitizing effects of 9401 on mice bearing H22 hepatoma. Methods: Mouse model bearing H22 hepatoma cells were established. Mice were randomly divided into six groups, the control group,the radiation group and four treatment groups including 9401 at high, medium and low dosages and nicotinamide combined with radiation. After irradiated, the growth of tumor was observed, the time of tumor growth was recorded, the delay time of tumor growth and enhancement factor (EF) were calculated. After 28 days, the mice were killed, the tumors were stripped and inhibition rate was calculated. Results: Groups of 9401 combined with radiation could postpone tumor growth. The difference was statistically significant between 9401 groups at high, medium dosages combined with radiation and nicotinamide combined with radiation group (t=24.7 and 7.5, both P<0.01). Compared with radiation alone group, groups of 9401 combined with radiation had significant radiosensitizing effect. The enhancement factor of 9401 combined with radiation groups at high and medium dosages were 2.13 and 1.73 respectively, they were significant higher than nicotinamide combined with radiation group (t=2.26 and 9.04, both P<0.05). The inhibition rate of 9401 groups at high, medium and low dosages combined with radiation were 64.5%, 50.9% and 42.6% respectively. The inhibition rate of nicotinamide group combined radiation was 53.2%. The inhibition rate of 9401 at high dosage combined with radiation had significant difference with nicotinamide combined radiation (t =2.8, P<0.05). Nicotinamide combined with radiation group, 9401 combined with radiation groups could significant inhibit the growth of tumors compared with radiation alone group (t=5.7, 4.0 and 2.2, all P<0.05). Conclusion: 9401 can inhibit the tumor growth and the inhibition effect increases gradually with the drug dose increasing. It also has radiosensitizing effects on mice bearing H22 hepatoma and present broadly

  3. Radiosensitizing effect of epothilone B on human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, T.; Kriesen, S.; Hildebrandt, G.; Manda, K. [Univ. of Rostock (Germany). Dept. of Radiotherapy and Radiation Oncology; Klautke, G.; Fietkau, R. [Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany). Dept. of Radiation Oncology; Kuznetsov, S.A.; Weiss, D.G. [Univ. of Rostock (Germany). Inst. of Biological Sciences, Cell Biology, and Biosystems Technology

    2012-02-15

    A combined modality treatment employing radiation and chemotherapy plays a central role in the management of solid tumors. In our study, we examined the cytotoxic and radiosensitive effect of the microtubule stabilizer epothilone B on two human epithelial tumor cell lines in vitro and its influence on the microtubule assembly. Cancer cells were treated with epothilone B in proliferation assays and in combination with radiation in colony-forming assays. For the analysis of ionizing radiation-induced DNA damage and the influence of the drug on its repair a {gamma}H2AX foci assay was used. To determine the effect of epothilone B on the microtubule assembly in cells and on purified tubulin, immunofluorescence staining and tubulin polymerization assay, respectively, were conducted. Epothilone B induced a concentration- and application-dependent antiproliferative effect on the cells, with IC{sub 50} values in the low nanomolar range. Colony forming assays showed a synergistic radiosensitive effect on both cell lines which was dependent on incubation time and applied concentration of epothilone B. The {gamma}H2AX assays demonstrated that ionizing radiation combined with the drug resulted in a concentration-dependent increase in the number of double-strand breaks and suggested a reduction in DNA repair capacity. Epothilone B produced enhanced microtubule bundling and abnormal spindle formation as revealed by immunofluorescence microscopy and caused microtubule formation from purified tubulin. The results of this study showed that epothilone B displays cytotoxic antitumor activity at low nanomolar concentrations and also enhances the radiation response in the tumor cells tested; this may be induced by a reduced DNA repair capacity triggered by epothilone B. It was also demonstrated that epothilone B in fact targets microtubules in a more effective manner than paclitaxel. (orig.)

  4. Antineoplastic Effect of Decoy Oligonucleotide Derived from MGMT Enhancer

    Science.gov (United States)

    Refael, Miri; Zrihan, Daniel; Siegal, Tali; Lavon, Iris

    2014-01-01

    Silencing of O(6)-methylguanine-DNA-methyltransferase (MGMT) in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1) within MGMT enhancer is probably the major inducer of MGMT expression following NF-kappaB activation. Thus, in an attempt to attenuate the transcription activity of MGMT in tumors we designed locked nucleic acids (LNA) modified decoy oligonucleotides corresponding to the specific sequence of MGMT-kappaB1 (MGMT-kB1-LODN). Following confirmation of the ability of MGMT-kB1-LODN to interfere with the binding of p65/NF-kappaB to the NF-KappaB motif within MGMT enhancer, the efficacy of the decoy was studied in-vitro and in-vivo. The results of these experiments show that the decoy MGMT-kB1-LODN have a substantial antineoplastic effect when used either in combination with temozolomide or as monotherapy. Our results suggest that MGMT-kB1-LODN may provide a novel strategy for cancer therapy. PMID:25460932

  5. Antineoplastic effect of decoy oligonucleotide derived from MGMT enhancer.

    Directory of Open Access Journals (Sweden)

    Tamar Canello

    Full Text Available Silencing of O(6-methylguanine-DNA-methyltransferase (MGMT in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1 within MGMT enhancer is probably the major inducer of MGMT expression following NF-kappaB activation. Thus, in an attempt to attenuate the transcription activity of MGMT in tumors we designed locked nucleic acids (LNA modified decoy oligonucleotides corresponding to the specific sequence of MGMT-kappaB1 (MGMT-kB1-LODN. Following confirmation of the ability of MGMT-kB1-LODN to interfere with the binding of p65/NF-kappaB to the NF-KappaB motif within MGMT enhancer, the efficacy of the decoy was studied in-vitro and in-vivo. The results of these experiments show that the decoy MGMT-kB1-LODN have a substantial antineoplastic effect when used either in combination with temozolomide or as monotherapy. Our results suggest that MGMT-kB1-LODN may provide a novel strategy for cancer therapy.

  6. Antitumor effects of radioiodinated antisense oligonucleotide mediated by VIP receptor

    International Nuclear Information System (INIS)

    Ou Xiaohong; Tan Tianzhi; Li Yunchun; Kuang Anren

    2004-01-01

    Purpose: we had constructed a targeting delivery system based on intestinal peptide (VIP) for antisense oligonucleotide (ASON) transfer into VIP receptor-positive cells in previous study. The aims of present studies are to observe the antitumor effect of VIP-131I-ASON in HT29 human colon adenocarcinoma xenografts. Methods: A 15-met phosphorothioate ASON, which was complementary to the translation start region of the C-myc oncogene mRNA, was labeled with 131I and the labelled compound was linked to the VIP bound covalently 'to a polylysine chain so as to deliver oligonucleotide into tumor cells. Distribution experiments for evaluating the radiolabeled antisense complexe uptake in tumor tissue were performed in BALB/c nude mice bearing with HT29 tumor xenografts. Nude mice beating HT29 tumor xenografts were adminstered VIP-131I-ASON (3.7,7.4 MBq) or 131I-ASON (3.7 MBq), 131I labeled control sense and nosense DNA (3.7 MBq), or saline. Antitumor effects were assessed using endpoints of tumor growth delay. C-myc-encoded protein expression of tumor was measured by immunocytohistochemical staining. Results: Distribution experiment performed with athymic mice bearing human colon tumor xenografts revealed maximal accumulation of conjugated ASON in the tumor tissue 2 h after administration and significantly higher than that in nude mice injected unconjngated ASON [(5.89±1.03)%ID/g and(1.56±0.31)%ID/g, respectively; t=7.7954 P<0.001]. The radioratio of tumor to muscle was peaked 4h after administration. VIP-131I-ASON exhibited strong antitumor effects against HT29 xenografts, decreasing their growth rate 7-fold compare with that in saline-treated mice(tumor growth delay, 25.4±0.89 day). The antitumor effects of unconjugated 131I-ASON were much less profound than VIP-131I-ASON (tumor growth delay, 3.2±1.3 and 25.4±0.89 day, respectively; q=51.4126 P<0.01). Sense, nosense control ON with VIP carder caused no therapeutic effect. There was no progressive weight loss or

  7. The radiosensitizing effect of doranidazole on human colorectal cancer cells exposed to high doses of irradiation

    International Nuclear Information System (INIS)

    Zhang, Li; Gong, Aimin; Ji, Jun; Wu, Yuanyuan; Zhu, Xiaoyu; Lv, Suqing; Lv, Hongzhu; Sun, Xizhuo

    2007-01-01

    This paper investigates the effects of a new radiosensitizer, doranidazole, and enhancing irradiation on colorectal cancer cells. The radiosensitizing effect of doranidazole was determined using colony formation and propidium iodide (PI) assays to measure cell growth inhibition and the cell killing effect of human colorectal cancer cell lines exposed to high doses of γ-ray irradiation under hypoxic conditions in vitro. Fluorescence staining and cell migration assays were also used to assess the radiosensitizing effect. Cell proliferation evaluated by clonogenic survival curves was significantly inhibited by 5 mmol/L doranidazole, particularly at doses ranging from 10 to 30 Gy of irradiation. The radiosensitizing effect of doranidazole on colorectal cancer cells occurs in a time- and dose-dependent manner. Doranidazole also inhibited the mobility of cell invasion and migration. Doranidazole can enhance the killing effect and the cell growth inhibition of colorectal cancer after high-dose irradiation in a time and dose-dependent manner

  8. Effect of 17-AAG on radio-sensitivity of HeLa and V79 cells

    International Nuclear Information System (INIS)

    Pan Yanling; Hong Chengjiao; Zhang Baoguo

    2010-01-01

    In order to investigate the radio-sensitizing effect of 17-AAG, an inhibitor of Heat Shock Protein 90, on human Uterine Cervix Cancer HeLa and V79 cells, Clonogenic assay was used to observe the cell survival rate. The results show that 17-AAG can decrease obviously (p 0.05). This indicates that 17-AAG may enhance the radio-sensitivity of the HeLa cell line and has no effect on the V79 cell line. (authors)

  9. Modification of γ-irradiation damaging effect on the seeds of radiosensitive and radioresistant plants

    International Nuclear Information System (INIS)

    Kaplan, I.S.; Tikhomirov, F.A.; Khvostova, V.V.; AN SSSR, Novosibirsk. Inst. Tsitologii i Genetiki)

    1975-01-01

    Low and high temperature treatment of seeds during irradiation has shown to result in a decrease of the general deleterious effect of radiation in both relatively radiosensitive (bean) and radioresistant (flax, mustard) species. The protective effect of the treatment is supposed to be due to its influence on short-half-life radicals and this is supportted by experiments with storage of irradiated seeds. The treatment allows to obtain high mutation frequencies in both radiosensitive and radioresistant plants

  10. Effect of Modifying Factors on Radiosensitive Biochemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Romantsev, E. F.; Filippovich, I. V.; Zhulanova, Z. I.; Blokhina, V. D.; Trebenok, Z. A.; Kolesnikov, E. E.; Sheremetyevskaya, T. N.; Nikolsky, A. V.; Zymaleva, O. G. [Institute of Biophysics, USSR Ministry of Health, Moscow, USSR (Russian Federation)

    1971-03-15

    Some of the radioprotective aminothiols are now routine pharmacopoeial drugs and are used in clinics to decrease the radiation reaction which appears as a side effect during the radiotherapy of cancer. The action of effective modifying agents on radiosensitive biochemical reactions in the organisms of mammals, in principle, cannot be different from the same effects of the protectors on biochemical systems of the human organism. The effect of modifying agents is mediated by biochemical systems. The administration of radioprotective doses of MEA to rats before irradiation results in a significant normalization of the excretion in urine of degradation products of nucleic acids (so-called Dische-positive compounds), the excretion of which sharply rises after irradiation. The curve of the radioprotective effect of MEA (survival rate after administration of radioprotectors at different intervals of time) completely corresponds to curves of the accumulation of MEA which is bound (by mixed disulphide links) to the proteins of liver mitochondria, to proteins of the nuclear-sap, to the hyaloplasm of rat thymus and to the nuclear ribosomes of the spleen. After MEA administration the curve of the biosynthesis of deoxycytidine represents a mirror reflection of the curve of MEA bound to proteins of the thymus hyaloplasm by means of mixed disulphide links. The mechanism of action of such modifying factors as MEA in experiments on mammals is mediated to a great degree through the temporary formation of mixed disulphide links between the aminothiol and the protein component of enzymes in different biochemical systems. (author)

  11. Effect of postirradiation anoxia on radiosensitivity of lymphocytes

    International Nuclear Information System (INIS)

    Schrek, R.

    1976-01-01

    Radiosensitivity was measured by viable-lymphocyte counts and by uridine uptake. The viability of the lymphocytes was based on morphologic characteristics visualized by phase contrast microscopy of the cells in a special slide chamber. Low doses of x rays (10 to 1000 R) and incubation at 37 0 C killed lymphocytes in interphase with the production of pyknotic nuclei (nuclear death), and large doses (6000 R) produced nuclei with clear nucleoplasm (cytoplasmic death). Nuclear, but not cytoplasmic, death was inhibited by incubation of the irradiated cells at 27 0 C. Postirradiation anoxia had no effect on development of the nuclear and cytoplasmic death of lymphocytes irradiated with 100 to 6000 R. Anoxia had no effect on the early response of lymphocytes to phytohemagglutinin (PHA) [increase in ribonucleic acid (RNA) and protein synthesis] but inhibited completely the late effects [increase in deoxyribonucleic acid (DNA) synthesis and transformation into lymphoblastoid cells]. The PHA caused relative radioresistance of lymphocytes under aerobic conditions and, to a lesser extent, under anaerobic conditions. The slight radioresistance induced by PHA in anoxic lymphocytes apparently did not depend on an increase in DNA synthesis or on the transformation to lymphoblastoid cells

  12. Effect of anesthetics on the radiosensitivity of a murine tumor

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, P.W.; Chu, A.M.

    1979-09-01

    The effect of four anesthetics on the single dose of x rays required to locally control 50% of implanted MT tumors was investigated. Compared with unanesthetized animals, no change in radiosensitivity was observed if mice were irradiated under either tribromoethanol or fentanyl-fluanisone-diazepam anesthesia. However, a small but significant degree of radioprotection was observed under chloral hydrate or pentobarbital anesthesia. Hypothermia or increased hypoxia are considered unlikely mechanisms for the protection, a direct chemical action being most probable. The preferred method for immobilizing the mice in order to locally irradiate the tumors was by simple physical restraint (with care taken to minimize physiological stress). However, if anesthesia was a necessity, the present work suggests that for the MT tumor at least the nonprotecting tribromoethanol and fentanyl-fluanisone-diazepam are preferable to the protecting chloral hydrate and pentobarbital. Tribromoethanol is preferable to fetanyl-fluanisone-diazepam in that it produces a smaller drop in temperature. However, it is only a short-acting anesthetic, and prolongation of the state of anesthesia by repeated doses simply prolongs the temperature decline so that there may be no real benefit over fentanyl-fluanisone-diazepam.

  13. Effect of anesthetics on the radiosensitivity of a murine tumor

    International Nuclear Information System (INIS)

    Sheldon, P.W.; Chu, A.M.

    1979-01-01

    The effect of four anesthetics on the single dose of x rays required to locally control 50% of implanted MT tumors was investigated. Compared with unanesthetized animals, no change in radiosensitivity was observed if mice were irradiated under either tribromoethanol or fentanyl-fluanisone-diazepam anesthesia. However, a small but significant degree of radioprotection was observed under chloral hydrate or pentobarbital anesthesia. Hypothermia or increased hypoxia are considered unlikely mechanisms for the protection, a direct chemical action being most probable. The preferred method for immobilizing the mice in order to locally irradiate the tumors was by simple physical restraint (with care taken to minimize physiological stress). However, if anesthesia was a necessity, the present work suggests that for the MT tumor at least the nonprotecting tribromoethanol and fentanyl-fluanisone-diazepam are preferable to the protecting chloral hydrate and pentobarbital. Tribromoethanol is preferable to fetanyl-fluanisone-diazepam in that it produces a smaller drop in temperature. However, it is only a short-acting anesthetic, and prolongation of the state of anesthesia by repeated doses simply prolongs the temperature decline so that there may be no real benefit over fentanyl-fluanisone-diazepam

  14. Effect of Gamma Radiation on Amino Acid Based Vesicle Carrying Radiosensitizer

    International Nuclear Information System (INIS)

    Nur Ratasha Alia Mohd Rosli; Faizal Mohamed; Muhammad Amir Syafiq Mohd Sah; Irman Abdul Rahman

    2014-01-01

    Vesicles has been developed and studied to be used as a medium to transport radiosensitizer in treating cancer cells by increasing its sensitivity effectively towards the radiation given during radiotherapy. This study was conducted to investigate the effect of gamma radiation on amino acid-based vesicle carrying radiosensitizer. Amino acid based vesicles carrying radiosensitizer were synthesized using sonication method with sodium N-lauroylsarcosinate hydrate and decanol being the primary surfactant, while hydrogen peroxide and sodium hyaluronate as the encapsulated radiosensitizer. The synthesized vesicle was then irradiated at radiation doses equivalent to those given during radiotherapy. Irradiated vesicle carrying radiosensitizer were then characterized using Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Polarized Light Microscope. Results obtained shows that there were no significant changes in morphology and molecular conformation of the synthesized vesicle after irradiation. Even at higher radiation dose of 100 Gray and 200 Gray, the results remained unchanged. This indicates that the synthesized vesicle carrying radiosensitizer is morphologically and spectroscopically stable even at high radiation doses. (author)

  15. Effects of glutathione depletion by buthionine sulfoximine on radiosensitization by oxygen and misonidazole in vitro

    International Nuclear Information System (INIS)

    Shrieve, D.C.; Denekamp, J.; Minchinton, A.I.

    1985-01-01

    Buthionine sulfoximine (BSO) has been used to deplete glutathione (GSH) in V79-379A cells in vitro, and the effect on the efficiency of oxygen and misonidazole (MISO) as radiosensitizers has been determined. Treatment with 50 or 500 μM BSO caused a rapid decline in GSH content to less than 5% of control values after 10 hr of exposure. Removal of BSO resulted in a rapid regeneration of GSH after 50 μM BSO, but little regeneration was observed over the subsequent 10-hr period after 500 μM. Cells irradiated in monolayer on glass had an oxygen enhancement ratio (OER) of 3.1. After 10-14 hr pretreatment with 50 μM BSO, washed cells were radiosensitized by GSH depletion at all oxygen tensions tested. The OER was reduced to 2.6, due to greater radiosensitization of hypoxic cells than aerated ones by GSH depletion. In similar experiments performed with MISO, an enhancement ratio of 2.0 could be achieved with 0.2 mM MISO in anoxic BSO-pretreated cells, compared to 2.7 mM MISO in non-BSO-treated cells. These apparent increases in radiosensitizer efficiency in GSH-depleted cells could be explained on the basis of radiosensitization of hypoxic cells by GSH depletion alone. These results are consistent with hypoxic cell radiosensitization by GSH depletion and by MISO or oxygen acting by separate mechanisms

  16. Effect of retinoic acid on the radiosensitivity of normal human oral keratinocyte

    International Nuclear Information System (INIS)

    Lee, Jean; Heo, Min Suk; Lee, Sam Sun; Oh, Sung Ook; Choi, Soon Chul; Park, Tae Won; Lee, Sul Mi; Choi, Hang Moon

    2003-01-01

    To evaluate the effect of all-trans-retinotic acid (ATRA) on the radiosensitivity of normal human oral keratinocyte (NHOK). Relative cell survival fraction including SF2 (survival fraction at 2 Gy) was calculated on the basis of colony formation assay. Data were fitted to the linear-quadratic model to establish the survival curve and calculate α and β values. Using flow cytometry at 1, 2, 3, 4, and 5 days after exposure to 2 and 10 Gy irradiation, cell cycle arrest and apoptosis were analysed. To understand the molecular mechanism of the radiosensitization of ATRA on NHOK, proteins related with apoptosis and cell cycle arrest were investigated by Western blot analysis. Treatment with ATRA resulted in a significant decrease of SF2 value for NHOK from 0.63 to 0.27, and increased α and β value, indicating that ATRA increased radiosensitivity of NHOK. ATRA increased LDH significantly, but increasing irradiation dose decreased LDH, suggesting that the radiosensitizing effect of ATRA is not directly related with increasing cell necrosis by ATRA. ATRA did not induce appotosis but increased G2 arrest after 10 Gy irradiation, implying that the increased radiosensitivity of NHOK may be due to a decrease in mitosis caused by increasing G2 arrest. ATRA inhibited the reduction of p53 at 3 days after 10 Gy irradiation and increased p21 at 1 day after 10 Gy irradiation. Further study is required to determine the precise relationship between this effect and the radiosensitizing effect of ATRA. These results suggested that ATRA increase radiosensitivity by inhibiting mitosis caused by increasing G2 arrest.

  17. Relationship between α/β and radiosensitivity and biologic effect of fractional irradiation of tumor cells

    International Nuclear Information System (INIS)

    Guo Chuanling; Chinese Academy of Sciences, Beijing; Wang Jufang; Jin Xiaodong; Li Wenjian

    2006-01-01

    Five kinds of malignant human tumor cells, i.e. SMMC-7721, HeLa, A549, HT29 and PC3 cell lines, were irradiated by 60 Co γ-rays to 1-6 Gy in a single irradiation or two irradiations of half dose. The radiosensitivity was compared with the dose-survival curves and D 50 and D 10 values. Differences in the D 50 and D 10 between the single and fractional irradiation groups showed the effect of fractional irradiation. Except for PC3 cells, all the cell lines showed obvious relationship between radiosensitivity and biologic effect of fractional irradiation and the α/β value. A cell line with bigger α/β was more radiation sensitive, with less obvious effect of fractional irradiation. The results indicate that there were obvious differences in radiosensitivity, repair ability and biologic effect of fractional irradiation between tumor cells from different tissues. To some tumor cell lines, the relationship between radiosensitivity, biologic effect of fractional irradiation and repair ability was attested. The α/β value of single irradiation can be regarded as a parameter to investigate the radiosensitivity and biologic effect of fractional irradiation of tumor cells. (authors)

  18. Effect of cisplatin on the clinically relevant radiosensitivity of human cervical carcinoma cell lines

    International Nuclear Information System (INIS)

    Britten, Richard A.; Evans, Andrew J.; Allalunis-Turner, M. Joan; Pearcey, Robert G.

    1996-01-01

    Purpose: To evaluate the effect of clinically relevant levels of cisplatin on the radiosensitivity of human cervical tumor cells, and to estimate what changes in local control rates might be expected to accrue from the concomitant use of cisplatin during fractionated radiotherapy. Methods and Materials: The effects of concomitant cisplatin (1 μg/ml, a typical intratumor concentration) on the clinically relevant radiosensitivity, i.e., surviving fraction after 2 G (SF 2 ) values, was determined in 19 cloned human cervical tumor cell lines. These early passage cell lines had SF 2 values ranging from 0.26 to 0.87. Results: The concomitant administration of cisplatin reduced the clinically relevant radiosensitivity in the majority (11 out of 19) of the human tumor cell lines investigated. In only 4 out of 19 was any radiosensitization observed, and in 4 out of 19 cell lines there was no significant change in radiosensitivity. However, the sum of the independent cell killing by radiation and cisplatin, was approximately twofold higher than after radiation alone. There was no apparent dependence of the cisplatin-induced changes in SF 2 values upon the level of cell killing by cisplatin. However, there is a suggestion that concomitant cisplatin administration may have a differential effect in inherently radiosensitive and resistant human tumor cell lines. Conclusions: Our data suggest that concomitant cisplatin/radiotherapy regimens may result in a higher level of local tumor control, but primarily through additive toxicity and not through radiosensitization. Future improvements in local tumor control may, thus, be derived by increasing the total dose of cisplatin

  19. Radiosensitization effect of CMNa on hypoxic pancreatic cancer cell in vitro

    International Nuclear Information System (INIS)

    Yin Lijie; Zhang Li; Ding Tiangui; Peng Zhaoxiang; Yu Huan; Gao Yuwei

    2006-01-01

    Objective: To investigate the effects of glycodidazolum natrium (CMNa) on pancreatic cancer cells under hypoxic condition. Methods: The human pancreatic cancer Panc-1 cells were exposed to a single fraction of high-dose γ-ray radiation either with CMNa or under hypoxic condition. The percentage of dead cells was detected with a multiwell plated reader, and fluorescence intensities of propidium iodide were measured before and after digitonin treatment. The sensitizing effect of CMNa on cell killing induced by high-dose irradiation was evaluated by time and concentration dependence. The selective radiosensitive effect of CMNa on hypoxia was evaluated by flow cytometry. Results: The death rate of pancreatic cancer Panc-1 cells paralleled with the increasing concentration of CMNa under hypoxic condition after 30 gray irradiation. The selective radiosensitive effect of CMNa on hypoxia was time-dependent. Conclusions: CMNa can enhance the radiosensitivity of pancreatic cancer Pane-1 cells under hypoxic condition with high-dose irradiation. (authors)

  20. Effect of quercetin and 17-AAG on radiosensitivity of rat peripheral blood lymphocyte

    International Nuclear Information System (INIS)

    Chu Xuegang; Hong Chengjiao; Zhang Baoguo

    2012-01-01

    To investigate the effect of quercetin and 17-AAG on proliferation and on radiosensitivity of blood lymphocyte cells. CCK-8 assay is performed to evaluate the cytotoxicity of Quercetin on proliferation of blood lymphocyte cells. CCK-8 assay employed to observe its effects on the radiosensitivity of the cells quantified by calculating the sensitive enhancement ratio (SER). CCK-8 results showed that the inhibition of Quercetin on the cells was the dose-dependent and time-dependent, and the results of assay showed the inhibition of 17-AAG on blood lymphocyte cells was the dose-dependent and time-dependent. The study showed that Quercetin and 17-AAG have no effect on the radiosensitivity of the blood lymphocyte cells. (authors)

  1. The radio-sensitizing effects and mechanisms of artemisinin and its derivates

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Zeng; Jianping, Cao; Saijun, Fan [School of Radiation Medicine and Public Health, Suzhou Univ., Suzhou (China)

    2008-10-15

    It has been proved that the antimalarial agent, Artemisinin and its derivates (such as artemether, arteether, artesunate, dihydroartemisinine, etc) boast powerful antitumor effects. Recently, researches have found that Artemisinin and its derivates can also enhance the radio-sensitivity of tumors through regulating cell cycle, creating cytotoxic effects induced by ROS, suppressing GSH activity and inhibiting the reparation of DNA damage etc. Moreover, they can reduce cell survival in a dose-dependent manner. This paper is paying more attention on the radio-sensitizing effects, characteristics and mechanisms of artemisinin and its derivates. (authors)

  2. The radio-sensitizing effects and mechanisms of artemisinin and its derivates

    International Nuclear Information System (INIS)

    Zeng Jing; Cao Jianping; Fan Saijun

    2008-01-01

    It has been proved that the antimalarial agent, Artemisinin and its derivates (such as artemether, arteether, artesunate, dihydroartemisinine, etc) boast powerful antitumor effects. Recently, researches have found that Artemisinin and its derivates can also enhance the radio-sensitivity of tumors through regulating cell cycle, creating cytotoxic effects induced by ROS, suppressing GSH activity and inhibiting the reparation of DNA damage etc. Moreover, they can reduce cell survival in a dose-dependent manner. This paper is paying more attention on the radio-sensitizing effects, characteristics and mechanisms of artemisinin and its derivates. (authors)

  3. Thermo-radiosensitivity of the granulocyte and macrophage precursor cells of mice. II. - X irradiation effects and influence of hyperthermia on the radiosensitivity

    International Nuclear Information System (INIS)

    Bueren, J.A.; Nieto, M.

    1983-01-01

    The effects of the X-irradiation on the viability of the granulocyte-macrophage precursors, has been determined by means of the agar diffusion chamber culture technique. The results show the high radiosensitivity of these cells, with survival parameter similar to those previously reported in the literature about different granulocyte-macrophage precursors. When a hyperthermic treatment is performed prior to the X-irradiation, a radiosensitization phenomenon is observed due to the synergism existent between hyperthermia and X rays on the lethality of the precursors. (Authors) 37 refs

  4. Effect of oligonucleotide primers in determining viral variability within hosts

    Directory of Open Access Journals (Sweden)

    Moya Andrés

    2004-12-01

    Full Text Available Abstract Background Genetic variability in viral populations is usually estimated by means of polymerase chain reaction (PCR based methods in which the relative abundance of each amplicon is assumed to be proportional to the frequency of the corresponding template in the initial sample. Although bias in template-to-product ratios has been described before, its relevance in describing viral genetic variability at the intrapatient level has not been fully assessed yet. Results To investigate the role of oligonucleotide design in estimating viral variability within hosts, genetic diversity in hepatitis C virus (HCV populations from eight infected patients was characterised by two parallel PCR amplifications performed with two slightly different sets of primers, followed by cloning and sequencing (mean = 89 cloned sequences per patient. Population genetics analyses of viral populations recovered by pairs of amplifications revealed that in seven patients statistically significant differences were detected between populations sampled with different set of primers. Conclusions Genetic variability analyses demonstrates that PCR selection due to the choice of primers, differing in their degeneracy degree at some nucleotide positions, can eclipse totally or partially viral variants, hence yielding significant different estimates of viral variability within a single patient and therefore eventually producing quite different qualitative and quantitative descriptions of viral populations within each host.

  5. Effect of oligonucleotide primers in determining viral variability within hosts.

    Science.gov (United States)

    Bracho, Maria Alma; García-Robles, Inmaculada; Jiménez, Nuria; Torres-Puente, Manuela; Moya, Andrés; González-Candelas, Fernando

    2004-12-09

    Genetic variability in viral populations is usually estimated by means of polymerase chain reaction (PCR) based methods in which the relative abundance of each amplicon is assumed to be proportional to the frequency of the corresponding template in the initial sample. Although bias in template-to-product ratios has been described before, its relevance in describing viral genetic variability at the intrapatient level has not been fully assessed yet. To investigate the role of oligonucleotide design in estimating viral variability within hosts, genetic diversity in hepatitis C virus (HCV) populations from eight infected patients was characterised by two parallel PCR amplifications performed with two slightly different sets of primers, followed by cloning and sequencing (mean = 89 cloned sequences per patient). Population genetics analyses of viral populations recovered by pairs of amplifications revealed that in seven patients statistically significant differences were detected between populations sampled with different set of primers. Genetic variability analyses demonstrates that PCR selection due to the choice of primers, differing in their degeneracy degree at some nucleotide positions, can eclipse totally or partially viral variants, hence yielding significant different estimates of viral variability within a single patient and therefore eventually producing quite different qualitative and quantitative descriptions of viral populations within each host.

  6. Radiosensitivity of Hela cells in various O2 concentrations and consideration of oxygen effect in radiotherapy

    International Nuclear Information System (INIS)

    Kuroda, Yoshikazu; Nyunoya, Koichiro

    1979-01-01

    The aim of this paper is the study of the radiosensitivity of HeLa cells in vitro in various oxygen concentrations and the consideration of the utilization of oxygen effect in radiation therapy, based on the data of HeLa cells and tumor oxygen tension. Survival curves of HeLa cells are found to be exponential as a function of radiation dose and the radiosensitivity is dependent on oxygen tension of culture medium. Relative radiosensitivity decreases remarkably at low level of oxygen, especially under 9 mmHg pO 2 . The utilization of oxygen effect in radiation may be useful in hyperbaric oxygen inhalation and not useful under local tissue hypoxia induced by tourniquet application. Reoxygenation occurs with shrinkage of tumor after irradiation and this phenomenon will diminish the value of hyperbaric oxygen in radiation therapy. (author)

  7. Effect of Quercetin on radio-sensitivity of HeLa cells

    International Nuclear Information System (INIS)

    Wu Xiaofen; Hong Chengjiao; Guo Wenxiu; Pan Yanling; Zhang Baoguo

    2011-01-01

    In order to investigate the mechanism of Quercetin on radio-sensitivity of human Uterine Cervix Cancer HeLa cells, HeLa cells were cultured in different concentrations of Quercetin and different doses of irradiation. The clonogenic assay was used to observe the cell survival rate. The repair of DNA double-strand breaks and effect of Quercetin combination of radiation on the cell cycle were detected by flow cytometry. The results show that the radio-sensitivity of Quercetin on HeLa cells was obvious and the unrepaired DSBs after irradiation increased, but did not decrease G2/M cell cycle arrest. From this it can be inferred that the effect on HeLa cell radio-sensitivity may be related to the inhibition of the repair of DNA double-strand breaks induced by Quercetin, but it dose not reveal a significant relation with the cell cycle and G2/M arrest. (authors)

  8. Effects of heat-shock treatment and genotype on radiosensitivity of maize seeds

    International Nuclear Information System (INIS)

    Yamagata, Hirotada; Tanisaka, Takatoshi; Harima, Kunio

    1975-01-01

    In order to clarify the internal and external factors responsible for radiosensitivity of seed, and to induce mutations more effectively, two experiments were conducted using maize. (1) Seeds of an inbred line were irradiated with γ rays at an extremely low temperature (-70 0 C) and then dipped in hot water (60 0 C, 30 sec.). Through such heat-shock treatment the radiosensitivity of maize seeds was remarkably reduced: LD 50 and RD 50 for growth rose as high as about three times and about twice, respectively. (2) Seeds of seven strains including four inbred lines, two single-cross hybrids and one double-cross hybrid were exposed to γ rays by the ordinary procedure. Hybrids, regardless of whether they were single cross or double cross, were clearly proved to surpass their parental strains in radiation tolerance, both in survival rate and in culm length. These descents of radiosensitivity were considered to be due mainly to the increased heterozygosity. (auth.)

  9. Effect of radiation on immunity and immunological methods of radiosensitivity modifications

    International Nuclear Information System (INIS)

    Ivanov, A.A.

    1987-01-01

    Immunity system is shown to be heterogeneous as to its radiosensitivity, but injury of one of its most radiosensitive links results in the violation of the whole system functioning already at the level of sublethal radiation doses. Injury processes and disbalance in the immunity system play important role in the realization of radiobiological effects at the level of the whole organism starting from the period of primary reaction to irradiation and ending with the period of remote consequences. The process of radiation injury can be considerably modified by actively affecting cell and humoral factors of immunologic reactivity

  10. Effect of anemia on tumor radiosensitivity under normo and hyperbaric conditions

    International Nuclear Information System (INIS)

    Rojas, A.; Stewart, F.A.; Smith, K.A.; Soranson, J.A.; Randhawa, V.S.; Stratford, M.R.; Denekamp, J.

    1987-01-01

    The effect of chronic anemia on tumor radiosensitivity in a murine tumor has been investigated. Anemia was induced by bilateral kidney irradiation given several months before tumor implantation. Anemic, anemic transfused, and normal non-anemic age-matched tumor bearing animals were irradiated with X rays (2 F/24 hr) either in air, air plus misonidazole, or under hyperbaric oxygen. The most resistant response was that of tumors grown in normal mice treated in air. Anemia produced an increase in radiosensitivity which was further enhanced by red blood cell replacement. The most sensitive overall response was seen in the anemic-transfused group treated with HBO

  11. Effect of constitutive androstane receptor on radiosensitization of mictomycin C and its homologoue-629

    International Nuclear Information System (INIS)

    Zhang Jianghong; Jin Yizun

    2008-01-01

    The object of this work is to evaluate radiosensitization of MMC and its analogue 5-(aziridin-l-yl)-3- hydroxymethyl-1-methylindole-4,7-dione(629) and how transfection of constitutive androstane receptor (CAR) affect their biological effects. The expressions of CAR mRNA and CYP2B6 mRNA in HepG2 cells and g2car cells were detected by RT-PCR. The radiosensitization of MMC and 629 in vitro were evaluated in HepG2 cells and g2car cells by colony formation under anaerobic and aerobic condition. The effect of 629 on cell cycle and apoptosis of HepG2 cells and g2car cells were assayed by flow cytometry. It was found that plasmid mCAR1/pCR3 was transfected into g2car cells successfully and target CYP2B6 was transactivated by CAR. To compare with aerobic and anaerobic, the radiosensitization of MMC and 629 to HepG2 cells and g2car cells had significantly enhanced, the radiosensitization of 629 was stronger than its parent compound-MMC under aerobic and anaerobic condition, and transfect CAR gene could improve the radiosensitization of MMC and 629. Furthermore, CYP2B6 is one master enzyme for the metabolism of MMC and 629. Transfection of CAR can increase expression of CYP2B6 mRNA in HepG2 cells, and can affect radiosensitization of MMC and 629. (authors)

  12. 53BP1 loss suppresses the radiosensitizing effect of icotinib hydrochloride in colorectal cancer cells.

    Science.gov (United States)

    Huang, Ai; Yao, Jing; Liu, Tao; Lin, Zhenyu; Zhang, Sheng; Zhang, Tao; Ma, Hong

    2018-04-01

    This study aimed to investigate the influence of the expression of P53-binding protein 1 (53BP1), a key component in DNA damage repair pathways, on the radiosensitizing effect of icotinib hydrochloride in colorectal cancer and to elucidate the mechanisms underlying this influence. Real-time RT-PCR and Western blotting were performed to verify the gene-knockout effect of 53BP1 small hairpin RNA (ShRNA), and colony formation assay was employed to investigate the influence of 53BP1 downregulation on the radiosensitizing effect of icotinib hydrochloride in HCT116 cells. Cell apoptosis, cell cycle distributions, and histone H2AX (γ-H2AX) fluorescence foci after 53BP1 knockdown were evaluated. Relative protein expression in the ataxia telangiectasia mutated kinase (ATM)-checkpoint kinase-2 (CHK2)-P53 pathway was measured by Western blot analysis to unravel the molecular mechanisms linking the pathway to the above phenomena. Icotinib hydrochloride increased the radiosensitivity of HCT116 cells; however, this effect was suppressed by the downregulation of 53BP1 expression, a change that inhibited cell apoptosis, increased the percentage of HCT116 cells arrested in S-phase and inhibited the protein expression of key molecules in the ATM-CHK2-P53 apoptotic pathway. Our studies confirmed that the loss of 53BP1 serves as a negative regulator of the radiosensitizing effect of icotinib in part by suppressing the ATM-CHK2-P53 apoptotic pathway.

  13. Evaluation of the effect of three monazite constituents on the radiosensitivity of human osteoblasts

    International Nuclear Information System (INIS)

    Iwahara, Lucas Kiyoshi da Fonseca; Oliveira, Monica Stuck de; Alencar, Marcus Alexandre Vallim de

    2017-01-01

    Thorium has gained notoriety in recent years, as a potential source of nuclear energy, substituting uranium in power plants. Monazite is an important font of thorium, as well of uranium and rare earths elements. Professionals involved in the extraction and manipulation of this mineral are occupationally exposed to aerosols containing metals and to ionizing radiation. This paper analyzed the effects of thorium, cerium and lanthanum on cell radiosensitivity. As an osteotropic substance, thorium is mostly deposited in bone tissue and may interfere in cellular radiosensitivity. A human osteoblast cell line was used to evaluate the effects of thorium, cerium and lanthanum on cell radiosensitivity, using proliferation as indicator. Assays were performed using cell cultures exposed to metals and to ionizing radiation. As a result, metals in combination with ionizing radiation induced changes on cell proliferation, in a concentration-dependent manner, in comparison with the exposure to metals alone. That suggests the possibility of combination interfering with radiosensitivity of osteoblasts, indicating an enhancement in occupational risk for workers that manipulate monazite byproducts and are subject to radiation in the environment. Thus, the development of risk assessment models that include the evaluation of metal-radiation mixtures and their cytotoxic and radiotoxic effects on tissues and organs must be highlighted. (author)

  14. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    International Nuclear Information System (INIS)

    Debeb, Bisrat G.; Xu Wei; Mok, Henry; Li Li; Robertson, Fredika; Ueno, Naoto T.; Reuben, Jim; Lucci, Anthony; Cristofanilli, Massimo; Woodward, Wendy A.

    2010-01-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cell transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.

  15. Studies on varietal radiosensitivity and genetical effect in triticum aestivum L

    International Nuclear Information System (INIS)

    Feng Zhijie; Wang Linqing

    1987-09-01

    The Dormand seeds (with 13% water content) of 49 wheat varieties (T riticum aestivum L.) were irradiated with 60 Co-γ ray of various doses, and the varietal radiosensitivities and the genetical effects were studied in experimental plots and laboratories. Significant differences in radiosensitivity were found among the varieties used in present experiment. The varietal radiosensitivity of T riticum aestivum L. manifested a continuous variation, which accords approximately with the normal distribution, from the sensitive to the resistant to 60 Co-γ rays. 49 varieties utilized could be divided into five groups with different radiosensitivity to 60 Co-γ rays: higher resistent, resistant, intermediat respose, sensitive and higher sensitive. It was found that most of the mutant varieties improved by irradiation were more resistant to γ rays than the local varieties which were more resistant than recombination varieties bred by crossbreeding, that is radiation-induced mutant varieties 2 generation. The results showed that mutation frequencies, mutation spectra and variebilities of the quantative traits varied with varieties. Higher mutation frequencies, wider mutation spectra and greater variabilities were observed in the sensitive varieties than in the resistant ones, and it suggested that there is a greater potential for selecting mutants in M 2 generation of more sensitive varieties

  16. Effect of allicin on the radiosensitivity of human pancreatic carcinoma BXPC3 cells

    International Nuclear Information System (INIS)

    Ma Hongbing; Di Zhengli; He Na; Wen Jiao; Ke Yue

    2014-01-01

    Objective: To study the effect of allicin on the growth and radiosensitivity of human pancreatic carcinoma BXPC3 cells. Methods: BXPC3 cells were exposed to X-rays in the presence or absence of allicin. Cell proliferation was measured by MTT assay. Cell cycle distribution and apoptosis were detected by flow cytometry assay. Cell radiosensitivity and the influence of allicin on it was evaluated by colony formation assay. The expressions of Bax and Bcl-2 proteins were assayed by RT-PCR and Western blot. Results: IC 50 values of allicin on cell growth were 76.24, 58.34 and 43.58 μmol/L under 12, 24 and 48 h treatment, respectively. Treatment of cells with allicin obviously inhibited cell growth after irradiation and hence increased radiosensitivity (t = 2.74, P < 0.05). This treament also enhanced radiation-induced cell cycle arrest at G 2 /M phase (t = 11.41, P < 0.05), apoptosis induction (t = 12.36, P < 0.05), and Bax expression (t = 4.83, P < 0.05), but it decreased Bcl-2 expression (t = 3.69, P < 0.05). Conclusions: Allicin could inhibit cell growth, induce cell cycle arrest and apoptosis via Bax/Bcl-2 pathway and hence increases radiosensitivity of BXPC3 cells. (authors)

  17. Radiosensitization effect by combination with paclitaxel in vivo, including the effect on intratumor quiescent cells

    International Nuclear Information System (INIS)

    Masunaga, Shin-ichiro; Ono, Koji; Suzuki, Minoru; Nishimura, Yasumasa; Kinashi, Yuko; Takagaki, Masao; Hori, Hitoshi; Nagasawa, Hideko; Uto, Yoshihiro; Tsuchiya, Izumi; Sadahiro, Sotaro; Murayama, Chieko

    2001-01-01

    Purpose: To evaluate the radiosensitization effect on solid tumors upon combination treatment with paclitaxel (TXL), including the effect on intratumor quiescent (Q) cells. Methods and Materials: Mice bearing SCC VII or EL4 solid tumors received 5-bromo-2'-deoxyuridine (BrdU) continuously for 5 days to label all proliferating (P) cells. The mice then received γ-irradiation with or without tirapazamine (TPZ) at various time points after TXL administration. Another group of mice received a series of test doses of γ-rays while alive or after tumor clamping to obtain hypoxic fractions (HFs) in the tumors at various time points after TXL administration. Immediately after irradiation, the tumor cells were isolated and incubated with a cytokinesis blocker. The micronucleus (MN) frequency in cells without BrdU labeling (Q cells) was determined using immunofluorescence staining for BrdU. Meanwhile, 6 h after irradiation, the tumor cells were isolated from the solid tumors in another group of mice, and the apoptosis frequency in Q cells was also determined with immunofluorescence staining for BrdU. The MN and apoptosis frequency in total (P+Q) tumor cells were determined from the tumors that were not pretreated with BrdU. For the measurement of the HFs, the MN or apoptosis frequency of Q cells was then used to calculate the surviving fraction of Q cells from the regression line for the relationship between the MN or apoptosis frequency and the surviving fraction of total tumor cells. Results: In both SCC VII and EL4 tumors, maximum values of mitotic index (MI) and apoptosis frequency were observed 9 and 24 h after TXL administration, respectively. However, on the whole, the apoptosis frequency for SCC VII was very low. γ-Irradiation 9 h after TXL administration induced significant radiosensitization effects on the total cells of both tumors. Irradiation at 60 h had a more significant effect on total cells of EL4 tumor, but no significant effect on total cells of SCC VII

  18. Modification of the radiosensitizing effect of metronidazole by 5-fluorouracil and caffeine

    International Nuclear Information System (INIS)

    Esel'baeva, G.O.; Ermekova, S.A.

    1986-01-01

    A study was made of the combined effect of 5-fluorouracil, metronidazole, caffeine and radiation on radiosensitivity of Pliss lymphosarcoma and protein synthesis rate during the first few hours following irradiation. A complete regression of the tumor was noted in 100% of animals after a 3-fold exposure. Effective postirradiation inhibition of protein synthesis was achieved by injection of metronidazole and caffeine together with 5-fluorouracil

  19. Enhanced Radiosensitization Effect of Curcumin Delivered by PVP-PCL Nanoparticle in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Cuixia Wen

    2017-01-01

    Full Text Available Curcumin, the principal polyphenolic curcuminoid, has been reported in numerous studies for its antitumor effect in a series of cancers. It is also reported that curcumin possesses radiosensitization effect in some cancers. However, the poor solubility and unsatisfied bioavailability of curcumin significantly undermine its potential application. Here we prepared curcumin loaded nanoparticles by employing PVP-PCL as drug carrier. Characterization studies indicated the satisfied drug loading efficiency and a sustained in vitro release pattern. Quantification uptake study showed that the uptake efficiency of Cum-NPs by lung cancer cells was time- and dose-dependent. In vitro anticancer study demonstrated the superior cytotoxic effect of Cum-NPs with stronger apoptotic induction over free Cum. Most importantly, there is almost no report on the radiosensitization effect of curcumin loaded nanoparticles. Here, Cum-NPs led to more inhibition of the colony forming ability of A549 cells as compared to the equivalent concentration of free Cum as shown in clonogenic assay. Furthermore, Cum-NPs are much more effective in enhancing the tumor growth inhibitory effect of radiation therapy in a A549 xenograft model. Therefore, results from the current study seem to be the first report on the radiosensitization effect of Cum-NPs and paved the way for a curcumin nanodrug delivery system as a potential radiation adjuvant.

  20. Radiosensitizers and protectors

    International Nuclear Information System (INIS)

    Nori, D.; Kim, J.H.; Hilaris, B.; Chu, F.C.

    1987-01-01

    Over the past decades, various physical, biological, and clinical strategies have been investigated to improve the therapeutic effectiveness of radiation. One of these efforts has been to develop chemical radiosensitizers and protectors. In the broadest sense, a radiation sensitizer is any agent that enhances the cytolethal effects of radiation. Drugs that selectively protect tissues from radiation injury are under active study. This chapter briefly reviews the present status of chemical radiosensitizers and protectors. The discussion of sensitizers will be limited to the oxic cell and hypoxic cell radiosensitizers and their clinical applications

  1. Inhibition of DNA synthesis and radiosensitization effects of thalidomide on esophageal carcinoma TE1 cells

    International Nuclear Information System (INIS)

    Yu Jingping; Sun Suping; Sun Zhiqiang; Sun Meiling; Liu Fenju

    2010-01-01

    Objective: To explore the radiosensitization effect of thalidomide combined with X-ray on esophageal carcinoma TE1 cells. Methods: Cell scratch assay was used to detect the inhibition ability of different concentration of Thalidomide on cell invasion and metastasis. H 3 -TdR incorporation assay was used to investigate the inhibition of DNA synthesis in TE1 cells by treated with Thalidomide singly or combination with X-rays. The colony formation assay was used to analyze the radiosensitization of Thalidomide effect on TE1 cells. Results: Thalidomide had obvious inhibition effect on TE1 cell metastasis, DNA synthesis and colony formation, which were correlated with drug concentration. The values D 0 , D q and SF 2 in TE1 cells were gradually decreased with thalidomide concentration increased. When the concentration of thalidomide was 100μg/ml, the SER D 0 and SER D 0 and SER D q were (1.4±0.2) and (1.5±0.1), respectively, While the concentration of thalidomide was 150 μg/ml, the SER D 0 and SER D q were (1.5±0.2) and (1.8±0.2), respectively. Conclusions: Thalidomide could inhibit TE1 cell invasion, metastasis, DNA synthesis, and significantly enhance the radiosensitizing effect on esophageal carcinoma TE1 cells. (authors)

  2. The effects of BSO on GSH contents and radiosensitivity of retinoblastoma cells

    International Nuclear Information System (INIS)

    Yi Xanjin; Ding Li; Jin Yizun; Ni Chuo; Wang Wenji; Yi Yuzhen

    1995-01-01

    The radiobiological effects of thiol modifier BSO on retinoblastoma were studied using cultured retinoblastoma cell lines Y-79 and So-Rb 50 and retinoblastoma bearing nude mouse. The preliminary results showed that BSO can deplete intracellular GSH contents of retinoblastoma cells in vitro and vivo. In vitro data demonstrated that low and nontoxic concentration BSO increased the retinoblastoma cells radiosensitivity especially under the hypoxic condition

  3. Effect of quercetin on radiosensitivity of human uterine cervix cancer HeLa cells

    International Nuclear Information System (INIS)

    Liang Xiaofang; Hong Chengjiao; Zhang Baoguo

    2009-01-01

    In order to investigate the effects of Quercetin on radiosensitivity of human Uterine Cervix Cancer HeLa cells, MTT assay and clonogenic assay were performed to evaluate the cytotoxicity of Quercetin on the cells. Clonogenic assay was used to observe its effects on the radiosensitivity of the cells. MTT result shows that the inhibition of Quercetin on the cells is in the dose-dependent and time-dependent. And the clonogenic assay result shows that the effect of Quercetin on HeLa cells can be divided into two parts, one for the inhibition of HeLa cells and another for the induction of HeLa cell death. The other clonogenic assay result also shows Quercetin can decrease clonogenic survival rate of HeLa cells exposed to X rays. The study shows Quercetin might enhance the radiosensitivity of the HeLa cell line. And it may provide a useful evaluation to combination of ionizing radiation and Quercetin for cancer patients. (authors)

  4. The effect of anaesthesia on the radiosensitivity of rat intestine, foot skin and R-1 tumours

    International Nuclear Information System (INIS)

    Kal, H.B.; Gaiser, J.F.

    1980-01-01

    A comparison has been made of the effects of Nembutal (sodium pentobarbital) and Ethrane (2-chloro-1,1,2-trifluoroethyldifluoromethyl ether) anaesthesia on the radiation responses of rat intestine, foot skin and R-1 rhabdomyosarcoma. Single-dose experiments under Nembutal or short-lasting Ethrane anaesthesia resulted in equivalent radiosensitivities for the R-1 sarcoma and foot skin, whereas Ethrane induced radiosensitization in the intestine. In the Ethrane anaesthesia lasting 3 hours, and in the split-dose experiments, Ethrane inhibited repair of radiation-induced damage in the R-1 sarcoma and in the foot skin. It is therefore recommended that the use of Ethrane as an anaesthetic should be avoided in experiments designed to investigate repair of damage in fractionated studies or during protracted irradiation treatments. (UK)

  5. The effect of intra- and extracellular GSH depletion on aerobic radiosensitization in three cell lines

    International Nuclear Information System (INIS)

    Clark, E.P.; Epp, E.R.; Morse-Gaudio, M.; Biaglow, J.E.

    1985-01-01

    The effect of changes in the intra- and extracellular glutathione (GSH) concentrations on aerobic radiosensitization was studied in thee cell lines: CHO, V79 and A549. Intracellular GSH was metabolically depleted after the inhibition of GSH synthesis by buthionine sulfoximine (BSO) treatment of attached cell cultures. Extracellular GSH was controlled through the replacement of growth medium with a thiol-free salt solution and, where desired, by the exogenous addition of GSH. Each of the cell lines examined exhibited an enhanced aerobic radioresponse when the intracellular GSH was extensively depleted (GSH < 5% of control after 1.0 mM BSO/24 hr treatment) and the extracellular GSH concentration was zero. However, this enhanced radiosensitivity was eliminated by the addition of exogenous GSH, albeit at a high concentration (5 mM). Most interesting and as yet unexplained is the observation that GSH appears to affect restoration of the control radioresponse without increasing the intracellular GSH concentration

  6. The toxic effects, GSH depletion and radiosensitivity by BSO on retinoblastoma

    International Nuclear Information System (INIS)

    Xianjin Yi; Li Ding; Yizun Jin; Chuo Ni; Wenji Wang

    1994-01-01

    Retinoblastoma is the most common intraocular malignant tumor in children. Previous investigations have reported that buthionine sulfoximine (BSO) can deplete intracellular glutathione (GSH) by specific inhibition and increase cellular radiosensitivity. The toxic effects, GSH depletion and radiosensitivity effects of BSO on retinoblastoma cells are reported in this paper. GSH content of retinoblastoma cell lines Y-79, So-Rb50 and retinoblastoma xenograft is 2.7 ± 1.3 X 1.0 -12 mmol/cell, 1.4 ± 0.2 X 1.0 -12 mmol/cell, and 2.8 ± 1.2 μmol/g, respectively. The ID 50 of BSO on Y-79 and So-Rb50 in air for 3 h exposure is 2.5 mM and 0.2 mM, respectively. GSH depletion by 0.1 mM BSO for 24 h on Y-79 cells and 0.01 mM BSO for 24 h on So-Rb50 cells is 16.35%, and 4.7% of control. GSH depletion in tumor and other organ tissues in retinoblastoma-bearing nude mice after BSO administration is differential. GSH depletion after BSO exposure in Y-79 cells in vitro decreases the Do value of retinoblastoma cells. The SER of 0.01 mM and 0.05 mM BSO for 24 h under hypoxic conditions is 1.21 and 1.36, respectively. Based on these observations, the authors conclude that BSO toxicity on retinoblastoma cells depends on the characteristics of the cell line and that BSO can increase hypoxic retinoblastoma cells' radiosensitivity in vitro. Further study of BSO radiosensitization on retinoblastoma in vivo using nude mouse xenografts is needed. 25 refs., 3 figs., 3 tabs

  7. The toxic effects, GSH depletion and radiosensitivity by BSO on retinoblastoma

    International Nuclear Information System (INIS)

    Yi Xianjin; Ni Chuo; Wang Wengi; Li Ding; Jin Yizun

    1993-01-01

    Retinoblastoma is the most common intraocular malignant tumor in children. Previous investigations have reported that buthionine sulfoximine (BSO) can deplete intracellular glutathione (GSH) by the specific inhibition and increase cellular radiosensitivity. The toxic effects, GSH depletion and radiosensitivity of BSO on retinoblastoma were reported. GSH content of retinoblastoma cell lines Y-79, So-Rb50 and retinoblastoma xenograft is (2.7 +- 1.3) x 10 -12 mmol/cell, (1.4 +- 0.2) x 10 -12 mmol/cell, and 2.8 +- 1.2 μmol/g respectively. The ID50 of BSO on Y-79 and So-Rb50 in air for 3h exposure is 2.5 mM and 0.2 mM respectively. GSH depletion by 0.1 mM BSO for 24h on Y-79 cells and 0.01 mM BSO for 24 h on So-Rb50 cells is 16.35%, and 4.7% of control. GSH depletion in tumor and other organ tissues in retinoblastoma bearing nude mice after BSO administration is differential. BSH depletion after BSO exposure in Y-79 cells in vitro decrease the D 0 value of retinoblastoma cells. The SER of 0.01 mM and 0.05 mM BSO for 24 h under the hypoxic condition is 1.21 and 1.36 respectively. Based on these observations, the authors conclude that BSO toxicity on retinoblastoma cells depends on the characteristics of cell line and BSO can increase hypoxic retinoblastoma cells radiosensitivity in vitro. Further study of BSO radiosensitization on retinoblastoma in vivo using nude mouse xenograft is needed

  8. Effects of taurolidine on radiosensitivity of murine melanoma cells and its mechanism

    International Nuclear Information System (INIS)

    Sun Baosheng; Liu Shixin; Wang Tiejun; Liu Linlin; Huang Guomin; Gong Shouliang

    2008-01-01

    Objective: To observe the effects of taurolidine on radiosensitivity of B16-F10 cells of murine melanoma via the enhancement of Bax and Bad proteins and induction of Bcl-2 protein. Methods: The apoptosis of B16-F10 cells was assessed after treated with 0, 10, 25, 50, 100 and 150 μmol·L -1 taurolidine, clone survival assay was used to detect the radiosensitivity of B16-F10 cells, and protein expressions were determined by Western blotting. Results: The apoptosis of 5% cells was induced in a dose-and time-dependent manner after B16-F10 cells were treated with 50 μmol·L -1 taurolidine. The survival rate decreased after treated with tautolidine in combination with 2 Gy X-irradiation with the increase of taurolidine concentration and doses of irradiation (P 0 and SER D q ) also increased with the increase of its concentration, there was significant difference between 50 μmol·L -1 taurolidine group and 10 μmol·L -1 taurolidine group (P<0.05); meantime, the level of proapototic protein Bax and Bad increased and the level of antiapoptotic protein Bcl-2 reduced. Conclusion: Taurolidine in combination with irradiation can enhance the radiosensitivity by the mediation of Bcl-2 family protein. (authors)

  9. Electron paramagnetic resonance highlights that the oxygen effect contributes to the radiosensitizing effect of paclitaxel.

    Directory of Open Access Journals (Sweden)

    Fabienne Danhier

    Full Text Available BACKGROUND: Paclitaxel (PTX is a potent anti-cancer chemotherapeutic agent and is widely used in the treatments of solid tumors, particularly of the breast and ovaries. An effective and safe micellar formulation of PTX was used to administer higher doses of PTX than Taxol® (the current commercialized drug. We hypothesize that PTX-loaded micelles (M-PTX may enhance tumor radiosensitivity by increasing the tumor oxygenation (pO(2. Our goals were (i to evaluate the contribution of the "oxygen effect" to the radiosensitizing effect of PTX; (ii to demonstrate the therapeutic relevance of the combination of M-PTX and irradiation and (iii to investigate the underlying mechanisms of the observed oxygen effect. METHODOLOGY AND PRINCIPAL FINDINGS: We used (PEG-p-(CL-co-TMC polymeric micelles to solubilize PTX. pO(2 was measured on TLT tumor-bearing mice treated with M-PTX (80 mg/kg using electron paramagnetic resonance (EPR oximetry. The regrowth delay following 10 Gy irradiation 24 h after M-PTX treatment was measured. The tumor perfusion was assessed by the patent blue staining. The oxygen consumption rate and the apoptosis were evaluated by EPR oximetry and the TUNEL assay, respectively. EPR oximetry experiments showed that M-PTX dramatically increases the pO(2 24 h post treatment. Regrowth delay assays demonstrated a synergy between M-PTX and irradiation. M-PTX increased the tumor blood flow while cells treated with M-PTX consumed less oxygen and presented more apoptosis. CONCLUSIONS: M-PTX improved the tumor oxygenation which leads to synergy between this treatment and irradiation. This increased pO(2 can be explained both by an increased blood flow and an inhibition of O(2 consumption.

  10. Effect of thorium, cerium and lanthanium metals on the radiosensitivity of human osteoblasts

    International Nuclear Information System (INIS)

    Iwahara, Lucas Kiyoshi da Fonseca

    2016-01-01

    This work analyzed the effects of Th, Ce and La combinations on the human osteoblast proliferation. Due to the osteotropic potential of actinides and lanthanides, a human osteoblast cell line was used to evaluate the effects of metals on cell radiosensitivity using cell proliferation and total proteins as indicators. Assays were performed using cultures exposed to metal alone and in combination and to ionising radiation. It was not observed effects on proliferation for cultures exposed to the metals alone. Concerning the influence of the three elements on the radiosensitivity, it was seen that all three metals were able to interfere on this indicator, in a concentration dependent manner. Evaluating cultures exposed to binary mixtures (Th-Ce and Th-La) and a ternary mixture (Th-Ce-La), it was verified that there were chemical interactions between the metals, for the combinations tested. The results showed very strong antagonism on the inhibition of cell proliferation in cultures exposed to Th-La and Th- Ce-La combinations. Regarding the osteoblasts exposed to mixtures and to radiation it was seen an antagonistic effect on the cell proliferation in all tested combinations, and the Th-Ce combination with a higher degree. These results show that metal mixtures containing thorium, in association with ionising radiation, induced different effects on cell proliferation, regarding the exposure to the metals alone, suggesting the possibility that the combinations interfere on osteoblast radiosensitivity expressing the increase of the occupational hazard among workers involved with monazite sands. The results also indicate that the analysis of the effects of metal mixtures on human cells is a more realistic risk assessment in comparison with the analysis of risk for single elements. The work displays the need to development of risk assessment models that include the study of mixtures obtained in the work environment for the evaluation of cytotoxic and radiotoxic effects in

  11. Oligonucleotide assisted light-emitting Alq3 microrods: energy transfer effect with fluorescent dyes.

    Science.gov (United States)

    Cui, Chunzhi; Park, Dong Hyuk; Kim, Jeongyong; Joo, Jinsoo; Ahn, Dong June

    2013-06-14

    Oligonucleotide assisted tri(8-hydroxyquinoline) aluminium (Alq3) microrods were prepared for the first time. When hybridized with oligonucleotide labeled by Cy3 fluorescent dye, a significant photoluminescence variation of the Alq3 microrods was observed due to Förster resonance energy transfer, unlike when Cy5-oligonucleotide was used. Versatile nucleotide manipulation would open up wider applications of Alq3-based materials, based on this fundamental observation.

  12. Antiproliferation effects of an androgen receptor triple-helix forming oligonucleotide on prostate cancer cells

    International Nuclear Information System (INIS)

    Zhang Yong; Chen Weizhen; Xie Yao; Gao Jinhui

    2005-01-01

    Objective: To provide experimental basis for antigene radiation therapy through exploring the effects of antigene strategy on androgen receptor (AR) expression and proliferation of prostate cancer cells. Methods: The triple-helix forming oligonucleotide (TFO) targeting 2447-2461nt of AR cDNA was designed and transfected LNCaP prostate cancer cells with liposome. 24-72 h after transfection, the cellular proliferation was detected by 3 H-thymidine (TdR) incorporation test, the expression of AR gene was examined by reverse transcription-polymerase chain reaction (RT-PCR) and expression of AR protein was performed by radioligand binding assay. The results of TFO were compared with antisense oligonucleotide (ASON). Results: At all time points, the AR expression levels in TFO group were markedly lower than that of ASON group (P<0.05). The inhibitory rate of TFO for cellular proliferation was significantly higher than that of ASON (P<0.05). Conclusion: The TFO was a potent inhibitor for AR expression and cell proliferation of LNCaP cells , and could be used in antigene radiotherapy. (authors)

  13. Effect of soil moisture content on the radiosensitivity of soil bacteria and fungi

    International Nuclear Information System (INIS)

    Massoud, M.A.; El-Nennah, M.E.; El-Kholi, A.F.; Abd-Elmonem, M.A.

    1982-01-01

    The purpose of this investigation was to study the effect of soil moisture on the radiosensitivity of soil bacteria and fungi. The percentages of survival of soil bacteria and fungi, after exposure to different doses of gamma radiation, were lower in the moistened soil samples than in the dry one, inspite of the observed encouragement of wetting the soil samples, before gamma radiation exposure, on the proliferation of soil micro-organisms. This effect was explained by the indirect action from the breakdown products of radiolysis of water rather than by the direct damage to the cell structure

  14. Effects of heat treatment on the radiosensitivity of Salmonellae

    International Nuclear Information System (INIS)

    Choi, E.H.; Yang, J.S.; Lee, S.R.

    1978-01-01

    When the food poisoning bacteria Salmonella enteritidis and S. typhimurium were treated with radiation (cobalt-60 γ-rays) and heat (10 minutes at 45 0 C or 50 0 C), their sterilizing effect was revealed differently depending on the order of treatments. Post-irradiation heating showed a synergistic effect whereas pre-irradiation heating revealed the opposite effect and the effects differed slightly with heating temperature. (author)

  15. Cytotoxicity of Auger effect and radiosensitization of iododeoxyuridine

    International Nuclear Information System (INIS)

    Shinohara, Kunio

    1989-01-01

    The cytotoxicity of Auger effect will have advantages for cancer treatment over x-rays in many points such as; (1) higher killing efficiency, (2) lower oxygen enhancement ratio, (3) no difference in the lethality under the temperature between +4degC and -196degC, (4) highly localized effect (mainly within 1.5-2.0 nm), and (5) less difference in the sensitivities of the cells in different stages of cell cycle. These advantages are those of high LET radiations. The use of Auger effect in cancer treatment has been studied in two ways: the use of radioisotopes of Auger emitters and the induction of Auger effect following to the photoelectric effect by external x-rays of proper energy. The latter method is called photon activation therapy by Fairchild et al. The experimental evidences for the induction of Auger effect were obtained with the use of radioprotectors in HeLa cells labeled with iododeoxyuridine irradiated with low energy x-rays. The cytotoxicity of Auger effect was characterized as that it is more difficult to be protected by cysteamine or DMSO and is protectable by DMSO but not protectable in part by cysteamine. The experimental data in HeLa cells labeled with iododeoxyuridine irradiated with synchrotron radiation were not in accord with the quantitative estimate by Fairchild et al. We corrected their equation and found that the contribution of Auger effect was small in the sensitization effect of iododeoxyuridine. It is concluded that the induction of Auger effect by the irradiation with monochromatic x-rays (via photoelectric effect) is not an effective method for cancer therapy. Rather the use of conventional sensitization effect of iododeoxyuridine is worth to be considered again in combination with other methods such as brachytherapy with a small source or hyperthermia. It should be noted that the new mode for the use of Auger effect in cancer therapy has been proposed recently. (author)

  16. Effect of radiosensitizer BSO on the incidence of micronuclei in cultured cells

    International Nuclear Information System (INIS)

    Jin Yizun; Cai Rongmei; Ding Li; Shen Zhifen; Xu Liming; Yang Jiakuan

    1992-01-01

    The effects of BSO, a potent radiosensitizing and chemical sensitizing chemical, on the incidence of micronuclei in four different cell lines have been studied using the cytokinesis-block (CB) method. The number of micronuclei in cultured human peripheral lymphocytes, Chinese hamster cells and human breast cancer cells were not affected by 0.1-2 mmol/L BSO treatment alone. However, significant increase in the incidence of micronuclei in these cells could be detected when BSO was used in combination with γ-irradiation. Linear relationship between the incidence of micronuclei and the radiation dose was observed

  17. Radiosensitivity of marrow stromal cells and the effect of some radioprotective agents

    International Nuclear Information System (INIS)

    Liu Shuhua

    1992-01-01

    The results showed that marrow stromal cells include fibroblasts, reticular cells, macrophages and adipocytes. The capability of the adherent layer derived from marrow cells of 2 mouse femurs to support hematopoietic stem cells was stronger than those of layers derived from 0.5 or 1 mouse femurs. The radiosensitivity of bone marrow stromal cells was lower than that of hematopoietic stem cells. The radioprotective effect of AET and PLP (polysaccharide of Lobaria Pulmonaria Hoffm) on the bone marrow stromal cells and their capability to support hematopoietic stem cells was clearly demonstrated

  18. Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells

    International Nuclear Information System (INIS)

    Sørensen, Brita Singers; Busk, Morten; Olthof, Nadine; Speel, Ernst-Jan; Horsman, Michael R.; Alsner, Jan; Overgaard, Jens

    2013-01-01

    Background and purpose: HPV associated Head and Neck Squamous Cell Carcinoma (HNSCC) represents a distinct subgroup of HNSCC characterized by a favorable prognosis and a distinct molecular biology. Previous data from the randomized DAHANCA 5 trial indicated that HPV positive tumors did not benefit from hypoxic modifications by Nimorazole during radiotherapy, whereas a significant benefit was observed in the HPV negative tumors. However, more studies have demonstrated equal frequencies of hypoxic tumors among HPV-positive and HPV-negative tumors. The aim of the present study was to determine radiosensitivity, the impact of hypoxia and the effect of Nimorazole in HPV positive and HPV negative cell lines. Materials and method: The used cell lines were: UDSCC2, UMSCC47 and UPCISCC90 (HPV positive) and FaDu DD , UTSCC33 and UTSCC5 (HPV negative). Cells were cultured under normoxic or hypoxic conditions, and gene expression levels of previously established hypoxia induced genes were assessed by qPCR. Cells were irradiated with various doses under normoxia, hypoxia or hypoxia +1 mM Nimorazole, and the clonogenic survival was determined. Results: The HPV positive and HPV negative cell lines exhibited similar patterns of upregulation of hypoxia induced genes in response to hypoxia. The HPV positive cell lines were up to 2.4 times more radiation sensitive than HPV negative cell lines. However, all HPV positive cells displayed the same response to hypoxia in radiosensitivity, with an OER in the range 2.3–2.9, and a sensitizer effect of Nimorazole of 1.13–1.29, similar to HPV negative cells. Conclusions: Although HPV positive cells had a markedly higher radiosensitivity compared to HPV negative cells, they displayed the same relative radioresistance under hypoxia and the same relative sensitizer effect of Nimorazole. The clinical observation that HPV positive patients do not seem to benefit from Nimorazole treatment is not due to inherent differences in hypoxia sensitivity

  19. The effect of BW12C on radiosensitivity and necrosis of murine tissues and tumours

    International Nuclear Information System (INIS)

    Stevens, G.; Hill, S.A.; Joiner, M.C.; Joiner, B.; Johns, H.; Williams, K.; Denekamp, J.

    1994-01-01

    BW12C is a drug that has the potential to induce normal tissue and tumour hypoxia by binding to haemoglobin, increasing its affinity for oxygen and thereby reducing oxygen availability to tissues. Initial results suggested that BW12C administration caused significant radioprotection of normal tissues and induced tumour necrosis, but variable results have been reported subsequently. This work was carried to extend the range of observations concerning the ability of BW12C to radioprotect normal tissues and tumours and to induce necrosis of tumours of the mouse. BW12C was administered as 70 mg/kg intravenous 15 min before irradiation of jejunum in CBA mice and of foot skin in WHT mice with single doses of 240 kVp X-rays while mice breathed gases of varying oxygen tensions. The radiosensitivities of these tissues were assessed by the crypt survival assay and the acute skin reaction, respectively. The radiosensitivity of CaNT tumours to single fraction irradiation was assessed by the regrowth delay assay following administration of single or multiple does of BW12C at varying times to air-breathing CBA mice. The radiation response was compared to the radiosensitivity of clamped tumours. The effect of BW12C alone on tumours was assessed by regrowth delay and histological examination for necrosis. Single or multiple doses of BW12C did not influence the radiosensitivity of CaNT tumours, although marked radioprotection could be induced by clamping the tumours during irradiation. Multiple doses of BW12C alone led to a slight increase in necrosis of the CaNT tumour but did not alter its growth rate. BW12C alone did not induce necrosis of the murine JT lymphoma. The results shown that BW12C did not have a significant effect as a radioprotective or necrotizing agent in these experimental systems. The reported differences in the radiomodifying effects of BW12C are probably tissue-specific and relate to complex biochemical and physiological interactions. 18 refs., 4 figs

  20. Metformin radiosensitization effect of low and high linear energy transfer radiation in HCC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ho; Jung, Won Gyun [Division of Heavy Ion Clinical Research, Korea University, Seoul (Korea, Republic of); Kim, Mi Sook; Cho, Chul Koo; Jeong, Youn Kyoung [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-04-15

    Metformin (1,1-dimethylbiguanide hydrochloride), the most widely used treatment for type 2 diabetes, provides a good tolerability profile and low cost and has recently sparked keen interest as a potential anticancer agent. Recent evidence has suggested Metformin provides a synergistic benefit with chemotherapy or radiotherapy against certain cancers in several clinical cohort studies.Treatment response rates are higher in patients treated with metformin in cohort studies of breast cancer treated with neoadjuvant chemotherapy in head and neck cancer treated with radiation and in esophageal cancer treated with chemoradiotherapy. As the sensitizing effect of Metformin in HCC has been characterized in vitro and in vivo, we investigated the radio-sensitizing effect of Metformin in HCC cells in combination with γ-ray (low LET) and neutron (high LET) radiation. The radiosensitizing effect of Metformin was much higher in neutron-irradiated than in γ -irradiated cell lines. Fortunately, Metformin had little effect on normal tissues. Our studies revealed no interaction between Metformin and radiation in normal hepatocytes. High LET radiation,including neutron and carbon ion, would produce more complicated and different cellular effects; indeed, the molecular biological mechanism of high LET radiation remains a topic of investigation.

  1. Metformin radiosensitization effect of low and high linear energy transfer radiation in HCC

    International Nuclear Information System (INIS)

    Kim, Eun Ho; Jung, Won Gyun; Kim, Mi Sook; Cho, Chul Koo; Jeong, Youn Kyoung

    2014-01-01

    Metformin (1,1-dimethylbiguanide hydrochloride), the most widely used treatment for type 2 diabetes, provides a good tolerability profile and low cost and has recently sparked keen interest as a potential anticancer agent. Recent evidence has suggested Metformin provides a synergistic benefit with chemotherapy or radiotherapy against certain cancers in several clinical cohort studies.Treatment response rates are higher in patients treated with metformin in cohort studies of breast cancer treated with neoadjuvant chemotherapy in head and neck cancer treated with radiation and in esophageal cancer treated with chemoradiotherapy. As the sensitizing effect of Metformin in HCC has been characterized in vitro and in vivo, we investigated the radio-sensitizing effect of Metformin in HCC cells in combination with γ-ray (low LET) and neutron (high LET) radiation. The radiosensitizing effect of Metformin was much higher in neutron-irradiated than in γ -irradiated cell lines. Fortunately, Metformin had little effect on normal tissues. Our studies revealed no interaction between Metformin and radiation in normal hepatocytes. High LET radiation,including neutron and carbon ion, would produce more complicated and different cellular effects; indeed, the molecular biological mechanism of high LET radiation remains a topic of investigation

  2. Effect of microenviroment hypoxia on glioma cells radiosensitivity through cancer stem cell pathway

    International Nuclear Information System (INIS)

    Tong Liumei; Feng Libo; Lu Xueguan; Chen Liesong; Guo Xinwei; Tian Ye

    2010-01-01

    Objective: To investigate the effect of microenviroment hypoxia on glioma cells radiosensitivity through cancer stem pathway, and to explore the related mechanism. Methods: Glioma cell lines SHG44 and U251 were cultured in normoxia (20% O 2 ) or continuous hypoxia (1% O 2 ) for 12 and 24 h. The fraction of glioma cells with positive expression of CD133 was assayed by flow cytometry. The radiosensitivity of glioma cells was determined by clonogenic cell assay. Western blotting was used to investigate the expressions of HIF-1 α and its downstream gene Notch 1. Results: The fraction of glioma cells with positive expression of CD133 was higher after hypoxic culture for 12 and 24 h than that of the corresponding cells cultured in normoxia. Compared to the cells cultured in normoxia, SF 2 (survival fraction at 2 Gy) were enhanced significantly in SHG44 and U251 cells cultured in hypoxia for 12 and 24 h. The OER (oxygen-enhancement ratio) of SHG44 cells in hypoxia for 12 and 24 h was 1.54 and 1.38, respectively. The OER of U251 cells was 1.44 and 1.23, respectively. The radiosensitivity of these two cell line was decreased in hypoxia. The protein expressions of HIF-1 α and Notch 1 genes were elevated more significantly for cells cultured in hypoxia for 12 and 24 h than for those in normoxia. Conclusions: Microenviroment hypoxia could increase the radioresistance of glioma cells through enrichment of cancer stem cells, and HIF-1 α-Notch 1 signal pathway may play an important role in this process. (authors)

  3. Radiosensitization by SAHA in Experimental Colorectal Carcinoma Models-In Vivo Effects and Relevance of Histone Acetylation Status

    International Nuclear Information System (INIS)

    Folkvord, Sigurd; Ree, Anne Hansen; Furre, Torbjorn; Halvorsen, Thomas; Flatmark, Kjersti

    2009-01-01

    Purpose: Histone deacetylase inhibitors are being evaluated as antitumor agents in ongoing clinical trials, and promising preclinical results, combined with favorable toxicity profiles, have rendered the drugs as interesting candidates for combination with other treatment modalities, such as radiotherapy. The aim of the present study was to evaluate the radiosensitizing properties of suberoylanilide hydroxamic acid (SAHA) and the possible requirement of histone hyperacetylation at radiation exposure. Methods and materials: Radiosensitization by SAHA was assessed in a colorectal carcinoma cell line and in two colorectal xenograft models by analysis of clonogenic survival and tumor growth delay, respectively. Histone acetylation status at radiation exposure was evaluated by Western blot. Results: In vitro, radiosensitization was demonstrated when cells were preincubated with SAHA, and, in the xenografts, tumor growth was delayed when the mice were treated with fractionated radiation combined with daily SAHA injections compared with radiation alone. Surprisingly, the SAHA-dependent growth delay was still present when radiation was delivered at restored baseline acetylation levels compared with maximal histone hyperacetylation. Conclusion: SAHA was an effective radiosensitizer in experimental colorectal carcinoma models, suggesting that histone deacetylase inhibition might constitute a valuable supplement to current multimodal treatment strategies in rectal cancer. The presence of histone hyperacetylation at radiation was not required to obtain an increased radiation response, questioning the validity of using histone hyperacetylation as a molecular marker for radiosensitivity.

  4. Radiosensitivity study and radiation effects on morphology characterization of grey oyster mushroom Pleurotus sajor-caju

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Rosnani Abdul; Awang, Mat Rasol; Mohamad, Azhar; Mutaat, Hassan Hamdani; Maskom, Mohd Meswan [Bioprocess Group, Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi 43600, Selangor (Malaysia); Daud, Fauzi; Senafi, Sahidan [School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia)

    2014-09-03

    Radiosensitive dosage and morphology characterization of irradiated grey oyster mushroom Pleurotus sajor-caju by gamma rays was investigated due to effects of irradiation. In order to establish the effect, mycelium of P. sajor-caju was irradiated by gamma rays at dose 0.1 to 8.0 kGy with dose rate 0.227 Gy sec{sup −1}. The irradiation of mycelia was carried out at the radiation facility in Malaysian Nuclear Agency. The radiosensitivity study was performed by evaluating the percentage of survival irradiated mycelia. The lethal dose of the mycelium P. sajor-caju was determined at 4.0 kGy and LD{sub 50} to be equal at 2.2 kGy. The radiation effects on morphology were evaluated based on growth rate of irradiated mycelia, mycelia types, colonization period on substrate, morphology of fruit bodies and yields. The results shown growth rate of irradiated mycelium was slightly lower than the control and decreased as the dose increased. Irradiation was found can induced the primordia formation on PDA and the BE of irradiated seed is higher than to control. The irradiation is proven to be useful for generating new varieties of mushroom with commercial value to the industry.

  5. Effect of haemopoietic system activation on radiosensitivity of animals

    International Nuclear Information System (INIS)

    Bitny-Szlachto, S.

    1985-01-01

    The aim of these investigations was to study the influence of activation of erythropoiesis by carbon monoxide, blood letting and blood transfuzing, hypobaric hypoxia, fenylohydrazine induced hemolysis, pertussis vaccine and also sublethal irradiation and later polycythemia on the blood-forming system's ability to postirradiation regeneration after lethal and sublethal X ray irradiation on the whole body of mouse. Results were positive except pertusis vaccine which caused considerable decrease in survival of irradiated mice. Ionizing radiation and fenylohydrazine were the most effective. 21 refs.,5 tabs. (author)

  6. Effect of intrauterine position on the radiosensitivity of rat embryos

    International Nuclear Information System (INIS)

    Ward, W.F.; Aceto, H. Jr.; Karp, C.H.

    1977-01-01

    Rats were exposed to gamma rays or helium ions on one of days 4 to 9 of gestation. Embryonic survival was recorded as a function of intrauterine position at autopsy on day 20 of gestation. Embryos located at the ovarian and cervical ends of the uterus experienced higher rates of mortality than did their littermates located at the middle of the uterine horn. This effect was observed in litters exposed to both radiation modalities on all days studied. The influence of intrauterine position on embryonic survival was directly proportional to radiation dose and to the number of fetuses occupying the uterus horn. Under the least advantageous conditions (i.e., a crowded uterine horn exposed to a moderately high radiation dose), the cervical embryo's probability of survival was less than half that of the litter as a whole. A disproportionately high rate of embryonic mortality at the cervical position was also observed in litters irradiated under hypoxic conditions, suggesting that the non-random distribution of radiation effect was not the result of variations in oxygen concentration within the uterus. In contrast, there was no indication that intrauterine position influenced the distribution of gross morphologic abnormalities in irradiated litters

  7. Effect of different diets on development and Radiosensitivity of Red Flour Beetle, Tribolium castaneum (Herbst)

    International Nuclear Information System (INIS)

    Khattak, S.U; Mazhar, A.; Shahid, M.

    2000-01-01

    Studies on the effect of different diets on the development and radio-sensitivity of red flour beetle, Tribolium castaneum (Herbst) were conducted under controlled laboratory conditions. The results revealed that development, losses and sensitivity varied significantly (P< 0.05) with respect to diet. Developmental period was highest (43.5 days) in wheat starch and lowest (22 days) in wheat flour + 5% yeast (Standard diet). Significantly higher progeny (948) was produced in barley and lower (105.3) in wheat starch. Maximum adult weight (37.35 mg/20 adults) was recorded in sorghum and minimum (33.4) in starch. Percent weight loss was highest (21.25 ) in barley and lowest (8.0) in starch. Barley flour was found as the best diet. Radiosensitivity in relation to diet indicated that adults reared on wheat starch were most sensitive. Comparing the dose response, insect mortality was dose and diet dependent. However, 2.5 kGy proved quite lethal. No significant effect of radiation was observed on moisture and protein contents of the diets except reducing sugars. (author)

  8. Radiosensitizing effect of PSMC5, a 19S proteasome ATPase, in H460 lung cancer cells

    International Nuclear Information System (INIS)

    Yim, Ji-Hye; Yun, Hong Shik; Lee, Su-Jae; Baek, Jeong-Hwa; Lee, Chang-Woo; Song, Ji-Young; Um, Hong-Duck; Park, Jong Kuk; Kim, Jae-Sung; Park, In-Chul; Hwang, Sang-Gu

    2016-01-01

    The function of PSMC5 (proteasome 26S subunit, ATPase 5) in tumors, particularly with respect to cancer radioresistance, is not known. Here, we identified PSMC5 as a novel radiosensitivity biomarker, demonstrating that radiosensitive H460 cells were converted to a radioresistance phenotype by PSMC5 depletion. Exposure of H460 cells to radiation induced a marked accumulation of cell death-promoting reactive oxygen species, but this effect was blocked in radiation-treated H460 PSMC5-knockdown cells through downregulation of the p53-p21 pathway. Interestingly, PSMC5 depletion in H460 cells enhanced both AKT activation and MDM2 transcription, thereby promoting the degradation of p53 and p21 proteins. Furthermore, specific inhibition of AKT with triciribine or knockdown of MDM2 with small interfering RNA largely restored p21 expression in PSMC5-knockdown H460 cells. Our data suggest that PSMC5 facilitates the damaging effects of radiation in radiation-responsive H460 cancer cells and therefore may serve as a prognostic indicator for radiotherapy and molecular targeted therapy in lung cancer patients. - Highlights: • PSMC5 is a radiation-sensitive biomarker in H460 cells. • PSMC5 depletion inhibits radiation-induced apoptosis in H460 cells. • PSMC5 knockdown blocks ROS generation through inhibition of the p53-p21 pathway. • PSMC5 knockdown enhances p21 degradation via AKT-dependent MDM2 stabilization.

  9. Effect of BRCA1 on radiosensitivity of different lung cancer cells

    International Nuclear Information System (INIS)

    Zhang Huiwen; Wang Miao; Wang Yansu; Ren Hang; Xu Jiaying; Jiao Yang; Fan Saijun; Meng Qinghui

    2011-01-01

    Objective: To investigate the effects BRCA1 on sensitivity of lung cancer cells to γ-irradiation. Methods: A mammalian expression pcDNA3 vectors encoding a full-length of BRCA1 cDNA and BRCA1 siRNA were transfected into lung cancer cells. Western blot, MTT and clonogenic assays were used to determine BRCA1 protein expression and cell survival following γ-irradiation respectively. Results: There is a close relationship between BRCA1 level and radiosensitivity in different lung cancer cell lines. Compared with the control cells transfected with the 'empty' pcDNA3 vector and parental cells, the more survival of cells transfected with BRCA1 was observed after irradiation. The BRCA1-caused radioresistance were observed in both A549 and HTB-58 lung cancer lines. However, NIH-H2170 cells transfected with BRCA1 siRNA became more sensitive to γ-irradiation. Conclusion: This study, for the first time, demonstrates that the alteration of BRCA1 expression significantly affects radiosensitivity of lung cancer, indicating that BRCA1 may be an important mediator in radiotherapy of lung cancer cells. (authors)

  10. In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells.

    Science.gov (United States)

    Mowat, P; Mignot, A; Rima, W; Lux, F; Tillement, O; Roulin, C; Dutreix, M; Bechet, D; Huger, S; Humbert, L; Barberi-Heyob, M; Aloy, M T; Armandy, E; Rodriguez-Lafrasse, C; Le Duc, G; Roux, S; Perriat, P

    2011-09-01

    Since radiotherapy is widely used in cancer treatment, it is essential to develop strategies which lower the irradiation burden while increasing efficacy and become efficient even in radio resistant tumors. Our new strategy is relying on the development of solid hybrid nanoparticles based on rare-earth such as gadolinium. In this paper, we then evidenced that gadolinium-based particles can be designed to enter efficiently into the human glioblastoma cell line U87 in quantities that can be tuned by modifying the incubation conditions. These sub-5 nm particles consist in a core of gadolinium oxide, a shell of polysiloxane and are functionalized by diethylenetriaminepentaacetic acid (DTPA). Although photoelectric effect is maximal in the [10-100 keV] range, such particles were found to possess efficient in-vitro radiosensitizing properties at an energy of 660 keV by using the "single-cell gel electrophoresis comet assay," an assay that measures the number of DNA damage that occurs during irradiation. Even more interesting, the particles have been evidenced by MTT assays to be also efficient radiosensitizers at an energy of 6 MeV for doses comprised between 2 and 8 Gy. The properties of the gadolinium-based particles give promising opening to a particle-assisted radio-therapy by using irradiation systems already installed in the majority of hospitals.

  11. Effect of sanguinarine on the growth and radiosensitivity of human ovarian cancer cells

    International Nuclear Information System (INIS)

    Xu Jiaying; Ji Junmin; Jiao Yang; Wu Li; Fan Sanjun

    2012-01-01

    Objective: To study the effect of sanguinarine on the growth and radiosensitivity of ovarian cancer SK-OV-3 cells. Methods: Cell growth was determined by MTT and clonogenic assay. Cell cycle analysis was performed by flow cytometry assay. The cell apoptosis was analyzed by Annexin V/PI assay. Results: Sanguinarine inhibited SK-OV-3 cell growth in a dose-and time-dependent fashion and its IC 50 values were 3.02 and 1.11 μmol/L at 24 and 48 h, respectively. Sanguinarine also significantly triggered a sub-G 1 peak, an indicator of apoptosis,and caused a G 0 /G 1 arrest. Furthermore, the cell apoptosis induced by X-irradiation was significantly increased at 6 Gy when the cells were pre-treated with sanguinarine, in which the early apoptotic population increased from 10.28% to 43.28% (t=19.41, P<0.01) and the late apoptotic population increased from 20.26% to 30.80% (t=8.78, P<0.01). The multi-target click model was used to fit survival curves and the SER of sanguinarine treatment approached to 1.625 at the dose of D 0 . Conclusions: Sanguinarine could inhibit SK-OV-3 cell growth by inducing apoptosis and cell cycle arrest and enhance cell radiosensitivity at low doses. (authors)

  12. The combined effect of interferon synthesis inductors, radiosensitizing and antitumoral agents on solid tumors

    International Nuclear Information System (INIS)

    Leonidze, D.L.

    1987-01-01

    In experiments with mice bearing solid sarcoma 37 a study was conducted on the combined effect of radiation and inductors of endogenous inerferon synthesis (IEIS), together with hyperthermia or together with an alkylating and carbomoilating agent, dimethinur. The effect was estimated by the tumor growth coefficient and by the number of animals with the regressed tumors. Poly I; polyC was not shiown to influence the efficiency of hyperthermia combined with radiation with radiation; dextransulphate and tiloron increased the radiosensitizing effect of hyperthermia. Dimethinur aggravated the effect of radiation, but with IEIS used together with dimethynur and radiation, the response of the tumor increased insignificantly as compared to the effect of IEIS together with radiation

  13. Radiosensitizers: rationale and potential

    International Nuclear Information System (INIS)

    Brown, J.M.

    1981-01-01

    This paper briefly reviews agents that are capable of sensitizing hypoxic cells to radiation and chemotherapeutic agents. The first part is a synopsis of the development of hypoxic radiosensitizers, which concludes that misonidazole can be effective against human tumors. Unfortunately, neurotoxicity limits its effectiveness in humans because the dose that can be given in conjunction with daily fractionated radiation is five to ten times lower than is required for full radiosensitization of the hypoxic cells. The second part covers our recent efforts to develop a drug that does not produce such limiting neurotoxicity. The primary rationale of our program was to synthesize a drug with a short plasma half-life that was too hydrophilic to cross the blood-brain barrier but was able to penetrate tumors and radiosensitize hypoxic cells. From this program, a new drug, SR-2508, has been found that is as efficient as misonidazole in its radiosensitizing ability, but is four to ten times less toxic. Finally, the potential of radiosensitizers not only as agents that can sensitize tumor cells to radiation, but also as agents that can specifically sensitize tumors to chemotherapeutic agents, is discussed. In addition, these drugs may be potential cytotoxic agents that produce toxicity only in solid tumors

  14. Increased catalase activity by all-trans retinoic acid and its effect on radiosensitivity in rat glioma cells

    International Nuclear Information System (INIS)

    Jin, Hua; Jeon, Ha Yeun; Park, Woo Yoon; Kim, Won Dong; Ahn, Hee Yul; Yu, Jae Ran

    2005-01-01

    It has been reported that all-trans retinoic acid (ATRA) can inhibit glioma growing in vitro. However, clinical trials with ATRA alone in gliomas revealed modest results. ATRA has been shown to increase radiosensitivity in other tumor types, so combining radiation and ATRA would be one of alternatives to increase therapeutic efficacy in malignant gliomas. Thus, we intended to know the role of catalase, which is induced by ATRA, for radiosensitivity. If radiation-reduced reactive oxygen species (ROS) is removed by catalase, the effect of radiation will be reduced. A rat glioma cell line (36B10) was used for this study. The change of catalase activity and radiosensitivity by ATRA, with or without 3-amino-1, 2, 4-triazole (ATZ), a chemical inhibitor of catalase were measured. Catalase activity was measured by the decomposition of H 2 O 2 spectrophotometrically. Radiosensitivity was measured with clonogenic assay. Also ROS was measured using a 2, 7-dichlorofluores-cein diacetate spectrophotometrically. When 36B10 cells were exposed to 10, 25 and 50 μ M of ATRA for 48 h, the expression of catalase activity were increased with increasing concentration and incubation time of ATRA. Catalase activity was decreased with increasing the concentration of AT (1, 10 mM) dose-dependently. ROS was increased with ATRA and it was augmented with the combination of ATRA and radiation. ATZ decreased ROS production and increased cell survival in combination of ATRA and radiation despite the reduction of catalase. The increase of ROS is one of the reasons for the increased radiosensitivity in combination with ATRA. The catalase that is induced by ATRA doesn't decrease ROS production and radiosensitivity

  15. Evaluation of combination effects of 2-methoxyoestradiol and methoxyamine on IUdR-induced radiosensitization in glioma spheroids

    International Nuclear Information System (INIS)

    Neshasteh-Riz, A.; Babaloui, S.; Khoei, S.

    2010-01-01

    Glioblastoma is the most common and most malignant cancer of central nervous system. Targeted radiotherapy is an effective method toward its treatment. Iododeoxyuridine (IUdR) is a halogenated thymidine analogue known to be effective as a radiosensitizer in human cancer therapy. In this study we have evaluated the combination effects of 2-Methoxyoestradiol, an inhibitor of hypoxia inducible factor 1α (HIF-1α) and Methoxyamine, an inhibitor of base excision repair pathway on radiosensitization of Iododeoxyuridine in glioblastoma spheroid culture. Materials and Methods: The cytotoxic damages of DNA in U87MG cell line were compared using colony formation assay. Experiments were performed in large spheroids with a diameter of approximately 350μm. Results: Evaluation of the effects of Iododeoxyuridine with 2ME2 and MX pretreatment on spheroid cultured cell followed by ionizing irradiation showed more enhancemented (p≤0.001) Iododeoxyuridine induced-radiosensitization. These results introduced a key role for 2ME2 in Iododeoxyuridine related studies. Conclusion: Pretreatment of tumor cells with Iododeoxyuridine, MX and 2ME2 before Irradiation enhances tumor radiosensitization and may improve therapeutic index for Iododeoxyuridine and 2ME2.

  16. Effect of primarily cultured human lung cancer-associated fibroblasts on radiosensitivity of lung cancer cells

    International Nuclear Information System (INIS)

    Ji Xiaoqin; Ji Jiang; Chen Yongbing; Shan Fang; Lu Xueguan

    2014-01-01

    Objective: To investigate the effect of human lung cancer-associated fibroblasts (CAF) on the radiosensitivity of lung cancer cells when CAF is placed in direct contact co-culture with lung cancer cells. Methods: Human lung CAF was obtained from fresh human lung adenocarcinoma tissue specimens by primary culture and subculture and was then identified by immunofluorescence staining. The CAF was placed in direct contact co-culture with lung cancer A 549 and H 1299 cells, and the effects of CAF on the radiosensitivity of A 549 and H 1299 cells were evaluated by colony-forming assay. Results: The human lung CAF obtained by adherent culture could stably grow and proliferate, and it had specific expression of α-smooth muscle actin, vimentin, and fibroblast activation protein,but without expression of cytokeratin-18. The plating efficiency (PE, %) of A 549 cells at 0 Gy irradiation was (20.0 ± 3.9)% when cultured alone versus (32.3 ± 5.5)% when co-cultured with CAF (t=3.16, P<0.05), and the PE of H 1299 cells at 0 Gy irradiation was (20.6 ± 3.1)% when cultured alone versus (35.2 ± 2.3)% when co-cultured with CAF (t=6.55, P<0.05). The cell survival rate at 2 Gy irradiation (SF 2 ) of A 549 cells was 0.727 ±0.061 when cultured alone versus 0.782 ± 0.089 when co-cultured with CAF (t=0.88, P>0.05), and the SF 2 of H 1299 cells was 0.692 ±0.065 when cultured alone versus 0.782 ± 0.037 when co-cultured with CAF (t=2.08, P>0.05). The protection enhancement ratios of human lung CAF for A 549 cells and H 1299 cells were 1.29 and 1.25, respectively. Conclusions: Human lung CAF reduces the radiosensitivity of lung cancer cells when placed in direct contact co-culture with them, and the radioprotective effect may be attributed to CAF promoting the proliferation of lung cancer cells. (authors)

  17. The study on the effect of artesunate on the radio-sensitivity of human cervical cancer

    International Nuclear Information System (INIS)

    Geng Chong; Cao Jianping; Ni Qianying

    2011-01-01

    To investigate the effect of artesunate on radio-sensitivity of human cervical cancer cells in vitro. The human cervical cancer cells HeLa and Siha were used as the experimental cells. MTT assay was used to determine the most appropriate drug concentration in the subsequent experiment, and the effect of human cervical cancer cells treated with artesunate and irradiation of 60 Co γ-rays was studied by using conventional chromosomal aberration analysis and cytokinesis block method (CB method). The results show that when the concentration of artesunate in this experiment was 2.0 μmol/L for HeLa cell and 4.0 μmol/L for Siha cell respectively, the chromosome aberration, micronuclei cell and micronuclei rates of HeLa cells treated with artesunate were more serious than that of the only irradiation, but there is almost no change with Siha cells. (authors)

  18. Effects of hormone treatment on chromosomal radiosensitivity of somatic and germ cells of Snell's dwarf mice

    International Nuclear Information System (INIS)

    Buul, P.P.W. van; Buul-Offers, S.C. van

    1988-01-01

    The X-ray induction of micronuclei and structural chromosomal aberrations was studied in bone-marrow cells of normal and dwarf mice in combination with thyroxin and/or prolactin treatment or otherwise. Hormone treatment clearly increased micronuclei induction but not chromosome breakage, suggesting that indirect effects were involved. Since no clear differences in the timing of the final stage of erythropoiesis could be found, it is likely that the indirect effects are mediated via the formation-differentiation kinetics of erythroblasts. The induction of reciprocal translocations by X-rays in stem cell spermatogonia of dwarf mice was lower than in normals and treatment with prolactin, growth hormone and/or thyroxin, did not influence the chromosomal radiosensitivity of spermatogonial cells. 19 refs.; 1 figure; 4 tabs

  19. Hematoporphyrin derivatives potentiate the radiosensitizing effects of 2-deoxy-D-glucose in cancer cells

    International Nuclear Information System (INIS)

    Dwarakanath, B.S.; Adhikari, J.S.; Jain, Viney

    1999-01-01

    Purpose: Two deoxy-D-glucose (2-DG), an inhibitor of glucose transport and glycolysis, has been shown to differentially inhibit the repair of radiation damage in cancer cells by reducing the flow of metabolic energy. Since hematoporphyrin derivatives (Hpd) inhibit certain enzymes of the respiratory metabolism, resulting in an increase in the glucose usage and glycolysis, Hpd could possibly enhance the energy-linked radiosensitizing effects of 2-DG in cancer cells. The purpose of the present work was to verify this suggestion. Methods and Materials: Two human tumor cell lines (cerebral glioma, BMG-1 and squamous cell carcinoma, 4197) and a murine tumor cell line (Ehrlich ascites tumor [EAT], F-15) in vitro were investigated. A commercially available preparation of Hpd, Photosan-3 (PS-3) was used in the present studies. Cells incubated with 0-10 μg/ml PS-3 for 0-24 h before irradiation were exposed to 2.5 Gy of Co-60 gamma rays and maintained under liquid holding conditions for 1-4 h to facilitate repair. 2-DG (0-5 mM) added at the time of irradiation was present during the liquid holding. Radiation-induced cytogenetic damage (micronuclei formation) and cell death (macrocolony assay) were analyzed as parameters of radiation response. Effects of these radiosensitizers on glucose usage and glycolysis were also studied by measuring the glucose consumption and lactate production using enzymatic assays. Results: The glucose consumption and lactate production of BMG-1 cells (0.83 and 1.43 pmole/cell/h) were twofold higher than in the 4197 cells (0.38 and 0.63 pmole/cell/h). Presence of PS-3 (10 μg/ml) enhanced the rate of glycolysis (glucose consumption and lactate production) in these cells by 35% to 65%, which was reduced by 20% to 40% in the presence of 5 mM 2-DG. In exponentially growing BMG-1 and EAT cells, presence of 2-DG (5 mM; equimolar with glucose) for 4 hours after irradiation increased the radiation-induced micronuclei formation and cell death by nearly 40

  20. [Antiarrhythmic effect of oligonucleotides accompanied by activation of HSP70 protein in the heart of rats].

    Science.gov (United States)

    Kruglov, S V; Terekhina, O L; Smirnova, E A; Kashaeva, O V; Belkina, L M

    2015-01-01

    The mechanisms of the protective effect of oligonucleotides (OGN) during pathological processes are poorlyunderstood. The goal of this work was to study the effect of OGN on arrhythmias induced by myocardial ischemia and reperfusion, and the HSP70 level in the heart. As a source of OGN was used the drug "Derinat" ("Technomedservis", Russia). In male Wistar rats were pre-treated the drug for 7 days (i/m, 7.5 mg/kg).The intensity of the arrhythmias was assessed by ECG during 10 min occlusion of the left coronary artery and subsequent 5 min of reperfusion. Protein HSP70 determined in the left ventricle of the heart by Western-blot analysis. During ischemia, this drug reduced duration of extrasystolia by 13 times and the incidence of ventricular tachycardia by 1.5 times. During reperfusion the drug reduced the incidence of ventricular fibrillation, a more than 2-fold, as compared with the control (respectively 23% vs 56%) and by 5 times its duration (8,4 ± 2,3 48,1 ± sec vs 18 7 sec). "Derinat" increased the HSP70 level in the heart by 65% compared with control. These data support the fact that the activation of HSP70 synthesis, induced by OGN is one of the mechanisms that increases the heart resistance to the ischemic and reperfusion damages.

  1. Inhibition effects of {sup 125}I-triplex forming oligonucleotide to hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhongwei, Lv; Min, Hou; Haidong, Cai; Xueyu, Yuan; Yuehua, Yang; Shidong, Yuan [Department of Nuclear Medicine, 10th People' s Hospital, Tongji Univ., Shanghai (China); Junmin, He

    2007-08-15

    Objective: Triplex forming oligonucleotide (TFO) has been reported as a new antigene strategy. The purpose of this study was to observe the inhibition effects of {sup 125}I-TFO on hepatoma cells and to investigate the possibility of using {sup 125}I-TFO as an antigene radiotherapy technique for hepatocellular carcinoma (HCC) related to HBV. Methods: TFO complementary to the initiator of S gene of HBV was synthesized and labeled with {sup 125}I. HepG2.2.15 cells, in which HBV genome was integrated, were incubated with {sup 125}I-TFO, TFO and {sup 125}I respectively. After incubation, hepatitis B e antigen (HBeAg) and hepatitis B surface antigen (HBsAg) of each group were assayed with ELISA and the survival rate of cells in each group was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide (MTT) reduction assay. Results: {sup 125}I-TFO showed a high stability with a radiolabeling rate of >93%. The radiochemical purity of labeled compound was 90.8%, 81.1% and 73.2% respectively after 12, 48 and 72 h at 37 degree C. The peak inhibition effect of {sup 125}I-TFO on synthesizing HBsAg and HBeAg by HepG2.2.15 cells were found at 48 h after transfection, with significantly the highest inhibition rate of 45.2% for HBsAg and 74.5% for HBeAg expression among the three groups(P<0.01 ). As the transfection time prolonged its inhibition effects were stronger. Conclusion: {sup 125}I-TFO may inhibit the antigen expression of HBV and the growth of hepatocarcinoma cells, thus it may provide a new approach to develop gene-based radiotherapeutic pharmaceuticals for anti-HBV and HCC. (authors)

  2. Effective intracellular delivery of oligonucleotides in order to make sense of antisense

    NARCIS (Netherlands)

    Shi, FX; Hoekstra, D

    2004-01-01

    For more than two decades, antisense oligonucleotides (ODNs) have been used to modulate gene expression for the purpose of applications in cell biology and for development of novel sophisticated medical therapeutics. Conceptually, the antisense approach represents an elegant strategy, involving the

  3. Design and analysis of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy

    NARCIS (Netherlands)

    Gonzalez-Barriga, A.; Mulders, S.A.M.; Giessen, J. van der; Hooijer, J.D.; Bijl, S.; Kessel, I.D.G. van; Beers, J. van; Deutekom, J.C. van; Fransen, J.A.M.; Wieringa, B.; Wansink, D.G.

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a

  4. Inhibition effects of 125I-triplex forming oligonucleotide to hepatoma cells

    International Nuclear Information System (INIS)

    Lv Zhongwei; Hou Min; Cai Haidong; Yuan Xueyu; Yang Yuehua; Yuan Shidong; He Junmin

    2007-01-01

    Objective: Triplex forming oligonucleotide (TFO) has been reported as a new antigene strategy. The purpose of this study was to observe the inhibition effects of 125 I-TFO on hepatoma cells and to investigate the possibility of using 125 I-TFO as an antigene radiotherapy technique for hepatocellular carcinoma (HCC) related to HBV. Methods: TFO complementary to the initiator of S gene of HBV was synthesized and labeled with 125 I. HepG2.2.15 cells, in which HBV genome was integrated, were incubated with 125 I-TFO, TFO and 125 I respectively. After incubation, hepatitis B e antigen (HBeAg) and hepatitis B surface antigen (HBsAg) of each group were assayed with ELISA and the survival rate of cells in each group was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide (MTT) reduction assay. Results: 125 I-TFO showed a high stability with a radiolabeling rate of >93%. The radiochemical purity of labeled compound was 90.8%, 81.1% and 73.2% respectively after 12, 48 and 72 h at 37 degree C. The peak inhibition effect of 125 I-TFO on synthesizing HBsAg and HBeAg by HepG2.2.15 cells were found at 48 h after transfection, with significantly the highest inhibition rate of 45.2% for HBsAg and 74.5% for HBeAg expression among the three groups(P 125 I-TFO may inhibit the antigen expression of HBV and the growth of hepatocarcinoma cells, thus it may provide a new approach to develop gene-based radiotherapeutic pharmaceuticals for anti-HBV and HCC. (authors)

  5. Assessment of individual radiosensitivity in human lymphocytes of cancer patients and its correlation with adverse side effects to radiation therapy

    CERN Document Server

    Di Giorgio, M; Busto, E; Mairal, L; Menendez, P; Roth, B; Sardi, M; Taja, M R; Vallerga, M B

    2003-01-01

    Background and purpose: Individual radiosensitivity is an inherent characteristic, associated with an increased reaction to ionizing radiation on the human body. Biological endpoints such as clonogenic survival, chromosome aberration formation and repair capacity of radiation-induced damage have been applied to evaluate individual radiosensitivity in vitro. 5%-7% of cancer patients develop adverse side effects to radiation therapy in normal tissues within the treatment field, which are referred as 'clinical radiation reactions' and include acute effects, late effects and cancer induction. It has been hypothesized that the occurrence and severity of these reactions are mainly influenced by genetic susceptibility to radiation. Additionally, the nature of the genetic disorders associated with hypersensitivity to radiotherapy suggests that DNA repair mechanisms are involved. Consequently, the characterization of DNA repair in lymphocytes through cytokinesis blocked micronucleus (MN) and alkaline single-cell micro...

  6. Radiosensitization in esophageal squamous cell carcinoma. Effect of polo-like kinase 1 inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jenny Ling-Yu [National Taiwan University, Institute of Biomedical Engineering, College of Medicine and College of Engineering, Taipei (China); National Taiwan University Hospital Hsin-Chu Branch, Department of Radiation Oncology, Hsin-Chu (China); National Taiwan University Hospital and National Taiwan University Cancer Center, Department of Oncology, Taipei (China); Chen, Jo-Pai [National Taiwan University Hospital and National Taiwan University Cancer Center, Department of Oncology, Taipei (China); National Taiwan University Hospital Yun-Lin Branch, Department of Oncology, Yun-Lin (China); Huang, Yu-Sen [National Taiwan University, Institute of Biomedical Engineering, College of Medicine and College of Engineering, Taipei (China); National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); National Taiwan University Hospital Yun-Lin Branch, Department of Medical Imaging, Yun-Lin (China); Tsai, Yuan-Chun; Tsai, Ming-Hsien; Jaw, Fu-Shan [National Taiwan University, Institute of Biomedical Engineering, College of Medicine and College of Engineering, Taipei (China); Cheng, Jason Chia-Hsien; Kuo, Sung-Hsin [National Taiwan University Hospital and National Taiwan University Cancer Center, Department of Oncology, Taipei (China); National Taiwan University, Graduate Institute of Oncology, Taipei (China); Shieh, Ming-Jium [National Taiwan University, Institute of Biomedical Engineering, College of Medicine and College of Engineering, Taipei (China); National Taiwan University Hospital and National Taiwan University Cancer Center, Department of Oncology, Taipei (China)

    2016-04-15

    This study examined the efficacy of polo-like kinase 1 (PLK1) inhibition on radiosensitivity in vitro and in vivo by a pharmacologic approach using the highly potent PLK1 inhibitor volasertib. Human esophageal squamous cell carcinoma (ESCC) cell lines KYSE 70 and KYSE 150 were used to evaluate the synergistic effect of volasertib and irradiation in vitro using cell viability assay, colony formation assay, cell cycle phase analysis, and western blot, and in vivo using ectopic tumor models. Volasertib decreased ESCC cell proliferation in a dose- and time-dependent manner. Combination of volasertib and radiation caused G2/M cell cycle arrest, increased cyclin B levels, and induced apoptosis. Volasertib significantly enhanced radiation-induced death in ESCC cells by a mechanism involving the enhancement of histone H3 phosphorylation and significant cell cycle interruption. The combination of volasertib plus irradiation delayed the growth of ESCC tumor xenografts markedly compared with either treatment modality alone. The in vitro results suggested that targeting PLK1 might be a viable approach to improve the effects of radiation in ESCC. In vivo studies showed that PLK1 inhibition with volasertib during irradiation significantly improved local tumor control when compared to irradiation or drug treatment alone. (orig.) [German] Diese Studie untersucht die Wirksamkeit der Polo-like -Kinase 1-(PLK1-)Inhibition auf die Strahlenempfindlichkeit in vitro und in vivo beim oesophagealen Plattenepithelkarzinom durch eine pharmakologische Herangehensweise mit dem hochwirksamen PLK1-Inhibitor Volasertib. Menschliche Zelllinien des oesophagealen Plattenepithelkarzinoms (ESCC), KYSE 70 und KYSE 150, wurden verwendet, um den synergistischen Effekt von Volasertib und Bestrahlung in vitro zu bewerten. Hierzu wurden Zellviabilitaets- und Koloniebildungsuntersuchungen sowie Zellwachstumsanalysen, Immunblots und ektopische In-vivo-Tumormodelle herangezogen. Volasertib verminderte die ESCC

  7. Effect of fractionated radiotherapy using a hypoxic cell radiosensitizer, RK-28, on experimental murine tumor

    International Nuclear Information System (INIS)

    Tanaka, Shukaku

    1990-01-01

    The effect of a hypoxic cell radiosensitizer RK-28, on fractionated radiotherapy was studied using mice with implanted tumors. Experimental animal tumors were third generation isoplants of a mammary carcinoma which arose spontaneously in a C 3 H/He mouse. RK-28 was given to the mice at two dosages: 0.4 mg/g,b.wt. and 0.2 mg/g.b.wt. Total dose of irradiation was 20 Gy which was divided into the first 10 Gy irradiation and the second 10 Gy performed after a proper time interval such as 1, 24, 48 and 72 hours after the first 10 Gy irradiation. Tumor growth was evaluated by TGT 50 /3 times, which was defined as the time required for 50% of the tumors to regrow to the 3 times value of its initial volume. Tumor volume was measured every day and TGT 50 /3 times was calculated by logit analysis method. No significant differences were found in the TGT 50 /3 times among the groups treated by radiation alone, those treated by RK-administration alone and those without any treatment. TGT 50 value of control group without any treatment was 3.40 (days). TGT 50 value of another group treated by RK-28 alone was 3.46. and TGT 50 value of 20 Gy X-ray irradiation alone was 10.23. Under the fractionated X-ray irradiation alone, TGT 50 values of the various time interval such as 9, 14, 48 and 72 hours were 11.26, 10.42, 12.14 and 1.10. Under the combined treatment of the fractionated X-ray irradiation and RK-28 administration, TGT 50 values were 17.84, 16.42, 16.59 and 17.49. These TGT 50 /3 times values showed that RK-28 had a radiosensitizing effect when given with fractionated radiotherapy even at lower doses of RK-28 administration and radiation. Therefore, it was suggested that fractionated radiotherapy using RK-28 was useful in the cancer treatment. (author) 52 refs

  8. Assessment of individual radiosensitivity in human lymphocytes of cancer patients and its correlation with adverse side effects to radiation therapy

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.; Sardi, M.; Busto, E.; Roth, B.; Menendez, P.; Bonomi, M.; Mairal, L.

    2003-01-01

    Background and purpose: Individual radiosensitivity is an inherent characteristic, associated with an increased reaction to ionizing radiation on the human body. Biological endpoints such as clonogenic survival, chromosome aberration formation and repair capacity of radiation-induced damage have been applied to evaluate individual radiosensitivity in vitro. 5%-7% of cancer patients develop adverse side effects to radiation therapy in normal tissues within the treatment field, which are referred as 'clinical radiation reactions' and include acute effects, late effects and cancer induction. It has been hypothesized that the occurrence and severity of these reactions are mainly influenced by genetic susceptibility to radiation. Additionally, the nature of the genetic disorders associated with hypersensitivity to radiotherapy suggests that DNA repair mechanisms are involved. Consequently, the characterization of DNA repair in lymphocytes through cytokinesis blocked micronucleus (MN) and alkaline single-cell micro gel electrophoresis (comet) assays could be suitable approaches to evaluate individual radiosensitivity in vitro. The MN assay is an established cytogenetic technique to evaluate intrinsic cell radiosensitivity in tumor cells and lymphocytes; comet assay is a sensitive and rapid method for measuring DNA damage and repair in individual cells. The aims of this study were: 1) To assess the in vitro radiosensitivity of peripheral blood lymphocytes from two groups of cancer patients (retrospectively and prospectively studied), using MN and comet assays, in comparison with the observed clinical response; and 2) To test the predictive potential of both techniques. Materials and methods: 38 cancer patients receiving radiation therapy were enrolled in this study. The tumor sites were: head and neck (n 25) and cervix (n = 13). Nineteen patients were evaluated about 6-18 month after radiotherapy (retrospective group) and 19 patients were evaluated prior, mid-way and on

  9. Genotoxic, radioprotective and radiosensitizing effect of curcumin and trans-resveratrol in vitro cultures of human lymphocytes

    International Nuclear Information System (INIS)

    Fisher, V.A.; Tirsa Muñoz, B.; Sebastià, N.; Gómez-Cabrero, L.; La Parra, V.; Hervás, D.; Rodrigo, R.; Villaescusa, J.I.; Soriano, J.M.; Montoro, A.

    2015-01-01

    Curcumin and trans-resveratrol are natural polyphenol compounds. Curcumin is obtained from the rhizomes of the Curcumin plant (Curcuma longa), while trans-resveratrol is found in grapes, blackberries and other types of berry. These compounds have antioxidant, anti-inflammatory, immunostimulant and anticarcinogenic properties among others. In addition, they are also known for their radiomodulating properties since they are capable of providing radioprotection or radiosensitization for normal or tumours cells depending on different factors. This dual action may be the result of their properties, such as free radicals scavenging, as well as their influence on cell cycle checkpoints or control mechanisms. These are activated in response to the genetic damage induced by radiation. Despite the many beneficial properties attributed to these polyphenol compounds, some studies suggest that they are able to be genotoxic agents for some cellular lines. The results obtained indicate that both compounds possess a radioprotective effect on the lymphocytes of peripheral blood in the quiescent phase of the cellular cycle (G0). Nevertheless, they are capable of induce radiosensitivity on these type of cells in the growth phase (G2), and in addition, a different genotoxic effect can be seen according to the concentration of each compound. This study suggests, therefore, that curcumin and trans-resveratrol are able to exert a triple effect, genotoxic, radioprotective and radiosensitizing on in vitro cultures of human lymphocytes depending on the study parameters. [es

  10. Recommendations of the Oligonucleotide Safety Working Group's Formulated Oligonucleotide Subcommittee for the Safety Assessment of Formulated Oligonucleotide-Based Therapeutics.

    Science.gov (United States)

    Marlowe, Jennifer L; Akopian, Violetta; Karmali, Priya; Kornbrust, Douglas; Lockridge, Jennifer; Semple, Sean

    2017-08-01

    The use of lipid formulations has greatly improved the ability to effectively deliver oligonucleotides and has been instrumental in the rapid expansion of therapeutic development programs using oligonucleotide drugs. However, the development of such complex multicomponent therapeutics requires the implementation of unique, scientifically sound approaches to the nonclinical development of these drugs, based upon a hybrid of knowledge and experiences drawn from small molecule, protein, and oligonucleotide therapeutic drug development. The relative paucity of directly applicable regulatory guidance documents for oligonucleotide therapeutics in general has resulted in the generation of multiple white papers from oligonucleotide drug development experts and members of the Oligonucleotide Safety Working Group (OSWG). The members of the Formulated Oligonucleotide Subcommittee of the OSWG have utilized their collective experience working with a variety of formulations and their associated oligonucleotide payloads, as well as their insights into regulatory considerations and expectations, to generate a series of consensus recommendations for the pharmacokinetic characterization and nonclinical safety assessment of this unique class of therapeutics. It should be noted that the focus of Subcommittee discussions was on lipid nanoparticle and other types of particulate formulations of therapeutic oligonucleotides and not on conjugates or other types of modifications of oligonucleotide structure intended to facilitate delivery.

  11. Effects of gamma radiation on cigarette beetle. 1. Radiosensitivity of different stages of Lasioderma serricorne

    International Nuclear Information System (INIS)

    Maneto, E.C.; Lapis, E.B.; Parungae, A.

    1976-02-01

    A study was made to investigate the radiosensitivity of all the developmental stages of the cigarette beetle, Lasioderma serricorne (F.) exposed to different doses (10 to 100 krad) of gamma radiation. It was found that the effect is dependent upon the metamorphic stage and the age of the insert at any particular stage. Susceptibility of the eggs markedly decreased with age. A dose of only 10 krad was needed to completely prevent 1-day old eggs from hatching while 50 krad was required for similar effect on 4-day old eggs. However, all the hatched larvae died without transforming into pupae. First instar larvae and prepupae were killed before transforming into adult form at all dose levels. The more resistant pupae showed a higher percentage of adult emergence at 70 krad while 80 and 100 krad prevented the pupae to emerge as adults. On the other hand, it seems that irradiation did not considerably affect the longevity of the adults, since at most dosages, mortality was comparable with the control group. Using mortality alone as a criterion for measuring the sesceptibility of L. serricorne, 16,000 rads which is the recommended dose for the control of grain weevils, is ineffective for the control of adult cigarette beetles

  12. Radiosensitization in esophageal squamous cell carcinoma. Effect of polo-like kinase 1 inhibition

    International Nuclear Information System (INIS)

    Chen, Jenny Ling-Yu; Chen, Jo-Pai; Huang, Yu-Sen; Tsai, Yuan-Chun; Tsai, Ming-Hsien; Jaw, Fu-Shan; Cheng, Jason Chia-Hsien; Kuo, Sung-Hsin; Shieh, Ming-Jium

    2016-01-01

    This study examined the efficacy of polo-like kinase 1 (PLK1) inhibition on radiosensitivity in vitro and in vivo by a pharmacologic approach using the highly potent PLK1 inhibitor volasertib. Human esophageal squamous cell carcinoma (ESCC) cell lines KYSE 70 and KYSE 150 were used to evaluate the synergistic effect of volasertib and irradiation in vitro using cell viability assay, colony formation assay, cell cycle phase analysis, and western blot, and in vivo using ectopic tumor models. Volasertib decreased ESCC cell proliferation in a dose- and time-dependent manner. Combination of volasertib and radiation caused G2/M cell cycle arrest, increased cyclin B levels, and induced apoptosis. Volasertib significantly enhanced radiation-induced death in ESCC cells by a mechanism involving the enhancement of histone H3 phosphorylation and significant cell cycle interruption. The combination of volasertib plus irradiation delayed the growth of ESCC tumor xenografts markedly compared with either treatment modality alone. The in vitro results suggested that targeting PLK1 might be a viable approach to improve the effects of radiation in ESCC. In vivo studies showed that PLK1 inhibition with volasertib during irradiation significantly improved local tumor control when compared to irradiation or drug treatment alone. (orig.) [de

  13. SU-E-T-668: Radiosensitizing Effect of Bosutinib On Prostate and Colon Cancers: A Pilot in Vitro Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B; Cvetkovic, D; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Wang, C [Fox Chase Cancer Center, Philadelphia, PA (United States); West China Hospital, Sichuan University, Chengdu, Sichuan (China)

    2015-06-15

    Purpose: Recently it has been reported that Bosutinib, a clinical kinase inhibitor, can enhance the tumor cell chemosensitivity by overriding DNA damage checkpoints. However, to the best of our knowledge, there is no report on its effect on cell radiosensitivity in the literature. The objective of the present study is to determine whether Bosutinib has the potential to be used as a radiosensitizer for various cancer cell lines. Methods: In this study, we tested 4 cell lines derived from human prostate (LNCaP, PC-3, DU-145) and colon (HT-29) cancers. The cells were seeded into 12-well plates 24 hours prior to the radiation treatments. For each cell line, we designed 4 study groups, namely, the control, Bosutinib, radiotherapy, and radiotherapy+Bosutinib groups. We used 6 MV photon beams from a Siemens Artiste accelerator to deliver 2 Gy dose in one fraction to the cells in the radiotherapy and radiotherapy+Bosutinib groups. Immediately after irradiation, the cells in the radiotherapy+Bosutinib group were treated with Bosutinib (1µM) for 3 hours. The cell survival was evaluated through clonogenic assays. Results: The cell survival rates of the LNCaP, PC-3, DU-145, and HT-29 cells were found to be 21%, 92%, 76%, and 93% for the radiotherapy group; 21%, 69%, 67%, and 81% for the radiotherapy+Bosutinib group; and 103%, 107%, 86%, and 102% for the Bosutinib group, respectively. Although synergetic cell killing was not seen for the LNCaP and DU-145 cell lines in this study, the cell survival data from the clonogenic assay indicated that Bosutinib could enhance the sensitivity of PC-3 and HT-29 cells to radiation treatment. Conclusion: Our preliminary results demonstrated the possibility of Bosutinib as a radiosensitizer for certain prostate and colon cancers, which are resistant to radiotherapy. Further studies are warranted to quantify the radiosensitizing effect of Bosutinib.

  14. SU-E-T-668: Radiosensitizing Effect of Bosutinib On Prostate and Colon Cancers: A Pilot in Vitro Study

    International Nuclear Information System (INIS)

    Wang, B; Cvetkovic, D; Chen, L; Ma, C; Wang, C

    2015-01-01

    Purpose: Recently it has been reported that Bosutinib, a clinical kinase inhibitor, can enhance the tumor cell chemosensitivity by overriding DNA damage checkpoints. However, to the best of our knowledge, there is no report on its effect on cell radiosensitivity in the literature. The objective of the present study is to determine whether Bosutinib has the potential to be used as a radiosensitizer for various cancer cell lines. Methods: In this study, we tested 4 cell lines derived from human prostate (LNCaP, PC-3, DU-145) and colon (HT-29) cancers. The cells were seeded into 12-well plates 24 hours prior to the radiation treatments. For each cell line, we designed 4 study groups, namely, the control, Bosutinib, radiotherapy, and radiotherapy+Bosutinib groups. We used 6 MV photon beams from a Siemens Artiste accelerator to deliver 2 Gy dose in one fraction to the cells in the radiotherapy and radiotherapy+Bosutinib groups. Immediately after irradiation, the cells in the radiotherapy+Bosutinib group were treated with Bosutinib (1µM) for 3 hours. The cell survival was evaluated through clonogenic assays. Results: The cell survival rates of the LNCaP, PC-3, DU-145, and HT-29 cells were found to be 21%, 92%, 76%, and 93% for the radiotherapy group; 21%, 69%, 67%, and 81% for the radiotherapy+Bosutinib group; and 103%, 107%, 86%, and 102% for the Bosutinib group, respectively. Although synergetic cell killing was not seen for the LNCaP and DU-145 cell lines in this study, the cell survival data from the clonogenic assay indicated that Bosutinib could enhance the sensitivity of PC-3 and HT-29 cells to radiation treatment. Conclusion: Our preliminary results demonstrated the possibility of Bosutinib as a radiosensitizer for certain prostate and colon cancers, which are resistant to radiotherapy. Further studies are warranted to quantify the radiosensitizing effect of Bosutinib

  15. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha [Inter University Accelerator Centre, Aruna Asaf Ali Marg, Post box-10502, New Delhi-110067 (India)

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  16. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  17. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    International Nuclear Information System (INIS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-01-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET – 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ∼ 28% reduction of 12 C 6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells

  18. Effects of sensitizers on cell respiration. 3. The effects of hypoxic cell radiosensitizers on oxidative metabolism and the radiation response of an in vitro tumour model

    Energy Technology Data Exchange (ETDEWEB)

    Durand, R E [Wisconsin Clinical Cancer Center, Madison (USA). Dept. of Human Oncology; Biaglow, J E; Greenstock, C L

    1978-06-01

    Physiological factors are important when considering the effects of radiosensitizers on the radiation response of complex systems such as multi-cellular spheroids. In this system, under conditions of unlimited nutrient supply, cells are rendered hypoxic by metabolism. Thus, using the spheroid system as an in vitro model of the tumour-cell microenvironment, we have determined the relative contribution of radiosensitization and respiratory effects of a number of electron-affinic sensitizers having potential clinical use. These studies are indicative of physiological responses at the cellular level, and suggest optimal drug administration schemes for obtaining maximal radiation response in vivo with hypoxic cell sensitizers.

  19. Roscovitine strongly enhances the effect of olaparib on radiosensitivity for HPV neg. but not for HPV pos. HNSCC cell lines.

    Science.gov (United States)

    Ziemann, Frank; Seltzsam, Steve; Dreffke, Kristin; Preising, Stefanie; Arenz, Andrea; Subtil, Florentine S B; Rieckmann, Thorsten; Engenhart-Cabillic, Rita; Dikomey, Ekkehard; Wittig, Andrea

    2017-12-01

    At present, advanced stage human Papillomavirus (HPV) negative and positive head and neck squamous cell carcinoma (HNSCC) are treated by intense multimodal therapy that includes radiochemotherapy, which are associated with relevant side effects. Patients with HPV positive tumors possess a far better prognosis than those with HPV negative cancers. Therefore, new therapeutic strategies are needed to improve the outcome especially of the latter one as well as quality of life for all HNSCC patients. Here we tested whether roscovitine, an inhibitor of cyclin-dependent kinases (CDKs), which hereby also blocks homologous recombination (HR), can be used to enhance the radiation sensitivity of HNSCC cell lines. In all five HPV negative and HPV positive cell lines tested, roscovitine caused inhibition of CDK1 and 2. Surprisingly, all HPV positive cell lines were found to be defective in HR. In contrast, HPV negative strains demonstrated efficient HR, which was completely suppressed by roscovitine. In line with this, for HPV negative but not for HPV positive cell lines, treatment with roscovitine resulted in a pronounced enhancement of the radiation-induced G2 arrest as well as a significant increase in radiosensitivity. Due to a defect in HR, all HPV positive cell lines were efficiently radiosensitized by the PARP-1 inhibitor olaparib. In contrast, in HPV negative cell lines a significant radiosensitization by olaparib was only achieved when combined with roscovitine.

  20. The combination of hyperthermia or chemotherapy with gimeracil for effective radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, M.; Sakata, K.; Someya, M.; Hareyama, M. [Sapporo Medical Univ. (Japan). Dept. of Radiology; Matsumoto, Y. [Tokyo Institute of Technology, Tokyo (Japan). Research Laboratory for Nuclear Reactors; Tauchi, H. [Ibaraki Univ. (Japan). Dept. of Environmental Sciences; Fukushima, M. [Taiho Pharmaceutical Co., Ltd., Tokushima (Japan). Pharmacokinetics Research Lab.

    2012-03-15

    5-chloro-2,4-dihydroxypyridine (gimeracil) is a component of the oral fluoropyrimidine derivative S-1. Gimeracil was originally added to S-1 to yield prolonged 5-fluorouracil (5-FU) concentrations in serum and tumor tissues by inhibiting dihydropyrimidine dehydrogenase, which degrades 5-FU. We previously demonstrated that gimeracil enhances the efficacy of radiotherapy through the suppression of homologous recombination (HR) in DNA double strand repair. The goal of this paper was to examine the effects of gimeracil on the sensitivity of anticancer drugs and hyperthermia in order to obtain effective radiosensitization. Various cell lines, including DLD 1 (human colon carcinoma cells) and cells deficient in HR or nonhomologous end-joining (NHEJ), were used in clonogenic assays. The survival of these cells after various treatments (e.g., drug treatment, heat treatment, and radiation) was determined based on their colony-forming ability. Gimeracil enhanced cell-killing effects of camptothecin (CPT), 5-FU, and hydroxyurea. Gimeracil sensitized effects of CPT or 5-FU to cells deficient in HR or NHEJ to a similar extent as in other cells (DLD1 and a parent cell), indicating that its sensitizing mechanisms may be different from inhibition of HR or NHEJ. Combination of gimeracil and CPT or 5-FU sensitized radiation more effectively than each modality alone. Gimeracil also enhanced heat sensitivity at 42 C or more. The degree of heat sensitization with gimeracil increased as the temperature increased, and the combination of gimeracil and heat-sensitized radiation was more effective than each modality alone. Gimeracil enhanced sensitivity of CPT, 5-FU, and hyperthermia. Combination of these modalities sensitized radiation more efficiently than each modality alone.

  1. Radiosensitizing Effect of a Phenylbutyrate-Derived Histone Deacetylase Inhibitor in Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Lu, Yen-Shen; Chou, Chia-Hung; Tzen, Kai-Yuan; Gao, Ming; Cheng, Ann-Lii; Kulp, Samuel K.; Cheng, Jason Chia-Hsien

    2012-01-01

    Purpose: Radiotherapy is integrated into the multimodal treatment of localized hepatocellular carcinoma (HCC) refractory to conventional treatment. Tumor control remains unsatisfactory and the sublethal effect associates with secondary spread. The use of an effective molecularly targeted agent in combination with radiotherapy is a potential therapeutic approach. Our aim was to assess the effect of combining a phenylbutyrate-derived histone deacetylase (HDAC) inhibitor, AR-42, with radiotherapy in in vitro and in vivo models of human HCC. Methods and Materials: Human HCC cell lines (Huh-7 and PLC-5) were used to evaluate the in vitro synergism of combining AR-42 with irradiation. Flow cytometry analyzed the cell cycle changes, whereas Western blot investigated the protein expressions after the combined treatment. Severe combined immunodeficient (SCID) mice bearing ectopic and orthotopic HCC xenografts were treated with AR-42 and/or radiotherapy for the in vivo response. Results: AR-42 significantly enhanced radiation-induced cell death by the inhibition of the DNA end-binding activity of Ku70, a highly versatile regulatory protein for DNA repair, telomere maintenance, and apoptosis. In ectopic xenografts of Huh-7 and PLC-5, pretreatment with AR-42 significantly enhanced the tumor-suppressive effect of radiotherapy by 48% and 66%, respectively. A similar combinatorial effect of AR-42 (10 and 25 mg/kg) and radiotherapy was observed in Huh-7 orthotopic model of tumor growth by 52% and 82%, respectively. This tumor suppression was associated with inhibition of intratumoral Ku70 activity as well as reductions in markers of HDAC activity and proliferation, and increased apoptosis. Conclusion: AR-42 is a potent, orally bioavailable inhibitor of HDAC with therapeutic value as a radiosensitizer of HCC.

  2. Pharmacokinetics of metronidazole and its effect on the body during its use as a radiosensitizer

    International Nuclear Information System (INIS)

    Zel'vin, B.M.; Polyakov, P.Yu.; Zimina, E.S.; Dar'yalova, S.L.; Kiseleva, E.S.; Sokolova, I.I.

    1984-01-01

    During gamma-beam therapy (40-60 Gy) a study was made of the content of metronidazole (MZ) in the blood of 20 patients with oral mucosa cancer and 12 patients with esophageal cancer devending on a mode of its administration. A MZ effect on liver apd renal fUnction was studied. MZ was administered to the patients with cancer of both sites on the first 3 days of radiation therapy 3 h before an enlarged fraction of 4 Gy, estimated at 145 mg per 1 kg body mass (8-10 g) per os or via a gastrostoma and 15 h in rectal administration. In the patients with oral mucosa cancer after the administration of MZ per os its level which was sufficient for radiosensitization, was achieved after 2 h and remained for subsequent 4 h with maximum accumulation of 262-+22 μg/ml in the blood serum 3-4 h after administration. In the patients with esophageal cancer after MZ administration via the gastrostoma, the nature and time course of drug accumulation in the blood was identical, however accumulation maximum was lower and reached 219+-25 μg/ml. In the patients with esophageal cancer after MZ rectal administration, its level in the blood was 118 μg/ml only and did not achieve a therapeutically effective level. It is assumed that the lowering of MZ repeated dose by 20% will cause a decrease in the drug accumulation in the body and the degree of a toxic effect with maintaining its therapeutically effective level in the blood and tumor

  3. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay

    Energy Technology Data Exchange (ETDEWEB)

    Sebastià, N., E-mail: natividad.sebastia@uv.es [Radiation Protection Service, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Montoro, A. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Hervás, D. [Biostatistics Unit, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Pantelias, G.; Hatzi, V.I. [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, Athens (Greece); Soriano, J.M. [Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Department of Preventive Medicine and Public Health, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia (Spain); Villaescusa, J.I. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); and others

    2014-08-15

    Highlights: • Curcumin and trans-resveratrol can exert radioprotective or radiosensitizing effects. • The mechanisms underlying such dual action were elucidated using the PCC and G2-assay. • Radioprotection occurs in non-cycling cells exposed to curcumin and resveratrol. • Radiosensitization occurs in cycling cells exposed to the chemicals. • G2-checkpoint abrogation by the chemicals underlies the radiosensitizing mechanism. - Abstract: Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140 μM curcumin and 2.2 to 220 μM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity

  4. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay

    International Nuclear Information System (INIS)

    Sebastià, N.; Montoro, A.; Hervás, D.; Pantelias, G.; Hatzi, V.I.; Soriano, J.M.; Villaescusa, J.I.

    2014-01-01

    Highlights: • Curcumin and trans-resveratrol can exert radioprotective or radiosensitizing effects. • The mechanisms underlying such dual action were elucidated using the PCC and G2-assay. • Radioprotection occurs in non-cycling cells exposed to curcumin and resveratrol. • Radiosensitization occurs in cycling cells exposed to the chemicals. • G2-checkpoint abrogation by the chemicals underlies the radiosensitizing mechanism. - Abstract: Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140 μM curcumin and 2.2 to 220 μM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity

  5. Radiosensitive effect of hypoxia-inducible factor 1α inhibitor YC-1 on hypoxic glioma SHG44 cell line

    International Nuclear Information System (INIS)

    Guo Xinwei; Lu Xueguan; Tong Liumei; Zong Tianzhou; Chen Liesong

    2011-01-01

    Objective: To investigate the radiosensitive effect of hypoxia-inducible factor 1α (HIF-1α) inhibitor YC-1 on hypoxic glioma SHG44 cell line and its related mechanism. Methods: Glioma SHG44 cell line was cultured in normoxic (20% O 2 ), continuous hypoxia (1% O 2 ) for 12 h and 24 h, continuous hypoxia plus YC-1 was performed for 12 h and 24 h, respectively. The expression of HIF-1α was assessed by Western blot. The radiosensitivity was evaluated by the survival curve, and the sublethal damage repair (SLDR) ability was measured by dose-fraction experiment. Results: HIF-1α protein levels of glioma SHG44 cells were significantly increased after hypoxic cultures for 12 h and 24 h than those of the corresponding cells cultured in normoxic, while the radiosensitivity was lower. The OER (oxygen-enhancement ratio) of SHG44 cells in hypoxia for 12 h and 24 h were 1.22 and 1.37, respectively. By the further statistical analysis it was found that SLDR ability of glioma SHG44 was increased at hypoxia, and when irradiation was carried one at the interval of 8, 10, 12 h it was statistically significant (P<0.05). HIF-1α protein levels of glioma SHG44 cells cultured in hypoxia plus YC-1 for 12 h and 24 h were decreased significantly compared to the corresponding cells cultured in hypoxia only, while the radiosensitivity was significantly increased. the EF (enhancement factor) of YC-1 for glioma SHG44 cells at hypoxia for 12 h and 24 h was 1.27. By the further statistical analysis it was also found that SLDR ability was decreased significantly for hypoxic SHG44 cells which was co-cultured with YC-1, and at the interval of 8, 10, 12 h irradiation was statistically significant (P<0.05). Conclusion: YC-1 can increase the radiosensitivity of hypoxic glioma SHG44 cell line, and its mechanism is related to SLDR inhibited by YC-1. (authors)

  6. Evaluation of the effect of change in the radiosensitive tissue weights listed in the ICRP in estimate of effective dose

    International Nuclear Information System (INIS)

    Vieira, Jose W.; Leal Neto, Viriato; Lopes Filho, Ferdinand J.; Lima Filho, Jose M.; Santana, Ivan E.; Andrade, Pedro H.A.; Cabral, Manuela O.M.

    2015-01-01

    For photons and electrons, the effective dose by gender is a weighted sum of the absorbed doses in radiosensitive organs and tissue of the human body. Effective dose is estimated using Exposure Computational Models (ECM) of both genders for the same age group. The FSTA and MSTA ECMs were developed by researchers from DEN/UFPE and consist of voxel phantoms representing adults coupled to EGSnrc Monte Carlo Code, which, in the folder designed for users of EGS, codes were added to simulate some radioactive sources. The reports 60 and 103 of the ICRP provide the factors that weigh the radiosensitivity of organs and tissues (W T ) required to estimate the effective dose. The two lists were placed in the FSTA and MSTA to simulate radiodiagnostic examination in different regions of the body (cranium, abdomen and thorax). The dosimetric data produced allowed an analysis of the effect of the change in the w T from the report 60 to the 103. The highest mean percent relative error, 64.3%, occurred in the results for the cranium due to the increase of the w T for most of the organs and tissues in the head and trunk in the updated list. In this case, it can be concluded that the values of the effective dose with the wT of the ICRP 60 were underestimated. Other types of simulators of radioactive sources can be used in investigating this problem and other variables related to the phantom can be considered for that proposes a W T 's list specific for the Brazilian population or recommend unrestricted use the ICRP data. (author)

  7. Evaluation of the effect of change in the radiosensitive tissue weights listed in the ICRP in estimate of effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jose W.; Leal Neto, Viriato; Lopes Filho, Ferdinand J.; Lima Filho, Jose M.; Santana, Ivan E., E-mail: jose.wilson@recife.ifpe.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco, (IFPE), Recife, PE (Brazil); Andrade, Pedro H.A.; Cabral, Manuela O.M. [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Lima, Vanildo J.M. [Universidade Federal de Pernambuco (DA/UFPE), Recife, PE (Brazil). Departamento de Anatomia; Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN/CNEN-NE), Recife, PE (Brazil)

    2015-07-01

    For photons and electrons, the effective dose by gender is a weighted sum of the absorbed doses in radiosensitive organs and tissue of the human body. Effective dose is estimated using Exposure Computational Models (ECM) of both genders for the same age group. The FSTA and MSTA ECMs were developed by researchers from DEN/UFPE and consist of voxel phantoms representing adults coupled to EGSnrc Monte Carlo Code, which, in the folder designed for users of EGS, codes were added to simulate some radioactive sources. The reports 60 and 103 of the ICRP provide the factors that weigh the radiosensitivity of organs and tissues (W{sub T}) required to estimate the effective dose. The two lists were placed in the FSTA and MSTA to simulate radiodiagnostic examination in different regions of the body (cranium, abdomen and thorax). The dosimetric data produced allowed an analysis of the effect of the change in the w{sub T} from the report 60 to the 103. The highest mean percent relative error, 64.3%, occurred in the results for the cranium due to the increase of the w{sub T} for most of the organs and tissues in the head and trunk in the updated list. In this case, it can be concluded that the values of the effective dose with the wT of the ICRP 60 were underestimated. Other types of simulators of radioactive sources can be used in investigating this problem and other variables related to the phantom can be considered for that proposes a W{sub T}'s list specific for the Brazilian population or recommend unrestricted use the ICRP data. (author)

  8. Targeted radiosensitization of cells expressing truncated DNA polymerase {beta}.

    NARCIS (Netherlands)

    Neijenhuis, S.; Verwijs-Janssen, M.; Broek, Bart van den; Begg, A.C.; Vens, C.

    2010-01-01

    Ionizing radiation (IR) is an effective anticancer treatment, although failures still occur. To improve radiotherapy, tumor-targeted strategies are needed to increase radiosensitivity of tumor cells, without influencing normal tissue radiosensitivity. Base excision repair (BER) and single-strand

  9. Radiosensitivity and genes

    Energy Technology Data Exchange (ETDEWEB)

    Qiyue, Hu; Mingyue, Lun [Suzhou Medical Coll., JS (China)

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G{sub 1} phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM{sub 9} cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation.

  10. Radiosensitivity and genes

    International Nuclear Information System (INIS)

    Hu Qiyue; Lun Mingyue

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G 1 phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM 9 cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation

  11. Radiosensitivity of amphibia

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, S [National Inst. of Radiological Sciences, Chiba (Japan)

    1975-04-01

    Radiosensitivity (semi-lethal dose) and the damages of radiation in the amphibia were studied by /sup 3/H-TdR from the standpoint of cellular kinetics. The cell mitosis cycle of the amphibia required a long time. The functional cell regeneration and the physiological function of the cell were slower than in mice. The reason for the low radiosensitivity of the amphibia was discussed relative to the environmental factor of temperature. Because the amphibia change body temperature according to environmental temperature, the danger of radiation damage, the actual lethal dose and the period of survival were influenced by the environmental temperature. Acute radiation danger to amphibia was essentially the same as the danger to mammalia, both young and old. LD/sub 50/ irradiation effects varied among the species. The cell regeneration, turn over, and the mitosis in the amphibia, were affected by environmental temperature, however, the courses proceeded slower than those of the mammalia. Therefore, the question remains, whether the comparison of the radiosensitivities of amphibia with other classes of animal by LDsub(50/30) irradiation was appropriate.

  12. Radiosensitizing effect of nitric oxide in tumor cells and experimental tumors irradiated with gamma rays and proton beams

    International Nuclear Information System (INIS)

    Policastro, Lucia L.; Duran, Hebe; Molinari, Beatriz L.; Somacal, Hector R.; Valda, Alejandro A.

    2003-01-01

    Nitric oxide (NO) has been reported to be a radiosensitizer of mammalian cells under hypoxic conditions. In a previous study, we demonstrated an enhancement in radiation response induced by NO in mouse tumor cells under aerobic conditions, with an increasing effect as a function of malignancy. The aim of the present study was to evaluate the effect of NO in tumor cells and in experimental tumors irradiated with γ rays and proton beams. Irradiations were performed with a 137 Cs γ source and with proton beams generated by the TANDAR accelerator. Tumor cells were treated with the NO donor DETA-NO and the sensitizer enhancement ratio (SER) was calculated using the α parameter of the survival curve fitted to the linear-quadratic model. Tumor cells irradiated with protons were radio sensitized by DETA-NO only in the more malignant cells irradiated with low LET protons (2.69±0.08 keV/μm). For higher LET protons there were no radiosensitizing effect. For human tumor cells pre-treated with DETA-NO and irradiated with γ rays, a significantly greater effect was demonstrated in the malignant cells (MCF-7) as compared with the near normal cells (HBL-100). Moreover, a significant decrease in tumor growth was demonstrated in mice pre-treated with the NO donor spermine and irradiated with γ rays and low LET protons as compared with mice irradiated without pre-treatment with the NO donor. In conclusion, we demonstrated a differential effect of NO as a radiosensitizer of malignant cells, both with γ rays and low LET protons. This selectivity, coupled to the in vivo inhibition of tumor growth, is of great interest for the potential use of NO releasing agents in radiotherapy. (author)

  13. Radition mutagenesis in lavender. Part 2. Effect of heat shock, moisture and post radiation storage on lavender seed radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Raev, R.C. (Institute of the Rose, Essential Oil and Medicinal Plants, Kazanlyk (Bulgaria))

    1983-01-01

    The influence of three factors which increase radiation tolerance of lavender seeds and reduce the biological injuries with lethal effect in case of gamma-irradiation (Cs/sup 137/) was investigated. Irradiation at -65 deg C increased radiation tolerance and led to increased doses and higher mutagenic effect. Seeds with lowered moisture had higher radiosensitivity in comparison to these having 4.5-5 times more water. Post-radiation storage at 20-22 deg C without loss of moisture increased radiation injuries, which grew along with the prolongation of the period from seed irradiation to germination.

  14. Normal tissue adverse side effects in radiotherapy cancer patients and applicability of predictive radiosensitivity tests for new radiation treatment decision

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Radl, Analia; Sardi, Mabel

    2008-01-01

    Full text: Around 5 % -7 % of cancer patients develop adverse side effects, which include acute effects, late effects and cancer induction to radiation therapy in normal tissues in the treatment field. Such effects are of particular interest as the cancer patient population that reaches prolonged survival has increased with the improvements in cancer therapy and health care. These adverse reactions are mainly influenced by deficiencies in DNA repair pathways. However, tissue response to IR could be modified by several treatment- and patient- related factors. Numerous studies have been carried out to evaluate the correlation between clinical and cellular radiosensitivity, by in vitro tests. Previous own studies, characterizing DNA repair capacity in peripheral lymphocytes of cancer patients through cytokinesis blocked micronucleus test and alkaline single-cell microgel electrophoresis (comet), indicated that such assays correlated with the clinical radiation signs of radiosensitivity and showed the predictive potential of both techniques in the identification of radiosensitivity subgroups. In this paper, retrospective studies are conducted in 10 representative cases, which had developed acute or late toxicity in previous treatments and at present require new radiation treatments due to secondary malignancies or recurrence. Samples were in vitro irradiated with 2 Gy. MN data were analyzed comparing expected MN frequencies with values observed after in vitro irradiation. DNA repair capacity was evaluated through comet assay for initial damage and after specific times of repair (0-120 minutes). Captured images were analyzed by CASP image analysis software. Repair capacity was quantified by the Olive tail moment. Weibull alpha parameter was applied to describe DNA damage at the different evaluated repair times after in vitro irradiation and fitted by a mono-exponential model to describe the kinetic profile. In every evaluated patient a correlation between mean half

  15. Normal tissue adverse side effects in radiotherapy cancer patients and applicability of predictive radiosensitivity tests for new radiation treatment decision

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Radl, A.; Sardi, M.

    2011-01-01

    Around 5%-7% of cancer patients develop adverse side effects, which include acute effects, late effects and cancer induction to radiation therapy in normal tissues in the treatment field. Such effects are of particular interest as the cancer patient population that reaches prolonged survival has increased with the improvements in cancer therapy and health care. These adverse reactions are mainly influenced by deficiencies in DNA repair pathways. However, tissue response to IR could be modified by several treatment- and patient- related factors. Numerous studies have been carried out to evaluate the correlation between clinical and cellular radiosensitivity, by in vitro tests. Previous own studies, characterizing DNA repair capacity in peripheral lymphocytes of cancer patients through cytokinesis blocked micronucleus test and alkaline single-cell microgel electrophoresis (comet), indicated that such assays correlated with the clinical radiation signs of radiosensitivity and showed the predictive potential of both techniques in the identification of radiosensitivity subgroups. In this paper, retrospective studies are conducted in 10 representative cases, which had developed acute or late toxicity in previous treatments and at present require new radiation treatments due to secondary malignancies or recurrence. Samples were in vitro irradiated with 2 Gy. MN data were analyzed comparing expected MN frequencies with values observed after in vitro irradiation. DNA repair capacity was evaluated through comet assay for initial damage and after specific times of repair (0-120 minutes). Captured images were analyzed by CASP image analysis software. Repair capacity was quantified by the Olive tail moment. Weibull alpha parameter was applied to describe DNA damage at the different evaluated repair times after in vitro irradiation and fitted by a mono-exponential model to describe the kinetic profile. In every evaluated patient a correlation between mean half-time (T1/2) and

  16. In vitro effects of piracetam on the radiosensitivity of hypoxic cells (adaptation of MTT assay to hypoxic conditions)

    International Nuclear Information System (INIS)

    Gheuens, E.E.O.; Bruijn, E.A. de; Van der Heyden, S.; Van Oosterom, A.T.; Lagarde, P.; Pooter, C.M.J. de; Chomy, F.

    1995-01-01

    This paper describes the adaptation of the MTT assay to hypoxic conditions in order to test the in vitro effect of piracetam on hypoxic cells and particularly on the radiosensitivity of hypoxic cells since this drug has shown clinical effect on acute and chronic hypoxia. The V79 cell line was selected by reference to preliminary hypoxic experiments using clonogenic assay and euoxic experiments using clonogenic and MTT assays. Cell growth and survival in our hypoxic conditions were assessed using MTT assay with an enclosure and special 48-well plates both made of glass. Growth curves on glass plates after 1-hour exposure to nitrogen versus air were comparable, so there is no bias effect due to gas composition. Survival curves using MTT versus reference clonogenic assay were comparable after radiation exposure in eu- and hypoxic conditions, and confirm the validity of our original technique for creating hypoxia. The Oxygen Enhancement Ratio was of about 3 for 1-hour hypoxic exposure. Piracetam gave no cytotoxic effect up to 10 mM of piracetam. Growth curves after continuous drug exposure and 1-hour euoxic versus hypoxic exposure gave no cytotoxic effect up to 10 mM of piracetam. Survival curves after continuous drug exposure to 10 mM of piracetam gave no significant effect on the radiosensitivity of hypoxic V79 cells using MTT or clonogenic assay. (author). 32 refs., 6 figs

  17. Transfection of wild type ADVP53 gene into human brain tumor cell lines has a radiosensitizing effect independent of apoptosis

    International Nuclear Information System (INIS)

    Geng, L.; Walter, S; Vaughan, A.T.M.

    1997-01-01

    Purpose: Despite attempts with a variety of therapeutic approaches there has been little impact on the survival of patients with Glioblastoma multiforme, with median survivals reported of approximately 12 months. In this study a replication restricted adenovirus vector is used to transfer the wild type p53 gene into two cell lines derived from a human astrocytoma U87MG or glioblastoma T98G, to determine its ability to act as a radiosensitizer in conjunction with conventional radiotherapy. Methods: An adenovirus vector containing the human wild type p53 (Advp53) gene was used in addition to a control vector containing the β-galactosidase (Advγgal) reporter gene. To achieve cellular incorporation both vectors were incubated with cells for 30 minutes - washed and returned to culture. The successful incorporation of each vector was determined by either a p53 assay using either a western blotting or flow cytometry techniques, or specific staining for β-galactosidase activity. The presence of each vector was assayed until the constructs were eliminated from the cell. To determine the effects of these vectors on cell survival sufficient vector was added to produce a measurable reduction in clonogenic survival and this value was used in subsequent irradiation experiments. To determine the ability of wild type p53 to induce apoptosis the cells were examined from 1 to 5 days after irradiation by H and E staining for the characteristic morphology indicating an apoptotic process. Results: Both the Advp53 and Advβgal vectors were successfully incorporated into each cell line. Expression of each gene was reduced to approximately half by 5 days and virtually eliminated by 15 days after transfection in both lines. At the doses used the wild type Advp53 adenovirus was toxic to both cell lines giving surviving fractions between 39-74%. When this toxicity was taken into account the presence of the Advp53 gene had a radiosensitizing effect in each cell line. To determine the

  18. Effect of silencing of ATM expression by siRNA on radiosensitivity of human lung adenocarcinoma A549 cells

    International Nuclear Information System (INIS)

    Liu Xiaoqun; Qiao Tiankui

    2014-01-01

    Objective: To investigate the effect of silencing of ataxia-telangiectasia mutated (ATM) expression by plasmid-mediated RNA interference on the radiosensitivity of human lung adenocarcinoma A 549 cells. Methods: Eukaryotic expression plasmid containing ATM small interfering RNA (siRNA) (pSilencer2.1-ATM), as well as pSilencer2.1-nonspecific, was constructed.Lung adenocarcinoma A 549 cells were divided into positive group, negative group,and control group to be transfected with pSilencer2.1-ATM, pSilencer2.1-nonspecific, and no plasmid, respectively. The mRNA and protein expression of ATM was measured by RT-PCR and Western blot, respectively. The change in cell radiosensitivity was observed by colony-forming assay. Cell cycle and cell apoptosis were analyzed by flow cytometry. Results: The eukaryotic expression plasmid containing ATM siRNA was successfully constructed. The RT-PCR and Western blot demonstrated that the expression of ATM was down-regulated in the positive group. The sensitization enhancement ratios (D 0 ratios) for the positive group and negative group were 1.50 and 1.01, respectively. The flow cytometry revealed that the proportions of A 549 cells in G 1 and G 2 /M phases were significantly lower in the positive group than in the control group (51.27% vs 61.85%, P = 0.012; 6.34% vs 10.91%, P = 0.008) and that the apoptosis rate was significantly higher in the positive group than in the control group and negative group (49.31% vs 13.58%, P = 0.000; 49.31% vs 13.17%, P = 0.000). Conclusions: Silencing of ATM expression may increase the radiosensitivity of human lung adenocarcinoma A 549 cells, probably by affecting the cell cycle and promoting cell apoptosis. (authors)

  19. Cloning of smac gene and its overexpression effects on radiosensitivity of HeLa cells to γ-rays

    International Nuclear Information System (INIS)

    Zhao Baofeng; Tian Mei; Lei Hongwei; Su Xu

    2006-01-01

    Objective: To clone smac gene and construct eukaryocytic expression vector pcDNA3.1/ smac. The smac gene was transfected into HeLa cells to explore the effects of over-expression of extrinsic smac gene on radiosensitivity to γ-rays of HeLa cells. Methods: The full-length smac gene was amplified from total RNA of HeLa cells by RTPCR. The RTPCR product was ligated with the vector pcDNA3.1 and sequenced. The correct pcDNA3.1/smac was transfected into HeLa cells. The expression of smac gene was tested by RTPCR and Western blot. The cellular growth inhibition rates were evaluated by MTT 48 horns after irradiation with different doses of γ-rays. Results: Recombinant eukaryocytic expression vector pcDNA3.1/smac was successfully constructed. RTPCR and Western blot results indicated that the expression of smac gene of HeLa/smac cells was significantly enhanced compared with the expression of smac gene of HeLa/pcDNA3.1 and HeLa cells. 48 hours after different doses of γ-ray irradiation was significantly higher in pcDNA3.1/smac transfected HeLa/smac cells than those of non-transfected HeLa cells or pcDNA3.1 transfected HeLa/pcDNA3.1 cells, inhabitation rates were 38.85%, 17.64% and 20.32%, respectively. Conclusions: smac gene was successfully cloned. Extrinsic smac gene over-expression could significantly enhance radiosensitivity to γ-ray of HeLa cells, which would herald a new approach to improve radiosensitivity of cervical cancer. (authors)

  20. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Xu, Qin; Zhang, Zhiyuan; Zhang, Ping; Chen, Wantao

    2008-01-01

    Antisense oligonucleotides against hTR (As-ODN-hTR) have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA) is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. In situ human oral squamous cell carcinoma (OSCC) models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR) alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax) was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma

  1. Combination of vascular endothelial growth factor antisense oligonucleotide therapy and radiotherapy increases the curative effects against maxillofacial VX2 tumors in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Linfeng, E-mail: zhenglinfeng04@yahoo.com.cn [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Li Yujie, E-mail: yujieli01@yahoo.com.cn [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Wang Han, E-mail: bingowh@hotmail.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Zhao Jinglong, E-mail: jinglongz@yahoo.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Wang Xifu, E-mail: wangxiechen001@163.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Hu Yunsheng, E-mail: springmorninghu@163.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Zhang Guixiang, E-mail: guixiangzhang@sina.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China)

    2011-05-15

    Purpose: To study the effects of combination of vascular endothelial growth factor (VEGF) antisense oligonucleotide therapy and radiotherapy on maxillofacial VX2 tumors in rabbits. Methods: We used 24 New Zealand white rabbits as a model to induce maxillofacial VX2 tumor. The rabbits were randomly divided into the following 4 groups: radiotherapy group (group A), treated with 16 Gy of radiotherapy; VEGF antisense oligonucleotide treatment group (group B), treated with an injection of 150 {mu}g of VEGF antisense oligonucleotide into the local tumor; VEGF antisense oligonucleotide combined with radiotherapy group (group C), treated with an injection of 150 {mu}g of VEGF antisense oligonucleotide into the local tumor immediately after 16 Gy of radiotherapy; and control group (group D), treated with an injection of 300 {mu}l 5% aqueous glucose solution into the local tumor. On days 3 and 14 after treatment, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed to calculate maximal enhancement ratio (MER), slope of enhancement (SLE), and tumor volume change. Rabbits were killed on day 14 to obtain samples for pathological examination and immunohistochemical staining for VEGF. Results: In group C, tumor volume was significantly reduced on day 14 after treatment, and the difference was statistically different as compared to that before treatment, on day 3 after treatment and other groups (P < 0.01). Values of both MER and SLE after treatment were significantly lower than the values before treatment (P < 0.05). Pathological specimen revealed tumor cell edema, bleeding, necrosis, vascular wall thickening and occlusion, and decreased VEGF expression. The immunohistochemical score (IHS) of group C was significantly different from groups A and D respectively (P < 0.05). Conclusion: Injecting the tumor with VEGF antisense oligonucleotide immediately after radiotherapy can enhance the curative effect on rabbit maxillofacial VX2 tumor, and DCE-MRI can serve

  2. Measuring DNA hybridization using fluorescent DNA-stabilized silver clusters to investigate mismatch effects on therapeutic oligonucleotides.

    Science.gov (United States)

    de Bruin, Donny; Bossert, Nelli; Aartsma-Rus, Annemieke; Bouwmeester, Dirk

    2018-04-06

    Short nucleic acid oligomers have found a wide range of applications in experimental physics, biology and medicine, and show potential for the treatment of acquired and genetic diseases. These applications rely heavily on the predictability of hybridization through Watson-Crick base pairing to allow positioning on a nanometer scale, as well as binding to the target transcripts, but also off-target binding to transcripts with partial homology. These effects are of particular importance in the development of therapeutic oligonucleotides, where off-target effects caused by the binding of mismatched sequences need to be avoided. We employ a novel method of probing DNA hybridization using optically active DNA-stabilized silver clusters (Ag-DNA) to measure binding efficiencies through a change in fluorescence intensity. In this way we can determine their location-specific sensitivity to individual mismatches in the sequence. The results reveal a strong dependence of the hybridization on the location of the mismatch, whereby mismatches close to the edges and center show a relatively minor impact. In parallel, we propose a simple model for calculating the annealing ratios of mismatched DNA sequences, which supports our experimental results. The primary result shown in this work is a demonstration of a novel technique to measure DNA hybridization using fluorescent Ag-DNA. With this technique, we investigated the effect of mismatches on the hybridization efficiency, and found a significant dependence on the location of individual mismatches. These effects are strongly influenced by the length of the used oligonucleotides. The novel probe method based on fluorescent Ag-DNA functions as a reliable tool in measuring this behavior. As a secondary result, we formulated a simple model that is consistent with the experimental data.

  3. Radiosensitivity of higher plants

    International Nuclear Information System (INIS)

    Feng Zhijie

    1992-11-01

    The general views on radiosensitivity of higher plants have been introduced from published references. The radiosensitivity varies with species, varieties and organs or tissues. The main factors of determining the radiosensitivity in different species are nucleus volume, chromosome volume, DNA content and endogenous compounds. The self-repair ability of DNA damage and chemical group of biological molecules, such as -SH thiohydroxy of proteins, are main factors to determine the radiosensitivity in different varieties. The moisture, oxygen, temperature radiosensitizer and protector are important external factors for radiosensitivity. Both the multiple target model and Chadwick-Leenhouts model are ideal mathematical models for describing the radiosensitivity of higher plants and the latter has more clear significance in biology

  4. Effects of Antisense Oligonucleotides against C-Reactive Protein on the Development of Atherosclerosis in WHHL Rabbits

    Directory of Open Access Journals (Sweden)

    Qi Yu

    2014-01-01

    Full Text Available Increased plasma levels of C-reactive protein (CRP are closely associated with cardiovascular diseases, but whether CRP is directly involved in the pathogenesis of atherosclerosis is still under debate. Many controversial and contradictory results using transgenic mice and rabbits have been published but it is also unclear whether CRP lowering can be used for the treatment of atherosclerosis. In the current study, we examined the effects of the rabbit CRP antisense oligonucleotides (ASO on the development of atherosclerosis in WHHL rabbits. CRP ASO treatment led to a significant reduction of plasma CRP levels; however, both aortic and coronary atherosclerotic lesions were not significantly changed compared to those of control WHHL rabbits. These results suggest that inhibition of plasma CRP does not affect the development of atherosclerosis in WHHL rabbits.

  5. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells

    International Nuclear Information System (INIS)

    Staab, Adrian; Einsele, Hermann; Flentje, Michael; Vordermark, Dirk; Loeffler, Jürgen; Said, Harun M; Diehlmann, Désirée; Katzer, Astrid; Beyer, Melanie; Fleischer, Markus; Schwab, Franz; Baier, Kurt

    2007-01-01

    Hypoxia-inducible factor-1 (HIF-1) overexpression has been linked to tumor progression and poor prognosis. We investigated whether targeting of HIF-1 using chetomin, a disrupter of the interaction of HIF-1 with the transcriptional coactivator p300, influences the radiosensitivity of hypoxic HT 1080 human fibrosarcoma cells. Optimal dose of chetomin was determined by EGFP-HRE gene reporter assay in stably transfected HT 1080 cells. Cells were assayed for expression of the hypoxia-inducible genes carbonic anhydrase 9 (CA9) and vascular endothelial growth factor (VEGF) by RT-PCR and for clonogenic survival after irradiation with 2, 5 or 10 Gy, under normoxic or hypoxic (0.1% O 2 , 12 h) conditions in the presence or absence of chetomin (150 nM, 12 h, pre-treatment of 4 h). Chetomin treatment significantly reduced CA9 and VEGF mRNA expression in hypoxic cells to 44.4 ± 7.2% and 39.6 ± 16.0%, respectively, of untreated hypoxic controls. Chetomin clearly reduced the modified oxygen enhancement ratio (OER') compared to untreated cells, from 2.02 to 1.27, from 1.86 to 1.22 and from 1.49 to 1.06 at the 50%, 37% and 10% clonogenic survival levels, respectively. HIF-1 inhibition by chetomin effectively reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

  6. The Dynamics of Compound, Transcript, and Protein Effects After Treatment With 2OMePS Antisense Oligonucleotides in mdx Mice

    Directory of Open Access Journals (Sweden)

    Ingrid E C Verhaart

    2014-01-01

    Full Text Available Antisense-mediated exon skipping is currently in clinical development for Duchenne muscular dystrophy (DMD to amend the consequences of the underlying genetic defect and restore dystrophin expression. Due to turnover of compound, transcript, and protein, chronic treatment with effector molecules (antisense oligonucleotides will be required. To investigate the dynamics and persistence of antisense 2′-O-methyl phosphorothioate oligonucleotides, exon skipping, and dystrophin expression after dosing was concluded, mdx mice were treated subcutaneously for 8 weeks with 100 mg/kg oligonucleotides twice weekly. Thereafter, mice were sacrificed at different time points after the final injection (36 hours–24 weeks. Oligonucleotide half-life was longer in heart (~65 days compared with that in skeletal muscle, liver, and kidney (~35 days. Exon skipping half-lives varied between 33 and 53 days, whereas dystrophin protein showed a long half-life (>100 days. Oligonucleotide and exon-skipping levels peaked in the first week and declined thereafter. By contrast, dystrophin expression peaked after 3–8 weeks and then slowly declined, remaining detectable after 24 weeks. Concordance between levels of oligonucleotides, exon skipping, and proteins was observed, except in heart, wherein high oligonucleotide levels but low exon skipping and dystrophin expression were seen. Overall, these results enhance our understanding of the pharmacokinetics and pharmacodynamics of 2′-O-methyl phosphorothioate oligos used for the treatment of DMD.

  7. The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Oh Seong

    2009-05-01

    Full Text Available Abstract Background The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC inhibitor, and the two agents combined on radiosensitivity in human colon and breast cancer cell lines. Methods In this study, we used RKO colorectal cancer cell line and MCF-7 breast cancer cell lines and normal colon cell lines. On each of the cell lines, we used three different agents: the HDAC inhibitor sodium butyrate(SB, the demethylating agent 5-Aza-2'-deoxycytidine(5-aza-DC, and radiation. We then estimated the percentage of the cell survival using the XTT method and experimented to determine if there was an augmentation in the therapeutic effect by using different combinations of the two or three of the treatment methods. Results After treatment of each cell lines with 5-aza-DC, SB and 6 grays of radiation, we observed that the survival fraction was lower after the treatment with 5-aza-DC or SB than with radiation alone in RKO and MCF-7 cell lines(p Conclusion In conclusion, 5-aza-DC and SB can enhance radiosensitivity in both MCF-7 and RKO cell lines. The combination effect of a demethylating agent and an HDAC inhibitor is more effective than that of single agent treatment in both breast and colon cancer cell lines.

  8. On the surviving fraction in irradiated multicellular tumour spheroids: calculation of overall radiosensitivity parameters, influence of hypoxia and volume effects

    International Nuclear Information System (INIS)

    Horas, Jorge A; Olguin, Osvaldo R; Rizzotto, Marcos G

    2005-01-01

    We model the heterogeneous response to radiation of multicellular tumour spheroids assuming position- and volume-dependent radiosensitivity. We propose a method to calculate the overall radiosensitivity parameters to obtain the surviving fraction of tumours. A mathematical model of a spherical tumour with a hypoxic core and a viable rim which is a caricature of a real tumour is constructed. The model is embedded in a two-compartment linear-quadratic (LQ) model, assuming a mixed bivariated Gaussian distribution to attain the radiosensitivity parameters. Ergodicity, i.e., the equivalence between ensemble and volumetric averages is used to obtain the overall radiosensitivities for the two compartments. We obtain expressions for the overall radiosensitivity parameters resulting from the use of both a linear and a nonlinear dependence of the local radiosensitivity with position. The model's results are compared with experimental data of surviving fraction (SF) for multicellular spheroids of different sizes. We make one fit using only the smallest spheroid data and we are able to predict the SF for the larger spheroids. These predictions are acceptable particularly using bounded sensitivities. We conclude with the importance of taking into account the contribution of clonogenic hypoxic cells to radiosensitivity and with the convenience of using bounded local sensitivities to predict overall radiosensitivity parameters

  9. Glyoxylic compounds as radiosensitizers of hypoxic cells

    International Nuclear Information System (INIS)

    Cornago, M.P.; Lopez Zumel, M.C.; Alvarez, M.V.; Izquierdo, M.C.

    1990-01-01

    The radiosensitizing effect of five glyoxal derivatives on the survival of TC-SV40 cells has been measured, under aerobic and hypoxic conditions. A toxicity study was previously performed in order to use nontoxic concentrations. The OER for the TC-SV40 cells was 2.74. None of the glyoxylic compounds showed radiosensitizing activity under aerobic conditions while in hypoxia their radiosensitizing factors decreased in the order phenylglyoxylic acid (1.68 at 8 x 10(-3) mole dm-3) greater than phenylglyoxal (1.55 at 5 x 10(-6) mole dm-3) greater than 2-2' furil (1.48 at 5 x 10(-5) mole dm-3) greater than glyoxylic acid (1.39 at 1 x 10(-3) mole dm-3) greater than glyoxal (1.30 at 5 x 10(-5) mole dm-3). The dose-modifying factors were also determined at two equimolar concentrations 5 x 10(-5) and 5 x 10(-6) mole dm-3. A concentration effect was noticed for all the compounds although their relative radiosensitizing activity kept, independently of the concentration, the same order noted above. Glyoxals with aromatic or heterocyclic rings exert a greater radiosensitization than the others. The acidic compounds have less radiosensitizing activity than their aldehydic counterparts. Interaction of these glyoxals with NPSH cellular groups was tested and the low degree of inhibition shows that this mechanism would contribute very little, if any, to the radiosensitization effect

  10. Effective Anti-miRNA Oligonucleotides Show High Releasing Rate of MicroRNA from RNA-Induced Silencing Complex.

    Science.gov (United States)

    Ariyoshi, Jumpei; Matsuyama, Yohei; Kobori, Akio; Murakami, Akira; Sugiyama, Hiroshi; Yamayoshi, Asako

    2017-10-01

    MicroRNAs (miRNAs) regulate gene expression by forming RNA-induced silencing complexes (RISCs) and have been considered as promising therapeutic targets. MiRNA is an essential component of RISC for the modulation of gene expression. Therefore, the release of miRNA from RISC is considered as an effective method for the inhibition of miRNA functions. In our previous study, we reported that anti-miRNA oligonucleotides (AMOs), which are composed of the 2'-O-methyl (2'-OMe) RNA, could induce the release of miRNA from RISC. However, the mechanisms underlying the miRNA-releasing effects of chemically modified AMOs, which are conventionally used as anti-cancer drugs, are still unclear. In this study, we investigated the relationship between the miRNA releasing rate from RISC and the inhibitory effect on RISC activity (IC 50 ) using conventional chemically modified AMOs. We demonstrated that the miRNA-releasing effects of AMOs are directly proportional to the IC 50 values, and AMOs, which have an ability to promote the release of miRNA from RISC, can effectively inhibit RISC activity in living cells.

  11. Modification of radiation effects on E. coli B/r and a radiosensitive mutant Bsub(s-1) by membrane-binding drugs

    International Nuclear Information System (INIS)

    Yonei, S.

    1979-01-01

    In this study, the effects of chlorpromazine, procaine and quinidine on the X-radiation effects on Escherichia coli B/r and its radiosensitive mutant Bsub(s-1) (which is genetically unable to repair radiation damage to DNA) were examined. At chlorpromazine concentrations > = 25 mM, there was loss of colony-forming ability in both strains. Chlorpromazine (0.1 mM) markedly sensitized E. coli B/r under hypoxic conditions of irradiation but not under oxic conditions. There was no significant radiosensitization by chlorpromazine (0.1-1.0mM) in E. coli Bsub(s-1) under either oxic or hypoxic conditions. Similar results were obtained when procaine and quinidine were used as 'membrane-binding radiosensitizers'. Thus these results suggested that radiosensitization by such drugs in E. coli B/r was the result of inhibition of post-irradiation DNA repair in cells. It was concluded that the inhibition of DNA repair could be a secondary consequence of cell membrane alterations or damage caused by the membrane-binding of these drugs. (UK)

  12. On the effect of certain mutations on the radiosensitivity of haploid and diploid yeast cells

    International Nuclear Information System (INIS)

    Sokurova, E.N.; Korogodin, V.I.

    1978-01-01

    Mutation ade 1-6 in haploid cell Saccharomyces cerevisiae increases half as much against radioresistance of cells. Diploid cells lacking in adenine, homozygous by ade 1-6 mutation, are nearly twice as radiosensitive as prototrophic cells. Hence ade 1-6 mutation increases radioresistance of haploid cells and decreases that of diplois. These changes in radioresistance are not connected with variations in the extrapolation number of survival curve, the ability of cells to recover from radiation damages upon cultivation in an innutrient medium, and with the inactivation form ratio. Lack of adenine influences the radioresistance of diploid yeast irrespective of whether it is or it is not affected by homo- or heterozygosity by the locus of mating type

  13. Radiosensitizing effect of artesunate on nude mice transplanted with HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Zhou Yuanyuan; Feng Yang; Zhang Xuguang; Zhu Wei; Ni Qianying; Geng Chong; Chen Guanglie; Luo Judong; Fan Saijun; Cao Jianping

    2011-01-01

    Objective: To investigate the radiosensitization of artesunate on nude mouse transplanted with HeLa cells,and to explore its possible mechanisms. Methods: HeLa cells were inoculated into the nude mice to establish tumor model. Mice were randomly divided into 4 groups as blank control,artesunate group, radiation group and artesunate + radiation group when average volume of tumor were about 5 mm × 5 mm× 5 mm. During the term of treatment, the volume of tumors were measured every 2 days. After 14 days treatment, the mice were killed and tumor tissues were harvested for flow cytometry to detect the alteration of cell cycle. Meanwhile, the pathological change of the tumor tissue was observed with HE staining method, and the change of expression of cycle regulatory protein Cyclin B1, Cdc2 and Wee1 were detected by Western blot. Results: The growth of tumor was significantly inhibited by artesunate combined with radiation and its inhibition rate was 72.34%. Flow cytometry results showed that the percent of cells in G 1 phase increased and G 2 phase decreased in the artesunate + radiation group compared with those in irradiation group (t=4.41, 4.12, P<0.05). The expression level of Cyclin B1 was obviously increased while that of Wee1 decreased in the artesunate + radiation compared with irradiation group. There was no difference in the expression of Cdc2 among the four groups. Conclusions: Artesunate can dramatically increase the radiosensitivity of transplanted tumor of HeLa cells. The possible mechanism might be related to the decreasing G 2 phase by regulating the expression of Cyclin B1 and Wee1. (authors)

  14. Effect of alpha-tocopherol and alpha-tocopheryl quinone on the radiosensitivity of thiol-depleted mammalian cells

    International Nuclear Information System (INIS)

    Hodgkiss, R.J.; Stratford, M.R.; Watfa, R.R.

    1989-01-01

    The effect of hypoxic cell radiosensitizers is increased when mammalian cells are depleted of endogenous glutathione by buthionine sulphoximine pre-treatment in vitro; a similar gain has not been observed in tumors in vivo despite evidence of glutathione depletion in vivo following buthionine sulphoximine treatment. However, concentrations of biological reducing agents other than glutathione were not measured in the in vivo experiments. Other reducing agents found in tumors include alpha-tocopherol, which reduces the sensitizing efficiency of nitro-aromatic sensitizers in thiol-depleted mammalian cells. These data suggest that the failure to observe large gains in misonidazole sensitizing efficiency in thiol-depleted tumors in vivo may be due, in part, to the presence of biological reducing agents such as alpha-tocopherol

  15. Effects of x rays on histogenesis of abnormal epidermis and age dependency of radiosensitivity during metamorphosis of the flesh fly, Sarcophaga peregrina

    International Nuclear Information System (INIS)

    Sasaki, S.; Sakka, M.

    1978-01-01

    Effects of x rays on metamorphosis of the abdominal epidermis in the flesh fly, Sarcophaga peregrina, and age dependence of radiosensitivity were studied. The imaginal epidermis of abdomen is formed from the histoblast nests, which are composed of undifferentiated tiny cells lying between large larval epidermal cells. There were two types of effects of x rays: (1) the arrest of metamorphosis including degeneration of larval epidermal cells and histogenesis of imaginal epidermis; (2) partial deficit of imaginal epidermis at the final stage of development. It was suggested that the second type of effect was brought about by a decrease in the number of abdominal histoblasts caused by x rays. Age dependency of radiosensitivity on the second type of effect was examined in detail, and it was shown that the most sensitive stage occurred just before transition to a highly radiation-resistant period

  16. Membrane specific drugs as radiosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    George, K.C.; Mishra, K.P.; Shenoy, M.A.; Singh, B.B.; Srinivasan, V.T.; Verma, N.C.

    1981-01-01

    Procaine, paracetamol, and chlorpromazine showed inhibition of post irradiation repair. The chlorpromazie effect could be further augmented by treatment of cells with procaine. Chlorpromazine was also found to be preferentially toxic to hypoxid bacterial cells, and the survivors showed extreme radiosensitivity to gamma rays. Chlorpromazine was found to inhibit tumour growth in swiss mice when given intraperitoneally as well as when injected directly into the tumour. When combined with single x-ray doses, significant radiosensitization was observed in two in vivo tumours sarcoma 180A and fibrosarcoma. These results indicated that chlorpromazine may prove a good drug for combined chemo-radiotherapy of solid tumours. Investigations continued studying various aspects such as effectiveness in other tumour lines, distribution in healthy and tumour bearing animals, hyperthermia and drug combination effects, and encapsulation of the drug in artificial liposomes and blood cells. (ERB)

  17. Five-chlorodeoxycytidine, a tumor-selective enzyme-driven radiosensitizer, effectively controls five advanced human tumors in nude mice

    International Nuclear Information System (INIS)

    Greer, Sheldon; Alvarez, Marcy; Mas, Marisol; Wozniak, Chandra; Arnold, David; Knapinska, Anna; Norris, Christina; Burk, Ronald; Aller, Alex; Dauphinee, Michael

    2001-01-01

    Purpose: The study's goals were as follows: (1) to extend our past findings with rodent tumors to human tumors in nude mice, (2) to determine if the drug protocol could be simplified so that only CldC and one modulator, tetrahydrouridine (H 4 U), would be sufficient to obtain efficacy, (3) to determine the levels of deoxycytidine kinase and dCMP deaminase in human tumors, compared to adjacent normal tissue, and (4) to determine the effect of CldC on normal tissue radiation damage to the cervical spinal cord of nude mice. Methods and Materials: The five human tumors used were as follows: prostate tumors, PC-3 and H-1579; glioblastoma, SF-295; breast tumor, GI-101; and lung tumor, H-165. The duration of treatment was 3-5 weeks, with drugs administered on Days 1-4 and radiation on Days 3-5 of each week. The biomodulators of CldC were N-(Phosphonacetyl)-L-aspartate (PALA), an inhibitor of aspartyl transcarbamoylase, 5-fluorodeoxycytidine (FdC), resulting in tumor-directed inhibition of thymidylate synthetase, and H 4 U, an inhibitor of cytidine deaminase. The total dose of focused irradiation of the tumors was usually 45 Gy in 12 fractions. Results: Marked radiosensitization was obtained with CldC and the three modulators. The average days in tumor regrowth delay for X-ray compared to drugs plus X-ray, respectively, were: PC-3 prostate, 42-97; H-1579 prostate, 29-115; glioblastoma, 5-51; breast, 50-80; lung, 32-123. Comparative studies with PC-3 and H-1579 using CldC coadministered with H 4 U, showed that both PALA and FdC are dispensable, and the protocol can be simplified with equal and possibly heightened efficacy. For example, PC-3 with X-ray and (1) no drugs, (2) CldC plus the three modulators, (3) a high dose of CldC, and (4) escalating doses of CldC resulted in 0/10, 3/9, 5/10, and 6/9 cures, respectively. The tumor regrowth delay data followed a similar pattern. After treating mice only 1((1)/(2)) weeks with CldC + H 4 U, 92% of the PC-3 tumor cells were found

  18. Radiosensitivity of primary cultured fish cells with different ploidy

    International Nuclear Information System (INIS)

    Mitani, Hiroshi; Egami, Nobuo; Kobayashi, Hiromu.

    1986-01-01

    The radiosensitivity of primary cultured goldfish cells (Carassius auratus) was investigated by colony formation assay. The radiosensitivity of cells from two varieties of goldfish, which show different sensitivity to lethal effect of ionizing radiation in vivo, was almost identical. Primary cultured cells from diploid, triploid and tetraploid fish retained their DNA content as measured by microfluorometry, and the nuclear size increases as ploidy increases. However, radiosensitivity was not related to ploidy. (author)

  19. Radiosensitivity of fingermillet genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Raveendran, T S; Nagarajan, C; Appadurai, R; Prasad, M N; Sundaresan, N [Tamil Nadu Agricultural Univ., Coimbatore (India)

    1984-07-01

    Varietal differences in radiosensitivity were observed in a study involving 4 genotypes of fingermillet (Eleusine coracana (Linn.) Gaertn.) subjected to gamma-irradiation. Harder seeds were found to tolerate a higher dose of the mutagen.

  20. Effect of gonadotropin secretion rate on the radiosensitivity of the rat luteinizing hormone-releasing hormone neuron and gonadotroph

    International Nuclear Information System (INIS)

    Winterer, J.; Barnes, K.M.; Lichter, A.S.; Deluca, A.M.; Loriaux, D.L.; Cutler, G.B. Jr.

    1988-01-01

    To test the hypothesis that the functional state of hypothalamic LHRH neurons and pituitary gonadotrophs might alter their radiosensitivity, we determined the experimental conditions under which the gonadotropin response to castration could be impaired by a single dose of cranial irradiation. Single doses of cranial irradiation greater than 2000 rads were lethal to unshielded rats. Shielding of the oropharynx and esophagus allowed the animals to survive doses up to 5000 rads. Doses between 2000 and 5000 rads had no effect on basal gonadotropin levels for as long as 3 months after irradiation. Irradiation caused a dose- and time-dependent impairment, however, in the gonadotropin response to castration. Impairment of the gonadotropin levels of castrate animals occurred in animals that were irradiated either before or after castration. However, rats irradiated in the castrate state showed a decreased susceptibility to irradiation damage. Additionally, stimulation of the pituitary by LHRH agonist (LHRHa) 3 h before irradiation significantly reduced the impairment of gonadotropin secretion 12-20 weeks after irradiation (P less than 0.05). Thus, increased functional activity of the rat hypothalamus or pituitary at the time of irradiation, induced by either castration or acute LHRHa administration, was associated with some protection against the gonadotropin-lowering effect of irradiation. Based upon these data, we hypothesize that stimulation of gonadotropin secretion at the time of therapeutic cranial irradiation in humans might protect against subsequent impairment of gonadotropin secretion

  1. Far-UV-induced dimeric photoproducts in short oligonucleotides: sequence effects

    International Nuclear Information System (INIS)

    Douki, T.; Zalizniak, T.; Cadet, J.

    1997-01-01

    Cyclobutane pyrimidine dimers and pyrimidine (6-4)pyrimidone adducts represent the two major classes of far-UV-induced DNA photoproducts. Because of the lack of appropriate detection methods for each individual photoproduct, little is known about the effect of the sequence on their formaiton. In the present work, the photoproduct distribution obtained upon exposure of a series of dinucleoside monophosphate to 254 nm light was determined. (author)

  2. DNA oligonucleotide duplexes containing intramolecular platinated cross-links: energetics, hydration, sequence, and ionic effects.

    Science.gov (United States)

    Kankia, Besik I; Soto, Ana Maria; Burns, Nicole; Shikiya, Ronald; Tung, Chang-Shung; Marky, Luis A

    2002-11-05

    The anticancer activity of cisplatin arises from its ability to bind covalently to DNA, forming primarily intrastrand cross-links to adjacent purine residues; the most common adducts involve d(GpG) (65%) and d(ApG) (25%) intrastrand cross-links. The incorporation of these platinum adducts in a B-DNA helix induces local distortions, causing bending and unwinding of the DNA. In this work, we used temperature-dependent UV spectroscopy to investigate the unfolding thermodynamics, and associated ionic effects, of two sets of DNA decamer duplexes containing either cis-[Pt(NH(3))(2)[d(GpG

  3. Studies on Drosophila radiosensitivity strains

    International Nuclear Information System (INIS)

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.U.

    1985-01-01

    Fertility of radiosensitive mutant drosophila female strain rad (2) 201 61 after irradiation and frequency of dominant lethal mutations (DLM), induced by γ-radiation for 0-5 h and 5-7 days, are investigated. It is shown, that oocytes of the mutant strain are more radiosensitive as compared with cells of mongrel flies as to criterion of DLM appearance over the period of maturing. Early oocytes of stages 2-7 are the most sensitive, i.e. at the stages, corresponding to the manifestation of previously established recombination-defective properties of mutations rad (2) 201 61 . It is also sown, that doses of γ-rays, exceeding 10 Gy produce a strong sterilizing effect on mutant females due to destruction and resorption of egg chambers, irradiated at the stages of previtellogenetic growth of oocytes. In females, carrying mutation of radiosensitivity there is no direct correlation betwen sensitivity of oocytes proper to DLM induction and sensitivity of egg folleicles to resorbing effect of γ-rays. The ways of possible involvement of mutant locus studied into genetic processes in various specialized cells of drosophila

  4. Clinical studies on radiosensitization of cervical cancer by cisplatinum

    International Nuclear Information System (INIS)

    Yu Shiying; Chen Yuan; Xu Zhiqiang

    1993-01-01

    A prospective randomized clinical trial on the radiosensitizing effect of cisplatinum was carried out in 60 patients with cervical cancer, of whom 30 were given cisplatinum in combination with radiotherapy (radiosensitizing group) and the remaining 30 radiotherapy alone (control group). The results showed that the length of time of immediate CR and PR was shorter in the radiosensitizing group than in the control group. The sensitive enhancement ratio was 1.846. No toxicity was observed in the radiosensitizing group, and the treatment was well tolerated by the patients

  5. The primary study of the radiosensitive effect on the H460 cell line by human lactotransferrin high expression in vitro

    International Nuclear Information System (INIS)

    Wang Yong; Wang Yan; Du Liqing; Yang Qingshan; Wang Yueying; Fan Feiyue

    2009-01-01

    Objective: To investigate the possible radiosensitive effect of human Lactotransferrin (hLF) high expression in lung cancer cell, we hereby constructed and transfected a recombinant vector pBC1 containing exogenous hLF gene. Methods: Firstly the recombinant plasmid pBC1-hLF was transferred into H460 and the hLF expression was evaluated by western blotting. Then we test the cell viability, apoptosis and clone formation after radiation along with the standard hLF treatment control. Results: The results showed that the hLF gene had been successfully transfect into H460 cells and hLF high expression can reduce the clone formation after radiation (P<0.01), and inhibit the cell proliferation with induced apoptosis (P<0.01). And the sensitization ratio of hLF treated and pBC1-hLF transfected were 1.29, 1.59. Conclusion: Our primary data shows that hLF high expression can radio sensitize the H460 cell in vitro. (authors)

  6. Thermo-radiosensitivity of the granulocyte and macrophage precursor cells of mice. I I . - X- irradiation effects and influence of hyperthermia on the radiosensitivity; Termo-radiosensibilidad del precursor hematopoyetico que origina las series granulocitica y macrofaga de raton. II. - Efectos producidos por la radiacion X e influencia de la hipertermia sobre la radiosensibilidad celular

    Energy Technology Data Exchange (ETDEWEB)

    Bueren, J A; Nieto, M

    1983-07-01

    The effects of the X-irradiation on the viability of the granulocyte-macrophage precursors, has been determined by means of the agar diffusion chamber culture technique. The results show the high radiosensitivity of these cells, with survival parameter similar to those previously reported in the literature about different granulocyte-macrophage precursors. When a hyperthermic treatment is performed prior to the X-irradiation, a radiosensitization phenomenon is observed due to the synergism existent between hyperthermia and X rays on the lethality of the precursors. (Authors) 37 refs.

  7. Radiosensitivity in ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Lavin, M.F.; Khanna, K.K.; Watters, D.

    1998-01-01

    Full text: Radiosensitivity is a major hallmark of the human genetic disorder ataxia-telangiectasia. This hypersensitivity to ionizing radiation has been demonstrated in vitro after exposure of patients to therapeutic thought to be the major factor contculture. Clearly an understanding of the nature of the molecular defect in ataxia-telangiectasia will be of considerable assistance in delineating additional pathways that determine cellular radiosensitivity/radioresistance. Furthermore, since patients with this syndrome are also predisposed to developing a number of leukaemias and lymphomas the possible connection between radiosensitivity and cancer predisposition is of interest. Now that the gene (ATM) responsible for this genetic disease has been cloned and identified, progress is being made in determining the role of the ATM protein in mediating the effects of cellular exposure to ionizing radiation and other forms of redox stress. Proteins such as the product of the tumour suppressor gene p53 and the proto-oncogene c-Abl (a protein tyrosine kinase) have been shown to interact with ATM. Since several intermediate steps in both the p53 and c-Abl pathways, activated by ionizing radiation, are known it will be possible to map the position of ATM in these pathways and describe its mechanism of action. What are the clinical implications of understanding the molecular basis of the defect in ataxia-telangiectasia? As outlined above since radiosensitivity is a universal characteristic of A-T understanding the mechanism of action of ATM will provide additional information or radiation signalling in human cells. With this information it may be possible to sensitize tumour cells to radiation and thus increase the therapeutic benefit of radiotherapy. This might involve the use of small molecules that would interfere with the normal ATM controlled pathways and thus sensitize cells to radiation or alternatively it might involve the efficient introduction of ATM anti-sense c

  8. Radiosensitivity in ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, M.F. [Royal Brisbane Hospital, QLD (Australia). Queensland Institute of Medical Research and The Department of Surgery; Khanna, K.K.; Watters, D. [Royal Brisbane Hospital, QLD (Australia). Queensland Institute of Medical Research

    1998-12-31

    Full text: Radiosensitivity is a major hallmark of the human genetic disorder ataxia-telangiectasia. This hypersensitivity to ionizing radiation has been demonstrated in vitro after exposure of patients to therapeutic thought to be the major factor contculture. Clearly an understanding of the nature of the molecular defect in ataxia-telangiectasia will be of considerable assistance in delineating additional pathways that determine cellular radiosensitivity/radioresistance. Furthermore, since patients with this syndrome are also predisposed to developing a number of leukaemias and lymphomas the possible connection between radiosensitivity and cancer predisposition is of interest. Now that the gene (ATM) responsible for this genetic disease has been cloned and identified, progress is being made in determining the role of the ATM protein in mediating the effects of cellular exposure to ionizing radiation and other forms of redox stress. Proteins such as the product of the tumour suppressor gene p53 and the proto-oncogene c-Abl (a protein tyrosine kinase) have been shown to interact with ATM. Since several intermediate steps in both the p53 and c-Abl pathways, activated by ionizing radiation, are known it will be possible to map the position of ATM in these pathways and describe its mechanism of action. What are the clinical implications of understanding the molecular basis of the defect in ataxia-telangiectasia? As outlined above since radiosensitivity is a universal characteristic of A-T understanding the mechanism of action of ATM will provide additional information or radiation signalling in human cells. With this information it may be possible to sensitize tumour cells to radiation and thus increase the therapeutic benefit of radiotherapy. This might involve the use of small molecules that would interfere with the normal ATM controlled pathways and thus sensitize cells to radiation or alternatively it might involve the efficient introduction of ATM anti-sense c

  9. Poster - 14: Batch Effect Reduction in in-vitro Raman Microscopic Radiosensitivity Study Using Ovarian Cancer Cells

    International Nuclear Information System (INIS)

    Moradi, Hamid; Murugkar, Sangeeta; Ahmad, Abrar; Shepherdson, Dean; Nyiri, Balazs; Vuong, Nhung; Niedbala, Gosia; Vanderhyden, Barbara; Eapen, Libni

    2016-01-01

    Purpose: To improve classification by reducing batch effect in samples from the ovarian carcinoma cell lines A2780s (parental wild type) and A2780cp (cisplatin cross-radio-resistant), before, right after, and 24 hours after irradiation to 10Gy. Methods: Spectra were acquired with a home built confocal Raman microscope in 3 distinct runs of six samples: unirradiated s&cp (control pair), then 0h and 24h after irradiation. The Raman spectra were noise reduced, then background subtracted with SMIRF algorithm. ∼35 cell spectra were collected from each sample in 1024 channels from 700cm-1 to 1618cm-1. The spectra were analyzed by regularized multiclass LDA. For feature reduction the spectra were grouped into 3 overlapping group pairs: s-cp, 0Gy–10Gy0h and 0Gy10–Gy24h. The three features, the three differences of the mean spectra were mapped to the analysis sub-space by the inverse regularized covariance matrix. The batch effect noticeably confounded the dose and time effect. Results: To remove the batch effect, the 2+2=4D subspace extended by the covariance matrix of the means of the 0Gy control groups was subtracted from the spectra of each sample. Repeating the analysis on the spectra with the control group variability removed, the batch effect was dramatically reduced in the dose and time directions enabling sharp linear discrimination. The cell type classification also improved. Conclusions: We identified a efficient batch effect removal technique crucial to the applicability of Raman microscopy to radiosensitivity studies both on cell cultures and potential clinical diagnostic applications.

  10. Poster - 14: Batch Effect Reduction in in-vitro Raman Microscopic Radiosensitivity Study Using Ovarian Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Hamid; Murugkar, Sangeeta; Ahmad, Abrar; Shepherdson, Dean; Nyiri, Balazs; Vuong, Nhung; Niedbala, Gosia; Vanderhyden, Barbara; Eapen, Libni [Carleton University, Carleton University, Carleton University, Carleton University, The Ottawa Hospital Cancer Centre, University of Ottawa, The Ottawa Hospital Cancer Centre, University of Ottawa, The Ottawa Hospital Cancer Centre (Canada)

    2016-08-15

    Purpose: To improve classification by reducing batch effect in samples from the ovarian carcinoma cell lines A2780s (parental wild type) and A2780cp (cisplatin cross-radio-resistant), before, right after, and 24 hours after irradiation to 10Gy. Methods: Spectra were acquired with a home built confocal Raman microscope in 3 distinct runs of six samples: unirradiated s&cp (control pair), then 0h and 24h after irradiation. The Raman spectra were noise reduced, then background subtracted with SMIRF algorithm. ∼35 cell spectra were collected from each sample in 1024 channels from 700cm-1 to 1618cm-1. The spectra were analyzed by regularized multiclass LDA. For feature reduction the spectra were grouped into 3 overlapping group pairs: s-cp, 0Gy–10Gy0h and 0Gy10–Gy24h. The three features, the three differences of the mean spectra were mapped to the analysis sub-space by the inverse regularized covariance matrix. The batch effect noticeably confounded the dose and time effect. Results: To remove the batch effect, the 2+2=4D subspace extended by the covariance matrix of the means of the 0Gy control groups was subtracted from the spectra of each sample. Repeating the analysis on the spectra with the control group variability removed, the batch effect was dramatically reduced in the dose and time directions enabling sharp linear discrimination. The cell type classification also improved. Conclusions: We identified a efficient batch effect removal technique crucial to the applicability of Raman microscopy to radiosensitivity studies both on cell cultures and potential clinical diagnostic applications.

  11. A phase III multicenter trail of radiosensitizing effect and safety of sodium glycididazole in thoracic esophageal squamous carcinoma

    International Nuclear Information System (INIS)

    Qin Shangbin; Wang Yadi; Yang Junquan; Wang Xiaohu; Li Haibin; Yang Zhiyong; Yu Hong; Li Xueying; Gao Xianshu

    2012-01-01

    Objective: To evaluate the efficacy and clinical safety glycididazole (CMNa) in thoracic esophageal squamous carcinoma. Methods: From June 1, 2008 to October 13, 2009, 66 pathologically proved thoracic esophageal squamous carcinoma (stage II a -III, stage IV with metastases only in supraclavicular lymph nodes, by AJCC 6 th ed) were randomized into radiotherapy plus CMNa (A) or radiotherapy plus placebo (B) group. Radiotherapy was given by conventional schedule: 1.8-2.0 Gy per fraction, 5 times per week to a total dose of 66 Gy/6.6-7.2 w. CMNa was given intravenously 800 mg/m 2 3 times a week in solution of 100 ml saline within 30 minutes. Radiotherapy was started 30-60 minutes after completion of infusion. Patients of Group B received placebo in saline solution. A total of 66 patients were enrolled (Group A: 32; Group B: 34), and four patients were unanalyzable, remaining 31 patients in each Group. Baseline factors were balanced. Results: Follow-up rate was 97%. Group A vs. Group B: the overall response rate was 93.5% vs. 67.7% (χ 2 =6.61, P=0.01), 2-year overall survival was 39.9% vs. 29.9% (χ 2 = 0.62, P=0.433), 2-year cancer specific survival was 43.1% vs. 26.8% (χ 2 = 0.30, P=0.878), and 2-year progression-free survival was 30.1% vs. 27.9% (χ 2 = 0.02, P=0.586). No severe side effects observed. All patients tolerated CMNa infusion well. Conclusions: CMNa is tolerable and effective as a hypoxic radiosensitizer, and its combination with radiotherapy can improve short term effect. However, survival is not improved within our follow-up period. (authors)

  12. The radiosensitizing effect of Ku70/80 knockdown in MCF10A cells irradiated with X-rays and p(66)+Be(40) neutrons.

    Science.gov (United States)

    Vandersickel, Veerle; Mancini, Monica; Slabbert, Jacobus; Marras, Emanuela; Thierens, Hubert; Perletti, Gianpaolo; Vral, Anne

    2010-04-27

    A better understanding of the underlying mechanisms of DNA repair after low- and high-LET radiations represents a research priority aimed at improving the outcome of clinical radiotherapy. To date however, our knowledge regarding the importance of DNA DSB repair proteins and mechanisms in the response of human cells to high-LET radiation, is far from being complete. We investigated the radiosensitizing effect after interfering with the DNA repair capacity in a human mammary epithelial cell line (MCF10A) by lentiviral-mediated RNA interference (RNAi) of the Ku70 protein, a key-element of the nonhomologous end-joining (NHEJ) pathway. Following irradiation of control and Ku-deficient cell lines with either 6 MV X-rays or p(66)+Be(40) neutrons, cellular radiosensitivity testing was performed using a crystal violet cell proliferation assay. Chromosomal radiosensitivity was evaluated using the micronucleus (MN) assay. RNAi of Ku70 caused downregulation of both the Ku70 and the Ku80 proteins. This downregulation sensitized cells to both X-rays and neutrons. Comparable dose modifying factors (DMFs) for X-rays and neutrons of 1.62 and 1.52 respectively were obtained with the cell proliferation assay, which points to the similar involvement of the Ku heterodimer in the cellular response to both types of radiation beams. After using the MN assay to evaluate chromosomal radiosensitivity, the obtained DMFs for X-ray doses of 2 and 4 Gy were 2.95 and 2.66 respectively. After neutron irradiation, the DMFs for doses of 1 and 2 Gy were 3.36 and 2.82 respectively. The fact that DMFs are in the same range for X-rays and neutrons confirms a similar importance of the NHEJ pathway and the Ku heterodimer for repairing DNA damage induced by both X-rays and p(66)+Be(40) neutrons. Interfering with the NHEJ pathway enhanced the radiosensitivity of human MCF10A cells to low-LET X-rays and high-LET neutrons, pointing to the importance of the Ku heterodimer for repairing damage induced by both

  13. ADPRT inhibitors and hyperthermia as radiosensitizers

    International Nuclear Information System (INIS)

    Jonsson, G.G.

    1985-01-01

    Hyperthermia given in combination with gamma radiation has given considerable improvement in the therapeutic results for treatment of malignant tumors. The mechanism behind the hyperthermia effect is probably operative at the tissue level as well as at the molecular level. The metabolism of NAD + in relation to the activity of the chromosomal enzyme ADP-ribosyl transferase (ADPRT) has been studied as a possible molecular mechanism for this effect. The ADPRT activity was measured after radiosensitization with both hyperthermia and nicotinamide, which is a potent inhibitor of ADPRT. The results indicate that hyperthermia can improve the effect of radiotherapy by reducing the supply of NAD + , which is a co-substrate for ADPRT, while nicotinamide functions as a radiosensitizing agent by direct inhibition of the enzyme. The hypothesis is discussed in the thesis where inhibition of ADPRT might increase the radiosensitivity because the radiation-induced DNA damage can not be repaired with normal efficiency. The function of nicotinamide as a radiosensitizer was verified by studies on C3H mice with transplanted spontaneous mammary tumors. Because nicotinamide is not toxic, it seems quite attractive to test this vitamin as a radiosensitizing agent against human tumors. (251 refs.) (author)

  14. Sensing radiosensitivity of human epidermal stem cells

    International Nuclear Information System (INIS)

    Rachidi, Walid; Harfourche, Ghida; Lemaitre, Gilles; Amiot, Franck; Vaigot, Pierre; Martin, Michele T.

    2007-01-01

    Purpose: Radiosensitivity of stem cells is a matter of debate. For mouse somatic stem cells, both radiosensitive and radioresistant stem cells have been described. By contrast, the response of human stem cells to radiation has been poorly studied. As epidermis is a radiosensitive tissue, we evaluated in the present work the radiosensitivity of cell populations enriched for epithelial stem cells of human epidermis. Methods and materials: The total keratinocyte population was enzymatically isolated from normal human skin. We used flow cytometry and antibodies against cell surface markers to isolate basal cell populations from human foreskin. Cell survival was measured after a dose of 2 Gy with the XTT assay at 72 h after exposure and with a clonogenic assay at 2 weeks. Transcriptome analysis using oligonucleotide microarrays was performed to assess the genomic cell responses to radiation. Results: Cell sorting based on two membrane proteins, α6 integrin and the transferrin receptor CD71, allowed isolation of keratinocyte populations enriched for the two types of cells found in the basal layer of epidermis: stem cells and progenitors. Both the XTT assay and the clonogenic assay showed that the stem cells were radioresistant whereas the progenitors were radiosensitive. We made the hypothesis that upstream DNA damage signalling might be different in the stem cells and used microarray technology to test this hypothesis. The stem cells exhibited a much more reduced gene response to a dose of 2 Gy than the progenitors, as we found that 6% of the spotted genes were regulated in the stem cells and 20% in the progenitors. Using Ingenuity Pathway Analysis software, we found that radiation exposure induced very specific pathways in the stem cells. The most striking responses were the repression of a network of genes involved in apoptosis and the induction of a network of cytokines and growth factors. Conclusion: These results show for the first time that keratinocyte

  15. Knock-down of miR-221 and miR-222 in the radiosensitization of breast cancer cells

    International Nuclear Information System (INIS)

    Zhang Chunzhi; Kang Chunsheng; Cao Yongzhen; Pu Peiyu; Lu Zhonghong; Du Yue

    2009-01-01

    Objective: To investigate the radiosensitizing effect of knock-down of miR-221 miR-222 on MCF-7 human breast cancer cells and explore the possible mechanism. Methods: Antisense oligonucleotides of miR-221 and miR-222 (AS-miR-221 and AS-miR-222), mediated by lipofectamine, were transfected to MCF-7 cells to knock down miR-221 and miR-222, Northern blotting was conducted to detect the expression of miR-221 and miR-222 in transfected cells. The cell apoptosis was detected by flow cytometry and Caspase-3 and Caspase-7 activity assay. Clonogenic assay was used to measure the sensitizing enhancement ratio. Target genes of miR-221 and miR-222 relevant to radio-sensitivity were searched using bioinformatics analysis. The targeted protein expression was determined by Western blot analysis. Results: The expression of miR-221 and miR-222 in the AS-miR-221/222 cells determined by Northern blotting was significantly reduced. Compared with the control group, the cell apoptosis and mitotic cell death after the radiation were significantly higher in AS-miR-221/222 cells. The sensitizing enhancement ratio was 1.87. Based on bioinformatics analysis, PTEN was a target gene of miR-221 and miR-222 which could enhance the radiosensitivity of MCF-7 cells. In AS-miR-221/222 cells, the expression of PTEN was up-regulated while pAkt down-regulated. Conclusions: AS-miR-221 and AS-miR-222 may enhance the radiosensitivity of MCF-7 breast cancer cells by up-regulating the expression of PTEN. (authors)

  16. Enhancement of the radiation-lethal effect of hypoxic cancer cells by some nitroheterocyclic compounds. Part of a coordinated programme on the improvement of radiotherapy of cancer using modifiers of radiosensitivity of cells

    International Nuclear Information System (INIS)

    Chiricuta, I.

    1981-12-01

    The possibilities to enhance the lethal effect of ionizing radiation on hypoxic cells by electron-affinic compounds have stimulated the investigations for finding new chemicals with radiobiological and pharmacological features as adequate as possible. On the other hand, the experimental studies and clinical trials had shown that the aerobic toxicity seems to be the major limiting factor in the use of large doses of radiosensitizers required to achieve significant therapeutic efficiency. The investigations in the present paper were attempted to join these two main directions of research and comprised the syntheses of new nitroheterocyclic compounds with potential radiosensitization properties and the knowledge of biochemical alterations involved in the producing of aerobic toxicity of radiosensitizers aiming to find practical solutions to enhance the efficiency of radiotherapy. Several newly synthesized compounds were tested for their radiosensitizing effect. The experiments carried out on hypoxic cells V 79 showed that only 1-(hydroxyethyl-2'-phosphate)-2-methyl-5-nitroimidazole, dipotassium salt displayed an enhancement ratio of 1.17 (at 8 mM), but lower than in case of parent compound, metronidazole (enhancement ratio = 1.53). It was shown that hypoxic cell radiosensitizers interfere with the cellular energy metabolism. These interferences were found dependent on the electron affinity of drugs. In addition, those radiosensitizers producing a decrease in oxygen consumption caused a supplementary oxygenation of both normal and tumour tissues. It is concluded that the improvement of therapeutic efficiency of radiosensitizers by reducing their aerobic toxicity might be achieved by diminishing their effects on the energy metabolism or by the stimulation of this metabolism and restoration of tissue redox equilibrium

  17. Effects of serum starvation on radiosensitivity, proliferation and apoptosis in four human tumor cell lines with different p53 status

    International Nuclear Information System (INIS)

    Oya, N.; Zoelzer, F.; Werner, F.; Streffer, C.

    2003-01-01

    Purpose: The effects of serum starvation on radiation sensitivity, cell proliferation and apoptosis were investigated with particular consideration of the p53 status. Material and Methods: Four human tumor cell lines, Be11 (melanoma, p53 wild-type), MeWo (melanoma, p53 mutant), 4197 (squamous cell carcinoma, p53 wild-type) and 4451 (squamous cell carcinoma, p53 mutant), were used. After the cells had been incubated in starvation medium (0.5% FCS) for 1-6 days, changes in cell cycle distribution, induction of apoptosis and necrosis, and changes in radiation sensitivity were assessed by two-parameter flow cytometric measurements of DNA content/BrdU labeling, two-parameter flow cytometric measurements of DNA-dye-exclusion/Annexin V binding, and a conventional colony assay, respectively. Results: p53 wild-type cell lines showed a decrease in the BrdU labeling index and an increase in the apoptotic cell frequency in starvation medium. p53 mutant cell lines showed a decrease in the BrdU labeling index but no evidence of apoptosis. These cells went into necrosis instead. The radiation sensitivity was increased in 4451 and slightly decreased in Be11 and 4197 in starvation medium. Conclusion: These data suggest a functional involvement of p53 in starvation-induced G1-block and apoptosis in tumor cells. Altered radiosensitivity after culture in starvation medium seemed to be explained at least in part by the starvation-induced G1-block. The frequency of starvation-induced apoptosis or necrosis was not correlated with radiation sensitivity. (orig.)

  18. Effect of DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine on radiosensitivity of the human lung cancer cells in three-dimensional culture

    International Nuclear Information System (INIS)

    Pan Dong; Xue Gang; Li Xiaoman; Chen Yaxiong; Ren Zhenxin; Du Yarong; Hu Burong

    2014-01-01

    5-Aza-CdR is a specific inhibitor of DNMTs which could suppress tumor growth by demethylation of genomic DNA. There have only few studies thus far concerning it as radiosensitizers in three-dimensional (3D) cells. The principal aim of this study is to evaluate the effects of 5-Aza-CdR on the radiosensitivity of A549 cells in monolayer (2D) and 3D cultures in an attempt to find out a new combination treatments with radiotherapy. The cell proliferation was detected by MTT assay after pretreated with different doses of 5-Aza-CdR for 72 h. A549 cells were treated with or without 5-Aza-CdR (2, 5 μmol/L) for 72 h before be exposed to X-rays of 1, 2, 4, 6 Gy, respectively. The DNA damage was evaluated by micronucleus assay and clonogenic assays. Pretreatment with 5-Aza-CdR inhibited the A549 cell proliferation significantly. More micronucleus were observed after irradiation in 3D cells pretreated with 2 and 5 μmol/L concentration of drug than those without treatment. The survival fractions of cells pretreated by both 2 and 5 μmol/L drug reduced significantly in 3D cultures after irradiation. These significances, however, were found in 2D cells pretreated by only 5 μmol/L drug. Our results suggest that 5-Aza-CdR can inhibit the A549 cells proliferation and apparently enhance the radiosensitivity of cells in 3D cultures. Using of the low dose 5-Aza-CdR in clinical radiotherapy may reduce side effects and enhance effectively the cancer target therapy. (authors)

  19. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    International Nuclear Information System (INIS)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-01-01

    Highlights: ► Glucose capped gold nanoparticles (Glu-AuNPs) are synthesized for internalization in HeLa cells (cervical cancer cells). ► Internalization of Glu-AuNPs in HeLa cells is confirmed by cross section TEM of cells. ► Irradiation (by C ion or γ-rays) of HeLa cells with internalized Glu-AuNPs results in enhanced radiosensitization. ► There is about 30% reduction in radiation dose for 90% cell killing of HeLa cells, when internalized by Glu-AuNPs. ► The enhanced radiosensitization due to Glu-AuNPs is of interest for researchers in nanobiotechnology and radiation biology. -- Abstract: Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells

  20. Radiosensitivity in plants

    International Nuclear Information System (INIS)

    Nauman, A.F.

    1979-01-01

    The report presents a compilation of available data on the sensitivity of plants to ionizing radiation, and provides basic information on methods of determining such sensitivities, or of estimating radiosensitivities by calcuation of the nuclear factors upon which they depend. The scope of the data presented here is necessarily limited to the most generally useful radiobiological end points and to the most commonly-used types of radiation. Many of the factors which influence radiosensitivity, particularly nuclear factors, will be discussed. Emphasis will be upon whole-plant studies done at Brookhaven National Laboratory by A.H. Sparrow and his associates, since these studies are the source of most of the available radiosensitivity data and of all the sensitivity predictions listed here. Data presented here include summaries of experimentally-determined radiosensitivities at various end points for both herbaceous and woody higher plants, and for a few species of ferns and lower plants. The algae and fungi have not been considered here due to space limitations

  1. Radiosensitivity in plants

    Energy Technology Data Exchange (ETDEWEB)

    Nauman, A F

    1979-01-01

    The report presents a compilation of available data on the sensitivity of plants to ionizing radiation, and provides basic information on methods of determining such sensitivities, or of estimating radiosensitivities by calcuation of the nuclear factors upon which they depend. The scope of the data presented here is necessarily limited to the most generally useful radiobiological end points and to the most commonly-used types of radiation. Many of the factors which influence radiosensitivity, particularly nuclear factors, will be discussed. Emphasis will be upon whole-plant studies done at Brookhaven National Laboratory by A.H. Sparrow and his associates, since these studies are the source of most of the available radiosensitivity data and of all the sensitivity predictions listed here. Data presented here include summaries of experimentally-determined radiosensitivities at various end points for both herbaceous and woody higher plants, and for a few species of ferns and lower plants. The algae and fungi have not been considered here due to space limitations.

  2. Differences in radiosensitivity among cells in culture and in experimental tumours: Significance for the effectiveness of human cancer therapy

    International Nuclear Information System (INIS)

    Barendsen, G.W.; Amsterdam Univ.

    1987-01-01

    Problems in the application of radiobiological data on various types of models, cell in vitro, experimental tumours, and clinical models, to the prediction of tumour radiocurability are discussed. On the basis of observations on cells in culture and experimental tumours it is suggested that heterogeneity in responsiveness of tumours in patients is caused in a large part by differences in intrinsic cellular radiosensitivity. Methods and developments are reviewed, which may yield better assays for the prediction of tumour responsiveness to treatments. (Auth.)

  3. Duplex/quadruplex oligonucleotides: Role of the duplex domain in the stabilization of a new generation of highly effective anti-thrombin aptamers.

    Science.gov (United States)

    Russo Krauss, Irene; Napolitano, Valeria; Petraccone, Luigi; Troisi, Romualdo; Spiridonova, Vera; Mattia, Carlo Andrea; Sica, Filomena

    2018-02-01

    Recently, mixed duplex/quadruplex oligonucleotides have attracted great interest for use as biomedical aptamers. In the case of anti-thrombin aptamers, the addition of duplex-forming sequences to a G-quadruplex module identical or very similar to the best-known G-quadruplex of the Thrombin Binding Aptamer (HD1) results in new or improved biological properties, such as higher activity or different recognition properties with respect to HD1. Remarkably, this bimodular fold was hypothesized, based on its sequence, for the only anti-thrombin aptamer in advanced clinical trial, NU172. Whereas cation modulation of G-quadruplex conformation and stability is well characterized, only few data from similar analysis on duplex/quadruplex oligonucleotides exist. Here we have performed a characterization of structure and stability of four different duplex/quadruplex anti-thrombin aptamers, including NU172, in the presence of different cations and in physiological-mimicking conditions in comparison to HD1, by means of spectroscopic techniques (UV and circular dichroism) and differential scanning calorimetry. Our data show a strong reciprocal influence of each domain on the stability of the other and in particular suggest a stabilizing effect of the duplex region in the presence of solutions mimicking the physiological conditions, strengthening the idea that bimodular aptamers present better therapeutic potentialities than those containing a single G-quadruplex domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modern concepts for basic radiobiological factors characterizing tumor tissue radiosensitivity

    International Nuclear Information System (INIS)

    Gocheva, L.; Sergieva, K.

    2002-01-01

    Traditionally radiotherapy is prescribed at doses consistent with the expected therapeutic response and tolerance of tumor and normal tissues without consideration to individual differences in radiosensitivity. However, the basic radiobiological knowledge and clinical experience along this line point to significant variations in the observed therapeutic results. It has been established that cells and tissues under experimental and clinical conditions manifest a wide spectrum of individual radiosensitivity. The aim of this survey is to outline the current concepts for the basic radiobiological factors influencing tumor radiosensitivity. A thorough discussion is done of the essence, mechanisms of action, methods of determination and measurement, and effect on the prognosis in patients with malignant diseases of a number of radiobiological factors, such as: tumor-cell proliferation, apoptosis, tumor hypoxia and neovascularization. Although the knowledge of the mechanisms of radiosensitivity is constantly expanding, its clinical implementation is still rather limited. The true role of radiosensitivity in predicting the therapeutic response should be more accurately defined. (authors)

  5. Radiosensitizing effect of Chitosan on HeLa and LN 18 brain tumor cells exposed to electron beam radiation

    International Nuclear Information System (INIS)

    Rao, Shama; Shetty, Sukanya; Suchetha Kumari, N.; Madhu, L.N.

    2014-01-01

    Chitosan has been widely used for multiple applications because it is a non-toxic biocompatible, biodegradable, and adsorptive material. A previous study has shown that low-molecular-weight chitosan (LMWC) exerts a cytotoxic effect on oral cancer cells. Although a higher concentration of LMWC in comparison to cisplatin was needed in order to kill cancer cells, it was relatively less cytotoxic to non-cancer cells. Some of the well known anticancer drugs have the property of sensitizing the cell to radiation, which will be more applicable during combination therapy of cancer. The present study was undertaken to find the radiosensitizing effect of chitosan on Hela and Brain tumor (LN18) cells against electron beam radiation (EBR). Both the cancer cell lines, Hela and LN 18 were treated with different concentration of chitosan (50 and 100 μg/ml) pre and post exposure to 4 Gy EBR. The percentage of cell viability, percentage of apoptosis and ssDNA damage in the treated cells were assessed by MTT assay, DNA diffusion assay and comet assay respectively. The obtained results showed 62.13 1 5.08 and 65.24 1 2.45 percent Hela and LN 18 viable cells at 24 hour after the exposure to 4 Gy EBR. The percentage of viability was found to be decreased in cells exposed to EBR in the presence of chitosan. Supporting to this, percentage of apoptotic cells was found to be more in treated groups (28.13 1 4.34 and 25.13 1 3.76) when compared with control (23.19 1 1.07 and 20.79 1 4.86). Treatment of HeLa and LN18 before and after the exposure of EBR showed significantly (P<0.05) more frequency of micronucleus and % of DNA damage than the 4 Gy EBR control group. These results conclude the sensitizing effect of chitosan on cancer cell line against EBR exposure. (author)

  6. Effects of autogamy in Paramecium tetraurelia on catalase activity and on radiosensitivity to natural ionizing radiations

    International Nuclear Information System (INIS)

    Croute, F.; Dupouy, D.; Charley, J.P.; Soleilhavoup, J.P.; Planel, H.

    1980-01-01

    Catalase activity of Paramecium tetraurelia decreased during autogamy and recovered to normal 5 days later. Autogamy also caused changes in the ciliate's sensitivity sensitivity to natural ionizing radiations - the decrease in cell growth rate previously described in shielded cultures did not occur when autogamous cells were used. Maximum effect of shielding was observed in 11-day-old postautogamous cells. The role of the catalase in the mechanism of natural irradiation effect is discussed

  7. On the Path to Seeking Novel Radiosensitizers

    International Nuclear Information System (INIS)

    Katz, David; Ito, Emma; Liu Feifei

    2009-01-01

    Radiation therapy is a highly effective cancer treatment modality, and extensive investigations have been undertaken over the years to augment its efficacy in the clinic. This review summarizes the current understanding of the biologic bases underpinning many of the clinically used radiosensitizers. In addition, this review illustrates how the advent of innovative, high-throughput technologies with integration of different disciplines could be harnessed for an expeditious discovery process for novel radiosensitizers, providing an exciting future for such pursuits in radiation biology and oncology

  8. The radiosensitizing effects of ornidazole in hypoxic mammalian tissue: an in vivo study

    International Nuclear Information System (INIS)

    Okkan, S.; Uzel, R.

    1982-01-01

    In this study the sensitizing effects of ornidazole is investigated in vivo. The selected test system is the acute killing effect of radiation within 4-6 days after abdominal irradiation ranging from 9 to 24 Gy, in groups of C 57 black mice. Ornidazole is given intraperitoneally in 500 mg/kg, 100 mg/kg, 20 mg/kg doses prior to irradiation of animals breathing air, oxygen or nitrogen. A decreae of LD 50 dose is observed from 24.39 +/- 5.66 to 16.38 +/- 1.86 and 18.04 +/- 2.48 Gy, respectively, in nitrogen breathing animals. No sensitizing effect was observed in doses of 20 mg/kg. Enhancement Ratio (ER) was found to be 1.48 +/- 0.25 and 1.35 +/- 0.27; relative sensitizing efficiency (RSE) was 40% and 29% respectively. No sensitizing effect was observed in animals irradiated in oxic conditions. These results showed that ornidazole (Ro-7-0207) has a sensitizing effect on hypoxic cells in vivo. It is worthwhile to try this drug in a clinical study

  9. Low-Dose Hyper-Radiosensitivity Is Not a Common Effect in Normal Asynchronous and G2-Phase Fibroblasts of Cancer Patients

    International Nuclear Information System (INIS)

    Słonina, Dorota; Biesaga, Beata; Janecka, Anna; Kabat, Damian; Bukowska-Strakova, Karolina; Gasińska, Anna

    2014-01-01

    Purpose: In our previous study, using the micronucleus assay, a low-dose hyper-radiosensitivity (HRS)-like phenomenon was observed for normal fibroblasts of 2 of the 40 cancer patients investigated. In this article we report, for the first time, the survival response of primary fibroblasts from 25 of these patients to low-dose irradiation and answer the question regarding the effect of G2-phase enrichment on HRS elicitation. Methods and Materials: The clonogenic survival of asynchronous as well as G2-phase enriched fibroblast populations was measured. Separation of G2-phase cells and precise cell counting was performed using a fluorescence-activated cell sorter. Sorted and plated cells were irradiated with single doses (0.1-4 Gy) of 6-MV x-rays. For each patient, at least 4 independent experiments were performed, and the induced-repair model was fitted over the whole data set to confirm the presence of HRS effect. Results: The HRS response was demonstrated for the asynchronous and G2-phase enriched cell populations of 4 patients. For the rest of patients, HRS was not defined in either of the 2 fibroblast populations. Thus, G2-phase enrichment had no effect on HRS elicitation. Conclusions: The fact that low-dose hyper-radiosensitivity is not a common effect in normal human fibroblasts implies that HRS may be of little consequence in late-responding connective tissues with regard to radiation fibrosis

  10. In vitro effects of imatinib mesylate on radiosensitivity and chemosensitivity of breast cancer cells

    International Nuclear Information System (INIS)

    Weigel, Marion T; Maass, Nicolai; Mundhenke, Christoph; Dahmke, Linda; Schem, Christian; Bauerschlag, Dirk O; Weber, Katrin; Niehoff, Peter; Bauer, Maret; Strauss, Alexander; Jonat, Walter

    2010-01-01

    Breast cancer treatment is based on a combination of adjuvant chemotherapy followed by radiotherapy effecting intracellular signal transduction. With the tyrosine kinase inhibitors new targeted drugs are available. Imatinib mesylate is a selective inhibitor of bcr-abl, PRGFR alpha, beta and c-kit. The purpose of this study was to determine whether Imatinib has an influence on the effectiveness of radiotherapy in breast cancer cell lines and if a combination of imatinib with standard chemotherapy could lead to increased cytoreduction. Colony-forming tests of MCF 7 and MDA MB 231 were used to study differences in cell proliferation under incubation with imatinib and radiation. Changes in expression and phosphorylation of target receptors were detected using western blot. Cell proliferation, migration and apoptosis assays were performed combining imatinib with doxorubicin. The combination of imatinib and radiotherapy showed a significantly stronger inhibition of cell proliferation compared to single radiotherapy. Differences in PDGFR expression could not be detected, but receptor phosphorylation was significantly inhibited when treated with imatinib. Combination of imatinib with standard chemotherapy lead to an additive effect on cell growth inhibition compared to single treatment. Imatinib treatment combined with radiotherapy leads in breast cancer cell lines to a significant benefit which might be influenced through inhibition of PDGFR phosphorylation. Combining imatinib with chemotherapy enhances cytoreductive effects. Further in vivo studies are needed to evaluate the benefit of Imatinib in combination with radiotherapy and chemotherapy on the treatment of breast cancer

  11. Differential radioprotective effects of misoprostol in DNA repair-proficient and -deficient or radiosensitive cell systems

    NARCIS (Netherlands)

    van Buul, P. P.; van Duyn-Goedhart, A.; de rooij, D. G.; Sankaranarayanan, K.

    1997-01-01

    The protective effects of misoprostol (MP), an analogue of prostaglandin E1, on X-ray-induced chromosomal aberrations, were studied in normal or mutant Chinese hamster cell lines grown as spheroids in vitro and on cell-killing in stem-cell spermatogonia of a mutant (acid) mouse strain or its

  12. Modifying effect of caffeine on cell radiosensitivity in stationary and logarithmic phases of growth

    International Nuclear Information System (INIS)

    Plotnikova, E.D.; Kostenko, G.A.

    1978-01-01

    Studied was reproductive killing of cultivated fibroblasts of a Chinese hamster in stationary and exponential growth phases after gamma irradiation. After cell irradiation in a stationary phase at 1200 rad dose rate and postirradiation incubation in conditioned medium before resowing for 5 hrs the survival rate increased almost 5 times due to the reparation of potential-lethal injuries. Under sodium caffein-benzoate (4 mg/ml) effect on cells in a stationary growth phase for 5 hrs before irradiation the survival rate increased; protection level was almost the same as in case of reduction in a conditioned media. Modification factor of dose curve incline was 1.3. Caffein protective effect may be conjectured to relate to the inhibition of potentially-lethal injury fraction realization

  13. The effect of abnormal growth during irradiation and radiosensitivity of Gracilaria

    International Nuclear Information System (INIS)

    Ivanovskij, Yu.A.; Kulepanov, V.N.; Lesnikova, L.N.; Polishchuk, R.F.; Yadykin, A.A.

    1986-01-01

    γ-Irradiation of Gracilaria with doses of 0.25 to 7.5 kGy at a dose-rate of 8.36 Gy/min increased its linear dimensions and biomass during exposure. The effect was associated with the enhanced mitotic activity. The effect increased with radiation dose and depended on the stage of the life cycle and the rate of growth before irradiation. With postirradiation cultivation, 100 per cent death of exposed Gracilaria was registered at a dose of 7.5 kGy, partial death and destruction of thallus, at a dose of 5 kGy, and merely a stop of growth, at a dose of 2.5 kGy

  14. Inhibition of repopulation is not a determining factor for the radiosensitizing effects of rapamycin

    International Nuclear Information System (INIS)

    Sarkaria, J.N.; Carlson, B.L.; Mladek, A.C.

    2003-01-01

    The mammalian target of rapamycin (mTOR) is a key downstream effector of the PI3K-Akt signaling pathway, and we have previously shown that inhibition of mTOR by rapamycin significantly enhances the efficacy of prolonged fractionated radiation in U87 glioma cells grown as xenografts or spheroids. To test whether inhibition of repopulation between radiation fractions contributes to the sensitizing effects of rapamycin, the efficacy of our previous protracted radiation schedule was compared with an accelerated regimen in U87 spheroids. Regrowth of individual spheroids was tracked over time following treatment with either accelerated or protracted radiation in the presence or absence of rapamycin. As in our previous studies, treatment with 10 nM rapamycin significantly increased the time required for U87 spheroids to regrow to 10 times their original volume (22 ± 2 days [mean ± 95% CI]) compared to control (7 ± 1 days). Regrowth after protracted radiation (2 Gy every 3 days x 4; 9 ± 2 days)did not significantly differ from control treatment, while accelerated radiation (2 Gy every 4 hours x 4) modestly delayed spheroid regrowth (12 ± 2 days). Specific to our model, the relatively small difference in regrowth time between the two radiation fractionation schedules suggests that repopulation is not a major detrimental factor in the protracted radiation schedule. Interestingly, the combination of rapamycin with either protracted or accelerated RT significantly enhanced the efficacy of the radiation with regrowth times of 31 ± 4 days and 29 ± 4 days, respectively. Consistent with this in vitro data, preliminary results from an animal study suggest that treatment with a rapamycin analog and daily radiation is as effective as protracted radiation/ rapamycin schedules. Thus, any effects of rapamycin on repopulation in our model systems do not contribute significantly to the sensitizing effects of rapamycin

  15. Rigosertib Is a More Effective Radiosensitizer Than Cisplatin in Concurrent Chemoradiation Treatment of Cervical Carcinoma, In Vitro and In Vivo

    International Nuclear Information System (INIS)

    Agoni, Lorenzo; Basu, Indranil; Gupta, Seema; Alfieri, Alan; Gambino, Angela; Goldberg, Gary L.; Reddy, E. Premkumar; Guha, Chandan

    2014-01-01

    Purpose: To compare rigosertib versus cisplatin as an effective radiosensitizing agent for cervical malignancies. Methods and Materials: Rigosertib and cisplatin were tested in cervical cancer cell lines, HeLa and C33A. A 24-hour incubation with rigosertib and cisplatin, before irradiation (2-8 Gy), was used for clonogenic survival assays. Cell cycle analysis (propidium iodide staining) and DNA damage (γ-H2AX expression) were evaluated by fluorescence-activated cell sorter cytometry. Rigosertib was also tested in vivo in tumor growth experiments on cervical cancer xenografts. Results: Rigosertib was demonstrated to induce a G 2 /M block in cancer cells. Survival curve comparison revealed a dose modification factor, as index of radiosensitization effect, of 1.1-1.3 for cisplatin and 1.4-2.2 for rigosertib. With 6-Gy irradiation, an increase in DNA damage of 15%-25% was achieved in both HeLa and C33A cells with cisplatin pretreatment, and a 71-108% increase with rigosertib pretreatment. In vivo tumor growth studies demonstrated higher performance of rigosertib when compared with cisplatin, with 53% longer tumor growth delay. Conclusions: Rigosertib was more effective than cisplatin when combined with radiation and caused minimal toxicity. These data support the need for clinical trials with rigosertib in combination therapy for patients with cervical carcinoma

  16. Radiosensitization of CHO cells by the combination of glutathione depletion and low concentrations of oxygen: The effect of different levels of GSH depletion

    International Nuclear Information System (INIS)

    Clark, E.P.; Epp, E.R.; Zachgo, E.A.; Biaglow, J.E.

    1984-01-01

    Recently, the authors have examined the effect of GSH depletion by BSO on CHO cells equilibrated with oxygen at various concentrations (0.05-4.0%) and irradiated with 50 kVp x-rays. This is of interest because of the uncertain radiosensitizing effect GSH depletion may have on cells equilibrated with low oxygen concentrations. GSH depletion (0.1 mM BSO/24 hrs reduced [GSH] ≅ 10% of control) enhanced the radiosensitizing action of moderate (0.4-4.0%) concentrations of oxygen, i.e., GSH depletion reduced the [O/sub 2/] necessary to achieve an equivalent ER by ≅ 2-3 fold. However, GSH depletion was much more effective as a rediosensitizer when cells were equilibrated with low (<0.4%) concentrations of oxygen, i.e., GSH depletion reduced the [O/sub 2/] necessary to achieve an equivalent ER by 8-10 fold. Furthermore, while the addition of exogenous 5 mM GSH restored the ER to that observed when GSH was not depleted, the intracellular [GSH] was not increased. The results of these studies carried out at different levels of GSH depletion are presented

  17. Radiosensitizing Effects of Ectopic miR-101 on Non-Small-Cell Lung Cancer Cells Depend on the Endogenous miR-101 Level

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Susie; Wang Hongyan; Ng, Wooi Loon; Curran, Walter J. [Department of Radiation Oncology, School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, GA (United States); Wang Ya, E-mail: ywang94@emory.edu [Department of Radiation Oncology, School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, GA (United States)

    2011-12-01

    Purpose: Previously, we showed that ectopic miR-101 could sensitize human tumor cells to radiation by targeting ATM and DNA-PK catalytic subunit (DNA-PKcs) to inhibit DNA repair, as the endogenous miR-101 levels are low in tumors in general. However, the heterogeneity of human cancers may result in an exception. The purpose of this study was to test the hypothesis that a few tumor cell lines with a high level of endogenous miR-101 would prove less response to ectopic miR-101. Methods and Materials: Fourteeen non-small-cell lung cancer (NSCLC) cell lines and one immortalized non-malignant lung epithelial cell line (NL20) were used for comparing endogenous miR-101 levels by real-time reverse transcription-polymerase chain reaction. Based on the different miR-101 levels, four cell lines with different miR-101 levels were chosen for transfection with a green fluorescent protein-lentiviral plasmid encoding miR-101. The target protein levels were measured by using Western blotting. The radiosensitizing effects of ectopic miR-101 on these NSCLC cell lines were determined by a clonogenic assay and xenograft mouse model. Results: The endogenous miR-101 level was similar or lower in 13 NSCLC cell lines but was 11-fold higher in one cell line (H157) than in NL20 cells. Although ectopic miR-101 efficiently decreased the ATM and DNA-PKcs levels and increased the radiosensitization level in H1299, H1975, and A549 cells, it did not change the levels of the miR-101 targets or radiosensitivity in H157 cells. Similar results were observed in xenograft mice. Conclusions: A small number of NSCLC cell lines could have a high level of endogenous miR-101. The ectopic miR-101 was able to radiosensitize most NSCLC cells, except for the NSCLC cell lines that had a much higher endogenous miR-101 level. These results suggest that when we choose one miRNA as a therapeutic tool, the endogenous level of the miRNA in each tumor should be considered.

  18. Radiosensitizing Effects of Ectopic miR-101 on Non–Small-Cell Lung Cancer Cells Depend on the Endogenous miR-101 Level

    International Nuclear Information System (INIS)

    Chen, Susie; Wang Hongyan; Ng, Wooi Loon; Curran, Walter J.; Wang Ya

    2011-01-01

    Purpose: Previously, we showed that ectopic miR-101 could sensitize human tumor cells to radiation by targeting ATM and DNA-PK catalytic subunit (DNA-PKcs) to inhibit DNA repair, as the endogenous miR-101 levels are low in tumors in general. However, the heterogeneity of human cancers may result in an exception. The purpose of this study was to test the hypothesis that a few tumor cell lines with a high level of endogenous miR-101 would prove less response to ectopic miR-101. Methods and Materials: Fourteeen non–small-cell lung cancer (NSCLC) cell lines and one immortalized non-malignant lung epithelial cell line (NL20) were used for comparing endogenous miR-101 levels by real-time reverse transcription–polymerase chain reaction. Based on the different miR-101 levels, four cell lines with different miR-101 levels were chosen for transfection with a green fluorescent protein–lentiviral plasmid encoding miR-101. The target protein levels were measured by using Western blotting. The radiosensitizing effects of ectopic miR-101 on these NSCLC cell lines were determined by a clonogenic assay and xenograft mouse model. Results: The endogenous miR-101 level was similar or lower in 13 NSCLC cell lines but was 11-fold higher in one cell line (H157) than in NL20 cells. Although ectopic miR-101 efficiently decreased the ATM and DNA-PKcs levels and increased the radiosensitization level in H1299, H1975, and A549 cells, it did not change the levels of the miR-101 targets or radiosensitivity in H157 cells. Similar results were observed in xenograft mice. Conclusions: A small number of NSCLC cell lines could have a high level of endogenous miR-101. The ectopic miR-101 was able to radiosensitize most NSCLC cells, except for the NSCLC cell lines that had a much higher endogenous miR-101 level. These results suggest that when we choose one miRNA as a therapeutic tool, the endogenous level of the miRNA in each tumor should be considered.

  19. Radiosensitivity of prostatic cell lines: bicalutamide effect (Casodex), micro-RNAs actions

    International Nuclear Information System (INIS)

    Quero, J.L.

    2011-10-01

    The first aim of our study was to evaluate the effect of the association between bicalutamide, an androgen receptor inhibitor, and ionizing radiation in three prostate cancer cell lines. The second aim was to examine a possible correlation between the expression of miR-210 or miR-373, the tolerance to hypoxia tolerance and the responses to radiation.We found that bicalutamide produced cytostatic and cytotoxic effects in the androgen receptor- positive LNCaP cell line. The androgen receptor-negative DU145 and PC3 cell lines were more resistant to bicalutamide. However, these cell lines were affected by high bicalutamide concentration with the same endpoints as for LNCaP cells. The inhibition of proliferation by bicalutamide was associated with G1 cell cycle phase arrest, increased expression of p27KIP1 protein, and decreased expression of HER2 protein. Last but not least, bicalutamide elicited a marked radioprotective effect in LNCaP cells when associated with concomitant irradiation. This result suggests that bicalutamide and radiotherapy should not be delivered in close temporal proximity, especially in case of hypo-fractionated radiotherapy protocols.Hypoxia is a well known radioresistance factor in tumors and is associated with a bad prognosis in prostate cancer. In this study, we found that hypoxia promotes the expression of HIF-1α, CA9, VEGF and miR-210 but not miR-373 in prostate cancer cell lines irrespective of their androgen receptor status.Our findings suggest that miR-210 expression is correlated with resistance to hypoxia and could be used as a prognostic marker in prostate cancer. Conversely, miR-210 inhibition did not impact the radiation susceptibility of PC3 prostate cancer cell line under hypoxia. (author)

  20. Different radiosensitization effects of the halogenated compounds on the human chromosome in vitro

    International Nuclear Information System (INIS)

    Kang, Y.S.

    1976-01-01

    Unscheduled DNA synthesis and chromosome aberrations were compared following X- or UV-irradiation or methyl methanesulfonate treatment in cultures of HeLa S 3 or KB cells or human and rabbit lymphocytes. The sensitization by incorporation of the halouridines BUdR and IUdR was also investigated. Unscheduled DNA synthesis occurred in two established cell lines after irradiation with 0 to 10 kR of X-rays. The rate of unscheduled synthesis was dose dependent and differed for the two cell lines. The unscheduled synthesis was not correlated with the modal chromosome number nor with the number of aberrations produced. UV-irradiated rabbit lymphocytes exhibited unscheduled DNA synthesis which saturated after a dose of 250 ergs/mm 2 . In contrast the incorporation of BUdR or IUdR eliminated this saturation and caused an increasing effect with increasing dose up to 1000 ergs/mm 2 . The degree of sensitization varied between the two halo-uridines, BUdR being more effective at high doses while IUdR was a more potent sensitizer at low doses. Chromosome aberrations were not directly related to unscheduled DNA synthesis but were sensitized by halo-uridine incorporation. In this case IUdR was more potent than BUdR at all doses studied. Methyl methanesulfonate was an effective producer of chromosome aberration in human lymphocytes of both the chromosome and chromatid type. Prior incorporation of BUdR or IUdR did not increase the total aberration produced but did increase the number of chromosome type aberration at the expense of the chromatid type

  1. Studies of metronidazole radiosensitizing effect in radiation treatment of patients with oral cavity cancer

    International Nuclear Information System (INIS)

    Polyakov, P.Yu.; Daryalova, S.L.; Pelevina, I.I.; Karakulov, R.K.; Zel'vin, B.M.; Kiseleva, E.S.; Kvasov, V.A.

    1985-01-01

    Clinical observations of 26 patients with tongue, oral cavity and oropharyngeal cancer receiving telegammatherapy by dynamic dose fractionation scheme in combination with metronidazole (MZ), and of 38 patients from the control group treated using the identical schedule without MZ suggest that MZ favors increasing radiation damage in tumors in those sites without changing the character or intensifying early radiation reactions. After oral administration of MZ in single doses of 5-6 g/m 2 it reached its maximum in the blood serum within 2-4 h. When the total dose of 30-60 g of MZ was used, a marked toxic effect manifest in gastrointestinal symptoms was observed in 33.3% of patients. MZ has a negative effect on liver functions; however, changes in biochemical tests were reversible and within normal values. Simultaneous studies of biopsy material from 22 patients (11 from each group) in terms of proliferation activity showed that oral cavity tumors contain a significant portion of proliferating cells which notably decrease in the course of radiation therapy. The decrease is marked to a greater extent after irradiation in combination with MZ. (author)

  2. Cytotoxicity and radiosensitization effect of TRA-8 on radioresistant human larynx squamous carcinoma cells.

    Science.gov (United States)

    Wu, F; Hu, Y; Long, J; Zhou, Y J; Zhong, Y H; Liao, Z K; Liu, S Q; Zhou, F X; Zhou, Y F; Xie, C H

    2009-02-01

    TRAIL induces apoptosis in a variety of tumorigenic and transformed cell lines, but not in many normal cells. Recent studies have demonstrated that death receptor 5 (DR5), one of the two death receptors bound by TRAIL, showed expression in most malignantly transformed cells. This study evaluated effects of a monoclonal antibody (TRA-8) to human death receptor 5, combined with ionizing radiation, on radioresistant human larynx squamous carcinoma cell line (Hep-2R). Cells were treated with TRA-8 alone or in combination with radiation, cell viability inhibition was measured by MTT assay, and the induction of apoptosis was determined by Annexin V staining. Radionsensitivity of Hep-2R cells treated with TRA-8 were investigated with long-term clonogenic assays. Regulation of DR5 expression in cells after radiation was analyzed by indirect immunofluorescence using murine TRA-8 in combination with flow cytometry. The results suggested that TRA-8 enhanced radionsensitivity of Hep-2R cells, and that TRA-8 regulated Hep-2R cell cycle arrest at G2/M phase. Irradiation up-regulated the expression of DR5, and when combined with TRA-8 yielded optimal survival benefit. Therefore, TRA-8 can be used in combination with irradiation in radioresistant human larynx squamous carcinoma cells. Monoclonal antibodies such as TRA-8 may play an important role in the development of an effective treatment strategy for patients with radioresistant cancers.

  3. Radiation induced bystander effects in modification of cellular radio-sensitivity in human cancer cells

    International Nuclear Information System (INIS)

    Pandey, B.N.

    2012-01-01

    Radiation-induced Bystander Effect is manifestation of radiation effects in non-irradiated cells in the population. The phenomenon may have significant implication in risk of radiation induced cancer incidence and outcome of cancer radiotherapy. To understand the bystander interaction in tumor cells, we have studied secretion of diffusible factors from control and irradiated tumor cells of different origin. Our results showed a good correlation between magnitude of secretion of diffusible factors and survival of tumor cells. These diffusible factors are shown to affect proliferation and survival of tumor cells involving regulation of kinases and genes/proteins involved in apoptotic machinery. Our experiments using pharmacological inhibitors showed involvement of activating transcription factor 2 (ATF-2) signaling in survival of tumor cells after treatment with diffusible factors. These factors seem to be involved in exerting radio-resistance in tumor cells. Furthermore, in proton microbeam irradiation studies showed induction of double strand break measured as gH2AX foci in human lung carcinoma cells, which was found to propagate to bystander tumor cells during post-irradiation incubation. Implication of these observations in outcome of cancer radiotherapy scenario would be discussed. (author)

  4. Radiosensitization effect of recombinant adenoviral-mediated PUMA gene on pancreatic carcinoma cells

    International Nuclear Information System (INIS)

    Zhu Dongming; Zhang Kejun; Li Dechun; Zhu Xuefeng; Yang Yong

    2009-01-01

    Objective: To study the effect of PUMA gene mediated by recombinant adenovirus vector combined with radiation on the pancreatic carcinoma. Methods: The PANC-1 cells were infected with Ad- PUMA (MOI=10, 50 and 100, respectively) for 48 h. The expression of PUMA mRNA and protein was detected by RT-PCR and Western blot, respectively. PANC-1 cells were divided into 4 groups: control group, transfection group, irradiation group and combined treatment group. The cell growth inhibition rate and apoptotic rate of PANC-1 cells were assessed by MTT assay and flow cytometry. Human pancreatic carcinomas were transplanted subcutaneously in nude mice, which were randomized into 4 groups: control group, transfection group, irradiation group and combined treatment group. Tumor growth rate and apoptotic index at different time points were recorded in 35 days. Results: The expression of PUMA mRNA and protein was increased with the increase of MOI of Ad-PUMA, which was does-dependant (MOI=10, mRNA=0.46± 0.02, protein=0.75± 0.09; MOI=50, mRNA=1.12±0.09, protein=1.01±0.18; MOI=100, mRNA=1.50±0.08, protein= 1.80±0.15; P 3 , (39.5±9.23)mm 3 , (33.6±10.3)mm 3 and (52.0±11.43)mm 3 , respectively, P<0.05]. And the apoptotic index was increased in the same manner (AI=0.43±0.05, 0.29±0.10, 0.24±0.05 and 0.00±0.00, respectively, P<0.05). Conclusions: Recombinant adenoviral-mediated PUMA gene combined with irradiation could increase the cell-killing effect on pancreatic carcinoma. It is better than that of either one kind of therapy. (authors)

  5. Effects of a radiosensitizer and radiation on the ciliated mucous membrane

    International Nuclear Information System (INIS)

    Albertsson, M.

    1985-01-01

    Fractionated irradiation (2 Gy/F, TD:2-20 Gy) in vivo on the ciliated epithelium of the rabbit's trachea, caused measurable physiological alternations ten consecutive days after completion of irradiation with an initial heightening of the ciliary activity after 2 and 4 Gy, followed by a dose-dependent decrease. On scanning electron microscopy-pictures, knobs were observed on the cilia with the number being related to the dose. The addition of misonidazole potentiated the effects described above, with an enhancement ratio ( physiologically) of 1.2 and an enhancement ratio (morphologically) of 1.6. Furthermore, administration of misonidazole to the rabbits caused an increased vascularity in the subepithelial layer of the trachea, directly correlated to an oedema in the same region. Single doses (2,2.5,5,10,15,20,25, and 30 Gy) were given to the trachea in vivo and daily investigation of the ciliary beating and morphologic examinations of the tissue were made for ten days. The ciliary activity showed a dose-dependent reduction of about 50% after 30 Gy. A development of damage, in relation to the dose, was observed in the cilia. The changes were blebs, swollen tips, bent and curved tips, and broken cilia clustered together. During in vitro irradiation with 10 Gy Single Dose, an increase of the ciliary activity to about 25 % of its original value was observed without any morphological changes, while in vivo irradiation and examinations during 10 days thereafter, showed three different phases, day 1-3: Stimulation phase, day 4-8: Damage-phase, day 9-10: Repair-phase. The ciliary epithelium offers an exceptional system for the study of early radiobiological effects, since mutual comparisons can be made between physiology and morphology. (Author)

  6. Electronic Structures of LNA Phosphorothioate Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Henrik G. Bohr

    2017-09-01

    Full Text Available Important oligonucleotides in anti-sense research have been investigated in silico and experimentally. This involves quantum mechanical (QM calculations and chromatography experiments on locked nucleic acid (LNA phosphorothioate (PS oligonucleotides. iso-potential electrostatic surfaces are essential in this study and have been calculated from the wave functions derived from the QM calculations that provide binding information and other properties of these molecules. The QM calculations give details of the electronic structures in terms of e.g., energy and bonding, which make them distinguish or differentiate between the individual PS diastereoisomers determined by the position of sulfur atoms. Rules are derived from the electronic calculations of these molecules and include the effects of the phosphorothioate chirality and formation of electrostatic potential surfaces. Physical and electrochemical descriptors of the PS oligonucleotides are compared to the experiments in which chiral states on these molecules can be distinguished. The calculations demonstrate that electronic structure, electrostatic potential, and topology are highly sensitive to single PS configuration changes and can give a lead to understanding the activity of the molecules. Keywords: LNA phosphorothioate, DNA/LNA oligonucleotide, diastereoisomers, Hartree-Fock calculations, iso-potential surface, anion chromatograms

  7. Radiosensitivity of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Hennequin, C.; Quero, L.; Rivera, S.

    2011-01-01

    The frequency of hepatocellular carcinoma (HCC) is increasing in the western world and the role of radiotherapy is more and more discussed. Classically, hepatocellular carcinoma was considered as a radioresistant tumour: in fact, modern radio-biologic studies, performed on cell lines directly established from patients, showed that hepatocellular carcinoma has the same radiosensitivity than the other epithelial tumours. From clinical studies, its α/β ratio has been estimated to be around 15 Gy. Radiosensitivity of normal hepatic parenchyma is now well evaluated and some accurate NTCP models are available to guide hepatic irradiation. The biology of hepatocellular carcinoma is also better described: the combination of radiotherapy and targeted therapies will be a promising approach in the near future. (authors)

  8. Radiosensitivity of cells

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P [Radiation Biology Section, Chester Beatty Research Institute, Royal Cancer Hospital, London (United Kingdom)

    1960-07-15

    The mechanism by which radiation kills cells must be investigated with the goal to make possible to devise means to alter the radiosensitivity of cells. The object of our investigation, supported by IAEA, is to try and find the reasons for the variation in sensitivity between different cells. Once we know the reason for the differences in radiosensitivity of different micro-organisms we can begin to look rationally for ways of enhancing the radiation response of the more sensitive organisms. An investigation of this type has implications far beyond food sterilization, as it cannot fail to provide fundamental facts about radiation injury to cells in general. Cancer researchers have looked for many years for means of sensitizing cancer cells to radiation

  9. Radiosensitivity of cells

    International Nuclear Information System (INIS)

    Alexander, P.

    1960-01-01

    The mechanism by which radiation kills cells must be investigated with the goal to make possible to devise means to alter the radiosensitivity of cells. The object of our investigation, supported by IAEA, is to try and find the reasons for the variation in sensitivity between different cells. Once we know the reason for the differences in radiosensitivity of different micro-organisms we can begin to look rationally for ways of enhancing the radiation response of the more sensitive organisms. An investigation of this type has implications far beyond food sterilization, as it cannot fail to provide fundamental facts about radiation injury to cells in general. Cancer researchers have looked for many years for means of sensitizing cancer cells to radiation

  10. On enhancing drugs effect on radiosensitivity of HeLa cells by inhibiting P13K/Akt signal transduction

    International Nuclear Information System (INIS)

    Xia Shu; Yu Shiying

    2006-01-01

    Objective: To explore the mechanism of PI3K/Akt in radiosensitization of docetaxel and cisplatin by inhibiting PI3K/Akt pathway in HeLa cells. Methods: To detect the 50% inhibition concentration (IC 50 ) of cisplatin and docetaxel in Hela cells by mono-nuclear cell direct cytotoxicity assay (MTT) in vitro. Using the IC 20 of cisplatin and docetaxel in Hela cell or in association with LY294002 for 24 h, then, the cells were irradiated by X-ray with 2,3,4,6,8 Gy. The cell survival fraction was computed by clone formation. Cell survival curve was fitted by multitarget one-hit model, and D q , D 0 , SF 2 , sensitizing enhancing ratio(SER) was calculated. The expression of pAkt and total Akt by western blot were detected. Apoptosis was detected by flow cytometry. Results: 1. Docetaxel and cisplatin improved the phosphorylation of Akt by irradiation obviously. 2. The SER of docetaxel + LY294002 + irradiation group (1.92) was higher than that of docetaxel + irradiation group(1.41). The SER of cisplatin + LY294002 + irradiation group(1.71) was higher than the cisplatin + irradiation group (1.37). 3. Apoptosis rate of docetaxel + LY294002 + irradiation and cisplatin + LY294002 + irradiation groups(12.5%, 10.2%) were higher than those of docetaxel + irradiation and cisplatin + irradiation groups(6.1%, 5.1%). Conclusions: PI3K/Akt signal transduction activation may be as an important reason of radiosensitization reduction of docetaxel and cisplatin in the HeLa cells. Our results show that inhibiting PI3K/Akt can improve the radiosensitization of docetaxel and cisplatin in the HeLa cells. (authors)

  11. Effect of salt solutions on the radiosensitivity of mammalian cells as a function of the state of adhesion and the water structure

    Energy Technology Data Exchange (ETDEWEB)

    Moggach, P G; Lepock, J R; Kruuv, J [Waterloo Univ., Ontario (Canada). Dept. of Physics

    1979-11-01

    The radiation isodose survival curve of attached Chinese hamster (V79) cells, subjected to a wide concentration range of salt or sucrose solutions, was characterized by two maxima separated by a minimum. Cells were radioprotected at the maxima (high and low hypertonic salt concentrations) while they were radiosensitized at the minimum (intermediate hypertonic salt concentrations). Both cations and anions could alter the cellular radiosensitivity above and beyond the (osmotic) effect observed for cells treated with sucrose solutions. However, the basic curve shape, except in the case of sulphate salts, remained the same. When these experiments were repeated with single cells in suspension, the isodose survival curve was quite different in that high salt concentrations did not protect cells in suspension unlike the case with attached cells. The curve shape was also altered in that the second maximum was absent with many salt solutions. When multicellular spheroids were used for these experiments, the data resembled those for single cell suspensions rather than for attached cells. The radiation survival data for cells in suspension in salt solutions correlated with water proton spin lattice relaxation time (T/sub 1/) and, in hypo- and iso-tonic solutions, with cell volume.

  12. Prospective study evaluating the radiosensitizing effect of reduced doses of temozolomide in the treatment of Egyptian patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Gaber M

    2013-10-01

    Full Text Available May Gaber, Hanan Selim, Tamer El-NahasDepartment of Clinical Oncology, Cairo University, Cairo, EgyptPurpose: In view of the documented toxicity of continuous daily radiosensitizer doses of temozolomide concomitant with radiation in the treatment of glioblastoma multiforme, we aimed to compare it with a different schedule of abbreviated radiosensitizer dosing.Patients and methods: This was a randomized prospective study comparing toxicity and survival in 60 Egyptian patients with glioblastoma multiforme. Patients in arm I received temozolomide at a dose of 75 mg/m2 daily with radiotherapy for 42 days, starting 4 weeks after surgery and reaching to a total radiation dose of 60 Gy/30 Fractions/6 weeks, while patients in arm II received temozolomide at a dose of 75 mg/m2 concomitantly with the same radiotherapy schedule daily in the first and last weeks of the same radiotherapy program.Results: Common grade 1–2 adverse events were malaise in 28 patients (46.7%, followed by alopecia (40% and nausea (26.7%. Grade 3–4 convulsion and decreased level of consciousness was seen in only four patients who were all from arm I. The median progression-free survival (PFS for the entire study population was 10.6 months (95% confidence interval [CI] 7.3–14, and PFS at 12 months was 32%. The median PFS in arm I was 8.8 months (95% CI 5.9–11.7 and in arm II 11.5 months (95% CI 8.9–14.2, and PFS at 12 months for both arms was 32% and 30% respectively (P=0.571. The median overall survival (OS of the whole group of patients was 14.2 months (95% CI 13–15.5, and OS was 70% at 12 months and 25% at 18 months. The median OS for patients in arm I was 12.3 months (95% CI 7.7–16.9, whereas in arm II it was 14.3 months (95% CI 14–14.7 (P=0.83.Conclusion: Reduced radiosensitizer dosing of temozolomide concomitant with radiotherapy in glioblastoma multiforme exhibited comparable efficacy with a classic continuous daily schedule, though with better tolerability

  13. Effect of heterogeneity of human population in cell radiosensitivity on the extrapolation of dose-response relationships to low doses

    International Nuclear Information System (INIS)

    Filyushkin, I.V.; Bragin, Yu.N.; Khandogina, E.K.

    1989-01-01

    Presented are the results of an investigation of the dose-response relationship for the yield of chromosome aberrations in peripheral blood lymphocytes of persons with some hereditary diseases which represent the high risk group with respect to the increased incidence of malignant tumors and decreased life span. Despite substantially different absolute radiosensitivities of chromosomes, the variations of the alpha/beta ratio determining the extrapolation of experimental dose-response relationships to low doses did not prove to be too high, the mean deviation from the control being 15%. This points to the possible practical use of the dose-response relationships averaged over the human population as a whole

  14. Radiosensitivity of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Hirano, Toru; Iwasaki, Katsuro; Suzuki, Ryohei; Monzen, Yoshio; Hombo, Zenichiro

    1989-01-01

    The correlation between the effectiveness of radiation therapy and the histology of soft tissue sarcomas was investigated. Of 31 cases with a soft tissue sarcoma of an extremity treated by conservative surgery and postoperative radiation of 3,000-6,000 cGy, local recurrence occurred in 12; 5 out of 7 synovial sarcomas, 4 of 9 MFH, one of 8 liposarcomas, none of 4 rhabdomyosarcomas and 2 of 3 others. As for the histological subtyping, the 31 soft tissue sarcomas were divided into spindle cell, pleomorphic cell, myxoid and round cell type, and recurrence rates were 75%, 33.3%, 16.7% and 0%, respectively. From the remarkable difference in recurrent rate, it was suggested that round cell and myxoid type of soft tissue sarcomas showed a high radiosensitivity compared to the spindle cell type with low sensitivity. Clarifying the degree of radiosensitivity is helpful in deciding on the management of limb salvage in soft tissue sarcomas of an extremity. (author)

  15. In vivo radiosensitization by diethyldithiocarbamate

    International Nuclear Information System (INIS)

    Kent, C.R.; Blekkenhorst, G.H.

    1988-01-01

    Diethyldithiocarbamate (DDC) has been suggested to have both radiosensitizing (due to superoxide dismutase (SOD) inhibition) and radioprotective properties. We have studied the activity of SOD up to 24 h after intratumoral administration of 50, 100, 150, and 300 mg/kg DDC in 3-methylcholanthrene-induced tumors in BALB/c mice. Maximal inhibition of SOD (8% of control) was obtained 1 h after administration of 100 mg/kg DDC. Tumor response to DDC and X irradiation was assessed using a tumor growth-delay assay, after 11 Gy 100-kVp X rays given up to 24 h after DDC administration. Radiation-induced tumor growth delay (7.11 +/- 1.76 days) was enhanced only when tumors were irradiated 2-4 h after 50 mg/kg DDC. When higher doses of DDC were used, tumor cure was noted when DDC was injected 1-6 h before irradiation. We suggest our findings are consistent with radiosensitization being due to SOD inhibition, but that if insufficient time is allowed between DDC injection and irradiation, the sensitization is masked by a radioprotective effect. We believe that further investigations as to the therapeutic potential of DDC in human patients with cancer are warranted

  16. Photosensitizers and radiosensitizers in dermatology and oncology

    International Nuclear Information System (INIS)

    Bruckner, V.

    1979-01-01

    Two therapeutic modalities are currently of great interest, namely photo- and radiosensitization. Whereas photosensitizers only function in combination with ultraviolet (UV) light, radiosensitizers act only in combination with ionizing radiation. Because of the small UV penetration, up to a maximum of 0,5 mm, photosensitization can take place only at the surface of the body, i.e. the skin. Photosensitizers are applied in dermatology in order to optimize and improve the UV therapy of certain diseases (mainly psoriasis, mycosis fungoides and vitiligo). Radiosensitizers lead to an increase in sensitivity of the hypoxic and therefore radioresistant parts of tumours against X- and gamma-radiation. With sufficient concentration within the tumour, they can act where the radiation can reach, even in the deeper parts of the body. They represent a modern and useful aid to radiation oncology. Because of neurotoxic effects, however, their practical use is limited. A short review of the history, mechanisms of action, application and side-effects of these photo- and radiosensitizers is presented

  17. Photosensitizers and radiosensitizers in dermatology and oncology

    Energy Technology Data Exchange (ETDEWEB)

    Bruckner, V [Stellenbosch University, Parowvallei (South Africa). Departments of Medical Physics and Radiology

    1979-09-22

    Two therapeutic modalities are currently of great interest, namely photo- and radiosensitization. Whereas photosensitizers only function in combination with ultraviolet (UV) light, radiosensitizers act only in combination with ionizing radiation. Because of the small UV penetration, up to a maximum of 0,5 mm, photosensitization can take place only at the surface of the body, i.e. the skin. Photosensitizers are applied in dermatology in order to optimize and improve the UV therapy of certain diseases (mainly psoriasis, mycosis fungoides and vitiligo). Radiosensitizers lead to an increase in sensitivity of the hypoxic and therefore radioresistant parts of tumours against X- and gamma-radiation. With sufficient concentration within the tumour, they can act where the radiation can reach, even in the deeper parts of the body. They represent a modern and useful aid to radiation oncology. Because of neurotoxic effects, however, their practical use is limited. A short review of the history, mechanisms of action, application and side-effects of these photo- and radiosensitizers is presented.

  18. Regulation of Gene Expression with Double-Stranded Phosphorothioate Oligonucleotides

    Science.gov (United States)

    Bielinska, Anna; Shivdasani, Ramesh A.; Zhang, Liquan; Nabel, Gary J.

    1990-11-01

    Alteration of gene transcription by inhibition of specific transcriptional regulatory proteins is necessary for determining how these factors participate in cellular differentiation. The functions of these proteins can be antagonized by several methods, each with specific limitations. Inhibition of sequence-specific DNA-binding proteins was achieved with double-stranded (ds) phosphorothioate oligonucleotides that contained octamer or kappaB consensus sequences. The phosphorothioate oligonucleotides specifically bound either octamer transcription factor or nuclear factor (NF)-kappaB. The modified oligonucleotides accumulated in cells more effectively than standard ds oligonucleotides and modulated gene expression in a specific manner. Octamer-dependent activation of a reporter plasmid or NF-kappaB-dependent activation of the human immunodeficiency virus (HIV) enhancer was inhibited when the appropriate phosphorothioate oligonucleotide was added to a transiently transfected B cell line. Addition of phosphorothioate oligonucleotides that contained the octamer consensus to Jurkat T leukemia cells inhibited interleukin-2 (IL-2) secretion to a degree similar to that observed with a mutated octamer site in the IL-2 enhancer. The ds phosphorothioate oligonucleotides probably compete for binding of specific transcription factors and may provide anti-viral, immunosuppressive, or other therapeutic effects.

  19. The development of genes associated with radiosensitivity of cervical cancer

    International Nuclear Information System (INIS)

    Li Hongyan; Chen Zhihua; He Guifang

    2007-01-01

    It has a good application prospect to predict effects of radiotherapy by examining radiosensitivity of patients with cervical cancers before their radiotherapy. Prediction of tumor cell radiosensitivity according to their level of gene expression and gene therapy to reverse radio-resistance prior to radiation on cervical cancers are heated researches on tumor therapy. The expression of some proliferation-related genes, apoptosis-related genes and hypoxia-related genes can inerease the radiosensitivity of cervical cancer. Microarray technology may have more direct applications to the study of biological pathway contributing to radiation resistance and may lead to development of alternative treatment modalities. (authors)

  20. Development of Radiosensitizer using farnesyltransferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Seok; Choe, Yong Kyung; Han, Mi Young; Kim, Kwang Dong [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    We selected some compounds that were reported to have an activity of farneyltransferase inhibitor and tested the hypothesis that they might be used to radiosensitize cells transformed by ras oncogenes. The inhibition of ras processing using some, but not all, inhibitors resulted in higher levels of cell death after {gamma}-irradiation and increased radiosensitivity in H-ras-transformed NIH3T3 cells and MCF-10A human tumor cells. They did not induce additional cell death in control cells that doe not have ras mutation. Furthermore, the treatment of inhibitors alone induced a weak G0/G1 block, whereas inhibitors in combination with {gamma}-irradiation induced an additional enrichment in the G2/M phase of the cell cycle that typically represents irradiation-induced growth arrest. At present, the underling mechanism by which the farnesylltransferase inhibitors exert radiosensitizing effect is not known. In summary, our results suggest and lead to the possibility that some of farnesylation inhibitors may prove clinically useful not only as antitumor agents, but also radiosensitizers of tumors whose growth is dependent on ras function. (author). 15 refs., 10 figs., 4 tabs.

  1. Radiosensitivity of human lymphocytes and thymocytes

    International Nuclear Information System (INIS)

    Kwan, D.K.; Norman, A.

    1977-01-01

    The in vitro survival of human peripheral blood lymphocytes and thymocytes was measured 4 days following graded doses of γ radiation. Results indicate considerable heterogeneity among lymphocyte subpopulations with respect to radiosensitivity. Total T lymphocytes were characterized by rosette formation with neuraminidase-treated sheep red blood cells (nSRBC); early T (T/sub E/) cells, by early rosettes; and B cells, by their inability to form nSRBC rosettes. Late T (T/sub L/) cells were defined as T -- T/sub E/. Survival curves of T, T/sub E/, and B cells are biphasic. The radiosensitive and radioresistant components of T, T/sub E/, and B cells all have a D 0 of about 50 and 550 rad, respectively. B cells appeared to be slightly more radiosensitive than T cells. T/sub L/ cells and thymocytes, however, appeared to be homogeneous with respect to radiosensitivity, both having D 0 values of about 135 rad. The survival of T cells in mixed T and B cell cultures resembled that of separated T cells, suggesting that ionizing radiation has no significant effect on rosette formation. It also indicates that interactions of T and B cells do not significantly affect their radiation responses

  2. Estimation of absorbed dose of radiosensitive organs and effective sose in patients underwent abdominopelvic spiral CT scan using impact CT patient dosimetry

    Directory of Open Access Journals (Sweden)

    Ayoub Amirnia

    2017-05-01

    Full Text Available Background: Due to the presence of radiosensitive organs in the abdominopelvic region and increasing the number of requests for CT scan examinations, concerns about increasing radiation doses in patients has been greatly elevated. Therefore, the goal of this study was to determine the absorbed dose of radiosensitive organs and the effective dose in patients underwent abdominopelvic CT scan using ImPACT CT patient dosimetry Calculator (version 1.0.4, Imaging Performance Assessment on Computed Tomography, www.impactscan.org. Methods: This prospective cross-sectional study was conducted in Imam Reza Hospital from November to February 2015 February 2015 in the Imam Reza Hospital, in Urmia, Iran. The demographic and dosimetric information of 100 patients who underwent abdominopelvic CT scan in a 6-slice CT scanner were obtained through the data collection forms. The demographic data of the patients included age, weight, gender, and BMI. The dosimetric parameters included pitch value, CT dose volume index (CTDIvol, dose-length product (DLP, tube voltage, tube current, exposure time, collimation size, scan length, and scan time. To determine the absorbed dose of radiosensitive organs and also the effective dose in patients, ImPACT CT patient dosimetry calculator was used. Results: The results of this study demonstrated that the mean and standard deviation (SD of patients' effective dose in abdominopelvic CT scan was 4.927±0.164 mSv. The bladder in both genders had the greatest mean organ dose, which was 64.71±17.15 mGy for men and 77.56±18.48 mGy for women (P<0.001. Conclusion: The effective dose values of this examination are in the same range as previous studies, as well as International Commission on Radiological Protection (ICRP recommendations. However, the radiation dose from CT scan has the largest contribution to the medical imaging. According to the ALARA principle, it is recommended that the scan parameters, especially mAs, should be

  3. Chromosomal radiosensitivity of lymphocytes in South African breast ...

    African Journals Online (AJOL)

    radiosensitivity has been used as an indirect measure of cancer susceptibility. ... studies have shown that breast cancer patients are more sensitive to ionising radiation than healthy individuals. .... There was an effect of ER positivity on the MN.

  4. Tumour-specific radiosensitizers for radiation therapy

    International Nuclear Information System (INIS)

    Denekamp, J.

    1977-01-01

    Recently Adams and coworkers at the Gray Laboratory have developed a new class of radiosensitizers which act specifically on hypoxic cells by abolishing the protection afforded by low oxygen concentrations. Since most experimental tumours contain a high proportion of oxygen-deprived cells, and most normal tissues are well oxygenated, these drugs are tumour specific radiosensitizers. Based on the hypothesis that sensitization increases with increasing electron affinity, the two nitroimidazoles, metronidazole (Flagyl) and Ro-07/0582 were identified as potent radiosensitizers with low toxicity. These drugs are effective only in the absence of oxygen, and only if the drug is present at the time of irradiation. The degree of sensitization increases with drug concentration rapidly over the range 0.1 to 1.0mg/g body weight for Ro-07-0582, and more gradually for Flagyl. Tumour studies have been performed on at least 12 different experimental tumours, using a variety of end points. Significant sensitization has been observed in every tumour studied, often corresponding to a dose reduction factor of 2.0 for high but non-toxic drug doses. Fractionated studies have also been performed on a few tumour lines. In most cases a useful therapeutic advantage was observed, although the sensitization was smaller. Ro-07-0582 used with X-rays gives a therapeutic gain comparable with that from cyclotron-produced fast neutrons. Neutrons used together with Ro-07-0582 are even more effective. In addition to the radiosensitization there is a specific cytotoxicity to hypoxic cells after prolonged exposure to Ro-07-0582. This cytotoxicity can be greatly enhanced in vitro by moderate hyperthermia. Flagyl and Ro-07-0582 have been used clinically as radiosensitizers, with promising early results. The clinical application is limited to certain dose fractionation patterns because of neurotoxicity. (author)

  5. Evaluation of the effect of three monazite constituents on the radiosensitivity of human osteoblasts; Avaliação do efeito de três metais constituintes da monazita sobre a radiossensibilidade de osteoblastos humanos

    Energy Technology Data Exchange (ETDEWEB)

    Iwahara, Lucas Kiyoshi da Fonseca; Oliveira, Monica Stuck de; Alencar, Marcus Alexandre Vallim de, E-mail: lucas@bolsista.ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ) Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Thorium has gained notoriety in recent years, as a potential source of nuclear energy, substituting uranium in power plants. Monazite is an important font of thorium, as well of uranium and rare earths elements. Professionals involved in the extraction and manipulation of this mineral are occupationally exposed to aerosols containing metals and to ionizing radiation. This paper analyzed the effects of thorium, cerium and lanthanum on cell radiosensitivity. As an osteotropic substance, thorium is mostly deposited in bone tissue and may interfere in cellular radiosensitivity. A human osteoblast cell line was used to evaluate the effects of thorium, cerium and lanthanum on cell radiosensitivity, using proliferation as indicator. Assays were performed using cell cultures exposed to metals and to ionizing radiation. As a result, metals in combination with ionizing radiation induced changes on cell proliferation, in a concentration-dependent manner, in comparison with the exposure to metals alone. That suggests the possibility of combination interfering with radiosensitivity of osteoblasts, indicating an enhancement in occupational risk for workers that manipulate monazite byproducts and are subject to radiation in the environment. Thus, the development of risk assessment models that include the evaluation of metal-radiation mixtures and their cytotoxic and radiotoxic effects on tissues and organs must be highlighted. (author)

  6. Fully automated parallel oligonucleotide synthesizer

    Czech Academy of Sciences Publication Activity Database

    Lebl, M.; Burger, Ch.; Ellman, B.; Heiner, D.; Ibrahim, G.; Jones, A.; Nibbe, M.; Thompson, J.; Mudra, Petr; Pokorný, Vít; Poncar, Pavel; Ženíšek, Karel

    2001-01-01

    Roč. 66, č. 8 (2001), s. 1299-1314 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z4055905 Keywords : automated oligonucleotide synthesizer Subject RIV: CC - Organic Chemistry Impact factor: 0.778, year: 2001

  7. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    Science.gov (United States)

    Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran

    2016-03-01

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (Prooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.

  8. Chromosomal radiosensitivity of prostate cancer patients

    International Nuclear Information System (INIS)

    McRobbie, M.L.; Riches, A.; Baxby, K.

    2003-01-01

    Full text: Radiosensitivity of peripheral blood lymphocytes from prostate cancer patients is being investigated using the G2 assay and the Cytokinesis Block Micronucleus(CBMN)assay. The G2 assay evaluates chromosomal damage caused by irradiating cells in the G2 phase of the cell cycle. The CBMN assay quantifies the post mitotic micronuclei, which are the expression of damage incurred during G0. An association between hypersensitivity to the chromosome damaging effects of ionising radiation and cancer predispostion has been demonstrated in a number of heritable conditions by using the aforementioned techniques. Recently, increased chromosomal radiosensitivity has been demonstrated in a significant proportion of patients with no obvious family history of malignancy. The aim of this study is to establish whether a group of prostatic carcinoma patients exists and if so whether there are any correlations between their G2 and G0 sensitivities. The study has shown there is no correlation between G2 and G0 sensitivity, confirming the general trend that individuals exhibiting chromosomal radiosensitivity are defective in only one mechanism and G2 and G0 sensitivity are largely independent. Current data indicates that there is an identifiable group of men within the prostate cancer population with increased chromosomal radiosensitivity. Using the G2 assay and the 90th percentile of the controls as a cut off point for sensitivity, no significant difference between the controls and the patient population has been found. However, using the CBMN assay and again the 90th percentile, approximately 11% of the control group are sensitive compared with approximately 40% of the carcinoma cases. The implications of this increased radiosensitivity are as yet unclear, but it is indicative of increased chromosomal fragility and therefore, possibly associated with malignant transformation. Hence, it may prove a useful tool in identifying individuals at increased risk of developing

  9. Higher Levels of c-Met Expression and Phosphorylation Identify Cell Lines With Increased Sensitivity to AMG-458, a Novel Selective c-Met Inhibitor With Radiosensitizing Effects

    International Nuclear Information System (INIS)

    Li Bo; Torossian, Artour; Sun, Yunguang; Du, Ruihong; Dicker, Adam P.; Lu Bo

    2012-01-01

    Purpose: c-Met is overexpressed in some non-small cell lung cancer (NSCLC) cell lines and tissues. Cell lines with higher levels of c-Met expression and phosphorylation depend on this receptor for survival. We studied the effects of AMG-458 on 2 NSCLC cell lines. Methods and Materials: 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium assays assessed the sensitivities of the cells to AMG-458. Clonogenic survival assays illustrated the radiosensitizing effects of AMG-458. Western blot for cleaved caspase 3 measured apoptosis. Immunoblotting for c-Met, phospho-Met (p-Met), Akt/p-Akt, and Erk/p-Erk was performed to observe downstream signaling. Results: AMG-458 enhanced radiosensitivity in H441 but not in A549. H441 showed constitutive phosphorylation of c-Met. A549 expressed low levels of c-Met, which were phosphorylated only in the presence of exogenous hepatocyte growth factor. The combination of radiation therapy and AMG-458 treatment was found to synergistically increase apoptosis in the H441 cell line but not in A549. Radiation therapy, AMG-458, and combination treatment were found to reduce p-Akt and p-Erk levels in H441 but not in A549. H441 became less sensitive to AMG-458 after small interfering RNA knockdown of c-Met; there was no change in A549. After overexpression of c-Met, A549 became more sensitive, while H441 became less sensitive to AMG-458. Conclusions: AMG-458 was more effective in cells that expressed higher levels of c-Met/p-Met, suggesting that higher levels of c-Met and p-Met in NSCLC tissue may classify a subset of tumors that are more sensitive to molecular therapies against this receptor.

  10. An investigation into the effect of protective devices on the dose to radiosensitive organs in the head and neck

    International Nuclear Information System (INIS)

    Marshall, N.W.; Faulkner, K.; Clarke, P.

    1992-01-01

    A series of experiments were performed to determine the dose reduction afforded to radiosensitive organs in the head and neck by various protective devices. These included spectacles with plastic, standard glass, photochromic and lead-glass lenses, a thyroid collar and a lead-acrylic face mask. The measurements were performed using an anthropomorphic phantom loaded with lithium fluoride thermoluminescent dosemeters, in conditions realistic of clinical practice. Irradiations were performed using scattered radiation produced by a pelvic phantom, for X-ray beams generated at 80 kVp and 110 KVp. Also presented is the ratio of organ dose to dose to the bridge of the nose for thyroid, oesophagus, brain and sinuses, as measured for the case of no head or neck protection. (author)

  11. Chromosomes, cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Samouhos, E.

    1983-01-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  12. Radiosensitization by hematocrit manipulation

    International Nuclear Information System (INIS)

    Hirst, D.G.; Hazlehurst, J.L.; Brown, J.M.

    1985-01-01

    The authors show that tumors in mice adapt to anemia in a rather complex manner. Radiosensitivity may be lower, higher or equal to normal depending on when the anemia is induced prior to irradiation. The authors study these changes in radiosensitivity which occur during a period of anemia followed by the restoration of the hematocrit. When mice were made anemic immediately before irradiation, their tumors were very resistant, but the resistance was lost over the following 24 hrs even though the anemia was maintained. If mice which had been anemic for 24 hrs were retransfused to normal levels with red blood cells immediately before irradiation, their tumors were considerably more sensitive than normal. As the interval between retransfusion and irradiation was increased, sensitization was rapidly lost so that by 24 hrs sensitivity was the same as that of control tumors. They attribute this loss of sensitization to rapid tumor growth in response to a restored oxygen supply so that new hypoxic cells are created. The implications of this for the treatment of the anemic patient are discussed

  13. Oligonucleotide-based theranostic nanoparticles in cancer therapy

    Science.gov (United States)

    Shahbazi, Reza; Ozpolat, Bulent; Ulubayram, Kezban

    2016-01-01

    Theranostic approaches, combining the functionality of both therapy and imaging, have shown potential in cancer nanomedicine. Oligonucleotides such as small interfering RNA and microRNA, which are powerful therapeutic agents, have been effectively employed in theranostic systems against various cancers. Nanoparticles are used to deliver oligonucleotides into tumors by passive or active targeting while protecting the oligonucleotides from nucleases in the extracellular environment. The use of quantum dots, iron oxide nanoparticles and gold nanoparticles and tagging with contrast agents, like fluorescent dyes, optical or magnetic agents and various radioisotopes, has facilitated early detection of tumors and evaluation of therapeutic efficacy. In this article, we review the advantages of theranostic applications in cancer therapy and imaging, with special attention to oligonucleotide-based therapeutics. PMID:27102380

  14. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells.

    Science.gov (United States)

    Küçüktürkmen, Berrin; Devrim, Burcu; Saka, Ongun M; Yilmaz, Şükran; Arsoy, Taibe; Bozkir, Asuman

    2017-01-01

    Combination therapy using anticancer drugs and nucleic acid is a more promising strategy to overcome multidrug resistance in cancer and to enhance apoptosis. In this study, lipid-polymer hybrid nanoparticles (LPNs), which contain both pemetrexed and miR-21 antisense oligonucleotide (anti-miR-21), have been developed for treatment of glioblastoma, the most aggressive type of brain tumor. Prepared LPNs have been well characterized by particle size distribution and zeta potential measurements, determination of encapsulation efficiency, and in vitro release experiments. Morphology of LPNs was determined by transmission electron microscopy. LPNs had a hydrodynamic size below 100 nm and exhibited sustained release of pemetrexed up to 10 h. Encapsulation of pemetrexed in LPNs increased cellular uptake from 6% to 78%. Results of confocal microscopy analysis have shown that co-delivery of anti-miR-21 significantly improved accumulation of LPNs in the nucleus of U87MG cells. Nevertheless, more effective cytotoxicity results could not be obtained due to low concentration of anti-miR-21, loaded in LPNs. We expect that the effective drug delivery systems can be obtained with higher concentration of anti-miR-21 for the treatment of glioblastoma.

  15. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    International Nuclear Information System (INIS)

    Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran

    2016-01-01

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer. - Highlights: • Core/shell type Iron oxide nanoparticles were used as a novel and efficient method. • This method increases exogenous DNA uptake by rooster spermatozoa. • Static magnetic field decreased DNA uptake by rooster spermatozoa.

  16. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Katebi, Samira; Esmaeili, Abolghasem, E-mail: aesmaeili@sci.ui.ac.ir; Ghaedi, Kamran

    2016-03-15

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer. - Highlights: • Core/shell type Iron oxide nanoparticles were used as a novel and efficient method. • This method increases exogenous DNA uptake by rooster spermatozoa. • Static magnetic field decreased DNA uptake by rooster spermatozoa.

  17. Radiosensitizing and toxic effects of the 2-nitroimidazole Ro-07-0582 in different phases of the cell cycle of extremely hypoxic human cells in vitro

    International Nuclear Information System (INIS)

    Petterson, E.O.

    1978-01-01

    The radiosensitizing effect of 5 and 30 mM of Ro-07-0582 (misonidazole) has been studied at different stages of the cell cycle of mitotically selected NHIK 3025 cells under aerobic and extremely hypoxic conditions. For cells irradiated under aerobic conditions no sensitizing effect was seen at any stage of the cell cycle. For cells irradiated under extremely hypoxic conditions there was a lower sensitizing effect in mid-G1 than in mid-S for low radiation doses (in the initial region of the dose-response curves). For high radiation doses, however, no significant difference in sensitizing effect on cells in mid-G1 and in mid-S was seen. For cells in mid-G1 the sensitizing effect increased with increasing radiation dose. The toxic effect of 30 mM Ro-07-0582 as measured by loss of reproductive capacity was studied at room temperature for contact times up to 6 hours under aerobic conditions and 3 hours under extremely hypoxic conditions. While no effect was seen under aerobic conditions there was a toxic effect for contact intervals above 1 hour under extremely hypoxic conditions. Cells in S were more sensitive to the toxic effect of Ro-07-0582 than cells in G1. Implications for clinical use are discussed

  18. Nicotinamide and carbogen: relationship between pO2 and radiosensitivity in three tumour lines

    International Nuclear Information System (INIS)

    Martin, L.M.; Thomas, C.D.; Guichard, M.

    1994-01-01

    The effects of carbogen breathing, nicotinamide injection and their combination on tumour radiosensitivity were correlated with changes in tumour O 2 tension to determine the relationship between radiosensitivity and measured pO 2 . The radiosensitivity (in vivo-in vitro colony assay) and O 2 tension (computerized pO 2 histograph KIMOC 6650) of two human xenografted tumours (HRT18 and NA11 +) and one murine tumour (EMT6) were measured under similar experimental conditions. (author)

  19. Radiosensitivity of neuroblastoma

    International Nuclear Information System (INIS)

    Deacon, J.M.; Wilson, P.; Steel, G.G.

    1985-01-01

    Neuroblastoma is known to be clinically radioresponsive: it is possible to obtain local tumour control with relatively small doses of radiation. The main therapeutic problem, however, is one of metastatic disease, where in spite of modern combination chemotherapy, the prognosis remains poor. Systemic therapy with either drugs or radiation is dose-limited by toxicity to bone marrow stem cells. However, the advent of new technology which enables tumour cells to be removed from infiltrated marrow prior to autologous bone marrow ''rescue'' allows dose escalation, and makes the use of systemic irradiation in the treatment of stage IV disease feasible. The objective of this study was to investigate the radiobiology of neuroblastoma in detail, including intrinsic cellular radiosensitivity, repair capacity, and extrinsic dose-modifying factors which may affect tumour response in vivo. Cells at three levels of organisation were used: single cell suspensions multicellular tumour spheroids; and xenografts grown in immune-suppressed mice

  20. Radiosensitivities of sensitized lymphocytes

    International Nuclear Information System (INIS)

    Taniguchi, Kazuto

    1979-01-01

    Immunization of mice with cell antigens such as allogeneic tumor cells or xenogeneic erythrocytes raises a variety of immune reactions mediated by T lymphocytes: i.e. delayed type hypersensitivity (DTH), cytotoxicity, and antibody production. The radiosensitivities of these reactions were examined in mice exposed to 600 R x-irradiation a few hours before or after immunization. 1) DTH to xenogeneic erythrocytes, as demonstrated by footpad reaction, was not suppressed by irradiation 3 h before or after immunization. DTH to allogeneic tumor cells, as demonstrated by a migration inhibition test, hardly developed in mice that had been irradiated before or after immunization. It may have belonged to distinct types of delayed reactions which were mediated by distinct subpopulations of T lymphocytes. 2) Cytotoxicity against allogeneic cells and xenogeneic erythrocytes showed almost the same radiosensitivity. It was scarcely detected in mice that had been irradiated before immunization. However, a low but definite degree of cytotoxicity was detected in mice that had been irradiated only a few hours after immunization. Solubilized allogeneic cells instead of native cells were used as immunizing antigens. It was also possible for precursor cells with cytotoxicity to acquire a radioresistant nature by immunization of solubilized antigens, but native cells were required as stimulation for radioresistant precursor cells to differentiated into nature cytotoxic effector cells. 3) Antibody production against xenogeneic erythrocytes or allogeneic cells was almost completely depleted in mice that had been irradiated before or after immunization. It is possible that antibody production essentially requires cell division and clonal expansion of B lymphocytes. (Bell, E.)

  1. The molecular basis of radiosensitivity

    International Nuclear Information System (INIS)

    McMillan, T.J.

    1989-01-01

    This paper considers how DNA damage induced by ionising radiation is processed within the cell. The current view of radiobiology is discussed. The author explains the molecular processes that underlie the differences in radiosensitivity

  2. Predictive radiosensitivity tests in human lymphocytes

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.; Sardi, M.; Busto, E.; Mairal, L.; Roth, B.; Menendez, P.; Bonomi, M.

    2004-01-01

    Individual radiosensitivity is an inherent characteristic, associated with an abnormally increased reaction to ionising radiation of both the whole body and cells derived from body tissues. Human population is not uniform in its radiation sensitivity. Radiosensitive sub-groups exist, which would suffer an increased incidence of both deterministic and stochastic effects. Clinical studies have suggested that a large part of the spectrum of normal tissue reaction may be due to differences in individual radiosensitivity. The identification of such sub-groups should be relevant for radiation therapy and radiation protection purposes. It is suggested that DNA repair mechanisms are involved. Consequently, the characterization of DNA repair in lymphocytes through cytokinesis blocked micronucleus (MN) and alkaline single-cell microgel electrophoresis (comet) assays could be a suitable approache to evaluate individual radiosensitivity in vitro. The aims of this study were: 1) To assess the in vitro radiosensitivity of peripheral blood lymphocytes from two groups of cancer patients (prospectively and retrospectively studied), using MN and comet assays, in comparison with the clinical radiation reaction and 2) To test the predictive potential of both techniques for the identification of radiosensitivity sub-groups. 38 cancer patients receiving radiation therapy were enrolled in this study. 19 patients were evaluated prior, mid-way and on completion of treatment (prospective group) and 19 patients were evaluated about 6-18 month after radiotherapy (retrospective group). Cytogenetic data from the prospective group were analysed using a mathematical model to evaluate the attenuation of the cytogenetic effect as a function of the time between a single exposure and blood sampling, estimating a cytogenetic recovery factor k. In the retrospective group, blood samples were irradiated in vitro with 0 (control) or 2 Gy and evaluated using MN test. Cytogenetic data were analysed

  3. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  4. Studies on Drosophila radiosensitive strains

    International Nuclear Information System (INIS)

    Varentsova, E.P.; Zakharov, I.A.

    1976-01-01

    45 of radiosensitive strains of Drosophila melanogaster were isolated by Curly/Lobe technique after EMS treatment of Livadia population males. The lethality of non-Curly late larvae after gamma-irradiation (4000r) characterized radiosensitivity strains. Most of them exhibited higher frequency of the spontaneous dominant lethals (up to 69%). The males of 6 strains were semi-sterile. 5 of these strains exhibited higher frequency of X-chromosome non-disjunction

  5. The radiosensitizing effect of a N(4)-tolyl-2-acetylpyridine derived thiosemicarbazone and its metallic complex against a glioblastoma cell line

    International Nuclear Information System (INIS)

    Vilas Boas, Fabricio A.S.; Hudson, Luiza O.; Santos, Raquel G. dos; Mendes, Isolda C.; Beraldo, Heloisa O.

    2009-01-01

    Cancer is one of the most prevalent and difficult diseases to be treated. Despite the efforts at improving diagnose and treatment, the success is still very limited. One of the factors implicated in such limitation is the inherent radioresistance of most tumors, specially the cerebral ones. They are poorly vascularized due to the rapid growth of cells and disorganized angiogenesis that leads to hypoxic tissue that increases radioresistance. Also another issue is the side effects of exposition to high levels of radiation and chemicals. Combined approaches using both chemo and radiotherapy are one of the most effective strategies applied to maximize the results and decrease the side effects of the treatment to the patient. One of the drugs that are commonly used is cisplatin that has some, yet limited result. Given this context, our group has been testing several synthetic compounds of the thiosemicarbazone class. These chemicals have broad pharmacologic profile including antitumoral effect. We have shown in previous works the effective reduction of cell viability and proliferation using very low concentrations of thiosemicarbazones both in free form and complexed with metals like copper. In this work we present another application of this compound that can also be used as a radiosensitization agent in glioblastoma multiform cell line RT-2 present that the combined approach increases de effect of gamma radiation. Also, that the coordination to copper apparently does not increase this activity. (author)

  6. Resveratrol enhances radiosensitivity of human non-small cell lung cancer NCI-H838 cells accompanied by inhibition of nuclear factor-kappa B activation

    International Nuclear Information System (INIS)

    Liao, Hui-Fen; Kuo Cheng-Deng; Yang, Yuh-Cheng; Lin, Chin-Ping; Tai, Hung-Chi; Chen, Yu-Jen; Chen, Yu-Yawn

    2005-01-01

    Resveratrol, a polyphenol in red wine, possesses many pharmacological activities including cardio-protection, chemoprevention, anti-tumor effects, and nuclear factor-kappa B (NF-κB) inactivation. The present study was designed to evaluate the effects and possible mechanism of resveratrol in enhancing radiosensitivity of lung cancer cells. Human non-small cell lung cancer NCI-H838 cells were irradiated with or without resveratrol pretreatment. The surviving fraction and sensitizer enhancement ratio (SER) were estimated by using a colony formation assay and linear-quadratic model. The cell-cycle distribution was evaluated by using prospidium iodide staining and flow cytometry. An enzyme-linked immunosorbent assay (ELISA)-based assay with immobilized oligonucleotide was performed to assess the DNA binding activity of NF-κB. Resveratrol had no direct growth-inhibitory effect on NCI-H838 cells treated for 24 hours with doses up to 25 μM. Pretreatment with resveratrol significantly enhanced cell killing by radiation, with an SER up to 2.2. Radiation activated NF-κB, an effect reversed by resveratrol pretreatment. Resveratrol resulted in a decrease of cells in the G 0 /G 1 phase and an increase in the S phase. Our results demonstrate that resveratrol enhances the radiosensitivity of NCI-H838 cells accompanied by NF-κB inhibition and S-phase arrest. (author)

  7. Electronic Structures of LNA Phosphorothioate Oligonucleotides

    DEFF Research Database (Denmark)

    Bohr, Henrik G.; Shim, Irene; Stein, Cy

    2017-01-01

    Important oligonucleotides in anti-sense research have been investigated in silico and experimentally. This involves quantum mechanical (QM) calculations and chromatography experiments on locked nucleic acid (LNA) phosphorothioate (PS) oligonucleotides. iso-potential electrostatic surfaces...

  8. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  9. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-07-01

    Full Text Available Xi Liu,1–4 Yan Liu,1–4 Pengcheng Zhang,1–4 Xiaodong Jin,1–3 Xiaogang Zheng,1–4 Fei Ye,1–4 Weiqiang Chen,1–3 Qiang Li1–3 1Institute of Modern Physics, 2Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, 3Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 4School of Life Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China Abstract: Reductive drug-functionalized gold nanoparticles (AuNPs have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ moiety, and then thioctyl TPZ (TPZs-modified AuNPs (TPZs-AuNPs were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. Keywords: AuNPs, radiation enhancement, synergistic effect, human hepatoma cells, hydroxyl radical production

  10. Enhanced Radiosensitivity of Tumor Cells Treated with Vanadate in Vitro

    International Nuclear Information System (INIS)

    Lee, Myung Za; Lee, Won Young

    1994-01-01

    tumor cells to radiation. Inhibitory effect of vanadate on Na+-K+-ATPase activity might be one of the contributing factors for radiosensitization to tumor cells which has greater enzyme activity than that of normal cell. It was suggested vanadate could be used as a potential radiosensitizer for tumor cells

  11. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    Science.gov (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  12. Decreasing size of radiosensitive capsules from micro to nano, and its increased antitumor effect and decreasing adverse effect

    International Nuclear Information System (INIS)

    Harada, S.; Ehara, S.; Ishii, K.; Yamazaki, H.; Matsuyama, S.; Sato, Takahiro; Kamiya, Tomihiro; Sera, K.; Saito, Y.

    2012-01-01

    We have been developing microcapsules that release anticancer drug with response to radiation. We attempted to decrease the diameter of capsules. Then, two categories were tested in VIVO in C3He mice: (1) the antitumor effect in combination with radiation and subcutaneously injected nanocapsules, (2) the kidnetics of nanocapsules when they were injected intravenously. Microcapsules were produced by spraying a mixture of 3.0 % hyaluronic acid, 2.0 % alginate, 3.0 % H 2 O 2 , and 0.3 mmol carboplatin (Pt containing anticancer drug) onto a mixture of vibrated 0.3 mol FeCl 2 and 0.15 mol CaCl 2 . The antitumor effect was measured by measuring tumor diameter every day. The kinetics of microcapsules were expressed as the numbers of capsules in 5 views (25 x 25 μm) of micro PIXE camera and Pt concentration of quantiative PIXE. The generated microcapsules 752 ± 64 nm, which were significantly downsized relative to previous capsules. The accumulations of capsules in lungs, liver, and kidneys were decreased by downsizing, whereas those of tumors were increased. By adjusting Pt concentration in tumor, there were no significant differences in antitumor effect between not downsized and downsized microcapsules with combination with radiation. Decreased trapping of downsized microcapsules to lungs, liver, and kidneys, also increased trapping in tumors will lead to new targeted chemoradiotherapy via intravenous injection of microcapsules. (author)

  13. The hyper-radiosensitivity effect of human hepatoma SMMC-7721 cells exposed to low dose γ-rays and 12C ions

    International Nuclear Information System (INIS)

    Jin Xiaodong; Li Qiang; Li Wenjian; Wang Jufang; Guo Chuanling; Hao Jifang

    2006-01-01

    Hypersensitive response of mammalian cells in cell killing to X- and γ-rays has been reported at doses below 1 Gy. The purpose of this study was to examine the low dose sensitivity of human hepatoma SMMC-7721 cells irradiated with 6 Co γ-rays and 50 MeV/u 12 C ions. Experiments using γ-rays and charged particle irradiation were performed, particularly in the low dose range from 0 to 2 Gy. The survival effect of SMMC-7721 cells was measured by means of standard clonogenic assay in conjunction with a cell sorter. The result indicates SMMC-7721 cells showed hyper-radiosensitive response at low doses and increased radio-resistance at larger single doses for the carbon ions (LET = 45.2 keV/μm) and the γ-rays. However, the HRS/IRR effect caused by high-LET irradiation is different from that by low-LET radiation. This might possibly be due to the difference in the mode of energy deposition by particle beam and low-LET irradiation

  14. The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats.

    Science.gov (United States)

    Liu, Guochao; Wang, Hui; Zhang, Fengmei; Tian, Youjia; Tian, Zhujun; Cai, Zuchao; Lim, David; Feng, Zhihui

    2017-05-10

    This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function.

  15. DNA damage repair and radiosensitivity

    International Nuclear Information System (INIS)

    Suzuki, Norio

    2003-01-01

    Tailored treatment is not new in radiotherapy; it has been the major subject for the last 20-30 years. Radiation responses and RBE (relative biological effectiveness) depend on assay systems, endpoints, type of tissues and tumors, radiation quality, dose rate, dose fractionation, physiological and environmental factors etc, Latent times to develop damages also differ among tissues and endpoints depending on doses and radiation quality. Recent progress in clarification of radiation induced cell death, especially of apoptotic cell death, is quite important for understanding radiosensitivity of tumor cure process as well as of tumorigenesis. Apoptotic cell death as well as dormant cells had been unaccounted and missed into a part of reproductive cell death. Another area of major progress has been made in clarifying repair mechanisms of radiation damage, i.e., non-homologous end joining (NHEJ) and homologous recombinational repair (HRR). New approaches and developments such as cDNA or protein micro arrays and so called informatics in addition to basic molecular biological analysis are expected to aid identifying molecules and their roles in signal transduction pathways, which are multi-factorial and interactive each other being involved in radiation responses. (authors)

  16. Hereditary syndromes with enhanced radiosensitivity

    International Nuclear Information System (INIS)

    Lohmann, D.

    2000-01-01

    Sensitivity to ionizing radiation is modified by heritable genetic factors. This is exemplified by heritable disorders that are characterized by predisposition to the development of neoplasms. Cells derived from patients with ataxia telangiectasia, Nijmegen breakage syndrome and ataxia telangiektasia-like disorder show a markedly changed reaction to exposure to ionizing radiation. Correspondingly, at least in patients with ataxia telangiectasia, an enhanced radiosensitivity that is of clinical importance has been observed. In addition to these recessive disorders, some autosomal dominant cancer predisposition syndromes are associated with increased radiosensitivity. As cells from these patients still have a normal allele (that is dominant over the mutant allele), the cellular phenotype is most often normal. Specifically, there is no overtly altered reaction in response to ionizing radiation. Nevertheless, two dominant cancer predisposition syndromes, namely hereditary retinoblastoma and naevoid basal cell carcinoma syndrome, are associated with a enhanced radiosensitivity as indicated by increased development of tumors following radiation therapy. (orig.) [de

  17. Hormonal status can modify radiosensitivity

    International Nuclear Information System (INIS)

    Ricoul, M.; Sabatier, L.; Dutrillaux, B.

    1997-01-01

    In preliminary experiments, we have demonstrated that pregnancy increases chromosome radiosensitivity in the mouse at the end of gestation. Blood obtained from women at various times of pregnancy was then exposed to ionizing radiations in vitro. By comparison to non pregnant women, an increase in chromosome breakages was observed in metaphases from lymphocytes. Immediately after delivery, this increase of radiosensitivity disappeared. In a prospective study, serial analyses showed a very strong correlation between the amount of pregnancy hormones, progesterone in particular, and the increase of radiosensitivity. Thus, pregnant women may have an increased sensitivity to ionizing radiation during the second half of their pregnancy and the risks of radiation exposure of pregnant women have to be considered not only n relation to the child, but also to their own hypersensitivity. (authors)

  18. Characterization of the effect of sample quality on high density oligonucleotide microarray data using progressively degraded rat liver RNA

    Directory of Open Access Journals (Sweden)

    Rosenzweig Barry A

    2007-09-01

    Full Text Available Abstract Background The interpretability of microarray data can be affected by sample quality. To systematically explore how RNA quality affects microarray assay performance, a set of rat liver RNA samples with a progressive change in RNA integrity was generated by thawing frozen tissue or by ex vivo incubation of fresh tissue over a time course. Results Incubation of tissue at 37°C for several hours had little effect on RNA integrity, but did induce changes in the transcript levels of stress response genes and immune cell markers. In contrast, thawing of tissue led to a rapid loss of RNA integrity. Probe sets identified as most sensitive to RNA degradation tended to be located more than 1000 nucleotides upstream of their transcription termini, similar to the positioning of control probe sets used to assess sample quality on Affymetrix GeneChip® arrays. Samples with RNA integrity numbers less than or equal to 7 showed a significant increase in false positives relative to undegraded liver RNA and a reduction in the detection of true positives among probe sets most sensitive to sample integrity for in silico modeled changes of 1.5-, 2-, and 4-fold. Conclusion Although moderate levels of RNA degradation are tolerated by microarrays with 3'-biased probe selection designs, in this study we identify a threshold beyond which decreased specificity and sensitivity can be observed that closely correlates with average target length. These results highlight the value of annotating microarray data with metrics that capture important aspects of sample quality.

  19. Beneficial metabolic effects of CB1R anti-sense oligonucleotide treatment in diet-induced obese AKR/J mice.

    Directory of Open Access Journals (Sweden)

    Yuting Tang

    Full Text Available An increasing amount of evidence supports pleiotropic metabolic roles of the cannibinoid-1 receptor (CB1R in peripheral tissues such as adipose, liver, skeletal muscle and pancreas. To further understand the metabolic consequences of specific blockade of CB1R function in peripheral tissues, we performed a 10-week-study with an anti-sense oligonucleotide directed against the CB1R in diet-induced obese (DIO AKR/J mice. DIO AKR/J mice were treated with CB1R ASO Isis-414930 (6.25, 12.5 and 25 mg/kg/week or control ASO Isis-141923 (25 mg/kg/week via intraperitoneal injection for 10 weeks. At the end of the treatment, CB1R mRNA from the 25 mg/kg/week CB1R ASO group in the epididymal fat and kidney was decreased by 81% and 63%, respectively. Body weight gain was decreased in a dose-dependent fashion, significantly different in the 25 mg/kg/week CB1R ASO group (46.1±1.0 g vs veh, 51.2±0.9 g, p<0.05. Body fat mass was reduced in parallel with attenuated body weight gain. CB1R ASO treatment led to decreased fed glucose level (at week 8, 25 mg/kg/week group, 145±4 mg/dL vs veh, 195±10 mg/dL, p<0.05. Moreover, CB1R ASO treatment dose-dependently improved glucose excursion during an oral glucose tolerance test, whereas control ASO exerted no effect. Liver steatosis was also decreased upon CB1R ASO treatment. At the end of the study, plasma insulin and leptin levels were significantly reduced by 25 mg/kg/week CB1R ASO treatment. SREBP1 mRNA expression was decreased in both epididymal fat and liver. G6PC and fatty acid translocase/CD36 mRNA levels were also reduced in the liver. In summary, CB1R ASO treatment in DIO AKR/J mice led to improved insulin sensitivity and glucose homeostasis. The beneficial effects of CB1R ASO treatment strongly support the notion that selective inhibition of the peripheral CB1R, without blockade of central CB1R, may serve as an effective approach for treating type II diabetes, obesity and the metabolic syndrome.

  20. Taxonomic and developmental aspects of radiosensitivity

    International Nuclear Information System (INIS)

    Harrison, F.L.; Anderson, S.L.

    1996-11-01

    Considerable information is available on the effects of radioactivity on adult and early life stages of organisms. The preponderance of data is on mortality after a single irradiation with relatively high doses. Unfortunately, because experiments were carried out under different conditions and for different time periods, the validity of comparing the results from different laxonomic groups is questionable. In general, the conclusions are that there is a relationship (1) between radioresistance to high doses of acute radiation and taxonomy of the organism, primitive forms being more radioresistant than complex vertebrates and (2) between radiosensitivity and developmental stage, early life stages being more sensitive than later stages. The first conclusion may be related to the capability of the organism to repopulate cells and to differentiate and redifferentiate them; the second to the rate of cellular division and to the degree of differentiation. In question, however, is the relevance of the responses from high levels of acute radiation to that of the responses to long-term exposure to low levels of radiation, which are ecologically of more interest. Data from studies of the effects of acute and chronic exposure on development of gametes and zygotes indicate that, for some fishes and invertebrates, responses at the cellular and molecular levels show effect levels comparable to those observed in some mammals. Acute doses between 0,05 and 0.5Cy and dose rates between 0.02 to 0.2mCy/h appear to define critical ranges in which detrimental effects on fertility are first observed in a variety of radiosensitive organisms. To better understand inherent radiosensitivity, we need more information on the ability of cells to repopulate and differentiate and to prevent or repair damage to biological critical molecules, such as DNA, because these factors may alter significantly organisms'' responses to radiation

  1. Taxonomic and developmental aspects of radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, F.L. [Lawrence Livermore National Lab., CA (United States); Anderson, S.L. [Lawrence Berkeley National Lab., CA (United States)

    1996-11-01

    Considerable information is available on the effects of radioactivity on adult and early life stages of organisms. The preponderance of data is on mortality after a single irradiation with relatively high doses. Unfortunately, because experiments were carried out under different conditions and for different time periods, the validity of comparing the results from different laxonomic groups is questionable. In general, the conclusions are that there is a relationship (1) between radioresistance to high doses of acute radiation and taxonomy of the organism, primitive forms being more radioresistant than complex vertebrates and (2) between radiosensitivity and developmental stage, early life stages being more sensitive than later stages. The first conclusion may be related to the capability of the organism to repopulate cells and to differentiate and redifferentiate them; the second to the rate of cellular division and to the degree of differentiation. In question, however, is the relevance of the responses from high levels of acute radiation to that of the responses to long-term exposure to low levels of radiation, which are ecologically of more interest. Data from studies of the effects of acute and chronic exposure on development of gametes and zygotes indicate that, for some fishes and invertebrates, responses at the cellular and molecular levels show effect levels comparable to those observed in some mammals. Acute doses between 0,05 and 0.5Cy and dose rates between 0.02 to 0.2mCy/h appear to define critical ranges in which detrimental effects on fertility are first observed in a variety of radiosensitive organisms. To better understand inherent radiosensitivity, we need more information on the ability of cells to repopulate and differentiate and to prevent or repair damage to biological critical molecules, such as DNA, because these factors may alter significantly organisms` responses to radiation.

  2. Challenges to oligonucleotides-based therapeutics for Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Goyenvalle Aurélie

    2011-02-01

    Full Text Available Abstract Antisense oligonucleotides are short nucleic acids designed to bind to specific messenger RNAs in order to modulate splicing patterns or inhibit protein translation. As such, they represent promising therapeutic tools for many disorders and have been actively developed for more than 20 years as a form of molecular medicine. Although significant progress has been made in developing these agents as drugs, they are yet not recognized as effective therapeutics and several hurdles remain to be overcome. Within the last few years, however, the prospect of successful oligonucleotides-based therapies has moved a step closer, in particular for Duchenne muscular dystrophy. Clinical trials have recently been conducted for this myopathy, where exon skipping is being used to achieve therapeutic outcomes. In this review, the recent developments and clinical trials using antisense oligonucleotides for Duchenne muscular dystrophy are discussed, with emphasis on the challenges ahead for this type of therapy, especially with regards to delivery and regulatory issues.

  3. Development of novel radiosensitizers for cancer therapy

    CERN Document Server

    Akamatsu, K

    2002-01-01

    The novel radiosensitizers for cancer therapy, which have some atoms with large X-ray absorption cross sections, were synthesized. The chemical and radiation (X-rays, W target, 100kVp) toxicities and the radiosensitivities to LS-180 human colon adenocarcinoma cells were also evaluated. 2,3,4,5,6-pentabromobenzylalcohol (PBBA) derivatives were not radiosensitive even around the maximum concentration. On the other hand, the hydrophilic sodium 2,4,6-triiodobenzoate (STIB) indicated meaningful radiosensitivity to the cells. Moreover, the membrane-specific radiosensitizers, cetyl fluorescein isthiocyanate (cetyl FITC), cetyl eosin isothiocyanate (cetyl br-FITC), cetyl erythrosin isothiocyanate (cetyl I-FITC), which aim for the membrane damage by X-ray photoabsorption on the target atoms, were localized in the plasma membrane. As the results of the colony formation assay, it was found that both cetyl FITC are similarly radiosensitive. In this report, we demonstrate the synthetic methods of the radiosensitizers, the...

  4. Potential in a single cancer cell to produce heterogeneous morphology, radiosensitivity and gene expression

    International Nuclear Information System (INIS)

    Ban, Sadayuki; Ishikawa, Ken-ichi; Kawai, Seiko; Koyama-Saegusa, Kumiko; Ishikawa, Atsuko; Imai, Takashi; Shimada, Yutaka; Inazawa, Johji

    2005-01-01

    Morphologically heterogeneous colonies were formed from a cultured cell line (KYSE70) established from one human esophageal carcinoma tissue. Two subclones were separated from a single clone (clone 13) of KYSE70 cells. One subclone (clone 13-3G) formed mainly mounding colonies and the other (clone 13-6G) formed flat, diffusive colonies. X-irradiation stimulated the cells to dedifferentiate from the mounding state to the flat, diffusive state. Clone 13-6G cells were more radiosensitive than the other 3 cell lines. Clustering analysis for gene expression level by oligonucleotide microarray demonstrated that in the radiosensitive clone 13-6G cells, expression of genes involved in cell adhesion was upregulated, but genes involved in the response to DNA damage stimulus were downregulated. The data demonstrated that a single cancer cell had the potential to produce progeny heterogeneous in terms of morphology, radiation sensitivity and gene expression, and irradiation enhanced the dedifferentiation of cancer cells. (author)

  5. Radiosensitization of hypoxic tumor cells in vitro by nitric oxide

    International Nuclear Information System (INIS)

    Griffin, Robert J.; Makepeace, Carol M.; Hur, Won-Joo; Song, Chang W.

    1996-01-01

    Purpose: The effects of nitric oxide (NO) on the radiosensitivity of SCK tumor cells in oxic and hypoxic environments in vitro were studied. Methods and Materials: NO was delivered to cell suspensions using the NO donors 2,2-diethyl-1-nitroso-oxyhydrazine sodium salt (DEA/NO), and a spermine/nitric oxide complex (SPER/NO), which release NO at half-lives of 2.1 min and 39 min at pH 7.4, respectively. The cells were suspended in media containing DEA/NO or SPER/NO for varying lengths of time under oxic or hypoxic conditions, irradiated, and the clonogenicity determined. Results: Both compounds markedly radiosensitized the hypoxic cells. The drug enhancement ratios (DER) for 0.1, 1.0, and 2.0 mM DEA/NO were 2.0, 2.3 and 3.0, respectively, and those for 0.1, 1.0, and 2.0 mM SPER/NO were 1.6, 2.3, and 2.8, respectively. Aerobic cells were not radiosensitized by DEA/NO or SPER/NO. When DEA/NO and SPER/NO were incubated in solution overnight to allow release of NO, they were found to have no radiosensitizing effect under hypoxic or oxic conditions indicating the sensitization by the NO donors was due to the NO molecule released from these drugs. At the higher concentrations, SPER/NO was found to be cytotoxic in aerobic conditions but not in hypoxic conditions. DEA/NO was only slightly toxic to the cells in both aerobic and hypoxic conditions. Conclusions: NO released from NO donors DEA/NO and SPER/NO is as effective as oxygen to radiosensitize hypoxic cells in vitro. Its application to the radiosensitization of hypoxic cells in solid tumors remains to be investigated

  6. Oligonucleotide Therapy for Obstructive and Restrictive Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Wupeng Liao

    2017-01-01

    Full Text Available Inhaled oligonucleotide is an emerging therapeutic modality for various common respiratory diseases, including obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD and restrictive airway diseases like idiopathic pulmonary fibrosis (IPF. The advantage of direct accessibility for oligonucleotide molecules to the lung target sites, bypassing systemic administration, makes this therapeutic approach promising with minimized potential systemic side effects. Asthma, COPD, and IPF are common chronic respiratory diseases, characterized by persistent airway inflammation and dysregulated tissue repair and remodeling, although each individual disease has its unique etiology. Corticosteroids have been widely prescribed for the treatment of asthma, COPD, and IPF. However, the effectiveness of corticosteroids as an anti-inflammatory drug is limited by steroid resistance in severe asthma, the majority of COPD cases, and pulmonary fibrosis. There is an urgent medical need to develop target-specific drugs for the treatment of these respiratory conditions. Oligonucleotide therapies, including antisense oligonucleotide (ASO, small interfering RNA (siRNA, and microRNA (miRNA are now being evaluated both pre-clinically and clinically as potential therapeutics. The mechanisms of action of ASO and siRNA are highly target mRNA specific, ultimately leading to target protein knockdown. miRNA has both biomarker and therapeutic values, and its knockdown by a miRNA antagonist (antagomir has a broader but potentially more non-specific biological outcome. This review will compile the current findings of oligonucleotide therapeutic targets, verified in various respiratory disease models and in clinical trials, and evaluate different chemical modification approaches to improve the stability and potency of oligonucleotides for the treatment of respiratory diseases.

  7. Predisposition to cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Pichierri, P.; Franchitto, A.; Palitti, F.

    2000-01-01

    Many cancer-prone diseases have been shown to be radiosensitive. The radiosensitivity has been attributed to pitfalls in the mechanisms of repair of induced DNA lesions or to an impaired cell cycle checkpoint response. Although discrepancies exist in the results obtained by various authors on the radiosensitivity of individuals affected by the same disease, these can be attributed to the large variability observed already in the response to radiation of normal individuals. To date three test are commonly used to assess radiosensitivity in human cells: survival, micronucleus and G 2 chromosomal assay. The three tests may be performed using either fibroblasts or peripheral blood lymphocytes and all the three tests share large interindividual variability. In this regard a new approach to the G 2 chromosomal assay which takes into account the eventual differences in cell cycle progression among individuals has been developed. This new approach is based on the analysis of G 2 homogeneous cell populations. Cells irradiated are immediately challenged with medium containing bromodeoxyuridine (BrdU rd). Then cells are sampled at different post-irradiation times and BrdU rd incorporation detected on metaphases spread and the scoring is done only at time points showing similar incidence of labelled cells among the different donors. Using this approach it has been possible to reduce the interindividual variability of the G 2 chromosomal assay. (author)

  8. Increased chromosome radiosensitivity during pregnancy

    International Nuclear Information System (INIS)

    Ricoul, Michelle; Sabatier, Laure; Dutrillaux, Bernard

    1997-01-01

    It was necessary to consider the risks of exposure of pregnant women, not only in relation to the child, but also in relation to their own hypersensitivity. We have demonstrated that pregnancy increases radiosensitivity of chromosome in the mouse at the end of gestation. This is of importance since it may have implications on radioprotection of pregnant women and give experimental guidelines to the problems of hypersensitivity to drugs and cancer aggravation during pregnancy. Blood obtained from women at various times of pregnancy was exposed to ionizing radiations. By comparison to non-pregnant women, an increase in chromosome breakage was observed in metaphases from lymphocytes, after short-term culture in the presence of the serum of the same donor. Immediately after delivery, this increase in radiosensitivity disappeared. In a prospective study, serial analyses showed a very strong correlation between the amount of pregnancy hormones, progesterone in particular, and the increase in radiosensitivity. Pregnant women may have an increased sensitivity to ionizing radiation during the second half of their pregnancy. This study provides the first evidence in human that radiosensitivity may vary in relation to physiological conditions

  9. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    International Nuclear Information System (INIS)

    Aloy, Marie-Therese; Hadchity, Elie; Bionda, Clara; Diaz-Latoud, Chantal; Claude, Line; Rousson, Robert; Arrigo, Andre-Patrick; Rodriguez-Lafrasse, Claire

    2008-01-01

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively or in response to γ-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors

  10. Effects on normal tissues during radiosensitization of Dalton's Lymphoma by the DNA ligand Hoechst 33342 in Balb/c mice

    International Nuclear Information System (INIS)

    Kalra, Namita; Sampath, Swapna; Adhikari, J.S.; Dwarakanath, B.S.

    2014-01-01

    Hoechst 33342 is a bisbenzimidazole derivative with AT specific minor groove DNA binding ability. Scavenging of free radicals and stabilization of macromolecular structure resulting in reduced induction of DNA damage contributes to radioprotection afforded by the ligand. Their ability to inhibit topoisomerases I and II, which play important roles in damage response pathways including DNA repair has been shown to sensitize tumor cells in vitro and in vivo. Due to its mutagenic and clastogenic potentials, damage to vital normal tissues are a matter of concern in deploying the ligand as adjuvant in radiotherapy. Therefore, we investigated the effects of the ligand in Dalton's Lymphoma (DL) bearing Balb/c mice by studying the local tumor control and animal survival, besides damage to normal tissues like bone marrow, kidney and testis. Hoechst 33342 (10 mg/kg b wt) was administered (i.v.) 1 h before focal irradiation (10 Gy) of the tumor (∼ 500 mm 3 ) grown on the hind leg of the mice. Partial response with a growth delay of 16 days (3 x initial volume) was seen following irradiation, while a complete response (cure; tumor-free survival) was observed in 88% mice following the combined treatment (Hoechst 33342+radiation); ligand alone had no significant effect. Although the ligand induced marginal degree of chromosomal aberrations in the bone marrow, it did not enhance aberrations induced by radiation further. In testes, the proportions of diploid, haploid and hypo-haploid cells as well as resting primary spermatocytes (RPS) were not significantly altered by either. In kidney, Hoechst 33342 alone or in combination with radiation did not cause significant damage to the proximal tubules and glomeruli. These observations suggest that radiosensitization of tumor by the DNA ligand Hoechst 33342 may not be associated with enhanced toxicity to bone marrow as well as proximal normal tissues. (author)

  11. Radiosensitivities of cultured barley of different type (Hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan

    1990-01-01

    The dormant seeds (with 13% moisture) of 47 barley varieties were irradiated with various doses (0-40 krad) of 137 Cs γ-rays. The radiosensitivities of naked barley was significantly higher than that of hulled barley. The sensitive coefficients of seedling height were 0.04945 and 0.03667 for naked barley and hulled barley, respectively. The radiosensitivity of four-row naked barley was significantly higher than that of two-row hulled barley and six-row hulled barley. 47 varieties studied could be divided into five types with different radiosensitivities, i.e. extreme resistant, resistant, intermediate, sensitive and extreme sensitive. It was also found that the dose-effect curves of cell nucleus volume had a peal at 30 krad

  12. Analysis of mice radiosensitivity depending on age

    International Nuclear Information System (INIS)

    Bogatyrev, A.V.; Timoshenko, S.I.; Nikanorova, N.G.; Sverdlov, A.G.

    1979-01-01

    In order to elucidate mechanisms of age variations in radiosensitivity of mice a study was made of the sensitivity of in vitro irradiated bone marrow stem cells, taken from animals of different age, and postradiation recovery of leukocyte content of peripheral blood and cellularity of bone marrow and spleen. Using the method of spleen colonies similar affections were revealed in bone marrow cells of animals of different age. The degree of recovery of the hemopoietic cell pool was significantly lower in newborn mice than in adults after exposure to a dose (LDsub(50/30)) equally effective with respect to mortality

  13. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, Sebastian; Metzke, Elisabeth [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Bonin, Michael [Department of Medical Genetics, University of Tuebingen (Germany); Petersen, Cordula [Clinic of Radiotherapy and Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Dikomey, Ekkehard, E-mail: dikomey@uke.de [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Raabe, Annette [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  14. Evaluation of 2-amino-5-nitrothiazole as a hypoxic cell radiosensitizer

    International Nuclear Information System (INIS)

    Rockwell, S.; Mroczkowski, Z.; Rupp, W.D.

    1982-01-01

    The nitroheterocyclic compound 2-amino-5-nitrothiazole (ANT) was evaluated as a hypoxic radiosensitizer. Experiments with bacteria showed that this agent was similar to misonidozole in radiosensitizing activity, but was less cytotoxic and less mutagenic than misonidazole. Experiments with EMT6 tumor cells in culture showed ANT to be an effective hypoxic radiosensitizer, although slightly less active than misonidazole, and to be less cytotoxic than misonidazole. ANT was more toxic to mice than misonidazole and produced a spectrum of symptoms, including hyperactivity and agitation, different from those of misonidazole. The toxicities of ANT and misonidazole were additive. The maximum levels of ANT achieveable in the tumors after ip injection of nontoxic doses of drug were low ( -4 M) and the radiosensitization obtainable with the drug in vivo was inferior to that obtainable with misonidazole. These findings suggest that nitrothiazoles might be an interesting class of nitroheterocyclic radiosensitizers, but that molecules with increased solubility and improved pharmacokinetics would be necessary for efficacy in vivo

  15. ATM-induced radiosensitization in vitro and in vivo

    International Nuclear Information System (INIS)

    Choi, E. K.; Ahn, S. D.; Rhee, Y. H.; Chung, H. S.; Ha, S. W; Song, C. W.; Griffin, R. J.; Park, H. J.

    2003-01-01

    It has been known that ATM plays a central role in response of cells to ionizing radiation by enhancing DNA repair. We have investigated the feasibility of increasing radiosensitivity of tumor cells with the use of ATM inhibitors such as caffeine, pentoxifylline and wortmannin. Human colorectal cancer RKO.C cells and RKO-ATM cells (RKO cells overexpressing ATM) were used in the present study. The clonogenic cell survival in vitro indicated that RKO-ATM cells were markedly radioresistant than RKO.C cells. Treatment with 3 mM of caffeine significantly increased the radiosensitivity of cells, particulary the RKO-ATM cells, so that the radiosensitivity of RKO.C cells and RKO-ATM cells were almost similar. The radiation induced G2/M arrest in RKO-ATM cells was noticeably longer than that in RKO.C cells and caffeine treatment significantly reduced the length of the radiation induced G2/M arrest in both RKO.C and RKO-ATM cells. Pentoxifylline and wortmannin were also less effective than caffeine to radiosensitize RKO.C or RKO-ATM cells. However, wortmannin was more effective than caffeine against human lung adenocarcinoma A549 cells indicating the efficacy of ATM inhibitor to increase radiosensitivity is cell line dependent. For in vivo study, RKO.C cells were injected s.c. into the hind-leg of BALB/c-nuslc nude mice, and allowed to grow to 130mm3 tumor. The mice were i.p. injected with caffeine solution or saline and the tumors irradiated with 10 Gy of X-rays. The radiation induced growth delay was markedly increased by 1-2 mg/g of caffeine. It was concluded that caffeine increases radiosensitivity of tumor cells by inhibiting ATM kinase function, thereby inhibiting DNA repair, that occurs during the G2/M arrest after radiation

  16. The Medicinal Chemistry of Therapeutic Oligonucleotides.

    Science.gov (United States)

    Wan, W Brad; Seth, Punit P

    2016-11-10

    Oligonucleotide-based therapeutics have made rapid progress in the clinic for treatment of a variety of disease indications. Unmodified oligonucleotides are polyanionic macromolecules with poor drug-like properties. Over the past two decades, medicinal chemists have identified a number of chemical modification and conjugation strategies which can improve the nuclease stability, RNA-binding affinity, and pharmacokinetic properties of oligonucleotides for therapeutic applications. In this perspective, we present a summary of the most commonly used nucleobase, sugar and backbone modification, and conjugation strategies used in oligonucleotide medicinal chemistry.

  17. Radiosensitizing effect of nitric oxide in tumor cells and experimental tumors irradiated with gamma rays and proton beams; Efecto radiosensibilizador del oxido nitrico en celulas tumorales y en tumores experimentales irradiados con radiacion gamma y con haces de protones

    Energy Technology Data Exchange (ETDEWEB)

    Policastro, Lucia L; Duran, Hebe; Molinari, Beatriz L [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Radiobiologia; Schuff, Juan A; Kreiner, Andres J; Burlon, Alejandro A; Debray, Mario E; Kesque, Jose M; Ozafran, Mabel J; Vazquez, Monica E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Fisica; Davidson, Jorge; Davidson, Miguel [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Somacal, Hector R; Valda, Alejandro A [Universidad Nacional de General San Martin , Villa Ballester (Argentina). Escuela de Ciencia y Tecnologia

    2003-07-01

    Nitric oxide (NO) has been reported to be a radiosensitizer of mammalian cells under hypoxic conditions. In a previous study, we demonstrated an enhancement in radiation response induced by NO in mouse tumor cells under aerobic conditions, with an increasing effect as a function of malignancy. The aim of the present study was to evaluate the effect of NO in tumor cells and in experimental tumors irradiated with {gamma} rays and proton beams. Irradiations were performed with a {sup 137}Cs {gamma} source and with proton beams generated by the TANDAR accelerator. Tumor cells were treated with the NO donor DETA-NO and the sensitizer enhancement ratio (SER) was calculated using the {alpha} parameter of the survival curve fitted to the linear-quadratic model. Tumor cells irradiated with protons were radio sensitized by DETA-NO only in the more malignant cells irradiated with low LET protons (2.69{+-}0.08 keV/{mu}m). For higher LET protons there were no radiosensitizing effect. For human tumor cells pre-treated with DETA-NO and irradiated with {gamma} rays, a significantly greater effect was demonstrated in the malignant cells (MCF-7) as compared with the near normal cells (HBL-100). Moreover, a significant decrease in tumor growth was demonstrated in mice pre-treated with the NO donor spermine and irradiated with {gamma} rays and low LET protons as compared with mice irradiated without pre-treatment with the NO donor. In conclusion, we demonstrated a differential effect of NO as a radiosensitizer of malignant cells, both with {gamma} rays and low LET protons. This selectivity, coupled to the in vivo inhibition of tumor growth, is of great interest for the potential use of NO releasing agents in radiotherapy. (author)

  18. Chromosomal radiosensitivity in patients with multiple sclerosis

    International Nuclear Information System (INIS)

    Milenkova, Maria; Milanov, Ivan; Kmetska, Ksenia; Deleva, Sofia; Popova, Ljubomira; Hadjidekova, Valeria; Groudeva, Violeta; Hadjidekova, Savina; Domínguez, Inmaculada

    2013-01-01

    Highlights: • We studied radiosensitivity to in vitro γ-irradiated lymphocytes from MS patients. • Immunotherapy in RRMS patients reduced the yield of radiation induced MN. • The group of treated RRMS accounts for the low radiosensitivity in MS patients. • Spontaneous yield of MN was similar in treated and untreated RRMS patients. - Abstract: Multiple sclerosis is a clinically heterogeneous autoimmune disease leading to severe neurological disability. Although during the last years many disease-modifying agents as treatment options for multiple sclerosis have been made available, their mechanisms of action are still not fully determined. In the present study radiosensitivity in lymphocytes of patients with relapsing–remitting multiple sclerosis, secondary progressive multiple sclerosis and healthy controls was investigated. Whole blood cultures from multiple sclerosis patients and healthy controls were used to analyze the spontaneous and radiation-induced micronuclei in binucleated lymphocytes. A subgroup of patients with relapsing–remitting multiple sclerosis was treated with immunomodulatory agents, interferon β or glatiramer acetate. The secondary progressive multiple sclerosis patients group was not receiving any treatment. Our results reveal that the basal DNA damage was not different between relapsing–remitting and secondary progressive multiple sclerosis patients, and healthy controls. No differences between gamma-irradiation induced micronuclei frequencies in binucleated cells from relapsing–remitting and secondary progressive multiple sclerosis patients, and healthy controls were found either. Nevertheless, when we compared the radiation induced DNA damage in binucleated cells from healthy individuals with the whole group of patients, a reduction in the frequency of micronuclei was obtained in the patients group. Induced micronuclei yield was significantly lower in the irradiated samples from treated relapsing–remitting multiple

  19. Chromosomal radiosensitivity in patients with multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Milenkova, Maria; Milanov, Ivan; Kmetska, Ksenia [III Neurological Clinic, University Hospital Saint Naum, Sofia (Bulgaria); Deleva, Sofia; Popova, Ljubomira; Hadjidekova, Valeria [Laboratory of Radiation Genetics, NCRRP, Sofia (Bulgaria); Groudeva, Violeta [Department of Diagnostic Imaging, University Hospital St. Ekaterina, Sofia (Bulgaria); Hadjidekova, Savina [Department of Medical Genetics, Medical University, Sofia (Bulgaria); Domínguez, Inmaculada, E-mail: idomin@us.es [Department of Cell Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012 (Spain)

    2013-09-15

    Highlights: • We studied radiosensitivity to in vitro γ-irradiated lymphocytes from MS patients. • Immunotherapy in RRMS patients reduced the yield of radiation induced MN. • The group of treated RRMS accounts for the low radiosensitivity in MS patients. • Spontaneous yield of MN was similar in treated and untreated RRMS patients. - Abstract: Multiple sclerosis is a clinically heterogeneous autoimmune disease leading to severe neurological disability. Although during the last years many disease-modifying agents as treatment options for multiple sclerosis have been made available, their mechanisms of action are still not fully determined. In the present study radiosensitivity in lymphocytes of patients with relapsing–remitting multiple sclerosis, secondary progressive multiple sclerosis and healthy controls was investigated. Whole blood cultures from multiple sclerosis patients and healthy controls were used to analyze the spontaneous and radiation-induced micronuclei in binucleated lymphocytes. A subgroup of patients with relapsing–remitting multiple sclerosis was treated with immunomodulatory agents, interferon β or glatiramer acetate. The secondary progressive multiple sclerosis patients group was not receiving any treatment. Our results reveal that the basal DNA damage was not different between relapsing–remitting and secondary progressive multiple sclerosis patients, and healthy controls. No differences between gamma-irradiation induced micronuclei frequencies in binucleated cells from relapsing–remitting and secondary progressive multiple sclerosis patients, and healthy controls were found either. Nevertheless, when we compared the radiation induced DNA damage in binucleated cells from healthy individuals with the whole group of patients, a reduction in the frequency of micronuclei was obtained in the patients group. Induced micronuclei yield was significantly lower in the irradiated samples from treated relapsing–remitting multiple

  20. Radiosensitivity of carcinoma of esophagus

    International Nuclear Information System (INIS)

    Furusawa, Hidenori

    1986-01-01

    With a detailed graphic reconstruction of radiation effects shown in 11 operation materials of carcinoma of esophagus with preoperative irradiation, histologic analysis of the radiosensitivity was made. Residual cancer lesions in 11 operation specimens contained adenocarcinoma elements. Carcinoma of esophagus belonged to mixed carcinoma (syn. metaplastic cancer). Radioresistant nature resulted from the remnant adenocarcinoma elements. Protruded type (3 cases) showed about 60 % of residual cancer after preoperative irradiation of 40 Gy (Lineac or 60 Co.). The residual cancer nests histologically revealed well-differentiated squamous cell carcinoma with a few signet-ring cells, compatible with mucoepidermoid carcinoma. In protruded type, the mixed carcinoma was composed of segmental, disproportioned zonal squamous metaplasia. As its histogenetic origin, a main duct of esophageal gland was suggested. In 9 autopsy cases of esophageal cancer, recurrent lesion within the field of irradiation failed to respond to radiotherapy. In recurrent residual lesions, a higher proportion of adenocarcinoma elements was noticed. Therefore, the cancer part formed by a high rate of metaplasia was markedly responsive to irradiation, whereas increased residue of adenocarcinoma elements was enhanced the radioresistant property. In a middle thoracic esophagus (Im) corresponding to the commonest site of esophageal cancer, the distribution of esohageal glands was in a high density with a constant ratio of density in each age group particularly in male. In age groups with higher incidence of carcinoma of esophagus, esophageal glands markedly increased especially in male, in contrast with the indefinite number and density ratio in female cases. A high density of esophageal glands was noticed in the upper (Iu) and lower (Im) parts of the 2nd physiologic constriction, in proportion to the commonest site of carcinoma of esophagus. (J.P.N.)

  1. Molecular mechanism of radiosensitization by nitro compounds

    International Nuclear Information System (INIS)

    Kagiya, T.; Wada, T.; Nishimoto, S.I.

    1984-01-01

    In this chapter a molecular mechanism of radiosensitization by electron-affinic nitro compounds is discussed, mainly on the basis of the results of the radiation-induced chemical studies of DNA-related compounds in aqueous solutions. In Section II the general aspects of the radiation chemistry of organic compounds in the absence and presence of oxygen in aqueous solution are shown in order to demonstrate characteristic differences between radiation chemical reactions in hypoxic and oxic cells. The effects of nitro compounds on the radiolysis yields of DNA-related compounds in aqueous solutions are described in Section III. In Section IV the retardation effects of misonidazole on the radiation chemical processes of DNA-related compounds are shown along with the reaction characteristics of misonidazole with hydroxyl radical ( . OH) and hydrated electron (e/sub aq/-bar) produced by the radiolysis of water. The promotion of radiation-induced oxidation of thymine into thymine glycol (TG) by nitro radiosensitizers in deoxygenated solution and the relations between the activity of nitro compound for the thymine glycol formation and the enhancement activity measured in vitro are described in Section V. Finally, the protection against radiation-induced damage of thymine by a sulfhydryl compound of glutathione and the ability of electron-affinic compounds to decompose the intracellular radioprotector are described in Section VI

  2. Radiosensitivity and parameters for its measurement in some cucurbits

    Energy Technology Data Exchange (ETDEWEB)

    Vishnoi, A.K.; Joshi, M.C. (Defence Research and Development Organization, Almora (India). Agricultural Research Unit)

    1981-12-01

    Treatment with gamma-rays resulted in a significant reduction in the germination percentage and root and shoot lengths in Luffa cylindrica (inn). M. Roem, Momordica charantia Linn. Lagenaria siceraria (Mol.) Standl. and Cylanthera pedata Schrad., but radiation had no significant effect on nuclear volume. Species having higher value of nuclear volume had more radiosensitivity.

  3. Radiosensitivity and parameters for its measurement in some cucurbits

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Joshi, M.C.

    1981-01-01

    Treatment with gamma-rays resulted in a significant reduction in the germination percentage and root and shoot lengths in Luffa cylindrica (inn). M. Roem, Momordica charantia Linn. Lagenaria siceraria (Mol.) Standl. and Cylanthera pedata Schrad., but radiation had no significant effect on nuclear volume. Species having higher value of nuclear volume had more radiosensitivity. (author)

  4. In vitro effects of piracetam on the radiosensitivity of hypoxic cells (adaptation of MTT assay to hypoxic conditions); Effets in vitro du piracetam sur la radiosensibilite des cellules hypoxiques (adapatation du test au MTT aux conditions d`hypoxie)

    Energy Technology Data Exchange (ETDEWEB)

    Gheuens, E.E.O.; Bruijn, E.A. de; Van der Heyden, S.; Van Oosterom, A.T. [Universitaire Instelling Antwerpen, Antwerp (Belgium); Lagarde, P. [Universitaire Instelling Antwerpen, Antwerp (Belgium)]|[Institut Bergonie, 33 - Bordeaux (France); Pooter, C.M.J. de [Universitaire Instelling Antwerpen, Antwerp (Belgium)]|[Hopital de Middelheim, Anvers (Belgium); Chomy, F. [Institut Bergonie, 33 - Bordeaux (France)

    1995-12-31

    This paper describes the adaptation of the MTT assay to hypoxic conditions in order to test the in vitro effect of piracetam on hypoxic cells and particularly on the radiosensitivity of hypoxic cells since this drug has shown clinical effect on acute and chronic hypoxia. The V79 cell line was selected by reference to preliminary hypoxic experiments using clonogenic assay and euoxic experiments using clonogenic and MTT assays. Cell growth and survival in our hypoxic conditions were assessed using MTT assay with an enclosure and special 48-well plates both made of glass. Growth curves on glass plates after 1-hour exposure to nitrogen versus air were comparable, so there is no bias effect due to gas composition. Survival curves using MTT versus reference clonogenic assay were comparable after radiation exposure in eu- and hypoxic conditions, and confirm the validity of our original technique for creating hypoxia. The Oxygen Enhancement Ratio was of about 3 for 1-hour hypoxic exposure. Piracetam gave no cytotoxic effect up to 10 mM of piracetam. Growth curves after continuous drug exposure and 1-hour euoxic versus hypoxic exposure gave no cytotoxic effect up to 10 mM of piracetam. Survival curves after continuous drug exposure to 10 mM of piracetam gave no significant effect on the radiosensitivity of hypoxic V79 cells using MTT or clonogenic assay. (author). 32 refs., 6 figs.

  5. Effects of CD49d-targeted antisense-oligonucleotide on α4 integrin expression and function of acute lymphoblastic leukemia cells: Results of in vitro and in vivo studies.

    Directory of Open Access Journals (Sweden)

    Yann Duchartre

    Full Text Available We recently demonstrated the effectiveness of blocking CD49d with anti-functional antibodies or small molecule inhibitors as a rational targeted approach to the treatment of acute leukemia in combination with chemotherapy. Antisense oligonucleotide promises to be no less specific than antibodies and inhibitors, but more interesting for pharmacokinetics and pharmacodynamics. We addressed this using the published CD49d antisense drug ATL1102. In vitro, we incubated/nucleofected the ALL cell line Kasumi-2 with ATL1102. In vivo, immunodeficient hosts were engrafted with primary ALL cells and treated with ATL1102. Changes in expression of CD49d mRNA and CD49d protein, and of cooperating gene products, including ß1 integrin and CXCR4, as well as survival in the mouse experiments were quantified. We observed dose-dependent down-regulation of CD49d mRNA and protein levels and its partner integrin ß1 cell surface protein level and, up-regulation of CXCR4 surface expression. The suppression was more pronounced after nucleofection than after incubation, where down-regulation was significant only at the higher doses. In vivo effects of ATL1102 were not sufficient to translate into "clinical" benefit in the leukemia model. In summary, antisense oligonucleotides are successful tools for specifically modulating gene expression but sufficient delivery to down-regulate CD49d in vivo may be difficult to achieve.

  6. Enhancement of misonidazole radiosensitization by an inhibitor of glutathione biosynthesis

    International Nuclear Information System (INIS)

    Hodgkiss, R.J.; Middleton, R.W.

    1983-01-01

    A well known inhibitor of glutathione biosynthesis, buthione sulphoximine (S-n-butyl homocysteine sulphoximine, BSO) depletes non-protein sulphydryls (NPSH) in Chinese hamster cells in vitro, resulting in a marked increase in the radiosensitization efficiency of misonidazole. V79 379A Chinese hamster cells were maintained in suspension cultures and irradiated in monolayers using 250 kVp X-rays at a dose rate of 3.93 Gy/min. Radiosensitization by misonidazole alone gave results within 0.1 sensitizer enhancement ratio (s.e.r.) of the curve reported by Watts et al. (1980). GSH (2 mmol dm - 3 ) added to the extracellular medium resulted in a marked decrease in the radiosensitization efficiency of misonidazole, eliminating the effect at 0.1 mmol dm - 3 misonidazole (s.e.r. = 1.0 relative to nitrogen control). A marked enhancement of the radiosensitization by misonidazole was observed when the cells had been incubated with BSO (0.1 mmol dm - 3 ). BSO alone at this concentration gave s.e.r. = 1.17; misonidazole alone (0.1 mmol dm - 3 ) gave s.e.r. = 1.18 and misonidazole with BSO (both 0.1. mmol dm - 3 ) gave s.e.r. = 1.9. The BSO treatment gave little effect in aerated cells. The concentration of BSO needed to produce these effects in vitro is ca. 40-fold lower than doses tolerated by mice in repeated administrations. (U.K.)

  7. Radiosensitivity of garlic air bulbs

    International Nuclear Information System (INIS)

    Zhila, Eh.D.

    1975-01-01

    The paper presents data on the radiosensitivity of various sorts of garlic. It is shown that the frequency of chromosomal aberrations in the irradiated aerial bulbs of stemmed varieties of garlic is directly dependent upon the gmma-ray dose. With increasing dose the germination capacity and the viability of the plants diminishes. A dose of 750 r was found to be critical for the bulbs of the garlic varieties studied

  8. Effect of some radioprotective and radiosensitizing substances on the semiconservative and unscheduled DNA biosynthesis of rat thymocytes

    International Nuclear Information System (INIS)

    Winkle, J.

    1981-01-01

    The effect on the semiconservative and unscheduled insertion of 3 H-methyl-thymidine (TdR- 3 H) into the DNA was tested on rat thymocytes in vitro. The semiconservative incorporation of TdR- 3 H was inhibited by AET, cysteine glutathione, N-ethylmaleimide, cytosine arabinoside, ethidiumbromide, bleomycin and diethyldithiocarbamate. Metronidazole and caffeine had no effect. Aminothiols and bleomycin stimulated, cytosine arabinoside, N-ethylmaleimide, ethidiumbromide and diethyldithiocarbamate decreased the unscheduled TdR- 3 H incorporation. There was no substantial effect of an exposure to UV-rays. The results lead to the following conclusions: The aminothiol-effect on the excision repair suggest that inhibition of the semiconservative DNA-synthesis will amplify regenerative capacity of the cells. The effect of most substances investigated accord with the present views on their mechanisms of action. The present investigations do not allow an explanation of the influence of diethyldithiocarbamate unspecific effects (such as complexing activity) and more specialized reactions (such as inhibition of superoxide dismutase) must be kept in mind. (orig./MG)

  9. Preliminary studies of the effects of gadolinium texaphyrin on the growth and radiosensitivity of EMT6 cells in vitro

    International Nuclear Information System (INIS)

    Rockwell, Sara; Donnelly, Erling T.; Liu Yanfeng; Tang Liqun

    2002-01-01

    Purpose: To investigate the effects of gadolinium texaphyrin (GdTx) on the growth and radiation response of cells in vitro, in a limited set of experiments designed to examine some areas of controversy concerning the effects of this compound. Methods and Materials: Exponentially growing cultures of EMT6 mouse mammary tumor cells, grown in Dulbecco's Modified Eagle's Medium with 10% dialyzed fetal bovine serum, were treated with GdTx either prepared from powder or obtained as a solution similar to that used clinically, in either the presence or absence of equimolar ascorbic acid. Cell viability was measured using a clonogenic assay. Results: Treatment with GdTx in the presence of ascorbic acid dramatically altered the growth, appearance, and behavior of the cells; treatment with GdTx in the absence of ascorbic acid had only minimal effects. The effects of the powdered drug and the solution were similar. GdTx used with equimolar ascorbic acid altered the radiation dose-response curves of cells irradiated under aerobic and hypoxic conditions; no significant changes were observed without ascorbic acid. Conclusions: The details of the protocols used in experiments examining the effects of GdTx have major effects on the outcomes. Our results suggest that differences in the protocols used by different groups in past studies with GdTx probably were important in producing the disparate results reported previously

  10. The inherited basis of human radiosensitivity

    International Nuclear Information System (INIS)

    Gatti, R.A.

    2001-01-01

    Certain individuals cannot tolerate 'conventional' doses of radiation therapy. This is known to be true of patients with ataxia-telangiectasia and ligase IV deficiency. Although in vitro testing may not correlate completely with clinical radiosensitivity, fibroblasts and lymphoblasts from patients with both of these disorders have been clearly shown to be radiosensitive. Using a colony survival assay (CSA) to test lymphoblastoid cells after irradiation with 1 Gy, a variety of other genetic disorders have been identified as strong candidates for clinical radiosensitivity, such as Nijmegen breakage syndrome, Mre11 deficiency, and Fanconi's anemia. These data are presented and considered as a starting-point for the inherited basis of human radiosensitivity

  11. Biological effects of several extreme space flight factors (acceleration, magnetically activated water) on mouse natural or modified radiosensitivity

    International Nuclear Information System (INIS)

    Datsov, E.R.

    1979-01-01

    Irradiated and Adeturon-protected mice were used to assess biological effects of several static (magnetically-activated water - MW) and dynamic (acceleration) factors of space flight. The study shows that increased gravitation, 20 G, 5 min, generated by a small radius centrifuge, increases static ability to work, while the number of peripheral blood cells decreases. Continuous exposure of mice to MW induces a decrease in dynamic ability to work, in comparison with the physiological controls, without substantial changes in other indices. Extreme factors in space flight (acceleration MW, radiation, radiation protector), alone or in combination, decrease the animal's growth rate. After administration of 200 mg/kg Adeturone, mouse dynamic ability to work increases, while its capabilities for adaptation and training are lowered, and pronounced leucocytosis is observed. MW, acceleration, or Adeturone pre-treatment of mice increases their survival and dynamic ability to work, following exposure to 600 R, when compared to irradiated animals, but decreases their capabilities for adaptation and training. Acceleration and Adeturone protect peripheral blood from radiation injury, while MW alone intensifies radiation cytopenia. Irradiation does not significantly modify the static ability to work, upon preceding exposure to MW or acceleration. In this case, Adeturone exerts protective effect. ME and Adeturone combined action results in increased survival rate and mean duration of life of irradiated animals, as compared to their single administration. Acceleration reduces MW, Adeturone and MW + Adeturone effect on survival. Peripheral blood parameters do not correlate with survival rates. Combined pre-treatment with two or three of the factors studied increases dynamic ability to work following irradiation, and in many cases the static ability as well. The combination of Adeturone and MW was the only one with negative effect on the static ability to work. (A.B.)

  12. A Kinetic Model Explains Why Shorter and Less Affine Enzyme-recruiting Oligonucleotides Can Be More Potent

    Directory of Open Access Journals (Sweden)

    Lykke Pedersen

    2014-01-01

    Full Text Available Antisense oligonucleotides complementary to RNA targets promise generality and ease of drug design. The first systemically administered antisense drug was recently approved for treatment and others are in clinical development. Chemical modifications that increase the hybridization affinity of oligonucleotides are reasoned to confer higher potency, i.e., modified oligonucleotides can be dosed at lower concentrations to achieve the same effect. Surprisingly, shorter and less affine oligonucleotides sometimes display increased potency. To explain this apparent contradiction, increased uptake or decreased propensity to form structures have been suggested as possible mechanisms. Here, we provide an alternative explanation that invokes only the kinetics behind oligonucleotide-mediated cleavage of RNA targets. A model based on the law of mass action predicts, and experiments support, the existence of an optimal binding affinity. Exaggerated affinity, and not length per se, is detrimental to potency. This finding clarifies how to optimally apply high-affinity modifications in the discovery of potent antisense oligonucleotide drugs.

  13. Experimental studies on the radio-sensitizing effect of hydrogen peroxide injected in the transplanted mouse tumor. Usefulness of hyaluronic acid supplementation

    International Nuclear Information System (INIS)

    Akima, Ryo; Tokuhiro, Shiho; Tsuzuki, Kazuhiro; Ue, Hironobu; Ogawa, Yasuhiro

    2009-01-01

    Therapeutic efficacy of linac is said to be reduced to 1/3 in advanced tumors which mostly consist of hypoxic cells resistant to radiation (Rd). Local administration of hydrogen peroxide (HP) increases oxygen partial pressure at the site because tissue oxygenation occurs by HP degradation by peroxidase and catalase, and thereby radio-sensitization of those Rd-resistant cells can be expected. Authors have shown the anti-tumor efficacy of HP+Rd in vitro, in vivo, and in clinic with their regimen of KORTUC (Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas). In the third study above (clinical trial), they supplemented hyaluronate (ha) in the HP solution, and the present experiment was performed to see whether ha had any effect in the efficacy of KORTUC regimen. SCCVII tumor cells were subcutaneously transplanted in the femur of female C3H/HE mouse (7 wks old, about 20 g b. wt.) and 10 days later, 0.25 mL of phosphate buffered saline (PBS, control), 0.5% HP in PBS (HP gr), or 0.83% ha in the HP (ha gr) was injected in the tumor of about 1 cm diameter. After shielding the mouse with 4.5 mm thick Cu plate except for the tumor-bearing leg, the exposed tumor was locally irradiated (IRR) by 6 MeV electron beam with 30 Gy in the linac (EXL-20TP, Mitsubishi Electric) using the bolus for uniform dose distribution. Survivals at 60 days following irradiation were found to be 0, 0, 25.0, 87.5, 100 and 100% in the control, HP gr, ha gr, control/IRR, HP/IRR gr and ha/IRR gr, respectively. Tumor growth at 31 days was found to be suppressed in more significant order of ha/IRR gr, HP/IRR gr, control/IRR than non-IRR groups. The results suggested that ha could be useful in the anti-tumor efficacy of HP possibly due to ha viscous property for uniform distribution of HP in the tumor. (K.T.)

  14. Radiosensitivity of Nicotiana protoplasts. Action on cell; cycle effects of low dose and fractionated irradiations; biological repair

    International Nuclear Information System (INIS)

    Magnien, E.

    1981-10-01

    Leaf protoplasts of Nicotiana plumbaginifolia and Nicotiana sylvestris demonstrate five main qualities: they can be maintained as haploid lines; they constitute starting populations with a remarkable cytological homogeneity; they show a transient initial lag-phase; they yield very high plating efficiencies and retain permanently a complete differentiation capacity; being derived of a cell wall, they appear well adapted for fusion experiments or enzymatic dosages. The resumption of mitotic activity was followed by cytophotometric measurements, labelling experiments, nuclear sizing and enzymatic assays. The action of 5 Gy gamma-ray irradiations delayed entrance in the S-phase, provoked an otherwise not verified dependency between transcription, translation and protein synthesis, increased nuclear volumes in the G2-phase, and slightly stimulated the activity of a repair enzyme. The plating efficiency was a sensitive end-point which allowed the evaluation of the biological effectiveness of low to medium radiation-doses after gamma-ray and fast neutron irradiations. The neutron dose-RBE relationship increased from 3 to 25 when the dose decreased from 5 Gy to 5 mGy. When fractionated into low single doses only, a neutron dose of 300 mGy markedly increased its biological effectiveness: this phenomenon could not be explained by cell progression, and necessitated additional hypotheses involving other mechanisms in the specific action of low radiation doses. Radiation-induced UDS was measured in presence of aphidicolin. A beta-like DNA-polymerase was shown to be definitely involved in nuclear repair synthesis [fr

  15. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma

    International Nuclear Information System (INIS)

    Saelen, Marie Grøn; Ree, Anne Hansen; Kristian, Alexandr; Fleten, Karianne Giller; Furre, Torbjørn; Hektoen, Helga Helseth; Flatmark, Kjersti

    2012-01-01

    The histone deacetylase inhibitor vorinostat is a candidate radiosensitizer in locally advanced rectal cancer (LARC). Radiosensitivity is critically influenced by hypoxia; hence, it is important to evaluate the efficacy of potential radiosensitizers under variable tissue oxygenation. Since fluoropyrimidine-based chemoradiotherapy (CRT) is the only clinically validated regimen in LARC, efficacy in combination with this established regimen should be assessed in preclinical models before a candidate drug enters clinical trials. Radiosensitization by vorinostat under hypoxia was studied in four colorectal carcinoma cell lines and in one colorectal carcinoma xenograft model by analysis of clonogenic survival and tumor growth delay, respectively. Radiosensitizing effects of vorinostat in combination with capecitabine were assessed by evaluation of tumor growth delay in two colorectal carcinoma xenografts models. Under hypoxia, radiosensitization by vorinostat was demonstrated in vitro in terms of decreased clonogenicity and in vivo as inhibition of tumor growth. Adding vorinostat to capecitabine-based CRT increased radiosensitivity of xenografts in terms of inhibited tumor growth. Vorinostat sensitized colorectal carcinoma cells to radiation under hypoxia in vitro and in vivo and improved therapeutic efficacy in combination with capecitabine-based CRT in vivo. The results encourage implementation of vorinostat into CRT in LARC trials

  16. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma.

    Science.gov (United States)

    Saelen, Marie Grøn; Ree, Anne Hansen; Kristian, Alexandr; Fleten, Karianne Giller; Furre, Torbjørn; Hektoen, Helga Helseth; Flatmark, Kjersti

    2012-09-27

    The histone deacetylase inhibitor vorinostat is a candidate radiosensitizer in locally advanced rectal cancer (LARC). Radiosensitivity is critically influenced by hypoxia; hence, it is important to evaluate the efficacy of potential radiosensitizers under variable tissue oxygenation. Since fluoropyrimidine-based chemoradiotherapy (CRT) is the only clinically validated regimen in LARC, efficacy in combination with this established regimen should be assessed in preclinical models before a candidate drug enters clinical trials. Radiosensitization by vorinostat under hypoxia was studied in four colorectal carcinoma cell lines and in one colorectal carcinoma xenograft model by analysis of clonogenic survival and tumor growth delay, respectively. Radiosensitizing effects of vorinostat in combination with capecitabine were assessed by evaluation of tumor growth delay in two colorectal carcinoma xenografts models. Under hypoxia, radiosensitization by vorinostat was demonstrated in vitro in terms of decreased clonogenicity and in vivo as inhibition of tumor growth. Adding vorinostat to capecitabine-based CRT increased radiosensitivity of xenografts in terms of inhibited tumor growth. Vorinostat sensitized colorectal carcinoma cells to radiation under hypoxia in vitro and in vivo and improved therapeutic efficacy in combination with capecitabine-based CRT in vivo. The results encourage implementation of vorinostat into CRT in LARC trials.

  17. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Saelen Marie

    2012-09-01

    Full Text Available Abstract Background The histone deacetylase inhibitor vorinostat is a candidate radiosensitizer in locally advanced rectal cancer (LARC. Radiosensitivity is critically influenced by hypoxia; hence, it is important to evaluate the efficacy of potential radiosensitizers under variable tissue oxygenation. Since fluoropyrimidine-based chemoradiotherapy (CRT is the only clinically validated regimen in LARC, efficacy in combination with this established regimen should be assessed in preclinical models before a candidate drug enters clinical trials. Methods Radiosensitization by vorinostat under hypoxia was studied in four colorectal carcinoma cell lines and in one colorectal carcinoma xenograft model by analysis of clonogenic survival and tumor growth delay, respectively. Radiosensitizing effects of vorinostat in combination with capecitabine were assessed by evaluation of tumor growth delay in two colorectal carcinoma xenografts models. Results Under hypoxia, radiosensitization by vorinostat was demonstrated in vitro in terms of decreased clonogenicity and in vivo as inhibition of tumor growth. Adding vorinostat to capecitabine-based CRT increased radiosensitivity of xenografts in terms of inhibited tumor growth. Conclusions Vorinostat sensitized colorectal carcinoma cells to radiation under hypoxia in vitro and in vivo and improved therapeutic efficacy in combination with capecitabine-based CRT in vivo. The results encourage implementation of vorinostat into CRT in LARC trials.

  18. Radiosensitization of mouse spermatogenic stem cells by Ro-07-0582

    International Nuclear Information System (INIS)

    Suzuki, N.; Withers, R.; Hunter, N.

    1977-01-01

    The hypoxic character of the spermatogenic stem cells of the mouse testis was investigated by measuring the effect on radiosensitivity of treatment with the hypoxic cell radiosensitizer, Ro-07-0582 or hyperbaric oxygen (30 psi). The D 0 values obtained were 181 (161-207) rad for irradiation alone, 140 (133-148) rad for irradiation after treatment with Ro-07-0582, and about 100 rad for irradiation in the presence of hyperbaric oxygen. Ro-07-0582 alone was slightly cytotoxic. The results demonstrate that mouse spermatogenic stem cells are radiosensitized by Ro-07-0582 or hyperbaric oxygen and are not as well oxygenated as other normal tissues

  19. Inhibiting DNA-PKCS radiosensitizes human osteosarcoma cells

    International Nuclear Information System (INIS)

    Mamo, Tewodros; Mladek, Ann C.; Shogren, Kris L.; Gustafson, Carl; Gupta, Shiv K.; Riester, Scott M.; Maran, Avudaiappan; Galindo, Mario; Wijnen, Andre J. van; Sarkaria, Jann N.; Yaszemski, Michael J.

    2017-01-01

    Osteosarcoma survival rate has not improved over the past three decades, and the debilitating side effects of the surgical treatment suggest the need for alternative local control approaches. Radiotherapy is largely ineffective in osteosarcoma, indicating a potential role for radiosensitizers. Blocking DNA repair, particularly by inhibiting the catalytic subunit of DNA-dependent protein kinase (DNA-PK CS ), is an attractive option for the radiosensitization of osteosarcoma. In this study, the expression of DNA-PK CS in osteosarcoma tissue specimens and cell lines was examined. Moreover, the small molecule DNA-PK CS inhibitor, KU60648, was investigated as a radiosensitizing strategy for osteosarcoma cells in vitro. DNA-PK CS was consistently expressed in the osteosarcoma tissue specimens and cell lines studied. Additionally, KU60648 effectively sensitized two of those osteosarcoma cell lines (143B cells by 1.5-fold and U2OS cells by 2.5-fold). KU60648 co-treatment also altered cell cycle distribution and enhanced DNA damage. Cell accumulation at the G2/M transition point increased by 55% and 45%, while the percentage of cells with >20 γH2AX foci were enhanced by 59% and 107% for 143B and U2OS cells, respectively. These results indicate that the DNA-PK CS inhibitor, KU60648, is a promising radiosensitizing agent for osteosarcoma. - Highlights: • DNA-PKcs is consistently expressed in human osteosarcoma tissue and cell lines. • The DNA-PKcs inhibitor, KU60648, effectively radiosensitizes osteosarcoma cells. • Combining KU60648 with radiation increases G2/M accumulation and DNA damage.

  20. Radiosensitivity of Listeria innocua in fourth sort vegetables and effect of the irradiation on microbiological and sensory parameters

    International Nuclear Information System (INIS)

    Acevedo Gonzalez, Claudia Jose

    2004-01-01

    In the markets of many countries, including Chile, a wide variety of minimally processed or fourth sort vegetables are offered. Nevertheless, recent studies have reported that some of these products could be a potential risk to the public health due, to microbiological contamination. As a feasible treatment to solve this problem, irradiation of this kind of vegetable products is proposed. The natural microbiological contamination of two minimally processed mixed salads Toscana (iceberg lettuce ( Lactuca sativa var. capita), red cabbage (Brassica oleraceae var. rubra) and shredded carrot (Dacus carota L.)) and Four Seasons (romaine lettuce (Lactuca sativa var. longifolia), iceberg lettuce (lactuca sativa var. capitata), lollo rossa lettuce (Lactuca sativa var. acephala) and spinach (Spinacia oleraceae), was assayed controlling the total plate count (TPC), the Enterobacteriaceae count (EC) and the presence or absence of Listeria spp.in 25 g. Inoculating both salads with Listeria innocua, as surrogate microorganism for a possible contamination with Listeria monocytogenes, the D 10 value was determined. The effect of irradiating the vegetables with 5 D 10 doses, on the initial microflora and the evaluation of possible changes in the microbiological and sensory quality during a 7 days refrigerated storage, was carried out. The effect on the sensory quality was evaluated by a 10 judges trained panel, through a triangular test at day 0 and day 7, in order to determine possible significantly differences between the no irradiated and the irradiated samples. A test for quality descriptors was performed at 0, 3 and 7 days, to compare the irradiated salads with the no irradiated control. The evaluated sensory attributes were appearance, color, flavor, sweetness, bitterness, texture and total quality. The levels of the initial microflora ranged for TPC between 10 6 cfu/g and 10 8 cfu/g in Toscana salad and 10 4 cfu/g and 10 8 cfu/g in Four Seasons salad. The EC initial levels

  1. Radiosensitivity of lymphocytes among Filipinos: final report

    International Nuclear Information System (INIS)

    Medina, F.I.S.; Gregorio, J.S.; Aguilar, C.P.; Poblete, E.E.

    1996-01-01

    This report is about the studies on the radiosensitivity of Filipino lymphocytes to radiation that can elucidate on the potential of blood chromosomes as biological dosimeters. The objective of this study is to determine the radiosensitivity of lymphocytes among Filipinos and to establish the radiation-induced chromosome anomaly standard curve in lymphocytes for radiological dosimetry. 47 refs., 9 figs., 1 tab

  2. Potential clinical impact of normal-tissue intrinsic radiosensitivity testing

    International Nuclear Information System (INIS)

    Bentzen, Soeren M.

    1997-01-01

    A critical appraisal is given of the possible benefit from a reliable pre-treatment knowledge of individual normal-tissue sensitivity to radiotherapy. The considerations are in part, but not exclusively, based on the recent experience with in vitro colony-forming assays of the surviving fraction at 2 Gy, the SF 2 . Three strategies are reviewed: (1) to screen for rare cases with extreme radiosensitivity, so-called over-reactors, and treat these with reduced total dose, (2) to identify the sensitive tail of the distribution of 'normal' radiosensitivities, refer these patients to other treatment, and to escalate the dose to the remaining patients, or (3) to individualize dose prescriptions based on individual radiosensitivity, i.e. treating to isoeffect rather than to a specific dose-fractionation schedule. It is shown that these strategies will have a small, if any, impact on routine radiotherapy. Screening for over-reactors is hampered by the low prevalence of these among otherwise un-selected patients that leads to a low positive predictive value of in vitro radiosensitivity assays. It is argued, that this problem may persist even if the noise on current assays could be reduced to (the unrealistic value of) zero, simply because of the large biological variation in SF 2 . Removing the sensitive tail of the patient population, will only have a minor effect on the dose that could be delivered to the remaining patients, because of the sigmoid shape of empirical dose-response relationships. Finally, individualizing dose prescriptions based exclusively on information from a normal-tissue radiosensitivity assay, leads to a nearly symmetrical distribution of dose-changes that would produce a very small gain, or even a loss, of tumor control probability if implemented in the clinic. From a theoretical point of view, other strategies could be devised and some of these are considered in this review. Right now the most promising clinical use of in vitro radiosensitivity

  3. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  4. Clinical experience with the radiosensitizer misonidazole

    International Nuclear Information System (INIS)

    Kogelnik, D.; Szepesi, T.; Kaercher, K.H.; Seitz, W.

    1979-01-01

    From April 1976 to June 1978, 74 cancer patients were treated with multiple doses of misonidazole at the University Clinic for Radiotherapy and Radiobiology of Vienna. Thirtyone patients had inoperable brain tumors or high-grade astrocytomas, the remaining patients suffered from late stages of various extracerebral malignancies. All patients were hospitalized and thoroughly examined for possible side-effects of this currently most promising hypoxic cell radiosensitizer. Neurotoxicity, principally the development of peripheral neuropathies, is the most important limiting factor in the clinical application of misonidazole. With total doses of 12 g/m 2 of surface area a low and acceptable incidence of neuropathies is seen. By extension of the over-all treatment time to 6-8 weeks the total dose may be increased to 15 g/m 2 . (orig.) 891 MG/orig. 892 RDG [de

  5. Oxygen effect and influence of the anoxic radiosensitizing agent TAN on the induction of λ-prophage in polA and wild type E.coli strains after gamma irradiation

    International Nuclear Information System (INIS)

    Bonev, M.N.; Sivriev, I.K.; Kolev, S.D.

    1998-01-01

    The modification effect of both oxygen and radiosensitizing agent TAN on the λ-prophage induction in polA mutant and wild type E.coli cells after γ-irradiation was studied. The oxygen and TAN enhancement ratio concerning the cell sensitivity is more significant in polA mutant cells as compared to that in the wild type ones. The same behaviour has been observed for the oxygen and TAN enhancement ratio for the λ-prophage induction. The TAN effect on the survival and on the λ-induction was smaller than the oxygen effect. The bigger efficiency of oxygen and DNA-radicals are more difficult to repair than those created by an interaction of TAN and DNA-radicals

  6. Metformin enhances radiosensitivity via inhibition of DNA repair pathway in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Youn Kyoung; Kim, Mi Sook; Lee, Ji Young; Song, Kyung Hee; Choi, Kyul; Kim, Eun Ho; Ha, Hun Joo [Ewha Womans University, Seoul (Korea, Republic of)

    2014-04-15

    In this study, we provide a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer. Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide. Currently, it is one of the commonest chemoradiotherapy worked better than the radiotherapy or chemotherapy in colorectal cancer. To enhance radiosensitivity of tumor cells for chemoradiotherapy, it is to use potential anticancer agents that act as radiosensitizers. Metformin, one of the most widely used antidiabetic drugs, has recently been associated with potential antitumorigenic effects. Our data shows that metformin combined with radiation enhances the efficacy of radiotherapy and down-regulates DNA repair proteins. Therefore, we provides a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer.

  7. Radiosensitivity of Bombyx mori embryos and its modification by thermal shock

    International Nuclear Information System (INIS)

    Agaev, F.A.; Zakrzhevskaya, D.T.; Yusifov, N.I.; Gaziev, A.I.; AN Azerbajdzhanskoj SSR, Baku

    1991-01-01

    Radiosensitivity of Bombyx mori embryos on days 3-4 of their development is more than 10 times higher than that of 7-9 day embryos. The rate of DNA synthesis in the embryos correlates with their radiosensitivity. Heat treatment (40 deg C, 60 min) of embryos just before γ-irradiation increases their radioresistance (DMF=+1.6), whereas such a treatment immediately after irradiation reduces the survival rate of embryos as compared to the controls irradiated without heat treatment (DMA=-1.5). The radiomodifying effect of the thermal shock on the Bombyx mori embryos is the same with exposure at both the radioresistant and the radiosensitive stage of their development. However, it is more pronounced at the radiosensitive stage

  8. Metformin enhances radiosensitivity via inhibition of DNA repair pathway in colorectal cancer

    International Nuclear Information System (INIS)

    Jeong, Youn Kyoung; Kim, Mi Sook; Lee, Ji Young; Song, Kyung Hee; Choi, Kyul; Kim, Eun Ho; Ha, Hun Joo

    2014-01-01

    In this study, we provide a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer. Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide. Currently, it is one of the commonest chemoradiotherapy worked better than the radiotherapy or chemotherapy in colorectal cancer. To enhance radiosensitivity of tumor cells for chemoradiotherapy, it is to use potential anticancer agents that act as radiosensitizers. Metformin, one of the most widely used antidiabetic drugs, has recently been associated with potential antitumorigenic effects. Our data shows that metformin combined with radiation enhances the efficacy of radiotherapy and down-regulates DNA repair proteins. Therefore, we provides a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer

  9. Influence of the 100% w/v perfluorooctyl bromide (PFOB) emulsion dose on tumour radiosensitivity

    International Nuclear Information System (INIS)

    Thomas, C.; Guichard, M.; Riess, J.

    1991-01-01

    The radiosensitizing effect of a 100% w/v emulsion of a fluuorocarbon PFOB, which carries 4 times more oxygen than Fluosol-DA 20% emulsion, was studied on two human tumour xenografts (HRT18 and HT29) and murine tumour EMT6. This effect was compared to that of carbogen alone. The fluorocrit (amount of fluorocarbon in the blood) and haematocrit remained unchanged from 7 to 65 min post-injection of the emulsion (8ml/kg). Significant tumour radiosensitization was obtained with relatively low amounts of 100% w/v concentrated emulsion of PFOB plus carbogen. Maximum radiosensitization occurs at low fluorocarbon dose of about 3g/kg. These results are comparable to those obtained with Fluosol-DA 20% or Therox emulsion. Since this radiosensitization occurs only at relatively low fluorocrit without haematocrit modification, the oxygen-carrying capacity of the fluorocarbon is not the only factor involved in radiosensitization of tumor cells, regardless of the effect of carbogen on radiosensitivity. (author)

  10. Normal cellular radiosensitivity in an adult Fanconi anaemia patient with marked clinical radiosensitivity

    International Nuclear Information System (INIS)

    Marcou, Yiola; D'Andrea, Andrew; Jeggo, Penelope A.; Plowman, Piers N.

    2001-01-01

    Background: Fanconi anaemia is a rare disease associated with cellular sensitivity to chemicals (e.g. mitomycin C and diepoxybutane); variable but mild cellular radiosensitivity has also been reported. Materials and methods: A 32-year-old patient with Fanconi anaemia and tonsillar carcinoma, treated by radiotherapy, was found to exhibit profound clinical radiosensitivity. Confluent, ulcerating oropharyngeal mucositis developed after a conventionally fractionated dose of 34 Gy and healing was incomplete by 2 months after cessation of therapy. Results: Cellular radiosensitivity assays and RPLD studies from this patient did not suggest any major detectable radiosensitivity. Conclusion: There is a discrepancy between the observed clinical radiosensitivity and the usual 'predictive' radiosensitivity assays in this patient with Fanconi anaemia

  11. Oligonucleotide-based pharmaceuticals: Non-clinical and clinical safety signals and non-clinical testing strategies.

    Science.gov (United States)

    Mustonen, Enni-Kaisa; Palomäki, Tiina; Pasanen, Markku

    2017-11-01

    Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Radiogenomics: predicting clinical normal tissue radiosensitivity

    DEFF Research Database (Denmark)

    Alsner, Jan

    2006-01-01

    Studies on the genetic basis of normal tissue radiosensitivity, or  'radiogenomics', aims at predicting clinical radiosensitivity and optimize treatment from individual genetic profiles. Several studies have now reported links between variations in certain genes related to the biological response...... to radiation injury and risk of normal tissue morbidity in cancer patients treated with radiotherapy. However, after these initial association studies including few genes, we are still far from being able to predict clinical radiosensitivity on an individual level. Recent data from our own studies on risk...

  13. Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor.

    Science.gov (United States)

    Shishkanova, T V; Volf, R; Krondak, M; Král, V

    2007-05-15

    A novel application of a single stranded (ss) oligonucleotide as an active component of polymeric membrane in an ion-selective electrode (ISE) is described. The original oligonucleotides, oligo(dA)(15), modified by cholesterol, triphenylmethyl and hexadecyl derivatives, were immobilized into poly(vinyl chloride) (PVC) membrane using extraction protocol. In parallel, the adsorption protocol was used to immobilize unmodified oligo(dA)(15) on the PVC membrane based on tridodecylmethyammonium chloride (TDDMA(+)Cl(-)). Immobilization of ss oligonucleotide probe through spacer was more effective for the potentiometric detection of the hybridization between complementary oligonucleotides. It was found that cholesterol-oligo(dA)(15) modified membranes were sensitive toward complementary oligo(dT)(15) in the concentration range 2-80 nM at pH 7. An explanation for the detection mechanism is proposed.

  14. Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications.

    Science.gov (United States)

    Camorani, Simona; Crescenzi, Elvira; Fedele, Monica; Cerchia, Laura

    2018-04-01

    Transmembrane receptor tyrosine kinases (RTKs) play crucial roles in cancer cell proliferation, survival, migration and differentiation. Area of intense research is searching for effective anticancer therapies targeting these receptors and, to date, several monoclonal antibodies and small-molecule tyrosine kinase inhibitors have entered the clinic. However, some of these drugs show limited efficacy and give rise to acquired resistance. Emerging highly selective compounds for anticancer therapy are oligonucleotide aptamers that interact with their targets by recognizing a specific three-dimensional structure. Because of their nucleic acid nature, the rational design of advanced strategies to manipulate aptamers for both diagnostic and therapeutic applications is greatly simplified over antibodies. In this manuscript, we will provide a comprehensive overview of oligonucleotide aptamers as next generation strategies to efficiently target RTKs in human cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Radiosensitivity of mesothelioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, A.M. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland); Laasonen, A. [Dept. of Pathology, Central Hospital of Etelae-Pohjanmaa, Seinaejoki (Finland); Linnainmaa, K. [Dept. of Industrial Hygiene and Toxicology, Inst. of Occupational Health, Helsinki (Finland); Mattson, K. [Dept. Pulmonary Medicine, Univ. Central Hospital, Helsinki (Finland); Pyrhoenen, S. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland)

    1996-10-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters {alpha} and {beta} of the linear quadratic model (LQ-model) and mean inactivation dose (D{sub MID}) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean {alpha} value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The {alpha}/{beta} ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.).

  16. The dependence of fibroblast radiosensitivity on cell pH

    International Nuclear Information System (INIS)

    Veksler, A.M.; Kublik, L.N.; Degtyareva, O.V.; Ehjdus, L.Kh.

    1983-01-01

    The problem of the change of radiosensitivity of Chinese hamster fibroblasts, irradiated under aerobic and hypoxic conditions in the course of intracellular pH (pHsub(intr.)) change by means of a phosphate buffer has been studied. It has been found that pHsub(intr.) reduction considerably increases the radiosensitivity, the effect being more pronounced on hypoxic cells which is essential for radiotherapy of tumors. The survival rate of cell irradiated under hypoxia conditions does not depend on season while cell resistance in case of irradiation in open air in spring and autumn is different. The effect discovery in case of pHsub(intr.) reduction upon irradiation shows up the influence of the studied factor on repair processes

  17. THERAPEUTIC ANTISENSE OLIGONUCLEOTIDES AGAINST CANCER: HURDLING TO THE CLINIC

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Duarte Moreno

    2014-10-01

    Full Text Available Under clinical development since the early 90’s and with two successfully approved drugs (Fomivirsen and Mipomersen, oligonucleotide-based therapeutics have not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given towards a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field.

  18. Radiosensitization: enhancing the radiation inactivation of foodborne bacteria

    Science.gov (United States)

    Borsa, J.; Lacroix, M.; Ouattara, B.; Chiasson, F.

    2004-09-01

    Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D10. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.

  19. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Roberto Gomez-Casal

    2015-05-01

    Full Text Available The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors.

  20. Radiosensitization: enhancing the radiation inactivation of foodborne bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Borsa, J. E-mail: jborsa@mds.nordion.com; Lacroix, M.; Ouattara, B.; Chiasson, F

    2004-10-01

    Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D{sub 10}. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.

  1. Comparative study of radiosensitivity of normal and regenerating tissues

    International Nuclear Information System (INIS)

    Samokhvalova, H.S.; Popova, M.F.

    1983-01-01

    A comparative study of radiosensitivity of cells of normal and regenerating tissues of bone marrow and spleen has demonstrated that single exposure to X-rays produces a lesser damaging effect on regenerating tissues than on normal ones. The data obtained indicate that the increase in radioresistance of the organism during active regeneration of the haemopoietic organs is due not merely to the increase in the dividing cell pool of these organs but also to qualitative changes in their functional state

  2. Radiosensitivity of mouse germ cells

    International Nuclear Information System (INIS)

    Matsuda, Yoichi; Takeuchi, Toyoko; Maemori, Mamiko; Seki, Naohiko; Tobari, Izuo

    1991-01-01

    To estimate radiosensitivity of mouse germ cells the analysis of chromosome aberrations was performed at diakinesis-metaphase I of spermatocytes and first-cleavage metaphase of one-cell embryos after exposure to radiations at various stages of primary spermatocytes and spermatids. The result provided evidence that there are two major types of DNA damage in X-irradiated sperm : (1) short-lived DNA lesions ; the lesions are subject to repair inhibition by agents added in G 1 , and are converted into chromosome-type aberrations during G 1 , and (2) long-lived DNA lesions ; the lesions persist until S phase and repair of the lesions is inhibited by caffeine, hydroxyurea and arabinofuranosyl cytosine in G 2 . The characteristic of X-ray damage induced in spermiogenic stage and repair mechanism for the damage in the fertilized egg were discussed comparing with the results with two chemicals, methyl methanesulfonate (MMS) and mitomycin C (MMC). (J.P.N.)

  3. Clinical and Functional Assays of Radiosensitivity and Radiation-Induced Second Cancer

    Directory of Open Access Journals (Sweden)

    Mohammad Habash

    2017-10-01

    Full Text Available Whilst the near instantaneous physical interaction of radiation energy with living cells leaves little opportunity for inter-individual variation in the initial yield of DNA damage, all the downstream processes in how damage is recognized, repaired or resolved and therefore the ultimate fate of cells can vary across the population. In the clinic, this variability is observed most readily as rare extreme sensitivity to radiotherapy with acute and late tissue toxic reactions. Though some radiosensitivity can be anticipated in individuals with known genetic predispositions manifest through recognizable phenotypes and clinical presentations, others exhibit unexpected radiosensitivity which nevertheless has an underlying genetic cause. Currently, functional assays for cellular radiosensitivity represent a strategy to identify patients with potential radiosensitivity before radiotherapy begins, without needing to discover or evaluate the impact of the precise genetic determinants. Yet, some of the genes responsible for extreme radiosensitivity would also be expected to confer susceptibility to radiation-induced cancer, which can be considered another late adverse event associated with radiotherapy. Here, the utility of functional assays of radiosensitivity for identifying individuals susceptible to radiotherapy-induced second cancer is discussed, considering both the common mechanisms and important differences between stochastic radiation carcinogenesis and the range of deterministic acute and late toxic effects of radiotherapy.

  4. The inherited basis of human radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, R.A. [Univ. of California, School of Medicine, Los Angeles, CA (United States). Experimental Pathology

    2001-11-01

    Certain individuals cannot tolerate 'conventional' doses of radiation therapy. This is known to be true of patients with ataxia-telangiectasia and ligase IV deficiency. Although in vitro testing may not correlate completely with clinical radiosensitivity, fibroblasts and lymphoblasts from patients with both of these disorders have been clearly shown to be radiosensitive. Using a colony survival assay (CSA) to test lymphoblastoid cells after irradiation with 1 Gy, a variety of other genetic disorders have been identified as strong candidates for clinical radiosensitivity, such as Nijmegen breakage syndrome, Mre11 deficiency, and Fanconi's anemia. These data are presented and considered as a starting-point for the inherited basis of human radiosensitivity.

  5. Comparative radiosensitivity in the class insecta

    International Nuclear Information System (INIS)

    Willard, W.K.; Cherry, D.S.

    1975-01-01

    A 'radiosensitivity index' (LT 50 /mean longevity) was correlated with the mean longevity and dry weight of 37 insect species (both sexes of 12 species) representing eight orders. Curvilinear regression analysis relating radiosensitivity to mean longevity and mean dry weight indicated that 46.3% of the observed variation could be attributed to longevity and 32.6% to the dry weight of the species. In general, large long-lived adults were more radiosensitive than small short-lived adults. Correlation of the phylogeny of insect orders and order groupings with the radio-sensitivity index was found to be poor. However, when the index was related to longevity, there was a tendency for species comprising the major orders investigated to occur in groups along the predicted curve. (author)

  6. Peroxide-mediated desulfurization of phosphorothioate oligonucleotides and its prevention.

    Science.gov (United States)

    Krotz, Achim H; Mehta, Rahul C; Hardee, Gregory E

    2005-02-01

    Desulfurization at the internucleotide phosphorothioate linkage of antisense oligonucleotides (ASOs) in dermatological formulations has been investigated using strong ion exchange chromatography and mass spectroscopy. The formation of phosphate diester linkages appeared to arise from a reaction between the phosphorothioate oligonucleotide and a potent oxidizing agent. Screening of excipients used in the formulation indicated that the cause of desulfurization was related to the presence of polyethylene glycol-derived nonionic surfactants MYRJ 52 or BRIJ 58. Autoxidation of the polyethylene glycol chain is suggested as the probable origin for the observed incompatibility. The ability of various antioxidants to prevent oxidative degradation of ASO-1 in simple test systems and in oil-in-water emulsions is described. It is found that in test systems both lipophilic and hydrophilic antioxidants are effective. However, in cream formulation (oil-in-water emulsions) of ASO-1 the addition of hydrophilic antioxidants L-cysteine or DL-alpha-lipoic acid has been shown to be superior in protecting the oligonucleotide from desulfurization upon storage. Copyright 2004 Wiley-Liss, Inc.

  7. Preparation of oligonucleotide microarray for radiation-associated gene expression detection and its application in lung cancer cell lines

    International Nuclear Information System (INIS)

    Guo Wanfeng; Lin Ruxian; Huang Jian; Guo Guozhen; Wang Shengqi

    2005-01-01

    Objective: The response of tumor cell to radiation is accompanied by complex change in patterns of gene expression. It is highly probable that a better understanding of molecular and genetic changes can help to sensitize the radioresistant tumor cells. Methods: Oligonucleotide microarray provides a powerful tool for high-throughput identifying a wider range of genes involved in the radioresistance. Therefore, the authors designed one oligonucleotide microarray according to the biological effect of IR. By using different radiosensitive lung cancer cell lines, the authors identified genes showing altered expression in lung cancer cell lines. To provide independent confirmation of microarray data, semi-quantitative RT-PCR was performed on a selection of genes. Results: In radioresistant A549 cell lines, a total of 18 genes were selected as having significant fold-changes compared to NCI-H446, 8 genes were up-regulated and 10 genes were down-regulated. Subsequently, A549 and NCI-H446 cells were delivered by ionizing radiation. In A549 cell line, we found 22 (19 up-regulated and 3 down-regulated) and 26 (8 up-regulated and 18 down-regulated) differentially expressed genes at 6h and 24h after ionizing radiation. In NCI-H446 cell line, we identified 17 (9 up-regulated and 8 down-regulated) and 18 (6 up-regulated and 12 down-regulated) differentially expressed genes at 6 h and 24 h after ionizing radiation. The authors tested seven genes (MDM2, p53, XRCC5, Bcl-2, PIM2, NFKBIA and Cyclin B1) for RT-PCR, and found that the results were in good agreement with those from the microarray data except for NFKBIA gene, even though the value for each mRNA level might be different between the two measurements. In present study, the authors identified some genes with cell proliferation and anti-apoptosis, such as MdM2, BCL-2, PKCz and PIM2 expression levels increased in A549 cells and decreased in NCI-H446 cells after radiation, and other genes with DNA repair, such as XRCC5, ERCC5

  8. In vitro transcription in the presence of DNA oligonucleotides can generate strong anomalous initiation sites.

    Science.gov (United States)

    Chow, C W; Clark, M P; Rinaldo, J E; Chalkley, R

    1996-03-01

    In the present study, we have explored an unexpected observation in transcription initiation that is mediated by single-stranded oligonucleotides. Initially, our goal was to understand the function of different upstream regulatory elements/initiation sites in the rat xanthine dehydrogenase/oxidase (XDH/XO) promoter. We performed in vitro transcription with HeLa nuclear extracts in the presence of different double-stranded oligonucleotides against upstream elements as competitors. A new and unusual transcription initiation site was detected by primer extension. This new initiation site maps to the downstream region of the corresponding competitor. Subsequent analyses have indicated that the induction of a new transcription initiation site is anomalous which is due to the presence of a small amount of single-stranded oligonucleotide in the competitor. We found that this anomalous initiation site is insensitive to the orientation of the promoter and requires only a small amount of single-stranded oligonucleotide (< 2-fold molar excess relative to template). We surmise that a complementary interaction between the single-stranded oligonucleotide and transiently denatured promoter template may be responsible for this sequence-specific transcription initiation artifact. To study the regulation of transcription initiation by in vitro transcription approaches, we propose that one should probe the effect of removing transacting factors by adding an excess of a cognate oligonucleotide which does not bear exact sequence identity to the template.

  9. Systematic validation and atomic force microscopy of non-covalent short oligonucleotide barcode microarrays.

    Directory of Open Access Journals (Sweden)

    Michael A Cook

    Full Text Available BACKGROUND: Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20-60 base unique sequence tags, or "barcodes", associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5'-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM, we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. CONCLUSIONS/SIGNIFICANCE: These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis.

  10. Therapeutic Oligonucleotides Targeting Liver Disease: TTR Amyloidosis

    Directory of Open Access Journals (Sweden)

    Christoph Niemietz

    2015-09-01

    Full Text Available The liver has become an increasingly interesting target for oligonucleotide therapy. Mutations of the gene encoding transthyretin (TTR, expressed in vast amounts by the liver, result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP. Misfolded variants of TTR are linked to the establishment of extracellular protein deposition in various tissues, including the heart and the peripheral nervous system. Recent progress in the chemistry and formulation of antisense (ASO and small interfering RNA (siRNA designed for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to RNA in a sequence specific manner but exploit different mechanisms. Here we describe major developments that have led to the advent of therapeutic oligonucleotides for treatment of TTR-related disease.

  11. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, Norman Jay [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  12. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takahisa [Department of Radiation Oncology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo (Japan); Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Saito, Soichiro; Fujimori, Hiroaki [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Matsushita, Keiichiro; Nishio, Teiji [Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima-shi, Hiroshima (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, Chiba-shi, Chiba (Japan); Masutani, Mitsuko, E-mail: mmasutan@nagasaki-u.ac.jp [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2016-09-09

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.

  13. Defibrotide: An Oligonucleotide for Sinusoidal Obstruction Syndrome.

    Science.gov (United States)

    Aziz, May T; Kakadiya, Payal P; Kush, Samantha M; Weigel, Kylie; Lowe, Denise K

    2018-02-01

    To review the efficacy and safety of defibrotide as well as its pharmacology, mechanism of action, pharmacokinetics (PK), drug-drug interactions, dosing, cost considerations, and place in therapy. A PubMed search was performed through August 2017 using the terms defibrotide, oligonucleotide, hepatic veno-occlusive disease (VOD), sinusoidal obstruction syndrome (SOS), and hematopoietic cell transplantation (HCT). Other data sources were from references of identified studies, review articles, and conference abstracts plus manufacturer product labeling and website, the Food and Drug Administration website, and clinicaltrials.gov. English-language trials that examined defibrotide's pharmacodynamics, mechanism, PK, efficacy, safety, dosing, and cost-effectiveness were included. Trials have confirmed the safety and efficacy of defibrotide for treatment of VOD/SOS in adult and pediatric HCT patients, with complete response rates and day +100 overall survival rates ranging from 25.5% to 76% and 35% to 64%, respectively. The British Committee for Standards in Haematology/British Society for Blood and Marrow Transplantation Guidelines recommend defibrotide prophylaxis in pediatric and adult HCT patients with risk factors for VOD/SOS; however, its prophylactic use in the United States is controversial. Although there are efficacy data to support this strategy, cost-effectiveness data have not shown it to be cost-effective. Defibrotide has manageable toxicities, with low rates of grade 3 to 4 adverse effects. Defibrotide is the first medication approved in the United States for the treatment of adults and children with hepatic VOD/SOS, with renal or pulmonary dysfunction following HCT. Data evaluating defibrotide for VOD/SOS prevention are conflicting and have not shown cost-effectiveness.

  14. Paraquat-induced radiosensitization of mammalian cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Fujikura, Toshio; Hiraoka, Toshio; Tenou, Hiromi.

    1983-06-01

    The herbicide, paraquat (methyl viologen, 1-1' dimethy1-4, 4'-bipyridinium dichloride), stimulates the production of superoxide anion (O 2 sup(-.)) in aerobic cells and therefore mimics some effects of ionizing radiation. In addition, concentrations of cellular glutathione are reduced by reaction with O 2 sup(-.). It is reported here that paraquat, toxic in its own right to aerobic cells, acts as a radiosensitizer when cells are exposed to nontoxic concentrations of the drug prior to and during irradiation. The radiomimetic effect of paraquat, alone and in combination with X-rays, was examined. Paraquat affects aerated cells (hamster lung V79 cells) in a dose-dependent manner. Doses in excess of 1 mM for two hours cause significant cell killing. In combination with radiation, sublethal doses of paraquat, given for two hours prior to irradiation, enhance the lethal effects of radiation. However, if cells are exposed to the same concentration of paraquat following irradiation, no additional lethal effect is observed. Paraquat is a useful tool to study the effects of O 2 sup(-.) and may lead to better understanding of the mechanisms of radiation-induced energy deposition in cells. (author)

  15. Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition

    International Nuclear Information System (INIS)

    Toulany, Mahmoud; Mihatsch, Julia; Holler, Marina; Chaachouay, Hassan; Rodemann, H. Peter

    2014-01-01

    Background and purpose: Cisplatin activates ataxia-telangiectasia-mutated (ATM), a protein with roles in DNA repair, cell cycle progression and autophagy. We investigated the radiosensitizing effect of cisplatin with respect to its effect on ATM pathway activation. Material and methods: Non-small cell lung cancer cells (NSCLC) cell lines (A549, H460) and human fibroblast (ATM-deficient AT5, ATM-proficient 1BR3) cells were used. The effects of cisplatin combined with irradiation on ATM pathway activity, clonogenicity, DNA double-strand break (DNA-DSB) repair and cell cycle progression were analyzed with Western blotting, colony formation and γ-H2AX foci assays as well as FACS analysis, respectively. Results: Cisplatin radiosensitized H460 cells, but not A549 cells. Radiosensitization of H460 cells was not due to impaired DNA-DSB repair, increased apoptosis or cell cycle dysregulation. The lack of radiosensitization demonstrated for A549 cells was associated with cisplatin-mediated stimulation of ATM (S1981) and AMPKα (T172) phosphorylation and autophagy. However, in both cell lines inhibition of ATM and autophagy by KU-55933 and chloroquine diphosphate (CQ) respectively resulted in a significant radiosensitization. Combined treatment with the AMPK inhibitor compound-C led to radiosensitization of A549 but not of H460 cells. As compared to the treatment with KU-55933 alone, radiosensitivity of A549 cells was markedly stimulated by the combination of KU-55933 and cisplatin. However, the combination of CQ and cisplatin did not modulate the pattern of radiation sensitivity of A549 or H460 cells. In accordance with the results that cisplatin via stimulation of ATM activity can abrogate its radiosensitizing effect, ATM deficient cells were significantly sensitized to ionizing radiation by cisplatin. Conclusion: The results obtained indicate that ATM targeting can potentiate cisplatin-induced radiosensitization

  16. In Vivo and In Vitro Effects of ATM/ATR Signaling Pathway on Proliferation, Apoptosis, and Radiosensitivity of Nasopharyngeal Carcinoma Cells.

    Science.gov (United States)

    Wang, Ming; Liu, Gang; Shan, Guo-Ping; Wang, Bing-Bing

    2017-08-01

    The study investigated the ability of ataxia-telangiectasia mutated (ATM)/Rad3-related (ATR) signaling pathway to influence the proliferation, apoptosis, and radiosensitivity of nasopharyngeal carcinoma (NPC) cells. NPC tissues and corresponding adjacent normal tissues were collected from 143 NPC patients. The NPC CNE2 cells were assigned into a control group, X-ray group, CGK-733 group, and X-ray+CGK-733 group. The mRNA levels of ATM and ATR were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and the protein levels of ATM and ATR using western blotting. The positive expression of ATM and ATR in tissues and nude mouse tumor tissues was determined by immunohistochemistry. Cell proliferation, migration, invasion, and apoptosis rates were analyzed by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, scratch test, transwell assay, and flow cytometry, respectively. A nude mouse model of NPC was established to observe tumor volume and growth. The mRNA levels of ATR and ATM and the expression of ATR and ATM protein in NPC tissues were significantly higher than those in adjacent normal tissues. The colony formation assay showed that the colony-forming rate decreased, showing radiation dose-dependent and CGK-733 concentration-dependent manners. Expression of ATM, ATR, Chk1, and Chk2 was evidently increased in the X-ray, CGK-733, and X-ray+CGK-733groups compared with the control group, and the aforementioned expression was highest in the X-ray+CGK-733 group among the four groups. The cell proliferation, invasion, and migration were decreased, tumor volume decreased and cell apoptosis increased in the X-ray, CGK-733, and X-ray+CGK-733 groups compared with the control group; the X-ray+CGK-733 group exhibited lowest cell proliferation, invasion and migration, smallest tumor volume, and highest cell apoptosis among the four groups. Inhibition of ATM/ATR signaling pathway reduces proliferation and enhances apoptosis and

  17. Radiosensitization of human endothelial cells by IL-24

    International Nuclear Information System (INIS)

    Meyn, R.E.

    2003-01-01

    Radiation therapy remains an important cancer treatment modality but despite improvements in dose delivery many patients still fail at their primary tumor site. Therefore, new strategies designed to improve local control are needed. Protocols combining radiation with anti-angiogenic agents might be of particular advantage based on their documented low toxicity. In this regard, we have been conducting preclinical investigations of a novel cytokine, mda7/IL-24. Our collaborators have shown that mda7/IL-24 protein targets the endothelial cells of the tumor microvascular system and has potent anti-angiogenic properties in both in vitro and in vivo assays. Recently, we have demonstrated that recombinant mda7/IL-24 protein radiosensitizes human endothelial cells in vitro. Specifically, 10 ng/ml of recombinant human IL-24 protein for 12 hrs reduced the survival at 2 Gy for human umbilical vein endothelial cells (HUVECs) from 0.33 to 0.12. We are also working on understanding the molecular basis for this radiosensitizing effect. Preliminary data suggest a model whereby mda7/IL-24 engages a specific receptor on the surface of endothelial cells and initiates a signal transduction pathway that modulates the cell's propensity for radiation-induced apoptosis and capacity for repairing radiation-induced DNA double strand breaks. Mechanistic insight gained from these studies may have implications for the actions of other anti-angiogenic agents and may generally explain the regulation of radiosensitivity imparted by growth factors and cytokines

  18. Study of radiosensitization of chloroquine on esophageal cancer cell line

    International Nuclear Information System (INIS)

    Yuan Xiaoli; Li Tao; Huang Jianming; Zha Xiao; Deng Bifang; Lang Jinyi

    2014-01-01

    Objective: To investigate the possibility of chloroquine radiosensitization of esophageal cancer cell line TE-1 and its further mechanism. Methods: Effect of chloroquine on cell viability of TE-1 cells was determined by MTT method. Expression of LC3, Beclin-1 and formation of acidic vesicular organelles (AVOs) were determined by Western blot, and fluorescence staining with Lyso-Tracker Red DND-99, respectively. Clonogenic survival of TE-1 cells was examined by clonogenic forming assay. Results: Chloroquine showed dose-dependent inhibition of TE-1 cell growth, and its values of IC_5_0 and IC_1_0 were (72.33±5.28) and (15.42±3.33) μmol/L, respectively. The expression of Beclin-1 and LC3-II/I markedly increased in irradiated TE-1 cells. The addition of chloroquine with IC_1_0 concentration significantly reduced the fluorescence and intensity of AVOs accumulation in the cytoplasm of TE-1 cells. Clonogenic survival fraction decreased obviously in TE-1 cells with addition of chloroquine after radiation and the value of SERD0 was 1.439. Conclusions: Chloroquine could radiosensitize esophageal cancer cells by blocking autophagy-lysosomal pathway and be used as a potential radiosensitizing strategy. (authors)

  19. Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides

    Science.gov (United States)

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M.; Högberg, Björn

    2013-01-01

    Single-stranded oligonucleotides are important as research tools as probes for diagnostics and gene therapy. Today, production of oligonucleotides is done via solid-phase synthesis. However, the capabilities of current polymer chemistry are limited in comparison to what can be produced in biological systems. The errors in synthetic DNA increases with oligonucleotide length, and sequence diversity can often be a problem. Here, we present the Monoclonal Stoichiometric (MOSIC) method for enzymatic DNA oligonucleotide production. Using this method, we amplify oligonucleotides from clonal templates followed by digestion of a cutter-hairpin, resulting in pools of monoclonal oligonucleotides with precisely controlled relative stoichiometric ratios. We present data where MOSIC oligonucleotides, 14–378 nt long, were prepared either by in vitro rolling-circle amplification, or by amplification in Escherichia coli in the form of phagemid DNA. The formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides. PMID:23727986

  20. Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides.

    Science.gov (United States)

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M; Högberg, Björn

    2013-07-01

    Single-stranded oligonucleotides are important as research tools, as diagnostic probes, in gene therapy and in DNA nanotechnology. Oligonucleotides are typically produced via solid-phase synthesis, using polymer chemistries that are limited relative to what biological systems produce. The number of errors in synthetic DNA increases with oligonucleotide length, and the resulting diversity of sequences can be a problem. Here we present the 'monoclonal stoichiometric' (MOSIC) method for enzyme-mediated production of DNA oligonucleotides. We amplified oligonucleotides from clonal templates derived from single bacterial colonies and then digested cutter hairpins in the products, which released pools of oligonucleotides with precisely controlled relative stoichiometric ratios. We prepared 14-378-nucleotide MOSIC oligonucleotides either by in vitro rolling-circle amplification or by amplification of phagemid DNA in Escherichia coli. Analyses of the formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides.

  1. Radio-marking and in vivo imagery of oligonucleotides

    International Nuclear Information System (INIS)

    Kuehnast, Bertrand

    2000-01-01

    This research thesis is part of activities aimed at the development of new molecules like oligonucleotides. Its first objective was the development and validation of a marking method with fluorine-18 of oligonucleotides for their in-vivo pharmacological assessment with positron emission tomography (PET). Further investigations addressed the use of iodine-125 for oligonucleotide marking purpose. This radio-marking, and in vivo and ex vivo imagery techniques are described, and their potential is highlighted for the pharmacological assessment of different oligonucleotides

  2. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates

    DEFF Research Database (Denmark)

    Straarup, Ellen Marie; Fisker, Niels; Hedtjärn, Maj

    2010-01-01

    -life as longer oligonucleotides. Pharmacology studies in both mice and non-human primates were conducted with a 13-mer LNA oligonucleotide against apoB, and the data showed that repeated dosing of the 13-mer at 1-2 mg/kg/week was sufficient to provide a significant and long lasting lowering of non...... using the LNA chemistry. Conclusively, we present a 13-mer LNA oligonucleotide with therapeutic potential that produce beneficial cholesterol lowering effect in non-human primates....

  3. Radiosensitivity of T and B lymphocytes. V. Effects of whole-body irradiation on numbers of recirculating T cells and sensitization to primary skin grafts in mice

    International Nuclear Information System (INIS)

    Anderson, R.E.; Williams, W.L.

    1977-01-01

    Whole-body exposure of mice to 50, 100, 300, or 500 rads results in an acute dose-related decrease in the number of viable recirculating T cells. The magnitude of this decrement becomes more pronounced with the passage of time. The dose-response relationship over this range of dosages appears to consist of three components: a steep drop between 0 and 50 rads, a plateau between 50 and 500 rads, and a second drop between 300 and 500 rads. The residual radioresistant cells are able to recognize a histoincompatible skin graft during the initial 5 days after irradiation. Low to moderate doses (50 to 300 rads) abrogate the partial tolerance noted in nonirradiated recipients exposed to the skin graft for 5 days and then regrafted from the same donor source 25 days after complete removal of the primary graft. A large (500 rads) dose results in prolonged graft survival in comparison with the nonirradiated group. It is suggested that the subpopulation of recirculating T cells which develops partial tolerance during a 5-day exposure to a homograft is more radiosensitive than the effector subpopulation which is involved in graft rejection

  4. Associating Oligonucleotides with Positively Charged Liposomes

    Czech Academy of Sciences Publication Activity Database

    Jurkiewicz, P.; Okruszek, A.; Hof, Martin; Langner, M.

    2003-01-01

    Roč. 8, č. 1 (2003), s. 77-84 ISSN 1425-8153 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : oligonucleotides * fluorescence correlation spectroscopy * DOTAP Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.455, year: 2003

  5. Triplex-forming ability of modified oligonucleotides

    DEFF Research Database (Denmark)

    Højland, Torben; Babu, Bolle Ravindra; Bryld, Torsten

    2007-01-01

    We present our studies on the ability of several different nucleotide analogs as triplex-forming oligonucleotides. The modifications tested include 4'-C-hydroxymethyl, LNA, 2'-amino-LNA and N2'-functionalized 2'-amino-LNA. Triplexes containing monomers of N2'-glycyl-functionalized 2'-amino-LNA ar...

  6. Radiosensitivity in cultured human fibroblasts

    International Nuclear Information System (INIS)

    Cox, R.; Masson, W.K.

    1980-01-01

    Caution is urged in the use of freshly isolated cultures of human diploid fibroblasts for quantitative studies of radiosensitivity. The distribution of x ray sensitivities of 'normal' human fibroblast cultures of foetal origin (10 subjects, skin or lung biopsy) and post-foetal origin (34 subjects, skin biopsy) are compared with the distribution in 12 patients with ataxia telangiectasia (probability of including any one of these in a normal post-foetal distribution is 0.01%). Cultures from nominally normal subjects showed a broad distribution of D 0 range of 98 +- 160 rad and assuming normal distribution, a mean +- one standard deviation of 122 +- 17 rad. Mean D 0 values for foetal origin cultures were 117 +- 12; values for post-foetal cultures D 0 were 124 +- 18. No systematic variation in D 0 was observed for age of donor, number of cell divisions in culture or for cloning efficiency. For ataxia telangiectasia D 0 values were 46 +- 7 rad. (U.K.)

  7. Hyperthermic radiosensitization : mode of action and clinical relevance

    NARCIS (Netherlands)

    Kampinga, HH; Dikomey, E

    Purpose: To provide an update on the recent knowledge about the molecular mechanisms of thermal radiosensitization and its possible relevance to thermoradiotherapy. Summary: Hyperthermia is probably the most potent cellular radiosensitizer known to date. Heat interacts with radiation and potentiates

  8. Radiosensitivity study of cultured barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan; Chen Qiufang

    1991-07-01

    For studying the radioactivity, forty seven varieties of dormant barley seeds were irradiated with various doses (0 ∼ 400 Gy) of 137 Cs γ-rays. The results showed that the dose-effects relations of seedling growth inhibition could be fitted by an equation of F(D) = 1 - (1 - e -a 1 D ) N , and the dose-effects of cell-nucleus, the frequency of root tip cell with chromosome aberations and peroxidase isoenzyme band could be expressed by a linear regression equation Y = A + B · X. The radioactivity of naked barley was much higher than of covered barley. According to different radiosensitivities the varieties studied could be divided into five types i.e. extreme resistant, resistant, intermediate, sensitive, and extreme sensitive. The results also showed that there was close relationship between the DNA content of cell-nucleus, peroxidase isoenzyme zymogram and radioactivity. The radiosensitivty was proportional to the DNA content. The volume of cell-nucleus varied inversly as D 50 of nucleus volume and no obvious correlation with the D 50 of seedling growth inhibition

  9. Application of bio-marker to study on tumor radiosensitivity

    International Nuclear Information System (INIS)

    Guo Wanfeng; Ding Guirong; Han Liangfu

    2001-01-01

    To definite tumor radiosensitivity is important for applying the schedules of individualization of patient radiotherapy. Many laboratories were carrying on the research which predict the tumor radiosensitivity with one bio-marker or/and multi-bio-marker in various levels. At present has not witnessed the specific bio-marker, but it provides an excellent model for predicting tumor radiosensitivity

  10. Degradation product characterization of therapeutic oligonucleotides using liquid chromatography mass spectrometry.

    Science.gov (United States)

    Elzahar, N M; Magdy, N; El-Kosasy, Amira M; Bartlett, Michael G

    2018-05-01

    Synthetic antisense phosphorothioate oligonucleotides (PS) have undergone rapid development as novel therapeutic agents. The increasing significance of this class of drugs requires significant investment in the development of quality control methods. The determination of the many degradation pathways of such complex molecules presents a significant challenge. However, an understanding of the potential impurities that may arise is necessary to continue to advance these powerful new therapeutics. In this study, four different antisense oligonucleotides representing several generations of oligonucleotide therapeutic agents were evaluated under various stress conditions (pH, thermal, and oxidative stress) using ion-pairing reversed-phase liquid chromatography tandem mass spectrometry (IP-RPLC-MS/MS) to provide in-depth characterization and identification of the degradation products. The oligonucleotide samples were stressed under different pH values at 45 and 90 °C. The main degradation products were observed to be losses of nucleotide moieties from the 3'- and 5'-terminus, depurination, formation of terminal phosphorothioates, and production of ribose, ribophosphorothioates (Rp), and phosphoribophosphorothioates (pRp). Moreover, the effects of different concentrations of hydrogen peroxide were studied resulting in primarily extensive desulfurization and subsequent oxidation of the phosphorothioate linkage to produce the corresponding phosphodiester. The reaction kinetics for the degradation of the oligonucleotides under the different stress conditions were studied and were found to follow pseudo-first-order kinetics. Differences in rates exist even for oligonucleotides of similar length but consisting of different sequences. Graphical abstract Identification of degradation products across several generations of oligonucleotide therapeutics using LC-MS.

  11. Effect of uvs1, uvs2 and xrs mutations on the radiosensitivity and the induced mitotic recombination frequency in diploid yeast cells

    International Nuclear Information System (INIS)

    Suslova, N.G.; Fedorova, I.V.; Zheleznyakova, N.Yu.

    1975-01-01

    The influence of the loci of radiosensitivity uvs1, uvs2, and xrs in the homozygous state at the diploid level on the sensitivity to UV and ionizing radiation and induced mitotic recombination was studied in the yeast Sacch. cerevisiae. Hypersensitivity to UV irradiation was detected in the diploids uvs2 uvs2 xrs xrs in comparision with the corresponding control. The diploid uvs1 uvs1 uvs2 uvs2 does not differ in UV sensitivity from the diploid uvs1 uvs1 UVS2 UVS2. These facts demonstrate that the uvs1 and uvs2 mutations, on the one hand, and the xrs mutations, on the other, normally control different pathways of elimination of UV-induced damages. It was shown that the diploid uvs2 uvs2 xrs3 xrs3 is far more sensitive to the lethal action of x rays than the control diploid UVS2 UVS2 xrs3 xrs3. Consequently, the mutations uvs2 and xrs3 block different modes of repair of damages induced by ionizing radiation. In all the double-mutant diploids, the frequency of mitotic recombination induced by UV rays increases sharply in comparison with that of the radioresistant diploids UVS UVS XRS XRS and the UV-sensitive diploids uvs2 uvs2 XRS XRS. Possible causes of the observed phenomenon are discussed. It was established that in a diploid homozygous for the loci uvs2 xrs5, the frequency of mitotic recombination induced by x rays increases extremely sharply. This fact confirms the hypothesis that the gene product of the locus uvs2 participates in the repair of DNA after the action of ionizing radiation. (author)

  12. Radiosensitivity, radio-curability and DNA repair

    International Nuclear Information System (INIS)

    Vogin, G.

    2011-01-01

    Improvements in accuracy stand as the heart of the success of today's radiotherapy. The dose may be delivered with a sub millimetric accuracy, may also conform to complex shapes, or track external and internal organ motions. In parallel, we may increase the tumour's radio-curability by modulating the biological effects generated by ionizing radiation into the patient. It was precisely the topic of the 2009 Lucien-Mallet prize organized by the French Society for Radiation Oncology (SFRO) and the Centre Antoine-Beclere under the auspices of the Fondation de France. In this review we will precisely describe the integrated molecular response to ionizing radiations. Starting from early observations, we are going to introduce the concept of cellular radiosensitivity as the global response of the irradiated cell. We will then focus into the cell and especially its nucleus. We will describe here the most complex and deleterious radioinduced damages. In the next chapter, we will dissect the molecular pathway that aims to detect and repair the previous lesions. The last part of the review will finally deal with the diagnostic, prognostic and therapeutic impacts emerging from the alliance between clinical and molecular radiobiology. (author)

  13. Study on relationship between apoptosis-related genes and radiosensitivity of esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Li Huixiang; Wang Yaohe; Shi Yonggang; Gao Dongling; Zhang Yunhan

    2000-01-01

    Objective: To observing the relationship between apoptosis-related genes bcl-2,c-myc, p53 and the radiosensitivity of esophageal squamous cell carcinoma. Methods: The expression levels of bcl-2, c-myc and p53 genes in 57 biopsy samples from patients of esophageal squamous cell carcinoma were detected with the LSAB immunohistochemistry method. All the patients were treated with radiotherapy. The radiotherapeutic effect in these patients was observed and the relation between gene expression and radiosensitivity was analyzed. Results: Compared with the bcl-2-negative group, the radiosensitivity of bcl-2-positive one was lower(P<0.01). The radiosensitivity of p53-positive group was slightly lower than that of the p53-negative one (P<0.05). The c-myc protein expression was not related to radiosensitivity. Conclusion: Detection and comprehensive analysis of bcl-2, c-myc and p53 protein expressions are useful in forecasting the radiotherapeutic effect on squamous cell carcinoma of esophagus

  14. Radiosensitizing efficiency of sodium glycididazole on V79 cells in vitro

    International Nuclear Information System (INIS)

    Zheng Xiulong; Gao Jianguo; Zhang Hong; Zhu Qin; Meng Xiangshun; Zhao Fang

    1995-01-01

    Radiosensitizing effect of sodium glycididazole (SGDD) on the hypoxic V 79 cells by standard in vitro colon formation method has been further studied. The results showed its toxicity was low. Its ID 50 in cells under hypoxic and aerobic condition were 23.5 and 35.7 mmol/L respectively. These indicated that SGDD showed more toxicity under hypoxic than under aerobic condition (p 1.6 was 0.48 mmol/L. Its maximum SER was 2.3 at 1.38 mmol/L. Comparisons of radiosensitizing effect of SGDD versus MISO and its mother compound (metronidazole) under the same experimental condition, SER for SGDD, MISO and metronidazole were 1.75, 1.53 and 1.07 at 0.3 mmol/L respectively. SGDD showed more radiosensitizing efficiency than MISO and much greater than metronidazole. This study further confirms our previous results i.e. SGDD is a hypoxic radiosensitizer with low toxic, high efficiency and selectively enhances the radiosensitivity of hypoxic cells for tumor radiotherapy

  15. Genotoxic, radioprotective and radiosensitizing effect of curcumin and trans-resveratrol in vitro cultures of human lymphocytes; Efecto genotóxico, radioprotector y radiosensibilizante de la curcumina y el trans-resveratrol en cultivos in vitro de linfocitos humanos

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, V.A.; Tirsa Muñoz, B.; Sebastià, N.; Gómez-Cabrero, L.; La Parra, V.; Hervás, D.; Rodrigo, R.; Villaescusa, J.I.; Soriano, J.M.; Montoro, A.

    2015-07-01

    Curcumin and trans-resveratrol are natural polyphenol compounds. Curcumin is obtained from the rhizomes of the Curcumin plant (Curcuma longa), while trans-resveratrol is found in grapes, blackberries and other types of berry. These compounds have antioxidant, anti-inflammatory, immunostimulant and anticarcinogenic properties among others. In addition, they are also known for their radiomodulating properties since they are capable of providing radioprotection or radiosensitization for normal or tumours cells depending on different factors. This dual action may be the result of their properties, such as free radicals scavenging, as well as their influence on cell cycle checkpoints or control mechanisms. These are activated in response to the genetic damage induced by radiation. Despite the many beneficial properties attributed to these polyphenol compounds, some studies suggest that they are able to be genotoxic agents for some cellular lines. The results obtained indicate that both compounds possess a radioprotective effect on the lymphocytes of peripheral blood in the quiescent phase of the cellular cycle (G0). Nevertheless, they are capable of induce radiosensitivity on these type of cells in the growth phase (G2), and in addition, a different genotoxic effect can be seen according to the concentration of each compound. This study suggests, therefore, that curcumin and trans-resveratrol are able to exert a triple effect, genotoxic, radioprotective and radiosensitizing on in vitro cultures of human lymphocytes depending on the study parameters. [Spanish] La curcumina y el trans-resveratrol son compuestos polifenólicos de origen natural. La curcumina es obtenida a partir de los rizomas de la planta de la cúrcuma (Curcuma longa), mientras que el trans-resveratrol se encuentra en uvas, moras y otras bayas. Estos compuestos presentan propiedades antioxidantes, antiinflamatorias, inmunoestimulantes y anticancerígenas, entre otras. Además, también se les conoce por

  16. Age-dependent radiosensitivity of mouse oocytes

    International Nuclear Information System (INIS)

    Koehler, C.

    1976-01-01

    It has been shown that there are three distinct phases of radiosensitivity in oocytes of prepubertal mice: a period of rapidly increasing sensitivity between 0 and 4 days of age; a period of consistent, high sensitivity between 5 and 18 days of age; and a period of decreasing sensitivity from 19 to at least 21 days of age. Two distinct phases have been demonstrated for the rate of population decline of the oocytes of primary follicles: an initial period of rapid loss from 0 to 4 days of age; and a period of much slower loss from 5 through 23 days of age. Correlations have been drawn between the first two phases of radiosensitivity and morphological changes in the oocyte, and between the third phase of radiosensitivity and endocrinological changes in the maturing animal. The reaction of oocytes to radiation has been separated into two categories: immediate death (within 24 hours); and delayed death (over the entire lifespan of the animal)

  17. Radiosensitizers in cervical cancer. Cisplatin and beyond

    International Nuclear Information System (INIS)

    Candelaria, Myrna; Garcia-Arias, Alicia; Cetina, Lucely; Dueñas-Gonzalez, Alfonso

    2006-01-01

    Cervical cancer continues to be a significant health burden worldwide. Globally, the majority of cancers are locally advanced at diagnosis; hence, radiation remains the most frequently used therapeutical modality. Currently, the value of adding cisplatin or cisplatin-based chemotherapy to radiation for treatment of locally advanced cervical cancer is strongly supported by randomized studies and meta-analyses. Nevertheless, despite these significant achievements, therapeutic results are far from optimal; thus, novel therapies need to be assayed. A strategy currently being investigated is the use of newer radiosensitizers alone or in combination with platinum compounds. In the present work, we present preclinical information on known and newer cytotoxic agents as radiosensitizers on cervical cancer models, as well as the clinical information emanating from early phase trials that incorporate them to the cervical cancer management. In addition, we present the perspectives on the combined approach of radiation therapy and molecular target-based drugs with proven radiosensitizing capacity

  18. Effect of varying concentrations of caffeine and ascorbic acid on the radiosensitivity of barley seed irradiated in oxygenated or oxygen-free hydration medium at 25 and 3700C

    International Nuclear Information System (INIS)

    Afzal, S.M.J.; Kesavan, P.C.

    1977-01-01

    The modification of radiosensitivity of barley seed with 1.75 x 10 -3 M and 3.8 x 10 -3 M concentrations of caffeine and ascorbic acid during irradiation in oxygenated and oxygen-free hydration medium was studied at 25 and 37 0 C, respectively. Both concentrations of caffeine and ascorbic acid afforded protection against oxic radiation damage which was maximal at 25 0 C. Caffeine effectively potentiated the anoxic component of damage but ascorbic acid had no influence at all. At 25 0 C there was no concentration-dependent effect of caffeine or ascorbic acid. At 37 0 C, there was no effect, whatsoever, of either concentration of ascorbic acid, whereas caffeine dramatically potentiated the radiation damage under both oxygenated and oxygen-free conditions, and the magnitude of potentiation was concentration-dependent. The possible reactivity of caffeine and ascorbic acid towards the precursors of oxygen-dependent and -independent components of damage in determining the mode and magnitudes of modification is discussed briefly. (author)

  19. Phytochemicals radiosensitize cancer cells by inhibiting DNA repair

    International Nuclear Information System (INIS)

    Singh, Rana P.

    2017-01-01

    Solid tumors are mostly treated with radiotherapy. Radiotherapy is toxic to normal tissues and also promote the invasiveness and radioresistance in cancer cells. The resistance against radiotherapy and adverse effects to normal cells reduce the overall therapeutic effects of the treatment. Radiosensitizing agents usually show limited success during clinical trials. Therefore, the search and development of new radiosensitizers showing selective response to only cancer cells is desirable. We analyzed the radiosensitizing effects including cell death effect of silibinin, a phytochemical on prostate cancer cells. Silibinin enhanced gamma radiation (2.5-10 Gy) induced inhibition in colony formation selectively in prostate cancer cells. In cell cycle progression, G2/M phase is the most sensitive phase for radiation-induced damage which was delayed by the compound treatment in radiation exposed cells. The lower concentrations of silibinin substantially enhanced radiation-induced apoptosis. A prolonged reactive oxygen species production was also observed in these treatments EGFR signaling pathway can contribute to radiation-induced pro-survival mechanisms and to the therapeutic resistance. Agent treatment reduced the IR-induced EGFR phosphorylation and consequently reversed the resistance mediating mechanisms within the cancer cell. Thus, inhibiting DNA repair in cancer cells would enhance therapeutic response of radiation in cancer cells. Silibinin affected the localization of EGFR and DNA-dependent protein kinase, the DNA-PK is known to be an important mediator of DSB repair in human cells, and showed increased number of pH2AX (ser139) foci, and thus indicating lower DNA repair in these cancer cells. This was also confirmed in the tumor xenograft study. Our findings suggest that a combination of silibinin with radiation could be an effective treatment of radioresistant human prostate cancer and warrants further investigation. (author)

  20. Genetic control of radiosensitivity modification of some yeast strons

    International Nuclear Information System (INIS)

    Petin, V.G.; Zhurakovskaya, I.P.

    1982-01-01

    The genetic determination of the relative biological effectiveness (RBE) of densely ionizing particles and cysteamine's radioprotective effect on irradiated cells, demonstrated earlier on yeast cells of different genotype, has been proved on diploid wild-type cells of Saccharomyces cerevisial yeasts, solitary mutants, homozygous with respect to rad 2 and rad 54, and double mutant containing both locuses in homozygous state. It is shown that RBE of α-particles and radioprotector's efficiency depend on repair system's activity. A possible mechanism of the participation of postirradiation recovery processes in the modification of cell radiosensitivity is discussed [ru

  1. Pronounced radiosensitization of cultured human cancer cells by COX inhibitor under acidic microenvironment

    International Nuclear Information System (INIS)

    Shah, Tushar; Ryu, Samuel; Lee, Ho Jun; Brown, Stephen; Kim, Jae Ho

    2002-01-01

    Purpose: To demonstrate the influence of pH on the cytotoxicity and radiosensitization by COX (cyclooxygenase) -1 and -2 inhibitors using established human cancer cells in culture. Methods and Materials: Nonselective COX inhibitor, ibuprofen (IB), and selective COX-2 inhibitor, SC-236, were used to determine the cytotoxicity and radiosensitization at varying pH of culture media. Human colon carcinoma cell line (HT-29) was exposed to the drug alone and in combination with radiation at different pH of the cell culture media. The end point was clonogenic ability of the single-plated cells after the treatment. Results: Cytotoxicity and radiosensitization of IB increased with higher drug concentration and longer exposure time. The most significant radiosensitization was seen with IB (1.5 mM) for 2-h treatment at pH 6.7 before irradiation. The dose-modifying factor as defined by the ratio of radiation doses required to achieve the same effect on cell survival was 1.8 at 10% survival level. In contrast, SC-236 (50 μM for 2-8 h) showed no pH-dependent cytotoxicity. There was modest increase in the cell killing at lower doses of radiation. Conclusion: An acidic pH was an important factor affecting the increased cytotoxicity and radiosensitization by ibuprofen. Radiation response was enhanced at shoulder portion of the cell survival curve by selective COX-2 inhibitor

  2. Reaction between nitracrine and glutathione: implications for hypoxic cell radiosensitization and cytotoxicity

    International Nuclear Information System (INIS)

    Wilson, W.R.; Anderson, R.F.

    1989-01-01

    Nitracrine (NC) is an electron affinic DNA intercalating agent and a potent hypoxia-selective cytotoxin and radiosensitizer in cell culture. Although NC is too cytotoxic and too rapidly metabolized to provide hypoxic cell radiosensitization in tumors, it is of mechanistic interest as an example of a DNA affinic radiosensitizer. We have observed a rapid chemical reaction between NC and reduced glutathione (GSH), which suggests that the observed potent in vitro cytotoxicity and radiosensitization might be dependent on thiol depletion by the large extracellular reservoir of drug. However, no GSH depletion was observed under conditions providing radiosensitization or rapid cell killing, and prior depletion of GSH by buthionine sulphoximine had no effect on cytotoxicity or formation of macromolecular adducts. Further, the intracellular reaction of NC with GSH is slower than predicted on the basis of the measured second order rate constant and the total intracellular concentrations of both species. The results are consistent with a role for DNA binding in protecting NC from reaction with GSH, and in improving the efficiency with which reduced electrophilic metabolites react with DNA in preference to GSH

  3. In vitro and in vivo study of a nanoliposomal cisplatin as a radiosensitizer

    Directory of Open Access Journals (Sweden)

    Xiaomeng Zhang

    2011-02-01

    Full Text Available Xiaomeng Zhang1*, Huanjun Yang1*, Ke Gu1, Jian Chen2, Mengjie Rui2, Guo-Liang Jiang11Departments of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College,Fudan University,Shanghai, People’s Republic of China; 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; *Xiaomeng Zhang and Huanjun Yang share the first authorshipObjective: To investigate the in vitro and in vivo radiosensitization effect of an institutionally designed nanoliposome encapsulated cisplatin (NLE-CDDP.Materials and methods: NLE-CDDP was developed by our institute. In vitro radiosensitization of NLE-CDDP was evaluated by colony forming assay in A549 cells. In vivo radiosensitization was studied with tumor growth delay (TGD in Lewis lung carcinoma. The radiosensitization for normal tissue was investigated by jejunal crypt survival. The radiosensitization studies were carried out with a 72 h interval between drug administration and irradiation. The mice were treated with 6 mg/kg of NLE-CDDP or CDDP followed by single doses of 2 Gy, 6 Gy, 16 Gy, and 28 Gy. Sensitization enhancement ratio (SER was calculated by D0s of cell survival curves for A549 cells, doses needed to yield TGD of 20 days in Lewis lung carcinoma, or D0s of survival curves in crypt cells in radiation alone and radiation plus drug groups.Results: Our NLE-CDDP could inhibit A549 cells in vitro with half maximal inhibitory concentration of 1.12 µg/mL, and its toxicity was 2.35 times that observed in CDDP. For in vitro studies of A549 cells, SERs of NLE-CDDP and CDDP were 1.40 and 1.14, respectively, when combined with irradiation. For in vivo studies of Lewis lung carcinoma, the strongest radiosensitization was found in the 72 h interval between NLE-CDDP and irradiation. When given 72 h prior to irradiation, NLE-CDDP yielded higher radiosensitization than CDDP (SER of 4.92 vs 3.21 and slightly increased injury in jejunal

  4. Integrin inhibitor (Cilengitide) as radiosensitization strategy for malignant tumors

    International Nuclear Information System (INIS)

    Silva, Felipe Henrique de Souza

    2017-01-01

    Radiotherapy is effective in tumor control, but several tumors have molecular characteristics that lead to radioresistance and possible posttreatment recurrence. Many tumors have overexpression of integrin receptors. Integrins play a central role in growth, motility, regulation of adhesion and survival, leading to increased proliferation, invasion and metastasis of tumors, making these receptors excellent targets for the development of new therapies. Studies have shown that inhibiting the interaction of matrix proteins with integrin receptors may increase the cytotoxic effect of ionizing radiation by demonstrating the radiosensitizing potential of combination therapy in tumoral lines. Cilengitide an inhibitor of integrins receptors α Vβ3 and αVβ5 stands out for its great antitumor potential against gliomas. Thus, the combination of ionizing radiation with cilengitide is an alternative therapeutic strategy. However, the effect of this combination is little studied in Glioblastomas (U87 and T98) and not studied in melanoma (UACC). The objective of this study was to evaluate the radiosensitising potential of the RGD molecule cilengitida by means of the combined treatment with gamma radiation in different tumor lines, as well as to compare the effect of this combination therapy with cisplatin, a molecule already used in clinical practice. Our panel of tumor cell lines was composed of U87 (wild-type p53 malignant glioblastoma) T98 (malignant glioblastoma mutant p53), MCF7 (mammary carcinoma) and UACC (melanoma). The radiosensitizer effect of cilengitide was evaluated by the quantification of metabolic cell viability through the MTT assay. Inhibition of colony formation was investigated in clonogenicity assays. The flow cytometer was used to investigate cell cycle distribution and the type of cell death induced. We observed that in all cell lines examined, cilengitida promoted detachment, metabolic alterations and reduction of proliferation, as well as alteration of

  5. Radiosensitivity of str.fecalis in presence of some substances being contained in meat cans

    International Nuclear Information System (INIS)

    Stojchev, M.; Brankova, G.; Dzhezheva, G.

    1974-01-01

    This study was designed to assess the effects of some organic and inorganic substances present in canned meats on the radiosensitivity of Streptococcus faecalis exposed to different doses of gamma rays. It was found that the death rate of irradiated S.faecalis depends on the radiation dose, the time elapsed after irradiation, and the medium in which the cells are suspended. Adding lactic and ascorbic acids and glucose to the model solution decreased the radiosensitivity and increased the post-irradiation effects. (E.T.)

  6. Genetic control of yeast cell radiosensitivity modification by oxygen and hypoxic sensitizers

    International Nuclear Information System (INIS)

    Zhuranovskaya, G.P.; Petin, V.G.

    1984-01-01

    Diploid yeast cells Saccharomyces cerevisiae ''of the wild type'', individual mutants, homozygous in rad 2 and rad 54 and double mutants, containing both these loci in homozygous state are considered to prove genetic determination of radiosensitivity modification of hypoxic cells by oxygen and electron acceptor compounds previously demonstrated on yeast cells of other genotypes. It is shown that both ''oxygen effect'' and the effect of hypoxic sensitizers depend on the activity of repair systems. The possible mechanism of participation of post-radiation restoration processes in the modification of cell radiosensitivity, is discussed

  7. Radiosensitivity of hemopoietic stem cells on cloning in bone marrow and spleen

    International Nuclear Information System (INIS)

    Shvets, V.N.; Shafirkin, A.V.

    1979-01-01

    It was shown that population of stem cells from bone marrow of mice is heterogenous by radiosensitivity. A 55%-survival of CFU is exponential function of radiation dose (D 0 -9 rad). A dose-effect curve for radioresistant part of the population (D 0 =180 rad) is sygmoid (Dsub(q)=130 rad). Radiosensitive CFU are suggested to represent a primarily committed fraction of half-semi cells, and radioresistant CFU are referable to a pool of pluripotent stem cells. Heterogenous nature of CFU population is proved with different modifications of radiation effect and interactions of CFU with T-lymphocytes

  8. Functional regulation of RNA-induced silencing complex by photoreactive oligonucleotides.

    Science.gov (United States)

    Matsuyama, Yohei; Yamayoshi, Asako; Kobori, Akio; Murakami, Akira

    2014-02-01

    We developed a novel method for regulation of RISC function by photoreactive oligonucleotides (Ps-Oligo) containing 2'-O-psoralenylmethoxyethyl adenosine (Aps). We observed that inhibitory effects of Ps-Oligos on RISC function were enhanced by UV-irradiation compared with 2'-O-methyl-oligonucleotide without Aps. These results suggest Ps-Oligo inhibited RISC function by cross-linking effect, and we propose that the concept described in this report may be promising and applicable one to regulate the small RNA-mediated post-transcriptional regulation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Radiosensitization of hypoxic tumor cells by simultaneous administration of hyperthermia and nitroimidazoles

    International Nuclear Information System (INIS)

    Hofer, K.G.; Hofer, M.G.; Ieracitano, J.; McLaughlin, W.H.

    1977-01-01

    The radiation response of oxygenated and hypoxic L1210 leukemia cells subjected to in vivo treatments with hyperthermia and/or chemical radiosensitizers was evaluated with the [ 125 I]iododeoxyuridine prelabeling assay. X irradiation of L1210 cells at body temperatures of 41 0 C or higher resulted in strongly enhanced tumor cell death. The magnitude of this thermal effect increased with increasing temperatures. Hypoxic L1210 cells were particularly sensitive to heat induced enhancement of radiation damage, i.e., the sensitizing effects were more pronounced and occurred at lower temperatures. Chemical radiosensitizers (metronidazole, Ro 7-0582) selectively sensitized hypoxic L1210 populations; fully oxygenated cells were not affected. Considerable radiosensitization was achieved at nontoxic dose levels of the two sensitizers. Experiments designed to determine the degree of radiosensititization as a function of drug dose showed that Ro 7-0582 was consistently more effective than metronidazole in sensitizing hypoxic tumor populations. At the highest drug dose used (3 mg/g body wt) the DMF was 2.2 for metronidazole and 2.8 for Ro 7-0582. Combined administration of hyperthermia and Ro 7-0582 (or metronidazole) produced synergistic potentiation of radiation damage in hypoxic L1210 populations (DMF of 4.2). Under optimal conditions, hypoxic L1210 cells subjected simultaneously to both modes of radiosensitization became more radiosensitive than untreated, fully oxygenated L1210 cells. Experiments on two other tumor lines (BP-8 murine sarcoma and Ehrlich ascites cells) indicate that such synergistic radiosensitization effects are not unique to L1210 cells

  10. Radiosensitization and relative mechanisms of vanillin derivative BVAN08 on human glioma U-251 cells

    International Nuclear Information System (INIS)

    Wang Shubin; Zhang Bo; Sun Weijian; Wang Yu; Liu Xiaodan; Xu Qinzhi; Zhou Pingkun

    2010-01-01

    Objective: To provide more convincing evidences and experimental data for exploring vanillin derivative BVAN08, 6-bromine-5-hydroxy-4-methoxy-benzaldehyde, as a new anticancer drug, and to investigate the effect on the growth, radiosensitization of human glioma cell line U-251 and the relative mechanism. Methods: The effect of BVAN08 on cell proliferation of U-251 and radiosensitivity to 60 Co γ-rays (irradiation dose rate 2.3 Gy/min) were analyzed with MTT and colony-forming ability assay. Change in cellular morphology was observed by using light microscope. Change in cell cycle and apoptosis was detected with flow cytometry. The autophagy was observed by using TEM (irradiation dose rate is transmission electron microscope). DNA-PKcs protein level was detected through Western blot analysis. Results: BVAN08 exhibited a dose- and time-dependent inhibition on the proliferation of U-251 cells during the concentration range of 10-100 mol/L (t=1.83-3.07, P 50 at 48 h and 72 h after administration with BVAN08 were 55.3 and 52.7 mol/L, respectively. Obvious G 2 /M arrest was induced in U-251 cells after 4 h administration with BVAN08, and reached peck at 12 h. The G 2 /M population reached 63.3% in U-251 cells after 12 h administration of 60 μmol/L BVAN08 and kept increasing with the time, while both apoptosis and autophagic cell death were induced. The most effective radiosensitization time for BVAN08 treatment was 12 h before irradiation. The enhancement ratio of radiosensitivity was 3.14 for 20 μmol/L of BVAN08 12 h before 2 Gy irradiation. Conclusions: BVAN08 can induce apoptosis as radiosensitizing effect might be associated with the induction of G 2 /M arrest and inhibition of DNA-PKcs expression. BVAN08 seemed to be a promising radiosensitizing anticancer drug. (authors)

  11. Low temperature modification of gamma-irradiation effect on peas. II.Low temperature effect on the radio-sensitivity and the chlorophyll mutations

    International Nuclear Information System (INIS)

    Najdenova, N.; Vasileva, M.

    1976-01-01

    Dry pea seeds of cv.Ramonskii 77 with 11-12% moisture were γ-irradiated by 60 Co in doses 5, 15, 20 and 30 krad. Low temperature (-78 deg C) was effected in the form of dry ice for a 24 h period prior to, at the time of and post irradiation. As control were used: (a) dry non-irradiated seeds, stored at room temperature; (b) non-irradiated seeds subjected to low temperature (-78 deg C) for a 24 h period. and (c) seeds irradiated by the named doses, stored at room temperature until the time of irradiation. Treated and control seeds were sown in the field. Germination, survival rate and sterility were recorded in M 1 , while in M 2 chlorophyll mutations were scored. Results obtained showed that low temperature modification effect on the various irradiation doses depended on the time of its application; low temperature (-78 deg C) treatment prior to seed irradiation with doses 15, 20 and 30 krad increased germination percentage, plant survival and yield components in M 1 . The post-irradiation treatment did not have a significant effect on gamma-rays; highest protection effect was obtained in case seeds were irradiated at low temperature and then received supplementary treatment at high temperature. In this way the damaging effect of radiation was reduced to a maximum degree; low temperature treatment prior to irradiation with doses of 15 and 20 krad or at the time of irradiation with doses of 15, 20 and 30 krad resulted in a considerably wider chlorophyll mutation spectrum. (author)

  12. Clinical experiences with the radiosensitizer Misonidazol

    International Nuclear Information System (INIS)

    Bamberg, M.; Scherer, C.; Tamulevicius, P.; Streffer, C.

    1981-01-01

    The principle of action of sensitizers with electron affinity is explained and the development of these radiosensitizing substances up to the clinical of Misonidazol (MIS; Ro-07-0582) is shown. With special regard to the pharmacokinetic action of this substance, the therapeutic effects of MIS were examined in ten patients with brain tumors of high malignancy (400 mg/m 2 ) and four patients with oesophageal carcinomas (1 g/m 2 ), all these patients having reached the clinical phase III. Four other patients with recurrent brain tumors received a dose of 1 g/m 2 of MIS before each irradiation. Apart from slight neurotoxic and gastrointestinal side effects, the applicated doses of MIS were generally well tolerated. Only in one case a generalized maculopapular exanthema developed which regressed completely within few days. No correlation could be found between the subjective side effects and the plasma values determined by means of high pressure liquid chromatography (HPLC). After one to four hours following oral application, the maximum plasma concentrations were measured, the half-life (T 1/2) varying in all patients between five and ten hours. It was not possible to demonstrate an influence of dexamethasone on the plasma concentration of half-life of MIS in the brain tumor patients. The cerebrospinal fluid concentrations of MIS which may be used as an index for the concentrations in brain tumors, are closely correlated with the corresponding plasma values. There was no correlation between MIS concentrations in plasma and saliva, so that the determination of MIS in the saliva cannot be recommended as a routine method for control examinations. (orig.) [de

  13. Radiosensitivity of quince seeds (Cydonia oblonga Mill.)

    International Nuclear Information System (INIS)

    Dall'Orto, F.A.C.; Ojima, M.; Hiroce, R.; Igue, T.; Ferraz, E.S.B.; Nascimento Filho, V.F. do; Menten, J.O.M.; Tulmann Neto, A.; Ando, A.

    1984-01-01

    The investigation with quince seeds (Cydonia oblonga Mill.) radiosensitivity and the mineral composition of the plants obtained for mutation breeding are related. The concentration of some macro and micronutrients in quince seedlings obtained from irradiated seeds are studied. (M.A.C.) [pt

  14. Osmotic homeostasis and NKLy lymphoma cells radiosensitivity

    International Nuclear Information System (INIS)

    Tishchenko, V.V.; Magda, I.N.

    1992-01-01

    In experiments with cells of ascites NKLy lymphoma differing in ploidy and position in the cell cycle, a study was made of the radiosensitivity, osmotic homeostasis peculiarities and thermoradiation changes in potassium content. It was shown that the resistance of osmotic homeostasis of NKLy cells to thermoradiation correlated with their radioresistance

  15. Radiosensitization of tumors and normal tissues by combined treatment with misonidazole and heat

    International Nuclear Information System (INIS)

    Hofer, K.G.; MacKinnon, A.R.; Schubert, A.L.; Lehr, J.E.; Grimmett, E.V.

    1981-01-01

    Combination treatment of mice with misonidazole (0.5 mg/g body wt.) and hyperthermia (41.5/sup o/C for 45 mins.) produced dramatic radiosensitization in hypoxic BP-8 murine sarcoma cells. The dose modifying factor (DMF: 4.3) was such that hypoxic BP-8 cells subjected to combination therapy became more radiosensitive than untreated, fully oxygenated cell populations. In contrast, radiosensitization by combination treatment was comparatively minor or completely absent in normal body tissues such as skin (DMF: 1.57), intestine (DMF: 1.0), and bone marrow (DMF: 1.0). These results suggest that simultaneous administration of misonidazole and hyperthermia may prove an effective adjuvant to conventional clinical radiation therapy

  16. Influence of physical and biological factors in cellular radiosensitivity

    International Nuclear Information System (INIS)

    García Lima, Omar

    2016-01-01

    The use of therapeutic radiopharmaceuticals is associated with radiation damage, and this at-nuclear physical properties of radionuclides used and the characteristics of the irradiated cells. The work deals with the damage caused by radiation to DNA, factors that condition and tools that can be used to measure it. It presents current concepts of death and cellular radiosensitivity, based on the pioneering work in this field. Enter the neighborhood effect and adaptive response and evaluates the influence of the same in the paradigms of classical radiobiology. (author)

  17. Assessment of in vitro radiosensitivity of human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Knox, S.J.; Shifrine, M.; Rosenblatt, L.S.

    1980-01-01

    The proliferative capacity of sensitive lymphocyte progenitor cells, from thirty-one clinically normal adults, was evaluated following in vitro x-irradiation (0-400R). Radiation effects were studied using both whole blood and lymphocyte-enriched mononuclear cell fractions in the lymphocyte stimulation test and colony formation assay with 6 different mitogens and antigens. Radiation dose-response survival curves were determined for the different test groups. The sensitivity of the different assay systems is compared and normative values are presented that may be used for comparison purposes to determine the relative radiosensitivity of atypical individuals and groups of individuals

  18. Ultramild protein-mediated click chemistry creates efficient oligonucleotide probes for targeting and detecting nucleic acids

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Madsen, Charlotte S.; Jensen, Knud J.

    2015-01-01

    Functionalized synthetic oligonucleotides are finding growing applications in research, clinical studies, and therapy. However, it is not easy to prepare them in a biocompatible and highly efficient manner. We report a new strategy to synthesize oligonucleotides with promising nucleic acid...... targeting and detection properties. We focus in particular on the pH sensitivity of these new probes and their high target specificity. For the first time, human copper(I)-binding chaperon Cox17 was applied to effectively catalyze click labeling of oligonucleotides. This was performed under ultramild...... conditions with fluorophore, peptide, and carbohydrate azide derivatives. In thermal denaturation studies, the modified probes showed specific binding to complementary DNA and RNA targets. Finally, we demonstrated the pH sensitivity of the new rhodamine-based fluorescent probes in vitro and rationalize our...

  19. The inhibition of PARP but not EGFR results in the radiosensitization of HPV/p16-positive HNSCC cell lines

    International Nuclear Information System (INIS)

    Güster, Julian David; Weissleder, Stephanie Valerie; Busch, Chia-Jung; Kriegs, Malte; Petersen, Cordula; Knecht, Rainald; Dikomey, Ekkehard; Rieckmann, Thorsten

    2014-01-01

    Background and purpose: HPV-negative and HPV-positive HNSCC comprise distinct tumor entities with different biological characteristics. Specific regimens for the comparably well curable HPV-positive entity that reduce side effects without compromising outcome have yet to be established. Therefore, we tested here whether the inhibition of EGFR or PARP may be used to specifically enhance the radiosensitivity of HPV-positive HNSCC cells. Materials and methods: Experiments were performed with five HPV/p16-positive HNSCC cell lines. Inhibitors used were cetuximab, olaparib and PF-00477736. The respective inhibition of EGFR, PARP and Chk1 was evaluated by Western blot, immunofluorescence analysis and assessment of cell cycle distribution. Cell survival was assessed by colony formation assay. Results: Inhibition of EGFR by cetuximab failed to radiosensitize any of the HPV-positive HNSCC cell lines tested. In contrast, PARP-inhibition resulted in a substantial radiosensitization of all strains, with the sensitization being further enhanced by the additional inhibition of Chk1. Conclusions: PARP-inhibition effectively radiosensitizes HPV-positive HNSCC cells and may therefore represent a viable alternative to chemotherapy possibly even allowing for a reduction in radiation dose. For the latter, PARP-inhibition may be combined with the inhibition of Chk1. In contrast, the inhibition of EGFR cannot be expected to radiosensitize HPV-positive HNSCC through the modulation of cellular radiosensitivity

  20. Change in radiosensitivity of sea-urchin eggs during early cleavage stages

    International Nuclear Information System (INIS)

    Nakamura, I.

    1977-01-01

    When sea-urchin eggs were irradiated with 137 Cs γ-rays, their radiosensitivity, expressed by the percentage which formed pluteus larvae, fluctuated during the early cleavage cycle. Split-dose irradiations were made both in the sensitive and resistant phases. For eggs in the sensitive phase, the effect of the first exposure of 500 rad was not diminished during the interval before the second exposure. Eggs irradiated in the resistant phase were only slightly damaged. Results implied that fluctuations in radiosensitivity of sea-urchin eggs were caused mainly by different degrees of non-repairable damage in each phase of cleavage rather than by different recovery abilities. (author)

  1. Radiosensitization, mutagenicity, and toxicity of Escherichia coli by several nitrofurans and nitroimidazoles. [X radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chessin, H.; McLaughlin, T.; Mroczkowski, Z.; Rupp, W.D.; Low, K.B.

    1978-08-01

    Representative nitrofurans (nitrofurantoin, nifuroxime, NF-167, NF-269) and nitroimidazoles (metronidazole, misonidazole) were found to sensitize hypoxic RecA/sup -/ Escherichia coli cells to X irradiation. These compounds were also mutagenic to E. coli using a UvrA/sup -/ strain as a test system, and toxic at high concentrations, using several strains differing in their repair capacity. However, the relative degrees of radiosensitization, mutagenicity, and toxicity, for the various compounds, were not simply correlated, suggesting that potential radiosensitizers with fewer side effects could be screened using bacteria.

  2. Influence of the size of garlic propagules on radiosensitivity of clones

    International Nuclear Information System (INIS)

    Perez Talavera, S.; Acevedo, A.M.; Perez, A.

    1989-01-01

    The influence of the size of garlic propagules selected to be irradiated on the results of radiosensitivity was studied so as to determine the useful radiation doses for improvement. This was done using radio inhibition of the plant height index as criteria and the mahalanobis distance stadigrapher calculated among defined groups for the behaviour of cloves in reference to six radiation doses. Significative differences were found among dose-effect curves obtained when using big cloves and small cloves, in five garlic clones, as well as different behaviours of clone radiosensitivity when it was investigated using the two proposed variants

  3. Change in radiosensitivity of seeds depending on their humidity data and methods of moistening

    International Nuclear Information System (INIS)

    Savin, B.N.; Labrada, A.R.

    1980-01-01

    Investigated was the change in readiosensitivity of maize seeds depending on their humidity, method of moistening and initial humidity before moistening. Maize seeds of Krasnodarskaya 303 TV breed were irradiated with γ-rays. It was shown that seeds of the same humidity had different radiosensitivity depending on the method of moistening. When moistening seeds in water, they had the highest radiostability at 20-24% humidity but when moistening them in exsiccator, this index was the highest at 15% humidity. Along with the method of moistening initial humidity before moistening also effected the radiosensitivity. The necessity to take this factor into account during presowing irradiation was noted

  4. Hypoxia, Radiosensitizers and high-LET radiation - Nimorazole fragmentation using mass spectrometry

    DEFF Research Database (Denmark)

    Feketeova, Linda; Bassler, Niels

    (s): Fragmentation experiments have been performed using a Finnigan- LTQ-FT mass spectrometer equipped with an electrospray ionisation source. Collision-induced dissociation (CID) and electron-induced dissociation (EID) have been carried out by mass selecting the desired ions and subjecting them to activation energy...... using mass spectrometry. Understanding the fragmentation of radiosensitizers is crucial in evaluating the radiosensitization potential and developing new and more effective drugs, which may improve TCP in hypoxic tumours when using ion beams such as carbon-12 along with LET-painting techniques. Method...

  5. Template-Directed Ligation of Peptides to Oligonucleotides

    Science.gov (United States)

    Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.

    1996-01-01

    Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.

  6. Whole brain radiotherapy with radiosensitizer for brain metastases

    Directory of Open Access Journals (Sweden)

    Viani Gustavo

    2009-01-01

    Full Text Available Abstract Purpose To study the efficacy of whole brain radiotherapy (WBRT with radiosensitizer in comparison with WBRT alone for patients with brain metastases in terms of overall survival, disease progression, response to treatment and adverse effects of treatment. Methods A meta-analysis of randomized controlled trials (RCT was performed in order to compare WBRT with radiosensitizer for brain metastases and WBRT alone. The MEDLINE, EMBASE, LILACS, and Cochrane Library databases, in addition to Trial registers, bibliographic databases, and recent issues of relevant journals were researched. Significant reports were reviewed by two reviewers independently. Results A total of 8 RCTs, yielding 2317 patients were analyzed. Pooled results from this 8 RCTs of WBRT with radiosensitizer have not shown a meaningful improvement on overall survival compared to WBRT alone OR = 1.03 (95% CI0.84–1.25, p = 0.77. Also, there was no difference in local brain tumor response OR = 0.8(95% CI 0.5 – 1.03 and brain tumor progression (OR = 1.11, 95% CI 0.9 – 1.3 when the two arms were compared. Conclusion Our data show that WBRT with the following radiosentizers (ionidamine, metronidazole, misonodazole, motexafin gadolinium, BUdr, efaproxiral, thalidomide, have not improved significatively the overall survival, local control and tumor response compared to WBRT alone for brain metastases. However, 2 of them, motexafin- gadolinium and efaproxiral have been shown in recent publications (lung and breast to have positive action in lung and breast carcinoma brain metastases in association with WBRT.

  7. Electron microscopic study on radiosensitivity of uterine cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, S; Shiozawa, K; Tsukamoto, T; Noguchi, H; Tsukahara, Y [Shinshu Univ., Matsumoto, Nagano (Japan). Faculty of Medicine

    1974-11-01

    The effects of 1000 R of tele-cobalt upon the changes in the primary lesions of uterine cervical cancer with time were studied with an electron microscope. In addition, twenty cases which were proven to have cancer tissues (10 cases of IInd stage of cancer, 8 cases of IIIrd stage of cancer and 2 cases of IVth stage of cancer) were studied. Four cases were favourably sensitive, 7 cases moderately sensitive and 9 cases unfavourably sensitive to radiation. In favourably radio-sensitive cases, the changes in the cancer cells first appeared in the nucleus. There were other changes such as local clumping of chromatin and, specifically, vacuolization of the nucleus. The changes in the endoplasmic reticulum appeared somewhat late. In addition, the disturbance of mitochondria and the decrease or disappearance of ribosomes were specifically due to radiation injury. From the point of view of changes with time, Golgi's apparatus was enlarged and the membrane of the endoplasmic reticulum was degenerated at the 1st day. At the 3rd day, vacuolization of the nucleus appeared, the nuclear corpuscles were increased, the nucleoplasm became thin, and mitochondria was enlarged and degenerated. At the 5th day, the nuclear membrane disappeared, the nucleus was destroyed, large vacuolization of the endoplasmic reticulum was seen, free ribosomes were decreased, and changes around the endoplasmic reticulum were observed. At the 7th day, collagen around the endoplasmic reticulum appeared. In favourably radiosensitive cases, individual tumor cells showed the same degeneration, which fairly corresponded to that evaluated by the histological observation. The disturbance of the cells was caused by radiation, so-called ''burning'' of the cells. Radiation protection of the cells against burning was considered in terms of their radiosensitivity.

  8. Radiosensitization in vitro and in vivo by 3-nitrotriazoles

    International Nuclear Information System (INIS)

    Shibamoto, Y.; Sakano, K.; Kimura, R.; Nishidai, T.; Nishimoto, S.; Ono, K.; Kagiya, T.; Abe, M.

    1986-01-01

    A series of 3-nitro-1,2,4-triazole derivatives bearing various types of side chain (R) at the N1-position (AK-2000 series) were synthesized and their radiosensitizing effect and toxicity in vitro and in vivo were investigated, in comparison with those of Misonidazole (MISO), SR-2508, and RSU-1069. Of the fifteen 3-nitrotriazoles tested, all had sensitizing effects in vitro on hypoxic V79 cells. Also, all but one had definite effects on solid EMT6/KU and SCCVII tumors in vivo. For many of the triazole compounds, the degree of radiosensitization in vitro and in vivo appeared identical. However, they were generally less efficient, both in vitro and in vivo, than the corresponding 2-nitroimidazoles, whereas their aerobic cytotoxicity and toxicity to mice (LD50/7) were comparable to those of the 2-nitroimidazoles. Considering the sensitizing effect and toxicity, AK-2123 (R = CH 2 CONHC 2 H 4 OCH 3 ) may be as useful as MISO, but none of the triazoles have been proved to be superior to SR-2508

  9. Plasmid DNA is released from nanosized acicular material surface by low molecular weight oligonucleotides: exogenous plasmid acquisition mechanism for penetration intermediates based on the Yoshida effect.

    Science.gov (United States)

    Yoshida, N; Ide, K

    2008-10-01

    When a colloidal solution consisting of nanosized acicular material and bacterial cells is stimulated with sliding friction at the interface between the hydrogel and interface-forming material where the frictional coefficient increases rapidly, the nanosized acicular material accompanying the bacterial cells forms a penetration intermediate. This effect is known as the Yoshida effect in honor of its discoverer. Through the Yoshida effect, a novel property in which penetration intermediates incorporate exogenous plasmid DNA has been identified. This report proposes a possible mechanism for exogenous plasmid acquisition by penetration intermediates in the Yoshida effect. Escherichia coli cells, pUC18, and chrysotile were used as recipient cells, plasmid DNA, and nanosized acicular material, respectively. Even when repeatedly washing the mixture consisting of pUC18 and chrysotile, transformation efficiency by pUC18 was stable. Accordingly, pUC18 adsorbed onto chrysotile was introduced into recipient E. coli cells. At saturation, the amount of pUC18 adsorbed onto chrysotile was 0.8-1.2 microg/mg. To investigate whether pUC18 adsorbed on chrysotile is replicated by polymerase, polymerase chain reaction (PCR) was carried out with the chrysotile. Amplification of the beta-lactamase gene coded in pUC18, which was adsorbed onto chrysotile, was strongly inhibited. This suggests that DNA adsorbed onto chrysotile is not replicated in vivo. When we searched for substances to release pUC18 adsorbed onto chrysotile, we found that a 300-bp single- or double-stranded segment of DNA releases pUC18 from chrysotile. Competitive adsorption onto chrysotile between double-stranded DNA and pUC18 was then examined through the Yoshida effect. The 310- and 603-bp double-stranded nucleotides caused 50% competitive inhibition at the same molar ratio with pUC18. Hence, the adsorbed region of pUC18 is about 300 bp in length. As the culture period for recipient cells increases, transformation

  10. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. I. Covalent immobilization of oligonucleotide probes onto the nylon].

    Science.gov (United States)

    Dmitrienko, E V; Pyshnaia, I A; Pyshnyĭ, D V

    2010-01-01

    The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.

  11. Genetic components for radiosensitivity. Gene expression in radiosensitive monocygotic twins. Final report

    International Nuclear Information System (INIS)

    Dikomey, Ekkehard

    2012-01-01

    The underlying hypothesis of this project was that the variation of individual radiosensitivity is determined by the different expression of single gens. This concept was tested using 60 monozygotic twin pairs, followed by an evaluation with 80 prostate cancer patients. Radiosensitivity was assessed for both G0- as well as G2-phase using chromosomal assays. G0- radiosensitivity is determined by lethal chromosomal aberrations and reflects the individual amount of cell killing, while G2-sensitivity is determined by chromatid breaks and is taken as an indicator of individual cancer risk. For both populations, G0- and G2-radiosensitivity are characterized by substantial variation with a CV of 11 and 14% or 27 and 21%, respectively. While the mean G0-sensitivity is the same for both populations, there is a slight difference for G2. The slightly higher value of G2-sensitivity found for prostate cancer patients might result from the higher age of this group. For both populations gene expression profiles were determined using the Affymetrix chip HG-U133+2.0. Overall gene expression was characterized by a huge variation covering more than four decades. However, for single genes, expression showed little variation with CV generally ranging only between 2 and 8%. Analysis of data using several different methods revealed that variation of both G0- as well as G2-radiosensitivity cannot be ascribed to the different expression of single genes. For twins, random forests can be used to identify 8 to 10 genes than are relevant either for G0- or G2-radiosensitivity. However, these genes cannot be confirmed by an evaluation with 80 prostate cancer patients. This finding clearly demonstrates that the hypothesis, due to which variation of individual radiosensitivity is caused by different expression of single genes, has to be rejected. It appears more likely that this parameter is determined by complex interactions of several genes in functional networks. (orig.)

  12. A comparative analysis of measles virus RNA by oligonucleotide fingerprinting

    International Nuclear Information System (INIS)

    Stephenson, J.R.; Meulen, V. ter

    1982-01-01

    Isolates from two cases of acute measles, one case of acute measles encephalitis and three patients with subacute sclerosing panencephalitis were compared. This comparison was based upon the electrophoretic analysis of T 1 oligonucleotides from single-stranded, full-length RNA isolated from cytoplasmic nucleocapsids. Although all viruses have oligonucleotides in common, each isolate generated a unique pattern of oligonucleotides. However, no group of oligonucleotides was observed which would allow differentiation between viruses isolated from acute infections and those isolated from CNS diseases; indicating that probably all measles viruses differ in their nucleotide sequence, regardless of origin. (Author)

  13. Lung cancer radiosensitization by CMNa in vitro and in vivo

    International Nuclear Information System (INIS)

    Zhang Xia; Ouyang Xienong; Ji Hongbing; Chen Zhonghua; Yang Rujun

    2005-01-01

    Objective: To probe into the radiosensitization effect of CMNa on lung tumor cell lines after γ-irradiation combined with γ-knife to treat patients suffering from lung cancer. Methods: 1. Cells of small cell lung cancer cell line NCI-H446 and non-small cell lung cancer cell line NCI-H596 irradiated with 60 Co γ-rays combined with or without CMNa were counted using trypan blue exclusion methods, and cell survival rate curves were depicted. 2. Patients suffering from lung cancer at different clinical stages were treated using γ-knife combined with or without CMNa, and the curative effect was evaluated 6 weeks after one cycle of treatment. Results: CMNa could significantly increase the sensitivity of lung cancer cell lines to γ-irradiation. Curative effect increased significantly by γ-knife treatment combined with CMNa i. e., the CR+PR rates for these two groups were 47.22% and 37.67% separately (P 0.05). Conclusion: CMNa could significantly increase the radiation sensitivity of lung cancer cell line cells in vitro and tumors in vivo, therefore, it could be used as a radiosensitization agent in clinical treatment of lung cancer. (authors)

  14. Effect on the K/sub m/ for radiosensitization at 00C of thiol depletion by diethylmaleate pretreatment: quantitative differences found using the radiation sensitizing agent misonidazole or oxygen

    International Nuclear Information System (INIS)

    Koch, C.J.; Stobbe, C.C.; Bump, E.A.

    1984-01-01

    Pretreatment of V79-WNRE cells with 150 μM diethylmaleate for 1 hr at 37 0 C caused a decrease in intracellular glutathione levels to approximately 10-15% of control levels. The cells could be washed free of diethylmaleate and held at 0 0 C for several hours without toxicity and with no increase in glutathione concentration, although the glutathione concentration rapidly increased to normal levels at higher temperatures. Glutathione depletion itself caused a small but consistent radiosensitization of hypoxic cells (dose enhancement ratio of 1.2). However glutathione depletion caused a profound change in the radiosensitizing efficiency of misonidazole, with a decrease in K/sub m/ of about sevenfold from 0.6 to 0.09 mM. In contrast, only a 2.5-fold decrease was found in the K/sub m/ for radiosensitization by oxygen with diethylmaleate pretreatment. These results suggest a fundamental problem with the conventional theory of radiosensitivity whereby one considers a first-order competition for reaction with target radicals between radical-fixing versus radical-repairing species. It also suggests difficulties in the interpretation of glutathione as the only endogenous protective species

  15. Characteristics of fluorinated nitroazoles as hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Shibamoto, Y.; Nishimoto, S.; Shimokawa, K.

    1989-01-01

    Types of 2-nitroimidazoles and 3-nitro-1,2,4-triazoles bearing one or two fluorine atoms on their side chains were synthesized to evaluate their physicochemical properties, radiosensitizing effects, and toxicity. The reduction potential of the compounds containing one fluorine was similar to that of misonidazole (MISO), whereas that of the difluorinated compounds was slightly higher. Both mono- and difluorinated compounds had an in vitro sensitizing activity comparable to or slightly higher than that of MISO. The fluorinated 3-nitrotriazoles were almost as efficient as the 2-nitroimidazoles with the same substituent. In vivo, some of the compounds were up to twice more efficient than MISO, whereas others were as efficient as MISO. Toxicity in terms of LD50/7 in mice was quite variable depending on the side-chain structure; the amide derivatives were less toxic than MISO, whereas the alcohol and ether derivatives were more toxic. In view of the radiosensitizing effect and toxicity in vivo, at least one compound, KU-2285 (a 2-nitroimidazole with an N1-substituent of: CH2CF2CONHCH2CH2OH) has been found to be as useful a hypoxic cell sensitizer as SR-2508

  16. Radiosensitization of nitroindazole derivatives on HeLa cells

    International Nuclear Information System (INIS)

    Wang Hao; Shi Peiji; Zhou Xiaoliang; Wang Yan; Tang Weisheng

    2010-01-01

    Objective: To investigate the cytotoxicity and radiosensitization of 5-nitroindazole-3-formyliminodiacetic acid on HeLa cells. Methods: HeLa cells in exponential growth phase were incubated in culture media with different doses and the survival rate was determined by MTT assay. The survival rate of cells receiving radiation combined with different doses of medicine was compared with that of the control.Results: The cytotoxicity of S-nitroindazole-3-formyliminodiacetic acid on HeLa cells was very low. The drug had hypoxia radiosensitizing effect on HeLa cells. At doses of 0, 6, 12, 24, 48 and 96 μg/ml under hypoxia, the survival rate were 0.91 , 0.87, 0.84, 0.81, 0.76 and 0.60, respectively. At the dosage of 48 and 96 μg/ml, the survival rate were 0.85 and 0.73 under oxygenous). Conclusions: 5-Nitroindazole-3-formyliminodiacetic acid has low cytotoxicity and rediosensitizing effect on HeLa cells. (authors)

  17. ZnFe2O4 nanoparticles for potential application in radiosensitization

    International Nuclear Information System (INIS)

    Hidayatullah, M; Nurhasanah, I; Budi, W S

    2016-01-01

    Radiosensitizer is a material that can increase the effects of radiation in radiotherapy application. Various materials with high effective atomic number have been developed as a radiosensitizer, such as metal, iron oxide and quantum dot. In this study, ZnFe 2 O 4 nanoparticles are included in iron oxide class were synthesized by precipitation method from the solution of zinc nitrate and ferrite nitrate and followed by calcination at 700° C for 3 hours. The XRD pattern shows that most of the observed peaks can be indexed to the cubic phase of ZnFe 2 O 4 with a lattice parameter of 8.424 Å. SEM image reveals that nanoparticles are the sphere-like shape with size in the range 84-107 nm. The ability of ZnFe 2 O 4 nanoparticles as radiosensitizer was examined by loading those nanoparticles into Escherichia coli cell culture which irradiated with photon energy of 6 MV at a dose of 2 Gy. ZnFe 2 O 4 nanoparticles showed ability to increase the absorbed dose by 0.5 to 1.0 cGy/g. In addition, the presence of 1 g/L ZnFe 2 O 4 nanoparticles resulted in an increase radiation effect by 6.3% higher than if exposed to radiation only. These results indicated that ZnFe 2 O 4 nanoparticles can be used as the radiosensitizer for increasing radiation effect in radiotherapy. (paper)

  18. Time-dependent, bidirectional, anti- and pro-spinal hyper-reflexia and muscle spasticity effect after chronic spinal glycine transporter 2 (GlyT2) oligonucleotide-induced downregulation.

    Science.gov (United States)

    Kamizato, Kota; Marsala, Silvia; Navarro, Michael; Kakinohana, Manabu; Platoshyn, Oleksandr; Yoshizumi, Tetsuya; Lukacova, Nadezda; Wancewicz, Ed; Powers, Berit; Mazur, Curt; Marsala, Martin

    2018-07-01

    The loss of local spinal glycine-ergic tone has been postulated as one of the mechanisms contributing to the development of spinal injury-induced spasticity. In our present study using a model of spinal transection-induced muscle spasticity, we characterize the effect of spinally-targeted GlyT2 downregulation once initiated at chronic stages after induction of spasticity in rats. In animals with identified hyper-reflexia, the anti-spasticity effect was studied after intrathecal treatment with: i) glycine, ii) GlyT2 inhibitor (ALX 1393), and iii) GlyT2 antisense oligonucleotide (GlyT2-ASO). Administration of glycine and GlyT2 inhibitor led to significant suppression of spasticity lasting for a minimum of 45-60 min. Treatment with GlyT2-ASO led to progressive suppression of muscle spasticity seen at 2-3 weeks after treatment. Over the subsequent 4-12 weeks, however, the gradual appearance of profound spinal hyper-reflexia was seen. This was presented as spontaneous or slight-tactile stimulus-evoked muscle oscillations in the hind limbs (but not in upper limbs) with individual hyper-reflexive episodes lasting between 3 and 5 min. Chronic hyper-reflexia induced by GlyT2-ASO treatment was effectively blocked by intrathecal glycine. Immunofluorescence staining and Q-PCR analysis of the lumbar spinal cord region showed a significant (>90%) decrease in GlyT2 mRNA and GlyT2 protein. These data demonstrate that spinal GlyT2 downregulation provides only a time-limited therapeutic benefit and that subsequent loss of glycine vesicular synthesis resulting from chronic GlyT2 downregulation near completely eliminates the tonic glycine-ergic activity and is functionally expressed as profound spinal hyper-reflexia. These characteristics also suggest that chronic spinal GlyT2 silencing may be associated with pro-nociceptive activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Gamma radiosensitivity of a common bean cultivar

    International Nuclear Information System (INIS)

    Colaco, W.; Martinez, C.R.

    1995-01-01

    A preliminary experiment was conducted to evaluate the radiosensitivity of common bean (Phaseolous vulgaris L.), cultivar to gamma rays from a 60 Co source. Sets of seeds (60 seed/sample) irradiated with 50, 100, 150, 200, and 250 Gy, were compared to a control without irradiation (0 Gy), under greenhouse conditions. The radiosensitivity was evaluated through seedling height reduction, determined at 15 days after emergence (DAE), and also through seedling survival, root length, and dry matter production of leaves, shoots and roots. Seedling height was significantly reduced for the treatments with 150 and 250 Gy, in relation to the control. The dose causing reduction of 50% seedling height was between 150 and 200 Gy. Survival rates corresponding to these doses, were, respectively, 85% and 60%. Root length and dry matter of leaves, shoots and roots, were inversely related to the doses. (author). 15 refs, 3 figs, 1 tab

  20. Radiosensitivity study of salmonella enteritidis in chickens

    International Nuclear Information System (INIS)

    Fernandez Gianotti, Tomas

    1997-01-01

    One of the applications of ionizing radiations in food is the inactivation of vegetative phatogenic bacteria (radicidation) such as Salmonella, Shigella, Campylobacter, Vibro and Listeria. These bacteria are associated with the diseases transmitted by food (ETA). Fresh and frozen farmyard fowls can be contaminated with pathogenic microorganisms, between them Salmonella. In Argentine, between years 1987-1990, Salmonella enteritidis was the main cause of salmonellosis. In food irradiation, with the aim of improving and assuring its hygienic quality, it is important to know the radiosensitivity of microorganisms to be inactivated. Inactivation of a determined microorganism shall depend, between others factors, of the species, strain, number and of the irradiation conditions (temperature, media, etc.). D 10 value is a very useful data in order to compare radiosensitivities between the microorganisms and the influence of different factors in their sensitivities. In this paper, it was determined the sensitivity to the gamma radiation of Salmonella enteritidis in fresh and frozen chickens

  1. Different effects of antisense RelA p65 and NF-κB1 p50 oligonucleotides on the nuclear factor-κB mediated expression of ICAM-1 in human coronary endothelial and smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Both Anton

    2001-08-01

    Full Text Available Abstract Background Activation of nuclear factor-κB (NF-κB is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-α (TNF-α induced and NF-κB mediated expression of intercellular adhesion molecule-1 (ICAM-1 can be inhibited by antisense RelA p65 and NF-κB1 p50 oligonucleotides (RelA p65 and NF-κB1 p50. Results Smooth muscle cells (SMC from human coronary plaque material (HCPSMC, plaque material of 52 patients, SMC from the human coronary media (HCMSMC, human endothelial cells (EC from umbilical veins (HUVEC, and human coronary EC (HCAEC were successfully isolated (HCPSMC, HUVEC, identified and cultured (HCPSMC, HCMSMC, HUVEC, HCAEC. 12 hrs prior to TNF-α stimulus (20 ng/mL, 6 hrs RelA p65 and NF-κB1 p50 (1, 2, 4, 10, 20, and 30 μM and controls were added for a period of 18 hrs. In HUVEC and HCAEC there was a dose dependent inhibition of ICAM-1 expression after adding of both RelA p65 and NF-κB1 p50. No inhibitory effect was seen after incubation of HCMSMC with RelA p65 and NF-κB1 p50. A moderate inhibition of ICAM-1 expression was found after simultaneous addition of RelA p65 and NF-κB1 p50 to HCPSMC, no inhibitory effect was detected after individual addition of RelA p65 and NF-κB1 p50. Conclusions The data point out that differences exist in the NF-κB mediated expression of ICAM-1 between EC and SMC. Experimental antisense strategies directed against RelA p65 and NF-κB1 p50 in early atherosclerosis and restenosis are promising in HCAEC but will be confronted with redundant pathways in HCMSMC and HCPSMC.

  2. Andrographolide radiosensitizes human esophageal cancer cell line ECA109 to radiation in vitro.

    Science.gov (United States)

    Wang, Z-M; Kang, Y-H; Yang, X; Wang, J-F; Zhang, Q; Yang, B-X; Zhao, K-L; Xu, L-P; Yang, L-P; Ma, J-X; Huang, G-H; Cai, J; Sun, X-C

    2016-01-01

    To explore the radiosensitivity of andrographolide on esophageal cancer cell line ECA109. The inhibition effects of andrographolide were measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. Clonogenic survival assay was used to evaluate the effects of andrographolide on the radiosensitivity of esophageal cancer cells. Immunofluorescence was employed to examine Bax expression. The changes in cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of NF-κb/Cleaved-Caspase3/Bax/Bcl-2 was measured using Western blot analysis. DNA damage was detected via γ-H2AX foci counting. With a clear dose and time effects, andrographolide was found to inhibit the proliferation of esophageal cell line ECA109. The results of the clonogenic survival assay show that andrographolide could markedly enhance radiosensitivity (P Andrographolide caused a dose-dependent increase in Cleaved-Caspase3/Bax protein expression and a decrease in Bcl-2/NF-κb expression. Apoptosis in andrographolide-treated ECA-109 increased significantly compared with the apoptosis in the simple drug and radiation combined with drug groups (P andrographolide combined with radiation group increased the number of DNA double chain breaks. Andrographolide can increase the radiosensitivity of esophageal cell line ECA109. This result may be associated with the decrease in the NF-κb level and the induced apoptosis of esophageal cancer cells. © 2014 International Society for Diseases of the Esophagus.

  3. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  4. Radiosensitivity of red flour beetle tribolium castaneum

    International Nuclear Information System (INIS)

    Sattar, A.; Khattak, S.; Hamed, M.

    1992-07-01

    In this report radiosensitivity of red beetle has been discussed. Red flour beetle is the most injurious pest causing great losses to stored grain. Radiation is one of the best tools of insect control. Different radiation doses (50 to 200 krads) were employed for different age groups from 1 to 60 days. It is concluded from these results that 200 krad radiation dose caused 100% mortality in red beetle in all age group. (A.B.)

  5. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    Science.gov (United States)

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  6. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    Energy Technology Data Exchange (ETDEWEB)

    Oike, Takahiro [Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma (Japan); Ogiwara, Hideaki [Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Torikai, Kohta [Gunma University Heavy Ion Medical Center, Maebashi, Gunma (Japan); Nakano, Takashi [Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma (Japan); Yokota, Jun [Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Kohno, Takashi, E-mail: tkkohno@ncc.go.jp [Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan)

    2012-11-01

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated {beta}-galactosidase (SA-{beta}-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that

  7. Protracted postnatal neurogenesis and radiosensitivity in the rabbit's dentate gyrus

    International Nuclear Information System (INIS)

    Gueneau, G.; Baille, V.; Dubos, M.; Court, L.

    1986-01-01

    In the hippocampal formation of a 3-month-old rabbit submitted to a 4.5 Gy gamma irradiation a cytologic study with light and electron microscopy allowed us to make clear the dentate gyrus particular radiosensitivity as soon as the first hours after irradiation. The pycnosis lesion observed in the subgranular zone has drawn our attention in particular. We apply ourselves to describe and precise the lesion and its evolution; thanks to an autoradiographic study, we have shown its link with late postnatal neurogenesis which goes on in this zone and at last we have used the subgranular cells 'radiosensitivity as a biological test allowing to compare the various rays' effects (gamma and neutron rays). In the brain of a one-month-old monkey submitted to a 4 Gy total irradiation the same pycnotic lesion is observed: 1) in the dentate gyrus's subgranular zone and 2) in the cerebellum's outer granular layer. These two postnatal proliferative zones remain particularly sensitive to ionizing radiations. (orig.)

  8. Impact of homologous recombination on individual cellular radiosensitivity

    International Nuclear Information System (INIS)

    Koch, Kerstin; Wrona, Agnieszka; Dikomey, Ekkehard; Borgmann, Kerstin

    2009-01-01

    Purpose: Individual radiosensitivity as measured with in vitro irradiated lymphocytes using metaphase analysis can predict the risk of normal tissue effects after radiotherapy. This parameter is considered to be primarily determined by the cellular repair capacity of DNA double-strand breaks (DSBs). It is now tested to which extent this capacity also depends on homologous recombination (HR), which is a pathway available when cells are in S/G2 phase. Methods: Experiments were performed with CHO K1 cells, in which HR was suppressed via knock-down of RAD51 using RNA interference (RNAi). RAD51 was measured via western and foci formation, cell survival by colony forming, DSBs by γH2AX foci formation, and chromosomal damage using PCC, G0 or G2 assay. Results: In quiescent G1 cells DSB repair is completed 6 h after irradiation. But there is still a substantial fraction of non-repaired DSBs. Most of these DSBs are repaired when G1 cells are stimulated into cell cycle. Suppression of HR by down-regulation of RAD51 did not affect this repair. In contrast, repair was inhibited when cells were irradiated in late S/G2. In line with these data down-regulation of HR did affect survival of cells irradiated in late S/G2, but not in G1. Conclusions: Individual radiosensitivity as measured for G0/1 cells using metaphase analysis does not depend on homologous recombination

  9. Cellular uptake and radiosensitization of SR-2508 loaded PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jin Cheng [Fourth Military Medical University, Department of Radiation Medicine (China); Bai Ling [Xi' an Gaoxin Hospital, Department of Clinical Laboratories (China); Wu Hong [Fourth Military Medical University, Department of Pharmacy (China); Teng Zenghui [Fourth Military Medical University, Department of Pharmacology (China); Guo Guozhen, E-mail: guozhengg@tom.co [Fourth Military Medical University, Department of Radiation Medicine (China); Chen Jingyuan, E-mail: jy_chen@fmmu.edu.c [Fourth Military Medical University, Department of Occupational and Environmental Health (China)

    2008-08-15

    SR-2508 (etanidazole), a hypoxic radiosensitizer, has potential applications in radiotherapy. The poly(d,l-lactide-co-glycolide)(PLGA) nanoparticles containing SR-2508 were prepared by w/o/w emulsification-solvent evaporation method. The physicochemical characteristics of the nanoparticles (i.e. encapsulation efficiency, particle size distribution, morphology, in vitro release) were studied. The cellular uptake of the nanoparticles for the two human tumor cell lines: human breast carcinoma cells (MCF-7) and human carcinoma cervices cells (HeLa), was evaluated by fluorescence microscopy and transmission electronic microscopy. Cell viability was measured by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical in shape with size between 90 nm and 190 nm. The encapsulation efficiency was 20.06%. The drug release pattern exhibited an initial burst followed by a plateau for over 24 h. The cellular uptake of nanoparticles was observed. Co-culture of MCF-7 and HeLa cells with SR-2508 loaded nanoparticles showed that released SR-2508 retained its bioactivity and effectively sensitized two hypoxic tumor cell lines to radiation. The radiosensitization of SR-2508 loaded nanoparticles was more significant than that of free drug.

  10. Radiosensitivity of peripheral blood lymphocytes in autoimmune disease

    Energy Technology Data Exchange (ETDEWEB)

    Harris, G [Kennedy Inst. of Rheumatology, London (UK). Div. of Experimental Pathology; Cramp, W A; Edwards, J C; George, A M; Sabovljev, S A; Hart, L; Hughes, G R.V. [Hammersmith Hospital, London (UK); Denman, A M [Northwich Park Hospital, Harrow (UK); Yatvin, M B [Wisconsin Clinical Cancer Center, Madison (USA)

    1985-06-01

    The proliferation of peripheral blood lymphocytes, cultured with Con A, can be inhibited by ionizing radiation. Lymphocytes from patients with conditions associated with autoimmunity, such as rheumatoid arthritis, systemic lupus erythematosus and polymyositis, are more radiosensitive than those from healthy volunteers or patients with conditions not associated with autoimmunity. Nuclear material isolated from the lymphocytes of patients with autoimmune diseases is, on average, lighter in density than the nuclear material from most healthy controls. This difference in density is not related to increased sensitivity to ionizing radiation but the degree of post-irradiation change in density (lightening) is proportional to the initial density, i.e. more dense nuclear material always shows a greater upward shift after radiation. The recovery of pre-irradiation density of nuclear material, 1 h after radiation exposure, taken as an indication of DNA repair, correlates with the radiosensitivity of lymphocyte proliferation (Con A response); failure to return to pre-irradiation density being associated with increased sensitivity of proliferative response. These results require extension but, taken with previously reported studied of the effects of DNA methylating agents, support the idea that DNA damage and its defective repair could be important in the aetio-pathogenesis of autoimmune disease.

  11. Cellular uptake and radiosensitization of SR-2508 loaded PLGA nanoparticles

    International Nuclear Information System (INIS)

    Jin Cheng; Bai Ling; Wu Hong; Teng Zenghui; Guo Guozhen; Chen Jingyuan

    2008-01-01

    SR-2508 (etanidazole), a hypoxic radiosensitizer, has potential applications in radiotherapy. The poly(d,l-lactide-co-glycolide)(PLGA) nanoparticles containing SR-2508 were prepared by w/o/w emulsification-solvent evaporation method. The physicochemical characteristics of the nanoparticles (i.e. encapsulation efficiency, particle size distribution, morphology, in vitro release) were studied. The cellular uptake of the nanoparticles for the two human tumor cell lines: human breast carcinoma cells (MCF-7) and human carcinoma cervices cells (HeLa), was evaluated by fluorescence microscopy and transmission electronic microscopy. Cell viability was measured by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical in shape with size between 90 nm and 190 nm. The encapsulation efficiency was 20.06%. The drug release pattern exhibited an initial burst followed by a plateau for over 24 h. The cellular uptake of nanoparticles was observed. Co-culture of MCF-7 and HeLa cells with SR-2508 loaded nanoparticles showed that released SR-2508 retained its bioactivity and effectively sensitized two hypoxic tumor cell lines to radiation. The radiosensitization of SR-2508 loaded nanoparticles was more significant than that of free drug.

  12. Catecholamines of the body tissues and radiosensitivity of rodents

    Energy Technology Data Exchange (ETDEWEB)

    Grayevskaya, V M; Zolotariova, N N [AN SSSR, Moscow. Inst. Morfologii Zhivotnykh

    1975-01-01

    Various species of rodents are distinguished by their radiosensitivity (increasing): bank vole < Wistar rat < wild mouse < CC/sub 57/Br mouse < golden hamster < BALB mouse < guinea pig. There is a positive correlation between radiosensitivity of these species and catecholamines content in the adrenals, urea and blood; and negative correlation between radiosensitivity and adrenaline and noradrenaline concentrations in liver and spleen cells. Presumable causes of this correlation, and the possibility of application of the index under study for predicting the organism radiosensitivity and forecasting the outcome of radiation damage are discussed.

  13. Catecholamines of the body tissues and radiosensitivity of rodents

    International Nuclear Information System (INIS)

    Grayevskaya, V.M.; Zolotariova, N.N.

    1975-01-01

    Various species of rodents are distinguished by their radiosensitivity (increasing): bank vole 57 Br mouse < golden hamster < BALB mouse < guinea pig. There is a positive correlation between radiosensitivity of these species and catecholamines content in the adrenals, urea and blood; and negative correlation between radiosensitivity and adrenaline and noradrenaline concentrations in liver and spleen cells. Presumable causes of this correlation, and the possibility of application of the index under study for predicting the organism radiosensitivity and forecasting the outcome of radiation damage are discussed

  14. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Patwardhan, R.S.; Pal, Debojyoti [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sharma, Deepak [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Sandur, Santosh K., E-mail: sskumar@barc.gov.in [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2016-09-09

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratio and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. - Highlights: • DIMC enhances radiosensitivity of cancer cells by inducing cell death. • DIMC with radiation disrupted the cellular redox and targeted cancer stem cells. • DNA repair is hampered when cells are treated with DIMC. • DIMC inhibited thioredoxin reductase in cancer cells.

  15. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase

    International Nuclear Information System (INIS)

    Jayakumar, Sundarraj; Patwardhan, R.S.; Pal, Debojyoti; Sharma, Deepak; Sandur, Santosh K.

    2016-01-01

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratio and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. - Highlights: • DIMC enhances radiosensitivity of cancer cells by inducing cell death. • DIMC with radiation disrupted the cellular redox and targeted cancer stem cells. • DNA repair is hampered when cells are treated with DIMC. • DIMC inhibited thioredoxin reductase in cancer cells.

  16. Radiosensitivity of grapevines. Empirical modelling of the radiosensitivity of some clones to x-ray irradiation. Pt. 1

    International Nuclear Information System (INIS)

    Koeroesi, F.; Jezierska-Szabo, E.

    1999-01-01

    Empirical and formal (Poisson) models were utilized, applying experimental growth data to characterize the radiosensitivity of six grapevine clones to X-ray irradiation. According to the radiosensitivity constants (k), target numbers (n) and volumes, GR 37 doses and energy deposition, the following radiosensitivity order has been found for various vine brands: Chardonnay clone type < Harslevelue K. 9 < Koevidinka K. 8 < Muscat Ottonel clone type < Irsai Oliver K. 11 < Cabernet Sauvignon E. 153. The model can be expanded to describe the radiosensitivity of other plant species and varieties, and also the efficiency of various radioprotecting agents and conditions. (author)

  17. Triolimus: A Multi-Drug Loaded Polymeric Micelle Containing Paclitaxel, 17-AAG, and Rapamycin as a Novel Radiosensitizer.

    Science.gov (United States)

    Tomoda, Keishiro; Tam, Yu Tong; Cho, Hyunah; Buehler, Darya; Kozak, Kevin R; Kwon, Glen S

    2017-01-01

    Triolimus is a multi-drug loaded polymeric micelle containing paclitaxel (PTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), and rapamycin (RAP). This study examines the radiosensitizing effect of Triolimus in vitro and in vivo. Radiosensitizing effects of Triolimus on A549 cells are dose dependent and at 2 × 10 -9 m, Triolimus shows significant radiosensitization even at low radiation doses (2 Gy). By sensitivity enhancement ratio, PTX alone, dual drug combinations, and Triolimus treatment at 2 × 10 -9 m have radiosensitizing effects with potency as follows: PTX alone (PTX) > PTX and RAP (P/R) > Triolimus (TRIO) > PTX and 17-AAG (P/17) >17-AAG and RAP (17/R). In vivo, fractionated radiation of 15 Gy preceded by infusion of PTX alone, dual drug combinations, or an intermediate dose of Triolimus (Int. TRIO: PTX/17-AAG/RAP at 15/15/7.5 mg kg -1 ) strongly inhibits A549 tumor growth. Notably, pretreatment with high dose of Triolimus (High TRIO: PTX/17-AAG/RAP at 60/60/30 mg kg -1 ) before the fractionated radiation leads to tumor control for up to 24 weeks. An enhanced radiosensitizing effect is observed without an increase in acute toxicity compared to PTX alone or radiation alone. These results suggest that further investigations of Triolimus in combination with radiation therapy are merited. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Short G-rich oligonucleotides as a potential therapeutic for Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Parekh-Olmedo Hetal

    2006-10-01

    Full Text Available Abstract Background Huntington's Disease (HD is an inherited autosomal dominant genetic disorder in which neuronal tissue degenerates. The pathogenesis of the disease appears to center on the development of protein aggregates that arise initially from the misfolding of the mutant HD protein. Mutant huntingtin (Htt is produced by HD genes that contain an increased number of glutamine codons within the first exon and this expansion leads to the production of a protein that misfolds. Recent studies suggest that mutant Htt can nucleate protein aggregation and interfere with a multitude of normal cellular functions. Results As such, efforts to find a therapy for HD have focused on agents that disrupt or block the mutant Htt aggregation pathway. Here, we report that short guanosine monotonic oligonucleotides capable of adopting a G-quartet structure, are effective inhibitors of aggregation. By utilizing a biochemical/immunoblotting assay as an initial screen, we identified a 20-mer, all G-oligonucleotide (HDG as an active molecule. Subsequent testing in a cell-based assay revealed that HDG was an effective inhibitor of aggregation of a fusion protein, comprised of a mutant Htt fragment and green fluorescent protein (eGFP. Taken together, our results suggest that a monotonic G-oligonucleotide, capable of adopting a G-quartet conformation is an effective inhibitor of aggregation. This oligonucleotide can also enable cell survival in PC12 cells overexpressing a mutant Htt fragment fusion gene. Conclusion Single-stranded DNA oligonucleotides capable of forming stable G-quartets can inhibit aggregation of the mutant Htt fragment protein. This activity maybe an important part of the pathogenecity of Huntington's Disease. Our results reveal a new class of agents that could be developed as a therapeutic approach for Huntington's Disease.

  19. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    Directory of Open Access Journals (Sweden)

    M Emmy M Dolman

    Full Text Available Tumor cells might resist therapy with ionizing radiation (IR by non-homologous end-joining (NHEJ of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK. The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  20. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    Science.gov (United States)

    Dolman, M Emmy M; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N; Molenaar, Jan J

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  1. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity

    International Nuclear Information System (INIS)

    Kim, Hak Jae; Kim, Jin Ho; Chie, Eui Kyu; Da Young, Park; Kim, In Ah; Kim, Il Han

    2012-01-01

    Histone modifications and DNA methylation are two major factors in epigenetic phenomenon. Unlike the histone deacetylase inhibitors, which are known to exert radiosensitizing effects, there have only been a few studies thus far concerning the role of DNA methyltransferase (DNMT) inhibitors as radiosensitizers. The principal objective of this study was to evaluate the effects of DNMT inhibitors on the radiosensitivity of human cancer cell lines, and to elucidate the mechanisms relevant to that process. A549 (lung cancer) and U373MG (glioblastoma) cells were exposed to radiation with or without six DNMT inhibitors (5-azacytidine, 5-aza-2'-deoxycytidine, zebularine, hydralazine, epigallocatechin gallate, and psammaplin A) for 18 hours prior to radiation, after which cell survival was evaluated via clonogenic assays. Cell cycle and apoptosis were analyzed via flow cytometry. Expressions of DNMT1, 3A/3B, and cleaved caspase-3 were detected via Western blotting. Expression of γH2AX, a marker of radiation-induced DNA double-strand break, was examined by immunocytochemistry. Pretreatment with psammaplin A, 5-aza-2'-deoxycytidine, and zebularine radiosensitized both A549 and U373MG cells. Pretreatment with psammaplin A increased the sub-G1 fraction of A549 cells, as compared to cells exposed to radiation alone. Prolongation of γH2AX expression was observed in the cells treated with DNMT inhibitors prior to radiation as compared with those treated by radiation alone. Psammaplin A, 5-aza-2'-deoxycytidine, and zebularine induce radiosensitivity in both A549 and U373MG cell lines, and suggest that this effect might be associated with the inhibition of DNA repair

  2. Chemical Ligation Reactions of Oligonucleotides for Biological and Medicinal Applications.

    Science.gov (United States)

    Abe, Hiroshi; Kimura, Yasuaki

    2018-01-01

    Chemical ligation of oligonucleotides (ONs) is the key reaction for various ON-based technologies. We have tried to solve the problems of RNA interference (RNAi) technology by applying ON chemical ligation to RNAi. We designed a new RNAi system, called intracellular buildup RNAi (IBR-RNAi), where the RNA fragments are built up into active small-interference RNA (siRNA) in cells through a chemical ligation reaction. Using the phosphorothioate and iodoacetyl groups as reactive functional groups for the ligation, we achieved RNAi effects without inducing immune responses. Additionally, we developed a new chemical ligation for IBR-RNAi, which affords a more native-like structure in the ligated product. The new ligation method should be useful not only for IBR-RNAi but also for the chemical synthesis of biofunctional ONs.

  3. Electrical manipulation of oligonucleotides grafted to charged surfaces.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard; Tornow, Marc

    2006-09-21

    The electrical manipulation of short DNA molecules on surfaces offers novel functionalities with fascinating possibilities in the field of bio-interfaces. Here we present systematic investigations of the electrical interactions which govern the structure of oligonucleotides on charged gold surfaces. Successively, we address influences of the applied field strength, the role of DC electrode potentials, in particular for polycrystalline surfaces, as well as screening effects of the surrounding electrolyte solution. Data obtained for single and double stranded DNA exhibit differences which can be attributed to the dissimilar flexibility of the different molecular conformations. A comparison of the experimental results with a basic model shows how the alignment of the molecules adjusts according to a balance between electrically induced ordering and stochastic thermal motions. The presented conclusions are expected to be of general relevance for the behaviour of polyelectrolytes exposed to localized electric fields at interfaces.

  4. Targeting Mcl-1 for Radiosensitization of Pancreatic Cancers

    Directory of Open Access Journals (Sweden)

    Dongping Wei

    2015-02-01

    Full Text Available In order to identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer, we previously conducted an RNAi library screen of 8,800 genes. We identified Mcl-1 (myeloid cell leukemia-1, an anti-apoptotic member of the Bcl-2 family, as a target for sensitizing pancreatic cancer cells to chemoradiation. In the present study we investigated Mcl-1 inhibition by either genetic or pharmacological approaches as a radiosensitizing strategy in pancreatic cancer cells. Mcl-1 depletion by siRNA produced significant radiosensitization in BxPC-3 and Panc-1 cells in association with Caspase-3 activation and PARP cleavage, but only minimal radiosensitization in MiaPaCa-2 cells. We next tested the ability of the recently identified, selective, small molecule inhibitor of Mcl-1, UMI77, to radiosensitize in pancreatic cancer cells. UMI77 caused dissociation of Mcl-1 from the pro-apoptotic protein Bak and produced significant radiosensitization in BxPC-3 and Panc-1 cells, but minimal radiosensitization in MiaPaCa-2 cells. Radiosensitization by UMI77 was associated with Caspase-3 activation and PARP cleavage. Importantly, UMI77 did not radiosensitize normal small intestinal cells. In contrast, ABT-737, an established inhibitor of Bcl-2, Bcl-XL, and Bcl-w, failed to radiosensitize pancreatic cancer cells suggesting the unique importance of Mcl-1 relative to other Bcl-2 family members to radiation survival in pancreatic cancer cells. Taken together, these results validate Mcl-1 as a target for radiosensitization of pancreatic cancer cells and demonstrate the ability of small molecules which bind the canonical BH3 groove of Mcl-1, causing displacement of Mcl-1 from Bak, to selectively radiosensitize pancreatic cancer cells.

  5. Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism.

    Science.gov (United States)

    Yu, Li; Sun, Yifan; Li, Jingjing; Wang, Yan; Zhu, Yuxing; Shi, Yong; Fan, Xiaojun; Zhou, Jianda; Bao, Ying; Xiao, Jie; Cao, Ke; Cao, Peiguo

    2017-08-15

    Radiotherapy has been used increasingly to treat primary hepatocellular carcinoma. Clinically, the main cause of radiotherapy failure is cellular radioresistance, conferred via glycolytic metabolism. Our previous study demonstrated that Girdin is upregulated in primary hepatocellular carcinoma and promotes the invasion and metastasis of tumor cells. However, whether Girdin underlies the radio-sensitivity of hepatocellular carcinoma remains unclear. A short hairpin RNA (shRNA) was used to silence CCDC88A (encoding Girdin), and real-time PCR was performed to determine CCDC88A mRNA expression. Then, cell proliferation, colony formation, flow cytometric, scratch, and transwell assays were to examine the influence of Girdin silencing on cellular radiosensitivity. Glycolysis assays were conducted to exam cell glycolysis process. Western blotting was performed to explore the signaling pathway downstream of Girdin. Finally, animal experiments were performed to demonstrate the effect of CCDC88A silencing on the radiosensitivity of hepatoma in vivo. shRNA-induced Girdin silencing suppressed glycolysis and enhanced the radio-sensitivity of hepatic cell lines, HepG2 and Huh-7. Furthermore, silencing of Girdin inhibited the PI3K/AKT/HIF-1α signaling pathway, which is a central regulator of glycolysis. Girdin can regulate glycolysis in hepatocellular carcinoma cells through the PI3K/AKT/HIF-1α signaling pathway, which decreases the sensitivity of tumor cells to radiotherapy.

  6. Influence of some methodological factors on the radiosensitivity of the mouse zygote

    International Nuclear Information System (INIS)

    Jacquet, P.; Grinfeld, S.

    1990-01-01

    The experiments reported here were undertaken to investigate the influence of some methodological factors on the radiosensitivity of the mouse zygote. The following factors were studied: (1) the use of natural or hormone-stimulated ovulation; (2) the procedure followed for fertilization:mating overnight, or only during a short period in the morning after all oocytes have been ovulated, in vitro fertilization; (3) the type of irradiation, i.e., in vivo or in vitro irradiation. The radiosensitivity of the zygotes was estimated under the different experimental conditions by measuring the ability of the irradiated embryos to cleave and to develop further to the blastocyst stage. Our results suggest that the protocols used for mating and fertilization probably have a greater influence on embryonic survival following irradiation than the use of gonadotropins to stimulate ovulation. The highest degree of synchrony in the development of the embryos is achieved by restricting mating to a short period or by using in vitro fertilization. The very low LD50s obtained under such synchronous conditions confirm the high radiosensitivity of the mouse zygote at the early pronuclear stage. Comparison between the effects of in vivo and in vitro irradiation does not indicate a greater radiosensitivity of the embryo irradiated in vitro in comparison to the embryo irradiated in vivo

  7. Radiosensitizing and cytotoxic properties of DNA targeted phenanthridine-linked nitroheterocycles of varying electron affinities

    International Nuclear Information System (INIS)

    Cowan, D.S.M.; Rauth, A.M.; Toronto Univ., ON; Matejovic, J.F.; McClelland, R.A.; Wardman, P.

    1994-01-01

    2-Nitroimidazoles targeted to DNA via intercalation have previously been shown to be as much as 10-100 times more efficient on a molar basis than the untargeted nitroimidazole, misonidazole, in vitro as hypoxic cell selective radiosensitizers and cytotoxins based on extracellular concentrations. In this work the effect of varying the nitroaromatic group has been examined through the preparation of a DNA-targeted 4-nitroimidazole (4-MeNLP-3), a 5-nitroimidazole (5-NLP-3) and a 5-nitrofuran (FEP-2) linked to phenanthridinium ions. With the previously synthesized 2-nitroimidazoles, this provides a series of DNA targeted compounds of varying electron affinity as well as structure at the nitroaromatic position. The present series of compounds was tested for partition coefficient, DNA binding ability, reduction potentials and in vitro radiosensitizing and cytotoxic abilities. The results obtained indicate that targeting such compounds to DNA diminishes the dependency of radiosensitizing and cytotoxic properties on reduction potential and may allow significant uncoupling of toxicity from radiosensitizing ability. (author)

  8. Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-κB signaling pathway.

    Science.gov (United States)

    Li, Gang; Wang, Ziming; Chong, Tie; Yang, Jie; Li, Hongliang; Chen, Haiwen

    2017-10-01

    The radiation resistance of renal cell carcinoma (RCC) remains the primary obstacle to improve patient survival. This study aimed to investigate the effects of curcumin on the radiosensitivity of RCC cells. Human RCC cell (ACHN) was exposed to irradiation (IR) and/or curcumin treatment. Cell viability, DNA repair, cell cycle, and apoptosis, were evaluated by MTT, immunofluoresence staining and flow cytometry. Moreover, ACHN cells were xenografted into nude mice and subjected to IR and/or curcumin treatment. The expression of NF-κB signaling related proteins in ACHN cells and xenografts was detected by western blot analysis. The results showed that curcumin significantly increased radiosensitivity of ACHN cells by inhibiting the cell proliferation and DNA damage repair, causing cell cycle arrest at G2/M phase, inducing apoptosis in vitro, and suppressing the growth of xenografts in vivo. In addition, curcumin enhanced radiosensitivity was through markedly inhibiting IR-induced NF-κB signaling by modulating the related protein expressions including NF-κBP65, I-κB, VEGF, COX2, and Bcl-2 in ACHN cells, which was further strengthened by NF-κB inhibitor PDTC treatment. Thus, curcumin may confer radiosensitivity on RCC via inhibition of NF-κB activation and its downstream regulars, suggesting the potential application of curcumin as an adjuvant in radiotherapy of RCC. Copyright © 2017. Published by Elsevier Masson SAS.

  9. Preferential radiosensitization of G1 checkpoint--deficient cells by methylxanthines

    International Nuclear Information System (INIS)

    Russell, Kenneth J.; Wiens, Linda W.; Demers, G. William; Galloway, Denise A.; Le, Tiep; Rice, Glenn C.; Bianco, James A.; Singer, Jack W.; Groudine, Mark

    1996-01-01

    Purpose: To develop a checkpoint-based strategy for preferential radiosensitization of human tumors with deficient and/or mutant p53. Methods and Materials: A549 human lung adenocarcinoma cell lines differing in their expression of the p53 tumor suppressor gene were produced by transduction with the E6 oncogene from human papilloma virus type 16. The cells expressing E6 (E6+) lack a G1 arrest in response to ionizing radiation, are deficient in p53 and p21 expression, and exhibit a fivefold greater clonogenic survival following 10 Gy radiation. Results: Postirradiation incubation with millimolar concentrations of the methylxanthine pentoxifylline (PTX) results in preferential radiosensitization of the E6+ cells compared to the LXSN+ vector transduced controls. There is a threefold sensitization of the LXSN+ cells and a 15-fold sensitization of the E6+ cells, which results in equal clonogenic survival of the two lines. Flow cytometry reveals PTX abrogation of the radiation induced G2 arrest for both cell lines. PTX also prolongs G1 transit for both cell lines. Preliminary results are presented using a novel methylxanthine, lisofylline (LSF), which has similar cell cycle effects on G1 and G2 and achieves differential radiosensitization at micromolar concentrations that are sustainable in humans. Conclusions: This checkpoint-based strategy is a promising approach for achieving preferential radiosensitization of p53- tumors relative to p53+ normal tissues

  10. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  11. An oral oligonucleotide delivery system based on a thiolated polymer: Development and in vitro evaluation.

    Science.gov (United States)

    Martien, Ronny; Hoyer, Herbert; Perera, Glen; Schnürch, Andreas Bernkop

    2011-08-01

    The purpose of this study was to develop and evaluate an oral oligonucleotide delivery system based on a thiolated polymer/reduced glutathione (GSH) system providing a protective effect toward nucleases and permeation enhancement. A polycarbophil-cysteine conjugate (PCP-Cys) was synthesized. Enzymatic degradation of a model oligonucleotide by DNase I and within freshly collected intestinal fluid was investigated in the absence and presence of PCP-Cys. Permeation studies with PCP-Cys/GSH versus control were performed in vitro on Caco-2 cell monolayers and ex vivo on rat intestinal mucosa. PCP-Cys displayed 223 ± 13.8 μmol thiol groups per gram polymer. After 4h, 61% of the free oligonucleotides were degraded by DNase I and 80% within intestinal fluid. In contrast, less than 41% (DNase I) and 60% (intestinal fluid) were degraded in the presence of 0.02% (m/v) PCP-Cys. Permeation studies revealed an 8-fold (Caco-2) and 10-fold (intestinal mucosa) increase in apparent permeability compared to buffer control. Hence, this PCP-Cys/GSH system might be a promising tool for the oral administration of oligonucleotides as it allows a significant protection toward degrading enzymes and facilitates their transport across intestinal membranes. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Photodynamic antisense regulation of mRNA having a point mutation with psoralen-conjugated oligonucleotide.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kobori, Akio; Murakami, Akira

    2008-01-01

    Nucleic acid-based drugs, such as antisense oligonucleotide, ribozyme, and small interfering RNA, are specific compounds that inhibit gene expression at the post-transcriptional level. To develop more effective nucleic acid-based drugs, we focused on photo-reactive antisense oligonucleotides. We have optimized the structure of psoralen-conjugated oligonucleotide to improve their sequence selectivity and photo-crosslinking efficiency. Previously, we reported that photo reactive oligonucleotides containing 2'-O-psoralenyl-methoxyethyl adenosine (2'-Ps-eom) showed drastic photo-reactivity with a strictly sequence specific manner in vitro. In this report, we evaluated the binding ability toward intracellular target mRNA. The 2'-Ps-eom selectively photo-cross-linked to the target mRNA extracted from cells. The 2'-Ps-eom also cross-linked to target mRNA in cells. Furthermore, 2'-Ps-eom did not cross-link to mRNA having a mismatch base. These results suggest that 2'-Ps-eom is a powerful antisense molecule to inhibit the expression of mRNA having a point mutation.

  13. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan Ekiz, Melis; Gunay, Gokhan; Tekinay, Turgay; Tekinay, Ayse B; Guler, Mustafa O

    2016-05-11

    Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.

  14. Protective effect of c-fos antisense oligonucleotides on brain damage induced by glutamate%c-fos反义寡核苷酸对谷氨酸神经毒性鼠脑损伤的防护

    Institute of Scientific and Technical Information of China (English)

    岳少杰; 陶永光; 罗自强; 冯德云; 伍赶球

    2001-01-01

    Objective To investigate the relation between glutamate neurotoxicity and c-fos gene expression. Methods c-fos antisense oligonucleotides (AS ODN) was injected into the right lateral ventricles of 9 SD rats to block the c-fos gene expression in brain tissue. c-fos sense oligonucleotides (S ODN)was used a control. The numbers and morphology of neurons in both cerebral cortex and hippocampal CA1 were detected by MIAS-300 image analysing instrument. c-fos gene expression in brain was observed by immunohistochemical method. The content of water and electrolytes in the brain tissue and Ca2+ in the synapse were measured. Results The c-fos AS ODN blocked the c-fos gene expression and reduced the content of both water and sodium in brain tissue and Ca2+ in symptosome, thus alleviating the morphological damage in neuron. S ODN did not have such effect. Conclusion c-fos gene expression plays an important role in mediating the effect of glutamate neurotoxicity. Blocking the c-fos gene expression could antagonize glutamate neurotoxicity.%目的 探讨c-fos基因的表达在谷氨酸神经毒性中的作用。方法 在9只SD大鼠侧脑室注射c-fos反义寡核苷酸以阻断脑组织c-fos基因的表达,并用c-fos正义寡核苷酸为对照。观察脑组织中水、电解质含量和突触体内Ca2+浓度的变化,并采用细胞形态计量分析及免疫组织化学方法,观察大脑皮质、海马CA1区神经细胞数目、形态的变化及c-fos基因的表达。结果 c-fos反义寡核苷酸可有效地阻断脑组织c-fos基因的表达,降低脑组织c-fos阳性细胞率(9.4%±2.8%和74%±3%,P<0.01),抑制谷氨酸神经毒性所致的脑组织含水量(79.9%±0.4%和82.3%±0.8%,P<0.01)、钠(5.05 mg/g干重±0.39 mg/g干重和5.98 mg/g干重±0.50 mg/g干重,P<0.01)及细胞内Ca2+(176 nmol/L±35 nmol/L和344.12±50.13,P<0.01)含量的增加,抑制谷氨酸所致大脑皮质(157±10和145±7,P<0

  15. Efficacy of radiosensitizing doped titania nanoparticles under hypoxia and preparation of an embolic microparticle

    Directory of Open Access Journals (Sweden)

    Morrison RA

    2017-05-01

    Full Text Available Rachel A Morrison,1,* Malgorzata J Rybak-Smith,1,* James M Thompson,2 Bénédicte Thiebaut,3 Mark A Hill,2 Helen E Townley1,4 1Department of Engineering Science, 2Gray Laboratories, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, 3Johnson Matthey, Technology Centre, Reading, Berkshire, 4Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford, UK *These authors have contributed equally to this work Abstract: The aim of this study was to develop a manufacturing protocol for large-scale production of doped titania radiosensitizing nanoparticles (NPs to establish their activity under hypoxia and to produce a multimodal radiosensitizing embolic particle for cancer treatment. We have previously shown that radiosensitizing NPs can be synthesized from titania doped with rare earth elements, especially gadolinium. To translate this technology to the clinic, a crucial step is to find a suitable, scalable, high-throughput method. Herein, we have described the use of flame spray pyrolysis (FSP to generate NPs from titanium and gadolinium precursors to produce titania NPs doped with 5 at% gadolinium. The NPs were fully characterized, and their capacity to act as radiosensitizers was confirmed by clonogenic assays. The integrity of the NPs in vitro was also ascertained due to the potentially adverse effects of free gadolinium in the body. The activity of the NPs was then studied under hypoxia since this is often a barrier to effective radiotherapy. In vitro radiosensitization experiments were performed with both the hypoxia mimetics deferoxamine and cobalt chloride and also under true hypoxia (oxygen concentration of 0.2%. It was shown that the radiosensitizing NPs were able to cause a significant increase in cell death even after irradiation under hypoxic conditions such as those found in tumors. Subsequently, the synthesized NPs were used to modify polystyrene embolization

  16. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    Science.gov (United States)

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. Conclusions Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different

  17. Modification of bone marrow radiosensitivity by medicinal plant extracts

    Energy Technology Data Exchange (ETDEWEB)

    Ganasoundari, A.; Zare, S. M.; Uma Devi, P. [Department of Radiobiology, Kasturba Medical College, Manipal 576 119 (India)

    1997-07-01

    Withaferin A (WA), a steroidal lactone, and Plumbagin (Pi), a naphthoquinone, from the roots of Withania somnifera and Plumbage rosea, respectively, have been shows to possess growth inhibitory and radiosensitizing effects on experimental mouse tumours. An aqueous extract of the leaves of Ocimum sanctum (OE) was found to protect mice against radiation lethality. Therefore, the radiomodifying effects of the above plant products on the bone marrow of the adult Swiss mouse was studied. Single doses of WA (30 mg kg{sup -1}) or P1 (5 mg kg{sup -1}) were injected intraperitoneally tip) and OE (10 mg kg{sup -1}) was injected ip once daily for five consecutive days. Administration of extracts was followed by 2 Gy whole body gamma irradiation. Bone marrow stem cell survival was studied by an exogenous spleen colony unit (CFU-S) assay. The effects of WA and P1 were compared with that of cyclophosphamide (CP) and radioprotection by OE was compared with that of WR-2721 (WR). Radiation reduced the CFU-S to less than 50% of normal. WA, CP and P1 significantly enhanced this effect and reduced the CFU-S to almost the same extent (to <20% of normal), although individually WA and P1 were less cytotoxic than CP. These results indicate that radiosensitization by WE and P1 is not tumour specific. OE significantly increased CFU-S compared with radiotherapy (RT) alone. OE + RT gave a higher stem cell survival (p < 0.05) than that produced by WR + RT. While WR alone had a toxic effect, OE treatment showed no such effect, suggesting that the latter may have an advantage over WR in clinical application. (author)

  18. Potential of radiosensitizing agents in cancer chemo-radiotherapy

    Directory of Open Access Journals (Sweden)

    Girdhani S

    2005-01-01

    Full Text Available Potential of herbs and other plant-based formulations have been increasingly recognized in prevention and treatment of human diseases including cancer. There exist enormous prospect for screening and evaluation of herbal/plant products for developing effective radiosensitization and radioprotection relevant to nuclear research program. Investigations in our laboratory have focused on the mechanism of activity of variety of anticancer and antioxidant agents, namely, Eugenol, (EU, Ellagic acid (EA, Triphala (TPL, Tocopherol Succinate (TOS and Arachidonic acid on normal and cancer cells with view to design effective protocols in practical radioprotection and cancer radiotherapy. This paper is mainly focused on studies on cytotoxic effects on cancer cell lines. Results have shown that these agents produced radiosensitizing action involving oxidative damage, membrane alteration and damage to nucleic acid in various human cell lines. Studies were performed employing fluorescence probes and electron spin resonance methods and gel electrophoresis protocols. It has been found that cytotoxic effect was induced by initiating membrane oxidative damage and by triggering intracellular generation of reactive oxygen species (ROS by gamma radiation in combination with phytochemicals like TPL, EA and TOS in tumor cell line Ehrlich Ascites (EAC, Human cervical (HeLa and breast (MCF-7 cells. Membrane damage and ROS generation was measured by DPH and DCF-FDA fluorescent probes respectively after exposure to low to moderate doses of gamma radiation. This talk will present the cytotoxic effects of phytochemicals in combination with ionizing radiation. It is emphasized that modulation of membrane peroxidative damage and intra cellular ROS may help achieve efficient killing of cancer cells which may provide a new approach to developing effective treatment of cancer.

  19. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    International Nuclear Information System (INIS)

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-01-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of γ-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G 2 /M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  20. Mitochondrial modulation of oxygen-dependent radiosensitivity in some human tumour cell lines.

    LENUS (Irish Health Repository)

    Anoopkumar-Dukie, S

    2009-10-01

    Oxygen-dependent radiosensitivity of tumour cells reflects direct oxidative damage to DNA, but non-nuclear mechanisms including signalling pathways may also contribute. Mitochondria are likely candidates because not only do they integrate signals from each of the main kinase pathways but mitochondrial kinases responsive to oxidative stress communicate to the rest of the cell. Using pharmacological and immunochemical methods, we tested the role of mitochondrial permeability transition (MPT) and the Bcl-2 proteins in oxygen-dependent radiosensitivity. Drug-treated or untreated cervical cancer HeLa, breast cancer MCF-7 and melanoma MeWo cell lines were irradiated at 6.2 Gy under normoxic and hypoxic conditions then allowed to proliferate for 7 days. The MPT blocker cyclosporin A (2 microM) strongly protected HeLa but not the other two lines against oxygen-dependent radiosensitivity. By contrast, bongkrekic acid (50 microM), which blocks MPT by targeting the adenine nucleotide transporter, had only marginal effect and calcineurin inhibitor FK-506 (0.1 microM) had none. Nor was evidence found for the modulation of oxygen-dependent radiosensitivity by Bax\\/Bcl-2 signalling, mitochondrial ATP-dependent potassium (mitoK(ATP)) channels or mitochondrial Ca(2+) uptake. In conclusion, calcineurin-independent protection by cyclosporin A suggests that MPT but not mitoK(ATP) or the mitochondrial apoptosis pathway plays a causal role in oxygen-dependent radiosensitivity of HeLa cells. Targeting MPT may therefore improve the effectiveness of radiotherapy in some solid tumours.

  1. Validation of a radiosensitivity molecular signature in breast cancer

    NARCIS (Netherlands)

    S.A. Eschrich (Steven); C. Fulp (Carl); Y. Pawitan (Yudi); J.A. Foekens (John); M. Smid (Marcel); J.W.M. Martens (John); M. Echevarria (Michelle); P.S. Kamath (Patrick); J.-H. Lee (Ji-Hyun); E.E. Harris (Eleanor); J. Bergh (Jonas); J.F. Torres-Roca (Javier)

    2012-01-01

    textabstractPurpose: Previously, we developed a radiosensitivity molecular signature [radiosensitivity index (RSI)] that was clinically validated in 3 independent datasets (rectal, esophageal, and head and neck) in 118 patients. Here, we test RSI in radiotherapy (RT)-treated breast cancer patients.

  2. Observations on the radiosensitivity of guppy (Lebistes reticulatus Peters)

    International Nuclear Information System (INIS)

    Panlaque, C.A.

    1982-08-01

    The ichthyologically well-known teleostean fish, Lebistes reticulatus Peters commonly known as guppy, found abundant in pools, streams and estuaries was studied to establish its sensitivity to radiation and to explore its possible use as a biological indicator organism of radiation effects in the aquatic system. The guppy, Lebistes reticulatus was found to be radiosensitive. Chromosome aberrations were induced by gamma-irradiation of fish in vivo. Through cytogenetic technique the aberrant chromosomes were evaluated. The aberrant chromosomes observed were of various types such as chromatid gaps and breaks, chromosome gaps and breaks, chromatid and chromosome fragments, polycentrics (dicentrics and tricentrics), fusions and translocations. Of the types seen, it is concluded that dicentrics are the most reliable indicator of radiation effects. In the course of this study, the Lethal Radiation Dose in guppy within thirty days was determined. It was found to lie in the dose of 3 krad (LDsub(50/30)). (author)

  3. Potential radiosensitizing agents. 5. 2-Substituted benzimidazole derivatives

    International Nuclear Information System (INIS)

    Gupta, R.P.; Larroquette, C.A.; Agrawal, K.C.

    1982-01-01

    A series of 2-substituted benzimidazoles and their derivatives have been synthesized and tested for their ability to selectively sensitize hypoxic Chinese hamster cells (V-79) toward the lethal effect of ionizing radiation. These compounds were prepared by reacting the 2-substituted benzimidazoles with 1,2-epoxy-3-methoxypropane in the presence of potassium carbonate. Reaction of the 2-nitro and 2-methylfonyl analogue with the epoxide also yielded a cyclized material, which was confirmed to be a benzimidazo[2,1-b]oxazole. In an attempt to increase the electron affinity, 5- or 6-nitro-2-substituted-benzimidazoles were also synthesized and then reacted with the epoxide to yield the corresponding 1-substituted derivatives. The results of the biological tests for the radiosensitizing activity of these agents against Chinese hamster cells (V-79) in culture indicated that the 2-nitro-substituted analogues were the most effective sensitizers in this series

  4. Direct microcontact printing of oligonucleotides for biochip applications

    Directory of Open Access Journals (Sweden)

    Trévisiol E

    2005-07-01

    Full Text Available Abstract Background A critical step in the fabrication of biochips is the controlled placement of probes molecules on solid surfaces. This is currently performed by sequential deposition of probes on a target surface with split or solid pins. In this article, we present a cost-effective procedure namely microcontact printing using stamps, for a parallel deposition of probes applicable for manufacturing biochips. Results Contrary to a previous work, we showed that the stamps tailored with an elastomeric poly(dimethylsiloxane material did not require any surface modification to be able to adsorb oligonucleotides or PCR products. The adsorbed DNA molecules are subsequently printed efficiently on a target surface with high sub-micron resolution. Secondly, we showed that successive stamping is characterized by an exponential decay of the amount of transferred DNA molecules to the surface up the 4th print, then followed by a second regime of transfer that was dependent on the contact time and which resulted in reduced quality of the features. Thus, while consecutive stamping was possible, this procedure turned out to be less reproducible and more time consuming than simply re-inking the stamps between each print. Thirdly, we showed that the hybridization signals on arrays made by microcontact printing were 5 to 10-times higher than those made by conventional spotting methods. Finally, we demonstrated the validity of this microcontact printing method in manufacturing oligonucleotides arrays for mutations recognition in a yeast gene. Conclusion The microcontact printing can be considered as a new potential technology platform to pattern DNA microarrays that may have significant advantages over the conventional spotting technologies as it is easy to implement, it uses low cost material to make the stamp, and the arrays made by this technology are 10-times more sensitive in term of hybridization signals than those manufactured by conventional spotting

  5. Dissecting the hybridization of oligonucleotides to structured complementary sequences.

    Science.gov (United States)

    Peracchi, Alessio

    2016-06-01

    When oligonucleotides hybridize to long target molecules, the process is slowed by the secondary structure in the targets. The phenomenon has been analyzed in several previous studies, but many details remain poorly understood. I used a spectrofluorometric strategy, focusing on the formation/breaking of individual base pairs, to study the kinetics of association between a DNA hairpin and >20 complementary oligonucleotides ('antisenses'). Hybridization rates differed by over three orders of magnitude. Association was toehold-mediated, both for antisenses binding to the target's ends and for those designed to interact with the loop. Binding of these latter, besides being consistently slower, was affected to variable, non-uniform extents by the asymmetric loop structure. Divalent metal ions accelerated hybridization, more pronouncedly when nucleation occurred at the loop. Incorporation of locked nucleic acid (LNA) residues in the antisenses substantially improved the kinetics only when LNAs participated to the earliest hybridization steps. The effects of individual LNAs placed along the antisense indicated that the reaction transition state occurred after invading at least the first base pair of the stem. The experimental approach helps dissect hybridization reactions involving structured nucleic acids. Toehold-dependent, nucleation-invasion models appear fully appropriate for describing such reactions. Estimating the stability of nucleation complexes formed at internal toeholds is the major hurdle for the quantitative prediction of hybridization rates. While analyzing the mechanisms of a fundamental biochemical process (hybridization), this work also provides suggestions for the improvement of technologies that rely on such process. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Combining gene expression data from different generations of oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Kong Sek

    2004-10-01

    Full Text Available Abstract Background One of the important challenges in microarray analysis is to take full advantage of previously accumulated data, both from one's own laboratory and from public repositories. Through a comparative analysis on a variety of datasets, a more comprehensive view of the underlying mechanism or structure can be obtained. However, as we discover in this work, continual changes in genomic sequence annotations and probe design criteria make it difficult to compare gene expression data even from different generations of the same microarray platform. Results We first describe the extent of discordance between the results derived from two generations of Affymetrix oligonucleotide arrays, as revealed in cluster analysis and in identification of differentially expressed genes. We then propose a method for increasing comparability. The dataset we use consists of a set of 14 human muscle biopsy samples from patients with inflammatory myopathies that were hybridized on both HG-U95Av2 and HG-U133A human arrays. We find that the use of the probe set matching table for comparative analysis provided by Affymetrix produces better results than matching by UniGene or LocusLink identifiers but still remains inadequate. Rescaling of expression values for each gene across samples and data filtering by expression values enhance comparability but only for few specific analyses. As a generic method for improving comparability, we select a subset of probes with overlapping sequence segments in the two array types and recalculate expression values based only on the selected probes. We show that this filtering of probes significantly improves the comparability while retaining a sufficient number of probe sets for further analysis. Conclusions Compatibility between high-density oligonucleotide arrays is significantly affected by probe-level sequence information. With a careful filtering of the probes based on their sequence overlaps, data from different

  7. Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells

    International Nuclear Information System (INIS)

    Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.; Wilson, George D.; Marples, Brian

    2010-01-01

    Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity was assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing γH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2μg/mL], Trinovin [10μg/mL], and Prostate Rx [50 μg/mL]). However, both Trinovin (10μg/mL) and Prostate Rx (6μg/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.

  8. Radiosensitivity and cell kinetics of the human solid cancer transplanted to nude mouse

    International Nuclear Information System (INIS)

    Ikeuchi, Shunji

    1983-01-01

    This study was undertaken to analyse the relationship between radiosensitivity and cell kinetics of human solid cancer in experimental nude mouse system. Four strains of tumors used for the experiment were poorly differentiated squamous cell carcinoma of the lung (Lu-9), oat cell carcinoma of the lung (Lu-24), well differentiated squamous cell carcinoma of the tongue (To-1) and moderately differentiated squamous cell carcinoma of the esophagus (Es-4) which were serially transplantable to BALB/c nude mice. Radiosensitivity was evaluated by tumor growth in terms of inhibition rate, histological change and host reaction after irradiation. Cell kinetics were studied by autoradiography with pulse administration of 3 H-thymidine to mice. Although Lu-24 was most radiosensitive, followed by To-1, Es-4 and Lu-9 in the order of sensitivity, it was suggested that they might be more radioresistant in nude mice without T-cell function than in human. Regarding squamous cell carcinomas, well differentiated type was more radiosensitive than poorly differentiated one. All of these tumors in nude mouse revealed distinct percent labeled mitosis curves with two clear peaks which were quite different from those in human body. Lu-24 showed a characteristic pattern with a long time lag before visible growth, short G 1 , and low growth fraction, compared to other three tumors. Three strains of squamous cell carcinoma demonstrated similar cell kinetic factors which were almost the same as those in human body reported previously. The differences in volume doubling time of tumor, growth fraction and cell loss factor were partially related to those of radiosensitivities among tumors except for Lu-24. The theoretical volume doubling time was proved to be most reliable for estimation of effectiveness of irradiation, but the labeling index was not a valuable indicator for it. (author)

  9. Overview of Radiosensitivity of Human Tumor Cells to Low-Dose-Rate Irradiation

    International Nuclear Information System (INIS)

    Williams, Jerry R.; Zhang Yonggang; Zhou Haoming; Gridley, Daila S.; Koch, Cameron J.; Slater, James M.; Little, John B.

    2008-01-01

    Purpose: We compared clonogenic survival in 27 human tumor cell lines that vary in genotype after low-dose-rate (LDR) or high-dose rate (HDR) irradiation. We measured susceptibility to LDR-induced redistribution in the cell cycle in eight of these cell lines. Methods and Materials: We measured clonogenic survival after up to 96 hours of LDR (0.25 Gy/h) irradiation. We compared these with clonogenic survival after HDR irradiation (50 Gy/h). Using flow cytometry, we measured LDR-induced redistribution as a function of time during LDR irradiation in eight of these cell lines. Results: Coefficients that describe clonogenic survival after both LDR and HDR irradiation segregate into four radiosensitivity groups that associate with cell genotype: mutant (mut)ATM, wild-type TP53, mutTP53, and an unidentified gene in radioresistant glioma cells. The LDR and HDR radiosensitivity correlates at lower doses (∼2 Gy HDR, ∼6 Gy LDR), but not at higher doses (HDR > 4 Gy; LDR > 6 Gy). The rate of LDR-induced loss of clonogenic survival changes at approximately 24 hours; wild-type TP53 cells become more resistant and mutTP53 cells become more sensitive. Redistribution induced by LDR irradiation also changes at approximately 24 hours. Conclusions: Radiosensitivity of human tumor cells to both LDR and HDR irradiation is genotype dependent. Analysis of coefficients that describe cellular radiosensitivity segregates 27 cell lines into four statistically distinct groups, each associating with specific genotypes. Changes in cellular radiosensitivity and redistribution in the cell cycle are strongly time dependent. Our data establish a genotype-dependent time-dependent model that predicts clonogenic survival, explains the inverse dose-rate effect, and suggests possible clinical applications

  10. Characterization of tumorigenicity and radio-sensitivity markers by an ex vivo approach. In vivo identification of p53 dependent radio-sensitivity markers

    International Nuclear Information System (INIS)

    Alvarez, S.

    2003-12-01

    After a detailed discussion of the relationship between cancer and genetic instability, of the structure, activation mechanisms, activity and biological functions of the p53 protein, a presentation of p53 mutants, and a recall of the effects of ionizing radiations, the author reports a biology research during which he investigated a cell model established from rat embryo lungs treated with Benzo[a]pyrene and made of tumoral lines muted by the p53 gene. He tried to identify markers which could report differences of tumorigenicity and radio-sensitivity observed in these different lines. He also tried to characterize radio-sensitivity molecular markers dependent on the p53 gene in a context of normal cells

  11. Chemical radiosensitizers with special reference to metronidazole

    International Nuclear Information System (INIS)

    Sharma, R.; Purohit, O.P.; Nair, C.R.; Dutta, T.K.

    1982-01-01

    An attempt at rationalisation of drug dose schedule for a radiosensitizer in a cancer clinic is attempted. A prospective analysis of tissue tolerance, response data and complications of the two groups of patients (treated by oral and high intermittent rectal routes) was made with matched control. The study group has definite use of metronidazole. It is further highlighted that there is an additional advantage of the rectal administration route of the drug as compared to that of the oral route. This is a preliminary communication. (author)

  12. Radiosensitization of thymidine in deaerated aqueous solution

    International Nuclear Information System (INIS)

    Berger, Maurice.

    1982-09-01

    This work investigates the mode of action of various radiosensitizing agents on the radio-induced degradation of thymidine in deaerated aqueous solution. A special effort was devoted to the separation of addition products formed by one of these substances (a stable nitroxide radical: TAN) with the radio-induced neutral radicals of thymidine. The complex mixture of different diastereoisomers resulting from the covalent addition of the TAN molecule on the thymidine carbons C (5) or C (6) was resolved by HPLC. The structural determination of these adducts (absolute configuration) was achieved by various spectroscopic techniques and specific chemical syntheses. A conformational study has been undertaken [fr

  13. Radiosensitivity study in rice (Oriza Sativa Lin.)

    International Nuclear Information System (INIS)

    Gonzalez, M.; Santana, N.; Diaz, R.

    1987-01-01

    Four rice varieties (J-104, Amistad-82, 6066 and IR-1529) were irradiated at doses of 10,15,20,25,30,35,40,45,50 and 55 Krad of gamma rays so as to determine radiosensitivity curves for each of the varieties for the following factors; seed germination percentage; survival percentage; height of the plant; length of roots. It was determined that IR-1529 variety is the one with the highest sensitivity and that radiations over 35 Krad should not be used for none of the varieties above mentioned

  14. The effect of radiosensitizers on the survival response of hypoxic mammalian cells: The low X-ray dose region, hypersensitivity and induced radioresistance

    International Nuclear Information System (INIS)

    Skov, K.A.; MacPhail, H.S.; Marples, B.

    1994-01-01

    It has been shown previously that the extent of chemical modification of the hypoxic radiation response is dependent on dose. Some types of sensitizer are more effective at low doses (to 4 Gy) than at higher doses. Since such drugs are possible adjuvants to radiotherapy, the mechanisms responsible for the variable response at clinical doses are summarized, and the effects of cisplatin and buthionine sulfoximine on the purported induced response to radiation in hypoxic cells are presented. Cisplatin at a low, nontoxic concentration (1 μM) appears to abolish the increased radioresistant portion of the survival response. A role for high-mobility-group protein binding by platinum drugs is hypothesized to explain their interaction with radiation, and conversely, it is suggested that the heretofore unexplained different behavior of certain hypoxic sensitizers at low doses could be, at least in part, an effect on the induction of resistance. 36 refs., 2 figs

  15. Effect of barbiturates on radiosensitivity of cells: a comparative study of electrophoretic mobility, colony forming ability and thymidine uptake on human amnion cells

    International Nuclear Information System (INIS)

    Lalwani, N.D.; Chaubal, K.A.

    1980-01-01

    Suspensions of human amnion cells were 60 Co γ-irradiated in the presence of phenobarbital or thiobarbital (50 μg/ml). The barbiturates protected the cells against the dose-dependent reduction in electrophoretic mobility (EPM) observed 4 hours after irradiation of untreated cells, although there was an initial decrease in the EPM of treated cells followed by recovery. Treated irradiated cells exhibited greater colony-forming ability than the untreated cells. Pentobarbital and phenobarbital had similar effects, but thiobarbital was not so effective. 3 H-TdR uptake increased within 4 hours of irradiation for the treated cells. The reproductive capacity of the cells was retained at doses as high as 500 rad. The results are discussed with reference to the effects of anaesthetics on cell membranes. (U.K.)

  16. Modern methods for the synthesis of peptide-oligonucleotide conjugates

    International Nuclear Information System (INIS)

    Zubin, Evgenii M; Oretskaya, Tat'yana S; Romanova, Elena A

    2002-01-01

    The published data on the methods of chemical solution and solid-phase synthesis of peptide-oligonucleotide conjugates are reviewed. The known methods are systematised and their advantages and disadvantages are considered. The approaches to the solution synthesis of peptide-oligonucleotide conjugates are systematised according to the type of chemical bonds between the fragments, whereas those to the solid-phase synthesis are classified according to the procedure used for the preparation of conjugates, viz., stepwise elongation of oligonucleotide and peptide chains on the same polymeric support or solid-phase condensation of two presynthesised fragments. The bibliography includes 141 references.

  17. Optical Characterization of Oligonucleotide DNA Influenced by Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Seyedeh Maryam Banihashemian

    2013-09-01

    Full Text Available UV-VIS spectroscopic analysis of oligonucleotide DNA exposed to different magnetic fields was performed in order to investigate the relationship between DNA extinction coefficients and optical parameters according to magnetic-field strength. The results with the oligonucleotides adenine-thymine 100 mer (AT-100 DNA and cytosine-guanine 100 mer (CG-100 DNA indicate that the magnetic field influences DNA molar extinction coefficients and refractive indexes. The imaginary parts of the refractive index and molar extinction coefficients of the AT-100 and CG-100 DNA decreased after exposure to a magnetic field of 750 mT due to cleavage of the DNA oligonucleotides into smaller segments.

  18. Effect of hyperthermia and misonidazole on the radiosensitivity of a transplant murine tumor: influence of factors modifying the fraction of hypoxic cells

    International Nuclear Information System (INIS)

    Wondergem, J.; Haveman, J.; van der Schueren, E.; van den Hoeven, H.; Breur, K.

    1982-01-01

    Hypoxia has been demonstrated to play an important role in the effect of hyperthermia on tumors. The influence of different factors modifying the oxygenation status of a transplantable murine mammary adenocarcinoma has been studied. The effect of hyperthermia alone on the tumor is not significantly influenced by the change in oxygenation status during the growth of the tumor. Also, the large increase of the acutely hypoxic cell fraction, as a result of anesthesia, does not change the effect of hyperthermia alone. In the combined irradiation-heat treatment there is a clear influence of the chronically hypoxic cell fraction on the response to hyperthermia: an increase in tumor size, resulting in a larger hypoxic cell fraction, leads to an increase in thermal enhancement ratio. However, the increased acutely hypoxic cell fraction, resulting from anesthesia, did not lead to an increase in thermal enhancement ratio; in fact the enhancement ratio apparently decreased. In spite of the fact that hyperthermia was applied immediately after irradiation no potentiation of radiation effects was found. The thermal enhancement of the radiation response was never larger than the enhancement as a result of misonidazole

  19. Doranidazole (PR-350), a hypoxic cell radiosensitizer, radiosensitizes human lung tumors (RERF-LC- AI) and causes changes in tumor oxygenation

    International Nuclear Information System (INIS)

    Kubota, N.; Griffin, R.J.; Williams, B.W.; Song, C.W.; Yahiro, T.

    2003-01-01

    Full text: We previously have reported the radiosensitizing capability of Doranidazole (PR-350) on SCCVII cells and tumors (Puerto Rico, 2001). In the present study, we have investigated the efficacy of PR-350 as a hypoxic cell radiosensitizer using human lung cancer cells (RERF-LC-AI) in vitro and also RERF-LC-AI tumors grown s.c. in Balb/c nude mice. Using the micronucleus assay method, we determined the effect of PR-350 on the response of RERF-LC-AI cells to radiation under hypoxic conditions and enhancement ratios (ER) of 1.45∼2.26 were obtained. The in vivo radiosensitizing effect was studied by irradiating RERF-LC-AI tumors with 15 Gy at 20 min. after i.v. injection of PR-350 (200mg/kg) and measuring the tumor growth delay. Significant growth delay occurred after i.v. injection of PR-350 before irradiation compared to radiation alone. We measured tumor pO 2 at 3, 7 and 14 days after treatment using an Eppendorf pO 2 histograph. The frequency of pO 2 values 2 in tumors treated with radiation plus PR-350 were higher than that in tumors treated with radiation plus saline. These data suggest that the O 2 consumption in tumors treated with radiation plus PR-350 was less than that in tumors treated with radiation plus saline due to greater drug and radiation-induced cell death. This hypothesis is supported by the fact that the tumor size in the combined treatment group was smaller than in radiation alone. These results suggest that PR-350 may improve the response of tumors to radiotherapy not only by increasing the radiosensitivity of hypoxic cells but also by improving tumor oxygenation over many days during fractionated radiotherapy

  20. Thermo-radiosensitivity of the granulocyte and macrophage precursor cells of mice. I.-Development of the in vivo culture and effects induced by the hyperthermia

    International Nuclear Information System (INIS)

    Bueren, J. A.; Nieto, M.

    1983-01-01

    The present report shows the agar diffusion chamber technique for culturing granulocyte- macrophage precursor cells, obtained from mice bone marrow. Diffusion chambers containing the bone marrow suspension are implanted intraperitoneally Into mice and constitute a compartment which avoids the migration of cells, but allows the transit of the mouse biological fluxes, necessary for the cellular proliferation. By means of this technique, we studied the lethal effects of the hyperthermia on the precursors and their capacity to repair sublethal damage. (Author) 129 refs

  1. Omega-3 fatty acid supplementation in cancer therapy. Does eicosapentanoic acid influence the radiosensitivity of tumor cells?

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin; Kriesen, Stephan; Hildebrandt, Guido [Rostock Univ. (Germany). Dept. of Radiotherapy; Fietkau, Rainer; Klautke, Gunther [Univ. Hospital Erlangen, Erlangen (Germany). Dept. of Radiation Oncology

    2011-02-15

    Purpose: The aim of this study was to evaluate whether the omega-3 polyunsaturated fatty acid cis-5,8,11,14,17-eicosapentanoic acid (EPA) can enhance the radiosensitivity of different human tumor cell lines. Materials and Methods: Colon adenocarcinoma cells HT-29, and two glioblastoma multiforme tumor cells T98G and U251 were cultured under standard conditions. Cell growth was observed during administration with different concentrations of EPA, using it as the free fatty acid dissolved in ethanol or bound to bovine serum albumin. To investigate the influence of EPA (free and bound) on radiosensitivity, tumor cells were pretreated 30 minutes or 24 hours prior to irradiation with the fatty acid. Cell survival was measured by colony-forming assays. Results: When combined with irradiation, incubation with EPA was found to result in enhanced radiosensitivity with substantial variation: while there was strong radiosensitization for HT-29 and U251 cells, almost no effect for T98G cells was observed. A marked radiosensitization was clearly dependent on the treatment schedule. Conclusion: The observations suggest that EPA is not only a nutritional adjuvant but also may be a potential candidate to enhance the efficacy of irradiation on human cancer cells. (orig.)

  2. DNA-PK. The major target for wortmannin-mediated radiosensitization by the inhibition of DSB repair via NHEJ pathway

    International Nuclear Information System (INIS)

    Hashimoto, Mitsumasa; Rao, S.; Tokuno, Osamu; Utsumi, Hiroshi; Takeda, Shunichi

    2003-01-01

    The effect of wortmannin posttreatment was studied in cells derived from different species (hamster, mouse, chicken, and human) with normal and defective DNA-dependent protein kinase (DNA-PK) activity, cells with and without the ataxia telangiectasia mutated (ATM) gene, and cells lacking other regulatory proteins involved in the DNA double-strand break (DSB) repair pathways. Clonogenic assays were used to obtain all results. Wortmannin radiosensitization was observed in Chinese hamster cells (V79-B310H, CHO-K1), mouse mammary carcinoma cells (SR-1), transformed human fibroblast (N2KYSV), chicken B lymphocyte wild-type cells (DT40), and chicken Rad54 knockout cells (Rad54 -/- ). However, mouse mammary carcinoma cells (SX9) with defects in the DNA-PK and chicken DNA-PK catalytic subunit (DNA-PKcs) knockout cells (DNA-PKcs -/-/- ) failed to exhibit wortmannin radiosensitization. On the other hand, severe combined immunodeficiency (SCID) mouse cells (SC3VA2) exposed to wortmannin exhibited significant increases in radiosensitivity, possibly because of some residual function of DNA-PKcs. Moreover, the transformed human cells derived from AT patients (AT2KYSV) and chicken ATM knockout cells (ATM -/- ) showed pronounced wortmannin radiosensitization. These studies demonstrate confirm that the mechanism underlying wortmannin radiosensitization is the inhibition of DNA-PK, but not of ATM, thereby resulting in the inhibition of DSB repair via nonhomologous endjoining (NHEJ). (author)

  3. Increased Chromosomal Radiosensitivity in Women Carrying BRCA1/BRCA2 Mutations Assessed With the G2 Assay

    International Nuclear Information System (INIS)

    Ernestos, Beroukas; Nikolaos, Pandis; Koulis, Giannoukakos; Eleni, Rizou; Konstantinos, Beroukas; Alexandra, Giatromanolaki; Michael, Koukourakis

    2010-01-01

    Purpose: Several in vitro studies suggest that BRCA1 and BRCA2 mutation carriers present increased sensitivity to ionizing radiation. Different assays for the assessment of deoxyribonucleic acid double-strand break repair capacity have been used, but results are rather inconsistent. Given the concerns about the possible risks of breast screening with mammography in mutation carrier women and the potentially damaging effects of radiotherapy, the purpose of this study was to further investigate the radiosensitivity of this population. Methods and Materials: The G2 chromosomal radiosensitivity assay was used to assess chromosomal breaks in lymphocyte cultures after exposure to 1 Gy. A group of familiar breast cancer patients carrying a mutation in the BRCA1 or BRCA2 gene (n = 15) and a group of healthy mutation carriers (n = 5) were investigated and compared with a reference group of healthy women carrying no mutation (n = 21). Results: BRCA1 and BRCA2 mutation carriers had a significantly higher number of mean chromatid breaks per cell (p = 0.006) and a higher maximum number of breaks (p = 0.0001) as compared with their matched controls. Both healthy carriers and carriers with a cancer history were more radiosensitive than controls (p = 0.002 and p = 0.025, respectively). Age was not associated with increased radiosensitivity (p = 0.868). Conclusions: Our results indicate that BRCA1 and BRCA2 mutation carriers show enhanced radiosensitivity, presumably because of the involvement of the BRCA genes in deoxyribonucleic acid repair and cell cycle control mechanisms.

  4. Radiation could induce p53-independent and cell cycle - unrelated apoptosis in 5-fluorouracil radiosensitized head and neck carcinoma cells

    International Nuclear Information System (INIS)

    Didelot, C.; Mirjolet, J.F.; Barberi-Heyob, M.; Ramacci, C.; Merlin, J.L.

    2002-01-01

    The effect of chemoresistance induction in radio sensitivity and cellular behavior after irradiation remains misunderstood. This study was designed to understand the relationship between radiation-induced cell cycle arrest, apoptosis, and radiosensitivity in KB cell line and KB3 subline selected after 5-fluorouracil (5FU) exposure. Exposure of KB cells to 5FU led to an increase in radiosensitivity. G 2 /M cell cycle arrest was observed in the two cell lines after irradiation. The radioresistant KB cell line reached the maximum arrest two hours before KB3. The cellular exit from this arrest was found to be related to the wild type p53 protein expression induction. After irradiation, only KB3 cell line underwent apoptosis. This apoptosis induction seemed to be independent of G 2 /M arrest exit, which was carried out later. The difference in radiosensitivity between KB and KB3 subline may result therefore from both a difference in apoptosis induction and a difference in G 2 /M arrest maximum duration. Moreover, 5FU exposure has led to an increase in constitutive p53 protein expression, which may be associated with an increase in basal apoptosis cell fraction. Given the existing correlation between radiosensitivity and the percentage of basal apoptosis. the constitutive p53 protein expression may be related to intrinsic radiosensitivity in our cellular model. (author)

  5. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    Full Text Available Wan Nordiana Rahman,1,2 Stéphanie Corde,3,4 Naoto Yagi,5 Siti Aishah Abdul Aziz,1 Nathan Annabell,2 Moshi Geso21School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia; 2Division of Medical Radiation, School of Medical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC, 3Radiation Oncology, Prince of Wales Hospital, High Street, Randwick, 4Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; 5Japanese Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, JapanAbstract: Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3

  6. Radiosensitivity in seeds of Coix lachryma-jobi TOURN

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielli, A C [Universidade Estadual de Campinas (Brazil). Inst. de Biologia; Medina Filho, H P [Instituto Agronomico de Campinas (Brazil)

    1979-04-01

    Radiosensitivity in seeds of Coix lachryma-jobi Tourn. Seeds of Coix lachryma-jobi Tourn., containing 9% humidity were irradiated with 0 to 70 Krad doses of gama-radiation from a /sup 60/Co source. The zero-time was set to be the time of sowing. At high doses of radiation, germination after 15 days was little affected, but after 21 days survival rate decreased. Our results show that the LD/sub 50/ is about 60 Krad and the GR/sub 50/ is approximately 30 Krad. The morphological alterations which were observed in some plants, as well as the effects of gama-radiation on growth inhibition and survival rate of the seedlings, suggest that doses between 30 and 50 Krad could be useful to obtain genetic variability in adapted cultivars of this species.

  7. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids

    Directory of Open Access Journals (Sweden)

    Wilfred Ngwa

    2017-09-01

    Full Text Available Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. Smart nanomaterials (nanoparticle drones can now be constructed with capability to precisely target cancer cells and be remotely activated with radiation to emit micrometer-range missile-like electrons to destroy the tumor cells. These nanoparticle drones can also be programmed to deliver therapeutic payloads to tumor sites to achieve optimal therapeutic efficacy. In this article, we examine the state-of-the-art and potential of nanoparticle drones in targeting lung cancer. Inhalation (INH (air versus traditional intravenous (“sea” routes of navigating physiological barriers using such drones is assessed. Results and analysis suggest that INH route may offer more promise for targeting tumor cells with radiosensitizers and cannabinoids from the perspective of maximizing damage to lung tumors cells while minimizing any collateral damage or side effects.

  8. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids

    Science.gov (United States)

    Ngwa, Wilfred; Kumar, Rajiv; Moreau, Michele; Dabney, Raymond; Herman, Allen

    2017-01-01

    Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. Smart nanomaterials (nanoparticle drones